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Abstract: When studying the behaviour of complex dynamical systems, a statistical formulation can 
provide useful insights. In particular, information geometry is a promising tool for this purpose. 
In this paper, we investigate the information length for n-dimensional linear autonomous stochastic 
processes, providing a basic theoretical framework that can be applied to a large set of problems in 
engineering and physics. A specifc application is made to a harmonically bound particle system with 
the natural oscillation frequency ω, subject to a damping γ and a Gaussian white-noise. We explore 
how the information length depends on ω and γ, elucidating the role of critical damping γ = 2ω 
in information geometry. Furthermore, in the long time limit, we show that the information length 
refects the linear geometry associated with the Gaussian statistics in a linear stochastic process. 

Keywords: non-equilibrium; stochastic processes; time-dependent PDF; information length; 
information geometry; entropy; fuctuations 

1. Introduction 

Stochastic processes are common in nature or laboratories, and play a major role across traditional 
disciplinary boundaries (e.g., see [1,2]). These stochastic processes often exhibit complex temporal 
behaviour and even the emergence of order (self-organization). The latter can also be artifcially 
designed to complete an orderly task (guided self-organization) [3–6]. In order to study and 
compare the dynamics of different stochastic processes and self-organization, it is valuable to utilize 
a measurement which is independent of any specifcs of a system [7–11] (e.g., physical variables, 
units, dimensions, etc.). This can be achieved by using information theory based on probability 
density functions (PDFs) and working in terms of information content or information change, e.g., 
by quantifying the statistical difference between two states [12–14]. Mathematically, we do this by 
assigning a metric to probability and by using the notion of ‘length’ or ‘distance’ in the statistical space. 

One method of measuring the information content in a system is utilizing the Fisher information, 
which represents the degree of certainty, or order. The opposite is entropy, which is a popular concept 
for the uncertainty or amount of disorder. Comparing entropy at different times then gives a measure 
of the difference in information content between the two states, which is known as relative entropy 
(e.g., see [15]). Another example is the Wasserstein metric [16,17], which provides an exact solution to 
the Fokker-Planck equation for a gradient fow subject to the minimization of the energy functional 
defned as the sum of the entropy and potential energy [18–20]. This metric has units of a physical 
length in comparison with other metrics, for instance the dimensionless statistical distance based on 
the Fisher information metric [21–23]. Interestingly, there is a link between the Fisher information and 
the Wasserstein distance [24]. Furthermore, the relative entropy can be expressed by the integral of the 
Fisher information along the same path [25]. 
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Although quite useful, the relative entropy lacks the locality of a metric as it concerns only about 
the difference between given two PDFs. For instance, when these two PDFs represent the two states at 
different times, the relative entropy between them tells us nothing about how one PDF evolves to the 
other PDF over time or what intermediate states a system passes through between the two PDFs. As a 
result, it can only inform us of the changes that affect the overall system evolution [26]. To overcome 
this limitation, the information length L(t) was proposed in recent works, which quantifes the 
total number of different states that the system evolves through in time [27,28]. This means that 
the information length is a measure that depends on the evolution path between two states (PDFs). 
Its formulation allows us to measure local changes in the evolution of the system as well as providing 
an intriguing link between stochastic processes and geometry [26]. 

For instance, the relation between the information length L∞ = L(t → ∞) and the mean value of 
the initial PDF for the fxed values of all other parameters was invoked as a new way of mapping out 
an attractor structure in a relaxation problem where any initial PDF relaxes into its equilibrium PDF 
in the long time limit. Specifcally, for the Ornstein-Uhlenbeck (O-U) process driven by a Gaussian 
white-noise (which is a linearly damped, relaxation problem), L∞ increases linearly with the distance 
between the mean position of an initial PDF and the stable equilibrium point (for further details, 
see [28,29], with its minimum value zero at the stable equilibrium point. This linear dependence 
manifests that the information length preserves the linear geometry of the underlying Gaussian 
process, which is lost in other metrics [26]. For a nonlinear stochastic process with nonlinear damping, 
L∞ still takes its minimum value at the stable equilibrium point but exhibits a power-law dependence 
on the distance between the mean value of an initial PDF and the stable equilibrium point. In contrast, 
for a chaotic attractor, L∞ changes abruptly under an infnitesimal change of the mean value of an 
initial PDF, reminiscent of the sensitive dependence on initial conditions of the Lyapunov exponent [30]. 
These results suggest that L∞ elucidates how different (non)linear forces affect (information) geometry. 

With the above background in mind, this paper aims to extend the analysis of the information 
length of the O-U process to an arbitrary n-th order linear autonomous stochastic processes, providing 
a basic theoretical framework to be utilized in a large set of problems in both engineering and physics. 
In particular, we provide a useful analytical result that defnes the information diagnostics as a 
function of the covariance matrix and the mean vector of the system, which enormously reduces the 
computational cost of numerical simulations of high-order systems. 

This is followed by a specifc application to a harmonically bound particle system (Kramers 
dx equation) for the position x and velocity v = dt , with the natural oscillation frequency ω, subject to a 

damping constant γ and a Gaussian white-noise (short-correlated). We fnd an exact time-dependent 
joint PDF p(x, v, t) starting from an initial Gaussian PDF which has a fnite-width. Note that as far as 
we are aware of, our result p(x, v, t) is original since in literature, the calculation was done only for the 
case of a delta-function initial PDF. Since this process is governed by the two variables, x and v, we 
investigate how L∞ depends on their initial mean values hx0i and hv0i. Here, the angular brackets 
denote the average. Furthermore, the two characteristic time scales associated with ω and γ raise the 
interesting question as to their role in L∞. Thus, we explore how the information length depends 
on ω and γ. Our principle results are as follows: (i) L∞ tends to increase linearly with either the 
deviation of initial mean position hx0i or the initial mean velocity hv0i from their equilibrium values 
hx(0)i = hv(0)i = 0; (ii) a linear geometry is thus preserved for our linearly coupled stochastic 
processes driven by a Gaussian noise; (iii) L∞ tends to take its minimum value near the critical 
damping γ = 2ω for the same initial conditions and other parameters. 

