
Regional and seasonal variations in 
household and personal exposures to air 
pollution in one urban and two rural Chinese 
communities: A pilot study to collect time-
resolved data using static and wearable 
devices 

Chan, K. H., Xia, X., Ho, K., Guo, Y., Kurmi, O., Du, H., Bennett, D. A., 
Bian, Z., Kan, H., McDonnell, J., Schmidt, D., Kerosi, R., Li, L., Hubert 
Lam, K. B. & Chen, Z. 

Published PDF deposited in Coventry University’s Repository 

Original citation:  
Chan, KH, Xia, X, Ho, K, Guo, Y, Kurmi, O, Du, H, Bennett, DA, Bian, Z, Kan, H, McDonnell, J, 
Schmidt, D, Kerosi, R, Li, L, Hubert Lam, KB & Chen, Z 2021, 'Regional and seasonal 
variations in household and personal exposures to air pollution in one urban and two rural 
Chinese communities: A pilot study to collect time-resolved data using static and wearable 
devices', Environment International, vol. 146, 106217.
https://dx.doi.org/10.1016/j.envint.2020.106217 

DOI    10.1016/j.envint.2020.106217 
ISSN   0160-4120 

Publisher: Elsevier 

This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/) 

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders. 

http://creativecommons.org/licenses/by/4.0/


Environment International 146 (2021) 106217

Available online 28 October 2020
0160-4120/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Regional and seasonal variations in household and personal exposures to 
air pollution in one urban and two rural Chinese communities: A pilot study 
to collect time-resolved data using static and wearable devices 

Ka Hung Chan a, Xi Xia b, Kin-fai Ho b, Yu Guo c, Om P Kurmi d, Huaidong Du a,e, 
Derrick A Bennett a, Zheng Bian c, Haidong Kan f, John McDonnell a, Dan Schmidt a, 
Rene Kerosi a, Liming Li g, Kin Bong Hubert Lam a,*, Zhengming Chen a,e, on behalf of the CKB- 
Air Collaborative Group 
a Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK 
b Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 
c Chinese Academy of Medical Sciences, China 
d Faculty Research Centre for Intelligent Healthcare, Faculty of Health and Life Sciences, Coventry University, UK 
e MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, UK 
f School of Public Health, Fudan University, China 
g Department of Epidemiology and Biostatistics, Peking University, China   

A R T I C L E  I N F O

Handling Editor: Dr. Xavier Querol  

Keywords: 
Exposure assessment 
Household air pollution 
Ambient air pollution 
Solid fuels 
Time-activity 

A B S T R A C T

Background: Previous studies of the health impact of ambient and household air pollution (AAP/HAP) have 
chiefly relied on self-reported and/or address-based exposure modelling data. We assessed the feasibility of 
collecting and integrating detailed personal exposure data in different settings and seasons. 
Methods/design: We recruited 477 participants (mean age 58 years, 72% women) from three (two rural [Gansu/ 
Henan] and one urban [Suzhou]) study areas in the China Kadoorie Biobank, based on their previously reported 
fuel use patterns. A time-resolved monitor (PATS+CO) was used to measure continuously for 120-hour the 
concentration of fine particulate matter (PM2.5) at personal and household (kitchen and living room) levels in 
warm (May-September 2017) and cool (November 2017–January 2018) seasons, along with questionnaires on 
participants’ characteristics (e.g. socio-demographic, and fuel use) and time-activity (48-hour). Parallel local 
ambient monitoring of particulate matter (PM1, PM2.5 and PM10) and gaseous pollutants (CO, ozone, nitrogen 
oxides) was conducted using regularly-calibrated devices. The air pollution exposure data were compared by 
study sites and seasons. 
Findings: Overall 76% reported cooking at least weekly (regular-cooks), and 48% (urban 1%, rural 65%) used 
solid fuels (wood/coal) for cooking. Winter heating was more common in rural sites than in urban site (74–91% 
vs 17% daily), and mainly involved solid fuels. Mixed use of clean and solid fuels was common for cooking in 
rural areas (38%) but not for heating (0%). Overall, the measured mean PM2.5 levels were 2–3 fold higher in the 
cool than warm season, and in rural (e.g. kitchen: Gansuwarm_season = 142.3 µg/m3; Gansucool_season = 508.1 µg/ 
m3; Henanwarm_season = 77.5 µg/m3; Henancool_season = 222.3 µg/m3) than urban sites (Suzhouwarm_season = 41.6 
µg/m3; Suzhoucool_season = 81.6 µg/m3). The levels recorded tended to be the highest in kitchens, followed by 
personal, living room and outdoor. Time-resolved data show prominent peaks consistently recorded in the 
kitchen at typical cooking times, and sustained elevated PM2.5 levels (> 100 µg/m3) were observed in rural areas 
where use of solid fuels for heating was common. 
Discussion: Personal air pollution exposure can be readily assessed using a low-cost time-resolved monitor in 
different settings, which, in combination with other personal and health outcome data, will enable reliable 
assessment of the long-term health effects of HAP/AAP exposures in general populations.  
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1. Background and rationale

The recent rapid urbanisation and industrialisation in many low- and
middle-income countries (LMICs) has resulted in a notable rise in 
ambient air pollution (AAP) and a considerable decline in the proportion 
of exposure to household air pollution (HAP) from solid fuel use, yet the 
number exposed to HAP remained substantial at over 3.6 billion in 2018. 
(Health Effect Institute, 2019) Therefore, many LMICs including China 
(with 450 million solid fuel users in 2017) face a “double burden” of 
HAP and AAP. (Health Effect Institute, 2019; Zhao et al., 2018) 
Although the epidemiological evidence on the health impact of air 
pollution remains to be improved, it has been estimated that AAP and 
HAP together account for over 7 million premature deaths annually 
worldwide. (Landrigan et al., 2017). 

