Comparison of different modulations of
photoplethysmography in extracting
respiratory rate: from a physiological
perspective

Liu, H, Chen, F, Hartmann, V, Khalid, SG, Hughes, S & Zheng, D
Published PDF deposited in Coventry University’s Repository

Original citation:

Liu, H, Chen, F, Hartmann, V, Khalid, SG, Hughes, S & Zheng, D 2020, 'Comparison of
different modulations of photoplethysmography in extracting respiratory rate: from

a physiological perspective', Physiological Measurement, vol. 41, no. 9, 094001.
https://dx.doi.org/10.1088/1361-6579/abaaf0

DOl 10.1088/1361-6579/abaaf0
ISSN  0967-3334
ESSN 1361-6579

Publisher: 10P

Original content from this work may be used under the terms of the Creative
Commons Attribution 3.0 license. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work, journal citation and
DOI.

Copyright © and Moral Rights are retained by the author(s) and/ or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This item cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder(s). The content must not be changed in any way
or sold commercially in any format or medium without the formal permission of
the copyright holders.



I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
19 February 2020

REVISED
28 July 2020

ACCEPTED FOR PUBLICATION
30 July 2020

PUBLISHED
1 October 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Physiol. Meas. 41 (2020) 094001 https://doi.org/10.1088/1361-6579/abaaf0

H H ‘A‘? nstitute o sics an
PhyS|O|0glca| Measurement .;@/"’ IPEM :Engineerir:gPEyMedicir?e
PAPER

Comparison of different modulations of photoplethysmography in
extracting respiratory rate: from a physiological perspective

Haipeng Liu' ®, Fei Chen’©®, Vera Hartmann’, Syed Ghufran Khalid', Stephen Hughes’
and Dingchang Zheng'

1 Research Centre for Intelligent Healthcare, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, United
Kingdom

2 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, People’s
Republic of China

3 School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, CM1 1SQ,
United Kingdom

E-mail: dingchang.zheng@coventry.ac.uk and fchen@sustech.edu.cn

Keywords: photoplethysmography (PPG), respiratory frequency, respiratory modulation

Abstract

Objective: Based on different physiological mechanisms, the respiratory modulations of
photoplethysmography (PPG) signals differ in strength and resultant accuracy of respiratory
frequency (RF) estimations. We aimed to investigate the strength of different respiratory
modulations and the accuracy of resultant RF estimations in different body sites and two breathing
patterns. Approach: PPG and reference respiratory signals were simultaneously measured over 60 s
from 36 healthy subjects in six sites (arm, earlobe, finger, forehead, wrist-under (volar side),
wrist-upper (dorsal side)). Respiratory signals were extracted from PPG recordings using four
demodulation approaches: amplitude modulation (AM), baseline wandering (BW), frequency
modulation (FM) and filtering. RFs were calculated from the PPG-derived and reference
respiratory signals. To investigate the strength of respiratory modulations, the energy proportion in
the range that covers 75% of the total energy in the reference respiratory signal, with RF in the
middle, was calculated and compared between different modulations. Analysis of variance and the
Scheirer—Ray—Hare test were performed with post hoc analysis. Main results: In normal breathing,
FM was the only modulation whose RF was not significantly different from the reference RF

(p > 0.05). Compared with other modulations, FM was significantly higher in energy proportion
(p < 0.05) and lower in RF estimation error (p < 0.05). As to energy proportion, measurements
from the finger and the forehead were not significantly different (p > 0.05), but both were
significantly different from the other four sites (p < 0.05). In deep breathing, the RFs derived by
BW, filtering and FM were not significantly different from the reference RF (p > 0.05). The RF
estimation error of FM was significantly less than that of AM or BW (p < 0.05). The energy
proportion of FM was significantly higher than that of other modulations (p < 0.05). Significance:
Of all the respiratory modulations, FM has the highest strength and is appropriate for accurate RF
estimation from PPG signals recorded at different sites and for different breathing patterns.

1. Introduction

Respiratory frequency (RF) is an important physiological parameter in healthcare monitoring, especially for
patients with respiratory diseases. Respiratory rate (RR) is a vital sign that is directly derived from RFE.
However, long-term monitoring of RF is difficult due to the various limitations of current respiratory
monitoring devices, which are expensive, difficult to use and could cause discomfort to patients. Some new
devices, such as inertial sensors, provide the possibility of convenient monitoring of RF, but still need further
validation for clinical use or long-term monitoring. It has been suggested that long-term RF monitoring can
be achieved by extracting RF from other signals recorded by wearable sensors (Liu et al 2019).

