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Abstract – Parkinson’s disease (PD) is a progressive and 
neurodegenerative condition causing motor impairments. One of the 

major motor related impairments that present biggest challenge is 

freezing of gait (FOG) in Parkinson’s patients. In FOG episode, the 

patient is unable to initiate, control or sustain a gait that consequently 
affects the Activities of Daily Livings (ADLs) and increases the 

occurrence of critical events such as falls. This paper presents 

continuous monitoring ADLs and classification freezing of gait 

episodes using Wi-Fi and radar imaging. The idea is to exploit the 
multi-resolution scalograms generated by channel state information 

(CSI) imprint and micro-Doppler signatures produced by reflected 

radar signal. A total of 120 volunteers took part in experimental 

campaign and were asked to perform different activities including 
walking fast, walking slow, voluntary stop, sitting down & stand up 

and freezing of gait. Two neural networks namely Autoencoder and a 

proposed enhanced Autoencoder were used classify ADLs and FOG 

episodes using data fusion process by combining the images acquired 
from both sensing techniques. The Autoencoder provided overall 

classification accuracy of ~87% for combined datasets. The proposed 

algorithm provided significantly better results by presenting an overall 

accuracy of ~98% using data fusion.   
 

Index Terms:  Radar sensing, Wi-Fi sensing, deep learning, FOG 

detection 

I. INTRODUCTION 

Parkinson’s disease (PD) is a progress and neurodegenerative 

condition causing motor impairments. There are more than 8.4 

million Parkinson’s patients around the globe and majority of 

the individuals are aged 50+ [1]. Parkinson’s disease slowly 

grows and the efforts in managing the motor impairments lasts 

for longer period.  Due to the severity of this disease, the 

patients’ health get badly affected and because of enduring 

ailment, coerce them to get more frequent sick leaves and 

eventually it come to stage, where they have no choice but to 

consider early retirement from work. In this way, they get 

sufficient time to properly look after health maintain their health 

in more effective way and prevent any fatal and sudden 

disorders. keeping their health ample time to preserve usually 

take early retirement that eventually leads to loss in productivity 

along extreme healthcare and other societal expenditures.  

 In medical healthcare, one of the major motor related 

impairments in that present biggest challenge is freezing of gait 

(FOG) in Parkinson’s patients. In FOG episode, the patient is 

unable to initiate, control or sustain a gait.  The FOG events are 

usually confined to short period of time followed by regaining 

control and continue regular walking. Statistic indicate that half 

of the Parkinson’s patients experience these episodes twice a 

month and third experiences on day to day basis [2]. This results 

in limited mobility, deterioration in mental well-being and 

adverse effect on activities of daily livings and the patients are 

at high risk of falling causing fatal injuries [3]. Critical events 

such as falls make 20% to 30% of injuries among elderly people 

[4].  

These signs make the occurrence of FOG episodes as serious 

health concerns for patients. It is thus highly important to 

deliver means for identifying and reducing the effect of FOG 

episodes. Rhythmic auditory stimulation (RAS), such as playing  

marching music and dance therapy, has been shown to be a safe, 

inexpensive, and effective method in resuming normal gait in 

PD patients [5].  

The non-invasive wireless sensing leveraging wireless channel 

information (CSI) and micro-Doppler signatures in medical 

healthcare are two of the most promising solutions to detect the 

occurrence of FOG episodes in real-time and deliver feedback 

cue in an attempt to restore the normal gait alert the patient and 

reduce the risk of critical events such as falls.  Providing timely 

cue to the Parkinson’s disease patients has proved to decrease 

the severity of particular episodes [6] and reduce the overall 

duration of the episodes by 35% [7]. Several researchers have 

designed FOG classifiers based on either software devices.  The 

software-based FOG detector [8] presents several constraints 

such as mapping machine learning algorithms on hardware. It is 

thus evident that the FOG detection in PD patients that provide 

hardware implementation is obtrusive and bulky to be worn on 

body.  There are several case studies that have mapped real-

time, complex hardware implementation of machine learning 

classifiers for wearable healthcare applications. The Field 

Programmable Gate Array (FPGA) based systems were 

proposed for heartbeat monitoring [9][10], seizure episodes in 

epilepsy disease [11][12][13] and activities of daily living 

[14][15].  In light of these advances in healthcare sector, this 

paper presents a non-invasive, low-cost and easily deployable 

FOG detector based on the data fusion of scalogram obtained 

using Wi-Fi sensing and spectrograms acquired using radar 

sensor. A novel deep neural network, namely enhanced 

Autoencoder is proposed that classifies activities of daily living 

and detects FOG episodes with high accuracy. 

The paper is organized as follows: Section II discusses the 

related work done on freezing of gait detection, section III 

explains the signal processing for Wi-Fi sensing, generating 

scalograms from CSI and producing spectrograms from 

received signals through radar sensor. Section III gives a brief 

introduction to the neural network used and discusses the 

proposed enhanced Autoencoder. Section IV provides the 

experimental setup and how data were acquired, section V 

provides details about results obtained and section VI concludes 

the paper.    

 

II. RELATED WORK 

Several researchers have addressed the application of software-

based systems and wearable devices in healthcare sector to 

recognize human activities[16] , detect inertial movements [17]. 
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An extensive work has been done in research published work in 

[18][19]  that leverage wireless sensing for medical healthcare 

application. In addition, several recent research articles have 

been published on patient monitoring, quantification of 

Parkinson’s disease motor impairments using wearable sensors 

only. The main issues with these articles are the locations of 

sensors placed on bodies, the experimental setup and achieved 

accuracy. A comprehensive review of medical healthcare 

detection systems have been discussed in [20][21] . There are 

several systems that exploit data mining and machine learning 

algorithms to determine the severity of particular disease. Arora 

et al. [19] recruited ten clinically diagnosed PD patients and ten 

healthy volunteers. Android smartphones were deployed on 

each subject’s body and were asked to perform activities such 

as finger tapping, finger to nose test, and walk back-and-forth. 