Both short- and long-term exposure to AAP have been associated 
with excess risks of cardio-respiratory disease. (Landrigan et al., 2017) 
However, although LMICs now experience worse AAP, the vast majority 
of existing evidence on AAP were from high-income countries (HICs) 
with relatively low exposure levels. (Newell et al., 2017) This has 
resulted in substantial uncertainties about the exposure–response re
lationships between AAP and cardio-respiratory diseases, especially at 
high exposure levels. (Burnett et al., 2018) Moreover, most previous 
epidemiological studies relied on modelled proxy measures of AAP 
levels around individuals’ residential address (or communities), rarely 
with validation from actual personal or indoor exposure measurements 
even though people spend most of their time indoors. (Duan et al., 2015; 
Klepeis et al., 2001; Brauer et al., 2016) Previous epidemiological 
studies on HAP mostly focused on respiratory diseases. They were 
constrained by small sample sizes, use of cross-sectional study design, 
relying on self-reported primary cooking fuel or stove types for exposure 
classification, (Clark et al., 2013; Kurmi et al., 2010) or assessment of 
intermediate traits (e.g. blood pressure) rather than incident diseases. 
(Fatmi and Coggon, 2016; Arku et al., 2018; Baumgartner et al., 2018) 
Findings from the limited number of prospective cohort studies that 
examined cardiovascular mortality have been inconsistent, (Kim et al., 
2016; Mitter et al., 2016; Yu et al., 2018; Hystad et al., 2019) and few 
studies on respiratory diseases exist. (Chan et al., 2019) 

Given the “double burden” of exposures to both AAP and HAP in 
many populations, it is important to assess the health effects of both 
exposures simultaneously in the same study, using robust quantitative 
personal exposure data. We conducted a feasibility study to collect and 
integrate detailed, multi-dimensional AAP and HAP data to enhance 
personal air pollution exposure characterisation in a large contemporary 
cohort in China, the China Kadoorie Biobank (CKB). (Chen et al., 2011, 
2005) This report describes the design, major procedures and early 
findings on fuel use, time-activity and air pollution exposure patterns in 
the study. 

2. Materials and methods

2.1. Study population

The present study population was drawn from the participants in 
CKB and the details of the CKB design and participant characteristics 
have been described elsewhere. (Chen et al., 2011, 2005) Briefly, in 
2004–2008, ~512,000 adults aged 30–79 years were recruited from five 
rural and five urban areas across China (Figure A1). Upon recruitment, 
trained health workers obtained informed consent, undertook physical 
measurements (e.g. exhaled carbon monoxide [COex]) and adminis
tered an electronic questionnaire assessing a range of characteristics 
(socioeconomic, lifestyle, environment, medical history), including 
long-term fuel use behaviour as described previously. (Chan et al., 2017) 
Periodic resurveys are being undertaken in ~ 5% randomly selected 
subset of surviving participants every 4–5 years since baseline, to repeat 
the baseline assessments and collect additional data for enhancement. 
Participants are being followed-up indefinitely since baseline, for fatal 

and non-fatal events via linkages to established death and disease reg
istries and national health insurance databases. 

2.2. Sampling and participant recruitment 

The present study included two rural (Gansu and Henan) and one 
urban (Suzhou) of the ten CKB sites, purposively selected to capture a 
variety of fuel types (gas, electricity, wood and coal) being used for 
cooking or heating in typical rural and urban settings in China. The 
planned sample size was 450 participants (150 per site) selected using 
multi-stage cluster sampling. Considering the decline in solid fuel use in 
China in the past decade, in each of the sites, one or two of the largest 
villages (for rural sites) or street communities (for urban sites) with the 
highest prevalence of solid fuel use at baseline were selected in order to 
recruit sufficiently large numbers of solid fuel users. To be eligible for 
invitation, individuals had to be: (i) CKB participants aged < 70 years at 
the time of recruitment, (ii) living in their current address for at least one 
year before recruitment, and (iii) without major disability. Individuals 
who were older or had major disability were excluded because their 
exposure profiles are likely to be distinct from an average CKB 
participant. 

In order to explore the seasonal variation in fuel use behaviours and 
related exposures, the fieldwork covered warm (May – September 2017) 
and cool (November 2017 – January 2018; usual local monthly average 
temperature < 10 ◦C) months. Each data collection window consisted of 
(i) air pollution exposure assessment; (ii) time-activity questionnaire;
and (iii) measurement of biomarkers (exhaled carbon monoxide, heart
rate and blood oxygen saturation). A household questionnaire was
included in the cool season to collect self-reported information on so
cioeconomic, lifestyle and HAP-related exposure.

Air pollution assessment was done at personal, household and 
ambient levels. All personal and household measurements were con
ducted over five consecutive days (120 h) covering both weekdays and 
weekends, whereas ambient measurements were done throughout the 
fieldwork period in each study site (4–5 weeks), repeatedly for two 
seasons. Fig. 1 shows the weekly workflow of the fieldwork. 

In each study site, about 40 participants were recruited each week, 
and the fieldwork ended within five weeks. Overall, a total of 638 par
ticipants were invited and 451 (70.7%) participated and provided 
informed consent in the warm season and were invited for a repeated 
assessment in the cool season. Thirty-seven warm season participants 
were unavailable for the cool season campaign and were replaced by 
other eligible CKB participants from the same community, so 488 in
dividuals were surveyed at least in one season. The original baseline 
(2004–2008) characteristics of the participants included in the two 
seasons did not differ significantly (Table B1). The number of partici
pants completing the time-activity questionnaires in the two seasons are 
presented in Table B2. Ethical approvals were obtained from the Oxford 
University Tropical Research Ethics Committee, Oxford, UK and the 
institutional review board of Fuwai Hospital, Chinese Academy of 
Medical Sciences, Beijing, China. 

2.3. Data collection 

2.3.1. Personal and static household monitoring 
We used PATS+CO (Particle and Temperature Sensor plus Carbon 

Monoxide Sensor; Berkeley Air Monitoring Group, CA, USA), a low cost, 
light-weighted (110 g) real-time sensor of PM2.5 (μg/m3) and CO (ppm) 
concentration, temperature (◦C), and relative humidity (RH, %). (Pil
larisetti et al., 2017) The PATS+CO is tailored for high intensity HAP 
measurement and has separate light-scattering (PM2.5 detection range: 
10–30,000 µg/m3) and metal oxide (CO detection range: 0–500 ppm) 
sensors. For personal monitoring the PATS+CO (and a small external 
battery weighing 140 g) was attached to a cross body harness or waist 
belt. The participants were asked to wear the sensor for five consecutive 
days (typically Thursday–Tuesday) except during bathing and sleeping, 
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when the device should be placed within 1 m of the participant. In each 
household, another two PATS+CO sensors (also with external batteries) 
were placed in the kitchen and living room, respectively, at a height of 
1.5 m and ≥ 1 m away from any doors or other openings in the walls. The 
PATS+CO in the kitchen was located ≤ 1 m from the edge of the most 
frequently used cookstove. At the end of the monitoring period, all 
PATS+CO sensors were recalibrated in the zeroing box before data being 
downloaded onto the computer. 

