
 Coventry University

DOCTOR OF PHILOSOPHY

Detecting Cyber Attacks on the Automotive Controller Area Network

Tomlinson, Andrew

Award date:
2020

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of this thesis for personal non-commercial research or study
            • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/detecting-cyber-attacks-on-the-automotive-controller-area-network(807ebbe8-b120-4005-a2db-e6ba9e464811).html


Detecting Cyber Attacks on the
Automotive Controller Area Network

by

Andrew John Tomlinson

July 2019

Faculty of Engineering, Environment and Computing

Institute for Future Transport and Cities

A thesis submitted in partial fulfilment of the University’s requirements for the Degree of
Doctor of Philosophy



Some materials have been removed from this thesis due to Third Party Copyright. Pages where material has been 
removed are clearly marked in the electronic version. The unabridged version of the thesis can be viewed at the 

Lanchester Library, Coventry University.



 

 

 

 

 

Certificate of Ethical Approval 

Applicant: 

Andrew Tomlinson 

 

Project Title: 

Development of big data analytics processes for continuous security monitoring in 

vehicle systems. 

 

This is to certify that the above named applicant has completed the Coventry 

University Ethical Approval process and their project has been confirmed and 

approved as Low Risk 

 

 

 

Date of approval: 

    17 January 2019 

 

Project Reference Number: 

P85703 





Acknowledgements

I would like to thank Dr Jeremy Bryans for his guidance, advice and kindness, and Professor
Siraj Shaikh for wonderful support throughout. Together they made undertaking this PhD an
interesting, rewarding and thoroughly enjoyable experience.

My thanks also go to Dr Harsha Kumara Kalutarage for collaborative work on the CAN
timing anomaly detection; to Dr Daniel Fowler for assistance with CAN processes and CAN
data capture, and to Jake Hayward for support on CAN simulator development. Thanks also
to Dr Alice Lau for help with CAN data collection.

Finally I am deeply grateful to my wife, Hanida, and children, Carl and Edward, for their
patience and support throughout.





Abstract

The rise in data usage and connectivity in cars has led to concerns about their risk to cyber-
attack. The Controller Area Network (CAN), used by all cars for communication between
safety-critical and performance-critical components, has been shown to be particularly
vulnerable. Cyber-attacks have been demonstrated on the CAN that would compromise the
safety of passengers, damage the car, or cause it to malfunction.

This thesis proposes and evaluates methods that might be used to detect the presence
of an attack by monitoring the CAN traffic. The methods proposed detect attack-resultant
anomalies in the CAN packet timings and packet data payloads. A one-class classification
approach is adopted since the CAN attack detection solution would need to cope with
constraints that make the gathering of sufficient labelled attack-data samples unlikely. These
constraints are also discussed in the thesis. The test data is generated from models devised
from studying the published attacks, which are reviewed. The attack detection is evaluated
over a range of suitable machine learning algorithms and training options. Processes for
capturing and parsing the CAN data for the detection are also proposed and tested.

The results show that some of the methods offer the potential for attack detection and
deployment in an in-vehicle system. However, additional research would be required to
reduce the number of false alarms they generate. Possible ways to achieve this are discussed.

The contributions of this thesis include the proposal of the detection methods suitable
for the automotive CAN and their systematic evaluation, the creation and evaluation of
algorithms for processing the CAN data into structures suitable for anomaly detection, and
the synthesis of demonstrated attacks into representative models suitable for test data.
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Chapter 1

Introduction

Automotive cybersecurity is emerging as an important concern, especially with the move
to autonomous and connected vehicles [65, 79, 84]. Modern cars contain interconnected
wired and wireless networks, including the Controller Area Network (CAN) on which reside
electronic control units (ECUs) that control safety-critical functions such as braking, steering
and engine operation. CAN vulnerabilities have been demonstrated; for example: Koscher
et al. [40] sniffed CAN packets, altered them, and reinjected them via the car’s On-Board
Diagnostics (OBD) port, affecting the braking and engine; Miller and Valasek [52] reinjected
CAN packets to achieve predetermined actions; Lee et al. [43] reinjected CAN packets
via an OBD port Bluetooth module, changing dashboard warning displays; Checkoway et
al. [14] compromised the CAN through a variety of channels, including Bluetooth and
cellular networks, CD-based firmware updates, and song files played via the CD unit. It
is probable that the variety of possible attack modes will rise as vehicles become more
connected [13, 79].

1.1 Problem Statement

The goal of this research is to determine and evaluate a method, or set of methods, that can
be used in a CAN intrusion detection system to detect if cyber-attacks are taking place. It
is envisaged that the attack would be detected from tell-tale characteristics in the CAN bus
traffic. Thus comparing the current traffic pattern against those observed to be typical.

Such an intrusion detection system (IDS) would need to run in real time, detecting intru-
sions quickly, and rapidly eliciting an appropriate response without disrupting or delaying
the broadcast of legitimate packets. It would need to cope with a high, continuous, volume of
traffic: approximately 1000 packets per second, each packet carrying up to 8 bytes of payload
data plus additional information, broadcast at up to 1Mbps. Ideally it would also allow easy
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configuration, easy deployment, and adaption to new threats, facilitating compliance with the
life-cycle usage pattern of cars.

Compared to PC systems, an IDS for the automotive CAN is likely to be constrained
by limited processing power, limited multi-tasking capability and limited storage capacity
[31]. The micro controller commonly used in car ECUs has a memory of 40-50 KB and the
computing power is less than 10 MHz [66]. A retrospectively fitted, or more substantial, IDS
would probably need creating as a dedicated unit, either attached to the CAN or attached
externally, such as on the ODB port.

Of course, the IDS would also need to be reliable and accurate. Amongst the challenges
considered in this thesis, is that of generating data and evaluation models that can be used
to test and validate proposed detection methods. These challenges deepen if we expect any
solution to cope with a long-term deployment, thus detecting attacks not currently envisaged.
The variety of car makes and models, and their varied life-cycles and dispersed location,
makes reliable and regular updating a challenge, and it is perhaps unwise to assume owners
would be able, or motivated, to update their systems outside the annual service [31, 57]. An
option might be over-the-air updating, though this adds a potential attack route and logistical
challenges.

Research and development into CAN cyberattacks is hindered by two major challenges.
First, although the CAN protocol is openly documented [36], the meaning of the data
transmitted, and specifics pertaining to any car make or model, such as the expected frequency
of broadcasts, or the matching of packet IDs to ECUs or functions, is not available to most
researchers. Even when the specification is available, the behaviour of an ECU might not be
fully known [76]. Such factors make the expected behaviour of the CAN traffic difficult to
comprehensively map, and as a consequence, the boundary between a normal signature and
an attack signature may be difficult to determine.

Second, obtaining labelled attack data is difficult. Again, this is not published by
manufacturers, and generating it is difficult because: a) testing attack scenarios using cars
is dangerous, costly, potentially damaging to the car, and may require ECU programming
knowledge; and b) the nascent nature of CAN cybersecurity means the invented attack
scenarios are speculative, incomplete and embryonic.

1.2 Motivation

The CAN bus was designed for speed and robustness, rather than security and authentication,
and the security vulnerabilities inherent in its processes are frequently cited (e.g. [7, 11, 14,
40]). In spite of these vulnerabilities, the CAN bus remains the dominant network for critical
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components and the most common system for accessing diagnostics [87]. Koscher et al. [40]
point out that costs, production chains, component development speed and safety priorities,
will form an obstacle to implementing security improvements that require modification to the
CAN protocol. Therefore, the deployment of a sufficiently secured CAN replacement may
be many years away.

The vast number of cars currently registered, and the continuing use of the CAN bus
in new vehicles for the foreseeable future, means that the known cyber vulnerabilities will
persist for many years. There are, for example, approximately 260 million passenger cars
currently in the EU, and their average age is 11 years [21]. Solutions to secure those cars
are unlikely to be comprehensive. Attack intrusion detection systems (IDSs) will therefore
be necessary. Although such systems might be manufactured by the car manufacturer, and
configured specifically to each make and model of car, a generic system that can be easily
deployed across many car makes, models, and configurations, perhaps retrospectively, would
offer commercial appeal and might be a more useful option for coping with the diverse range
of cars. The maintenance and updating throughout the lifetime of the vehicle will also need
considering.

1.3 Research Questions

The underlying hypothesis of the research is that, in spite of the operation of ECUs that
broadcast the CAN packets being undisclosed by the car manufacturers, and also in spite
of it being novel between car models, there exist characteristics of the packet timings and
payload data that would be manipulated in an attack to produce detectable anomalies. This
dissertation attempts to test this, both by the analysis of CAN properties and attack proposals,
and through the testing of potential detection methods on data representative of manipulations
that might result from attacks.

Determining and evaluating suitable CAN intrusion detection methods raises three core
research questions:

1. Can we determine monitorable characteristics in CAN traffic that would provide an
indication of an attack? To be useful, such characteristics would need to facilitate
real-time monitoring. This raises a number of considerations that need resolving,
including the extent to which we can comprehensively predict attack scenarios, and
the likelihood to which identified characteristics are valid identifiers across makes and
models of car.
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2. What methods could be used to monitor the CAN traffic to detect the attack charac-
teristics? The automotive use-case imposes a range of constraints, such as the variety
of car makes and models, their life-cycle and restricted option for intrusion detection
system updates, and the capacity to cope with unpredicted attacks.

3. How do we test and validate candidate detection methods? Staging actual attacks on
cars is problematical for many reasons (discussed later in this thesis). Thus acquiring
representative data, which covers comprehensive driving scenarios or attack scenarios,
requires some ingenuity.

These questions are considered throughout this thesis and the attempts to answer them
guide the research and discussion.

1.4 Contributions

The contributions of this PhD are:

1. Methods for detecting cyber-attacks to the CAN are proposed and evaluated. These
methods are new to this context, and include machine learning approaches that consider
changes to the timing of packet broadcasts, as well as changes to the data content of the
packet. Primarily, these are considered as one-class problems, with proposed anomaly
detection methods that do not assume pre-existing attack data.

2. Processes for transforming the CAN packet flow into a structure suitable for analysis
and intrusion detection are proposed, constructed and tested. These include processes
to automate the discovery of the data structuring used by individual manufacturers.

3. Attack models proposed across research studies are assimilated according to their CAN
traffic implications and used to build a set of representative attack manifestations used
for testing.

4. The empirical testing of the intrusion detection methods is considered as a stage
that should be automated, facilitating comprehensive testing across a range of attack
magnitudes and corruptions, as well as testing across makes and models of car.

1.5 Thesis Structure

The rest of this thesis is structured as follows:



1.5 Thesis Structure 5

Chapter 2 presents an overview of the CAN bus, discusses its cyber vulnerabilities and
reviews the attacks that have been proposed or demonstrated. The description of the CAN
focuses on the processes and packet structures pertinent to attack scenarios. The reviewed
attacks are assessed for their CAN traffic implications, with commonalities identified which
inform the attack detection options considered in this thesis. The motivation for attack
detection, as well as the outcome choices, are also discussed.

Chapter 3 reviews existing studies into CAN intrusion detection, and considers the
appropriateness of their proposed detection methods to the domain. These methods can be
generally classified into signature based intrusion detection, and anomaly based intrusion
detection; and the appropriateness of each approach is discussed, with suitable methods
considered. Illuminating the discussion are relevant results from preliminary analysis of CAN
traffic conducted in the early stages of this thesis. The chapter also discusses the options for
generating experimental CAN data.

Chapter 4 describes the detection methods evaluated in this thesis. Those methods are:
Auto-Regressive Integrated Moving Average (ARIMA), Z-score and mean-comparison -
which were used to detect attacks producing packet timing anomalies; and One-Class Support
Vector Machine (OCSVM), Compound Classifier (CC) and Local Outlier Factor (LOF) -
which were used to detect attacks producing data payload anomalies.

Chapter 5 describes the design of the experiment to evaluate the packet timing anomaly
detection methods (ARIMA, Z-score and mean comparison). The generation of data for the
experiments is explained, as is the processing that would be conducted on the CAN traffic in
an implemented system.

Chapter 6 presents the results from evaluating the packet timing anomaly detection
methods. The impacts of the data characteristics on the result scores, are also considered.

Chapters 7 and 8 follow a similar structure to Chapters 5 and 6, but describe the design
and results of the evaluation of the packet payload anomaly detection methods (CC, LOF,
OCSVM).

Chapter 9 discusses the results from both experiments and considers the implications for
a production implementation. Also discussed are potential adaptations and improvements
that might be made to the methods, their implementation, and their testing.

Chapter 10 presents the conclusions and evaluates the extent to which the research aims
have been achieved. It also considers future work that could be adopted to advance the work
presented in this thesis.





Chapter 2

CAN: Functionality, Vulnerability and
Attacks

This chapter presents an overview of the automotive CAN network, focusing on the aspects
relevant to cyber attack, and discusses the CAN vulnerabilities, and the attacks that have
been demonstrated. The chapter commences with a description of the CAN protocol and a
discussion of its cyber-vulnerabilities. The chapter concludes with a review of the attacks that
have been demonstrated or proposed, and identifies the commonalities in these attacks with
regard to the CAN traffic. Identifying such commonalities will inform the attack detection
suggestions subsequently presented in this thesis.

2.1 CAN Description

Modern cars contain a few internal networks adopting different protocols tailored to the
network’s primary function. The networks are interconnected via gateways to facilitate
secure communication between them. For example, the infotainment network might need
to receive information from ECUs on a CAN so that visual or audible warnings can be
displayed, volumes adjusted with speed, or voice commands processed. In fact, the expec-
tation that ECUs throughout the car will communicate and share information is bolstered
by the increasing emissions, fuel efficiency, safety and reliability standards that cars need to
monitor [23]. Additionally, the sending and receiving of information from external systems
is increasing as vehicles become more autonomous and connected [79]. The networks used
to transfer information between components within the car tend to be wired networks. This
is likely to be the case for the foreseeable future, since wired networks are better suited to the
security and reliability needed by the critical car components, and in addition the requirement
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to connect the components to the electric power source negates any advantage in wireless
provision [83].

Car CANs follow the ISO 11898 standard [36]. Each car typically contains two or more
CAN networks, which might operate at a high speed (500 Kbps or more) for real-time
safety-critical functions, such as braking and engine management, or at a low speed (125
Kbps or less) for comfort functions, such as doors and windows. The CAN bits are encoded
as 0 dominant, and 1 recessive. This is exploited by the CAN arbitration process, which
decrees the order of precedence should multiple ECUs attempt to broadcast at the same time.
Should this happen, the dominant 0 bit will overwrite the recessive 1 bit, and the node that is
trying to send the recessive bit will detect the change and cease broadcasting. It will then
wait and try to broadcast the frame later.

Although the CAN has been shown to be vulnerable to security violations, it has proven
very reliable and robust. Protocol processes (discussed later) are included covering atomic
broadcast, error detection, error signalling, error confinement, and recovery. Moreover, at
the physical level, the CAN’s twisted dual-line and differential-current signalling, cancel
out the effects of electrical noise on the bus [23]. Di Natale et al. [19] report early CAN
studies which concluded that it remained robust in the harsh vehicle environment, even with
significant electro-magnetic interference. Ibrahim [35] cites that an undetected bit corruption
within a CAN frame is unlikely within the lifetime of the car.

2.1.1 CAN Data Frames

There are four message frames broadcast on the automotive CAN:

• Data Frame: conveys data between nodes.

• Error Frame: sent by any node to indicate an error in the frame being transmitted.

• Overload Frame: set by a node to indicate that it is not yet ready to receive frames.

• Remote Frame: sent by a node to request data from another node.

Data Frame

Data frames convey data between nodes. A node will send a data frame either of its own
accord, or in response to a request from another node. The structure of the Data Frame is
given in Table 2.1.
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Research into CAN cybersecurity often focuses on the data frame, since this structure is
used to convey information between the ECUs and consequently might be altered to affect
some component to the car’s functionality.

The data component of the CAN data frame comprises 8 one-byte fields, though these
might not all be used by the broadcasting ECU. Amongst the other fields in the packet is
the identifier field, which contains an identifying ID that ECUs use to determine whether
the packet is relevant to their needs. An ID should be unique to the broadcasting ECU, and
is used by the other ECUs to decide whether the packet is relevant to them. However, the
CAN protocol has no authentication, so any node could conceivably broadcast using an ID
belonging to another ECU, or broadcast using a fully invented ID. Usually, broadcasting
packets with invented IDs would not be useful to an attacker, since all other nodes would not
recognise the ID and ignore the packet. However arbitration on the CAN dictates that when
two ECUs attempt to broadcast packets at the same time, the packet with the lowest ID will
have priority. Thus, as discussed later, packets with a very low fabricated ID value might be
used to dominate the network in a Denial of Service (DoS) attack.

Table 2.1 CAN Data Frame Structure

Field Description Size Purpose
SOF Start Of Frame 1 bit Indicates the beginning of the frame.

Sent only when at least 11 succes-
sive recessive bits have been de-
tected on the bus.

ID (Arbitration
field)

Identifier 11 bits Identifies the content of the mes-
sages on the bus. While two devices
might typically broadcast using dif-
ferent IDs due to the content of the
data, the ID does not identify any
particular device.
Also used in arbitration, with the
most significant bit sent first.

RTR (Arbitration
field)

Remote
Transmission
Request

1 bit Indicates a request for data.
0 = transmission of a data frame;
1 = transmission of a data request.
Also used in arbitration.

Control Control 6 bit Indicates the CAN format used and
the size of the data field.
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Data Data 0 to 64
bits (0 to 8
bytes)

Contains the actual data, transmitted
with the most significant bit first.

CRC Cyclic Redun-
dancy Check
(Checksum)

16 bits Calculated from the SOF, ID, RTR,
Control and Data fields to detect a
possible transmission error. Receiv-
ing nodes compare the transmitted
checksum against their own calcula-
tion based on the received fields.
The final bit in this field is always
a recessive bit to allow time for the
calculation.

ACK Acknowled-
gement

2 bits Always sent as recessive, which puts
the transmitting node into receiving
mode. The first bit in the field is
updated to dominant by any node
that successfully receives the frame
based on the CRC calculation.
The last bit in the field is always sent
as recessive.

EOF End Of Frame 7 bits Recessive bits that always terminate
the frame.

ITM Interframe
space

3 bits Recessive state gap ensuring succes-
sive frames are separated.

Remote Frame

Remote frames are used by nodes to request data from other nodes. They are seldom used
[35], and are not recommended by the international user’s and manufacture’s group Can In
Automation (CiA) [10]. The remote frame structure is similar to the data frame except there
is no data field and the Remote Transmission Request (RTR) bit is set to 1 (recessive). The
remote frame’s ID indicates the desired data, and both the remote frame and the data frame
should have the same Control values. Because the remote frame’s RTR is recessive, should
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there be a clash with attempts to broadcast a remote frame and matching data frame at the
same time, the data frame (with a dominant RTR) will win the arbitration.

Error Frame

A node might detect an error in a received frame, for example the Cyclic Redundancy Check
(CRC) field might not tally with its own CRC calculation. As soon as it detects an error,
a node generates a corresponding Error Frame. Error frames can be Active, which have
an Error Flag comprising dominant bits; or Passive, which have an Error Flag comprising
passive bits (this is discussed later).

Overload Frame

The overload frame allows a receiving node to force a wait period on the CAN bus until
the node is ready to process incoming data. Overload frames have the same structure as the
error frame (6-bit Overload Flag followed by 8-bit Overload Delimiter). However, unlike
the error frame, the overload frame is not broadcast at a time that will curtail an existing
frame broadcast. A mode might be temporarily unable to process incoming data or handle
requests for data due to internal operations, for example. In this case, the node will transmit
the overload frame starting at the first available interframe gap bit.

According to Di Natale et al. [19], the overload frame is unlikely to be needed by modern
controllers, although they are still required to participate in the overload frame process.

Extended Frames

The 11-bit Identifier fields in the original CAN protocol (known as 2.0A) allow 2048 different
values. To enable a greater range of Identifiers, CAN 2.0B, which was introduced in 1985,
allows an extended Identifier. The extended Identifier incorporates an additional 18-bit
Identifier element after the standard 11-bit Identifier. These two Identifier components are
separated by two recessive bits, meaning that during arbitration, the extended frames carry a
lower priority than standard frames.

2.1.2 CAN Bus Errors - Reduction, Detection and Confinement

The CAN protocol includes processes to detect and confine errors, as well as to reduce
the likelihood of errors due to signal noise and timing misalignment. However, as we will
see later in the chapter, some of these can be exploited during attacks. Of importance in
error detection and confinement is the bit stuffing process used by the CAN bus. The CAN
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protocol requires that for data frames and remote frames, the Start Of Frame (SOF), ID, RTR,
Control and Data field portion cannot transmit more than 5 bits of the same polarity. Where
the content of the frame would necessitate this, a stuff bit of the opposite polarity must be
inserted after the 5th bit. Receiving nodes ignore this stuff bit as they process the frame.

