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Transient symptoms of muscle damage emanating from unaccustomed eccentric
exercise can adversely affect muscle function and potentially increase the risk of falling
for several days. Therefore, the aims of the present study were to investigate the shorter-
and longer-lasting temporal characteristics of muscle fatigue and damage induced
by level (i.e., concentrically biased contractions) or downhill (i.e., eccentrically biased
contractions) walking on postural, physical, and muscular functions in older people.
Nineteen participants were matched in pairs for sex, age and self-selected walking
speed and allocated to a level (n = 10, age = 72.3 ± 2.9 years) or downhill (n = 9,
age = 72.1 ± 2.2 years) walking group. Postural sway, muscle torque and power,
physical function (5× and 60 s sit-to-stand; STS), and mobility (Timed-Up-and-Go;
TUG) were evaluated at baseline (pre-exercise), 1 min, 15 min, 30 min, 24 h, and
48 h after 30 min of level (0% gradient) or downhill (−10% gradient) walking on a
treadmill. Following downhill walking, postural sway (+66 to 256%), TUG (+29%), 60 s
STS (+29%), five times STS (−25%) and concentric power (−33%) did not change at
1–30 min post exercise, but were significantly different (p < 0.05) at 24 and48 h post-
exercise when compared to baseline (p < 0.05). Muscle torque decreased immediately
after downhill walking and remained impaired at 48 h post-exercise (−27 to −38%).
Immediately following level walking there was an increase in postural sway (+52 to
+98%), slower TUG performance (+29%), fewer STS cycles in 60 s (−23%), slower time
to reach five STS cycles (+20%) and impaired muscle torque (−23%) and power (−19%)
which returned to baseline 30-min after exercise cessation (p > 0.05). These findings
have established for the first time distinct impairment profiles between concentric and
eccentric exercise. Muscle damage emanating from eccentrically biased exercise can
lead to muscle weakness, postural instability and impaired physical function persisting
for several days, possibly endangering older adult’s safety during activities of daily living
by increasing the risk of falls.
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INTRODUCTION

Falls among older people represents a substantial health and
social priority. Falling often leads to progressive functional
decline, the development of comorbidities and the start of
dependency (Okubo et al., 2017). It is well established that∼35%
of adults aged 65 years and over fall annually (Stalenhoef et al.,
2002). Although the etiology of falling is complex (Rubenstein,
2006), several modifiable risk factors have been documented
including diminished balance and mobility (Delbaere et al.,
2010), a progressive reduction in muscle strength and/or power
(Orr et al., 2006) and poor cognitive function (Mirelman et al.,
2012). Exercise can protect against a loss of physical (Cadore
et al., 2013; Chou et al., 2012; Giné-Garriga et al., 2014) and
cognitive function (Colcombe and Kramer, 2003) in older age.
However, an inevitable consequence of being physically active
is short-term muscle fatigue (Vuillerme et al., 2002). Exercise
may acutely increase the risk of falling by negatively influencing
postural, muscular, and physical functions (Helbostad et al.,
2010). However, the importance of such transient muscle fatigue
as a fall-risk factor in older people is not well understood.

Fatigue (or tiredness) is a common complaint among older
adults with more than 50% of people over 70 years reporting
fatigue during daily activities (Avlund, 2010). One area that
has garnered attention recently is the effects of daily activities
(such as walking) on intrinsic fall risk factors (i.e., balance,
strength, mobility, and cognitive function) (Sturnieks et al.,
2018). Although walking is an essential prerequisite to quality of
life and independent living (Lee and Buchner, 2008) most falls
occur during ambulation (Berg et al., 1997; Robinovitch et al.,
2013; Talbot et al., 2005).Consequently, careful consideration of
activities that may influence gait are important. During uphill
or level walking the lower extremity muscles predominantly
perform concentric contractions, resulting in a high metabolic
cost (Malm et al., 2004). Consequently, walking can affect
several factors associated with falls including an increase in
postural sway (Hill et al., 2015; Donath et al., 2013, 2015;
Walsh et al., 2018), altered gait characteristics (Nagano et al.,
2014), slower reaction time (Morrison et al., 2016) and the
decreased muscle strength (Morrison et al., 2016), and power
(Foulis et al., 2017). Concentric-dominant exercise, such as
level walking, provokes a high energetic metabolism and an
intracellular accumulation of metabolic by-products (Green,
1997). These metabolites can adversely influence sensorimotor
coupling mechanisms responsible for postural control (Paillard,
2012). However, fatigue-related functional impairments are often
transient with performance measures returning to baseline
within 20 min (Hill et al., 2015; Donath et al., 2013, 2015).
Therefore the relative impact of short-term fatigue induced by
level or uphill walking may be limited.

Daily activities are not isolated to concentric contractions
but can also incorporate eccentric contractions (such as walking
downhill or descending flights of stairs). Conversely to concentric
exercise, these activities can result in non-metabolic fatigue. For
example, downhill walking elicits a considerably lower oxygen
uptake than level or uphill walking when matched at the same
speed (Laursen et al., 2000). However, this exercise imposes

greater loading on the muscle-tendon complex (Howatson
et al., 2011) during braking to control the rate of knee flexion
(Maeo et al., 2017). One of the hallmarks of eccentric muscle
contractions is the short-term manifestation of myocellular
damage and disruption to extrafusal and intramuscular fibers
(Raastad et al., 2010). Muscle damage often results in a
concomitant reduction in muscle force (Proske and Allen,
2005) and proprioception (Paschalis et al., 2008). These changes
typically present ∼6 h after exercise and peak at one to three
days thereafter (Paschalis et al., 2008). The amalgamation of
muscle damaging effects lasting for several days is likely to
be problematic for postural and physical functions and may
substantially increase the risk of sustaining a fall for a prolonged
period. Consequently, it is likely the magnitude of change and
recovery of muscular, physical function and postural profiles
associated with prolonged downhill walking may differ from
those observed following level walking.