2.3.2. Ambient monitoring and residential geocoding 
To quantify the background AAP level in local community two Nano 

Air Stations (NAS-AF100; Sapiens Environmental Technology, Hong 
Kong, China) were placed in a central location of the community, at least 
two stories above ground, where no obvious sources of pollution were 
found, for at least the whole duration of which HAP sampling was 
implemented in that community. NAS-AF100 measured particulate 
(PM1, PM2.5, PM10) and gaseous pollutants (CO, O3, NO and NO2), 
temperature and RH at a logging interval of 1-minute. The data were 
wirelessly transmitted to a secured cloud-based server using GSM 
network. 

2.3.3. Quality control and device calibration 
PATS+CO has been validated against gravimetric samples in both 

laboratory and real-world settings internationally, with R2 ranging from 
0.90 to 0.99 (Pillarisetti et al., 2017). All our devices were factory- 
calibrated against wood smoke by the manufacturer. Before the 
commencement of fieldwork, they were calibrated along with filter- 
based samplers for PM-based measurement, including a personal air 
sampling pump (SKC Ltd., Dorset, UK) and a MiniVol portable air 
sampler (Airmetrics, OR, USA) (see Appendix C. Supplementary 
Methods for a brief description) and 60 ppm CO gas following a stand
ardised protocol. We have also conducted side-by-side inter-comparison 
tests in a laboratory environment following standardised experimental 
procedures (Pillarisetti et al., 2017), and confirmed data comparability 
across PATS+CO devices (Pearson correlation coefficients: 0.85 to 
0.99). Prior to any data collection (including laboratory experiment and 
fieldwork) all devices were allowed to warm-up for 24–48 h to reach a 
steady state. For deployment, the PATS+COs were initialised and cali
brated in a “zeroing box” (filled with HEPA-filtered air) for 10 min 
before being distributed. The time-resolved PM2.5 concentration data 
are derived from particle counts from the photometer response with 
internal calibration for real-time temperature and RH variations. 

All NAS-AF100 were laboratory-calibrated before deployment. 

Gravimetric sampling for device calibration was done following estab
lished procedures described previously (see Appendix C. Supplementary 
Methods for further details) (Tong et al., 2018; Cao et al., 2005). The 
monitors were returned to the manufacturer for re-calibration at the end 
of each data collection campaign, following procedures described else
where (Wei et al., 2018, 2020). The longitude and latitude of the par
ticipants’ residences were obtained using a commercial GPS locator 
(ICEGPS, Shenzhen, China) and documented during the first household 
visit when the sensors were deployed. 

2.4. Questionnaires 

The household questionnaire collected data on socioeconomic, life
style and HAP-related factors, including household cooking frequency 
and all fuel types in use for cooking and heating in the household. For 
each reported fuel type, the frequency (for cooking: “most meals” versus 
“sometimes”) or duration (for heating: hours of use for heating on a 
typical day) of use and number of years of use throughout their life were 
recorded. 

All participants were asked to recall their activities during the past 
24 h twice, first on the Friday (recall for Thursday) and second on the 
Monday (recall for Sunday) of the 5-day monitoring period (Fig. 1). The 
time-activity questionnaire was designed to capture the type, location 
and length of time spent on each distinctive activity and whether the 
participants smoked or were exposed to environmental tobacco smoke 
(ETS) during each activity reported. The visit schedule was designed to 
capture the potential variability of time spent on activities on weekdays 
and weekends. 

2.5. Data analysis 

Percentages and means of selected background and HAP-related 
characteristics were compared across the three study sites. Regular 
cooking was defined as cooking for at least a few times a week as in our 
previous studies (Yu et al., 2018; Chan et al., 2019a, 2019b). A com
posite variable of cooking fuel combination was derived based on the 
types of fuels used for most meals (or all reported fuel types if none was 
noted as used for most meals). Similarly, a composite variable of heating 
fuel combination was derived from the fuel type used for the longest 
duration (hour) on a typical day that required heating. The two com
posite variables were restricted to individuals whose household cooked 
or used heating regularly, respectively. 

The time-activity questionnaire provided data on frequency and 

Fig. 1. Fieldwork workflow each week. SpO2: blood oxygen saturation; COex: exhaled carbon monoxide. See supplementary methods for a brief description on the 
procedures taken to measure the biomarkers of interest. 
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duration of cooking, duration of heating, frequency of smoking and ETS 
exposure, time spent on different activities and locations. These were 
compared across the weekday and weekend visits, and between the two 
seasons. The total duration and proportion of recorded duration (total 
and waking time) during which the participants were wearing the per
sonal PATS+CO were also computed to assess the self-reported 
compliance of wearing the monitor. 

For the device data, initially, the PATS+CO data from 10% randomly 
selected participants were inspected graphically on time-series plots to 
understand the diversity and complexity of the data. Then, a data pro
cessing protocol was developed to remove potentially erroneous or un
reliable data before analysis. This report focuses on the PM2.5 data 
recorded in PATS+CO. First, we removed data recorded during the 
initial and final 60 min of the monitoring period (when the household 
visit for device set up and collection occurred), as these data do not 
reflect the participants’ usual exposure patterns. Then, datasets with <
24 h’ worth of data (likely due to battery failure) and those with 
persistently high or low PM2.5 levels for > 50% of the monitoring period 
were removed to reduce potential bias. A moving-median smoothing 
method was applied to remove sporadic extreme spikes that could 
happen due to physical shock or direct sunlight interference to the 
nephelometer. Similar procedures were applied to ambient PM2.5 data 
from NAS-AF100. For this report, the time series data were compressed 
(averaged) to produce 24-hour time-series plots by device location 
(personal, kitchen, living room and outdoor) across seasons and study 
sites, and the corresponding overall means and standard deviations 
(SDs) were compared. 

3. Results 

3.1. Participant characteristics 

Of the 449 participants who completed the household questionnaire 
in the cool season, the mean [SD] age was 58.0 [6.8] years and 72% 
were females. Participants from urban Suzhou were slightly older, less 
likely to be female, had substantially higher household income, and 
none of them were agricultural workers while the majority of those from 
rural Gansu and Henan were either agricultural workers or home- 
makers (Table 1). Current-regular smoking prevalence was low 
(~15%, 64/65 were men), but exposure to ETS was common (42% for 
6–7 days/ week). 