The authors claim that this method could easily discriminate PD 

patients from healthy volunteers using machine learning 

algorithms, however due to the limited number of subjects and 

low classification accuracy, this solution is not suitable for FoG 

gait detection. Numerous wearable sensors have been for 

objective assessment of FoG episodes, yet there is small or no 

agreement with regard to location, number of participants, 

experiment setup and data-processing techniques. Stand-alone 

tri-axial accelerometer is widely used as in [22], magnetometer 

or combination of accelerometer and gyroscopes.  Wearable 

sensors non-wearable sensors are used for cardiovascular 

activity, gait identification and activities of daily living 

[23][24][25][26][27].   

The data-processing and classification algorithms are different in 
all aforementioned systems. Algorithms based on threshold are 
easily implemented and deliver adequate performance [28], 
however, these require optimum threshold levels to be tuned on 
all patients. Support vector machine (SVM), Naïve Bayes (NB), 
random forest (RF) are commonly machine learning algorithms 
used for classification tasks.   NB and RF are less computional 
complex as compared to SVM algorithm, but the latter presents 
higher classification accuracy and robustness against a large 
amount of data. Capecci et al. [29] used smartphone worn on 
waist that executes gait test where accelerometer data is used 
leveraging threshold-based method, obtaining accuracy of 
84.4%.  Rodríguez et al.[30] used SVM algorithm with data 
obtained from 21 participants equipped with wearable sensor to 
determine FoG and provides specificity and sensitivity of 79.0% 
and 74.7%, respectively. In reference [31], the authors have used 
a model on convolution neural network using accelerometer data 
on 21 volunteers providing an accuracy of 92.3%. 

III. PRELIMINARIES 

A. Wireless Wi-Fi Signals & Channel State Information 

Extraction 

The Wi-Fi signals driven by Orthogonal Frequency Division 

Multiplexing (OFDM) such as IEEE 802.11 a/a/ac can 

efficiently and effectively overcome the multipath frequency 

selective fading experienced due in an indoor environment. 

The OFDM frequency spectrum is split into several 

orthogonal frequency carriers where the data that is to be 

transmitted is encoded and mapped using same modulation 

scheme. The received signal at the receiving side is down-

converted into the baseband signal. The sub frequency 

channels can be converted from time domain into frequency 

domain using serial-to-parallel signal converter and then 

applying Fast Fourier Transform (FFT) on all frequency 

channels, as shown in figure 1. The input serial data stream is 

formatted into the word size required for transmission, and 

shifted into a parallel format. The data is then transmitted in 

parallel by assigning each data word to one carrier in the 

transmission.  The reason for converting serial into parallel is 

due to the fact that all subcarriers are transmitted at once in 

once burst rather than one after another, as in case for serial 

transmission. So that each frequency channel carry adequate 

information. The operating frequency of Wi-Fi router is set to 

2.4 GHz. 

 

      

The commodity devices such as Intel 5300 and Atheros ar5b225, 
are open-source device drivers that allow recording the channel 
state information of each frequency channel (carrier) 
representing the fine-grained physical layer channel 
measurements, consisting of wireless channel characteristics 
such as power distortion, multipath fading and shadowing effect.  

Let Hi denote the channel state information values of frequency 
channel i, which is a complex value and is given as : 

                                    ij Hi| H | eiH


=                                          (1) 

Here |Hi| and ∠Hi denote the amplitude and phase information 

of ith subcarrier, respectively. The phase of individual subcarrier 

i, ∠Hi is written as follows: 

                                         

p i( ) m ,i i s cH H Z   


=  + + + + +                                                (2) 

Where β indicates the initial phase offset of ith subcarrier of the 
phase-locked loop and mi is the subcarrier index of ith frequency 
channel. The environmental noise is represented in terms of Z, 
and λp, λs, and λc are the phase errors, sample frequency offset 
and central frequency offset, respectively. The CSI phase 
information is not adequate due to the random noise in the radio 
frequency channels because of using off-the-shelf Intel 5300 
network interface. Hence, in this paper, we have only considered 
the amplitude inform retrieved using channel state information.  

 B. Radar Technology & Micro-Doppler Signatures 

                                                                                                      
The radar sensors use radio signals to identify and locate a target. 
The traditional radar sensor system consists of a transmitter and 
receiver and a typical signal processing functional unit. The 
sensor when operating, continuously radiates electromagnetic 
signals and a target within area of interest reflects back the signal 
that is received by the radar system. Frequency modulated 
continuous wave (FMCW) radar uses transmission frequency 
that varies linearly across the waveform resulting in overcoming 
range-profile issues and is now widely used short-range wireless 

Figure 1 - Frequency Carrier Conversion: Time Domain to 
Frequency Domain using RSSI/CSI by applying serial to 

parallel conversion and Fast Fourier Transform  
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sensing applications, including activities of daily living, fall 
detection in healthcare and so on [23]. The FMCW radar 
operating at 5.8 GHz is extremely robust against interferences 
from RF signal sources and has the capacity to record human 
micro-Doppler signatures while maintaining high resolution. 
The specifications of an FMCW radar sensors used in this work 
is presented in table 1.The main reason for using radar in the 

region of 5.6 – 6 GHz with operating frequency of 5.8 GHz 
(ISM, unlicensed band) is that the Wi-Fi transmitter was 
working at 2.4 GHz (ISM band, unlicensed band). In order 
to avoid co-channel interference, we opted for a Wi-Fi router 
and radar sensor that should work in an unlicensed band and 
should operate at different frequencies.  