The remainder of this paper is organized as follows: Section 2 presents the basic concept of 
information length and the formulation of our problem. In Section 3, our main theoretical results 
are provided (see also Appendix A). In Section 4, we apply the results in Section 3 to analyze a 
harmonically bound particle system with the natural oscillation frequency ω subject to a damping 
constant γ and a Gaussian white-noise. Finally, Section 5 contains our concluding remarks. 

http:short-correlated).We
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To help readers, we here provide a summary of our notations: R and C are the sets of real and 
complex numbers, respectively. x ∈ Rn represents a column vector x of real numbers of dimension 
n, A ∈ Rn×n represents a real matrix of dimension n× n, tr(A) corresponds to the trace of the matrix 
A, AT and A−1 are the transpose and inverse of matrix A, respectively. (Bold-face letters are used to 
represent vectors and matrices.) In some places, ∂t or the prime both are used for the partial derivative √ � � R1 a+bi estF(s) dswith respect to time. Besides, i = −1 and for s ∈ C, L −1 F(s) = 2πi limb→∞ a−bi 
corresponds to the inverse Laplace transform of the complex function F(s). Finally, the average of a 
random vector x is denoted by hxi. 

2. Preliminaries 

2.1. Information Length 

As noted in Section 1, the information length [26,27,31] is a dimensionless measurement of the 
total number of statistically different states that a system passes through in time in non-equilibrium 
processes. We cannot overemphasize that it is a measure that depends on the evolution of the 
system, being a useful index for understanding the information geometry underlying non-equilibrium 
processes. For example, for a time-dependent PDF p(x, t) of one stochastic variable x, the information 
length L(t) is the total information change between time 0 and t, and is defned by v u " #2Z Z q Z uZt t t ∞dt1 1 ∂p(x, t1)tL(t) = = dt1 E (t1) = dt1 dx . (1)

0 τ(t1) 0 0 −∞ p(x, t1) ∂t1 

h i2R ∞ 1 ∂p(x,t1)Here, E (t1) = −∞ dx is the square of the information velocity (recalling we p(x,t1) ∂t1 

are working with the unit where the distance given by the information length has no dimension). 
As we can see, to defne the information length, we compute the dynamic time unit τ(t) = √1 ,

E 
which quantifes the correlation time over which the PDF p(x, t) changes. Besides, τ serves as the time 
unit in the statistical space. Alternatively, the information velocity 1 quantifes the (average) rate of 

τ(t1) 
change of information in time. 

2.2. Problem Formulation 

We consider the following linear autonomous process 

ẋ(t) = Ax(t) + Γ(t). (2) 

Here, A is an n× n constant real matrix; Γ ∈ Rn is a stochastic driving given by a n dimensional 
vector of δ-correlated Gaussian noises Γi (i = 1, 2, ...n), with the following statistical property 

hΓi(t)i = 0, hΓi(t)Γj(t1)i = 2Dijδ(t− t1), Dij = Dji, ∀i, j = 1, . . . , n. (3) 

Note that Dii represents the strength of the i-th stochastic noise while Dij for i 6= j denotes the 
correlation between i-th and j-th noises (i.e., random fuctuations). Then, from the joint PDF p(x, t), 
we defne the information length L of system (2) by the following integral v u " #2Z Z Zt u ∞ t √1 ∂p(x, t1)tL(t) = dt1 dx = dt1 E , (4)

0 −∞ p(x, t1) ∂t1 0 

h i2R ∞ ∂p(x,t1)where E = dx 1 is the square of the information velocity. −∞ p(x,t1) ∂t1 
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The frst goal of this paper is to provide theoretical results for the information length (4) for the 
system (2) and (3). This is done in the following section §3. 

3. General Analytical Results 

In the section, we provide the analytical results for Problem 2.1, summarizing the main steps 
required to calculate information length (4). To this end, we assume that an initial PDF is Gaussian 
and then take the advantage of the fact that a linear process driven by a Gaussian noise with an initial 
Gaussian PDF is always Gaussian. The joint PDF for (2) and (3) is thus Gaussian, whose form is 
provided below. 

Proposition 1 (Joint probability). The system (2) and (3) for a Gaussian random variable x at any time t has 
the following joint PDF 

1 − 12 (x−hx(t)i)
T

Σ−1(x−hx(t)i)p(x, t) = p e , (5)
det(2πΣ) 

where 

hx(t)i = eAthx(0)i, (6) D E Z t
At ATt A(t−t1)DeAT(t−t1) dt1,Σ(t) = e δx(0)δx(0)T e + 2 e (7)

0 

and D ∈ Rn×n is the matrix of elements Dij. Here, hx(t)i is the mean value of x(t) while Σ is the 
covariance matrix. 

Proof. For a Gaussian PDF of x, all we need to calculate are the mean and covariance of x and substitute 
them in the general expression for multi-variable Gaussian distribution (5). To this end, we frst write 
down the solution of Equation (2) as follows 

Z t
Atx(t) = e x(0) + eA(t−t1)Γ(t1) dt1. (8)

0 

By taking the average of Equation (8), we fnd the mean value of x(t) of (8) as follows 

Z t
Athx(t)i = he x(0)i + eA(t−t1)hΓ(t1)i dt1 = eAthx(0)i, (9)

0 

which is Equation (6). On the other hand, to fnd covariance Σ(t), we let x = hxi + δx, and use the 
property hδx(0)Γ(t)i = 0 to fnd D E 

Σ(t) = δxδxT * ! !T+Z Zt t
At At= e δx(0) + eA(t−t2)hΓ(t2)i dt2 e δx(0) + eA(t−t1)hΓ(t1)i dt1 

0 0 * ! !+ Z Z �t t �TAt ATt A(t−t1)= e δx(0) + eA(t−t2)Γ(t2) dt2 δx(0)Te + Γ(t1)T e dt1 
0 0 * ! !+ D E Z t Z t