© 2020 Institute of Physics and Engineering in Medicine
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In particular, RF may be easily extracted from photoplethysmography (PPG) signals. A PPG signal
reflects the blood volumetric changes in the peripheral microvascular bed and is continuously recorded by
wearable sensors. Therefore, PPG finds wide application in healthcare. During respiration, the PPG signal is
modulated by several physiological factors in its amplitude, baseline, and frequency (Charlton et al 2017a).
These factors reflect the influence of respiratory movement on the hemodynamics of peripheral arterioles
and capillaries. The respiratory modulation of PPG signals is related to the complex interaction of different
physiological mechanisms such as vasoconstriction, interthoracic pressure change, and vagal outflow
(Meredith et al 2012). Meanwhile, other influences on the modulation of the PPG signal exist, including
baroreceptor reflex and neural tone (Kiselev et al 2016).

To derive RF, the majority of current algorithms demodulate the respiratory signal from a PPG signal
based on amplitude modulation (AM), baseline wandering (BW), and frequency modulation (FM)
(Charlton et al 2017a). Here the amplitude refers to the magnitude of fluctuation or the difference between
the maximum and minimum values of PPG signal in a cardiac cycle. The baseline refers to the minimum
value of the PPG signal in a cardiac cycle. To enhance the reliability and robustness of these algorithms, some
studies have investigated the fusion of RF values derived by AM, BW and FM (Liu et al 2019). However, the
accuracy of PPG-derived RF estimation using fusion techniques varies in different studies (Orphanidou
2017, Birrenkott et al 2018). In a widely used Smart Fusion algorithm, the error is 2.8 + 3.4 breaths min~!,
or 0.047 4 0.057 Hz, which is beyond the clinically reliable range (<2 breaths min—!) (Karlen et al 2013). To
improve the accuracy of PPG-based RF estimation, it is necessary to comprehensively investigate the
differences between different respiratory modulations in strength that directly influence the accuracy of RF
estimation. Moreover, while current fusion algorithms focus on signal processing as well as the statistical and
probabilistic characteristics of signals, there is a lack of analysis of the physiological mechanisms that
underlie the different respiratory modulations.

This study aims to provide a preliminary comparison of different respiratory modulations of PPG signal
in their strength and accuracy of resultant RF estimation from a physiological perspective. RF is estimated by
different modulation algorithms from PPG signals of different body sites under different breathing patterns.
The intensities of different respiratory modulations are also compared. Finally, we analyse the physiological
effect of the measurement site and breathing pattern on the strength of respiratory modulation and the
accuracy of RF estimation.

2. Methods

2.1. Analysis of respiratory modulations of PPG signal from a physiological perspective

A PPG signal is an optical signal collected from volumetric changes in the peripheral microcirculation. The
blood ejected from the left ventricle flows through aorta and major arteries into arterioles and capillaries
where PPG signal is recorded. The photocurrent of the sensor is then transformed to voltage in the recorded
PPG signals. The blood then flows through the venous system back to the left heart via the pulmonary
circulation. Factors influencing the PPG waveform include those related to sensor attachment, such as any
movement and the pressure exerted between the PPG sensor and the skin. These factors can nonlinearly
change the waveform, leading to noises in the recorded PPG signal.

It is widely known that neural regulation can influence respiratory movement. It has been disclosed that
respiratory movement causes variation in sympathetic tone control of cutaneous blood vessels (as detailed
below). The interaction between neural regulation and respiratory movement has a complicated effect on the
respiratory modulations of PPG signals (Nilsson et al 2000, Johansson 2003).

Charlton et al have extensively reviewed the mechanisms of AM, BW and FW (Charlton et al 2017b)
(Charlton et al 2017a). Recently, some new mechanisms of respiratory modulation have been proposed such
as vasomotor (Ovadia-Blechman et al 2017) and aortic movement (Sailer et al 2015). Here we categorize the
mechanisms of respiratory modulations on PPG signals from a physiological perspective.

During respiration, the PPG signal is modulated by respiratory movements as well as related neural
regulations, and is influenced by motion artefacts, as shown in figure 1. It has been demonstrated that the
aorta and its branches undergo considerable respiratory movement (Sailer et al 2015), which could change
the blood flow, as well as the resistance and capacity of the arteries. Resultantly, AM and BW will appear in
PPG waveform, with an additional pulsative wave whose frequency is RF superimposed to the PPG wave.
Thoracic movement is a major cause of respiratory modulations. Firstly, the thoracic pressure changes
contribute to the movement of the aorta. Secondly, the intrathoracic pressure change stretches sinoatrial
node during inhalation and increases the vagal outflow during exhalation, with the heart rate (HR) increased
and decreased, causing respiratory sinus arrhythmia (RSA). RSA is the major mechanism of FM in PPG
signal. During inhalation, the pulmonary vasculature is expanded due to reduced intrathoracic pressure,
which in turn decreases the resistance and increases the capacity of veins and right heart. Consequently, the
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Figure 1. Physiological mechanisms of PPG signal modulation. The red and blue rectangles denote the process during inhalation
and exhalation, respectively. The respiratory changes in heart rate always involve some form of neural regulation, but the details
are not shown in the figure for simplification. AM, amplitude modulation; BW, baseline wandering; FM, frequency modulation;
HR, heart rate; R, respiratory frequency.