To date, no study has compared the effects of concentric-
versus eccentric-dominant exercise-induced fatigue on fall risk
factors among older adults; information likely valuable for
elucidating some of the fundamental aspects of task-dependent
muscle fatigue on fall risk factors. Therefore, the aims of the
present study were to investigate the shorter- (up to 30 min)
and longer-lasting (up to 48 h) temporal characteristics of
muscle fatigue induced by level (i.e., concentric contractions)
and downhill (i.e., eccentric contractions) walking on physical,
muscular and postural functions associated with fall risk in
older people. We hypothesized that level walking, characterized
by metabolic fatigue, would provoke an immediate increase in
postural sway, a reduction in physical functional performance
and reduced isometric strength and concentric power, recovering
to baseline levels within 30 min of exercise cessation. Secondly,
we hypothesized that downhill walking, characterized by non-
metabolic fatigue (i.e., muscle damage), would elicit a delayed
(24–48 h) recovery of postural sway, a reduction physical
functional performance and impaired muscle function.

MATERIALS AND METHODS

Participants
Effect sizes (Cohen’s d) were calculated from similar studies
from mean changes in the anteroposterior centre of pressure
(COP) displacement (d = 2.08), mediolateral COP displacement
(d = 1.79) (Hill et al., 2015) and knee extensor concentric
power (d = 1.47) (Foulis et al., 2017). Sample size was estimated
using an a priori power analysis (G∗ Power software [Version
3.1.9.4]) for knee extensor concentric power (i.e., variable with
the smallest effect size to avoid bias) (statistical power = 0.80,
alpha = 0.05, effect size = 1.47) and revealed that a total of nine
participants in each group would be sufficient to detect significant
effects of level and downhill walking on measures of postural,
muscular, and physical functions (Faul et al., 2009). A total of
19 community-dwelling older adults (Table 1) were recruited
with no prior experience of eccentric training and able to walk
without the use of an assistive device. All participants had some
previous experience of walking on a motorized treadmill but
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none had any experience of walking downhill on a treadmill.
Participants were excluded if they were unable to stand unassisted
or had a history of neurological (e.g., stroke, Parkinson’s disease),
musculoskeletal (e.g., tendinitis), cognitive impairment (e.g.,
dementia) and/or cardiovascular or pulmonary diseases (e.g.,
coronary heart disease, chronic obstructive pulmonary disease).
A screening medical questionnaire revealed that no participants
had any conditions that would preclude them from participating.
Following ethical approval by Coventry University’s Ethical
Review Board (Ref; P90521) and prior to any data collection,
all participants gave written and informed consent. All risks
associated with the experimental procedures were explained
before testing began with the study undertaken in accordance
with the Declaration of Helsinki (1964).

Questionnaires
During the consenting visit, all participants completed
questionnaires for self-reported physical activity, concern
about falls, fatigue and cognitive function. Participants were
moderately active (Table 1), as confirmed by the screening
medical and physical activity questionnaire. The 16 item Falls
Efficacy Scale (FES-I) measures concern about falling during
physical and social activities with each item scored on a 4-point
Likert scale [1 = not at all concerned to 4 = very concerned;
Yardley et al. (2005)] with cumulative scores of 16–19, 20–27, and
28–64 indicating low, moderate and high concern about falling,
respectively (Delbaere et al., 2010). Participants also completed
the Mini Mental State Examination (MMSE), consisting of
11 questions to determine cognitive function (Crum et al.,
1993). An MMSE score of <24 separates individuals with mild
dementia from participants with normal cognitive function
(Folstein et al., 1983). Self-reported fatigue was measured using
the nine item Brief Fatigue Inventory (BFI) to assess the impact
of fatigue on daily functioning (Mendoza et al., 1999). This
inventory has been validated in healthy people over 65 years
of age (Shuman-Paretsky et al., 2014). Participants rated their
fatigue on an 11-point scale (0 = no fatigue, 10 = “as bad as you
can imagine”) with higher scores on the BFI corresponding to
greater self-reported levels of fatigue.

TABLE 1 | Mean ± SD sample characteristics.

Sample characteristics Level walking
(n = 10)

Downhill walking
(n = 9)

Sex (male/female) (5/5) (4/5)

Age (years) 72.3 ± 2.9 72.1 ± 2.2

Body mass (kg) 72.8 ± 13.7 72.2 ± 9.0

Height (m) 1.65 ± 0.09 1.64 ± 0.09

BMI (kg·m2) 26.9 ± 5.0 26.9 ± 4.5

Cognitive status (MMSE) 28.7 ± 1.2 28.4 ± 1.0

Physical activity (hr·w−1) 5.9 ± 3.5 5.9 ± 3.3

Self-reported fatigue (BFI) 8.5 ± 4.5 8.4 ± 2.5

Falls efficacy (FES-I) 17.4 ± 2.1 17.7 ± 1.0

Self-selected walking speed (km·h−1) 3.9 ± 1.0 4.0 ± 0.5

BMI, body mass index; MSSE, Mini Mental State Examination; BFI, Brief Fatigue
Inventory; FES-I, Falls Efficacy Scale International.