At ATt AT(t−t1) dt1= e δx(0)δx(0)T e + eA(t−t2)Γ(t2) dt2 Γ(t1)Te
0 0 D E Z t Z t

At ATt = e δx(0)δx(0)T e + eA(t−t2)hΓ(t2)Γ(t1)TieAT(t−t1) dt2 dt1 
0 0 D E Z t

At ATt = e δx(0)δx(0)T e + 2 eA(t−t1)DeAT(t−t1) dt1. (10)
0 
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Here δx(0) = δx(t = 0) is the initial fuctuation at t = 0. Equation (10) thus proves Equation (7). 
Substitution of Equations (6) and (7) in Equation (5) thus gives us a joint PDF p(x, t) 

Next, in order to calculate the information length from the joint PDF p(x, t) in Equation (5), 
we now use the following Theorem: 

Theorem 1 (Information Length). The information length of the joint PDF of system (2) and (3) is given by 
the following integral 

Z q Z qt t � � 
L(t) = dt1 E(t1) = √ 

1
dt1 ∂t1 tr(Q∂t1 Σ) + 2hx0(t1)iTQhx0(t1)i + tr (Q00Σ), (11)

0 2 0 

where Q = Σ−1 (recall, a prime denotes ∂ ).∂t

Proof. To prove this theorem, we use the PDF (5) in (4). To simplify the expression, we let 

w ≡ δx = x− hx(t)i, Q = Σ−1. 

h i2 
∂t1 p(x,t1)

We then compute step by step as follows: p(x,t1) � � 
∂ � �− 1 − 12 wTQw∂t1 p(x, t1) = det(2πΣ) 2 e

∂t1 � �1 �− 3 � � 1 � �− 1− 12 wTQw� − 2
1 wTQw= − e det(2πΣ) 2 ∂t1 det(2πΣ) − det(2πΣ) 2 e ∂t1 wTQw , (12)

2 2 

� h i�2� �2 1 �2 1 � �−1 −wTQw∂t1 p(x, t1) = e−wTQw(det(2πΣ))−3 � ∂t1 det(2πΣ) + det(2πΣ) e ∂t1 wTQw
4 4 h i1 � �−2 � � −wTQw+ det(2πΣ) ∂t1 det(2πΣ) ∂t1 wTQw e , (13)

2 

� �2 � � ��2∂t1 p(x, t1) 1 � �− 5 � �2 − 1 1 � �− 1 − 12 2 wTQw 2 wTQw= det(2πΣ) ∂t1 det(2πΣ) e + det(2πΣ) 2 e ∂t1 wTQw
p(x, t1) 4 4 � �1 � �− 3 � � − 12 wTQw+ det(2πΣ) 2 ∂t1 det(2πΣ) ∂t1 wTQw e . (14)

2 

Now, using Equation (12) in Equation (14), we compute the integral⎛ ⎞h i2R ∞ ∂t1 p(x,t1)E(t1) = −∞ dx⎝ ⎠ as follows p(x,t1) 

⎛ ⎞� �2Z ∞ −2 h �i2 ⎝ (det(2πΣ)) � ∂t1 (w
TQw) ∂t1 [det(2πΣ)]∂t1 [w

TQw]E(t1)= p(x, t1) det(2πΣ) + + ⎠dx4 ∂t1 4 2 det(2πΣ)−∞ * � �!2+ *� + * � � h i+ 
∂t1 det(2πΣ) ∂t1 [w

TQw] 
�2 ∂t1 det(2πΣ) ∂t1 wTQw 

= + + . (15)
2 det(2πΣ) 2 2 det(2πΣ) 
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pR ∞ − 1 
2 wTQw dwTo calculate the three averages in (15), we use the properties = det(2πΣ) [32],−∞ eh i h i h i h i 

− 12 wTQw − 1 − 12 wTQw∂t1 
− 12 wTQw − 1 − 12 wTQw∂t1 e = 2 e wTQw and ∂t1t1 e = 2 ∂t1t1 wTQw e + � h i�2 

1 − 12 wTQw 
4 e ∂t1 wTQw . We then have 

� �2 Z ∞ 
� �2 Z ∞ h i 

∂t1 [det(2πΣ)] ∂t1 [w
TQw] ∂t1 [det(2πΣ)]E(t1) = + p(x, t1) dx+ p(x, t1)∂t1 wTQw dx2 det(2πΣ) 2 2 det(2πΣ)−∞ −∞ � �!2 Z � �∞ h i1 ∂t1 det(2πΣ) 1 − 12 wTQw − 12 wTQw= + 4∂t1t1 e + 2∂t1t1 wTQw e dx

4 det(2πΣ) � �
2
1 −∞4 det(2πΣ) � � Zdet(2πΣ) ∞ h i∂t1 − 12 wTQw−2 ∂t1 e dx� � 3 

2 det(2πΣ) 2 −∞ hp i � �!2 Zdet(2πΣ) ∞ h i1 ∂t1 det(2πΣ) ∂t1t1 1 − 1 TQw dx2 w= + p + p ∂t1t1 wTQw e
4 det(2πΣ) det(2πΣ) 2 det(2πΣ) −∞ � � q∂t1 det(2πΣ)
− ∂t1 det(2πΣ). (16)� � 3 

det(2πΣ) 2 

Here ⎡ ⎤ � ��h i n � n ⎢ ⎥⎢ 0 0 0 0 00 00 ⎥
∂t1t1 wTQw = ∑ ∂t1t1 qijwiwj = ∑ ⎢⎣ 4qijwiwj + 2qijwiwj +2qijwi wj + qijwiwj⎥⎦ . (17) 

i,j=1 i,j=1 | {z } | {z }
independent of x wTQ00w 

i , q00 We recall that ωi
0 , qij 
0 and ω00 ij denote the frst and second derivative over time of the elements 