 

                                                                                      Figure 2 – Sensor fusion based architecture for FOG Detection 

Table 1- Radar Sensor Detail 

Radar Model SDR 580AD2 

Waveform FMCW 

Operating Frequency 5.6 to 6.0 GHz 

Bandwidth 400 MHz 

Transmitting Power 20 dBm 

Maximum Detectable Range 120 meters 

 

The RF signals transmitted by an FMCW radar sensor can be 

mathematically denoted as follows: 

 

1
(t)

F
0

(t) (t iT )
N

i

x x
−

=

= −                                             3 

 
Here, TF is the total duration of a frame as indicated in Figure 1, 

NF represents the total number of transmitted frames. The 

transmitted FMCW signal comprising L number of chirps at the 

ith frame can be written as:  

 

2
o(f t t ) for 0 t T

2
ox e


= +                                                           4 

 

Here, f0 is the operating frequency, µ denotes a change of 

instantaneous frequency of an FCMW chirp signal. The value 

of µ can be determined bandwidth (B) divided by the duration 

of a frame (TF). 

 

𝑟𝑙,𝑘

(𝑖)(t) =

 ∑ 𝑎𝑚
~(𝑖)𝑀

𝑚=1 𝑥0(𝜏𝑚
(𝑖))𝑒

(2𝜋𝑓
𝐷,𝑚

(𝑖)
𝑗×(𝑇𝑙+(𝑖−1)𝑇𝐹))

𝑒
𝑗
2𝜋

λ
𝑑𝑠𝑘𝑠𝑖𝑛𝛳𝑚

(𝑖)

+

𝑤𝑙,𝑘

(𝑖)(𝑡),                                                                                           5          

 
 

In equation 6, 𝑎𝑚
~(𝑖) indicates the amplitude information in terms 

of complex values of the reflected signal of the mth target  for ith 

frame, ds is the distance between the corresponding arrays, 𝜏𝑚
(𝑖) 

,  𝛳𝑚
(𝑖)

, λ are the round-trip time delay, direction-of-arrival 

(DOA) and wavelength of the carrier frequency.  The expression  

𝑓
𝐷,𝑚
(𝑖) indicate the Doppler frequency induced due to the speed of 

the moving object (person in our case). In addition, 𝑤𝑙,𝑘

(𝑖)(𝑡) is 

the additive white gaussian noise (AWGN) signal for the kth 

array, the ith frame, and lth chirp.  Multiplying the conjugated 

components of FMCW transmitted signal  𝑥0
∗ (𝑡) by 𝑟𝑙.𝑘

(𝑖)
(𝑡) and 

considering 𝑑𝑠 =  
λ 

2
,the beat signal 𝑦

𝑙.𝑘

(𝑖)(𝑡) is described as the 

product of Doppler information, range profile and DOA and 

written as in equation 6: Here the expression 

(𝑒
(−𝑗2𝜋𝑓

𝑏,𝑚
(𝑖)

𝑡)) , (𝑒𝑗2𝜋𝑓𝐷,𝑚(𝑇𝑙+𝑇𝐹(𝑖−1))) , (𝑒𝑗𝜋𝑠𝑖𝑛𝛳(𝑖)
𝑚)  and 𝑤𝑙,𝑘

(𝑖)(𝑡) 

represent the range, Doppler information, and direction-of-

arrival information, respectively.  

                                       
IV. THE PROPOSED FOG DETECTION SYSTEM  

The proposed freezing of gait detection system architecture is 

presented in figure 2 that resolves a multi-classification problem 

to identify the particular episodes and detect ADLs. The 

proposed system involves a low-cost commercially available 

2.4 GHz WiFi router, a 5.8 GHz Ancortek radar sensor. Each 

body movement induces a unique CSI represented in terms of 

scalogram extracted from variances of amplitude information 
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and a micro-Doppler signatures generated by received signal 

reflected by the subject’s body. The multi-resolution time-

frequency scalograms are obtained using continuous wavelet 

transform and micro-Doppler are acquired using short-time 

 
Figure 3 – Packet  # for five human activities including FOG episodes 

 

Figure 4 – Scalgrams generated for different human activities 

 

Fourier transform. The Wi-Fi-based and radar-based signatures 

are used image object to train and test the proposed enhanced 

classifier to determine the FOG episodes.                                             

V. PRE-PROCESSING 

This section discusses the pre-processing for CSI data obtained 

using Wi-Fi signals and micro-Doppler signatures received 

using the radar sensor.  The channel state information is 

extracted from the packets retrieved from Internet Control 

Messages Protocol (ICMP) packets.  Consequently, in theory, 

the total number of CSI packets received are the same as ICMP 

packets. However, it was observed that received CSI packets 

were slightly lesser than the number of ICMP transmitted 

packets. To synchronize and calibrate the frequency of the data 

collected, we performed the linear transformation on the raw 

CSI. The IEEE 802.11n Wi-Fi networks use multiple data sub 

frequency carriers or subcarrier that transmit Wi-Fi signals 

simultaneously exploiting orthogonal frequency division 

multiplexing. In principle, each subcarrier carrier independent 

information. However, each adjacent subcarriers carry similar 

information at times. For this purpose, we have used principal 

component analysis to obtain an independent dataset for each 

human activity. The CSI data packets can be integrated 

together into multiple independent principle components.    