Experimental Design
The study was conducted as a repeated-measures between group
design with criterion measurements evaluated at baseline (pre-
exercise), immediately post-exercise (1-min), and again at 15-
min, 30-min, 24 h, and 48 h following exercise interventions.
We opted against a within-subject crossover design as the
protective effect against muscle damage from a single bout of
eccentric exercise (McHugh, 2003) may influence level walking
characteristics. Following the consenting visit, all participants
completed a familiarization session prior to the experimental
trials at least 72 h, but not more than 7 days before the
first experimental trial. Anthropometric characteristics, postural
sway, muscle function (torque and power), physical function (60 s
sit-to-stand; STS) and mobility (timed up and go) were collected
during this time (described later). To habituate participants to
walking on the treadmill and to ascertain self-selected walking
speed for subsequent experimental trials, each participant walked
for 5–10 min on the treadmill at a 0% gradient (Roberts et al.,
2018). Participants were specifically instructed to walk at a
preferred comfortable pace that they felt they could maintain for
∼30 min. The starting speed was 2.5 km·h−1 with an increase
of 0.2 km·h−1 every 30 s until the participant indicated that
the next increment in speed would be too fast. Familiarizing the
participants during downhill walking was deliberately avoided
as a small volume of non-damaging downhill walking (5 min at
−28%) can prevent muscle damage during subsequent prolonged
(40 min at −28%) downhill walking (Maeo et al., 2017). All
participants were blind to their self-selected walking speed,
and the principal investigator adjusted speed in 0.2 km·h−1

increments in response to instructions from the participant to
go “slower” or “faster” with the principal investigator standing
next to the treadmill to assist the participants to complete the
tests safely (Roberts et al., 2018). Following baseline assessments,
participants were allocated to a level (0%) or downhill (−10%)
walking intervention. Participants were matched in pairs for
sex, age, physical activity levels, and self-selected walking speed
to minimize potential confounding factors between groups.
Independent-sample t-tests revealed no significant difference
between groups for any participant characteristic at baseline
(p > 0.05; Table 1). During the experimental period, participants
were instructed not to perform any unfamiliar activities and to
avoid any interventions that might influence recovery, such as
massage, application of ice packs, or nutritional supplements.

Posturography
Postural sway was measured during quiet standing as a measure
of static balance performance. Each participant performed quiet
stance trials while standing on a force platform (AMTI, AccuGait,
Watertown, MA, United States) for 30 s. Data were sampled at
100 Hz (AMTI, Netforce) and the total displacement of COP
in the anteroposterior and mediolateral directions (both cm)
and mean COP velocity (cm·s−1) were subsequently calculated
(AMTI, BioAnalysis, Version 2.2). The validity and reliability
of these parameters have previously been established for this
sampling duration (Pinsault and Vuillerme, 2009). To ensure
continuity during trials, unshod foot position was standardized
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by instructing participants to stand with the feet together (i.e.,
Romberg stance). To avoid unnatural postural sway, internal
focus of attention and restriction of exploratory behavior,
participants were not specifically asked to stand as still as possible.
Participants’ arms were left to hang freely by their sides and
were instructed to look straight ahead at a target 1.5 m away;
adjusted to the eye level of each individual. Throughout all tests,
the investigator stayed close to the participants to prevent falling
but without interfering with balance performance. Before the
walking exercise intervention, participants performed three 30 s
trials for each condition of eyes open (EO) and eyes closed (EC),
in a counterbalanced order, with the mean of the three trials for
each condition used in the subsequent analysis. To capture the
immediate effects of fatigue on postural sway, a single EO and
EC trial was collected at 1, 15-, and 30-min post-exercise, with
longer-term effects measured 24 and 48 h after the exercise bouts
with all tests undertaken at the same time of the day (±1 h).

Mobility and Physical Function
The Timed Up and Go Test (TUG) was used as described by
Podsiadlo and Richardson (1991). Participants were instructed
to stand up from a chair without using their hands, walk 3 m
at a normal pace to a line on the floor, walk back to the
chair and sit down. Before performing the TUG, an experienced
researcher provided verbal and visual instructions regarding the
test procedures. Participants were asked to perform the TUG at
their self-selected walking speed. The time taken to complete the
test was recorded using a stopwatch (nearest 0.01 s) with a total
of three trials recorded with 30 s rest between trials; the fastest
trial was included in the subsequent analyses. Two minutes later,
the participants completed the 60 s STS test (Strassmann et al.,
2013). In addition to the total number of repetitions performed in
the 60 s STS, the time taken for the first five repetitions were also
recorded. Participants were instructed to sit down on a chair (seat
height 45 cm) with arms folded across the chest and feet shoulder
width apart. Participants were instructed to stand up fully with
complete knee and hip extension and sit down as many times
as possible within 60 s, with participants verbally encouraged
throughout the duration of the test. Given the onerous nature of
the test, only a single trial was recorded before exercise, and at 1,
15-, and 30-min, 24 and 48 h post-exercise. Among community
dwelling older people, test-retest reliability [intraclass correlation
coefficient (ICC)] of the TUG (ICC = 0.99; Podsiadlo and
Richardson, 1991), 60 s STS (ICC = 0.80; Ritchie et al., 2005) and
five times STS (ICC = 0.89; Lord et al., 2002) are excellent.