ωi and qij. By substituting (17) in (16) and making some arrangements, we obtain 

hp i * 0 � �!2 * +* 0 * +
det(2πΣ) n n1 ∂t1 det(2πΣ) ∂t1t1 0 11 0 00 E(t1) = + + 4 iwj 

�������p
���q�

���

+ i wj∑ ijw ∑ 2qijw4 det(2πΣ) det(2πΣ) 2 2i,j=1 i,j=1 * + � �!2 n D E1 0 0 1 TQ00
1 ∂t1 det(2πΣ)

+ ∑ 2qijwiwj + w w − . (18)
2 2 2 det(2πΣ)i,j=1 D E 

TQ00
� 
Q00Σ 

� 
Now with the help of the following relations w w = tr [33], 

∂t1 det(Σ) = det(Σ)tr(Q∂t1 Σ) [34], and p p � �2 p
det(2πΣ) = 1 det(2πΣ) tr(Q∂t1 Σ) + det(2πΣ)∂t1(tr(Q∂t1 Σ)), we then have ∂t1t1 4 2

1 

1 � �2 1 � � 1 � �2E (t1)=− tr(Q∂t1 Σ) + ∂t1 tr(Q∂t1 Σ) + tr(Q∂t1 Σ)
4 2 4 � �1 

Q00Σ+hx0(t1)iTQhx0(t1)i + tr
2 � �1 � � 1 

Q00Σ= ∂t1 tr(Q∂t1 Σ) + hx0(t1)iTQhx0(t1)i + tr . (19)
2 2

Equation (19) thus proves Equation (11). 

Given important properties of the covariance matrix eigenvalues (see, e.g., [35]), it is useful to 
express Equation (19) and the information length as a function of these covariance matrix eigenvalues. 
This is done in the following Corollary. 
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Corollary 1. Let ϕi(t)’s (i = 1, ...n) be the eigenvalues of the covariance matrix Σ, and x̄ = hx0(t)iTP where 
P is an orthonormal matrix whose column vectors are linearly independent eigenvectors of Q = Σ−1. We can 
rewrite the information length (11) as vuut ! 

L(t) = 
Z

0 

t 
dt1

q
E (t1) = 

Z n ϕ02 
i (t1) + 2ϕi(t1)x̄2 

i 
t 

∑dt1 . (20)
2ϕ2 

i (t1)0 i=1 

Proof. The proof follows straightforwardly from the fact that Σ is a symmetric matrix which can be 
diagonalised by fnding the orthonormal matrix P such that PTΣ−1P = Φ. Here Φ is the diagonal 
matrix whose entries are the eigenvalues 1 ∀i = 1, 2, . . . , n (recall that ϕi(t) is i-th the eigenvalue of 

ϕi(t) 

Σ−1). This gives us ⎛⎝ ⎞⎠ = 

⎛⎝ ⎞⎠ . (21) 

#"#" 
2 
iϕi

0(t) 1 x̄ ϕ02 2 
i (t) + 2ϕi(t)x̄i 

n n 

∑
1 

∑ + 2E(t) = + ϕi(t)∂tt ∂t 2ϕ2 
i (t)2 ϕi(t) ϕ(t) ϕi(t)i=1 i=1 

This fnishes the proof. 

It is useful to check that Equation (20) reproduces the previous result for the O-U process [36] 

β02 
0i2E = 

2β2 + 2βhx , (22) 

1where β = is the inverse temperature. Here, β0 denotes the time derivative of β. To show this, 2h(x−hxi)2i 
1we note that for the O-U process, the covariance matrix is a scalar (n = 1) with the value Σ = 2β = ϕ(t) 

1and thus Q = 
ϕ(t) = 2β while hx0(t)i = hx0i. Thus, 

E (t) = 
1 
⎛⎝− 12 β−2β0 

12 
2β 

⎞⎠ 2 

+ 2βhx0i2 = 
β02 

2β2 + 2βhx0i2 . 

In sum, for the O-U process, the square of the information velocity (shown in expression (22)) 
increases with the ‘roughness’ of the process, as quantifed by the squared ratio of the rate of change of 
the inverse temperature (or precision) and the precision – plus a term that depends upon this precision 
times the variance of the state velocity. 

4. Kramers Equation 

In this section we apply our results in Section 3 to the Kramers equation for a harmonically bound 
particle [19,37]. As noted in Introduction, we investigate the behaviour of the information length 
when varying various parameters and initial conditions to elucidate how the information geometry is 
affected by the damping, oscillations, strength of the stochastic noises and initial mean values. 

Consider the Kramers equation 

dx 
= v

dt 
dv 

= −γv − ω2x + ξ(t). (23)
dt 

Here, ω is a natural frequency and γ is the damping constant, both positive real numbers. ξ is a 
Gaussian white-noise acting on v with the zero mean value hξ(t)i = 0, with the statistical property 

hξ(t)ξ(t1)i = 2Dδ(t− t1). (24) 
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Comparing Equations (23) and (24) with Equations (2) and (3), we note that x1 = x, x2 = v, 
= �has the element p

γ2 − 4ω2 

To fnd the information length for the system (23), we use Proposition 1 and Theorem 1. 

0, ξ2 = ξ, D11 = 0, D12 = 0, and D22 D while the matrix A for (23)
= −ω2, A22 = −γ. Thus, the eigenvalues of A are λ1,2 = − 1 

2 

�ξ1 = 

A11 = 0, A12 = 1, A21 γ ± . 