3.2. Cooking, heating and ventilation 

The majority (76%) of the participants cooked weekly or daily (mean 
cooking time = 2.7 (SD 0.7) hours/ day) and the rest cooked a few times 
a month or less, but about half of them lived in households where 
cooking was regularly practised (Table 2). Of participants who lived in 
regular-cooking households, >60% of those from Suzhou reported using 
only one fuel type, whereas most households from Gansu (90%) and 
Henan (95%) used two to three types of fuels. Eighty-nine participants 
(23%) reported that fuels were used “sometimes” only (i.e. no fuel used 
for “most meals”), with the majority used clean fuels only (n = 79, 
mostly from Suzhou). Among the remaining participants, the most 
common combination was clean fuels only (51%), followed by clean 
fuels and wood (21%, all in Gansu) and clean fuels and coal (15%, 
mostly in Henan). Most participants from Suzhou had a ventilated 
kitchen (98%), but it was less common in Gansu (70%) and Henan 
(45%). The majority of those from Gansu (93%) and Henan (69%) al
ways opened their windows when cooking, but this was less common in 
Suzhou (61%). About 12% of all participants (mostly from Gansu) re
ported that their kitchen always became smoky while cooking. 

Winter heating was prevalent in Gansu (91% daily) and Henan (74% 
daily) but not in Suzhou (17% daily) (Table 2), mainly because it was 
not considered necessary (96%). Most of the participants from Gansu 
(97%) and Henan (92%) who used heating in winter reported whole-day 

heating, whereas 81% of those from Suzhou heated their home for up to 
three hours only. Multiple fuel use for heating was uncommon, with 
78% reported using only one fuel type. Among heating fuel users, all 
those from Suzhou used clean fuels, those from Henan primarily used 
coal (86%) and those from Gansu used either coal (46%), wood (35%) or 
a mix of solid fuels (17%). Most heat-stoves used in Gansu and Henan 
were ventilated (>90%), unlike in Suzhou where 79% had no ventila
tion. Smoky home while heating was only common in Gansu (82%) but 
not in other areas. 

3.3. Time-activity patterns 

Overall, participants tended to spend the majority of their time at 
home (median = 20.2–21.5 h/ recall day) and indoors (i.e. home, indoor 
workplace or public spaces; median = 21.5–23.0 h/ recall day), espe
cially in the cool season (Tables 3 and B3). The cooking frequency and 
duration in the weekday and weekend assessments were largely similar 
within each season, but cooking was practiced more frequently (73% 
versus 56% ≥ twice/ day) and for longer total duration (median 2.5 
[IQR 1.7–3.0] versus 1.7 [1.0–2.5] hours) in the cool than in the warm 
season. 

While ~15% of the participants (men 50%, women 0.3%) reported 
current-regular smoking in the household questionnaire (Table 1), 
~10% (men 47%, women 0%) reported smoking during the time- 
activity recall period in both seasons (Table 3). About 15% (men 8%, 
women 18%) of participants in the warm and cool season were exposed 

Table 1 
Background characteristics of study participants by study area.  

Characteristics Suzhou 
(Urban) 

Gansu 
(Rural) 

Henan 
(Rural) 

Overall 

Age - years, mean (SD) 59.8 
(7.0) 

57.4 (7.3) 56.8 (5.6) 58.0 
(6.8) 

Female 103 
(69.1) 

110 (73.3) 112 (74.7) 325 
(72.4) 

Annual household income – 
Yuan, n (%)     
<35,000 2 (1.3) 63 (42.0) 100 (66.7) 165 

(36.8) 
35,000–74,999 21 (14.1) 80 (53.3) 42 (28.0) 143 

(31.9) 
≥75,000 126 

(84.5) 
7 (4.7) 8 (5.3) 141 

(31.4) 
Occupation, n (%)     

Agricultural worker 0 (0.0) 67 (44.7) 101 (67.3) 168 
(37.4) 

Factory worker 16 (10.7) 0 (0.0) 6 (4.0) 22 (4.9) 
Non-manual labour 6 (4.0) 1 (0.7) 5 (3.3) 12 (2.7) 
Retired 99 (66.4) 2 (1.3) 0 (0.0) 101 

(22.5) 
Home-maker 15 (10.1) 79 (52.7) 34 (22.7) 128 

(28.5) 
Self/un-employed or other 13 (8.7) 1 (0.7) 4 (2.7) 18 (4.0) 

Type of dwelling, n (%)     
Apartment 16 (10.7) 0 (0.0) 0 (0.0) 16 (3.6) 
House 133 

(89.3) 
150 
(100.0) 

150 
(100.0) 

433 
(96.4) 

Smoking, n (%)     
Do not smoke now 122 

(81.9) 
122 (81.3) 129 (86.0) 373 

(83.1) 
Occasional 4 (2.7) 2 (1.3) 5 (3.3) 11 (2.5) 
Current-regular 23 (15.4) 26 (17.4) 16 (10.7) 65 

(14.5) 
Frequency of ETS* 

exposure, n (%)     
Never 75 (51.0) 30 (20.4) 45 (30.6) 150 

(34.0) 
<6 day/ week 12 (8.1) 49 (33.3) 46 (31.3) 107 

(24.3) 
6–7 day/ week 60 (40.8) 68 (46.3) 56 (38.1) 184 

(41.7) 

*ETS: environmental tobacco smoke. 
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to ETS. The reported duration of carrying the personal PATS+CO were 
largely similar in both seasons (median = 12.5 h; up to 83% awake 
time), but weekend compliance was consistently higher than weekday. 

3.4. Device data 

After data cleaning, 419 (92.7%) and 365 (81.1%) participants had 
satisfactory PM2.5 data from all three PATS+COs in warm and cool 
seasons, respectively (Fig. 2). A smaller number of them (warm season: 
393 [86.9%]; cool season: 266 [59.1%]) also had concurrent data from 
AAP monitors, largely due to delayed device deployment (particularly in 
the cool season), but also power outage and memory loss. 

In both seasons, the PM2.5 levels were generally the highest in Gansu, 
followed by Henan and Suzhou (Fig. 3 and Table 4). The exposure was 
substantially (2–3 times) higher in the cool than warm season for all 
device locations across all study sites. The temporal variation at the four 
locations are broadly in line with each other, with prominent peaks 
commonly seen in the kitchen in the early morning and around noon and 
evening times, when people typically cook (as consistently reported in 
the time-activity questionnaire). Notably, the exposure in the cool sea
son tend to remain at a high level (>100 µg/m3) even out of the typical 
cooking times. 