Bit Stuffing ensures the opportunities for timing-drift between nodes are reduced, thus
preventing timing errors. Overriding it also provides a mechanism for signalling errors, as in
the case of the 6-bit single polarity Error Flag of the error frame.

When any node detects an error in a frame, that node will globalise the error notification
and cause the frame to be discarded by all nodes. The error detecting node immediately
broadcasts an error frame comprising a 6-bit Error Flag of single polarity bits, followed by
an 8-bit Error Delimiter (recessive).

The consecutive Error Flag bits of the error frame deliberately violate the bit stuffing
policy. Other nodes will also broadcast an error frame, either because they also detect the
error, or because they detect the 6-bit Error Flag being broadcast. In this latter case, the
error frames of the responding nodes will consume the 8-bit Error Delimiter period that
would have been broadcast by the original error detecting node. This results in effectively
a 20-bit error frame (2x6-bit Error Flags + 8-bit Error Delimiter). After the 8-bit recessive
Error Delimiter there is a 3-bit recessive interframe gap, after which the transmitting node
will attempt to resend the same frame. Thus, an error not originally detected by all nodes
could result in a 23 bit-time delay before the erroneous frames can be rebroadcast at the first
opportunity [86].

If all nodes detect the error, hence send their error frames at the same time, the delay until
the earliest opportunity to rebroadcast the frame is 17 bit-times (error frame + interframe
gap).

Error Types

The CAN bus protocol identifies five types of error that might occur on the CAN bus [86].
Two of these (Bit Error and Bit Stuffing Error) operate at the bit level, while the remaining
ones operate at the frame level. Any node detecting one of these errors will issue an error
frame, causing the current frame to be flagged as faulty. The errors are presented in Table
2.2.
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Table 2.2 CAN bus errors specified by the protocol.

Error Description Node detecting
Bit Error A node will monitor the CAN bus

during its own broadcasts. If the
level on the bus is different to the
level it has transmitted, it will imme-
diately broadcast an error frame.
Bit errors do not happen at the ar-
bitration stage (since other nodes
might legitimately be changing the
CAN polarity) or at the ACK stage.

Transmitting
Node

Bit Stuffing Error If any node detects that the signal
polarity is consistent for 6 bits, it
will issue an error frame.

Receiving Node

CRC Error The CRC is calculated based on the
values in all fields of the frame up to
and including the data frame. Each
receiving node will compare the
transmitted CRC against their own
calculation. Any receiving node that
observes a mismatch will broadcast
an error frame commencing at the
start of the incoming EOF.

Receiving Node

Frame Error A missing required field or field ele-
ment. Such errors might be detected
with the CRC, ACK, EOF and ITM
fields.

Receiving Node
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ACK Error The transmitting node will set the
ACK bit to recessive, and expect it to
be altered to dominant by any node
that receives the frame and agrees
the checksum. If the transmitting
node does not detect a change in the
ACK bit to dominant, it will assume
no node received the frame and at-
tempt to resend it.

Transmitting
Node

Error Confinement

The CAN bus has two processes to try to confine errors. These processes also seek to prevent
the bus from being jammed with frames from faulty nodes.

Firstly, erroneous frames get destroyed by the error frame sent by any node that detects
an erroneous frame. The node that issues the error frame need not be a node that is interested
in the erroneous frame, since frames are read by all nodes. In addition, a node might detect
errors in its own frame, for example during broadcast of non-arbitration fields if the bit
polarity it detects on the bus differs from the polarity it is broadcasting.

Secondly, the CAN protocol provides a mechanism to remove the transmit rights and
receive rights of a node. Thus, a node that continuously broadcasts erroneous frames will
be excluded from broadcasting onto the network. To achieve this, each node maintains the
following counters:

• Transmit Error Counter (TEC): increments by 8 for each frame the node is unsuccessful
in transmitting; and if > 0, decrements by 1 for each frame that the node successfully
transmits.

• Receive Error Counter (REC): increments by 1 for every errored frame the node
receives; and, if > 0, decrements for every frame the node successfully receives.

There are a few exceptions and additional rules governing the updating of counters, which
are discussed in [19].

All nodes start out in Error Active mode (TEC < 128 and REC < 128), which means they
can send and receive frames, including error frames with an Error Field comprising dominant
bits.
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A node will go into Error Passive mode whenever either of its counters reaches 128 or
beyond, implying that the node is suspected of faulty behaviour. An Error Passive node
cannot transmit error frames with dominant Error Fields, hence it cannot destroy frames, but
it can still receive frames and send error frames with passive Error Fields. However, since
the passive frames contain recessive Error Fields, they are likely to be overwritten on the
network and so would not warn other nodes of the error. Should both of its counters drop
to 127 or less, the node will once again be able to broadcast error frames (i.e. Error Active
mode).

If a node’s TEC counter continues to rise, reaching beyond 255, the implication is that
the node is possibly corrupted. The node will switch to Bus Off mode, preventing itself from
broadcasting any dominant bits until it is reset and 128 x 11 bit times has passed [10].

Ensuring CAN Bit-reading Timing Consistency

Frames need time to travel to the furthest nodes along the bus. In addition, the bus needs to
ensure there is time for all nodes to check the frame and acknowledge an error-free receipt.
This acknowledgement is done by the receiving node switching the single-bit ACK field from
recessive to dominant. For the ACK, the transmitting node switches to receive mode. If it
detects the change in polarity in its ACK during broadcast, it knows that at least one node has
correctly received the frame. To ensure there is sufficient time on the bus to broadcast the bit
to each node and register any discrepancies that might stem from another node broadcasting
an opposing bit, as well as allow for changing the current between bits, the length of broadcast
of each bit is important, and needs to be sufficiently long, consistent and recognised by all
the nodes. Given that the network consists of individual nodes, each with its own clock, a
drift in timing alignment between two nodes could easily result in an inconsistent parsing of
the signal. The CAN protocol ensures bit rate alignment by bit stuffing, and by specifying
the bit broadcast length on any particular network.

2.2 CAN Vulnerabilities

This section discusses the vulnerabilities of the CAN and summarises attacks that have
been demonstrated which exploit those vulnerabilities. Somewhat ironically, the safety and
efficiency features of the CAN already discussed are also an inherent source of security
vulnerabilities. These are summarised in Table 2.3 and have been exploited in the attacks
described later in this section.
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Table 2.3 CAN features and associated vulnerabilities.

Characteristic Description Advantages Vulnerability
Unencrypted,
untargetted
broadcast.

Any device on the bus
can send any frame and
receive all frames.

Speed and effi-
ciency of broad-
cast and process-
ing.

Fuzz testing and
network traffic
reading for re-
verse engineering.

Weak authentica-
tion

Sending devices are not
identified, and receiving
devices cannot be
individually targeted.
Instead, messages are
broadcast to all nodes,
and it is up to individual
nodes to decide whether
to process the received
message.

Bus is “hot-
pluggable”.
Flexibility for
devices to deter-
mine their own
data needs.

Spoofing and
unauthorised
ECU reflash.

Arbitration by
message priority

Each message has a pri-
ority (the lower the ID,
the higher the priority).

Important mes-
sages take
precedence.

DoS by broadcast-
ing high priority
messages.

Error detection re-
sponse and self-
removal.

All devices on the bus
can detect errors and
notify all other devices.
Devices can remove
themselves from the net-
work if they frequently
receive erroneous data,
or frequently transmit it.

Lessened disrup-
tion of normal op-
eration.

ECUs can be
forced off-bus.

Although malicious access to sub-networks in a vehicle should be protected by sufficiently
secured gateways, this has been shown not to be the case. Moreover, the requirement for
components across the car to communicate and share information, often as legal requirement
such as monitoring emissions, introduces problems and complexities to ensuring a robust
gateway [7]. Checkoway et al. [14] and Tencent’s Keen Security Lab [78] were both able to
bypass CAN gateways in production cars, as well as reprogram the gateway functionality.
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Hoppe et al. [32] also managed to compromise a gateway ECU connecting the internal
subnetworks, as well as connecting the external network which is accessible from the
OBD port during normal operation. They achieved this by identifying, through running
and analysing a diagnostic session, a flaw in the gateway that allowed some unauthorised
messages to pass through the gateway when requested via forged diagnostic requests.

Some of the attacks discussed below used the ODB port to access the CAN (e.g. [24, 32,
43, 85]), including remotely via a phone app [91]. However other access points have been
demonstrated. A detailed analysis of potential attack surfaces was carried out by Checkoway
et al. [14]. As well as direct access via the OBD port, they were able to inject packets onto
the CAN bus via the car’s media player. They were also able to gain access to systems in
the car via the car’s Bluetooth, FM RDS and cellular systems, which they could then exploit
to compromise the CAN ECUs. For example, they reflashed the media ECU to trigger the
broadcast of pre-determined CAN packets when a particular Program Service Name message
was received over the FM RDS channel. Koscher et al. [40] demonstrated situations in
which CAN ECUs were illicitly reflashed via the OBD port and used to stage subsequent
attacks. They were able to reprogram ECUs that should have prevented this from happening,
including reflashing whilst the car was being driven. They concluded that "many ECUs in our
car deviate from their own protocol standards, making it even easier for an attacker to initiate
firmware updates or DeviceControl sequences" (p7). In a well publicised attack, Miller and
Valasek [51] remotely hacked a Jeep Cherokee via a cellular connection to its infotainment
system, enabling them to inject CAN messages which controlled the steering, brakes, and
acceleration. Although, prior to the attack, the authors needed to perform a preliminary
analysis of the car requiring physical access, no modifications or additional devices needed
to be added to the car during the attack.

What is clear from these studies is that the impenetrability of the automotive CAN cannot
be assumed. Access might be gained through inadequacies or imperfections in gateways;
devices might be connected directly to the CAN; or internal ECUs might be illicitly reflashed
to act a internal rogue units. Increases in connectivity, and the uptake of over-the-air updating,
are likely to present more opportunities for breaching.

2.3 CAN Attack Models and Effects

Having discussed the vulnerabilities of the CAN and the possibilities for malicious access
to the CAN bus, this section summarises the effects of attacks that have been demonstrated.
The goal of this section is to understand the potential intentions of an attack, as well as the
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likely effects on the bus. It should be appreciated that the attacks described here present only
a flavour of what might be possible, depending on the ingenuity of the attacker.

Checkoway et al. [14] reflashed media and telematics ECUs so that they broadcast pre-
determined packets onto the CAN bus disrupting operations such as tire pressure monitoring.
In their detailed exploration of attacks possible via the OBD port, Koscher et al. [40] were
able to manipulate many functions by injecting one or more packets. In a car being driven on
the road, they were able control braking, engine-control and engine component configuration,
locks, windscreen wipers and dashboard readings. They were able to control additional
functions when the cars were stationary. Their attacks comprised three approaches:

• Packet Sniffing and Target Probing - observing the packet traffic as various car functions
are tested, to try to determine what packets pertain to what functions.

• Fuzzing - iterative testing using random, or partially random packets. The authors also
discovered this to be a simple way to stage disruptive attacks.

• Reverse Engineering - using a memory reader and debugger to understand ECU code.

As already discussed, a series attacks have been demonstrated and publicised by Valasek
and Miller [51–53, 85], including attacks via direct access through the OBD port, and
remote, indirect access via cellular networks connected to the internal infotainment systems.
They replayed packets onto the CAN to achieve a wide range of adverse effects, such as:
causing the display of erroneous information, such as speedometer or odometer readings;
manipulating functions, such as steering the car during auto-parking or braking the car
via the pre-collision system; or failings caused by overpowering the CAN network, such
incapacitating the power assisted steering, preventing the driver from making hard turns.

The ability to manipulate data packets on the CAN does not automatically mean that we
can infer the ability to control some functionality of the car. In their study of the CAN traffic
of two cars, Valasek and Miller [85] reported observing many instances where spoofing a
packet and its data values did not trigger any action. For example, a packet that indicated
how much the brake was pressed did not cause the brake to engage when replayed. Reasons
for this, the authors cite, could be that i) the original ECU might still be broadcasting the
correct data, confusing the recipient ECU with conflicting data; ii) the ECUs have many
safety features built in (such as only acting on a Lane Keep Assist steering wheel turn
that is less than 5%). The authors point out that circumventing the first challenge requires
broadcasting spoofed data at a higher rate than the legitimate data. The second challenge
might be circumvented by tricking the ECU in some way – indeed Valasek and Miller
were able to determine the car operations and ECU interactions that rendered a variety of
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attacks achievable on the two cars they studied. Clearly, overcoming both challenges implies
dedication and depth of the knowledge from the attacker. Not only would the attacker need
to understand the packet data, but would need to ensure the normal CAN processes are not
breached. For example, legitimate packet broadcasts need to adhere to the Cyclic Redundancy
Check (the CRC field should have a checksum value that considers the data field amongst
others) and bit stuffing (which requires a change in bit value after five consecutive matching
values). In normal running, these safety features might reduce the likelihood of erroneous
data being accepted.

Hoppe et al. [32] used a simulated automotive CAN network built using a Vector CANoe
package and attached production ECUs to test attack scenarios. In the first scenario an
ECU was recoded to disrupt the window functioning by issuing an open window request
when the car’s speed exceeded 200 km/h. For their second attack the ECU was recoded to
disrupted functioning by injecting counteracting messages, e.g. a close window request each
time an open window request was observed on the CAN. Similar "Read and Spoof" actions
were also tested that overrode legitimate indicator signal light requests. Their third attack
emulated the diagnostic session response of the airbag control unit, masking that it had been
removed. The authors also concluded that it would be possible to spoof the regular messages
broadcast for the ECU gateway, which would control any driver-side airbag warning lights.
This masquerade attack would not necessarily alter the frequency of messages, since the
legitimate node is assumed to be removed or incapacitated.

Lee et al. [43] conducted a systematic fuzzing attack on three mid-range automobiles, by
sampling their CAN traffic via the OBD port and then creating fuzzed packets comprising the
CAN IDs and random data in one of the data fields, with zero values in the remainder. These
were reinjected via the OBD port every 10 ms. Acknowledging the tightness with which the
manufacturers guard their CAN databases, and thus the challenges facing any hacker, the
authors deliberately avoided making any analysis of the packet contents or attempts to reverse
engineer, or interpret the data, or to identify any recognizable ECU activity. They identified
26 CAN IDs, and in 14 of these they observed changes in the activity on the instrument panel
displays, which the authors assumed would map to corresponding ECUs. In addition, the
authors believed that three CAN IDs produced a change in the actual behaviour of the car,
though they were unable to clarify the pattern.

Cho and Shin [17] demonstrated bus-off attacks, where attack collisions generated by
injecting spoof packets, forced CAN ECUs to self-deactivate in accordance with the CAN
protocol specification for error containment. Cho et al. [16] extended these into attacks
that might take place whilst the vehicle is parked and switched off. Even in this state, many
ECUs are monitoring the bus using reserve power supplies. The authors state that the bus
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activity needed to wake up the ECUs is simple, and standard to the CAN specification; and
would be met by pretty much any legitimate structured message pertaining to the CAN ID.
Battery drain could thus be achieved by continuously broadcasting the message to keep the
ECU awake, or by waking, and then controlling, the ECUs that govern processes that are
high battery drainers. Significantly, the attacked ECUs needn’t be those directly causing
the battery drain. For example, the authors found the light controls difficult to reverse
engineer, but were able to invoke the lights in spite of this, by controlling the doors and boot,
thus activating the interior lights. In another ignition-off attack (Denial of Body-control),
the ECUs were woken by injecting packets onto the CAN and then the CAN bit rate was
temporarily switched from 500 kBits/s to 250 kBits/s and packets broadcast, resulting in
the ECUs registering errors that sent them into a bus-off state. Since many ECUs are not
programmed to automatically recover from being bus-off, many functions were incapacitated,
including key-less entry. Functionally was only returned to the car after the battery had been
disconnected for a few minutes and reconnected. Instead of changing the bit rate, the authors
state that the bus-off attack can also be induced by changing the internal/net resistances or
capacitance. The authors tested their attacks on 11 cars of differing makes or models. In post
2015 cars they found that typically over 50% of CAN IDs sent when the ignition was on,
would still be transmitted if the ECU was awakened whilst the ignition was off; which they
cite as an indication of the wide use of ECU wake-up functionality that might be exploited
by an adversary.

Froschle and Stuhring [25] considered a range of attacks that might be mounted once the
attacker has access to the CAN, and tested these on a CAN simulation rig comprising the
SILAB driving simulator and connected ECUs. They assumed the attacker had been able to
compromise one node on the CAN, such as the gateway ECU, so was able to run her own code
on it. The attacker would not need further access to the vehicle during the attack, launching
the attack via the malware on the compromised node, and would not need to compromise any
other node during the attack. Adopting this assumption, they demonstrated fuzzing attacks,
impersonating attacks and injection attacks. For simple injection attacks they injected at high
frequency, packets with very high priorities (e.g. 0x0) to block lower ranking IDs. They
also flooded the network with dominant bits to fully incapacitate it. This typically sent at
least one node into a bus-off state within 1ms (or 260 bit-time). Another of their attacks
targeted specific IDs by mimicking and synchronising their broadcast, hence exploiting the
arbitration and error containment mechanisms to suppress the legitimate broadcast. These
attacks resulted in the mimicked ECU eventually being forced off-bus. For example, in the
case of an ID with a repeat broadcast period of 20ms, the ECU was forced off-bus typically
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within 8.8ms to 13.9ms when its original broadcast and immediate repeat attempts were
suppressed by spoofing.

2.3.1 Attack Characteristics

The attacks described above have a variety of approaches and effects, such as exploration or
probing, denial of service or disruption, control or manipulation. They have been instigated
from gateway breaches, devices attached to the CAN, and from compromised nodes acting
as rogues. In spite of their variety, they are likely to have two basic effects on CAN traffic:
changes to packet timings; and, changes to packet data payload.

Many of the attacks will alter the frequency of CAN packet broadcasts. These might
be delayed or missed, such as in the disruptive attacks by Froschle and Stuhring [25] that
flood the bus with dominant bits to disrupt broadcasts, or that targeted individual IDs by
synchronously broadcasting spoofed packets, or prevented ECUs from broadcasting by
forcing them into a bus-off state. The packet broadcast can also be expected to be missed
if the ECU is temporarily deactivated during a reflash, as proposed by Koscher et al. [40].
For many attacks, though, the broadcast of a particular packet will increase. Attacks, such
as those by Hoppe et al. [32] result in an increase in the number of messages for a CAN
ID – the legitimate messages still being broadcast, plus the injected, counteracting, spoofed
messages. The injection of spoofed packets is likely to need to be done at rates comparable
to, or above, the broadcast of the legitimate packet in order to override the legitimate values
[76]. Similarly, fuzzing attacks are likely to results in increased appearance on the CAN of
the target CAN ID.

However, not all attacks can be expected to affect timings and broadcast rates [30]. The
masquerade attacks proposed by Miller and Valasek [52, 85] and Froschle and Stuhring [25],
for example, have a legitimate ECU that has been incapacitated, with a masquerading ECU
broadcasting fake packets in its place at the same frequency. It is also possible that other
action might be taken to cover any broadcast time-shifts. Sagong et al. [64], for example,
have demonstrated a cloaking attack; an intelligent masquerade attack, in which the adversary
adjusts the time of spoofed messages to correlate with the mimicked ECU.

The second aspect that the attacks are likely to alter is the payload data values. In fuzzing
attacks these may be randomly generated, while predetermined values might be used in
attacks that seek to purposefully manipulate the vehicle. Of particular interest here are
fabrications that include faked, but plausible, values. These values are likely to registered as
legitimate by the receiving ECU.

The attacks might entail subtle and convoluted data fabrications. For example, Miller
and Valasek [52] describe an attack that invoked the Park Assist System to manipulate the
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steering on a Toyota Prius. Their attack had to first inject messages to fool the ECUs into
believing the car was in reverse and travelling at less than 4 mph. Although the sensor value
messages the authors injected did not alter the car’s speed, they were read by some ECUs
as signifying the actual speed, thus enabling activation of the speed-restricted Park Assist
Mode, which in turn responded to fake steering command messages injected onto the CAN.
The forged messages injected during this attack were legitimate and plausible, containing
values that would be expected in another situation.