First, Proposition 1 requires the computation of the exponential matrix eAt involving a rather long 
algebra with the help of [38]. The result is: ⎤ 

=L −1 = 

⎡ ⎢⎣ 
⎤ ⎥⎦

⎤⎡⎡ ⎢⎣ 
λ1t(γ+λ1)−eλ2t(γ+λ2) λ1t−eλ2tes+γ 1 eih ⎥⎦λ1−λ2 λ1−λ2(s−λ1)(s−λ2) (s−λ1)(s−λ2) 

ω2 
At =L −1 (sI− A)−1 � �⎣ ⎦ . (25) e λ1t−eλ2t ω2s e λ1tλ1−eλ2tλ2− e

(s−λ1)(s−λ2) (s−λ1)(s−λ2) − λ1−λ2 λ1−λ2 

Here, I ∈ Rn×n is the identity matrix. Similarly, we can show 

Z t 
A(t−t1)DeAT(t−t1) dt1e =2 

0 ⎤!⎡ 
(λ1+λ2)t 2λ2t−λ1−4e λ2+3λ2+e (λ1+λ2) � �2⎢⎢⎢⎢⎢⎢⎣ 

2λ1t−1+eD +λ1 

!⎞⎠ 
⎥⎥⎥⎥⎥⎥⎦ 

λ2tD eλ1t−eλ2(λ1+λ2) 

(λ1−λ2)2 (λ1−λ2)2⎛⎝ (26).�� (λ1+λ2)t4e λ2 4λ2+ +e2λ1t−1−1+e2λ2t� �2 D λ2+λ1 − λ1+λ2 λ1+λ2λ2tD eλ1t−e

(λ1−λ2)2 (λ1−λ2)2 

Using Equations (25) and (26) in Equations (6) and (7), we have the time-dependent (joint) 
PDF (5) at any time t for our system (23) and (24). To calculate Equation (11) with the help of 
Equations (25) and (26), we perform numerical simulations (integrations) for various parameters in 
Equations (23) and (24) as well as initial conditions. Note that while we have simulated many different 
cases, for illustration, we show some representative cases by varying D, ω, γ and hx(0)i, hv(0)i in 
Section 4.1–4.3 and Appendix A, respectively, for the same initial covariance matrix Σ(0) with elements 
Σ11(0) = Σ22(0) = 0.01 and Σ12(0) = Σ21(0) = 0. Note that the initial marginal distributions of 
p(x(0)) and p(v(0)) are Gaussian with the same variance 0.01. Results in the limit ω → 0 are presented 
in Section 4.4. 

4.1. Varying D 

Figure 1 shows the results when varying D as D ∈ (0.0005, 0.04) for the fxed parameters 
γ = 2 and ω = 1. The initial joint PDFs are Gaussian with the fxed mean values 
hx(0)i = −0.5, hv(0)i = 0.7; as noted above, the covariance matrix Σ(0) with elements 
Σ11(0) = Σ22(0) = 0.01 and Σ12(0) = Σ21(0) = 0. Consequently, at t = 0, the marginal distributions 
of p(x(0)) and p(v(0)) are Gaussian PDFs with the same variance 0.01 and the mean values 
hx(0)i = −0.5 and hv(0)i = 0.7, respectively. 

Figure 1a,b show the snapshots of time-dependent joint PDF p(x, t) (in contour plots) for the 
two different values of D = 0.0005 and D = 0.04, respectively. The black solid represents the phase 
portrait of the mean value of hx(t)i and hv(t)i while the red arrows display the direction of time 
increase. Note that in Figure 1b, only some of the initial snapshots of the PDFs are shown for clarity, 
given the great amount of overlapping between different PDFs. Figure 1c,d show the time-evolution 
of the information velocity E (t) and information length L(t), respectively, for different values of 
D ∈ (0.0005, 0.04). It can be seen that the system approaches a stationary (equilibrium) state for t & 20 
for all values of D, L(t) approaching constant values (recall L(t) does not change in a stationary 
state). Therefore, we approximate the total information length as L∞ = L(t = 50), for instance. 
Finally, the total information length L∞ = L(t = 50) is shown in Figure 1e. We determine the 

http:0.04).It
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dependence of L∞ on D by ftting an exponential function as L∞(D) = 7.84e−329.05D + 11.21e−11.86D 

(shown in red solid line). 

t 

(a) Snapshots of p(x, t) for D = 0.0005. 

t 

(b) Snapshots of p(x, t) for D = 0.04. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

6
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10

12

14

16

18

20

fitted curve

(c) Time-evolution of E (t). (d) Time-evolution of L(t). (e) L∞ = L(t = 50) against D. A 
ftted curve is shown in the red 
solid line. 

Figure 1. Results of Equations (23) and (24) for hx(0)i = −0.5, hv(0)i = 0.7, γ = 2, ω = 1, 
D ∈ (0.0005, 0.04) and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0. 

4.2. Varying ω or γ 

We now explore how results depend on the two parameters ω and γ, associated with oscillation 
and damping, respectively. To this end, we use D = 0.0005 and the same initial conditions as in Figure 1 
but vary ω ∈ (0, 2) and γ ∈ (0, 6) in Figures 2 and 3, respectively. Specifcally, in different panels of 
these fgures, we show the snapshots of the joint PDF p(x, t), the time-evolutions of E (t) and L(t) for 
different values of ω ∈ (0, 2) and γ ∈ (0, 6), and L∞ against either ω or γ. From Figures 2e and 3e, 
we can see that the system is in a stationary state for suffciently large t = 10 and t = 100, respectively. 
Thus, we use L∞ = L(t = 10) = L(10) in Figure 2f,g and L∞ = L(t = 100) = L(10) in Figure 3f,g. 

Notably, Figure 2f,g (shown on linear-linear and log-linear scales on x − y axes, respectively) 
exhibit an interesting a non-monotonic dependence of L∞ on ω for the fxed γ = 2, with the presence 
of a distinct minimum in L∞ at certain ω. Similarly, Figure 3f,g (shown in linear-linear and log-log 
scales on x − y axes, respectively) also shows a non-monotonic dependence of L∞ on γ for the fxed 
ω = 1. These non-monotonic dependences are more clearly seen in Figures 2g and 3g. A close 
inspection of these fgures then reveals that the minimum value of L∞ occurs close to the critical 
damping (CD) γ ∼ 2ω; specifcally, this happens at ω ∼ 1 for γ = 2 in Figure 2f,g while at γ ∼ 2 for 
ω = 1 in Figure 3f,g. We thus ft L∞ against ω or γ depending on whether ω or γ is smaller/larger 
than its critical value as follows: 
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4.34ω 0.06ωL10(ω) = −0.03e + 19.63e ∀ ω ∈ (0, 1), (27) 
−0.12ω 2.48ωL10(ω) = 19.52e + 0.11e ∀ ω ∈ (1, 2), (28) 
−12.4γ −1.02γL100(γ) = 413.22e + 95.39e ∀ γ ∈ (0, 2), (29) 