 

A. Scalogram 

Time-frequency scalograms are extracted from CSI amplitude 

information from each received packet and are used as features 

to detect FoG episodes. The extracted features are a 

multiresolution energy density function obtained from 5000 

packets using Continuous Wavelet Transform (CWT). The 

energy density function E(t, f) is obtained by squaring the 

amplitude information of the CWT function Cd (t, f) of a discrete 

sequence. The time-frequency scalogram can be computed from  

the CWT Cc(t,s) of a continuous-time signal x(t), represented in 

terms of time t and scale s as in equation 7.  

1
(t,s) (v) ( )dvc

v t
C x

ss




−

−
=                                                       6 

Here ψ(v −
𝑡

s
) denote the dilation of the wavelet ψ(t). We have 

scaled the term 𝑣 − 𝑡 =  τ and scale the value of s as a function  

of frequency f provided s = g1(w) = g2(f). The continuous 

wavelet transform of discrete and continuous signals are 

represented in equation 8 and 9 as follows:  

 

(t, f) T (t kT) (kT,f)dd kC x  = +                                                7 
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(t, f) (t kT) (kT,f)dcC x  


−

= +                                       8 

 

 

 

 

 

 

 

 

 
Figure 5 – Architecture for autoencoder used for classifying spectrograms 

 

Here x(KT) is a discrete sequence of samples having a period T 

=1/F, where F is the sampling frequency. The CWT of a discrete  

signal can be obtained when x(kT) is replaced with CSISC(kT), 

expressed in equation 10. 

 

(t, f) T (t kT) (kT,f)dsc
d kC CSI x  = +                                    9 

In equation 10,  F = 60 Hz is the sampling frequency of CSI 

amplitude information and T = 0.02 seconds. The mother 

wavelet used in this work is the “morse” wavelet. The 

scalogram E(t,f) can further be described mathematically as 

follows : 

(t, f) *(t, f)d dE C C=                                                                     10 

1 2

2 * *
2 1 2T (t kT) (t k T) (k T,f) (k T,f)sc sc

k k

E CSI x CSI  = + +   

                                                …11 
The continuous wave transform-based scalograms deliver 

multiple resolution time-frequency analyses that are primarily  

ependent on the window size, resulting in various dilation of the 

mother wavelet. The scalograms provide adequate transient 

changes in the amplitude information of the CSI packets due to 

the human body movements and present high resolution as 

smaller window durations at higher frequency are used. 

Moreover, the scalograms have the potential to detect smooth 

features in waveforms due to larger windows durations at lower 

frequency. Figure 3(a) shows the variations in amplitude 

information for single-frequency carrier obtained using Wi-Fi 

sensing. A clear transition in each human activity can be seen, 

implying each body motion induces a unique imprint in terms 

of amplitude variation in dB. The scalograms presented in figure 

3(b) are plotted against the logarithmic scale (frequency 

domain). The white dotted line denotes the cone of influence 

that splits the region that where edge effects are significant to 

classify ADLs.  

 

B. Micro-Doppler Signature: 

 

Any subject that is moving within radar range has mechanical 

rotation/vibration along with its bulk translation, it leads to the 

generation of frequency modulation on the reflected 

lectromagnetic signal that produces sidebands around the 

subject’s Doppler frequency shift known as the micro-Doppler 

effect [24][25]. Any object in motion at distance in P moves 

with frequency fv and displacement Dv, with function 

displacement  

value of, 𝐷(𝑡) =  𝐷𝑣𝑠𝑖𝑛2𝜋𝑓𝑣𝑡𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼𝑝. Let us assume R0 to 

be the distance between the radar sensor and the moving target 

initial position O, the total range between the two will 

constantly change with respect to time, the target object’s 

micro-movements are expressed as represented as 𝑅(𝑡) + 𝐷(𝑡). 

The reflected signal received can be written as: 

 

( )0

(t)
(2 f 0 t 2 )

(2 (t))
(t) e j

R
f t

s e
 

  
+

+
 
 = =
 
 
 

                      12 

The value of f0 in equation 7 is the carrier frequency, λ is its 

wavelength and ρ is the backscattering coefficient. Putting 

R(t) in equation 7, the received signal can be mathematically 

described as follows: 

                      13 

0
(t)

(2 f t 2 )

0 v v p
2

(t) e 2 f t D sin(w t)cos cos

R

s ej
 

 
   



+ 
 =  +
 
 
 

 

                      …. 14 

Here 𝑤𝑣 = 2𝜋𝑓
𝑣
, the derivative of the second phase component 

provides micro-Doppler shift expression which is expressed as: 

 

0
(t)

(2 f t 2 )

0 v v p
2

(t) e 2 f t D sin(w t)cos cos

R

s ej
 

 
   



+ 
 =  +
 
 
 

 

                                                               …15 
 

VI. AUTOENCODER AND PROPOSED 

ENHANCED AUTOENCODER FOR FOG 

DETECTION 

One of the major challenges researchers face is the application 

of deep neural networks when classifying RF signals (Wi-Fi and 

( )0

(t)
(2 f 0 t 2 )

(2 (t))
(t) e j

R
f t

s e
 

  
+

+
 
 = =
 
 
 

Matrix to Vector 
Conversion

Matrix to Vector 
Conversion

Encoder Decoder



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3004767, IEEE
Sensors Journal

 

  

Radar in our case) is the limited size of the available dataset. RF 

data acquisition is consumed a lot of time, is expensive and 

involves a large number of volunteers[26]. It is highly unlikely 

to record hundreds of thousands of Wi-Fi and radar data and 

hence novel algorithms have to be introduced so as to avoid 

underfitting and overfitting problems. In this context, a 14-layer 

deep convolution neural network architecture has been 

proposed to classify human gait classification. In this work, we 

consider a conventional Autoencoder and compare the results 

with our proposed three-layer enhanced Autoencoder. 