PM2.5 levels recorded in the kitchen tend to be markedly higher than 
other device locations in the rural sites but less so in Suzhou, where 
similar levels were observed across all locations in the warm season 
(~40 µg/m3), and outdoor levels were considerably higher than the 
indoor locations in the cool season (mean = 88.5 µg/m3). Interestingly, 
in Henan, outdoor PM2.5 levels were the lowest across the four locations 
in the warm season but came just below the kitchen in the cool season; 
whereas the corresponding outdoor levels in Gansu were consistently 
the lowest. 

When stratified by sex, the mean personal PM2.5 levels recorded in 
women appeared broadly similar to those of men in Gansu (mean = 61.7 
versus 57.0 µg/m3) and Henan (mean = 80.3 versus 73.3 µg/m3) but 
considerably lower in Suzhou in the warm season (mean = 36.6 versus 
50.9 µg/m3); whereas the levels in women in winter appeared either 
higher (meanSuzhou = 91.9 versus 45.1 µg/m3; meanGansu = 171.3 versus 
129.7 µg/m3) or similar (meanHenan = 114.9 versus 114.4 µg/m3) 
(Table B.4). The time-resolved exposure patterns were broadly similar in 
shape by sex, but women tended to have longer elevated exposure pe
riods especially during typical cooking times, whereas men tended to 
have more irregular, short-duration spikes (Figures A.2 and A.3). 

4. Discussion 

We reported the design, procedures and initial findings of a pilot 

Table 2 
Cooking- and heating-related characteristics of study participants by study area.  

Characteristics Suzhou 
(Urban) 

Gansu 
(Rural) 

Henan 
(Rural) 

Overall 

Cooking exposure, n (%)     
Personal regular 108 (72.5) 117 

(78.0) 
117 
(78.0) 

342 
(76.2) 

Household regular, 
personal non-regular 

23 (15.4) 21 (14.0) 9 (6.0) 53 
(11.8) 

Non-regular 18 (12.1) 12 (8.0) 24 (16.0) 54 
(12.0) 

Cooking duration - hours, 
mean (SD)* 

2.7 (0.7) 2.8 (0.8) 2.5 (0.7) 2.7 
(0.7) 

Number of cooking fuel 
reported, median (IQR)* 

1 (1–2) 3 (2–3) 2 (2–3) 2 (2–3) 

Cooking fuel combination for most 
meals, n (%)*    
All reported fuel(s) was 
used sometimes 

66 (50.4) 8 (5.8) 15 (11.9) 89 
(22.5) 

Clean fuels only 64 (48.9) 48 (34.8) 43 (34.1) 155 
(39.2) 

Clean fuels and coal 0 (0) 11 (8.0) 35 (27.8) 46 
(11.7) 

Clean fuels and mixed solid 
fuels 

0 (0) 5 (3.6) 0 (0) 5 (1.3) 

Clean fuels and wood 0 (0) 64 (46.4) 0 (0) 64 
(16.2) 

Coal only 0 (0) 1 (0.7) 33 (26.2) 34 (8.6) 
Mixed solid fuels 0 (0) 1 (0.7) 0 (0) 1 (0.3) 
Wood only 1 (0.8) 0 (0) 0 (0) 1 (0.3) 

Cooking fuel in those reported all fuels were used 
sometimes, n (%)*,†

Clean fuels 66 (100) 6 (75.0) 7 (46.7) 79 
(88.8) 

Clean fuels and coal 0 (0) 0 (0) 8 (53.3) 8 (9.0) 
Clean fuels and wood 0 (0) 2 (25.0) 0 (0) 2 (2.3) 

Ventilated kitchen, n (%)* 126 (98.4) 96 (70.1) 58 (45.0) 280 
(71.1) 

Windows opened when cooking, n (%)*    
Always 78 (60.9) 128 

(93.4) 
89 (69.0) 295 

(74.9) 
Sometimes 17 (13.3) 8 (5.8) 22 (17.1) 47 

(11.9) 
Rarely/ never/ no window 
in the kitchen 

33 (25.8) 1 (0.7) 18 (14.0) 52 
(13.2) 

Smoky kitchen when cooking, n (%)*    
Always 1 (0.8) 38 (27.7) 7 (5.4) 46 

(11.7) 
Sometimes 6 (4.7) 68 (49.6) 31 (24.0) 105 

(26.7) 
Rarely/ never 121 (94.5) 31 (22.6) 91 (70.5) 243 

(61.7) 
Heating frequency, n (%)     

Daily or almost every day 25 (16.8) 136 
(90.7) 

111 
(74.0) 

272 
(60.6) 

A few times a week 10 (6.7) 0 (0.0) 3 (2.0) 13 (2.9) 
A few times a month 8 (5.4) 0 (0.0) 3 (2.0) 11 (2.5) 
No heating 106 (71.1) 14 (9.3) 33 (22.0) 153 

(34.1) 
Reason of no heating, n (%)     

No such need 106 
(100.0) 

12 (85.7) 29 (87.9) 147 
(96.1) 

Cannot afford 0 (0.0) 1 (7.1) 0 (0.0) 1 (0.7) 
Inconvenience 0 (0.0) 1 (7.1) 4 (12.1) 5 (3.3) 

Typical heating duration - 
hours, median (IQR)‡

3 (2–3) 24 
(24–24) 

24 
(24–24)  

Presence of central heating 
system, n (%)‡

1 (2.3) 6 (4.4) 5 (4.3) 12 (4.1) 

Number of heating fuel 
reported, median (IQR)‡

1 (1–1) 1 (1–2) 1 (1–1) 1 (1–1) 

Heating fuel combination (used for 
longest hour), n (%)‡

Clean fuels only 43 (100) 3 (2.2) 6 (5.1) 52 
(17.6) 

Coal only 0 (0) 62 (45.6) 100 
(85.5) 

162 
(54.7) 

Charcoal only 0 (0) 0 (0) 9 (7.7) 9 (3.0)  

Table 2 (continued ) 

Characteristics Suzhou 
(Urban) 

Gansu 
(Rural) 

Henan 
(Rural) 

Overall 

Wood only 0 (0) 48 (35.3) 0 (0) 48 
(16.2) 

Mixed solid fuels 0 (0) 23 (16.9) 0 (0) 23 (7.8) 
Others 0 (0) 0 (0) 2 (1.7) 2 (0.7) 

Ventilated heat-stove, n 
(%)‡

9 (20.9) 133 
(97.8) 

107 
(91.5) 

237 
(84.1) 

Smoky home while heating, n (%)‡

Always 0 (0.0) 1 (0.7) 0 (0.0) 1 (0.3) 
Sometimes 0 (0.0) 111 

(81.6) 
2 (1.7) 113 

(38.2) 
Rarely/ never 43 (100.0) 24 (17.7) 115 

(98.3) 
182 
(61.5)  

* Percentage counted only among participants who live in households where 
regular cooking occurred. 