L100(γ) = 3.23γ ∀ γ ∈ (2, 6). (30) 

The ftted curves in Equations (27)–(30) are superimposed in Figures 2f and 3f, respectively. It is 
important to notice from Equations (27)–(30) that L∞ tends to increase as either ω → ∞ for a fnite, 
fxed γ (< ∞) or γ → ∞ for a fnite, fxed ω (< ∞). 
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(a) Snapshots of p(x, t) for ω = 0. 
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(b) Snapshots of p(x, t) for ω = 1. (c) Snapshots of p(x, t) for ω = 2. 
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(d) Time-evolution of E(t). (e) Information Length L(t). 
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(f) L∞ = L(t = 10) against ω; ftted curves 
are shown in the red dashed lines while a 
vertical line represents ω = 1 at the critical 
damping. 
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(g) The same as panel (f) but shown on 
log-linear scales on x − y axes. 

Figure 2. Results of Equations (23) and (24) for hx(0)i = −0.5, hv(0)i = 0.7, γ = 2, ω ∈ (0, 2), 
D = 0.0005, and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0. 
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t t 

(a) Snapshots of p(x, t) for γ = 0. (b) Snapshots of p(x, t) for γ = 2. (c) Snapshots of p(x, t) for γ = 6. 

(d) Time-evolution of E(t). (e) Time-evolution of L(t). 

0 1 2 3 4 5 6
0
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300

400

500

600

Critical damping (CD)

10 -1 10 0

10 2 Critical damping (CD)

(f) L∞ = L(t = 100) against γ; ftted curves (g) The same as panel (f) but shown in log-log 
are shown in the red solid and blue dashed scales on x and y axes. 
lines while a vertical line represents γ = 2 at 
the critical damping. 

Figure 3. Results of Equations (23) and (24) for hx(0)i = −0.5, hv(0)i = 0.7, 
γ ∈ (0, 6), ω = 1, D = 0.0005, and the initial covariance matrix Σ(0) with elements 
Σ11(0) = Σ22(0) = 0.01, Σ12(0) = Σ21(0) = 0. 

Finally, we note that for the critical damping γ = 2ω, the eigenvalue becomes a real double root 
with the value λ1,2 → −ω. Thus, in this limit, we have that ⎡ ⎤ 

e−tω(x(0) + t(v(0) + (γ − ω)x(0))) � �hx(t)i = ⎣ 
e−tω −tx(0)ω2 − tv(0)ω + v(0) 

⎦ , (31) 
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and Σ(t) is composed by the following elements 

� � 
e−2tω 2ω3(Σ11(γt−tω+1)2+t2((Σ12+Σ21)(γ−ω)+Σ22)+t(Σ12+Σ21))+D(−2tω(tω+1)+e2tω −1)

Σ11(t)= ,2ω3 � � 
−2tωΣ12(t)=e t(−ω2(Σ11γt+Σ11+Σ21t)+Σ11tω3−Σ22tω+Σ22+Dt)−Σ12(tω−1)(γt−tω+1) , � � 
−2tωΣ21(t)=e t(−ω2(Σ11γt+Σ11+Σ12t)+Σ11tω3−Σ22tω+Σ22+Dt)−Σ21(tω−1)(γt−tω+1) , � � 
−2tωe 2tω2(tω2(Σ11ω+Σ12+Σ21)−ω(Σ12+Σ21)+Σ22(tω−2))+2Σ22ω+D(−2tω(tω−1)+e2tω −1)

Σ22(t)= 2ω . (32) 

Equations (31) and (32) are used in Section 4.1 (Figure 1). 

4.3. Varying hx(0)i or hv(0)i 

To elucidate the information geometry associated with the Kramer equation 
(Equations (23) and (24)), we now investigate how L∞ behaves near the equilibrium point 
hx(0)i = hv(0)i = 0. To this end, we scan over hx(0)i for hv(0)i = 0 in Figure 4a–e while scanning 
over hv(0)i for hx0)i = 0 in Figure 4f–i. For our illustrations in Figure 4, we use the same initial 
covariance matrix Σ(0) as in Figures 1–3, D = 0.0005 and ω = 1 and a few different values 
of γ (above/below/at the critical value γ = 2). We note that the information geometry near a 
non-equilibrium point is studied in Appendix A. 

Specifcally, snapshots of p(x, t) are shown in Figure 4a–f for γ = 2.5 (above its critical value 
γ = 2 = 2ω) while those in Figure 4c–g are for γ = 0.1 below the critical value 2. By approximating 
L∞ = L(t = 100), we then show how L∞ depends on hx(0)i and hv(0)i for different values of γ in 
Figure 4d,e and Figure 4h,i, respectively. 

Figure 4d,e show the presence of a minimum in L∞ at the equilibrium 
hx(0)i = 0 (recall hv(0)i = 0); L∞ is a linear function of hx(0)i for hx(0)i � 0.1, which can be 
described as L∞(x(0), γ) = h(γ)|hx(0)i| + f (γ). Here, h(γ) and f (γ) are constant functions 
depending on γ for a fxed ω which represent the slope and the y-axis intercept, respectively. 
A non-zero value of L∞ at hx(0)i = 0 is caused by the adjustment (oscillation and damping) of the 
width of the PDFs in time due to the disparity between the width of the initial and equilibrium PDFs 
(see Figure 4b). In other words, even though the mean values remain in equilibrium for all time 
[hx(0)i, hv(0)i]T = limt→∞hx(t)i = [0, 0]T , the information length (11) depends on the covariance 
matrix Σ which changes from its initial value to the fnal equilibrium value as follows ⎡ ⎤" # 

0.01 0 D 0 
Σ(0) = to lim Σ(t) = ⎣ γω2 ⎦ .D0 0.01 t→∞ 0 γ 

On the other hand, L∞ against hx(0)i shows parabolic behaviour for small hx(0)i < 0.1 p p
in Figure 4e. This is caused by the fnite width 0.1 = Σ11(0) = Σ22(0) of the initial p(x, 0); 
we see that hx(0)i < 0.1 is within the uncertainty of the initial p(x, 0). 