2.4 Conclusion

Although the automotive CAN is robust and suited to the in-vehicle environment, it lacks
the security features expected in a connected network, and has subsequently been shown to
be vulnerable to cyber attack via a range of channels. Attacks have been demonstrated that
affect safety and performance functions of the car ([52, 14, 32, 51, 53, 85]). However, these
have been specific to each car, requiring either existing knowledge of the CAN dictionary
for that car model, reverse engineering, or systematic fuzz-testing to derive CAN dictionary
knowledge. Such attacks have focused on manipulating specific CAN packet IDs pertinent to
a given car model. Whilst testing the detection of such actual attacks would provide useful
proof of an attack detection system’s potential for identifying a predefined attack, we also
need to consider how the detection systems could work across a broader range of potential
attacks, including those not yet envisaged. Moreover, the testing of such systems needs to be
demonstrated across car makes and models. The testing in this thesis therefore attempts to
meet this need.

Whilst attacks might affect both packet timing and payload, attacks that would be manifest
only in changes in payload have been proposed (e.g. [85, 25, 30, 64]). The focus of this
thesis is therefore to determine methods to independently detect anomalies in both CAN
packet timings, and in the CAN packet payload. Where possible, the detection should be
applicable across all CAN packets, and not tailored to one attack model or car, allowing
a system that might be deployed broadly and not constrained to detecting only currently
specified attacks.



Chapter 3

Related Work - CAN Intrusion Detection

This chapter discusses the options that have been proposed for CAN attack detection, as well
as considering the options for generating the data to test those detection proposals. Whilst
inspiration and ideas can be drawn from reviews of computer-network intrusion detection
(e.g. [9, 26, 71]), the nature of the automobile CAN bus warrants some considerations that
differ from an intrusion detection method that might be implemented on a server or computer.
As discussed in Chapter 1, differentiating factors include the low processing power available
to the ECUs on the CAN; the lifecycle, maintenance and usage patterns of the car; the rapid
generation of CAN data records, and the limited CAN dictionary sharing by automotive
component manufacturers. Also, the safety critical nature of the CAN bus and the nature
of driving make it important to achieve high accuracy, especially reducing false positives,
which would cause unwarranted intervention during driving or distractions for the driver.

3.1 CAN Intrusion Detection

Intrusion detection is based on the assumption that the behaviour of intrusions will differ
from the behaviour of legal activity, and a few analytical methods have been proposed as
potential candidates for a CAN intrusion detection system (IDS). Such methods can be
categorised broadly as signature based and anomaly based; a distinction made by other
researchers across the computing field [55, 60, 61, 71]. The anomaly based approaches
are further categorised into their methods employed, such as statistical, knowledge based,
clustering/density based, support vector machines, neural networks, and Markov models.
The latter four categories are examples of Machine Learning (ML).

Table 3.1 presents a general summary of computing IDS methods in terms of overheads,
advantages and disadvantages. The Set-up overhead column lists the relative machine effort
to establish or up-date the decision algorithm, based on opinions expressed in published
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sources [9, 20, 29]. The training for clustering algorithms can be particularly high since it
may involve nested iterations through the training data-set to identify the cluster neighbours.
That said, the training overhead across all the methods is high, especially considering the
low processing available on ECUs on the CAN bus. Training therefore might not be viable
in-line. Training of signature, statistical and knowledge-based methods relies mainly on
human and disparate processes that are unlikely to be amenable to automated training, so the
overheads are left blank in the table.

Of course, general estimates of the overheads, such as shown in Table 3.1, are not
definitive since implementation variations will affect processing and workload, so would
require a thorough analysis of the training algorithms. For example, grouping the data points
as dense and connected regions can reduce the overhead in clustering methods [4, 9]; likewise,
the adjustment of parameters for the SVM [29]. Nevertheless, the overheads would need to
be considered and minimised if in-line CAN training is considered.

Table 3.2 summarises the CAN studies that have tested the IDS methods, and which
are discussed later in this Chapter. It also shows the attack manifestation that the studies
sought to identify: packet flow (changes in the timing or number of packets), and payload
manipulation (changes to the values in the packet data fields).

Table 3.1 Intrusion detection method overheads, advantages and disadvantages.

Method Category
Overhead

Advantage Disadvantage
Set-up Processing Memory

Signature Based Low Medium Low false positive
rate for known at-
tacks.

Assumes the
attack signature
is already known.
Easily bypassed
by modified
attacks [71]

Continued on next page
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Table 3.1 – continued from previous page

Method Category
Overhead

Advantage Disadvantage
Set-up Processing Memory

Statistical Medium Low May require no
prior knowledge
about normal
activity, and can
identify attacks
evolving over
a long period
[26, 61].

Can be retrained
by attacker;
and not all be-
haviours can be
stochastically
modelled [26, 61].
Thresholds may
be difficult to
determine [61].
Unlikely to
capture the inter-
actions between
attributes [12].

Knowledge Based Medium Medium Low false posi-
tives.

Knowledge may
be difficult to de-
velop. May be dif-
ficult to maintain
[61].

Clustering or Den-
sity Based

O(n3) High High
- may
require
match-
ing
against
full train-
ing data
set.

Simplicity and un-
derstandability [9,
60].

Needs feature re-
duction to reduce
high dimensional-
ity [9]. Classifica-
tion time can be-
come large as the
number of neigh-
bour comparisons
increases.

Support Vector
Machines

O(n2) Medium Low Can deal with
high-dimensional
data and small
samples [9, 71].

Resource-hungry
training [60].
Prone to high
false positive rate
[61]

Continued on next page



26 Related Work - CAN Intrusion Detection

Table 3.1 – continued from previous page

Method Category
Overhead

Advantage Disadvantage
Set-up Processing Memory

Neural Networks O(emnk)
where: e
epochs,
m fea-
tures, n
observa-
tions, k
hidden
neurons.

High Low Adaptability to
environmental
changes [26].
Ability to gen-
eralise and cope
with noise [41].

Lack of de-
scriptive model
explaining deci-
sion [26]. Prone
to high false
positive rate [61].

Hidden Markov
Models

O(nc2)

where: c
number
of states

Medium Low Used extensively
in IDS [26]. Suit-
able for assess-
ing transition se-
quences [55].

Results are
dependent on
assumptions
about the system
behaviour[26].

Table 3.2 Intrusion detection methods used in automotive CAN research.

Category Study
Intrusion Detection

Packet
Flow

Payload
Manipu-
lation

Signature Based Studnia et al. [75]: attack signatures
modelled using language theory.

X X

Statistical

Ling and Feng [45]: consecutively
broadcast ID threshold count.

X

Cho and Shin [17]: model of clock
behaviours using Recursive Least
Squares, with Cumulative Sum anal-
ysis to detect anomalies.

X X

Song et al. [73]: attack score based
on message frequency.

X

Gmiden et al. [28]: time intervals
between matching CAN IDs.

X

Continued on next page
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Table 3.2 – continued from previous page

Category Study
Intrusion Detection

Packet
Flow

Payload
Manipu-
lation

Taylor et al. [76]: Message time in-
tervals combined with payload statis-
tics, assessed using T-Tests

X

Lee et al. [44]: Time interval of
a remote request broadcast and the
received response compared against
mean.

X

Knowledge Based
, , Marchetti and Stabili [47]. Transi-
tion matrix.

X

Studnia et al. [75] Legitimate state
transitions.

X X

Clustering or Den-
sity Based

Martinelli et al. [49]: Four nearest
neighbour classifiers.

X X

Support Vector
Machines

Taylor et al. [76]: Message time in-
tervals combined with payload statis-
tics, assessed using One Class Sup-
port Vector Machine.

X

Neural Networks
Kang and Kang [38]: Supervised
Deep NN trained using normal and
attack CAN packets.

X

Taylor et al. [77]: Anomaly detection
in data bit words using Long Short-
Term Memory recurrent neural net-
work.

X

, Wasicek and Weimerskirch [89]:
Root-Mean-Square function to de-
cide the degree of anomaly from
trained Bottleneck NN output.

X

Continued on next page
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Table 3.2 – continued from previous page

Category Study
Intrusion Detection

Packet
Flow

Payload
Manipu-
lation

Hidden Markov
Models

Narayanan et al. [59]: Hidden
Markov Model detecting anomalous
changes to speed and RPM.

X

3.2 Signature Based Intrusion Detection

Signature based intrusion detection assumes that the signature patterns of the attack are
known. The discriminatory features from the signatures can thus be stored in a database,
against which the features of subsequent packets are monitored. Packets with features that
match the signatures on the database are flagged as violations.

Since they do not need to adapt to the deployed environment, signature based methods
can be easy to deploy initially [71]. They can detect reliably and generate a very low false
positive rate when the attack signature is known, and they can determine which type of attack
the system is experiencing, which is useful for assessing the epidemiology of attacks [61].

However, signature based intrusion detection techniques have sometimes been rejected
for CAN anomaly detection because the development, maintenance and deployment of
signature databases is seen as impractical due to the nature of the industry sector, the life-
cycle of the vehicle, and the still emerging patterns of attack [31, 57]. The non-disclosure of
CAN databases makes the expected behaviour of the CAN traffic difficult for independent
researchers to comprehensively map [52], and as a consequence, the boundary between a
normal signature and an attack signature may be difficult to determine. Also, the CAN
databases are proprietary and vary by manufacturer, further hindering the creation of useful
signatures. In addition, the behaviour of an ECU might not be fully known [76]. As a
consequence, the meaning of data, or indeed an understanding of what packets pertain to
what functions, is unlikely to be readily available.

With regard to attack signatures, the newness of the automotive cybersecurity field,
and the diversity of potential attack modes being uncovered (e.g. Checkoway et al. [14]),
together with the ingenuity of hackers, suggests that it is probably unwise to assume all attack
scenarios will be predictable. A further hindrance is that the efficiency of signature based
detection may be degraded if the attack activity spans multiple packets [61].
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Additional complications stem from the frequent updates required to keep the signature
databases up to date. The long lifespan of vehicles and their dispersed locations makes
updating the signature database difficult, and it is perhaps unwise to assume owners would
be able, or motivated, to update their systems outside of the annual service [57].

In spite of the drawbacks, Studnia et al. [75] proposed a formal language-based approach
to model both normal ECU behaviour and behaviour to known attack signatures. They
designed models to detect four categories of attack: modified packets that do not conform to
the communication protocol; periodic forged packets broadcast while the legitimate versions
are still being broadcast; normal packets replaced with malicious forged ones; and, forged
event-triggered packets. Their proposed system would first check whether the packet was
compliant with the protocol, then perform a signature-based consistency check against the
current system state and the ECU’s model.

When devising the models, Studnia et al. had access to the specifications of the CAN
network and the ECUs of the sampled car. Though they acknowledge that parts of the
actual system might not adhere to those specifications. They present their system as a early
proposal, present limited details of their attack simulations, but report that their system could
detect intrusions in real-time, but it sometimes failed to detect an attack if it missed the
first packets of the attack broadcast. Also, they recognise that their models were based on
simple representations and attacks, and that the modelling of more complex situations (such
as taking into account the timings between matching ID packets), might require a method
that offers more expressive representations. When considering similar approaches, Taylor et
al. [77] state that assuming a finite symbol dictionary might be unrealistic for CAN traffic,
and the number of words for a particular ID might be infinite over the lifetime of the car.

3.3 Anomaly Based Intrusion Detection

Anomaly based IDS seek to detect behaviour that deviates from the normal. The assumption
is that the normal behaviour can be sufficiently profiled and thresholds established to enable
the meaningful identification of deviations.

In anomaly based intrusion detection, the detection is not based on set signatures, giving
these methods the potential to generalise, and making it possible to detect previously unknown
attacks [60, 61]. Further, the profiles used by the system are customised by the learning
algorithm, which makes it difficult for the attacker to know what activity might trigger
an alarm [61]. However, such systems require training and the collection of data that is
sufficiently representative of normal traffic to enable accurate, reliable anomaly boundaries to
be determined. In the case of CAN data this can be problematical both in terms of accessing
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data from the CAN bus, and in terms of gathering data covering a representative range to
driving situations.

Anomaly detection is prone to higher rates of false positives (wrongly classifying a
legitimate event as an attack) and false negatives (failure to detect an attack) [61, 71]. Either
of these outcomes is especially detrimental in the automobile CAN network. False negatives
obviously so, while false positives would be a distraction to the driver, and might lead to
ignoring future warnings.

Even so, the unpredictability of attack scenarios, together with the difficulties in de-
termining comprehensive robust signatures, has led to many studies adopting the anomaly
detection approach. Broadly, these approaches can be categorised into statistical based
approaches; knowledge based approaches; and machine learning, which can be further
categorised according to the machine learning model applied.

3.3.1 Statistical Based

Statistical methods compare the currently observed statistical profile of the system against a
previously determined statistics profile, such as mean, median and mode. In the case of time
series data, such as the CAN bus traffic, statistical methods might employ a rolling window.
Statistics based techniques can by univariate or multivariate. Univariate techniques model
each variable independently. Some factors regarding the manner of broadcast, such as timing
intervals between CAN ID broadcasts, might be amenable to univariate analyses, but they
are likely to be less useful for applying to the data contents of the CAN messages. Here for
example, what appears to be a normal profile (for example, for the steering position) might
actually be malicious in the given context. Therefore, multivariate methods might be better
suited for detecting intrusions affecting the CAN ECU sensor data.

The complexity of the automobile network is cited as making it difficult to make a precise
statistical model that would allow rare but legitimate patterns [75]. Even so statistical models
have been considered for CAN intrusion detection, and some researchers proposing other
methods have suggested statistical models as a supplemental check [77].

Ling and Feng [45] proposed using resettable counters and thresholds to detect any ID
that is broadcast consecutively beyond a threshold-defined number of times. Such broadcasts
might be indicative of a DoS attack. However, their reliance on known thresholds has been
challenged [11].

Gmiden et al. [28] selected IDs broadcast at fixed time intervals, and used the ID’s
own regular frequency to monitor for increased broadcast frequencies indicative of injection
attacks. The authors present their system as an early proposal, so do not present evidence
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for the validity or scope of the application, likewise the range of timing variance is not
empirically tested.

Song et al. [73] also considered the time intervals, and observed in their study car
that the average time interval for IDs was reasonably regular when driven at normal speeds.
Consequently, intrusion attacks were detected where an ID’s packets were injected at half the
normal time interval. It is, though, unclear from their paper how many of the CAN ID set the
testing was conducted on.

Cho and Shin [17] proposed a clock-based IDS to detect fabrication, suspension and
masquerade attacks. In fabrication attacks, a compromised ECU injects forged packets with
a view to distracting receiver ECUs. Suspension attacks entail an ECU being compromised
so as to suspend its transmissions. The masquerade attack is potentially harder to detect
since it does not necessarily alter the frequency of any ID broadcast, and involves an ECU
learning the broadcast patterns of another ECU, which it then forces to suspend broadcasting
and itself takes over the broadcasting. Cho and Shin proposed that their method could detect
three attacks, and could pinpoint the attacking ECU. Their system uses message periodicity
to estimate the transmitter’s clock skew (the difference in its frequency compared to clocks
in other ECUs). A norm model is then constructed using Recursive Least Squares, and
intrusions detected using a Cumulative Sum analysis to detect patterns of change which are
used to determine attacks.

Hoppe et al. [31] devised an attack scenario in which hazard warning lights are rendered
inactive by a malicious component that broadcasts a mimic packet to turn off the lights
whenever it detects a legitimate packet calling for them to be activated. Modelling the flow
of packets using an attack simulation, they observed that the frequency of broadcasts for the
packet rose beyond the maximum 22(±1) per second seen in normal operation (when only
the legitimate version of the packet was broadcast). In addition, the semantic meaning of
the packet’s data ("on" or "off") in the previous 8 packets switched more frequently than the
0 or 1 changes observed during normal operation. Thus, they treated more than 28 packet
broadcasts per second, combined with more than 4 inversions in the previous 8 packets, as
signifying an anomaly.

Lee et al. [44] considered the time intervals between the broadcast of a remote request
and response packets as a means of detecting three types of attack: a) DoS by packet injection;
b) fuzzing attack by packet injection; c) impersonation attack in which an ECU impersonates
another ECU that it has incapacitated. The authors reasoned that these attacks might incur
changes that would affect the interval between a node making a remote request and receiving
the next message bearing the requested ID. Such timing changes might be brought about by
the changed traffic affecting packet arbitration sequences, or, in the case of impersonation
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attack, changes in the distances between nodes, the clock cycles, the processing mechanisms
or the physical ECU qualities. They measured variations in the request/response timings
in four ways: 1) offset (number of messages on the CAN between the remote request and
message with the matching ID); 2) the proportion of requests with an offset of one (i.e. the
next message after the remote request was one with the requested ID); 3) the proportion
of requests not responded to in the next six messages (an ECU was deemed to be out of
action in this case), and 4) time interval between the request and the matching ID’d message.
Conducting DoS and fuzzing attacks that injecting records via the ODB port, for each of
several IDs tested they observed a decrease in offsets, and an increase in none-responses.

3.3.2 Knowledge Based

Knowledge based techniques deduce a set of rules from the training data. Subsequent events
are then classified against these rules. These techniques can produce a high capture rate
if the knowledge base is comprehensive enough; and a low false positive rate since such
techniques are less likely to automatically classify previously unseen evens as attacks [26].
However, their drawback is that knowledge might be difficult to acquire or encode [26]. This
is potentially the case in CAN traffic, and the issues discussed above for the Signature based
techniques are also applicable to the Knowledge based ones.

Marchetti and Stabili [47] proposed building a transition matrix, which contained the
legitimate paired sequences of CAN IDs. Consecutive messages broadcast onto the CAN
would then be validated against the matrix; and messages broadcast out of sequence, flagged
as anomalies. Such an approach would require very little storage and have low computational
costs. Based on tests conducted from 10 hours of driving data in different traffic conditions,
they concluded that this approach gave no false positives, and it reliably detected simulated
attack data where random sequences of IDs were inserted into the readings. However,
the method was less successful at detecting replay attacks wherein known sequences are
rebroadcast. For these attacks, the sequence is previously seen, so treated as legitimate,
consequently, any anomaly can only be observed at the beginning or end of the injected
sequence. The authors propose the addition of statistical detection methods to cope with such
possibilities.

Whilst such a matrix approach based on the next legitimate ID might usefully detect
mismatches where an ID is known to be followed by an ID from a very small subset, it would
be less successful where an ID could be followed by an ID from a large subset. My analyses
of CAN data from a popular family car shows this to be the case for many of the IDs (Fig.
3.1).
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Fig. 3.1 Count of different packet IDs observed to follow each CAN ID in a popular UK
family car. The CAN ID rank, rather than ID value, is represented on the x axis. The data
was obtained from logs spanning over 10 hours driving over a range of roads types and
conditions.

3.3.3 Open Source IDS

Within the field of intrusion detection for general computer networks, a range of rule-based
open source packet sniffers with included IDS suites have been developed, such as Snort [18]
and Suricata [80]. Although usually run on a general purpose computer, some, including
Snort, have been shown to be usable on a Raspberry Pi [42]. The reliance on predefined rules
and known signatures, which must be stored and regularly updated, as well as interrogated
for each packet during detection, has been seen as barrier to their use in front end detection
systems (e.g. [9, 1, 5, 56]). Such systems have been devised for detection on common
computer networks and have not been considered in any of the CAN papers reviewed for this
thesis, moreover no mention of any compatibility with the CAN protocol could be found on
their web sites or forums, although there is some discussion suggesting current incompatibility
[69]. However, even if compatibility could be gained, the determination of suitable signatures
and rules for detection would still need resolving, as would the mechanisms for deployment
and regular rule-list updating.
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3.4 Machine Learning

Machine Learning (ML) methods typically attempt to learn patterns in the data by processing
samples on which the status of the packet (e.g. "normal", or "intrusion") is known. Learning
can either be supervised or unsupervised. Supervised learning uses a training data set
containing labelled normal and anomalous data, whereas unsupervised learning uses a
training data set in which the labelling of the data is unknown; the machine learning algorithm
will then attempt to derive the classes based on some similarity. Some unsupervised machine
learning methods offer variations that seek to determine outliers after being trained just using
data from known normal instances.

During one-class classification training, data taken from normal operation is analysed to
determine a threshold boundary that encompasses the normal instances. Subsequent instances
are then classified as normal if they reside within the boundary, or anomaly if they lie beyond.

One-class classification fits situations that are relevant to automotive network traffic
analysis. It is, for example, suitable where training data instances of attack behaviour are
difficult to generate or predict, or where the simulated attack class risks being too narrowly
defined to enable generalisation [90].

One-class ML classifiers have been successfully used across a number of domains [39]
and are clearly relevant for the analysis of automotive network traffic where the variety of the
attack modes, and the complex lifecycle of the vehicle, suggest it would be unwise to assume
knowledge of the entire range of attack profiles. The one-class classification approach has
therefore been proposed as a likely CAN intrusion mechanism [76, 81, 46].