blood flow to left ventricular is reduced, with the stroke volume decreased. Thus, the magnitude of PPG
signal will be decreased, which leads to AM and BW in the PPG signal. Due to the decreased blood pressure
detected by baroreceptors, HR is then increased via baroreflex regulation, resulting in FM in PPG signal.
During inhalation, increased pressure in abdominal vasculature could impulse the blood to peripheral areas,
causing AM and BW in the PPG waveform. The exact change of blood flow depends on the balance or
opposite effects exerted by thoracic and abdominal movements (Khoo and Chalacheva 2019). The neural
regulations include vasoconstriction, vasomotion, and baroreflex. Vasoconstriction happens during
inhalation when blood is transferred to veins, resulting in BW in PPG signal. In subjects whose body
temperatures have been sufficiently lowered, the deep inspiration protocol can result in vasodilation rather
than vasoconstriction (Khoo and Chalacheva 2019). Vasomotion directly changes the diameter of arterioles,
especially during slow breathing at low oxygenation levels (Ovadia-Blechman et al 2017). The change of
microcirculatory resistance results in AM and BW in PPG signals. The baroreflex changes the stroke volume
and HR according to blood pressure, forming a closed-loop control system, which directly incurs AM and
FM in PPG waveform. The periodic respiratory movement and blood flow changes commonly contribute to
the additional wave superimposed on the PPG signals, which can be extracted with filtering for RF
estimation. Additionally, the motion artefact causes a change of attachment and pressure, which further
deforms the PPG waveform.

2.2. Collection of PPG and reference respiratory signals

Thirty-six healthy adult subjects (12 males and 24 females, mean £ SD and range of age: 33 & 12 yrs,

19-58 years) participated in the experiment. For each subject, PPG signals were measured in sitting posture
from six different body sites in a random sequence: arm, earlobe, finger, forehead, as well as volar and dorsal
sides of the wrist (denoted as wrist-under and wrist-upper, respectively). Simultaneously, the reference
respiratory signal was measured by a strain gauge on a thoracic belt. Each measurement lasted for one
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minute. The sampling rate was 2000 Hz for all signals. The PPG signals were collected from the PPG100C
module of the BIOPAC System (BIOPAC Systems, Inc. Goleta, CA), which has preset hardware filters
including a low-pass filter (cut-off frequency: 10 Hz) and a high pass filter (cut-off frequency: 0.05 Hz) to
remove the direct current component. The recorded waveform of PPG signal was clear. The respiratory
module also contains preset hardware filters including a low pass filter (cut-off frequency: 1 Hz) and a
high-pass filter (cut-off frequency: 0.05 Hz), with which a clear waveform of respiratory signals can be
recorded. Therefore, no software filter was applied during data collection. The data collection details have
been described in our previous work (Hartmann et al 2019).

2.3. RF extraction by demodulation

From the analysis above, the PPG signal is modulated by four different respiratory modulations: AM, BW,
FM and the additional wave with RF as its frequency. Therefore, RF could be estimated from the respiratory
signals extracted from the PPG signal using demodulation techniques based on AM, BW, FM and

direct filtering.

2.3.1. Pre-processing of PPG signal

The recorded data were imported to MATLAB (R2018a; The MathWorks Inc. Natick, USA). To reduce the
high-frequency noises which may affect the selection of peak (systolic maximum) and valley
(end-of-diastolic trough) points, the original PPG signal was pre-processed with the low-pass infinite
impulse response (IIR) filter whose pass band and stop bands are <3 Hz and >5 Hz, respectively.

2.3.2. Extraction of respiratory signals
AM and BW: In the filtered PPG signal, the valley and peak points were selected, as shown in figure 2(a).
Firstly, the difference function of the PPG signal was calculated: diff (i) = PPG (i) — PPG (i — 1), where i
diff(i+1) - diff (i) <0
denotes the sequence of sampling. Secondly, all the points which satisfy diff (i) > 0 and
diff(i+1) <0

diff(i+1) - diff (i) <0

diff (i) < 0 were selected as the candidate points for peaks and valleys, respectively. Next, a

diff(i+1)>0

candidate point of peak was excluded if there was another point within 0.1 s range with a higher value of
PPG signal. Similarly, a candidate point of valley was excluded if there was another point within +0.1 s range
with a lower value of PPG signal. The dicrotic notch and local extreme points were therefore excluded.
Finally, between two consecutive peaks, only one valley with the lowest value of PPG signal was selected, and
vice versa. Two curves derived by cubic spline interpolation were used to connect the peaks and valleys,
respectively. The curve which connects valleys reflected the fluctuation of baseline, therefore was used as the
respiratory signal derived by BW. By subtracting the peak and valley curves, the derived curve reflects the
fluctuations of amplitude; therefore this was used as the respiratory signal derived by AM.