Similarly, Figure 4h,i exhibit a minimum in L∞ at the equilibrium hv(0)i = 0 (recall 
hx(0)i = 0 in this case); L∞ is a linear function of hv(0)i for hv(0)i � 0.1 described by 
L∞(v(0), γ) = H(γ)|hv(0)| + F(γ) (again parabolic for hv(0)i < 0.1, see Figure 4i). Here again, 
H(γ) and F(γ) are constant functions depending on γ for a fxed ω which represent the slope and the 
y-axis intercept, respectively. 

Finally, Figure 4j shows in logarithmic scale that the minimum value of L∞ at hx(0)i = hv(0)i 
monotonically increases with γ. 

http:value2.By
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(a) Snapshots of p(x, t) for 
hv(0)i = 0, γ = 2.5 and various 
hx(0)i ∈ (−5, 5). 

(b) Zoom-in of panel (a) showing 
p(x, t) for hv(0)i = 0, γ = 2.5 and 
hx(0)i = 0. 

(c) Snapshots of p(x, t) for 
hv(0)i = 0, γ = 0.1 and various 
hx(0)i ∈ (−5, 5). 
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(d) L∞ = L(t = 100) against hx(0)i ∈ (−5, 5) 
for hv(0)i = 0 and γ ∈ (0, 2.5). 
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(e) Zoom-in of panel (d). 

(f) Snapshots of p(x, t) for hx(0)i = 0, γ = 2.5 
and various hv(0)i ∈ (−5, 5). 

(g) Snapshots of p(x, t) for hx(0)i = 0, γ = 0.1 
and various hv(0)i ∈ (−5, 5). 

-5 0 5

0

200

400

600

800

1000

1200

1400

=0.1

(h) L∞ = L(t = 100) against 
hv(0)i ∈ (−5, 5) for hx(0)i = 0 
and γ ∈ (0, 2.5). 
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(i) Zoom-in of panel (h). (j) The minimum value of L∞ at 
hx(0)i = hv(0)i = 0 against γ on 
log-log scales; hx(0)i = 0. 

Figure 4. Results of Equations (23) and (24) scanned over hx(0)i ∈ (−5, 5) for hv(0)i = 0 [Figure 4a–e] 
and hv(0)i ∈ (−5, 5) for hx(0)i = 0 [Figure 4f–i]. The parameter values ω = 1, D = 0.0005, 
and γ ∈ (0, 2.5) while the initial covariance matrix Σ(0) has the elements Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0. 
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4.4. The Limit Where ω → 0 

When the natural frequency ω = 0 (i.e. damped-driven system like the O-U process [36]) in 
Equation (23), the two eigenvalues of the matrix A become λ1 → −γ and λ2 → 0. It then easily 
follows that ⎡ ⎤ 

−γtv(0)−e v(0) + x(0)hx(t)i = ⎣ γ ⎦ , (33) 
e−γtv(0) 

and Σ(t) is composed by the elements 

e−2γt(−D+Σ22(0)γ+eγt(4D−γ(2Σ22(0)+(Σ12(0)+Σ21(0))γ))+e2γt(γ(Σ22(0)+γ(Σ12(0)+Σ21(0)+Σ11(0)γ))+D(2γt−3)))Σ11(t) γ3 = , � � 
2−2γte D(−1+eγt) −Σ22(0)γ+eγtγ(Σ22(0)+Σ12(0)γ) 

Σ12(t) = 
γ2 , (34) � � 

2−2γte D(−1+eγt) −Σ22(0)γ+eγtγ(Σ22(0)+Σ21(0)γ) 
Σ21(t) = 

γ2 , � � 
−2γte D(−1+e2γt)+Σ22(0)γ 

Σ22(t) = .γ 

To investigate the case of ω → 0, we consider the scan over D ∈ (0.0005, 0.04) for the 
same parameter value γ = 2, and the initial conditions as in Figure 1, apart from using ω = 0 
instead of ω = 1. Figure 5 presents the results – snapshots of p(x, t), time evolutions of E (t), L(t), 
and L∞ = L(t = 50) against D in Figure 5a–e. In particular, in Figure 5e, we identify the dependence 

−324.19D −12.24Dof L∞ on D by ftting the results to the curve L=8.99e + 10.83e . 

t 

(a) Snapshots of p(x, t) for D = 0.0005. 

t 

(b) Snapshots of p(x, t) for D = 0.04. 
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(c) Time-evolution of E (t). (d) Time-evolution of L(t). (e) L∞ = L(t = 50) against D; a 
ftted curve is shown in the red 
solid line. 

Figure 5. Results of Equations (23) and (24) for hx(0)i = −0.5, hv(0)i = 0.7, γ = 2, ω = 0, 
D ∈ (0.0005, 0.04) and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0. 



Entropy 2020, 22, 1265 15 of 18 

5. Concluding Remarks 

We have presented theoretical results of time-dependent PDFs and the information length for 
n-th order linear autonomous stochastic processes, which can be applied to a variety of practical 
problems. In particular, the information length diagnostics was found as a function of the mean and 
covariance matrices; the latter was further expressed in terms of the covariance matrix eigenvalues. 
A Specifc application was made to a harmonically bound particle system with the natural oscillation 
frequency ω, subject to a damping γ and a Gaussian white-noise (Kramer equation). We investigated 
how the information length depends on ω and γ, elucidating the role of critical damping γ = 2ω in 
information geometry. The fact that the information length tends to take its minimum value near the 
critical damping can be viewed as the simplifcation of dynamics and thus the decrease in information 
change due to the reduction of the two characteristic time scales associated with ω and γ to the one 
value. On the other hand, the information length in the long time limit was shown to preserve the 
linear geometry associated with the Gaussian statistics in a linear stochastic process, as in the case of 
the O-U process. 