† Reported as fuel used for cooking sometimes. 
‡ Percentage counted only among those reported using heating for at least a 

few times a month. 
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study involving extensive air pollution measurements and questionnaire 
assessments in 488 individuals recruited from two rural and one urban 
site of China. Although it is primarily a feasibility study, the data 
collected offer valuable insight into a range of factors associated with air 
pollution exposure, which would in turn inform the modelling strategies 
for personal exposure and the design of assessment tools for future 

cohort studies of greater scale. 

4.1. Fuel use and ventilation 

Most previous epidemiological studies on HAP recorded only pri
mary fuel types, with many classifying non-cooking individuals as 

Table 3 
Selected time-activity characteristics by weekday and weekend household visit in warm and cool season.   

Warm season   Cool season   

Characteristics assessed in the day recalled Weekday (n ¼
450) 

Weekend (n ¼
448) 

Overall (n ¼
898) 

Weekday (n ¼
449) 

Weekend (n ¼
448) 

Overall (n ¼
897) 

Hours spent at different locations or activities, median (IQR)*      
At home 20.3 (16.2–23.3) 20.2 (16.5–23.6) 20.3 (16.5–23.5) 21.5 (18.3–24.0) 21.0 (18.3–24.0) 21.3 (18.3–24.0) 
Indoors 21.5 (18.0–23.8) 21.8 (19.0–24.0) 21.7 (18.5–24.0) 23.0 (20.5–24.0) 23.0 (20.0–24.0) 23.0 (20.0–24.0) 
Roadside 2.0 (1.0–4.0) 2.0 (1.0–4.0) 2.0 (1.0–4.0) 2.0 (1.0–3.7) 1.8 (1.0–3.0) 2.0 (1.0–3.3) 
Cooking 1.6 (1.0–2.3) 1.8 (1.0–2.5) 1.7 (1.0–2.5) 2.5 (1.5–3.0) 2.5 (1.8–3.0) 2.5 (1.7–3.0) 
Heating NA 24.2 (24.0–24.5) 24.2 (24.0–24.5) 24.0 (24.0–24.5) 24.0 (24.0–24.5) 24.0 (24.0–24.5) 

Cooking frequency, n (%)       
0 121 (26.9) 123 (27.5) 244 (27.2) 89 (19.8) 83 (18.5) 172 (19.2) 
Once 82 (18.2) 59 (13.2) 141 (15.7) 33 (7.4) 36 (8.0) 69 (7.7) 
2 times 139 (30.9) 152 (33.9) 291 (32.4) 117 (26.1) 111 (24.8) 228 (25.4) 
≥ 3 times 108 (24.0) 114 (25.5) 222 (24.7) 210 (46.8) 218 (48.7) 428 (47.7) 

Smoking frequency, n (%)†

0 406 (90.2) 402 (89.7) 808 (90.0) 402 (89.5) 403 (90.0) 805 (89.7) 
1–5 times 23 (5.1) 28 (6.3) 51 (5.7) 31 (6.9) 28 (6.3) 59 (6.6) 
≥ 6 times 21 (4.7) 18 (4.0) 39 (4.3) 16 (3.6) 17 (3.8) 33 (3.7) 

ETS exposure frequency, n (%)‡

0 383 (85.1) 371 (82.8) 754 (84.0) 380 (84.6) 388 (86.6) 768 (85.6) 
1–4 times 43 (9.6) 54 (12.1) 97 (10.8) 37 (8.2) 39 (8.7) 76 (8.5) 
≥ 5 times 24 (5.3) 23 (5.1) 47 (5.2) 32 (7.1) 21 (4.7) 53 (5.9) 

PATSþCO compliance*       
Duration wearing PATSþCO - hours, 

median (IQR) 
12.0 (9.3–14.2) 13.0 (10.2–15.0) 12.5 (9.5–14.7) 12.0 (9.9–14.0) 13.2 (11.0–15.0) 12.5 (10.2–14.5) 

% of awake time wearing PATSþCO, 
median (IQR) 

79.0 (60.4–93.5) 86.7 (49.3–100) 81.8 (56.7–100) 80.8 (61.8–93.3) 86.4 (57.1–100) 83.0 (60.0–100)  

* Median (inter-quartile range [IQR]) only among those who reported activities in relevant locations or practised the activity during the designated recall period. 
† Median frequency in those who have smoked at least once during the day of assessment = 5 times. 
‡ ETS: environmental tobacco smoke; median frequency in those who was exposed to ETS during the day of assessment = 4 times. 

Fig. 2. Flowchart of PATS+CO data exclusion by season and device location. *Cut-off designed to ensure that there was at least 24 h’ worth of data after excluding 
the first and last hour from the time series (to remove data likely to be influenced by the initial device deployment and final device collection work. 
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“unexposed” (Kurmi et al., 2010; Fatmi and Coggon, 2016; Kim et al., 
2016; Mitter et al., 2016; Sana et al., 2018; Jary et al., 2016). In CKB-Air, 
about half of the non-cooking participants were “exposed” to regular 
cooking in the household, highlighting the potential bias of considering 
them as the unexposed group (Sidhu et al., 2017; Li et al., 2016). We also 
revealed a fuel-stacking phenomenon alongside increased clean fuel use 
(compared with previous CKB data (Chan et al., 2017) in line with a few 
recent Chinese studies (Ni et al., 2016; Tao et al., 2018). Fuel-stacking in 
CKB-Air was exclusive to rural participants, who were still undergoing 
fuel transition. As secondary use of solid fuels could result in signifi
cantly elevated HAP exposure, our findings underline the need of 
routinely collecting comprehensive fuel use data in future HAP studies. 
Notably, fuel-stacking was much less common for heating compared to 
cooking and the prevalence of solid fuel use for heating remained high 

among rural participants. This corroborates with our previous obser
vations that heating fuel modernised more slowly than cooking fuels 
(Chan et al., 2017), and it could be an under-recognised source of HAP in 
China and other LMICs (Chen et al., 2018). 