FM: The filtered PPG signal was further processed to extract respiratory signal by FM. The continuous
PPG signal was divided by the valley points into different cardiac cycles. In each cycle, the start and end
points (two consecutive valley points) were connected by a segment whose function is linear. The waveform
was finally detrended by subtracting the linear function in each cycle (figure 2(b)). The BW effect was
excluded. In each cycle, the point of the maximal slope was selected by calculating the derivative of the
detrended PPG signal. The maximal slope point is located at the systolic uprising side of the PPG signal. The
time intervals between consecutive maximal slope points were calculated. The FM-based respiratory signal
was derived from the variability of intervals based on pulse interval modulation (PIM) (Hartmann et al
2019) (figure 2(c)).

Filtering: The filtered PPG signal before extraction of peaks and valleys was downsampled in 500 Hz, then
filtered with another low-pass IIR filter whose pass and stop bands were <0.6 Hz and >1.0 Hz. The resultant
signal was the respiratory signal derived directly by filtering (figure 2(d)).

2.3.3. Estimation of RF

The four respiratory signals extracted from PPG by AM, BW, FW and filtering, as well the reference
respiratory signal recorded by the respiratory belt (figure 2(e)), were processed with discrete Fourier
transformation (DFT). The focus of this study is the comparison between different respiratory modulations
instead of the improvement of RF estimation accuracy. Therefore, the original respiratory signals were used.
The periodogram function in the Signal Processing Toolbox of MATLAB was used to get the power spectral
density (PSD). The respiratory signals had been downsampled before calculating PSD. The downsampling
rate was 8 Hz. In PSD, a rectangular window with the same length as the input signal was used, with the
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Figure 2. Estimation of respiratory rate from PPG signals using different modulations. (a) Extraction of peaks and valleys from
the filtered PPG signal recorded in normal breathing. The blue and green lines denote the derived respiratory signals by AM and
BW. (b) Extraction of maximal slope points (marked by crosses) from detrended PPG signal. (c) Respiratory signal derived by
FM. (d) Respiratory signal derived by filtering. (e) Reference respiratory signal (Resp) recorded by strain gauge. (f) Extraction of
RF from different respiratory signals using power spectral density.
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frequency range of 0.05 Hz to 0.3 Hz for deep breathing and 0.1 Hz to 0.5 Hz for normal breathing. The RF
resolution was 0.001 Hz, which was equal to 0.06 breath per minute in RR. The peak frequency was selected
as the estimated RF (figure 2(f)).

2.3.4. Calculation of energy proportion

To quantitatively estimate the strength of each respiratory modulation, the energy ratio was calculated. In the
PSD of the reference respiratory signal, the peak which indicates RF has the highest density of energy. A
range of frequency (denoted as ‘75%-respiratory interval’) was calculated, which covers 75% of total energy
(total area under the PSD curve) with RF in the middle. On the corresponding PSD of each PPG-derived
respiratory signal, the proportion of energy in the ‘75%-respiratory interval’ was calculated. This value
reflects the ratio of respiratory-related energy in the respiratory signal, thus indicating the strength of
corresponding respiratory modulation.

2.4. Statistical analysis

Statistical analysis was performed using SPSS (Version 24.0, IBM Corp) and R programming language (R
Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical
Computing). Since RF was paced at a fixed rate of 0.1 Hz in deep breathing, the data of normal and deep
breathing patterns were analysed separately.

The relative error of each PPG-derived RF value was calculated: ERF = RFP‘EFi;iF‘“"
and ERF denote the PPG-derived RF, the corresponding RF derived from the respiratory belt and the
estimation error of PPG-derived RFE. The RF and ERF values derived by different methods (AM, BW, FM,
filtering) from different measurement sites (arm, earlobe, finger, forehead, wrist-under, wrist-upper) were
compared to investigate if there is any significant influence of RF extraction method, measurement site, or
their interaction, on RF or ERF values. Firstly, Levene’s test was performed to investigate the homogeneity of
variance (defined as p > 0.05). If the hypothesis of homogeneity of variance was satisfied, the analysis of
variance (ANOVA) was performed. If the assumption was violated (p < 0.05), the Scheirer—Ray—Hare test
was performed as a substitute. If any significant influence was observed, in ANOVA, least significant
difference (LSD) post hoc multiple comparisons were performed to find the pairs with significant difference
(p < 0.05). In the Scheirer—Ray—Hare test, Dunn’s Kruskal-Wallis multiple comparisons were performed for
post hoc analysis. The p-value was adjusted with the Benjamini-Hochberg method.

To illustrate the difference between different RF extraction methods and different measurement sites in
the accuracy of RF estimation, Bland—Altman analysis was performed on PPG-derived and reference RFs.