Muscle Torque and Power
The pre-intervention functional balance and mobility tests were
also used as the warm-up for subsequent maximal muscle
function tests. All maximal voluntary contractions (MVCs) of the
knee extensors were performed on the dominant leg (self-selected
by participants) using the Cybex Norm isokinetic dynamometer
(Computerized Sports Medicine Inc., United States). Participants
were seated comfortably in an upright position with the backrest
angle at 100◦ and the knee flexed to 90◦. The lateral femoral
epicondyle (i.e., axis of rotation) of the dominant knee was
aligned with the axis of rotation of the dynamometer with

extraneous movements during MVC’s prevented with restraining
straps placed over the trunk, pelvis, thigh and ankle. The
knee angle was placed at 90◦ for all isometric MVC’s (torque;
Nm) and initial position for concentric contractions (power;
W) with gravity correction performed for all tests. The range
of motion for dynamic contractions was 70◦ (range 90◦–
160◦ extension). For familiarization of isokinetic and isometric
contractions, participants performed three submaximal (∼70%
MVC) isometric and concentric contractions, with 3 min of
rest between each contraction type. For all time points, each
participant first completed three knee extensor isometric MVCs
with each isometric contraction lasting ∼4 s. Following the
isometric MVCs, participants completed three concentric MVC’s
at 180◦ s−1, with the angular velocity based on their tolerance
and ability documented during prior pilot testing. High velocity
contractions were chosen because they are functionally relevant
to physical performance tasks, such as rising from a chair
(Hortobagyi et al., 2003) and changes in high velocity muscle
power (270◦ s−1) are associated with increases in chair rise time
following level walking in older adults (Foulis et al., 2017).

Participants were instructed to contract maximally over the
complete range of motion and rested for 1 min between
each set. During each testing session, participants were given
verbal encouragement to help to ensure a maximal effort with
visual feedback of the torque trace provided. During the three
repetitions for both contraction modes, the trial with the highest
torque was used in subsequent analysis for each mode.

Exercise Interventions
Immediately following baseline assessments, participants
completed 30 min of level (0% gradient) or downhill (-10%
gradient) walking on an instrumented treadmill (h/p/Cosmos
Mercury 4.0; h/p/cosmos Sports & Medical gmbh, Nussdorf-
Traunstein, Germany). The −10% gradient was adopted because
this is the point at which minimum total body energy costs
occurs for downhill walking (Wanta et al., 1993). Participants
wore a safety harness attached to an automated overhead
suspension arm during the interventions to prevent possible
falls from the treadmill (Figure 1). Starting with a treadmill
speed of 1.5 km·h−1, the velocity was progressively increased
until participants reached their pre-determined (during
familiarization) self-selected walking speed after ∼30–60 s.
As with the baseline assessment, all participants were blind to
their self-selected walking speed, with the principal investigator
adjusting speed in 0.2 km·h−1 increments and standing next
to the treadmill to assist the participants to complete the tests
safely. Participants wore their own comfortable sports shoes and
clothes, however compression garments were not permitted.
During both level and downhill walking, participants were
instructed to walk at their most comfortable stride length and
stride rate and not to change it throughout the trial (Maeo et al.,
2017). The 30 min walking time was selected as previous studies
have reported that this is sufficient to elicit muscle fatigue-related
effects on postural control (Hill et al., 2015; Foulis et al., 2017;
Walsh et al., 2018). Additionally, this exercise duration aligns
with the American College of Sports Medicine recommendations
for health benefits in older people (Nelson et al., 2007).
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FIGURE 1 | Mean ± SD mean COP velocity (A), anteroposterior COP displacement (B), and mediolateral COP displacement (C) responses to 30 min level and
downhill walking. ∗Significantly different to baseline. †Significant vision effect.

Physiological and Perceptual Responses
During the walking test, expired gases were analyzed using
a breath-by-breath online analysis system (MetaMax, Cortex
Biophsik, Borsdorf, Germany) for oxygen uptake (V̇O2),
pulmonary ventilation (V̇E) and respiratory exchange ratio
(RER). Expired gas data were subsequently calculated and
averaged over the final 20 s of each 5 min interval. Oxygen and
carbon dioxide sensors and the gas turbine were calibrated prior
to each test according to the manufacturer’s guidelines. Heart rate
(HR) was continually monitored (Polar Electro, Oy, Finland) and

recorded in the final 10 s of each 5 min interval. The 15-point
(6–20) Borg scale was used to determine cardiorespiratory (heart
and lungs; RPEC) and local (working muscles; RPEL) ratings of
perceived exertion (Borg, 1982). RPEL and RPEC were obtained
at the same time as HR.

Statistical Analysis
Data were analyzed using SPSS version 25.0 (IBM Inc., Chicago,
IL, United States). All measures are reported as mean ± SD.
Separate two-way mixed-model ANOVAs examined the effects
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of time (×6; pre-exercise, 1, 15, 30-min, 24, and 48 h post-
exercise) and group (×2; level vs. downhill walking) on TUG,
STS, muscle torque, and power. Three-way ANOVA were used
for postural sway metrics (group× time× vision). Separate two-
way mixed-model ANOVAs were also used to examine the effects
of time (×7; pre-exercise, 5, 10, 15, 20, 25, 30-min post-exercise)
and group (×2; level vs. downhill walking) on cardiorespiratory
and perceptual variables. For all measures, normality (Shapiro–
Wilk test) and homogeneity of variance (Levene’s test) and
sphericity (Macuhley’s test) were confirmed prior to undertaking
parametric tests. Where significant differences were detected,
post hoc analyses with Bonferroni-adjusted α for multiple
comparisons were conducted to determine the location of any
significant differences. Effect sizes are reported as partial eta-
squared value (ηp

2) for ANOVA and as Cohen’s d (d) for
pairwise comparisons, with 0.2, 0.6, 1.2, and 2.0 indicating small,
medium, large and very large effects, respectively (Hopkins et al.,
2009). Pearson’s product moment correlation coefficients (r)
were computed to quantify the relationship between the absolute
change score data in all variables. Statistical significance for all
tests was accepted at p < 0.05.