3.4.1 Clustering and Outlier Detection

Clustering ML techniques adopt the assumption that instances of a particular class have
data profiles that group them into clusters around an archetype. Each new instance can then
be classified according to its distance from that archetype. Approaches to outlier detection
have employed multidimensional distance calculations, enabling multivariate analysis, often
combined with density calculations [61]. There are a number of distance calculations,
but often the Euclidean distance is used, usually with the data normalised to ensure the
dimensions carry equal influence.

Clustering approaches can be applied to unsupervised learning [61]. For unsupervised
training on data that includes multiple classes, the assumption is that the anomalies will form
the smaller of the clusters. For unsupervised training that contains only normal data, a density
measure and distance calculation could determine the edge of the normal class boundary.
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Martinelli et al. [49] tested nearest neighbour classifiers in an attempt to distinguish
between normal CAN packets and simulated attack CAN packets solely from the data fields,
irrespective of IDs. They staged four types of attack that injected packets, and initially com-
pared sample metrics for each data field to establish that it showed a statistical significance
between the normal data and the fields generated in the attacks. Having established this,
they then constructed classifiers that incorporated all eight data fields, which they trained
and evaluated using labelled normal and attack generated packets. The classifiers were:
Fuzzy-rough K-nearest neighbour; Discernibility kNN Classifier, and Fuzzy Unordered
Rule Induction Algorithm (FURIA). The four types of injection attack tested were: DoS (a
dominant 0000 CAN ID, with 0 value data fields, injected every 0.3ms); fuzzing (random
ID and data values every 0.5ms); and, gear and RPM fabrication (CAN IDs related to gear
or RPM information, injected every 1ms). Other than describing that the normal data and
attack data resulted in statistically different data sets, the authors discuss little of the gear
and RPM attacks, such as the extent of the data manipulation, though they have published
the raw data. All the classifiers were able to classify inserted packets containing the gear
and RPM data with full accuracy, though they were not as accurate on the DoS and fuzzing
attacks. The authors concluded that the best results across all attack scenarios were achieved
with the Fuzzy-rough K-nearest neighbour, which showed false positives rates ranging from
0 to 0.038 across the data sets. It achieved a precision of 0.963 and recall of 1 in the DoS
attack; a precision of 0.85 and recall of 1 in the fuzzing attack, and precision and recall of 1
in the gear and RPM attacks.

3.4.2 Hidden Markov Models

Hidden Markov Models attempt to predict the subsequent state of a system from the current
state. Although they cannot be applied to some processes; for example, where the future state
is independent of the current state (such as predicting the results in a series of coin tosses),
they have been suggested as having potential in CAN anomaly detection [77].

Narayanan et al. [59] used gradient data derived from CAN packets, rather than absolute
values, to implement a Markov-based anomaly detector. From the CAN readings, they built
a time-series vector containing speed and RPM data, which they were able to identify in
the CAN logs they obtained from three different model cars. They used a Hidden Markov
Model, generating transition probabilities (i.e. probability of changing to the next state) and
emission probabilities (i.e. the probability of the observed output for the given state). During
anomaly detection, the posterior probability of the next read observation was determined
using a sliding window of immediately prior observations. Their test data comprised CAN
logs in which they changed the data to show anomalies representative of specific behaviours,
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e.g. a sudden increase in speed. The authors report that the system successfully detected the
anomalies they generated covering speed and RPM data, both individually, and in speed and
RPM data combined, though they acknowledged that they need to test with more anomalous
states of varying degrees.

3.4.3 Support Vector Machines

Support Vector Machines (SVMs) seek to separate classes using a hyperplane that follows
the centre of the largest margin between the classes. The instances on the edge of each class
that determine the margin become the support vectors.

SVMs can learn from small samples; can cope with high-dimensional data, and have the
ability to self-learn [71]. A variant of the SVM particularly relevant to anomaly detection is
the One-Class SVM (OCSVM), which attempts to create a suitable boundary when trained
using only normal instances.

Observing that many CAN IDs seem to be broadcast at fixed frequencies, Taylor et al. [76]
restricted their study to examples of these, ignoring IDs with less regular periodicity. They
measured broadcast frequencies and average data-content changes, which they compared
with historical values to determine anomalies. Their study concentrated on attacks that might
alter the ID frequency, either by injecting extra packets or erasing packets, and compared a
statistical approach against an OCSVM.

For their statistical approach, against each ID, the authors measured:

• The ID.

• Number of packets in the flow.

• Average Hamming distance between successive packet data fields.

• The variance of the Hamming distance between successive packet data fields.

• The average time between successive packets.

• The variance of the time difference between successive packets.

• T-test values comparing the time difference mean to the historic values.

• T-test values comparing the Hamming difference mean to the historic values.

• Combined time difference T-test value and Hamming distance T-test values.
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They chose a window length of one second, and eliminated IDs with a period of less than
50ms, since these would not occur frequently enough in each flow to calculate meaningful
statistics. Windows were advanced in half-second increments, with sequences of window
scores combined to produce a single anomaly score. For the OCSVM, the same measurements
were included, with the exception of the T-tests and the CAN IDs.

Data was captured from five-minute drives of an SUV, and attack traffic was simulated
by deleting packets, or inserting packets gathered from other captures. During insertion, a set
of rules for modifying time-stamps was followed to conform to the CAN arbitration rules.
Simulated insertion attacks lasted 100ms to 1s, with rates 1x, 5x and 10x the average rate.

The authors found that the Hamming distance added no discriminatory power, and
dropped it from their subsequent comparisons. The statistical method was able to usefully
detect the longer of the attacks (1s), though not the shorter ones. In comparison, the OCSVM
was able to perfectly detect attacks lasting 0.5s or higher, and showed superior performance
on the shorter attacks. The authors conclude that in spite of the promising results, their
systems needs testing with more data. They also acknowledge that their approach ignores
IDs with non-periodic broadcasts, and would not detect attacks purely resulting in changes in
the data fields.

3.4.4 Neural Networks

Inspired by biological neural functioning, a neural network comprises many simple processing
nodes working in parallel to produce a decision based on their accumulated outputs. The
functioning of the neural network is determined by the network structure, together with the
processing carried out in each node and the adjustment of connection strengths (or weights)
applied to the connections between the nodes.

Kang and Kang [38] tested a neural network on data generated using the Open Car
Test-bed and Networks Experiments (OCTANE) simulator, with three CAN IDs used in the
simulation. Attack data was generated by manipulating the data in the packets to deceive the
system (though a detailed description of this is not provided by the authors) and, in addition,
Gaussian noise was added to the value information to add randomness.

They used an unsupervised deep belief network structure for pre-training to derive the
initialisation parameters, followed by a supervised deep neural network to tune the parameters
to determine the classifications. Thus, their system required known, labelled, attack packets
during training. Taking only packets with a data field of 64 bits, for the normal and attack
classes they used the neural network to determine the probability of bit values in any position
of the data field. Two training methods were compared: one in which all the bits in the data
field were assessed, and another in which training was done using only the bits corresponding
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to value data (as opposed to mode or status data, e.g. “on” or “off”). The vectors fed into
the neural network comprised the probability that the bit-symbol at a given position was 1,
and the “attack” or “normal” label assigned to the training sample. Weights in the neural
network were tuned using back-propagation to minimise the mean squared error between the
predicted value and the output.

Comparing their system against a conventional feed forward neural network, they con-
cluded that theirs had a more accurate and consistent detection performance, and that the
speed of testing suggested real-time decision making was viable. The training involving just
the value data (as opposed to value and mode data) gave the better performance.

Taylor et al. [77] considered the example of an attack that transmits legitimate packets
that are anomalous only in terms of the context of recent packets on the bus. Such an attack
might occur, for example, where malicious Keep Lane Assist messages falsify the steering
requirement. For each ID, they trained a Long Short-Term Memory (LSTM) recurrent neural
network (RNN) to predict the next packet data bit values, the output being predicted values
of between 0 and 1 for each of the 64 bits in the word. They found that the LSTM worked
well for detecting unusual bit patterns (such as when bit values are randomly flipped) for
some IDs, though there were others for which the anomaly detection was poor, though the
reasons were not readily apparent to the authors. Another weakness the authors point out is
that the IDs were assessed independently, so any anomalies in the interactions between them
would not necessarily be picked up, although this is common across many methods tested.

Wasicek and Weimerskirck [89] considered options for detecting chip tuning. This
involves an attacker deliberately changing the software or parameters of an ECU, or adding
new hardware that acts in an abnormal manner. The authors selected three features, speed,
RPM and torque, which they felt would characterise the vehicle engine’s power behaviour in
different traffic situations. Data was collected from simulated CAN readings from the TORCS
racing simulator. Vectors comprised mean value, standard deviation, variance, skewness and
kurtosis for the features for a time period and for a shifted time period. These were recorded
for each of the three features, giving 30 input values. Including a time-shift period, they
propose, would reduce the impact of any noise in the data. The training vectors were fed into
a bottleneck artificial neural network, trained using Levenberg-Marquart back-propagation.
For the test data, the outputs from the neural network were combined using a Root-Mean-
Square function to generate an anomaly score. Although they found some success in that
the true positive rate was higher than the false positive rate, the authors concluded that there
was room for improvement, a conclusion borne out in the close proximity of their presented
Receiver Operating Characteristic curves to the random guess curve.
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3.5 Limitations and Assumptions

The methods described above have reported some successes, but hold assumptions and
limitations which could reduce their applicability.

The system investigated by Lee et al. [44] required transactions involving remote requests,
which would, of itself, add to CAN traffic unless implemented only where such transactions
are already used. Moreover, it is restricted to detecting only masquerading ECUs. Conversely,
Marchetti and Stabili [47] acknowledge that their CAN ID sequence matrix would not detect
replay or masquerade attacks. The models used by Narayanan et al. [59] pertained solely to
speed and RPM information, and assumed the known derivation of the related CAN data.

For many of the methods, the need for the prior determination of thresholds or signatures,
and the assumption that these are constant, could be problematical. For example, the methods
proposed by Hoppe et al. [31], Marchetti and Stabili [47], Ling and Feng [45], Studnia et al.
[75] and Gmiden et al. [28] required prior determination of specific packet frequencies or
sequences, and assume these are consistent and not prone to seasonal cycles or variations.
Although the constancy of CAN ID broadcasts has been observed (e.g. [54, 85]), such
studies have relied on empirical testing to justify the consistency, rather than offering any
protocol justification. It is difficult to conclude therefore that broadcast rates will always
be immutable and not vary irrespective of changes due to conditions, ECU configuration,
or updating of ECU software. Procedures for determining the normal broadcast rates and
sequences in a production deployment would need addressing, and the many permutations
and configurations in vehicles would also need accommodating. The patterns determined
for one vehicle might not transfer to another vehicle, even of the same model. Foster and
Koscher [23] warn that: "sometimes even different generations of the same vehicle will
use different frames. For example, the CAN frame to unlock the trunk on one vehicle may
activate the windshield wipers of another vehicle." Whilst the car manufacturers might be
able to tailor an IDS to the CAN dictionary of a specific car make, model and version, the
option becomes more difficult for the independent developer, or when seeking a more generic
solution that might be deployed across many car models.

3.6 Data Generation Options

The experiments described later in this thesis, as with the experiments described above,
require representative CAN data, including data that is representative of attacks. This section
considers the options for generating the attack data. The capture of the data from the test
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cars used in this thesis, and the precise details of generating the attack representations, are
subsequently presented in chapters 5 and 7.

3.6.1 Simulator vs. Data Manipulation

Whilst some researchers have been able to stage attacks on real cars (e.g. [40, 52]), for others
this has not been an option due to the cost of acquiring a vehicle which might be broken in
an attack, and the lack of an expanse of unused road on which an an attack can be staged.
Ethical approval and insurance implications also need resolving. Researchers have therefore
adopted one of two approaches: either use a simulator (e.g. [32, 89] ), or manipulate captured
data to mimic an attack (e.g. [38, 76, 77]).

Some commercial vendors offer potential candidates for building an automotive CAN
simulator, for example, the prebuilt CAN simulator in Vector’s CANoe [88]. Such simulators
potentially offer replication of CAN processes that are hard to mimic without attacking a
real car. Such an example being the replication of latent delays and rescheduling in packet
broadcasting that might result from the CAN arbitration process (as discussed in Section 2.1)
when an attack inserts packets. In addition, the derivation of the data payload, as well as
the triggering of packet broadcasts, might be documented in the simulator specification, and
might be programmable (such as in CANoe using the Communication Access Programming
Language [CAPL] language), giving scope for the control of testing and comprehensive
coverage. The setting up and programming of such simulators, though, can be complex and
challenging; and licensing would need to be resolved. Also, there will always be doubts about
validity since the simulator can only represent a simplifications of the car’s CAN network and
the driving situation. The CANoe simulator [88], for example, represents far fewer ECUs
than would be found in a production car (though it can be adapted and expanded by savvy
CAN programmers). Additionally, simulators are unlikely to incorporate attack options.
Kang and Kang [38] used the Open Car Test-bed And Network Experiments (OCTANE)
simulator to simulate a vehicle CAN bus. But they had to generate attack samples from these
artificially by manually adding frames to the generated logs.

The second approach, adopted for this thesis, is to simulate the effects of the attack
by manipulating CAN data recorded under normal operation. This approach might miss
the subtle packet broadcast changes that an actual vehicle, or even a simulator, might
automatically capture. Also, detailed changes in car behaviour that would result from the
attack, cannot be known. Even so, this approach ensures the underlying training and test
data represents actual driving data, captured from the full range of ECUs, driving situations,
and interactions on the automotive CAN. It is an approach that has been adopted by other
studies. As mentioned above, Kang and Kang [38] simulated attacks by manipulating the logs
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generated from a CAN simulator, though they give few details of the precise manipulations
in their paper. Studnia et al. [75] added new frames or modified existing ones to simulate
their attacks, but also only provide limited detail. Taylor et al. [76] modified captured CAN
logs to mimic attacks that injected packets (such as data spoofing), and attacks that caused
packets to miss broadcast. For the latter, erased packets were removed from the capture with
no other modifications. For the former, they inserted packets at 1x, 5x or 10x their average
rate for periods ranging from 100ms to 1s. Data fields were copied from an earlier instance
of that packet ID. A limitation of the their data is that it was generated from a car driven
only at a steady speed for five minutes, with no user controls (such as lights or windows)
being operated. In addition, for detecting payload anomalies using context provided across
ECU data fields (as is proposed in this thesis), reusing previously captured data fields leaves
uncertainty in determining whether the injected data values are different to those expected
for the current system state.

Unlabelled CAN attack data has been published by Lee et al. [44], and data generated
using CAN simulation software has been published by Kang and Kang [38] though the
precise details of the attacks simulated using this software are not stated. The decision was
therefore taken to capture real CAN data. Capturing dedicated data for this thesis ensured
the following:

1. Data capture could be combined with a functional analysis of the study cars, for
example, by systematically manipulating the controls of the car during data capture,
as well as providing large data sets across journeys and driving situations to enable
profiling of the CAN packet streams.

2. Sufficient data sets could be captured across journeys, enabling between journey
comparisons during testing.

3. Attack records generated using the captured data could be accurately labelled.

4. Whilst the data used for the testing was captured using a Kvaser CAN reader (discussed
in Chapters 5 and 7), this was compared with data captured from other readers (such as
Vector’s CAN loggers [88]) providing data for triangulation to validate that the capture
process was reliable.

3.7 Conclusion

A range of methods have been proposed for CAN packet anomaly detection. Requiring
the capture and dissemination of known attack signatures for profile matching (e.g. [75])
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presents a problem given the lifecycle of cars, their variety, and the unpredictability of
future attack scenarios. Similar problems are presented by machine learning approaches that
require existing examples of attack data for the classifier training (e.g. [49], [38]). Statistical
approaches have been proposed which require the profiling of individual CAN IDs (e.g. [45],
[31]), which again presents challenges for a system that might be deployed across car makes
and models.

Approaches that might not need existing attack-data for training have been proposed by
Narayanan et al. [59] and by Taylor et al. [76] [77]. Narayanan et al. used a Hidden Markov
Model to detect anomalous changes in speed and RPM, but training their system required
knowledge of how these were manifest in the CAN packets. Taylor et al.’s One Class Support
Vector Machine approach used a combination of packet timing and payload measurements to
try to detect attacks in which both the timing and the payload had been altered, although the
method did not extend to detection where only one of these had been manipulated. Their
proposal for payload anomaly detection operated at the bit level and showed success in
detecting attacks in which the packet payload bits were randomly changed. But it is unclear
how their method would perform with attacks that produced a more systematic and strategic
update of the packet payload. Moreover, since their method considered each packet ID in
isolation (basing normality on observing the previous broadcasts for that packet), their system
ignores contextual information that might detect stealthy anomalies, such as a fabricated
sensor reading that drifts steadily further from the true value over a sustained attack.

As discussed in Chapter 2, the anomaly detection in this thesis will be considered as
independent for timing anomalies and payload anomalies. This chapter has discussed the
benefits of the proposed methods being ones that enable a one-class detection, thus they do
not assume the availability of attack signatures or attack data examples. The chapter has
also discussed the few one-class approaches that have been proposed, and highlighted their
limitations.



Chapter 4

Anomaly Detection Methods Used In
This Thesis

This chapter presents the anomaly detection methods that will be evaluated in this thesis.
Using those methods requires suitable processing and parsing of the CAN broadcast flow,
which is also discussed in this chapter. The configuration of the methods and the optimisation
of their parameters will be discussed in Chapter 5, for the timing anomaly detection, and
Chapter 7, for the payload anomaly detection.

As already discussed, the nature of CAN attacks reveals the follow traits:

• The time and frequency of packets may be affected, though not always (e.g. mas-
querade attack). Many attacks involve the injection of packets, increasing the ID’s
frequency, although broadcasts could be delayed or disrupted through arbitration and
error processes triggered during the attack, or by malicious activity such as illicit ECU
reflashing.

• The data payload might be fabricated; randomly in a fuzzing attack, or with specific,
plausible values in spoofing attacks.

• The challenges in maintaining updated attack dictionaries in the car, together with the
diversity of car models and CAN dictionary configurations, reduces the viability of
signature approaches and suggests unsupervised anomaly detection.

• The unpredictability of future attacks, and the difficulties in gathering actual attack
data, suggests that the anomaly detection should employ one-class approaches.

The IDS methods considered so far suffer limitations such as requiring prior analysis of
the CAN traffic to decide the values for the discrimination factors which are then fixed in the
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classifier. One objective of this thesis was to find methods that could be used unsupervised, so
that they might be easily adapted for cars without detailed knowledge of the CAN dictionary.
Therefore, considered here are approaches that might be used for the one-class, unsupervised
detection of anomalies in packet broadcast rates and in the data values transmitted in the
payload. These will be considered separately, in the expectation that a CAN IDS would
employ both.

4.1 CAN Packet Timing Anomaly Detection

This section discusses the methods used to detect anomalies in packet timings. The time-
defined window approach used to parse the CAN bus flow for the detection methods is
discussed in Section 4.3.

Two unsupervised approaches were considered for the packet timing anomaly detection:
Z-score and Autoregressive Integrated Moving Average (ARIMA). These two methods
were used to predict the time intervals between the consecutive broadcast of matching
packets, which were then compared against the actual observed time gaps. For comparison, a
supervised method of comparing each broadcast interval against the mean for that packet ID,
was also tested.

4.1.1 ARIMA

ARIMA time-series forecasting models seek to make the data stationary (i.e. the mean and
variance do not vary through time) by removing trends and seasonality from the data. An
example of a data set showing both seasonality and trend is shown in Figure 4.1. ARIMA
attempts to make the data stationary through the use of differencing (subtracting the obser-
vation in the current period from the previous one), which requires the determination of
parameters covering the number of past forecast errors used for prediction (p), the number of
times the differencing should be carried out (d), the number of moving average time periods
to be used to predict the current values of the series (q). Tuning the ARIMA algorithm and
determining the optimal p,d,q settings entails a detailed analysis of the data set. However,
Auto ARIMA determines the best combination of parameters [34]. It is implemented in the
Forecast package in R [33], which was used in this project, although it has recently been
implemented in Python [72].

For the detection, the CAN packet flow was parsed into discrete time windows (discussed
later), and within each window, auto ARIMA was used to determine the time gap residuals (i.e.
the actual time gap value minus the predicted time gap value). These were then standardised
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using R scale function, to produce a Mean Squared Error for the window, which could be
compared against an error deviation threshold.

Fig. 4.1 Example data series showing diurnal seasonality and gentle upward trend. Source:
Chio and Freeman [15].

4.1.2 Z-Score

Similar to the ARIMA-derived error scores, the Z-score (time gap minus the window gap
mean, divided by the standard deviation) was also used to produce a Mean Squared Error for
the window, which could be compared against an error-deviation threshold.