, where RFppG, RFesp

3. Results

3.1. Energy proportion

The results showed that the energy ratio was significantly influenced by measurement site, extraction
method, and their interaction (p < 0.05 for all, homogeneity of variance satisfied). The strongest modulation
was FM at the finger, and FM was often stronger than the other modulations, particularly during deep
breathing, as shown in figure 3.

Normal breathing: For normal breathing, the homogeneity of variance was satisfied by the overall
distribution of energy proportion (p = 0.056 in Levene’s test). Therefore, ANOVA was performed. The
results showed that the energy ratio was significantly influenced by measurement site, extraction method,
and their interaction (p < 0.05 for all).

The results of post hoc analysis showed that the energy ratio derived by FM was significantly different
from the results derived by other methods (AM, BW, filtering) (p < 0.05 for all). There was no significant
difference among the results derived by AM, BW and filtering (p > 0.05 for all).

As to the comparison between sites, finger and forehead were not significantly different (p > 0.05), but
both were significantly different from the results from the other four sites (arm, earlobe, wrist-under,
wrist-upper) (p < 0.05 for all). There was no significant difference among the results from these four sites
(p > 0.05 for all).

Deep breathing: For deep breathing, the homogeneity of variance was violated by the overall distribution
of energy proportion (p < 0.05 in Levene’s test). Therefore, the Scheirer—Ray—Hare test was performed. The
results showed that the energy ratio was significantly influenced by extraction method (p < 0.01), without any
significant influence from the site, or the interaction between site and extraction method (p > 0.05 for all).

The post hoc analysis showed that the energy ratios derived by different methods were always significantly
different (p < 0.05 for all) except between BW and filtering (p > 0.05). There was no significant difference
between the results of any two different sites (p > 0.05 for all).
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Figure 3. The mean (shaded bar) and standard deviation (segment) of the ratio of energy under the 75%-respiratory interval
estimated by different methods.

Table 1. The results of Dunn’s Kruskal-Wallis multiple comparisons of RF derived by different methods in normal breathing. Significant
difference is marked by *.

Data pair Adjusted significance
Resp—-AM <0.001*
Resp—-BW <0.001*
Resp-FM 0.102
Resp-filtered <0.001*
AM-BW 0.498
AM-FM <0.001*
AM-filtered 0.889
BW-FM <0.001*
BW-filtered 0.462
FMfiltered <0.001*

Significant difference is marked by *.

3.2. RF values: respiratory frequency derived from PPG and a respiratory belt at different sites

The results showed that FM derived the most accurate RF estimation, particularly for normal breathing
where FM was the only method for which the RF estimation was not significantly different from the
reference value (p > 0.05).

Normal breathing: In normal breathing, the assumption of homogeneity of variance was violated in RF
distribution (p < 0.01 in Levene’s test). The results of the Scheirer—Ray—Hare test showed that there was a
significant influence of extraction method (p < 0.01) on RE. FM achieved the most accurate RF estimation.
The influences of measurement site or the interaction between measurement site and extraction method
were not significant (p > 0.05 for both).

Dunn’s Kruskal-Wallis multiple comparisons showed that there was no significant difference between the
reference RF and the RF derived by FM, whereas RFs derived by AM, BW and filtering were significantly
different from reference RF but were not significantly different from each other (table 1). No significant
difference was observed between any two different measurement sites.

Deep breathing: In deep breathing, the assumption of homogeneity of variance was violated in RF
distribution (p < 0.01 in Levene’s test). The results of the Scheirer—Ray—Hare test showed that both
extraction method and measurement site had a significant influence on RF (p < 0.01 for both). The influence
of the interaction between measurement site and extraction method was not significant (p > 0.05).

Dunn’s Kruskal-Wallis multiple comparisons showed that there was no significant difference between the
reference RF and PPG-derived RFs derived by BW, FW or filtering (table 2). However, the RF derived by AM
was significantly different from the reference RF and the RFs derived by FM and filtering. As to measurement
sites, a significant difference was observed between finger and forehead, and between finger and wrist-upper
(p < 0.05 for both).
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Table 2. The results of Dunn’s Kruskal-Wallis multiple comparisons of RF derived by different methods for deep breathing.

Data pair Adjusted significance
Resp—-AM 0.010*
Resp—BW 0.262
Resp—FM 0.268
Resp—filtered 0.917
AM-BW 0.134
AM-FM <0.001*
AM-filtered 0.009*
BW-FM 0.025*
BW-filtered 0.278
FM-filtered 0.259

Significant difference is marked by *.

Table 3. The results of Dunn’s Kruskal-Wallis multiple comparisons of ERF derived by different methods in normal breathing.

Data pair Adjusted significance
AM-BW 0.709

AM-FM <0.001*

AM-filtered 0.238

BW-FM <0.001*

BW-filtered 0.361

FMfiltered <0.001*

Significant difference is marked by *.

Table 4. The results of Dunn’s Kruskal-Wallis multiple comparisons of ERF derived by different methods in deep breathing.