Reliability
Within-session reliability was examined using ICC and
coefficients of variation (CV) during baseline conditions between
the second and third trials. No significant differences (p > 0.05)
were detected between any measure of postural sway, TUG,
isometric strength or concentric power. Moderate-to-high ICC
and low-to-moderate CV were calculated for anteroposterior
COP displacement (EO; ICC = 0.82, CV = 11.1%, EC; ICC = 0.92,
CV = 10.9%), mediolateral COP displacement (EO; ICC = 0.95,
CV = 8.1%, EC; ICC = 0.94, CV = 9.5%), mean COP velocity
(EO; ICC = 0.99, CV = 3.1%, EC; ICC = 0.97, CV = 5.0%),
TUG (ICC = 0.99, CV = 1.5%), isometric strength (ICC = 0.97,
CV = 4.3) and concentric power (ICC = 0.99, CV = 5.8%).
Given that participants completed only one STS test before
exercise, ICC’s and CV’s are not reported for the five times STS
or 60 s STS tests.

RESULTS

Postural Sway
Postural sway responses are illustrated in Figure 1. The three-
way ANOVA revealed significant group × time interactions
for all postural sway outcomes (Table 2). Follow up post hoc
analysis indicated that the anteroposterior COP displacement
(p < 0.001, d = 2.45) and mean COP velocity (p < 0.001,
d = 1.49) with eyes open were significantly greater 1-min after
level walking compared to pre-exercise, returning to pre-exercise
levels within 15 min (p > 0.05). During the eyes closed condition
the anteroposterior COP displacement (p < 0.001, d = 2.12)
and mean COP velocity (p = 0.002, d = 1.33) were significantly
greater 1-min following level walking compared to pre-exercise,
returning to pre-exercise levels within 15 min (p > 0.05).

Following downhill walking, post hoc analysis indicated
that with the eyes open the mediolateral COP displacement

(p < 0.001, d = 1.90), anteroposterior COP displacement
(p < 0.001, d = 3.83), and mean COP velocity (p < 0.001,
d = 1.61) increased at 24 h post-exercise when compared to
baseline and did not recover to baseline levels after 48-h recovery
(all p < 0.001). For the eyes closed condition, the mediolateral
COP displacement (p = 0.031, d = 1.26), anteroposterior COP
displacement (p < 0.001, d = 2.08) increased at 24 h post-exercise
when compared to baseline values, did not recover to baseline
levels after 48 h recovery (all p < 0.001).

Physical Function
There were statistically significant interactions for 60 s STS
(F(5,102) = 6.209, p < 0.001, ηp

2 = 0.233), five times
STS (F(5,102) = 5.992, p < 0.001, ηp

2 = 0.227) and TUG
(F(5,102) = 3.318, p = 0.008, ηp

2 = 0.140) (Figure 2). Immediately
following level walking there was a reduction in the number of
STS in 60 s (p = 0.017, d = 2.50) and TUG increased (p = 0.003,
d = 1.56), with the TUG remaining significantly slower 15 min
post-exercise (p = 0.019, d = 1.31). Following downhill walking,
there was a reduction in the number of STS in 60 s (p = 0.016,
d = 1.45), whilst the time to reach 5 STS cycles (p = 0.042,
d = 1.45) and TUG (p = 0.050, d = 0.92) both increased at
24 h post-exercise. The 60 s STS (p = 0.004, d = 1.54), five
times STS (p = 0.019, d = 1.50) and TUG (p = 0.004, d = 1.83)
remained significantly different to baseline values at 48 h post-
exercise.

Muscle Function
The analysis revealed a statistically significant group × time
interaction for isometric MVC (F(5,102) = 7.227, p < 0.001,
ηp

2 = 0.262). Figure 3 follow up post hoc analysis revealed
that compared to baseline, there was a reduction in isometric
MVIC 1 min after level walking (p < 0.001, d = 1.44),
returning to baseline after 15 min recovery (p > 0.05). Following
downhill walking, there was an immediate reduction in MVIC,
which remained significantly different to baseline throughout
the recovery period (p < 0.001, d = 1.50–2.15). A significant
time × group interaction was also revealed for concentric power
(F(5,102) = 6.608, p < 0.001, ηp

2 = 0.245). Post hoc analyses
revealed that compared to baseline, there was a reduction in
concentric power at 1 min (p = 0.042, d = 0.73) and 15 min
(p = 0.041, d = 0.70) following level walking. Following downhill
walking, the analysis revealed that compared to baseline, there
was a reduction in isometric concentric power at 24 h (p = 0.004,
d = 1.02) and 48 h (p < 0.001, d = 1.32) post-downhill
walking. As part of our initial exploratory analyses we performed
correlational analysis to determine the relationships among
changes in muscle, physical and postural functions. There were
no significant associations between changes in muscle and
physical function with any postural sway outcomes (p > 0.05,
r = 0.11–0.30).

Physiological Responses
Although the analyses revealed no statistically significant
group × time interactions for any physiological outcomes
(p > 0.05), main group effects were observed for all variables
(Table 3). Follow up post hoc analyses revealed that with the
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FIGURE 2 | Mean ± SD TUG (A), 5 times STS (B), and 60 s STS (C) responses to 30 min level and downhill walking. ∗Significantly different to baseline.

exception of V̇E, HR, RER, and RPEC at minute 5, all responses
were greater throughout the exercise trials in the level compared
to downhill walking group (Figure 4). The analysis also revealed
main effects of time for RPEL (F(5,102) = 13.035, p < 0.001
ηp

2 = 0.291) and RPEC (F(5,102) = 4.202, p = 0.002, ηp
2 = 0.171).