4.1.3 Mean Comparison

The mean comparison merely compared the absolute difference between the mean time gap
and the observed time gap, against a predetermined fixed value. The mean time gap was
calculated within the window for the monitored packet.

4.1.4 Timing Method Supervision

Z-score and ARIMA have been used by Kalutarage et al. [37] and Shaikh and Kalutarage
[70] with time-based data to assess the likelihood of attack on complex computer networks.
Whist these methods require an error score to be optimised for detection, they otherwise
require little supervision in terms of being able to adapt to variance and difference between
data sets. The Z-score and ARIMA methods could be regarded as unsupervised when used in
time-based windows (such as those used in the timing anomaly detection evaluated this thesis,
which are described later), in that any variance is scaled to be of a similar magnitude across
the windows and CAN IDs. This could facilitate specifying a common threshold, without
needing to be tailored according to CAN behaviour differences across cars or situations.

Some materials have been removed from this thesis due to Third Party 
Copyright. Pages where material has been removed are clearly marked in 
the electronic version. The unabridged version of the thesis can be viewed 

at the Lanchester Library, Coventry University.
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The third method used for the timing anomaly detection (comparison of the broadcast
interval against the window mean), was included as a baseline for comparison with the other
two methods. This method should perform best since it uses a threshold tailored according to
the observed variance between the broadcasts for the tested set of journeys. A preliminary
analyses of CAN data from the cars used in this experiment suggested testing thresholds of
around 0.003 (this is discussed in Chapter 6).

4.2 CAN Data Payload Anomaly Detection

Whilst packet timings are fairly easy to determine and monitor, detecting attacks from
anomalies in the data payload presents a more challenging prospect. Values that are extreme
or random are unlikely to be of value to the attacker, other than for fuzz testing and probing,
since they would be meaningless to the ECU. Of more value to the attacker are values
that are plausible. Although the CAN dictionary is unpublished, fabrication attacks (e.g.
[14, 32, 40, 52]) have demonstrated that reverse engineering to determine the data meaning
and derivation is possible, and that disruptive, but plausible, values can be broadcast to tamper
with the car. Moreover, the attacks might entail fabricating data for seemingly unrelated
functions. Consider, for example, the steering attack by Miller and Valasek [52], which
required the broadcasting of fabricated data for speed in order to tamper with the steering.
Thus an attack might span packets pertaining to a variety of functional areas.

The anomaly detection methods considered in this project provide the potential to deter-
mine an anomaly in a multivariate array based on values across all the elements in the array.
Thus, fabrication of one variable might be detected if the rest remain unfabricated. For such
methods to work, the variables in the vector should be connected and correlated in some way.
Of course, such methods would be useless if the attacks fabricated the values for all of the
variables in the array; though this would require the attacker to have full knowledge of the
variables that are being monitored, and the ability to fabricate them together in a coordinated
and correlated fashion. The identification of the sensor data vectors, and the algorithms that
were developed to automate the process, are discussed in Chapter 7.

Three methods that enable unsupervised novelty detection were evaluated. These are:
One-Class Support Vector Machine (OCSVM), Local Outlier Factor (LOF), and One Class
Compound Classifier (CC). The testing was conducted using Python 3.6, with the CC built
from scratch employing scipy.spatial packaged Euclidean distance calculations [68], and the
LOF and OCSVM constructed using the Scikit-learn [62, 67] v0.20.0 package.
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4.2.1 One Class SVM

The OCSVM is deemed an especially suitable choice where data has a multimodal distribution
and is high-dimensional [71, 60], or where training data sets might be small [15]. Multi-class
support vector machines construct a hyperplane that separates the classes of data by the
largest margin. In contrast, the OCSVM attempts to find the largest margin between the
projected training data and its origin, thus demarking data-dense regions in input space.
Target instances are thus classified according to their position relative to the margin.

4.2.2 Local Outlier Factor

The LOF relies on distance measurements and density calculations. The LOF has been
shown to be resilient to data sets with varying cluster densities [15]. Its calculation entails
determining the local density of data points as defined by the distance to the other data
points in the immediate surrounding area [8]. The LOF score is derived by comparing the
density score of a point with the density scores of its K nearest neighbours (KNN). Each
instance acquires a score which is higher in instances that lie away from their own K nearest
neighbours. Thus, the score can be used as a threshold to classify outliers.

4.2.3 Compound Classifier

The Compound Classifier (CC) was devised for rapid classification using a reduced instruction
set processor [3]. Primarily used in rapid image processing applications [4, 50], it has also
been used in medical diagnosis [2]. Its authors proposed that the CC: is usefully able to
generalise, learn and make rapid decisions; lends itself to visualisation which is important
for understanding and checking; and, can be easily adapted for multi-class and one-class
problems [3, 4]. It uses nearest neighbour calculations and probability density functions
to replace the training data points with a smaller number of hyperspheres, thus potentially
leading to faster decision making compared with many nearest neighbour classifiers [3].
Hyperspheres are constructed as the training data is observed, and are changed in size and
location according to whether each training instance is inside them or not. During training
iterations, the hyperspheres thus evolve to encompass the shape of the training data set. The
CC training and decision processes are presented in Appendix A.

For this research, a CC was built using Python following the specifications and parameters
outlined in [3, 4].
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4.2.4 Payload Detection System Model

The payload anomaly detection proposal is that a suitable classifier method would be inte-
grated into a CAN intrusion detection system that could be attached to the CAN network,
either directly or via the OBD port in the driver’s compartment. The CAN packets would be
grouped into functional clusters, and the trained classifier would assess the CAN packet fields
in real-time by comparing the packet’s values against those most recently broadcast by other
fields in the same cluster. An anomaly would be flagged when a broadcast is observed that
contains sensor data values that are inconsistent with the most recent values from other data
fields in the cluster. Thus, the system would process snapshots of the CAN traffic, with each
snapshot comprising data payload values for the currently broadcast packet, together with
the most recently broadcast payload values for the other packets assigned to the same cluster
(Algorithm 1). This method could be easily implemented on a live system since it requires
just the trained classifier, plus a one dimensional array holding the most recent values from
the desired CAN data fields, with only the changed data fields being updated as each new
record is detected.

Algorithm 1 Classification Process
C← cluster comprising associated sensor data fields
for each broadcast of packet P do

if P fields correspond to C fields then
C← updated data for fields corresponding to P
Apply anomaly test to C

end if
end for

Developing the classifier can be summarised into the following broad stages, which are
considered later in this thesis:

1. Determine which CAN data fields represent sensor data (including fields that are
composite).

2. Assign data fields into functional clusters (i.e. each C in Algorithm 1).

3. Generate a classifier for each cluster.

4. Use the classifier to continuously monitor CAN traffic.
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4.2.5 Normalisation

All the methods used for payload anomaly detection require the data to be first normalised
before it is processed by the classifier. This ensures all variables are on the same scale and
have equity in their influence.

Normalisation was done by standardisation using the Scikit-learn unit variance Standard-
Scaler function [67]. The scalers were first fitted to the training data, with the fit then used to
transform the training and test data sets. The scaling is described in Section 7.2.1.

4.3 Parsing the CAN Packet Flow

For both detection systems (timing and data payload) the mode of parsing the CAN flow
needs to be considered. The broadcast of CAN packets onto the bus is continuous whilst
the car is in operation. The detection needs to be instant, and cannot rely on the storage and
processing of large quantities of data. This section discusses the parsing of the CAN flow
that was adopted for the two detection strands.

4.3.1 Timing Anomaly Detection - Time Defined Windows

The timing anomaly detection adopted a time-defined window approach. Such approaches
process the data as discrete windows. Keeping the calculated metrics and consequent
decisions local to the window reduces the impact of any longer-term system changes reflected
in the data. There are a few window approaches that could be adopted for packet-timing
anomaly detection. One option is to process the window to derive metrics and then apply
these to classify the next broadcast. The window slides through the data one broadcast at a
time, recalculating the metrics at each broadcast. This approach requires the storage of each
time gap for each monitored CAN ID, though these only need storing whilst that window is
being monitored.

In this study the timing anomaly data was processed in discrete, non-overlapping, contigu-
ous windows, which has the advantage of reducing the recalculation of metrics – beneficial
in the limited CPU capacity in vehicles. The metrics were calculated for a window and then
applied to all the broadcasts within that window for classification. After this, the assessment
moves on to the next non-overlapping window. This approach reduces the frequency with
which the window metrics need recalculating compared to a sliding window. Assessing the
metrics against broadcasts within the window ensures the assessed broadcasts are within
the scope of any naturally occurring adjustments captured by the detection methods. It also
ensures that records at the immediate start of the journey are evaluated for anomalies.
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4.3.2 Data Payload Anomaly Detection - Rolling Updates

As highlighted in Algorithm 1, for the payload classifier training, and for the subsequent
payload anomaly detection, we need to amalgamate data from the most recently broadcast
packets in the cluster. This refines the data to just the elements required for the detection,
which can be processed in a compact structure. In a production version, the amalgamated
data would not need to be retained after each classification has taken place, so a single,
continuously updated array could be used. However, to facilitate test replication, and allow
attack data to be simulated, each change to the array was saved as a separate snapshot record.
Thus each snapshot record combined the most recent field values across all the chosen fields
with the values in the newly broadcast packet.

(a) Sample from the CAN packet flow. For illustration only two IDs and and two data fields
are shown.

(b) Section of the array of amalgamated CAN data. Each row shows the change in the data
elements over time as each CAN ID is broadcast. The Time and CAN_ID columns are not
included in the actual array.

Fig. 4.2 The rolling data payload array used for payload anomaly detection.

Figure 4.2 illustrates the updating of the snapshot array. 4.2a shows CAN broadcasts
between 27.08628 and 27.18628 seconds for two of the CAN IDs. 4.2b shows the array state
after the broadcast of the CAN packets. The array is updated as each new packet in its CAN
ID scope (indicated by the prefix in each column heading) is broadcast. For example, the
broadcast of CAN ID 324 at 27.18604 seconds, results in an array update at that time for
element 324_D8. Likewise, the broadcast of CAN ID 383 at 27.18628 seconds, results in an
update of array element 383_D5D6. Also observable in the Figure is that the first few rows
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of 4.2b show that the array values did not change when packets were broadcast on the CAN.
This would have resulted from packet broadcasts that contained the same field value as the
previous broadcast for that CAN ID, thus causing no observable update to the array.

4.4 Conclusion

The methods proposed in this thesis adopt a one-class approach; offering the potential to
classify anomalies without requiring an anomaly class to be manifest in the training set data,
which was necessary for many of the methods proposed by other researchers discussed in
Chapter 3.

For the timing anomaly detection, a time-boxed window provides the mechanism for
determining normal operation in terms of temporally localised events. This reduces reliance
on assumptions that packet broadcast patterns will be immutable across journeys, car config-
urations or driving situations; which some proposed detection methods are predicated on (e.g.
[45, 73, 28]). A slightly different, sliding, window approach was adopted by Taylor et al.
[76], who used a half-second window, although some of the CAN IDs were eliminated from
their detection for being broadcast too infrequently to generate analytical statistics within
each window. As well as using different analytical techniques and data measurements to
Taylor’s, this thesis aims to test a range of window sizes. The proposed use here of ARIMA
and Z-Score for the timing anomaly detection, provide potential mechanisms for defining
normal flow without pre-training.

For the payload anomaly detection, the three selected one-class methods were chosen for
their unsupervised potential to determine outliers in any one of the assessed dimensions, thus
presenting the prospect of detecting outliers according to the context provided by a consensus
of ECUs. This might facilitate the detection of attacks, such as those demonstrated by Miller
and Valasek [52], that have involved the fabrication of values that are plausible even though
they are of malicious intent.

To be able to instantaneously compare payload data across CAN packets, a rolling-update
snapshot record is proposed, wherein the most recent data values from the analysed data
fields are inserted into an updating array. Proposed mechanisms for updating the array, and
automatically determining the data to be used in it, are considered in Chapter 7.





Chapter 5

Detecting Timing Anomalies -
Experiment Design

This chapter describes the set-up of the experiment to compare ARIMA, Z-score and super-
vised mean-comparison for detecting anomalies in packet timing. Results are presented and
discussed in Chapter 6.

Data for the experiment was captured from two popular, unmodified UK family cars from
different manufacturers, thus providing an indication of the validity of the methods across
car models. The two cars are henceforth referred to as Car A and Car B. Prior to running the
experiments and deciding the optimal values for their parameters, the profile of the CAN bus
packet-flow rates for both cars was analysed. Those results are also presented in this chapter.

5.1 Data Capture and Profile Analysis

For each car (Car A and Car B), four journeys, totalling over two hours of driving per car,
were logged over a two-week period, and covered a range of typical driving conditions to
capture a representative spectrum of situations and CAN behaviours. CAN messages were
logged from the OBD port using a Kvaser Leaf Light1 reader, designed for loss-free CAN
message capture with high time-accuracy, attached to a laptop computer. Figures 5.1, 5.2, 5.3
and 5.4 show the mean broadcasts per second, and the times between broadcasts, of matching
CAN IDs for each journey.

1www.kvaser.com/product/kvaser-leaf-light-hs-v2-obdii

www.kvaser.com/product/kvaser-leaf-light-hs-v2-obdii
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Fig. 5.1 Car A: Average broadcasts per second of CAN IDs ranked by priority.

Fig. 5.2 Car A: Average broadcast gaps and range (shown by vertical lines) of CAN IDs
ranked by priority.
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Fig. 5.3 Car B: Average broadcasts per second of CAN IDs ranked by priority.

Fig. 5.4 Car B: Average broadcast gaps and range (shown by vertical lines) of CAN IDs
ranked by priority.
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5.1.1 Broadcast rates

For Car A, fifty-four CAN IDs were detected, of these all but two were broadcast throughout
the journeys. Two CAN IDs occurred briefly at the start of one journey and were not observed
again. These were excluded from the subsequent testing, leaving fifty-two in the data set. In
Car B, twenty-eight CAN packets were identified. All were broadcast across each journey
and included in the testing.

The CAN IDs were broadcast at reasonably regular intervals throughout the journey.
With a couple of exceptions, especially in Car B, the pattern of broadcast frequencies and
timings was similar across journeys.

Car A Broadcast Rates

Most CAN IDs in Car A were consistent in their broadcast intervals. The higher priority
CAN IDs tended to be broadcast more frequently, many being broadcast at about 100 per
second, while only 4 CAN IDs showed a broadcast rate of less than 10 per second in (Figure
5.1).

Any variation in the broadcast interval was small for the majority of CAN IDs (Figures
5.2). All but one CAN ID showed a maximum repeat-broadcast time-difference range of 0.1
second or less, with 39 (71%) showing a range of less than 0.01 second. Forty CAN IDs had
a repeat-broadcast standard deviation of less than 0.0007 seconds. Whist in the remaining
CAN IDs, all but four had a standard deviation of less than 0.01 seconds.

Car B Broadcast Rates

A similar pattern was observed in Car B, wherein ten packets (33%) were broadcast with an
average frequency of 100 per second across all journeys. The remainder typically had an
average broadcast rate of around 50, 25 or 10 per second, with five (18%) having a broadcast
rate of less than 10 per second across any journey. As with Car A, all but one CAN ID showed
a maximum repeat-broadcast time-difference range of 0.1 second or less, with 22 (78%)
showing a range of less than 0.01 second. Twenty four CAN IDs had a repeat-broadcast
standard deviation of less than 0.0007 seconds. In spite of the general homogeneity, there
was some variation between journeys for a couple of the CAN IDs, as shown in Figures
5.3 and 5.4. The CAN ID with priority ranked 4 showed a relatively large range in repeat
broadcast intervals in two of the journeys shown in Figure 5.4, and there was also a shift
in broadcast rates between journeys for a couple of other packets. Without knowledge of
the CAN dictionary, determining the cause of these shifts would require a detailed analysis
involving additional data capture. However, the cause might be car specific, and so might
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not of itself offer more insight into the implications for a car-agnostic anomaly detection
proposal. However, the fact that such phenomenon are observed is important, and shows that
not all CAN IDs might be consistent enough for timing anomaly detection without additional
interpretation and situational analysis.

Implications

Overall, the analysis suggests ECUs are broadcasting their information at a fairly consistent,
predictable, rate throughout the journey, and for each journey. Such consistency in CAN
message broadcasting has been noted by other researchers [52, 54]. If we assume that
individual CAN IDs are specific to individual ECUs, then almost all the broadcasting ECUs
would be broadcasting at 10 times or more per second, with the majority broadcasting at a
consistent rate, more than 100 times per second.

In general, across both cars the CAN IDs with the higher priority (i.e. lowest ID value)
were broadcast most frequently and with least timing variation. Whilst the planning of ID
broadcast schedules by manufactures might account for this, it also might be influenced by
the lower priority IDs having their broadcasts rescheduled by broadcasts of higher priority
IDs as part of the CAN arbitration process.

This observed regularity of CAN ID broadcasts suggests the possibility that they might
be regular enough to enable the easy detection of broadcast variations that might signify an
attack. As discussed in Chapter 2, an attack that seeks to take control of an ECU to force it to
broadcast erroneous data (for example, a re-flash attack that overwrites ECU code) is likely
to render the ECU inoperable whilst the attack takes place, causing a gap in the broadcasts.
Similarly, an attack from an added malicious source that injects false data by broadcasting
forged packets under a legitimate CAN ID, is likely to lead to an increase in broadcasts of
those packets, changing the time-gap between broadcasts, especially if the legitimate ECU is
still broadcasting.

5.2 Timing Anomalies: Attack Simulation

For the anomaly testing, the log from a journey lasting 30 minutes and covering a range
of driving situations, including town traffic and faster roads, was selected for Car A, and a
similar journey was selected for Car B. Fresh copies of these log files were manipulated so
that each copy include fabricated attack representations based on one of the following:

• Dropped packets of a specific CAN ID could result from either a reflash attack, an
attack in which an ECU is disabled and replaced by a masquerading ECU, or an
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injection attack. In a reflash attack the firmware of an attacked ECU is overwritten
by an attacking vector, thus being replaced by adapted firmware [40]. With regard to
changes in broadcast timings for both the reflash attack and the masquerade attack, the
ECU would miss broadcasts that would otherwise have occurred during the reflash or
change between ECUs respectively. Taylor et al. [76] tested record outages spanning
between 0.3 and 1 second for the latter attack. An increase in dropped broadcasts could
also be triggered by an injection attack, when a higher priority ID carrying malicious
data is broadcast at a high rate so as to ensure the malicious data out-broadcasts the
legitimate data [52, 77]. The purpose of the dropped broadcast detection was thus to
see whether the methods could detect when packet broadcasts had been skipped.

• Injected packets might occur when a compromised or illicitly added ECU broadcasts
packets that mimic those from a legitimate ECU, thus broadcasting false data or false
control signals. A variation on this is the denial of service attack, where packets are
submitted with rapid frequency in order to overwhelm the bus. The purpose of the
injection attack detection was thus to see whether the methods could detect when
additional packet broadcasts had been inserted.

Fig. 5.5 Example of the dropped packet attack data. Records for CAN ID 344 have been
dropped for a one second slot after the record broadcast at 533.99918. Note that only records
for CAN ID 344 are shown in this illustration.

Attacks were simulated for every CAN ID identified in each selected journey’s log. For
each attack, 20 attack points were created in the captured log file at time-points chosen
randomly throughout the duration of the log. For the dropped broadcast simulation, packets
pertaining to the ID being tested were removed for a one second slot at the chosen attack
point (Figure 5.5). For the injection detection, a broadcast of the relevant CAN ID was
inserted into the log file at the next available gap after the randomly selected time (Figure
5.6). It was observed that across all car journeys, the shortest gap between any two packet
broadcasts was 0.00008 seconds (shown in 1.3% of broadcasts). Therefore, so as not to
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Fig. 5.6 Example of the inserted packet attack data. A fabricated record for CAN ID 344 has
been inserted at time 253.90019.

violate any physical limit that this sized gap might indicate, the randomly chosen attack
points for the injected records were selected to ensure at least a 0.00008 second gap before
and after the inserted record. The times for the inserted attack packets were fabricated in the
logs accordingly.

5.3 Conclusion

Data captured from multiple journeys from the two study cars showed that the CAN ID
broadcasts for each car were regular and consistent in their timings, as suggested, for example,
by the majority of CAN IDs having a repeat broadcast interval that was never seen to vary
by more than 0.0007 seconds, and broadcast rates of 10 or more per second. This suggests
that timing anomalies caused by either injected packets or by dropped or delayed broadcasts,
might be detectable. The regularity observed in the two cars studied here supports the timing
regularity observed by other researchers (e.g. [54, 85]).