Data pair Adjusted significance
AM-BW 0.090

AM-FM <0.001*

AM-filtered 0.021*

BW-FM 0.025*

BW-filtered 0.411

FM-filtered 0.112

Significant difference is marked by *.

3.3. ERF values: the estimation error of PPG-based methods

Opverall, FM showed the least estimation error. The ERF of FM was significantly smaller than those of AM,
BW and filtering in both normal breathing (p < 0.05 for all), and than those of AM and BW in deep
breathing (p < 0.05 for both).

Normal breathing: In normal breathing, the assumption of homogeneity of variance was violated in RF
distribution (p < 0.01 in Levene’s test). The results of the Scheirer—Ray—Hare test showed that there was a
significant influence of extraction method (p < 0.01) on RE. FM achieved the least ERE. The influences of
measurement site or the interaction between measurement site and extraction method were not significant
(p > 0.05 for both).

Dunn’s Kruskal-Wallis multiple comparisons showed that there was no significant difference between
ERFs derived by AM, BW and filtering (p > 0.05 for all). The ERF derived by FM was significantly different
from those derived by AM, BW and filtering (p < 0.01 for all), as shown in table 3.

Deep breathing: In deep breathing, the assumption of homogeneity of variance was violated in RF
distribution (p < 0.01 in Levene’s test). The results of the Scheirer—Ray—Hare test showed that the influences
of extraction method and measurement site on RF were significant (p < 0.01 for both). The influence of the
interaction between measurement site and extraction method was not significant (p > 0.05).

Dunn’s Kruskal-Wallis multiple comparisons showed that significant differences in ERF existed between
AM and FM, between AM and filtering, and between BW and FM (table 4). There was a significant difference
between finger and wrist-upper on ERF (p = 0.004). The difference between finger and forehead was at the
threshold of significance (p = 0.053) and the difference between finger and wrist-under just outside the
threshold (p = 0.057). There was no significant difference in ERF between other measurement sites
(p > 0.05 for all).
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Figure 4. Bland—Altman results between PPG-derived respiratory frequency (PPG_f) and the reference respiratory frequency
derived from the respiratory belt (Resp_f) in normal breathing. The dashed line denotes the mean bias. The dotted lines denote

the limits of agreement (LoA), or mean &+ 1.96 SD interval.

3.4. Bland—Altman analysis
Normal breathing: In figure 4, the RFs derived by FM have the lowest bias and the narrowest limits of

agreement (LoA) in all the sites and extraction methods. In the results of Bland—Altman analysis, all the
values were rounded to the second significant digit to ensure that the small values (absolute value <0.001 Hz,
figure 5) could be accurately delineated. Therefore, the FM results were slightly different from those in our
previous work where the data were rounded to two decimal places before Bland—Altman analysis (Hartmann
et al 2019). The results are in accordance with the analysis of RF and ERF values. Therefore, FM was
significantly more accurate than other methods in RF estimation. The other three methods (AM, BW and
filtering) were comparable and less accurate in RF estimation. Especially, AM had the widest LoA in all
the sites.

Deep breathing: In figure 5, the difference between different extraction methods depends on the site. All
the methods achieved small biases (<0.025 Hz) in all the measurement sites, which is equal to less than 1.5
breaths per minute. The highest biases (—0.021 Hz and —0.024 Hz) were derived by AM. The LoA of AM
was always the widest except in finger. This is in accordance with the RF and ERF results that only the
AM-derived RF value was significantly different from the reference RE. The other three methods did not

show a consistent difference in accuracy in all the sites.
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Figure 5. Bland—Altman results between PPG-derived respiratory frequency (PPG_f) and the reference respiratory frequency
derived from the respiratory belt (Resp_f) in deep breathing. The dashed line denotes the mean bias. The dotted lines denote the

limits of agreement (LoA), or mean £ 1.96 SD interval.

4, Discussion

In this study, based on the analysis of related physiological mechanisms, the strength of four respiratory
modulations, as well as the accuracy of RF estimation, were compared in different measurement sites, and
normal and deep breathing patterns, respectively. It is an important supplement to our existing study
(Hartmann et al 2019), and provides a reference for related studies. On the one hand, the results of our study
can provide a reference for physiological studies on the modelling of PPG signal (Khoo and Chalacheva
2019) and the estimation of respiratory effect on peripheral hemodynamic oscillations (Tankanag et al 2020).
On the other hand, our results shed light on the fusion of different respiratory-induced modulations.
Currently, in the fusion of respiratory signals or RF estimations derived from different respiratory
modulations of PPG signals, the calculation of the weights mainly depends on the analysis of the respiratory
signals, with a lack of consideration of different physiological conditions (Liu ef al 2019, Pollreisz and Nejad
2020, Pirhonen and Vehkaoja 2020). According to our results, the weights should be adjusted in different
breathing patterns and different measurement sites (e.g. BW achieved the most accurate estimation of RF at
the wrist-upper and wrist-under sites in deep breathing) to achieve more accurate estimation of RF.
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4.1. Different respiratory modulations in both breathing patterns

In normal breathing, FM was the only method whose derived RF was not significantly different from the
reference RFE. The estimation error was significantly less than the other three methods. In Bland—Altman
analysis, FM had the lowest bias and the narrowest LoA in all the sites. The energy proportion of FM was also
significantly higher than the values from the other methods. Therefore, in normal breathing, the modulation
by FM had the highest strength of respiratory modulation and the highest accuracy in RF estimation.