Follow up post hoc analyses revealed that compared to 5 min,
RPEL was greater at 20 min (p = 0.008), 25 min (p < 0.001),
and 30 min (p < 0.001) exercise. Similarly, RPEC was greater at
20 min (p = 0.050), 25 min (p = 0.022), and 30 min (p = 0.006)
compared to 5 min.

DISCUSSION

This experiment shows that the recovery profiles of postural,
physical and muscular functions associated with eccentrically
biased exercise differ from those observed following
concentrically biased exercise. In accordance with our first
hypothesis, the relative impact of short-term fatigue induced
by concentrically biased exercise (i.e., metabolic fatigue during
level walking) is limited, with a full recovery of postural, physical
and muscle functions occurring within 30 min of exercise
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TABLE 2 | Group × time × vision repeated measures ANOVA of postural sway responses to level and downhill walking.

Anteroposterior COP displacement Mediolateral COP displacement Mean COP velocity

F p ηp
2 F p ηp

2 F p ηp
2

Group 0.831 0.363 0.004 21.832 0.001 0.097 13.882 0.001 0.064

Time 21.718 0.001 0.349 12.969 0.001 0.242 13.663 0.001 0.252

Vision 21.709 0.001 0.097 6.551 0.011 0.031 10.044 0.002 0.047

Group × Time 29.517 0.001 0.421 11.224 0.001 0.217 16.866 0.001 0.293

Group × Vision 0.842 0.360 0.004 0.875 0.351 0.004 0.211 0.647 0.001

Time × Vision 0.938 0.457 0.023 0.155 0.978 0.004 0.225 0.951 0.006

Group × Time × Vision 0.491 0.783 0.012 0.959 0.444 0.023 0.159 0.977 0.004

FIGURE 3 | Mean ± SD changes in isometric muscle force (A) and concentric power (B) from pre-exercise value (100%) before (baseline), during a short term
recovery (1–30 min) and up to 48 h after 30 min of level and downhill walking.

cessation. In support of our second hypothesis, following
eccentrically biased exercise (i.e., muscle damage following
downhill walking), not only was the impairment of postural,
physical and muscular functions delayed until 24 h post-exercise,
these functions remained impaired for at least 48 h post-exercise.

TABLE 3 | Repeated measures ANOVA of physiological responses to level and
downhill walking.

Analysis Group × Time ANOVA

Group × time F p ηp
2

V̇O2 0.127 0.986 0.006

V̇E 0.336 0.890 0.016

HR 0.324 0.898 0.016

RER 0.467 0.800 0.022

RPEL 0.678 0.641 0.032

RPEC 0.649 0.663 0.031

Group

V̇O2 44.364 <0.001 0.303

V̇E 46.768 <0.001 0.314

HR 7537.469 <0.001 0.250

RER 26.302 <0.001 0.205

RPEL 75.619 <0.001 0.426

RPEC 55.440 <0.001 0.352

The delayed impairment and recovery of postural, physical
and muscular functions following low-intensity downhill
walking suggest that eccentrically biased contractions could
affect daily activities and increase the risk of falling for several
days. Collectively, these findings identify distinct temporal
profiles which have important practical applications for physical
therapists, exercise professionals and geriatricians to provide
guidance on behavior following exercise modes likely to
differentially elevate fall risk.

Physiological and Perceptual Responses
It has previously been shown that V̇O2 is ∼25% lower during
15 min downhill (–10%) compared to level (0%) walking among
older people (Navalta et al., 2004; Gault et al., 2013). In the
present study, V̇O2 was approximately 34% lower in the downhill
compared to the level walking group, accompanied by a lower
HR (–32%), V̇E (–15%), and RER (–6%). Additionally, both local
and central RPE were consistently two to three points lower
during downhill walking (i.e., “very light” to “light”) compared
to level walking (i.e., “somewhat hard”). Therefore, we can
confirm that the level walking group experienced significantly
greater demands on metabolic, cardiovascular and pulmonary
systems and elicited a greater perceived exertion compared to the
downhill walking group. The underlying physiological process
rendering downhill walking less metabolically demanding than
level walking involves differences in the energetics of the
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FIGURE 4 | Mean ± SD V̇O2 (A), V̇E (B), HR (C), RER (D), RPEL (E), and RPEC (F) responses to 30 min level and downhill walking. All responses were greater
during level than downhill walking (p < 0.001).

cross-bridge cycles and the elastically stored energy is released
from the muscle-tendon complex (Nishikawa, 2016).

Fatigue and Recovery Profiles Following
Eccentric Exercise
To our knowledge, this is the first study to attempt to identify
differences in the effects of concentric- versus eccentrically
biased exercise on postural, physical and muscular functions
in older adults. Contrary to the level walking group (discussed
later), the downhill walking group presented with symptoms
of muscle damage. Specifically, maximal isometric muscle force
decreased by 35% at 24 h after downhill walking and remained
lower (−38%) than the baseline at 48 h post-exercise. Similarly,
compared to baseline, concentric power decreased by 25 and
31% at 24 and 48 h, respectively. Although these changes are
typical following downhill walking (> 40 min) in healthy young
adults (Ahmadi et al., 2008; Maeo et al., 2015; Maeo et al., 2017;
Nakayama et al., 2019), limited data exist describing changes
in muscle force following downhill walking in older people.