Participants from two rural areas used heating in winter much more 
frequently and for longer duration than those from the urban area. The 
main reason for not having heating was no perceived need, which is 
reasonable to expect in Suzhou due to the relatively short and mild 
winters (only 10/156 months with average ambient temperature ≤ 5 ◦C 
during 2005–2017 (China Meteorological Data Service Center. China 
Meteorological Data Service Center, 2018). However, it is surprising to 
see that 10–20% of participants from Gansu (45/156 months ≤ 5 ◦C 
during 2005–2017) and Henan (31/156 months) felt heating was un
necessary. Perceived need of heating has rarely been assessed in 

Fig. 3. Averaged 24-hour variation of PM2.5 levels recorded in the personal, kitchen, living room, and ambient monitors across the three study sites in the warm and 
cool season. Time frame displayed: from 00:00 to 24:00 on the x-axes. 

Table 4 
Means and standard deviation (SD) of fine particulate matter (PM2.5) concentration (µg/m3) by season and study area.   

Personal Kitchen Living room Outdoor  

Mean SD Mean SD Mean SD Mean SD 

Warm season         
Suzhou (urban)  40.7  81.1  41.6  103.2  37.9  65.4  40.9  21.3 
Gansu (rural)  60.4  269.9  142.3  1415.1  43.4  130.3  17.9  9.6 
Henan (rural)  78.6  145.9  77.5  206.6  57.4  69.7  51.5  23.0 

Cool season         
Suzhou (urban)  78.2  293.1  81.6  270.2  61.9  89.4  88.5  51.0 
Gansu (rural)  160.5  1514.9  508.1  4195.6  118.3  359.0  44.3  32.2 
Henan (rural)  114.8  329.5  222.3  868.1  109.1  165.0  166.4  105.1  
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epidemiological studies, but our observations lead to a key question as to 
whether the perceived need of heating matches with the actual need in 
coping with cold temperatures and the associated health risks (Gas
parrini et al., 2015; Lewington et al., 2012; Saeki et al., 2014). 

The site-specific prevalence of ventilated kitchen in CKB-Air was 
comparable to those observed in the second resurvey (2013–2014) of 
CKB, coinciding with the previously described relatively stagnant trend 
of ventilation adoption (Chan et al., 2017). Interestingly, self-reported 
smoky kitchen was particularly common in Gansu where the kitchen 
PM2.5 levels were the highest, even though most people kept their 
kitchen windows open (which was supposed to improve ventilation). 
This highlights the complexity of the practice and effectiveness of 
mitigation behaviours against air pollution (HAP in this case), which 
have been commonly overlooked in previous epidemiological studies. 

4.2. Time-activity patterns 

Conventional AAP exposure classification methods rely chiefly on 
residential addresses (Brauer et al., 2016), and one prevailing criticism 
has been the inability to account for intra- and inter-personal variability 
of time-activity patterns (e.g. exposure in locations distant from in
dividuals’ residential addresses) (Han and Naeher, 2006; Qi et al., 
2018). In this sample of older adults, participants spent up to 90% of 
their time indoors. This is broadly consistent with previous national data 
from the United States (Klepeis et al., 2001) and China (Duan et al., 
2015), but our participants spent much greater proportion of their in
door time at home, possibly because of the relatively old age and high 
proportion of home-makers (29%) and retirees (23%). The high pro
portion of time spent at home means that the conventional residence- 
based AAP exposure assessment may be subject to less misclassifica
tion in older adults in settings where AAP is the primary source of 
personal air pollution exposure (e.g. urban cities). However, in solid 
fuel-reliant communities, exposure to HAP must be taken into account, 
ideally with direct measurements or adjustment factors based on fuel use 
patterns – but this has been rarely accounted for in previous AAP studies. 

There has been some evidence suggesting solid fuel use for heating to 
be a primary contributor to the significantly higher HAP levels in cool 
season, (Chen et al., 2018, 2016) but little is known about the extent to 
which the seasonal variability of time-activity patterns, particularly 
changes in cooking behaviour, may also contribute to such differences. 
The present study showed that participants tended to cook more 
frequently and for longer duration in cool (mean 2.5 h) than in warm 
(1.7 h) season. It is reassuring that the average cooking duration 
ascertained via the time-activity questionnaire in the cool season was 
largely similar to what was reported for the household questionnaire. 

4.3. Direct measurement data 

Several recent studies focussing on HAP in LMICs have been under
taken to directly measure personal exposure to PM2.5 within a cohort 
study to develop personal exposure models for epidemiological analysis. 
(Arku et al., 2018; Tonne et al., 2017; Balakrishnan et al., 2015) Most of 
these studies involved primarily microenvironment monitoring supple
mented by personal exposure measurements in a smaller subset, using 
time-integrated monitors operating over relatively short assessment 
periods (24–48 h). Comparatively, our study adopted a more intensive 
and extensive measurement protocol, collecting personal, household 
(living room and kitchen) and ambient exposure data for most partici
pants for ~ 120 consecutive hours (covering weekdays and weekends) 
for two seasons. This provides detailed data for in-depth investigation on 
the intra- and inter-personal variability of air pollution exposure, as well 
as the relationship between personal, household and ambient levels of 
PM2.5. Although the main device (PATS+CO) we used has no gravi
metric sampling functionality, it has been carefully validated and used 
extensively in field-based measurement studies, and it offers time- 
resolved data that enables fine-mapping of exposure levels to different 

activities (e.g. cooking). 
The gradient of average PM2.5 exposure across the study sites is 

consistent with the regional fuel use patterns, with substantially higher 
levels recorded in the two rural sites, where solid fuels were more 
commonly used for cooking and heating, than in Suzhou, where virtu
ally all participants used clean fuels. Between the two rural sites, Gansu 
had significantly higher PM2.5 exposure, particularly in the kitchen 
(Gansu versus Henan: meanwarm_season = 142.3 versus 77.5 µg/m3; 
meancool_season = 508.1 versus 222.3 µg/m3), consistent with the fact 
that more participants from Gansu used wood, which is known to be 
associated with higher PM2.5 emission than coal (commonly used in 
Henan). (Clark et al., 2013) Given the vast heterogeneity of fuel use 
characteristics and challenges in conducting large-scale exposure mea
surement studies, there exist no reliable global or national (for China) 
estimates of PM2.5 exposure related to any specific fuel types. (Clark 
et al., 2013) Nonetheless, a few previous studies conducted in rural 
China reported broadly similar indoor PM2.5 levels in communities 
where wood (meansummer 110–150 µg/m3; meanwinter = 240–500 µg/ 
m3) (Carter et al., 2016; Snider et al., 2018) or coal (meansummer/winter =