In deep breathing, the estimations of RF derived by BW, filtering and FM were not significantly different
from the reference RE. However, the ERF of FM was significantly different from the corresponding results of
AM and BW. In Bland—-Altman analysis, the lowest bias and narrowest LoA belonged to BW and FM in
different sites. The energy proportion of FM was significantly higher than all the other methods. Therefore,
in deep breathing, FM still had the highest strength of respiratory modulation, but its accuracy in RF
estimation was comparable with BW and filtering.

Compared with normal breathing, in deep breathing the energy proportion was higher in FM but lower
in other methods. In deep breathing, many different mechanisms of blood flow regulation are activated,
resulting in cardiorespiratory vagal afferents, the oscillations in cerebral blood flow, enhanced
Mayer—Traube-Hering waves, and finally the interference on AM and BW, resulting in a lower energy
proportion (Noble and Hochman 2019). In deep breathing, with the involvement of neural sympathetic
activity, the respiration—vasomotion coupling is intensified (Ovadia-Blechman et al 2017), which will lead to
the variation of impedance in peripheral microcirculation. The enhanced neural activity might be related to
the lower energy proportion in deep breathing. Deep breathing could decrease the amplitude of BP and its
cardiac fluctuations (Dick et al 2014) but increase its respiratory fluctuations (Nuckowska et al 2019).
Therefore, despite the lower respiratory energy proportion, the error in RF estimation was lower in deep
breathing for AW, BW and filtering (figures 4 and 5). The RSA which causes RF is greatly exaggerated at
slower respiratory frequencies as the difference between the maximal and minimal heart rates is enlarged
(Noble and Hochman 2019).

The difference in respiratory modulations is related to physiological mechanisms. As shown in figure 1,
AM and BW were related to many different mechanisms. In particular, the baroreflex is the major mechanism
that maintains the beat-to-beat blood pressure (Kishi 2018) which may activate other mechanisms of
hemodynamic regulation. Li et al compared the intensities of FM, AM and BW in PPG signals using the
correlation coefficients with reference respiratory signal (Li et al 2010). They found that the strength of FM
was higher than AM and BW, which is consistent with the results of our analysis of energy proportion.
However, Li et al did not perform any statistical analysis. The authors compared the difference between sitting
and lying postures, and between males and females. A study suggested that age and gender have insignificant
effects (p = 0.67) on the respiratory modulation of PPG signals (Nilsson et al 2006). Therefore, in this pilot
study, we just focused on the strength of different respiratory modulations on PPG signal and considered the
effect of measurement site which significantly influences the PPG waveform (Hartmann et al 2019).

4.2. Accuracy of RF estimation by different demodulations

In this study, the FM method showed the highest accuracy in RF estimation compared with other methods.
For PPG signals, the method of demodulation could influence the accuracy of derived respiratory signal and
RF estimation. Yang et al (2019) compared AM, BW, and FM in the accuracy of RR estimation. As found in
our study, they concluded that FM was more accurate than BW and AM and in a normal range of RR
(12-15 breaths min—!), and BW is better than AM. However, they used the interval of systolic peaks to derive
FM. In the PPG signal, the position of the systolic peak point is sensitive to noises and filtering. Karlen et al
investigated three respiratory-induced variations (frequency, intensity and amplitude, corresponding to FM,
BW and AM respectively), whose errors are 5.8, 6.2, and 3.9 breaths min~! (0.097, 0.103, and 0.065 Hz) in
estimating RR from PPG signal (Karlen et al 2013). They used peak values and intervals between peaks to
calculate the variations of intensity and frequency, which affected the accuracy of AM and EM, respectively.
In detecting FM of PPG signal, the maximum slope point has been proven to be more reliable for measuring
RF than peak or valley point which is prone to non-trivial error due to common artifacts in the waveforms
and wave reflection interference (Escobar and Torres 2014). Firstly, as to the PPG signal in a cardiac cycle, the
slope of systolic uprising side is much higher than the value of any other segment. It is difficult for the
motion artefacts or other noises superimposed to the PPG signal to affect the waveform severely and move
the maximum slope point out of the systolic uprising side. Secondly, the time length of systolic uprising side
is short (<0.15 s). The change in the intensity of motion artefact or other noises is limited in such a short
period, which makes the position of maximum slope point reliable. Finally, considering the obvious change
in the cardiac cycle length caused by respiration, even the position of maximum slope point is inaccurate, as
long as it is in the systolic uprising side, the effect on FM detection is limited. Therefore, the FM detection
based on maximum slope point is reliable and robust to the noises. In comparison, the accurate detection of