Simulation of attacks by altering existing CAN logs to portray packet injection or dropped
packets is adopted here because of the lack of any published, labelled attack data sets, in
addition to the barriers of staging attacks on real cars. Simulated attack data in which packets
have been individually inserted have also been used by Marchetti and Stabili [47], and Kang
and Kang [38]. For this thesis the times of the injected packets are fabricated in a manner
that ensures they do not impinge on legitimate packets. The dropped record simulation is
generated in a manner similar to Taylor et al. [76], with the target CAN ID’s records removed
from the log without further alteration.





Chapter 6

Detecting Timing Anomalies - Results

This chapter presents the results from testing the timing anomaly detection methods’ abilities
to detect the random attack points generated for each CAN ID, as described in Chapter 5.
The implications of the results are discussed in Chapter 9. For the experiment, the CAN logs
were processed in fixed-time windows, with the detection using statistics from the broadcasts
within the window, as described in Chapter 4.

6.0.1 Timing Anomalies: Assessing Detection Accuracy

The methods assessed here process the data-flow into fixed-size, non-overlapping windows,
and detect change and variation based on the time intervals between broadcasts of matching
CAN IDs. This means, though, that a positive detection might indicate an attack-simulation
fabricated change in packet broadcast times in either the current time window, or in a previous
window. This is shown by Figure 6.1, which shows that for a dropped or injected packet, the
changes in time interval might only be picked up in a subsequent window if that is where
the next broadcast packet resides. Thus, for the experiment a window flagged as a detection
was considered a true positive detection if: a) an altered message was within the current
window; or, b) an altered message was in the previous window, which had been flagged as a
non-detection.

Likewise, a failure to detect a fabricated change in the current window (i.e. a false
negative) could be determined if no detection flag was raised for both the current window
and the next window. Thus, results were classified as follows:

• True Positive: Positive flag, and either the attack altered the current window, or the
attack altered the previous window, which had a negative flag. (Otherwise the positive
flag was classified as False Positive.)
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Fig. 6.1 Potential mismatches between packet manipulations and analysis windows. Left:
packets are dropped between packet broadcast x and packet broadcast y. Although the first
packet was dropped during window 1, the increased inter-packet time (i) will not be detected
until packet y is broadcast. Right: a packet is injected between x and y. Depending on the
interval sizes (i1 and i2) an anomaly might be detected at the injection (window 1) or at
packet y (window 2).

• True Negative: Negative flag, and no attack alterations to current window or previous
window. (Otherwise the negative flag was classified as False Negative.)

Analyses of the classifier performances drew on calculations described in [74, 22]:

Accuracy is the proportion of responses correctly classified:

T P+T N
T P+FP+T N +FN

Sensitivity (or Recall) is the ability to detect actual occurrences:

T P
T P+FN

Specificity is how specific the test is to the condition being assessed:

T N
FP+T N

Accuracy may mislead since it masks the relative proportions of the positive and negative
elements in the testing dataset. A classifier that makes only negative responses could achieve
a high accuracy score if the underlying test set contained a high proportion of negative
instances. Likewise for a classifier that makes only positive responses on a dataset that
contained a high proportion of positive instances. Therefore sensitivity and specificity are
also included in the results analysis.
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6.0.2 Timing Anomalies: Window Size

To ensure multiple observations for deriving the statistics for the detection-method thresholds,
a window size of 2 seconds was initially selected for the detection window. This would
ensure that in both cars, there could be expected to be at least 20 packets (or observations)
in each window for the majority of CAN IDs, with many having 100 or more expected. It
did mean, though, that there would be four CAN IDs in Car A that would have an expected
count of 10 or less.

6.1 Timing Anomalies: Results and Discussion

Initial testing compared detection rates for adjustments to the error rates for Z-score and
ARIMA, and threshold for the supervised method, in order to find optimal values as measured
by accuracy scores. For this the initial testing was restricted to only the five highest priority
CAN IDs in each car. These had a high broadcast rate, with very little variation in timing
in Car A, though the broadcast intervals were slightly more erratic in Car B (Figures 5.1 to
5.4). Since these are the highest priority, it is likely that they would also carry important
information, potentially making them a high target for attack.

6.1.1 Timing Anomaly Results for High Priority CAN IDs

Figures 6.2, 6.3 and 6.4 show the sensitivity, specificity and accuracy scores for detection at
various error rates (for ARIMA and Z-score) and thresholds (supervised method), for Car
A’s five highest priority CAN IDs. The scores for Car B show a similar pattern to those of
Car A, and are presented in Appendix B. Tables 6.1, 6.2, 6.3, and 6.4 list Car A and Car B
scores and detection rates for those tests at the highest accuracy levels. For both cars the
highest accuracy scores were achieved with an error rate of 9 for ARIMA and Z-score, and
a threshold of 0.003 for the supervised methods. Perhaps predictably, given the broadcast
pattern of Car B, the scores for that car are slightly lower than those of Car A.

In Car A, the sensitivity scores are maximum at these accuracies, reflecting the ability
to capture all true positives. However, sensitivity was less high in Car B, for ARIMA and
Z-score. The specificities are generally high, indicating an ability to avoid false negatives.
The specificity, though, was slightly lower in ARIMA, indicating that its ability to distinguish
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Table 6.1 Car A: Scores for the three methods at the highest accuracy points for 5 highest
priority CAN IDs.

Method Attack Type Accuracy Sensitivity Specificity
ARIMA Injection 0.9866 1.0000 0.9863
ARIMA Dropped 0.9919 1.0000 0.9918
Z-score Injection 0.9978 1.0000 0.9977
Z-score Dropped 0.9982 1.0000 0.9982

Supervised Injection 1.0000 1.0000 1.0000
Supervised Dropped 1.0000 1.0000 1.0000

Table 6.2 Car B: Scores for the three methods at the highest accuracy points for 5 highest
priority CAN IDs.

Method Attack Type Accuracy Sensitivity Specificity
ARIMA Injection 0.9690 0.8000 0.9729
ARIMA Dropped 0.9626 0.7800 0.9667
Z-score Injection 0.9906 0.8000 0.9950
Z-score Dropped 0.9902 0.7800 0.9950

Supervised Injection 1.0000 1.0000 1.0000
Supervised Dropped 1.0000 1.0000 1.0000

between attacks and non-attacks was less successful at these points. In Car A at the highest
accuracy point, the ARIMA method, like the other methods, detected all 100 injections
(sensitivity 1.0000), but incorrectly classified 60 of 4370 non-injection windows (specificity
0.9863). In Car B, 80 injections were detected (sensitivity 0.8000), with 119 out of 4390
non-injection windows being incorrectly classified (specificity 0.9729).

Accuracy scores are heavily influenced by the proportion of negative (non-attack) win-
dows in the test data. Consequently, the detection response might not be optimal at the
highest accuracy point. Figures 6.2 to 6.4 (Car A) and B.1 to B.3 (Car B) show the sensitivity,
specificity and accuracy scores for injection detection, dropped record detection, and both
detections combined. The results for injection detection and dropped record detection were
both similar for the ARIMA and Z-score methods, suggesting that each method performed
comparably. The sensitivity for all methods fell, often rapidly, when the optimal error rate
had been surpassed. Of course, the speed of the sensitivity fall is dependent on the granularity
of the error rates tested, as well as on the tested range. For example, a tested range of only 8
to 10 split into fractions, might have shown a gentler slope. Even so, the results demonstrate
the importance of a correctly chosen error rate.
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Table 6.3 Car A: False positives and false negatives while monitoring 5 highest priority CAN
IDs.

Method Attack Type False Positives False Negatives
ARIMA Injection 60 40
ARIMA Dropped 36 0
Z-score Injection 10 0
Z-score Dropped 8 0

Supervised Injection 0 0
Supervised Dropped 0 0

Table 6.4 Car B: False positives and false negatives while monitoring 5 highest priority CAN
IDs.

Method Attack Type False Positives False Negatives
ARIMA Injection 119 20
ARIMA Dropped 146 22
Z-score Injection 22 20
Z-score Dropped 22 22

Supervised Injection 0 0
Supervised Dropped 0 0

The specificity across all methods increased with threshold increases, before plateauing.
Thus a positive response was more likely to be correct at the higher threshold levels. However,
given the fall in sensitivity, the methods become less likely to detect an attack, hence leading
to a fall in the number of responses. This illustrates how selecting the correct threshold value
is a trade-off between sensitivity and specificity.

Receiver Operating Characteristic (ROC) curves (Figure 6.5) are similar for all the
classifiers, and the closeness of the curve to the top-left shows they performed well on this
task at the optimum threshold rates.

6.1.2 Results for All CAN IDs

Using the same error rates and threshold values as for the 5 highest priority CAN IDs, the
tests were extended to include detection on all the CAN IDs. Figures 6.6 and B.5 show the
combined dropped record and injection results of these tests (the results from each test were
very similar so are not shown individually). The test set for Car A comprised 1040 attacks,
and 45,448 non-attacked windows; and for Car B, 560 attacks, 24,584 non-attacked windows.
Since these sets are approximately 10x and 5x larger than the top 5 ID test sets for Car A



66 Detecting Timing Anomalies - Results

Fig. 6.2 Car A: Injection detection for the five highest priority CAN IDs: sensitivity, speci-
ficity and accuracy. (Supervised method used a 0.0001 to 0.05 threshold.)

Fig. 6.3 Car A: Dropped record detection for the five highest priority CAN IDs: sensitivity,
specificity and accuracy scores. (Supervised method used a 0.0001 to 0.05 threshold.)
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Fig. 6.4 Car A: Combined detection scores for the five highest priority CAN IDs: sensitivity,
specificity and accuracy scores. (Supervised method used a 0.0001 to 0.05 threshold.)

Fig. 6.5 Car A: ROC curves for combined detection in the five highest priority CAN IDs,
adjusting error rate (ARIMA and Z-score) and threshold (Supervised).
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and Car B respectively, we might expect the false positives and false negatives to rise by
these amounts. However, in both Car A and Car B the sensitivity of the ARIMA and Z-score
methods was reduced, thus these did not issue proportionately more positive responses. The
supervised method showed a reduced specificity, especially at lower thresholds compared
with its results for the top five CAN IDs. This was especially noticeable in Car A (compare
Figure 6.6 with Figure 6.4) hence it saw a rise in false negatives, failing to detect attacks. Its
sensitivity, though, remained similar, hence it saw a large rise in false positives.

Fig. 6.6 Car A: Combined detection scores across all CAN IDs: sensitivity, specificity and
accuracy scores. (Supervised method used a 0.0001 to 0.05 threshold.)

Table 6.5 Car A: Scores for the three methods for all CAN IDs.

Method Attack Type Accuracy Sensitivity Specificity
ARIMA Injection 0.9804 0.2202 0.9978
ARIMA Dropped 0.9793 0.1327 0.9986
Z-score Injection 0.9812 0.1769 0.9996
Z-score Dropped 0.9804 0.1326 0.9998

Supervised Injection 0.8838 1.000 0.8811
Supervised Dropped 0.8850 0.9846 0.8827
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Table 6.6 Car B: Scores for the three methods for all CAN IDs.

Method Attack Type Accuracy Sensitivity Specificity
ARIMA Injection 0.9770 0.5268 0.9872
ARIMA Dropped 0.9714 0.3946 0.9846
Z-score Injection 0.9862 0.4821 0.9977
Z-score Dropped 0.9842 0.3929 0.9977

Supervised Injection 0.9905 1.0000 0.9903
Supervised Dropped 0.9910 1.0000 0.9908

Table 6.7 Car A: False positives and false negatives while monitoring all CAN IDs.

Method Attack Type False Positives False Negatives
ARIMA Injection 101 811
ARIMA Dropped 61 902
Z-score Injection 16 856
Z-score Dropped 10 902

Supervised Injection 5404 0
Supervised Dropped 5332 16

These results might reflect many of the lower priority IDs having a less stable range of
broadcast intervals, thus increasing the variance; which the unsupervised methods accommo-
dated leading to them making proportionately fewer decisions. In contrast, the fixed variance
assumptions of the supervised method ensured it carried on making a similar proportion
of decisions, which became less correct. Thus, at the error rate 9 and threshold 0.003, the
supervised method made 12800 positive responses, 16% of which were correct, whereas
the ARIMA method made only 529 positive responses, 69% of which were correct, and
the Z-score method made 348 positive responses, of which 93% were correct. Figure
6.7 shows the number of false positives for the intrusion detection plotted against time gap
standard deviation for each CAN ID in Car A. There is a cluster (lower left) that showed
low deviation in their broadcast times and low false positives. For the remaining CAN IDs,
with more variance in their broadcasting, the false positives are higher. In contrast, the same
data for Car B, plotted in Figure 6.8, shows that Car B has fewer CAN IDs with such high
variance in their broadcasting and few that generated high numbers of false positives .

ROC curves for the combined injection detection and dropped record detection scores are
shown in Figures 6.9 and B.6. As suggested by the results already discussed, the methods
performed worse with all the CAN IDs included, and thus the curves are flatter. The curve of
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Table 6.8 Car B: False positives and false negatives while monitoring all CAN IDs.

Method Attack Type False Positives False Negatives
ARIMA Injection 314 265
ARIMA Dropped 381 339
Z-score Injection 56 290
Z-score Dropped 56 340

Supervised Injection 239 0
Supervised Dropped 226 0

Fig. 6.7 Car A: Intrusion detection false positives by time gap standard deviation for individual
CAN IDs.

the supervised method suggests its potential for the highest detection, but it would need the
threshold adjusting.

6.1.3 Results for Window-size Variation

Varying the window size was investigated using the CAN data from Car A. Keeping the
window size small is likely to be preferred since it would minimise the time between the
attack and its detection. However, it was found that reducing the window size to 1 second
produced "insufficient observations" errors with the auto.arima function when the 1 second
reflash attack data was processed. Although the windows for the testing and for the reflash
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Fig. 6.8 Car B: Intrusion detection false positives by time gap standard deviation for individual
CAN IDs.

Fig. 6.9 Car A: ROC curves for combined detection across in all CAN IDs, adjusting error
rate (ARIMA and Z-score) and threshold (Supervised).
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attack simulation were not overlaid, it is likely that the error resulted from some of the tested
windows having insufficient or no packets for the auto.arima process, although no minimum
sample size is discussed in the auto.arima specification. Such errors might be easily avoided
with simple clauses added to the detection code to bypass the detection when insufficient
observations are present, and perhaps count the window as a suspected attack. However, first
we would need to determine the precise circumstances that generate the error, such as how
few observations are needed to trigger it.

Increasing the window size, with the threshold kept constant, had little effect on specificity
and accuracy, but did increase sensitivity in the ARIMA and Z-score methods (Figure 6.10).
This reflected an increase in true positives and false positives, hence might be of little benefit
if false positives are to be avoided.

Fig. 6.10 Window size impact on combined injection detection and dropped record detection
across all CAN IDs, Car A: sensitivity, specificity and accuracy scores.

6.2 Method Overheads

Prior to implementation, and during future development, the technical viability of any
proposed method would need assessing. This would depend on the hardware and software that
would be used for in-car implementation. Preliminary assessment of the method overheads
was carried out on the set-up used for these experiments (i.e. a medium spec laptop computer),
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rather than a possible in-vehicle system. Even so, the performance characteristics are worth
noting to inform viability.

Process timing data was recorded for three CAN IDs at the beginning, middle and end of
the CAN ID list when arranged by priority; thus testing a range of broadcast rates.

For the Z-score and Supervised methods, for each CAN ID each window was assessed in
under 0.016 seconds. The ARIMA method also made the prediction in each window in under
0.016 seconds per CAN ID. However, on top of this must be added the training, or "fit", time
for the ARIMA process. Mean times for this in the three CAN IDs were 0.31, 0.41 and 0.17
seconds per window, though the maximum times observed were 1.41, 2.20 and 0.39 seconds.

Given that these timings are for processing each 2 second window per CAN ID, and Car A
had over 50 CAN IDs, the ARIMA timings could be problematical for a system covering the
whole CAN ID range, analysing in real-time and being retrained for each new window, even
if a processing unit that had a performance comparable to the laptop used in this experiment
were available.

6.3 Conclusion

Analysis of the timing anomaly detection results drew on accuracy, sensitivity, specificity and
response curve calculations generic across research fields and described in [74, 22]. To these
were added the criteria to assess the detection decision, accounting for the window processing
derived for parsing the packet flow. For the injection and dropped packet simulations tested,
across the three methods assessed (ARIMA, Z-Score and supervised mean comparison) the
detection rates were worse when all CAN IDs were tested, in contrast to testing only the
highest priority CAN IDs. ARIMA and Z-Score suffered disproportionately higher rates
of false negatives in particular, whereas the supervised method showed a high rise in false
positives. Potential reasons for this were assessed from considering the packet broadcast
profiles. Altering the length of the window used for capturing the CAN flow had little effect
on detection accuracy, although program errors emerged if it was made too small. The
observed performance overheads of the methods were also assessed, showing that processing
time could be problematical, especially for an ARIMA system assessing all CAN IDs in
real-time. The implications for the results are considered in Chapter 9.





Chapter 7

Detecting Payload Anomalies -
Experiment Design

This chapter discusses the methods developed for identifying suitable packet clusters for the
payload anomaly detection, and presents the experimental design adopted for the subsequent
payload anomaly detection experiments. The results from those experiments are presented in
Chapter 8.

The anomaly detection algorithm development and experiments used data captured from
two unmodified popular UK small family cars (henceforth referred to as Car 1 and Car 2)
made by different manufacturers. CAN logs were captured onto a laptop using a Kvaser
Leaf Pro HS v2 OBD-II reader attached to the car’s OBD port. The subsequent processing,
analysis and experiments were developed in Python 3.6 running a standard laptop.

7.1 Preliminary Analysis and Cluster Identification

As stated in Chapter 4, the methods tested for the data anomaly detection require quantitative
data, such as from sensor readings, rather than category data, and detect anomalies by
comparing data fields that might be associated. Thus the identification of anomalies in
one field is sought by comparing the values in that field against the values in others. Pre-
analysis therefore involved profiling the data to try to identify likely sensor fields, identified
by having a high count of unique values and data that showed increasing and decreasing
trends. Algorithms were developed to: a) identify the sensor data fields, including those
represented by combined two-byte values; and, b) group the identified sensor fields into
functional clusters.



76 Detecting Payload Anomalies - Experiment Design

To determine the algorithms and profile the data, more than eight hours of driving was
analysed from Car 1, totalling more than 42 million records. The developed algorithms
were then also tested on Car 2, providing an indication of their cross-model validity. The
journeys captured on Car 1 spanned a range of conditions, seasons, and lengths. Some of the
recordings were made with the car static and specific functions operated in isolation to see if
it was possible to identify the CAN messages associated with each function by monitoring
field changes. The CAN IDs used by the car, their data field value profiles, and the packet
intervals, were analysed across the captured records.

7.1.1 Identifying Concatenated Sensor Fields

Markovitz and Wool [48] classify CAN data fields into four categories: constant (fields
with just one value); multi-value (containing a small number of unique values); counter
(consecutive, uniformly increasing), and sensor (containing a large number of unique values
describing a noisy sine). CAN data packets can have up to eight fields. However, those data
fields might be composite, with the data value represented by the concatenation of the hex or
binary representation of two or more fields.

From analysis of the CAN logs captured for this thesis, it was observed that concatenated
sensor fields presented a pattern showing a field with a high number of unique values, adjacent
to a field with only a few unique values. However, this pattern might be coincidental, so could
not be used as the sole indication that fields should be concatenated. More reliably, such
data fields could be determined by observing whether the values in a field incremented or
decremented by one when the next data field in the packet was a sensor field that incremented
gradually towards 255 and then plummeted towards 0, or fell gradually towards 0 and then
jumped towards 255 (Figure 7.1). Whilst such fields were determined initially by visual
inspections, an algorithm was produced to automate this process (Algorithm 2).