Gault et al. (2011) observed a 15% decline in maximal isometric
voluntary contraction of the knee extensor muscles 48 h following
a 30 min downhill (−10%) treadmill walk at a self-selected
walking speed (4.6 km·hr−1). These changes in isometric muscle
torque were considerably less than the changes observed in
the present study. These observations may suggest that muscle
damage was present following the downhill walking protocol
performed in the present study.

Changes in postural sway did not present until 24 h after
downhill walking and remained altered at 48 h post-exercise;
findings that broadly align with studies undertaken in young
adults (Twist et al., 2008). Multiple mechanisms may account
for the delayed impairment and recovery of postural control
following eccentric exercise-induced muscle damage. First, an
increase in postural sway following downhill walking may
have resulted from reduced isometric muscle force generation
capacity. Weaker muscles require the activation of larger
motor units to achieve the same force. Crucially, large motor
neurons have less fine control (Saxton et al., 1995), requiring a
greater recruitment following eccentric exercise to compensate
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for the reduction in muscle force (Davies and White, 1981).
Consequently, eccentric exercise can lead to an increase in
physiological tremor for 24 h after eccentric exercise (Saxton
et al., 1995), which may explain the delayed increase in postural
sway at 24 h in the present study (Kouzaki and Masani,
2012). This problem might also be exacerbated by the fact that
eccentrically biased exercise preferentially recruits and damages
fast twitch motor units (Brockett et al., 2002), which could
affect the ability to react quickly to large amounts of body
sway. Secondly, the temporal changes in postural sway observed
in the present study are consistent with recovery profiles of
neuromuscular impairments (i.e., force and joint position sense)
following eccentric exercise reported in previous studies. For
example, several authors have reported that muscle spindles
and golgi tendinous receptors become desensitized after 24 h
following eccentric exercise-induced muscle damage (Brockett
et al., 1997; Paschalis et al., 2007; Saxton et al., 1995), with
impairments persisting for several days. These findings suggest
that metabolite accumulation associated with concentrically
biased exercise cannot be attributed to the delayed and long
lasting impairments in postural sway reported here. Whilst the
deficits in muscle and joint mechanoreceptors following eccentric
exercise-induced muscle damage remains unclear (Torres et al.,
2010), it is clear that muscle spindles and golgi tendinous
receptors contribute to joint position and movement (Brockett
et al., 1997). Finally, it is possible the high ground reaction impact
forces during downhill ambulation (Gottschall and Kram, 2005)
provoke substantial damage to the plantar cutaneous receptors. It
is well established that there is a functional relationship between
plantar cutaneous afferents and maintenance of upright stance
(Meyer et al., 2004). Regardless of the underlying mechanisms,
given that increased postural sway has been shown to be
predictive of falls (Piirtola and Era, 2006; Johansson et al., 2017),
these findings suggest that exercise-induced muscle damage
might impair balance control and lead to a long term “window”
of increased fall risk.

Downhill walking involves a substantial eccentric component
that causes considerable muscle damage (Nottle and Nosaka,
2005) and a subsequent reduction in muscle strength (Ahmadi
et al., 2008; Girard et al., 2018) that typically presents ∼6 h
after exercise and peaks at one to three days thereafter. On
this basis, we hypothesized that downhill walking would elicit
a marked reduction in the performance of the TUG and STS,
given their relationship with muscle strength (Bohannon et al.,
2010; Coelho-Junior et al., 2018). In addition to the concentric
contractions required to stand up, the TUG and STS tasks also
involve eccentric contractions of the knee extensors to control
lowering of the body to the seated position. Importantly, the
delayed impairments in TUG and STS performance followed the
same profile as the changes in concentric power. This is not
surprising given that Hortobagyi et al. (2003) observed a peak
knee extension velocity of 138◦ s−1 in older adults performing
a chair rise, emphasizing that fast velocity concentric actions are
functionally relevant to physical performance tasks. The delayed
impairment and recovery of power reported here is most likely
explained by damage induced excitation-contraction uncoupling
as a result of reduced release of calcium (Power et al., 2010) and

damage to contractile fibers resulting in a reduced shortening
velocity. These structural disruptions to excitation-contraction
coupling are likely responsible for the delayed impairment and
recovery of functional performance following eccentric exercise.
The reduced ability to perform the STS and TUG for several
days after eccentric exercise may lead to functional impairments
during daily activities. As already discussed, there is evidence
that older people perform many daily activities close to their
maximum capability (Bieryla et al., 2009; Hortobagyi et al., 2003).
From a practical perspective, many precarious, high risk tasks
(e.g., descending stairs or walking downhill), rely on eccentric
muscle contractions (LaStayo et al., 2014).Therefore, exercise
professionals, therapists and practitioners should be aware of
the negative effects of eccentric exercise-induced muscle damage
Further studies are required to develop interventions to minimize
exercise-induced muscle damage, especially in older people.

Fatigue and Recovery Profiles Following
Concentric Exercise
Our findings are consistent with previous studies that have
reported a transient increase in postural sway (anteroposterior
COP displacement and mean COP velocity) immediately
following level treadmill walking (Hill et al., 2015; Donath et al.,
2013, 2015; Foulis et al., 2017; Walsh et al., 2018). The worsening
of postural control immediately following treadmill walking,
followed by the rapid recovery of performance has been linked
to the accumulation of metabolic by-products (i.e., hydrogen
ions, inorganic phosphate or adenosine diphosphate; Paillard,
2012). Metabolic-fatigue can provoke a number of disturbances
at the peripheral level [e.g., decreased muscular excitability,
increased force fluctuation and deceleration of the afferent
conduction velocity (Enoka and Duchateau, 2008; Hunter et al.,
2004)], which can deteriorate the accuracy of the sensory
proprioceptive information and/or decreases muscular system
efficiency (Nardone et al., 1997).