11



10P Publishing

Physiol. Meas. 41 (2020) 094001 H Liu et al

peak and valley points is difficult, which limited the accuracy of AM and BW in estimating RE. Due to its
smoothly shaped peaks, finding fiducial points (including peaks and valleys) in PPG is more challenging
than in electrocardiography (Firoozabadi et al 2017). It has been known that fiducial features of PPG signals
are sensitive to noises including motion artefacts (Karimian et al 2017). Additionally, the detection of fiducial
points can be influenced by the filtering. The visual inspection of PPG waveforms showed that the shape
distortion was particularly obvious at the pulse peaks when a high pass filter was applied with the cut-off
frequency higher than 0.2 Hz (Allen and Murray 2004). There is a need for an advanced signal processing
method to improve the reliability and robustness of RF estimation based on AM and BW methods.

4.3. Factors influencing the accuracy of demodulation-based RF extraction

The difference between measurement sites is inconsistent in normal and deep breathing patterns, and in RE,
ERF and energy proportion. In figure 3, finger has the highest energy proportion which means its position of
RF in the frequency domain has the highest accordance with the reference RE In figure 1, the PPG signal
depends on the impedance of arteries, as well as sensor attachment. The impedance of peripheral arteries
that supply the blood flow to the finger is less affected by the respiration compared with other proximal
arteries. It has been shown that the PPG signal from finger has the lowest ratio between cardiac and
respiratory pulse energies (Nilsson et al 2007), compared with wrist, arm and forehead. In

figure 6(a), the amplitudes of PPG-derived respiratory signals are much lower than the amplitude of PPG
fluctuation in a cardiac cycle. The finger is also the best place to get a reliable attachment. Therefore, although
finger has a low strength of respiratory modulations, its PPG waveform shows the minimal influence of
neural regulations as compared with the forehead PPG waveform. A recent study suggested that PPG signal
from finger is more accurate in RF estimation compared with forehead and wrist (Longmore et al 2019).

In contrast, the PPG signal from the forehead has been known to be affected by lower frequency

(0.1 Hz-0.2 Hz) baseline fluctuations of PPG signals, which are evident in humans as part of a separate
vascular response to the sympathetic nervous system. These fluctuations are often referred to as
Mayer—Traube—Hering waves and are thought to represent the baroreflex mediated oscillation of arterial
blood pressure (Meredith et al 2012). This component could significantly influence the PPG signal of
forehead and cause inaccuracy in RF estimation (Hernando et al 2019). In figure 6(a), the PPG waveform of
forehead has large fluctuations in baseline. As a result, the frequency peaks derived by AM, BW and filtering
are located between 0 Hz—0.15 Hz.

4.4. Limitations and future directions

In this pilot study, firstly, the number of subjects is limited. Especially, a major limitation is that only young
and healthy individuals are included. It is interesting that the results presented in this study are in agreement
with the results for young healthy adults (aged 18—39) in Charlton et al’s work where the FM modulation was
the strongest in young healthy subjects, but much weaker in elderly healthy subjects (Charlton et al 2017b). It
is well known that heart rate variability and RSA decreases with age (Charlton et al 2017b). It has been found
that RSA in the older subjects (59 to 71 years) was <20% of that in the younger subjects (20 to 31 years)
(Kaushal and Taylor 2002). Therefore, the conclusion from this study cannot be generalized to other
populations. More subjects are needed to further investigate the effect of age, gender and race on respiratory
modulations of PPG signal. Secondly, all the data were recorded in sitting posture. The blood flow in
microcirculation will change in different postures. Moreover, a recent study shows that posture may
influence the respiratory FM in PPG signal (Sahroni et al 2019). Additionally, during measurement, the
subjects were given enough resting time and were asked to breath as stably as possible. However, it was
difficult for each subject to reach an ideally steady breathing state. The calculated RF was an estimation of the
averaged RF during the period of measurement instead of the real-time value. Finally, as a pilot study, the
analysis of physiological mechanisms of respiratory modulations is not conclusive. In future studies, more
subjects in different postures and physiological conditions (e.g. post-exercise measurements) could be
included for a more comprehensive evaluation of respiratory modulations of PPG signals. More advanced
algorithms are needed to achieve real-time monitoring of RE.

5. Conclusion

Of all the respiratory modulations, FM has the highest strength and is appropriate for accurate RF estimated
based on PPG signal recorded in different sites and breathing patterns. Compared with other positions, the
finger showed the strongest FM. The physiology of different respiratory modulations of PPG signals deserves
further investigation and will provide a reference for the algorithms of RF extraction from PPG signals.
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