 

A. Auto-encoder 

 

An Autoencoder neural network that reproduces the input values 

at the output side with specific limitations. For instance, given  

an input matrix x, the network aims to estimate hw(x) ≈ x. The 

unsupervised algorithm was introduced in order to initialize the 

weights and biases of an Autoencoder which was extremely 

efficient effective when a limited number of training data were 

available. The Autoencoder neural network implements 

unsupervised pretraining processing by encoding decoding the  

Input data, respectively. The Autoencoder approximates a 

nonlinear mapping on the input data matrix x as follows : 

 

i
(Wx b)ie = +                                                                                21 

Where σ describes the nonlinear activation function, W and b 

are the weights and biases at the encoder side, respectively. The 

features that are encoded in the network are then decoded in 

order to reconstruct the particular input matrix x using the 

following function[27].

^
~( b )i iz We= +                                   16 

The values of  𝑊~ and  𝑏~ show the weights and biases at the 

decoder side, respectively. During the unsupervised pretraining 

process, the neural network tried to reduce the reconstruction 

error to its minimum value as: 
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To prevent the Autoencoder neural network, cost function with 

a sparsity parameter is applied to force the network to learn the 

correlation among the given input data. With the addition of 

sparsity parameters, the cost function can thus be written as: 

 

2
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Where h denotes the number of hidden neurons, β is the sparsity 

proportion and KL describes Kullback-Leibler divergence and 

can be expressed as follows:   

1
(p || p ) plog (1 p) log
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j j

p p
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p p
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Where pj represents the activation function for jth hidden neuron 

and p denote the value for activation function, h is the number 

of hidden neurons. After pretraining the network, the decoder is 

removed from the network and encoder values are placed for 

training, using a supervised learning method by adding the 

SoftMax classifier with six neurons after the encoder. An input 

vector of K is fed as an input to the SoftMax function that 

primarily normalizes it into a probability distribution consisting 

of K probabilities, 𝑃(𝑦𝑘||𝑥𝑖) for k = 1,2,…K, proportional to 

the exponentials of the input numbers [28][29]. In probability 

distribution function, the input value xi corresponds to labels 

class yk. The probability class pk can be mathematically 

expressed as: 
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The optimum values of weights and biases are obtained when 

the cost function is minimized as: 
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The ‘fine-tuning’ technique that works on the gradient-based 

technique, is applied to resolve the values as indicated in 

equation 22, where the neural network is trained by a supervised 

machine learning technique algorithm. The Autoencoder neural 

network architecture that processes the micro-Doppler 

signatures as images are shown in figure 3.   

 

B. Proposed Enhanced Autoencoder 
The enhanced Autoencoder integrates the advantages of 

convolutional filtering in convolutional neural networks having 

an unsupervised pretraining of an Autoencoder. On the contrary 

to the topology for an Autoencoder network, instead of the fully 

connected layers, the encoder of the proposed neural network 

consist of convolutional layers and the decoder side have 

deconvolutional layers. The deconvolutional filters are 

primarily the transposed copies of the convolutional layers as 

done in this work and are learned from scratch. Moreover, each 

and every deconvolutional filer is followed up by an unpooling 

filter[30]. The unpooling function is operated by saving the 

locations of the largest values when the pooling process occurs 

that inherently preserve the values while zeroing the remaining 

ones. The proposed system is ten times faster than conventional 

Autoencoder and can provide adequate results when limited 

number of data (observations) are available for training, 

specifically in the case of RF sensing system such as ours. The 

spatial locality of the neural network is preserved by 

accommodating a convolutional function at each neuron. Hence 

for a specific input value, P, the encoder calculates the values as 

follows:  

 

n(P*F b)ie = +                                                                             23 

 

Here σ indicates the values for activation function, * is the 2-

D convolution, Fn  is the nth 2-D convolutional layer filter and b 
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represents the basis of the encoder. The unsupervised 

pretraining process that is applied to the neural network aiming 

to reduce the subsequent following expression:  

 

Figure 6 - Proposed enhanced Autoencoder architecture. Two layers namely convolutional and deconvolutional are shown. After the unsupervised pretraining 

process, the decoder section is eliminated where softmax and two fully connected layers are introduced terminal of encoder side. 

 

 
 

Figure 7 – Variances of amplitude information against subcarrier index and number of packets received over a period of time 
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After performing the unsupervised pretraining process, the 

decoding part is eliminated and the softmax classifier and fully 

connected layers are included at the end of the neural network. 

Next, the neural network is fine-tuned by optimization function 

as done in the convolution neural network. Similarly, the 

ADAM algorithm in conjunction with the ReLU activation 

function for optimization of the two fully connected layers 

having 150 hidden neurons each. The optimization of the 

hyperparameters of the proposed enhance Autoencoder was 

performed by grid search method and is discussed in subsequent 

section. The overall architecture of the proposed enhanced 

Autoencoder is presented in figure 6.  