The present findings complement previous work by
demonstrating a reduction in isometric force and concentric
power following 30 min of level waking (Foulis et al., 2017). Here,
we found deficits in isometric torque (–23%) and concentric
power (–20%) immediately following level walking, returning
to baseline after 15 min and 30 min recovery, respectively. Our
observed power and strength deficits were greater than those
reported by Foulis et al. (2017) (isometric strength; –8% and
concentric power [270◦·s−1]; –13%). Whilst we found a similar
reduction in muscle strength and power, contrary to the findings
of Foulis et al. (2017), we additionally observed a reduction in
the number of STS cycles in 60 s and slower TUG performance
following level walking, returning to baseline after 15 and 30 min,
respectively. During baseline, participants in the present study
completed the TUG in 6.2 ± 0.8 s, times at the faster end of
the normative spectrum (7.1–9.0 s) for community-dwelling
older adults aged 60–69 years (Bohannon, 2006). Therefore,
although unlikely to be of clinical relevance to increase the risk
of a fall, the 2.1 s increase in the TUG test indicates a that fatigue
negatively contributed to one or more of the tasks of standing
up, sitting down, walking or turning, indicating a general decline
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in mobility. Considering that older adults may use up to 80%
of their maximal leg strength to rise of a chair (Hortobagyi
et al., 2003), it is not surprising that we observed a reduction
in performance of the 60 s STS test following level walking.
However, we observed no change in the performance of the
five times STS test following fatigue, which aligns with previous
research (Foulis et al., 2017). Taken together, the relatively
short lasting effects (<30 min) of level walking on muscular,
postural and physical functions support the notion that there
is an acute post-exercise period in which older people are at an
increased risk of falls.

Practical Implications
There has been considerable attention directed toward the
potential applications of eccentric exercise in the last decade,
mainly due to the substantial improvements in muscle mass and
strength than can be achieved (Hody et al., 2019). Crucially,
because of the high force- low cost attributes, eccentric exercise
may be ideally suited to exercise-intolerant individuals, such
as older people (LaStayo et al., 2003). Indeed, it has been
demonstrated that eccentric exercise training elicits superior
adaptations in muscle strength/power, muscle mass and physical
performance (i.e., mobility) when compared with concentric
training in this population (LaStayo et al., 2003; Mueller et al.,
2009; Gault and Willems, 2013; Kay et al., 2020). However, given
the high muscle forces that can be achieved, it is not surprising
that this exercise can cause muscle damage. Our findings show
that muscle damage resulting from eccentric exercise can lead
to muscle weakness, postural instability and impaired physical
function which can persist for several days, endangering older
adult’s safety during daily activities and potentially increase the
risk of falls. Nevertheless, there is now emerging evidence that
muscle damage is not an inevitable consequence of eccentric
contractions. For example, low intensity eccentric exercise can
elicit protective effects on muscle damage markers induced by
high intensity eccentric exercise (Maeo et al., 2017).

Limitations and Future Directions
We acknowledge a number of study limitations. First, whilst we
chose our outcomes (i.e., mobility, balance and muscle weakness)
for their associations with fall risk, muscle fatigue and/or damage
may also affect fall risk by factors that were not ascertained in
this study, such as gait disturbances, impaired cognitive function,
and poorer recovery from an unexpected trip or slip. Secondly,
we failed to observe a full recovery of postural, muscular and
physical functions 48 h after eccentric exercise-induced muscle
damage. Therefore, the full timescale of the development of,
and recovery from, muscle damage on fall risk remains unclear.
Third, our sample was relatively healthy and homogenous, which
may restrict the generalizability of the study, although the
samples homogeneity may have limited the influence of potential
confounding factors. Frail or less active older people would
likely be more susceptible to eccentric exercise-induced muscle
damage, leading to a greater increase in fall risk in these groups.
Fourth, we did not objectively quantify muscle soreness [delayed
onset of muscle soreness (DOMS)] or knee pain. However,
we asked all participants if they experienced soreness in any

muscles of the lower body; eight out of nine participants in
the downhill walking group reported modest soreness in the
plantar flexors and quadriceps. Only 1 of out 10 participants
reported muscle soreness following level walking. Finally, we did
not measure eccentric muscle power. Prior pilot testing revealed
that older participants (not included in the study) experienced
significant difficulty with learning the technique of attempting to
“slow down” the dynamometer arm as it moved toward them.
Although we acknowledge familiarization may have allowed for
adequate learning, we were reluctant to familiarize participants
to eccentric exercise due to the risk of conferring protective
adaptations against potential further damage (McHugh, 2003). In
light of this final point, future research should aim to develop
interventions (i.e., non-damaging pre-conditioning exercises)
that can minimize the effects of eccentric exercise-induced
muscle damage on fall risk factors, especially in older people.
There is a reasonable theoretical basis for expectation that
performing eccentric pre-conditioning exercise will reduce the
eccentric induced consequences (i.e., the repeat bout effect) on
balance performance and risk of fall related accidents.

CONCLUSION

This is the first investigation to examine the short-term and
long-lasting effects of level and downhill walking on fall risk
factors among older people. We have demonstrated that exercise-
induced muscle damage elicits impairments in postural, muscular
and physical functions. Notably, these impairments did not
present until 24 h post-exercise, and remained for at least 48 h
post-exercise. The delayed impairment and incomplete recovery
of these fall risk factors following eccentrically biased exercise
suggest that this type of exercise may increase fall risk for
several days. Collectively, these findings have important practical
implications for exercise prescription.
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