Future works would include the exploration of our results when applied to high-dimensional 
processes and the extension of our work to a more general (e.g., fnite-correlated) stochastic noise, 
non-autonomous systems or non-linearly coupled systems. In particular, it will be of interest to look 
for a geodesic solution in non-autonomous systems [9] with the help of an external force, optimization 
or guiding self-organization (multi-agent systems) as well as elucidating the role of critical damping 
and resonances in self-organization. In addition, it would also be interesting to utilize the results 
introduced in [39] to predict the bound on the evolution of any observable for the Kramers problem (23), 
and compare it with a natural observable in such a system, the energy, for instance. 
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Appendix A. Analysis for Non-Zero Fixed Initial Conditions 

In Section 4.3 we analysed the behaviour of the information geometry associated with 
the Kramer equation (Equations (23) and (24)) for different γ ∈ (0, 2.5) near the equilibrium 
point hx(0)i = hv(0)i = 0. To this end, we plotted L∞ when varying hx(0)i and hv(0)i for a fxed 
hv(0)i = 0 and hx(0)i = 0, respectively. In this Appendix, we want to show how such information 
geometry changes near a non-equilibrium point by scanning over hx(0)i and hv(0)i for a fxed non-zero 
hv(0)i = 0.7 and hx(0)i = −0.5, respectively. We show that the use of non-zero fxed initial conditions 
changes the location of the minimum L∞ depending on γ. Here, we use the same parameter values 
D = 0.0005, ω = 1, Σ12(0) = Σ21(0) = 0 and Σ11(0) = Σ22(0) = 0.01. 

First, snapshots of p(x, t) are shown in Figure A1a,f for γ = 2.5 (above its critical value 
γ = 2 = 2ω) while those in Figure A1b,g are for γ = 0.1 below the critical value 2. It is important 
to notice that there is a non-symmetric behaviour of the trajectories of the system for γ � 0. 
This is shown at Figure A1a,f whose trajectories asymmetrically vary over the initial conditions 
in comparison with the results shown in Figure 4a,f. By approximating L∞ = L(t = 100), we then 
show how L∞ depends on hx(0)i and hv(0)i for different values of γ in Figure A1c,d and Figure A1h,i, 
respectively. Of prominence in Figure A1c,d is the presence of a distinct minimum in L∞ for a particular 
value of hx(0)i = xc, L∞ linearly increasing with |hx(0)i − xc| for a suffciently large |hx(0)i − xc|; 

http:respectively.We
http:equation).We
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similarly, Figure A1h,i shows a distinct minimum in L∞ for a particular value of hv(0)i = vc, L∞ 

linearly increasing with |hv(0)i − vc| for a suffciently large |hv(0)i − vc|. 
Finally, we scan over hx(0)i and hv(0)i and identify the minimum value of L∞ for a given γ and 

plot this minimum value of L∞ (at xc and vc) against γ in Figure A1e,j. In Figure A1e,j, L∞ against 
γ takes its minimum near the critical damping γ = 2ω = 2 (shown in a vertical line), as observed 
previously in Sections 4.1 and 4.2. This is clearly different from the behaviour of the minimum 
value of L∞ against γ (for the equilibrium point hx(0)i = 0 and hv(0)i = 0) in Figure 4j where L∞ 

monotonically increases with γ. This is because for hx(0)i = 0 and hv(0)i = 0, mean values does not 
change over time, with less effect of oscillations (ω) and thus the critical damping γ = 2ω. 

(a) Snapshots of p(x, t) for hv(0)i = 0.7, 
γ = 2.5 and various hx(0)i ∈ (−5, 5). 

(b) Snapshots of p(x, t) for hv(0)i = 0.7, 
γ = 0.1 and various hx(0)i ∈ (−5, 5). 

-5 0 5

0

200

400

600

800

1000

1200

1400

=0.1

(c) L∞ = L(t = 100) against 
hx(0)i ∈ (−5, 5) for hv(0)i = 0.7 
and γ ∈ (0, 2.5). 
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(d) Zoom-in of panel (c). (e) The minimum value of L∞ 

over hx(0)i ∈ (−5, 5) against γ 

on log-log scales; hv(0)i = 0.7. 

(f) Snapshots of p(x, t) for hx(0)i = −0.5, 
γ = 2.5 and various hv(0)i ∈ (−5, 5). 

(g) Snapshots of p(x, t) for hx(0)i = −0.5, 
γ = 0.1 and various hv(0)i ∈ (−5, 5). 

Figure A1. Cont. 



Entropy 2020, 22, 1265 17 of 18 

-5 0 5

0

200

400

600

800

1000

1200

1400

=0.1

-1.5 -1 -0.5 0 0.5 1 1.5 2

0

20

40

60

80

100

120

140

160

=2

=2.5

=0.1

10
-1

10
0

10
1

10
2

=2

(h) L∞ = L(t = 100) against 
hv(0)i ∈ (−5, 5) for hx(0)i = 
−0.5 and γ ∈ (0, 2.5). 

(i) Zoom-in of panel (h). (j) The minimum value ofL∞ over 
hv(0)i ∈ (−5, 5) against γ on 
log-log scales; hx(0)i = −0.5. 

Figure A1. Results of Equations (23) and (24) scanned over hx(0)i ∈ (−5, 5) for hv(0)i = 0.7 
[Figure A1a–e] and hv(0)i ∈ (−5, 5) for hx(0)i = −0.5 [Figure A1f–j]. The parameter values 
ω = 1, D = 0.0005, and γ ∈ (0, 2.5) while the initial covariance matrix Σ(0) has the elements 
Σ11(0) = Σ22(0) = 0.01, Σ12(0) = Σ21(0) = 0. 
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