The algorithm is repeated for all combinations of adjacent data fields for a CAN ID
(i.e. Field1 and Field2, Field2 and Field3, Field3 and Field2, Field2 and Field1, etc), and
counts instances where the unit change of FieldA corresponds to previous, same-direction,
changes in FieldB followed by FieldB suddenly changing in the other direction by an amount
("jump" in the Algorithm) large enough to suggest it has entered the next value-cycle. Such
occurrences increase the likelihood that FieldA and FieldB are composite. Conversely,
changes in FieldA that do not correspond to such a cyclical pattern in FieldB, decreases the
likelihood. Each such occurrence is counted to generate likelihood and unlikelihood scores
accordingly. Although an algorithm for parsing the CAN message was proposed in [48], it
operated at the bit level, and was configured only for CAN packets that employed the full
64 bit (8 byte) data allocation. Moreover, although that algorithm attempted to distinguish
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Fig. 7.1 Two data fields in a CAN packet show a pattern that suggests they are meant to be
combined to represent a single reading from a sensor. When field 2 reaches the top or bottom
of the value capacity suggested by its bit size, a corresponding unitary change is seen in field
1. Field 2 shows also a propensity to jump between its peak and near zero corresponding to
the changes in Field 1.
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Algorithm 2 Determine concatenated fields for a CAN ID
X← all records in time order for CAN ID(x)
jump← 100
for all data f ields in X do

fieldA, fieldB← next adjacent data field pair
for all rows in X do

if fieldArow(value) = fieldArow−1(value) + 1 then
if fieldBrow−1(value) - fieldBrow(value) >jump
and fieldBrow−1(value) >= fieldBrow−2(value)
then

likely← likely + 1
else if fieldBrow(value) <= fieldBrow−1(value) then

unlikely← unlikely + 1
end if

else if fieldArow(value) = fieldArow−1(value) - 1 then
if fieldBrow(value) - fieldBrow−1(value) >jump
and fieldBrow−1(value) <= fieldBrow−2(value)
then

likely← likely + 1
else if fieldBrow−1(value) >= fieldBrow(value) then

unlikely← unlikely + 1
end if

end if
end for
if likely - unlikely >threshold then {our threshold = 1}

fieldAB← concatenate(fieldA(hex),fieldB(hex))
end if

end for
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Fig. 7.2 Example output from the composite data field detection algorithm. The algorithm
shows both the number of unique values for each field (left of image), and the likelihood
score of adjacent fields being connected (right of image). The pattern for the two identified
composite fields (DATA1 and DATA2, and DATA3 and DATA4) was typical for all composite
fields - a very high number of unique values (e.g. DATA2 or DATA4), following a field with
a few unique values (e.g. DATA1 or DATA3).

between single value fields and category fields, it did not attempt to distinguish between
sensor and counter data. Thus, their algorithm was unsuitable for the requirements of the
processes envisaged here.

The algorithm devised for this thesis was implemented in Python and initially tested
against Car 1. Fields were accepted as being potentially concatenated when the likelihood
score was higher than the unlikelihood score. For validation, a visual inspection was carried
out on these, and this also suggested they were concatenated sensor fields. The observed
pattern for fields identified as composite was typical of that shown in Figure 7.2, i.e. two fields
next to each other, the second with a high number of unique values. Visual inspection of the
remaining fields did not suggest any missed concatenations, although it is acknowledged that
the absence of evidence does not necessarily represent evidence of absence. The process was
repeated on Car 2, and again, the fields flagged with a positive likelihood to unlikelihood ratio
were checked through visual inspection, which also suggested they were all concatenated.

The algorithm does not pick up single fields that might be sensor readings. However,
from studying the number of unique values and their pattern, some of these were suggested
from Car 1, and included in the subsequent clustering process. Also, the algorithm does not
compare non-adjacent fields, or check if sensor fields might be composite from three or more
fields. These checks could be added to the algorithm, however the visual inspection of the
data revealed no observed instances that suggested composite fields made of three data fields
(i.e. at least 2 adjacent fields with high numbers of unique values).
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7.1.2 Identifying Associated Fields

Having identified sensor fields, we need to group these into clusters, each of which contain
the sensor fields pertaining to associated functions. For the anomaly detection process, the car
function that the fields pertain to does not need to be known. What matters is that the fields
are clustered into a group with a correlation that would enable the detection of anomalies
within its elements. However, determining the function would provide a validation that the
cluster detecting algorithm has worked, as well as help to determine which clusters might
be targets for specific attacks. Although the lack of dictionary sharing by the manufacturers
means that the mapping of CAN packet IDs to ECUs, or to car functions, is not available,
estimation can be made from the analysis of CAN traffic combined with journey records
captured on video and verbal commentary. In Car 1 it was possible, for example, to determine
fields that change with the application of the accelerator, or with changes in speed regardless
of the accelerator position, or as brakes are applied.

To support the manual functional analysis, a hierarchical cluster analysis was undertaken
of the fields identified as sensor data. Pearson’s correlation coefficient was used as a distance
measurement to cluster the data fields according to the data field correlations. Implementation
was in Python using the pandas .corr() function for the correlations [63], and .distance,
.linkage and .fcluster functions in the SciPy package to generate the hierarchical clustering
[68]. Fig 7.3 shows a plot of the resulting cluster matrix. The CAN packet ID is shown by
the field’s prefix, and the data field positions are shown by the D suffix. Composite fields
have two D suffix elements. Thus, for example, data field 17C_D3D4 is a composite of the
D3 and D4 fields from a packet with CAN ID 17C.

For this study, fields were considered as being in a related cluster where they had a
correlation of 0.75 or greater with the other fields in the cluster. The two large darker clusters
towards the top left and centre of the chart comprise fields that the manual analysis suggested
were concerned with the accelerator and speed, respectively. These seemed to change as the
accelerator was operated, or the car’s speed changed, but seemed unaffected by other events.
Of course, other than from conducting detailed and comprehensive reverse engineering, or
from acquiring the CAN dictionary for the car, it is very difficult to determine what precisely
the fields are measuring. They might be capturing something only very tentatively linked,
such as fuel efficiency or a component pressure reading. Even so, the potential use of such
correlated fields for determining contextual anomalies holds, no matter the nature of the
link. Towards the lower right of the chart are fields for which the functionality could not
be determined. Many of the fields show positive correlations, but the fields for packet ID
191 show a negative correlation with the other packets, and a particularly strong negative
correlation with the cluster of packets that seemed to be concerned with the speed of the car.
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Fig. 7.3 Hierarchically clustered correlation matrix plot for sensor fields, Car 1. The two
dark cluster blocks on the diagonal seems to correspond to the individual aspects (accelerator
and speed) identified whilst monitoring the CAN data during driving.
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Fig. 7.4 Hierarchically clustered correlation matrix plot for sensor fields for Car 2.
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The process was repeated with Car 2. Clusters for that car were also clearly identified
(Figure 7.4), suggesting data fields that might describe associated functions. However, that
car was not available long enough for a detailed functional analysis to be undertaken, so the
functionality related to the clusters cannot be speculated. As with Car 1, two Car 2 clusters
of fields having 0.75 correlation with each other were selected for the subsequent testing.

The clusters from both cars that were used for the experiments are shown in Table 7.1.
The value distributions of the fields are shown in Appendix C, Figures C.1 to C.4. They
show a mixture of distributions, and a few have a high instance of the lowest value, including
values of 0 for Car 1. Since it is not known how the data is derived, it is difficult to speculate
on the cause of the distributions. However, it is possible that the values at the range-origin
for some fields represent occasions when a function (such as brakes or accelerator) was not
active.

7.2 Experiment Data Generation and Evaluation Criteria

Having identified sensor fields, including those with values derived from composite fields,
and determined clusters of associated fields, the CAN log flow can now be parsed into a
format suitable for the anomaly detection. Snapshot records were created in the manner
discussed in Chapter 4, with each snapshot record being created upon the broadcast of one
of the CAN packets in the cluster list and comprising the most recently broadcasted values
for the data fields in the cluster. Snapshot records were created for each of the main clusters
identified by the clustering algorithm (i.e. Acceleration and Speed clusters for Car 1, and
Cluster A and Cluster B for Car 2).

7.2.1 Experimental Data Sets

Each experimental data set comprised 8000 of the snapshot records for one of the clusters.
The data set records were selected at random from the snapshot logs generated for a complete
journey, with each snapshot being generated as described in Section 4.3.2. For each experi-
mental data set, 6000 snapshots were assigned to a training set, 1000 for an unmanipulated
testing set, and 1000 for an attack testing set. The testing sets determined the level of false
positives and true negatives, whilst the attack sets, which were manipulated to mimic attacks
(as discussed below), determined the level of true positives and false negatives.

The snaphsots from each experimental data set were randomly selected into the training,
test and attack data sets using Scikit-learn train_test_split function [67]. Random sampling
was chosen to deduce the likelihood of any systematic biases that might be caused by any
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Table 7.1 Clusters used in the anomaly detection experiments. In Car 1 the cluster names
indicate the function the cluster seemed to be associated with. A detailed analysis of
car functions was not carried out in Car 2, so the cluster names are not given functional
associations.

Car Cluster Data Field

Car 1
Accelerator

1DC_D2D3
136_D5
13A_D2
17C_D3D4
136_D4
383_D5D6

Speed

1D0_D7D8
164_D6D7
158_D1D2
158_D5D6
1D0_D1D2
1D0_D5D6
191_D4
191_D5

Car 2
Cluster A

4B0_D1D2
4B0_D3D4
4B0_D5D6
4B0_D7D8
20E_D1D2
201_D5D6
20F_D3D4

Cluster B

73_D5D6
90_D7D8
200_D1D2
200_D5D6
205_D1D2
205_D7D8
211_D3D4
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(a) Frequency distribution of raw values. (b) Frequency distribution post scaling.

Fig. 7.5 Data for the fields was scaled using the Scikit-learn StandardScaler, which retains the
distribution shape. This example shows field 205_D7D8’s value distribution before scaling
(a), and post scaling (b).

trends or seasonality in the logs. Whilst selecting data at regular sampling points might
ensure coverage across the full journey, it could produce a biased sample if, for example, the
sampling corresponded to the activation of some time defined, cyclical functioning within the
car. Although a random sample might not, in itself, be representative of the full population
profile, the repetition of the testing during parameter selection, as well as the focus on the
trends seen across repeating the experiment with different attack generation approaches and
across journeys (discussed in Chapter 8) reduces the likely impact of any unrepresentative
sample.

All sets were scaled using Scikit-learn unit variance StandardScaler function [67], re-
taining the scaling parameters obtained from processing the corresponding training set. The
StandardScaler function standardises the data by first subtracting the mean value (giving
the values a zero mean), and then dividing by the variance, thus giving the distribution unit
variance. As shown in Figure 7.5 standardisation retains the distribution shape of the data,
unlike scalers such as Min-Max which can crush values in data sets with outliers [27].

7.2.2 Attack Manipulation

The fields in the attack sets were manipulated to replicate the effects of attacks discussed
in Chapter 2. These data sets were fed to the classifiers multiple times, with one field
manipulated each time and the remaining fields being left unchanged. Two variations of
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attack manipulation were used, with the classifiers being tested using attack data generated
by each method.

In the first method, the data values for the attacked field were multiplied by a specific
multiplier. Runs were repeated so that each data field was tested with every multiplier value.
Thus, in a cluster with 7 data fields, the attack experiment would be replicated 63 times
(7 * number of manipulation values). The nine multiplier values were 0.1, 0.5, 0.8, 0.9,
1.1, 1.2, 1.5, 2.0 and 3.0. This therefore tests attacks in which the attacker uses values
that are multiples of the original value; for example, take the existing value for field x and
rebroadcast it increased by 10%. Here the opportunistic attacker would be unconcerned with
the construction of the original data value.

Provisional analysis of the fields from each car suggested that some fields had a range
with an origin that did not start at zero; as is shown, for example, in Figure 7.5a. In cases
where the range is narrow, yet there is a high range-origin, the outliers produced by the
above manipulation method would be extreme; so they would be simple to detect, and would
probably be rejected by any reading node in any case.

The second method first scaled the attack data set using the scaling parameters fitted from
the training data set, and then applied the data manipulation to the attacked field by adding
an offset to the result. The offsets were -1, -0.5, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3, 0.5 and 1,
thus increasing or decreasing the scaled data by specific magnitudes. This method produces
attack data that, across fields, is more uniform in its magnitude, irrespective of the permitted
range-origin for individual fields. Such a manipulation would be more representative of
attacks in which the attacker had more knowledge of the data construction and meaning.

The manipulation ranges for both methods described above enable classifier performance
to be assessed across a broad range of manipulations. Some of the demonstrated attacks have
involved making subtle changes to the data field values (e.g. [52, 76]), thus the manipulation
ranges included values that would induce very minor changes in the data field, as well as
changes that are more extreme without being obviously beyond likely recognition limits.

7.2.3 Evaluation Definitions

During testing, the snapshot records in the test and attack data sets were fed individually
to each classifier, which had been trained using the corresponding training data sets. The
classifier then classified each snapshot according to its decision as to whether the snapshot
was an anomaly (i.e. a snapshot containing an attacked field) or normal (i.e. a snapshot that
contained no attacked fields). For the Compound Classifier (CC) an anomaly corresponded
to instances that fell outside all hyperspheres. For the other Local Outlier Factor (LOF) and
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One Class Support Vector Machine (OCSVM) classifiers, the decision was as reported by the
software implementation function.

The analysis employed the following definitions: True Positive (TP) an attacked snapshot
identified as such by the classifier; False Negative (FN) an attacked snapshot that was not
identified as such by the classifier; False Positive (FP) a normal snapshot classified as having
been attacked; True Negative (TN) a normal snapshot classified as such. Fβ scores [6] were
used to provide a summarisation of these, taking β=0.5 so as to prioritise precision above
recall (Equation 7.1).

Fβ =
(1+β 2)×T P

(1+β 2)×T P+β 2×FN +FP
(7.1)

In the results tables discussed in Chapter 8 only the FP and FN values are presented. TN
and TP values can be calculated by subtracting, respectively, FP and FN values from 1000
(the sample sizes).

7.2.4 Inter-Journey Assessment

The objectives of the initial experiments were to determine optimal parameters for the
classifiers, assess the viability of the methods on different vehicles, compare the classifiers
performance, and gauge their potential effectiveness. The experiments were performed using
training, test and attack data sets from within the same journey. Although they provide
an indication of the results that might be achieved, a greater challenge is determining the
training that would be needed for the classifiers to perform at their optimal detection in the
long term - spanning multiple journeys over a representative deployment time-span.

To provide indicative assessment of this, subsequent testing was undertaken in which
the trained fit estimators from the classifiers and the scaling were saved and applied to
testing across journeys. That is, the test and attack data sets were scaled and classified using
classifiers trained on data that was not from their journey. In these experiments, the scaler fit
and classifier fit were saved and reapplied using the Scikit-learn joblib functions [67] for the
LOF and OCSVM, and the locate sizes and locations for the Compound Classifier. These
experiments are discussed in Section 8.3.

7.3 Conclusion

This chapter has presented the algorithms devised for identifying the sensor data fields (in-
cluding concatenated ones) and allocating these into clusters of likely associated functionality,
thus allowing anomaly detection based on their interaction. The chapter also presented the
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design and evaluation criteria used for testing the one-class anomaly detection methods
discussed in Chapter 4 (the results are presented in Chapter 8).

An existing method proposed for identifying some field types [49] was inappropriate for
this thesis since it did not distinguish sensor (continuous) data from other types, and was
devised only for packets that used all eight bytes of data. The algorithm devised for this
thesis determines concatenated sensor fields based on the data-value flow between fields,
and was tested against a manual analysis of the data from two cars. Clustering was achieved
using correlation matrices, and, again, was tested against a functional analysis of the packet
characteristics observed during operations on the cars.

Data for the training and testing required the presentation of CAN data as snapshots
of the most recent broadcast values for fields in the analysis cluster. The testing data sets
comprised normal CAN records and records in which the data values in the sensor fields
were manipulated by varying magnitudes, thus enabling comparison of attacks that might
entail subtle value manipulations, as well as those employing more extreme value changes.

The evaluation definitions were presented, including the Fβ scores defined in [6] that
present a representation of the accuracy weighted according to the priority of recall versus
precision.



Chapter 8

Detecting Payload Anomalies - Results

This chapter presents the results from the payload anomaly detection experiments described
in Chapter 7. The implications of those results are discussed in Chapter 9.

8.1 Results and Discussion

All classifiers were trained and tested using data sets constructed as discussed in Chapter
7. Initial experimentation (Section 8.1.1) was conducted using the data sets from a journey
from Car 1 to determine classifier parameter configurations that gave optimal all-round
performance. Because of the large volume of results, these initial evaluations were restricted
to examining only the averaged Fβ (0.5) scores for each test parameter permutation. Thus
for each training parameter permutation, the average Fβ (0.5) score was taken across all the
attack multipliers for all the fields in the cluster. More detailed analyses (Sections 8.2 and
8.3) were then undertaken to explore the performance of the optimised classifiers against
the data sets from Car 1 and Car 2. That testing compared the optimised classifiers across a
variety of attack and training/testing permutations.

8.1.1 Determining Optimal Parameter Values

The Local Outlier Factor (LOF) was tested with parameter permutations comprising k-nearest
neighbours (KNN) between 3 and 100, and contamination between 0.01 and 0.12. For the
accelerator data set, the highest average Fβ (0.5) score, 0.8722, was achieved with KNN=12
and contamination=0.06. For the speed data set, the highest average Fβ (0.5) score, 0.9376,
was achieved with KNN=5 and contamination=0.04. The number of false positives at these
settings from the 1000 undoctored records are shown in Table 8.1.
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The One Class Support Vector Machine (OCSVM) was tested with permutations com-
prising Nu between 0.001 and 0.7 and gamma between 1e-07 and 0.9. For the accelerator
data set, the OCSVM achieved a highest average Fβ (0.5) score, 0.7748, with Nu = 0.015,
and gamma = 0.5. For the speed data set the highest average Fβ (0.5) score, 0.8332, was also
achieved with Nu = 0.015, and gamma = 0.5.

Table 8.1 False positive recorded for Car 1 with classifiers individually optimised to the data
sets (1000 record test data set).

Accelerator Speed
LOF 54 25
CC 100 167
OCSVM 14 12

The Compound Classifier (CC) was tested with parameter values that were recommended
by its author [3, 4] scaled for the standardisation process (i.e. hypersphere size adjustment of
0.0001 * the number of dimensions; and hypersphere movement of 0.05). Other parameter
values were tried, but these slowed the training, and produced no improvement in classifica-
tion performance. The CCs were trained until they captured 97% of the training instances
for the Car 1 Speed cluster, and 96% for the Accelerator cluster. The proportion of training
instances captured by the hyperspheres plateaued at these rates, and trying to achieve higher
rates produced no improvement in capture after many minutes extra training. The trained
CCs replaced the 6000 training data points with 21 hyperspheres for the Accelerator cluster,
and 8 hyperspheres for the Speed cluster. Test instances were then classified as normal if
they fell inside any hypersphere, and as anomalies if they fell outside of all. The average CC
Fβ (0.5) score was 0.6510 for the Accelerator cluster, and 0.6276 for the Speed cluster.

All subsequent tests for Car 1 and Car 2 were conducted with LOF and OCSVM parame-
ters fixed midway between the observed optimal range, at KNN=9, contamination=0.05 for
the LOF, and Nu = 0.015, gamma = 0.5 for the OCSVM.

8.2 Baseline Results

The initial testing of the optimised classifiers was conducted with the training data set, test
data set, and attack data set all from within the same journeys. For both Car 1 and Car 2,
the selected journey was approximately 11 minutes long. This testing presented a gauge of
the potential ability of the classifiers. Although using training and test data from the same
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journey clearly does not give an indication of the capability of a trained classifier to detect
across journeys (which was subsequently tested, see Section 8.3), it does give an indication
of the performance that might be achieved, without yet considering challenges of interpreting
intra-journey results or determining suitable training regimes for long-term detection.

Appendix D presents, for each car, the breakdown of false positives, false negatives and
Fβ (0.5) scores for the classifiers when detecting the attack data across the attack manipu-
lations applied prior to the data scaling. Appendix E presents these scores for the attacks
generated by applying the off-sets to the pre-scaled data.

8.2.1 Baseline Results - Car 1

The results for Car 1 are summarised below in tables 8.2 to 8.13, which present the numbers
of false positives, as well as the Fβ (0.5) score averages by cluster and data field tested.

Table 8.2 Mean Fβ (0.5) scores by field: Car 1 Accelerator cluster (1000 record test data set).
Attacks generated by applying multipliers prior to scaling.

1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6 All
LOF 0.9376 0.7227 0.7442 0.9391 0.8929 0.8634 0.8500
CC 0.7923 0.5399 0.5468 0.7922 0.6155 0.6190 0.6510
OCSVM 0.9292 0.6421 0.6527 0.9286 0.7461 0.7503 0.7748

Table 8.3 Mean Fβ (0.5) scores by field: Car 1 Speed cluster (1000 record test data set).
Attacks generated by applying multipliers prior to scaling.

1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5 All
LOF 0.9448 0.8827 0.8839 0.8841 0.8817 0.8817 0.9514 0.9529 0.9079
CC 0.6319 0.6382 0.6377 0.6378 0.6379 0.6376 0.6000 0.5995 0.6276
OCSVM 0.7991 0.8209 0.8209 0.8212 0.8209 0.8205 0.8823 0.8801 0.8332
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Table 8.4 False positives recorded for Car 1 Speed cluster (1000 record test data set). Attacks
generated by applying multipliers prior to scaling.

Accelerator Speed
LOF 59 57
CC 100 167
OCSVM 14 12

Table 8.5 Mean Fβ (0.5) scores by field: Car 1 Accelerator cluster (1000 record test data set).
Attacks generated by applying offsets after scaling.