The deep network architecture was implemented using 14 

hidden neurons. Selecting the optimum  number of hidden 

neurons involved rigorous experimentations . Three methods 

were used namely  fixed, constructive and destructive. In the 

fixed approach, a group of neural networks with different 

numbers of hidden neurons were trained and evaluated on the 

test available dataset using a different number of randomly 

selected starting weights. The increment in the number of 

hidden neurons one, two or more depending on the 

computational resources available. Plotting the evaluation 

criterion (e.g. sum of squared errors) on the test set as a function 

of the number of hidden neurons for each neural network 

generally produces a bowl-shaped error graph. The network 

with the least error found at the bottom of the bowl was selected 

because it was able to generalize best. This approach was time 

consuming, but generally worked very well. The constructive 

and destructive approaches involve changing the number of 

hidden neurons during training rather than creating separate 

networks each with a different number of hidden neurons, as in 

the fixed approach. The constructive approach involves adding 

hidden neurons until network performance starts deteriorating. 

The destructive approach is similar except that hidden neurons 

are removed during training. 
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Figure 8 – Experimental setup for data acquisition 

 

 

VII. EXPERIMENTAL SETTINGS AND DATA 

ACQUISITION  

The data were recorded from two different sources, i.e. from 

radar sensors and Wi-Fi router. The experiments were 

performed at a large room at University of Glasgow as shown 

in figure 8. The radar sensor antennas were kept at a distance of 

0.25 meter as shown in figure 8. All the activities were 

performed with aspect angel parallel to the radar sensor and Wi-

Fi transmitter. 

For training validation and testing, the data was acquired for 120 

participants over the course of 20 days with age range from 30 

to 76 years. The five human activities obtained were walking 

quickly, walking slowly, sitting down on chair, standing up 

from chair, voluntary stop and freezing of gait. Pair of human 

activities such as fast walk & slow walk, 

 
                   (a). Walking slow                                                     (b). Voluntary stop 

 
                               (c). Walking fast                                                   (d). Sitting down on chair 

 

 
                                                                                                  (e). FOG episodes 
                                                                                    Figure 9 – Box plot of CSI amplitude information to detect FOD episode  

 
 

sitting down & standing up, voluntary stop & freezing episodes 

were purposely selected as they similar in pattern and would 

challenge the classifier. Accuracy classification of FOG 

episodes is vital having minimum false alarms and low missed 

detection because inaccurate detection of the particular events 

can have extremely adverse effects on the patients. In this 

context, all of the 120 volunteers were asked to repeat a single 

activity more than six times, resulting in 4320 observations in 

total. The duration of each activity was 5 seconds with the 

exception of walking activity that was recorded for 10 seconds. 

 

A. Data Acquisition using Wi-Fi 
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The experimental design to detect FOG episodes in indoor 

settings (10 meters by 12 meters room at University of 

Glasgow, UK) is shown in figure 6. The transmitter, in this 

case, is a Wi-Fi router that operates at 2.4 GHz and is 

deployed 8 meters (in line-of-sight) away from the receiving 

antenna.  The receiver is an Omni-directional antenna wired 

with the Intel 5300 network interface card installed in the 

PCIe slot of a Dell Inspiron desktop computer, Intel® Core™ 

i7-9700 Processor, 8GB RAM). The experimental procedure 

involved the acquisition of multiple data frequency carriers 

where 30 OFDM subcarriers were obtained from each CSI id. 

These packets contain the variances of amplitude and phase 

information of specific human activity which was obtained 

using signal processing techniques and was performed in 

Matlab 2019 tool in order to get the time-frequency 

scalograms. Figure 7 shows the perturbations of amplitude 

information obtained for five human activities obtained from 

channel state information using Wi-Fi sensing. Figure 7(a) 

shows the box plot (amplitude level against group of 30 

subcarriers) for person walking fast in indoor settings. Huge 

variation can be seen, where maximum fluctuation occurs 

between 12 dB and 25 db. As the person stops walking, the 

change in amplitude level decreases dramatically and slight 

variations can be observed as in figure 7(b). There was a 

sudden increase in variances of amplitude information when 

person start walking very fast as in figure 7(c). For sitting 

down on chair, the CSI signatures are distinct from rest of the 

four imprints as shown in figure 7(d). When the person was 

experiencing FOG episodes, implying that the feet were felt 

as if glued to the ground and upper body was trying to move. 

Hence slight variations can be seen in figure 7(e).  

  

The channel state information measurements for activities of 

daily living and FOG episodes show distinguishable variances 

in the amplitude information against individual subcarriers as 

shown in figure 8. The box plot for CSI data against individuals  

subcarriers is shown in figure 9, indicating the first quartile 

Q1_CSIsc, median Md_CSIsc, third quartile Q3_CSIsc, 

interquartile range IQR, minimum value min_CSIsc and 

maximum values max_CSIsc as shown in equations 25 to 29.  

 

sc
N 1

1 | H (t T) |
4

scCSI
Q

+
= +                                                            25 

sc
N 1

| H (t T) |
4

scCSI
Md

+
= +                                                       26 

sc
1

3 | H (t 3 T) |
4

scCSI

N
Q

+
= + +                                                  27 

3 1sc scCSI CSI
IQR Q Q= −                                                              28 
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The box plot as in figure 8, primarily presents the statistical 

information regarding the variances of amplitude information of 

CSI packets across all 30 subcarriers. It is evident that the box 

plot that statistical features for individual’s frequency carrier 

including quartiles, interquartile ranges and median do not 

provide adequate information to distinguish activities of daily 

living and may be similar for specific subcarriers.  