100–200 µg/m3) (Hu et al., 2014) use for cooking and/or heating were 
common. In urban Suzhou, the average PM2.5 exposure across the four 
device locations were largely similar in the warm season (~40 µg/m3), 
but that in the outdoor environment was distinctly higher in the cool 
season (~90 µg/m3), suggesting that ambient sources play a more 
important role during winter months in this area. This is again consistent 
with recent estimates in Chinese cities, where ambient PM2.5 levels have 
been much higher in winter (~90–120 µg/m3) than in summer (~30–50 
µg/m3) (Shen et al., 2016; Huang et al., 2020; Wang et al., 2020) 
possibly due to regional air pollution associated with increased demand 
for heating and temperature inversion effect. Interestingly, despite 
exclusive clean fuel usage in Suzhou, on average two peaks of PM2.5 
were detected during typical cooking times in the kitchen, with milder 
but similar peaks registered in the personal monitors. This might reflect 
the cooking fumes associated with Chinese style cooking, which often 
involve high-temperature stir-frying. (Li et al., 2015; Wang et al., 2015) 

Similar but markedly more extreme peaks consistent with solid fuel 
use for cooking were observed in kitchens in Gansu and Henan. While it 
is typically expected that ambient PM2.5 contributes a smaller propor
tion of the total personal exposure in solid fuel-reliant communities (as 
in Gansu for both seasons and in Henan in the warm season), ambient 
PM2.5 levels in Henan during the cool season were just below those 
recorded in the kitchen. Both rural sites involved heavy use of solid fuels 
for heating in the cool season, which could be a major contributor of 
community-level ambient PM2.5. (Snider et al., 2018; Shupler et al., 
2018) However, the Gansu site is in a mountainous region with low 
population density, away from urban settlements and busy highways; 
whereas the Henan site is a more crowded community < 30 km from an 
industrial town with heavy road traffic and longstanding regional 
ambient air pollution problems. These contextual factors may have 
influenced the dispersion of air pollution in the two study sites. 

Notably, about 70% of the study participants were women, who tend 
to have a dominant role in cooking and are predominantly non-smokers 
(>97%); whereas men tend to cook less regularly and much more likely 
to smoke (>60%) in the study population, (Chan et al., 2017) so the 
overall exposure pattern is likely to be more relevant to women and non- 
smokers. Generally speaking, the 24-hour exposure patterns were 
somewhat similar in men and women, with major exposure peaks 
around typical cooking times and significantly higher PM2.5 exposure in 
the cool season (except for men in Suzhou), which is well expected given 
the higher background HAP and AAP levels in winter. (Chen et al., 2018; 
Carter et al., 2016; Snider et al., 2018) The tendency of higher PM2.5 
exposure in women, especially in the cool season, could be explained by 
the longer time women spent on cooking or in the kitchen compared to 
men; whereas the more frequent short-duration spikes in men, especially 
out of typical cooking or sleeping/ heating times, are consistent with 
active or passive smoking exposure. 
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4.4. Implications for future studies 

The successful completion of our fieldwork to collect detailed and 
good quality time-resolved air pollution data demonstrates the feasi
bility and potential value of this type of studies. In particular, the 
intensive 120-hour air pollution measurements along with repeated 
household visits for time-activity recall had been well accepted in this 
study population. Local fieldworkers with little prior experience can be 
trained rapidly to handle a wide range of data collection instruments 
including air pollution monitors. The aforementioned new evidence on 
different behavioural factors reassures the need of collecting detailed 
fuel use and time-activity data in future studies. The time-solved data 
presented allude to the complexity of personal air pollution exposure, 
and its relationships with static environmental measurements or 
address-based modelling in rapidly transiting economies like China. To 
investigate this further, work has been planned to associate PM2.5 levels 
(average and peak values) with various activities in different seasons, 
alongside characteristics reported in the household questionnaire (see 
Appendix D. Supplementary Discussion for further details). 

Our study provides a framework for designing future measurement 
campaigns to collect personal environmental exposure data in larger and 
more representative samples in low- and middle-income settings. 
Further work is also underway to integrate the questionnaire and device 
data collected and establish pipelines to develop prediction models for 
personal exposure to PM2.5 using established methods. (Chen et al., 
2018) By collecting detailed exposure data in a small subset and sub
sequently building personal exposure prediction models applicable to 
the entire study population, cost-effectiveness could be achieved. The 
models developed will also add-value to existing epidemiological studies 
with only qualitative or semi-quantitative exposure data based on self- 
reported fuel use to assign personal exposure to HAP and/ or AAP (see 
Appendix D. Supplementary Discussion for further details). 

4.5. Limitations 

Despite the great details of data being collected to address some key 
knowledge gaps in the literature, this study has several limitations. Fuel 
use data were self-reported and semi-quantitative; time-activity were 
recalled with no objective means of validation (e.g. imageries from 
wearable cameras); household environment characteristics (e.g. indoor- 
outdoor air exchange rate, kitchen size) were not measured; and limited 
health outcome data were collected, although the participants are still 
being followed-up for health events via record linkages. With the time- 
resolved PATS+CO as the primary device, we only collected gold stan
dard gravimetric data for a small random subset of participants. There 
was also considerable loss of air pollution data due to fieldwork or de
vice problems. Furthermore, only ecological comparisons were made in 
the present manuscript to interpret the PM2.5 data in relation to fuel use 
patterns across the study sites, but further investigation on individual- 
level data is underway. More in-depth analysis to integrate and cross- 
reference the time-activity and device data will also be conducted to 
better understand the temporal variation of PM2.5 levels at different 
device locations, and the inter-location variability. Finally, this study 
only involved one urban and two rural communities nested within the 
CKB and recruited a high proportion of women and older adults, so the 
results are unlikely to be generalisable to a national level or other 
populations with distinctive environmental characteristics (e.g. fuel use, 
traffic density). While the lack of representativeness is a common 
problem in air pollution measurement studies, the overall personal time- 
activity and PM2.5 exposure patterns would be biased towards women, 
who tend to have a more important role in cooking and heating and 
rarely smoke in this population. 

4.6. Summary 

We described a study framework designed to efficiently collect in- 

depth, multi-dimensional data for accurate personal air pollution 
exposure quantification in a real-world setting in China. The study also 
provided new evidence supporting the emergence of fuel-stacking 
behaviour, the significant delay in rate of modernisation of heating 
fuel and ventilation (compared to cooking fuels), the regional and sea
sonal variability of time-activity patterns (e.g. cooking frequency and 
duration) and objectively measured PM2.5 concentrations at personal, 
household and ambient levels. These underscore the limitations of 
existing epidemiological evidence on the health impact of air pollution 
and shed light on key areas of methodology improvements for future 
studies, particularly the need to collect and integrate multi-dimensional 
personal exposure data. 
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