 

B. Data Acquisition using Radar 
 

The Ancortec radar sensor used to collect data transmitted 

signals with power approximately +20 dBm at 5. 8 GHz, having 

a bandwidth of 400 MHz bandwidth. Two Yaggi antennas were 

used as transmitter and receiver with gain equal to 10 dBi that 

had horizontal and vertical beamwidth of 60 degrees. The yaggi 

antenna is primarily manufactured conductors having high 

reflectivity potential. It has numerous applications due to its 

unidirectional pattern, high gain and broad bandwidth. It is 

designed by folding dipole directors where the dipole is 

electrically connected with the feeder. The dipole is used here 

is a resonant with the dipole length, that is half the wavelength 

(half of the wavelength of 5.8 GHz frequency range) and is fed 

to the feeder. The radiator is set to 5% less than the folded dipole 

material and is deployed at the forefront to a distance of lower 

than quarter wavelength of operating waveform. The RF signals 

directors are designed lesser outwards in order to give yaggi 

antenna deployed at transmitter and receiver side taper in the 

radiation and reception direction that essentially makes the 

operating antenna extremely directional for detecting activities 

of daily living . The radiation pattern of yaggi antenna used in 

proposed system is presented in figure 10. 

 
Figure 10. Radiation pattern of yaggi antenna  

 

 The radar sensor was powered by Universal Serial Bus (USB) 

cable since its power consumption limited to USB standards. In 

addition, by analyzing the life span and autonomy of the 

proposed system in real-world realistic deployment, it would 

always be connected to a computer for data acquisition and 

operational task, or to the electricity mains in indoor settings. 

The FMCW radar sensor presents both a range profile and 

Doppler information. In this work, we have only considered the 

latter information due to computational purpose and ADL and 

FOD can be accurately identified merely using this information. 
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For data acquisition, the radar was put on an in the same room 

where Wi-Fi system was deployed. The participants were asked 

to perform activities within a short range of 1-meter to about 3-

meter range and the radar data were obtained with Wi-Fi data 

simultaneously. The two antennas were deployed in such a way 

that it would keep the torso of the volunteers in the center of 

radar beam enhance strength of reflected strength. The recorded 

data were processed using Short Time Fourier Transform 

(STFT) to get the spectrograms and produce micro-Doppler 

signatures.  

The Range-Time-Intensity graph can be obtained by stacking up 

the reflected signals in a matrix format and applying Fast 

Fourier Transform (FFT) function along the fast-time direction 

to produce range cells of human action. Next, STFT algorithm 

is applied to the range profile that consists the target’s, in our 

case people in action, to generate their micro-Doppler 

signatures[31]. The STFT algorithms apply a sequence of FFTs 

algorithms with narrow, overlapping windows along the total 

duration of the collected data; the absolute squared value of the 

complex matrix is the known as the spectrogram, that is a plot 

of velocities of body parts in action (obtained through the 

Doppler effect) with respect to time. A notch MTI filter is 

applied to mitigate the contribution of static objects targets near 

0 Hz such as walls, ceiling, floor, and furniture. 

 

 
 

Figure 11. Spectrograms obtained for human activities and FOG 
episodes 

Figure 11 shows the micro-Doppler signatures activities of daily 

living and FOG episodes obtained at the room in University of 

Glasgow. The positive values of micro-Doppler components are 

movements towards the radar, while the negative values are the 

movements away.  

 

VIII. RESULTS AND DISCUSSIONS  

In this paper, the neural network models are implemented in 

Python using Keras that exploits Tensorflow using tensor 

manipulation library. Both Autoencoder and proposed enhanced 

Autoencoder classification algorithms are tested using 

scalograms of Wi-Fi data and spectrograms of radar sensor 

leveraging tenfold cross-validation of both datasets as described 

in section earlier section. Both neural networks are trained for 

300 epochs having a minibatch size of 80. The validation 

accuracy for both datasets is obtained by splitting 25% of the 

training data as the validation set and the evaluated the models 

after the completion of each iteration using the validation 

datasets.  

The adaptive moment estimation algorithm is used to 

optimize the pretraining process and for fine-tuning having a 

learning rate of 0.001. Leveraging grid search technique, we 

have identified the optimum values for width and depth without 

overfitting as described in Table 2 (Wi-Fi sensing), Table 3 

(radar sensor) and Table 4 (data fusion; combing scalograms 

and spectrograms). We have opted to use a three-layer 

Autoencoder having layers of 100, 50 and 25, respectively. The 

best classification accuracy with optimized parameters are 

shown in red.  

For all three scenarios (Wi-Fi sensing, radar sensing and data 

fusion : combined datasets), the best classification performance 

was obtained for 100,50 and 25 layers. The Wi-Fi sensing based 

on scalograms classification provided an accuracy of 84.5%, the 

spectrogram classification for radar sensing delivered an 

accuracy of 85.5.%. When the two datasets were combined, the 

accuracy of 87.1% was achieved where a small improvement 

was observed.   

We further examine the optimization of hyperparameters of 

proposed enhanced Autoencoder was performed using grid 

search, as presented in Table 5 to Table 7. The enhanced 

Autoencoder was implemented with three convolutional layers. 

Both convolutional and deconvolution layers were populated 

with 30 numbers of 9 by 9 and 3 by 3 concatenated filters. The 

best classification accuracy using scalograms with Wi-Fi 

Sensing, 92.3% was obtained with width of 100, depth of 2, 

having filter size of 9 by 9 and 3 by 3. In addition, the 

classification accuracy of radar sensing, 94.7%, was slightly 

better than Wi-Fi sensing as shown in Table 6. When the same 

network configurations were used, and the combined datasets of 

both devices were used, a significant change in the performance 

was observed. The accuracy of the system increased to 98.1% 

when classification all human activities. Table 7 shows the 

highest classification accuracy (in red) obtained for width of 

100 and depth of 2.  

The confusion matrix of data fusion for ADLs recognition 

(walking slow, voluntary stop, walking fast, sitting down and 

standing up, and FOG episodes) and identifying FOG episodes 

for Autoencoder and proposed enhanced Autoencoder are 

shown in Table 6 and Table 7, respectively. In Table 6, the 

Autoencoder provided adequate classification accuracy. 

However, similar activities such as walking fast & walking 

slow, voluntary stop and FOG episodes were deliberately 

chosen to confuse the classifier, consequently challenging its 

performance. For instance, the walking fast was classified with 

accuracy of around 90%, however it slightly misclassified with 

walking slow; indicating an error of ~10%. A similar pattern 

was observed for another pair of activities namely voluntary 

stop and FOG episodes. The particular freezing of gait event 

was identified with an accuracy of 85% but the algorithm 

detected false negative rate of 14% for voluntary stop.   

 

A significant improvement in classification accuracy of 

individual activities can be seen in Table 7. The proposed 
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algorithm detected the walking fast, sitting down and standing 

up activities with 100% accuracy. The two similar pair of 

activities, that were presented as to confuse the proposed 

algorithm, were also classified with accuracies of ~99%  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Table 2 - Optimized Parameters for Autoencoder - (Scalograms/ Wi-Fi Sensing) 

# Width Depth Accuracy # Width Depth Accuracy 

1 10 1 71.2 7 10-25-50-100 4 83.2 

2 25 1 74.7 8 15-30-60-200 4 81.9 

3 50 2 75.4 9 30-60-120-240 5 83.2 

4 25-50 2 79.0 10 40-80-240-300 5 82.7 

5 50-100 3 82.0 11 15-30-45-90-200-

400 

6 81.4 

6 25-50-

100 

3 84.5 12 50-100-200-400-800 6 80.2 

 

Table 3- Optimized Parameters for Autoencoder - (Spectrograms / Radar Sensing) 

# Width Depth Accuracy # Width Depth Accuracy 

1 10 1 73.5 7 10-25-50-100 4 84.1 

2 25 1 77.2 8 15-30-60-200 4 85.1 

3 50 2 81.4 9 30-60-120-240 5 82.7 

4 25-50 2 83.7 10 40-80-240-300 5 83.5 

5 50-100 3 82.0 11 15-30-45-90-200-

400 

6 83.4 

6 25-50-

100 

3 85.5 12 50-100-200-400-800 6 84.1 

 

Table 4- Optimized Parameters for Autoencoder – (Data Fusion | Scalograms+ Spectrograms) 

# Width Depth Accuracy # Width Depth Accuracy 

1 10 1 81.2 7 10-25-50-100 4 83.1 

2 25 1 83.3 8 15-30-60-200 4 84.0 

3 50 2 83.6 9 30-60-120-240 5 81.7 

4 25-50 2 84.1 10 40-80-240-300 5 84.5 

5 50-100 3 85.9 11 15-30-45-90-200-

400 

6 81.4 

6 25-50-

100 

3 87.1 12 50-100-200-400-800 6 85.1 

 

 

Table 5- Optimized Parameters for Proposed Autoencoder (Scalograms/ Wi -Fi Sensing) 

Filter Size Width Depth Accuracy (%) Width Depth Accuracy (%) 

 

 

 

 

9 x 9 – 3x3 

10 1 85.1 10 3 91.1 

20 1 86.0 20 3 90.4 

100 1 86.3 100 3 88.1 

10 2 90.8 10 4 91.0 

20 2 91.8 20 4 90.9 

100 2 92.3 100 4 90.1 

 
Table 6- Optimized Parameters for Proposed Autoencoder (Spectrogram/ Radar Sensing)  

Filter Size Width Depth Accuracy (%) Width Depth Accuracy (%) 
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9 x 9 – 3x3 

10 1 90.8 10 3 89.1 

20 1 91.2 20 3 91.2 

100 1 88.5 100 3 92.6 

10 2 91.0 10 4 93.0 

20 2 93.1 20 4 92.5 

100 2 94.7 100 4 93.1 

 

Table 7 - Optimized Parameters for Proposed Autoencoder (Data Fusion | Radar Sensing + Wi -Fi Sensing) 

Filter Size Width Depth Accuracy (%) Width Depth Accuracy (%) 

 

 

 

 

9 x 9 – 3x3 

10 1 93.3 10 3 910 

20 1 94.2 20 3 93.1 

100 1 91.8 100 3 94.8 

10 2 93.4 10 4 95.3 

20 2 95.0 20 4 91.0 

100 2 98.1 100 4 94.4 

 

 

 

IX. CONCLUSION 

 

This paper presented freezing of gait detection Parkinson’s 

disease patients that primarily causes motor impairments 

leading to high risks of falls. In this context, activities of daily 

living namely walking fast, walking slowly, voluntary stop, 

sitting down on chair/standing up from a chair and freezing of 

gait episodes were monitored using two non-invasive sensing 

technique. The two methods for data acquisition were Wi-Fi-

based sensing and radar-based sensing techniques. The multi-

resolution scalograms were produced from CSI data and 

spectrograms were obtained from received signal using radar 

sensor. An extensive experimental campaign was conducted 

involving more than 100 volunteers with age range from 30 to 

76 years. For classification purpose, two deep neural networks 

such as an Autoencoder and proposed convolutional neural 

network based enhanced Autoencoder were used to classify 

activities of daily and detect FOG events. It was observed that 

the Autoencoder delivered overall classification accuracy of 

~87% for combined datasets, however the proposed algorithm 

outperformed the same classifier providing classification 

accuracy of 98.1% for the same datasets.  
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