1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6 All
LOF 0.8772 0.8779 0.8633 0.8793 0.8580 0.8375 0.8655
CC 0.5790 0.5811 0.5821 0.5794 0.5751 0.5745 0.5785
OCSVM 0.6435 0.6679 0.6684 0.6451 0.6804 0.6888 0.6657

Table 8.6 Mean Fβ (0.5) scores by field: Car 1 Speed cluster (1000 record test data set).
Attacks generated by applying offsets after scaling.

1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5 All
LOF 0.9606 0.9619 0.9619 0.9620 0.9620 0.9621 0.9581 0.9571 0.9606
CC 0.4848 0.4971 0.4970 0.4971 0.4967 0.4975 0.5122 0.5137 0.4995
OCSVM 0.7626 0.8192 0.8194 0.8194 0.8205 0.8203 0.8857 0.8459 0.8241

Table 8.7 False positives recorded for Car 1 (1000 record test data set). Attacks generated by
applying offsets after scaling.

Accelerator Speed
LOF 43 48
CC 86 185
OCSVM 22 10

From the Fβ (0.5) scores in Tables 8.2, 8.3, 8.5 and 8.6 it can be seen that the highest
Fβ (0.5) scores overall, and averaged within fields, were obtained by the LOF, followed by
the OCSVM; with the CC being the least successful. The OCSVM showed the lower rate
of false positives (Tables 8.4 and 8.7); although tended to generate more false negatives
compared with the LOF (as seen in the tables in Appendix D and E), hence achieved a lower
Fβ (0.5) score.

Although, looking at the unscaled data attacks suggests the detection was far less success-
ful in fields 136_D5, 13A_D2 of the Accelerator cluster (Table 8.2), interpretation of this
data presents a difficulty due to the attack method adopted. In these two fields, almost 25%
of values were zero and hence would not have been changed by the attack method. In the
scaled data attack (Table 8.5), the zero values were converted to other values by the scaling,
before being manipulated by attack offset. Hence those fields appear to yield better detection
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in those attacks. The dilemmas posed by this data characteristic and the problems it presents
to the data analysis, as well as the options to overcome these, are discussed in Chapter 9.

As might be expected, the detection rate across all CAN fields fell as the magnitude
of attack manipulation decreases (the central rows in the tables in Appendix D and E).
The LOF achieved fewer false negatives and a higher Fβ (0.5) score at lower magnitudes
of manipulation compared with the OCSVM, but the lower false positive score of the
OCSVM gained it a higher Fβ (0.5) score at the higher manipulations; even though there
does not appear to be a large reduction in its false negative scores, compared to the LOF,
at these magnitudes. For example, on the Accelerator cluster (Tables D.3 and D.5), with
a 1.1 multiplication manipulation, the LOF achieved an average false negative rate of 466,
compared with 854 for the OCSVM, giving it a mean Fβ (0.5) of 0.7601 when its 59 false
positive score is considered; compared with 0.3752 for the OCSVM, with the false positive
score of 14. However, with a 3.0 manipulation, the LOF achieved an average false negative
rate of 146, compared with 141 for the OCSVM, giving it a mean Fβ (0.5) of 0.9076,
compared with 0.9450 for the OCSVM.

For the attacks generated prior to scaling (Appendix D), the detection seems more
successful on some fields compared with others. The fields with the higher number of false
negatives also had data spread over higher ranges (see Figures C.1 and C.2). Thus, in the
attacks generated by applying the offsets to the already scaled data, there is less variation in
detection across fields (Appendix E).

8.2.2 Baseline Results - Car 2

The following results were obtained from Car 2, a 2012 small family car of a different
manufacturer to Car 1. As discussed in Chapter 7, two ID clusters were chosen for testing. A
detailed functional testing of Car 2 was not possible, so there is more uncertainty as to what
the clusters might be associated with compared to Car 1. Therefore the clusters are referred
to merely as Cluster A and Cluster B. The same classifier parameters were used as for Car 1.
Training the CC plateaued for Cluster B at 95% training success rate, while Cluster A was
trained to 97%.

Table 8.8 Mean Fβ (0.5) scores by field: Car 2 Cluster A (1000 record test data set). Attacks
generated by applying multipliers prior to scaling.

4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4 All
LOF 0.9682 0.9682 0.9682 0.9682 0.9682 0.8996 0.9682 0.9584
CC 0.7952 0.7952 0.7952 0.7952 0.7952 0.6719 0.7952 0.7776
OCSVM 0.9819 0.9819 0.9819 0.9819 0.9819 0.8764 0.9819 0.9669
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Table 8.9 Mean Fβ (0.5) scores by field: Car 2 Cluster B (1000 record test data set). Attacks
generated by applying multipliers prior to scaling.

73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4 All
LOF 0.9601 0.9601 0.9601 0.9601 0.9601 0.9581 0.9601 0.9598
CC 0.9266 0.9266 0.9266 0.9266 0.9266 0.8501 0.9266 0.9157
OCSVM 0.9789 0.9789 0.9789 0.9789 0.9789 0.9788 0.9789 0.9788

Table 8.10 False positives recorded for Car 2 (1000 record test data set). Attacks generated
by applying multipliers prior to scaling.

Cluster A Cluster B
LOF 41 52
CC 322 99
OCSVM 23 27

Table 8.11 Mean Fβ (0.5) scores by field: Car 2 Cluster A (1000 record test data set). Attacks
generated by applying offsets after scaling.

4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4 All
LOF 0.9635 0.9629 0.9632 0.9635 0.9635 0.9635 0.9635 0.9634
CC 0.6006 0.6003 0.6006 0.5995 0.5998 0.5984 0.6000 0.5999
OCSVM 0.9300 0.9176 0.9315 0.9304 0.9303 0.9310 0.9304 0.9288

Table 8.12 Mean Fβ (0.5) scores by field: Car 2 Cluster B (1000 record test data set). Attacks
generated by applying offsets after scaling.

73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4 All
LOF 0.7255 0.7356 0.7554 0.7397 0.7352 0.7222 0.3747 0.6840
CC 0.2787 0.2794 0.2834 0.2801 0.2851 0.2828 0.2772 0.2810
OCSVM 0.3375 0.3342 0.3494 0.3653 0.3871 0.3881 0.2220 0.3405



8.2 Baseline Results 95

Table 8.13 False positives recorded for Car 2 (1000 record test data set). Attacks generated
by applying offsets after scaling.

Cluster A Cluster B
LOF 47 42
CC 316 86
OCSVM 7 16

The Fβ (0.5) scores for the attacks generated prior to scaling (Tables 8.8 and 8.9) are
higher than those for Car 1 (Tables 8.2 and 8.3). Tables D.17 to D.19, and D.23 to D.25, show
there were no false negative detections for most of the fields. However, many of the fields
in Car 2 had a range with a high origin (Figure 8.1). As explained in Chapter 7, generating
attack data by simply multiplying the original value in such data will result in outliers that
are proportionally further from the mean, hence being easier to to detect.

(a) Example sensor field from Cluster A. (b) Example sensor field from Cluster B.

Fig. 8.1 Distribution of sensor field values that is typical of those observed in Car 2. The
distribution shows a relatively narrow range, with the origin at a high value.

Interestingly, the OCSVM scored a slightly higher Fβ (0.5) average score on this data
compared with the LOF, even though the LOF scored the higher on both Car 1 attack modes
as well as on the pre-scaled attack mode on Car 2. Generating the attacks using the scaled
data seems to have presented an especially difficult detection challenge for the Cluster B,
since all classifiers achieving their lowest average Fβ (0.5) score here, with the OCSVM and
CC scoring especially low. Although, similar to the other clusters, the false negatives peak at
the lower magnitude manipulations, they remain higher across the manipulation range for
this cluster.
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8.3 Classification Across Journeys

The capability of the trained classifiers to detect across different journeys was explored using
journeys captured from Car 1.

The rows in Tables 8.14 to 8.19 show the journey used for the training data sets. The
columns show the two journeys used for the test and attack data sets (Journeys A and D).
Journey A was 11 minutes, C was 82 minutes, and D was 8 minutes. B is a composite training
data set, made by combining the data sets from journey A with the data set from an additional
8 minute journey, E. Because of the length of journey C, it was not possible to generate
snapshot records for the complete journey due to the time taken to process such a large log
file into a text-output snapshot file. Therefore six 100 second samples were extracted at equal
intervals, including the start and the end of the journey. All journeys included a mixture of
road types and traffic situations. The two test data journeys, A and D, were recorded a few
days apart.

As with the other payload anomaly detection testing, the training data comprised 8000
instances from a random sample from the entire data file. For these experiments the 1000
record test and attack files were fixed, so all classifiers were tested against exactly the same
records.

Perhaps unsurprisingly, training on the same data set (i.e. journey) often gave the better
detection scores. This can be seen in the highest Fβ (0.5) scores in nine of the twelve columns
of data across the Tables. However a deviation to this is seen in the OCSVM for the Speed
cluster (Table 8.19), where the training using journey A gave a higher score for detection
on journey D than the OCSVM classifier trained using journey D. Likewise, for both the
Accelerator cluster and the Speed cluster , the CC achieved a higher Fβ (0.5) score for journey
A using training data from other journeys (Tables 8.15 and 8.18).

Expanding the training data range by combining data from two journeys (A + E), produced
mixed results. For the LOF, it resulted in a higher score when detecting from the non-included
journey D (Tables 8.14 and 8.14), although for the OCSVM the performance fell in this
situation (Tables 8.16 and 8.19).

Whilst the sample of results is small, and cannot be tested for statistical significance,
it does highlight that training based on a particular journey cannot be assumed to produce
similar detection results across other journeys. Moreover, increasing the range of training
data by adding additional journeys, or choosing a longer journey, need not improve the
classifier’s effectiveness.
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Table 8.14 LOF performance across journeys for the Accelerator cluster. Cells show False
Positive, Average False Negative and Fβ (0.5).

Journey used for
Test/Attack Data

A D

Journey
used for
Training
Data

A
35 423

297 275
0.8465 0.6296

B (A+E)
40 412

297 200
0.8393 0.6709

C
257 446
288 263

0.7066 0.6292

D
152 57
639 562

0.5415 0.6838

Table 8.15 CC performance across journeys for the Accelerator cluster. Cells show False
Positive, Average False Negative and Fβ (0.5).

Journey used for
Test/Attack Data

A D

Journey
used for
Training
Data

A
195 477
555 384

0.5536 0.5539

B (A+E)
193 597
457 284

0.6421 0.5653

C
402 330
421 524

0.5726 0.5305

D
505 175
255 486

0.6104 0.6067
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Table 8.16 OCSVM performance across journeys for the Accelerator cluster. Cells show
False Positive, Average False Negative and Fβ (0.5).

Journey used for
Test/Attack Data

A D

Journey
used for
Training
Data

A
17 524

458 211
0.7502 0.6219

B (A+E)
18 538

465 214
0.7343 0.6147

C
184 157
374 417

0.6985 0.6761

D
496 17
195 380

0.6405 0.7891

Table 8.17 LOF performance across journeys for the Speed cluster. Cells show False Positive,
Average False Negative and Fβ (0.5).

Journey used for
Test/Attack Data

A D

Journey
used for
Training
Data

A
56 336

208 258
0.8977 0.6924

B (A+E)
58 177

212 252
0.8940 0.7910

C
322 404
260 298

0.6970 0.6395

D
700 69
138 223

0.5932 0.8801
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Table 8.18 CC performance across journeys for the Speed cluster. Cells show False Positive,
Average False Negative and Fβ (0.5).

Journey used for
Test/Attack Data

A D

Journey
used for
Training
Data

A
175 295
574 466

0.5792 0.5948

B (A+E)
231 335
674 533

0.4701 0.5356

C
426 612
282 178

0.6298 0.6027

D
907 465
12 58

0.5756 0.7080

Table 8.19 OCSVM performance across journeys for the Speed cluster. Cells show False
Positive, Average False Negative and Fβ (0.5).

Journey used for
Test/Attack Data

A D

Journey
used for
Training
Data

A
14 34

462 435
0.7772 0.7856

B (A+E)
15 23

486 465
0.7482 0.7610

C
98 133

457 405
0.7148 0.7227

D
590 355
150 216

0.6241 0.6829
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8.4 Method Overheads

As with the timing anomaly experiments discussed in Chapter 6, data on processing was
collected to inform on the viability of the methods.

The maximum times taken by the trained classifiers to assess any of the 1000 snapshot
test-runs are shown in Table 8.20. Added to these times should be the time needed to apply
the scaling, which was found to be approximately 0.001 seconds per test run.

Table 8.20 Maximum time (seconds) for the trained classifiers to assess the 1000 snapshot
test data sets.

Car 1 Car 2
Accelerator Speed Cluster A Cluster B

LOF 0.01199 0.02398 0.01799 0.020989
OCSVM 0.00301 0.00400 0.00400 0.004011
CC 2.02783 2.35264 3.31107 3.877810

The maximum time for the OCSVM and the LOF to process the 1000 record snapshots,
suggests the potential for them to process data faster than the broadcast rate. For example,
Car 1 showed a mean time between packet broadcasts of 0.0007 seconds, with a minimum
observed gap of 0.00002, and broadcast at an average rate of 1432 packets per second.
For Car 2 the mean time between packet broadcasts was 0.0006 seconds, with a minimum
observed gap of 0.00001, and broadcast at an average rate of 1652 packets per second.
However, classifier processing time does not include the time taken to update the snapshot
record, and the same caveats presented in Chapter 6, for example the hardware used here
compared with an in-vehicle implementation, apply to interpreting these results.

The methods would require the persistent storage of data for the scaling and for the
decision surface. Using the Scikit-learn joblib functions [67] for the scaling information and
the decision surface for both the LOF and the OCSVM, produced a scaler file of 1KB for
each classifier, with a maximum 1850KB file for the LOF decision surface, and 12KB file
for the OCSVM. For the CC the decision surface requires the storage of the coordinates and
size of each hypersphere, resulting in a 1KB file in this experiment.

The training time would not impact the detection performance, since training would likely
be done at system deployment and not repeated. Even so, times for training using the 6000
snapshot records were recorded. For the LOF training times for the complete 6000 record
file ranged between 0.07 and 0.13 seconds, while for the OCSVM they were marginally
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quicker, ranging between 0.05 and 0.08 seconds. Training for the CC took far longer. For
most instances, the CC training took between 40 minutes and one hour, though almost three
hours was required for one of the clusters. Training the CC required resource-intensive,
nested, nearest neighbour operations. It was, though, coded entirely by myself, so is unlikely
to have been tuned to its maximum programmable efficiency, whereas the LOF and OCSVM
are implemented from dedicated, universally tested libraries.

8.5 Conclusion

The highest Fβ (0.5) scores overall, and averaged within the fields were obtained by the LOF,
followed by the OCSVM; with the CC being least successful. However, the results showed
that the OCSVM tended to generate the fewest false positives; though generated more false
negatives compared with the LOF, especially at the higher magnitudes of data manipulation.
Even at the lowest rates (less than 50 per 1000 records for the LOF), the number of false
positives would be problematical. Likewise, the false negatives would imply the possibility
of many missed attacks, especially at lower magnitudes of manipulation of the sensor data.
Car 2 showed worst results compared with Car 1, especially with fabrications at smaller
magnitudes.

Results from comparing journeys used for the training data showed, perhaps unsurpris-
ingly, that training using data from one journey tended to produce worse results for detection
across other journeys. However, this was shown to not always be the case. In addition,
attempting to improve detection by providing a training set that uses composite journeys,
or longer journeys, was not shown to be successful in this study. The implications for the
results are discussed in Chapter 9.





Chapter 9

Discussion and Implications

This chapter discusses the implications of the results and considers the limitations of the
research and how these might be resolved. The gaps in current CAN IDS research which this
thesis has attempted to cover are summarised in Table 9.1. Section 9.1 discusses the timing
anomaly detection, and Section 9.2 discusses the payload anomaly detection. Section 9.3
discusses factors that hold implications for both.

9.1 Timing Anomaly Detection

For the timing anomaly detection, the supervised method (comparing the mean broadcast time
interval against a fixed threshold) was the simplest approach and gave the better detection
scores with the five highest priority CAN IDs, giving complete accuracy with no false
detection in both cars tested. On Car B, with CAN IDs that tended to be broadcast with
persistent regularity, this method proved the most accurate, both for the highest priority IDs,
and when all IDs were included in the detection. In Car A, however, in which lower priority
CAN IDs showed more variation in their repeat broadcast times, the vulnerability of using
a fixed threshold predefined according to other CAN IDs, became apparent, resulting in a
large increase in false positives. The ROC curve of this method, however, was closest to the
top-left of the chart, and suggests that improvements could have been made by adjusting the
threshold (Figure 6.9).

The supervised method’s testing undertaken here used a fixed threshold that was applied
to all CAN IDs. An option for improved detection rates might be for individual thresholds to
be determined for each packet, as suggested by the broadcast rate characteristics discussed in
5.1.1. The storage requirements for this would be minimal (at most one threshold value per
CAN ID), although the process of capturing these would need considering. In the absence of
a CAN dictionary for the car, determining the thresholds would present a challenge, but might
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Table 9.1 Gaps in CAN IDS research addressed in this thesis.

Challenge Consequential gap in CAN
IDS proposals

Contribution from this thesis

CAN data dictionaries
not published and spe-
cific to car models.

Methods proposed that require
knowledge of CAN dictionary
and specific to car: Studnia
et al. [75], Ling and Feng
[45], Song et al. [73], Gmi-
den et al. [28], Lee et al.
[44], Marchetti and Stabili
[47], Wasicek and Weimer-
skirch [89].

Timing anomaly detection and
payload anomaly detection
methods proposed that are ag-
nostic to the car model and
do not require the CAN dic-
tionary specification.

Generating and main-
taining attack signa-
tures.

Requirement of maintaining
attack signatures, or using at-
tack data for training: Studnia
et al. [75], Marchetti and Sta-
bili [47], Martinelli et al. [49],
Kang and Kang [38].

One class novelty detection
methods that do not assume
the availability of attack data
or attack signatures.

Attacks might not affect
both timing and pay-
load.

Methods requiring timing and
payload anomaly combina-
tions: Taylor et al. [76].

Methods consider timing
anomalies and payload
anomalies independently.

CAN broadcast traffic
difficult to predict
across journeys or over
the lifetime of the car.

Methods requiring immutable
broadcast rates during detec-
tion lifetimes: Ling and Feng
[45], Cho and Shin [17], Song
et al. [73], Gmiden et al. [28],
Marchetti and Stabili [47].

Window approach and detec-
tion methods that allows for
packet rate variations across
journeys, as well as con-
trolling for naturally occur-
ring trends and seasonality
(ARIMA).

Evaluating how the de-
tection will work with
unpredicted attack mod-
els.

Payload anomaly testing has
not investigated the potential
range of the detection: Wa-
sicek and Weimerskirch [89],
Taylor et al. [77], Studnia et
al. [75]

Testing using stratified pay-
load manipulation to deter-
mine interactions between the
magnitude of the manipula-
tion and the response of the
detection method.
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be amenable to a simple analysis and training process. Although this method showed short
computational times, it might be beneficial to reduce these further. Therefore, an additional
extension of this research would be to determine if the packet broadcasts are consistent
enough to merit timing anomaly detection across multiple journeys based purely on each
broadcast interval, without reverting to mean calculations or window approaches.

ARIMA and Z-score did not quite match the highest scores achieved by the supervised
method, but their scores did not fall as much when all packets for Car A were tested. Though
ARIMA offers potential to counter effects of seasonality and natural trends, it is unclear
from the data captured whether this would be required for the CAN broadcasts. Seasonal
variation was not noticeable here, and has not been reported by other studies that have
included analysis of CAN packet timings, (e.g. [52, 54, 76]). A study analysing behaviour
long-term might determine whether it is observed; though, of course, not detecting it does
not negate its potential existence.

In these tests, ARIMA scored slightly worse than the Z-score method, particularly by
generating slightly higher numbers of false positives. Similar to the supervised method,
detection accuracy was reduced when all CAN IDs were included in the analysis. Here
ARIMA and Z-score showed reduced sensitivity, resulting in an increase in false negatives.
There are though, parameters and factors that might be tweaked to optimize performance, so
further research might improve performance in either method.

As with the supervised method, one of the cars (Car A) seems to have presented the
greater problem for ARIMA and Z-score, with the lower priority CAN IDs reducing the
sensitivity of detection, thus eliciting more false negatives. As shown in Figures 5.2, 5.4, 6.7
and 6.8, the variation in packet broadcast timings for individual CAN IDs are often slight,
but not unimportant with regard to anomaly detection accuracy. Clearly this is an aspect that
would need more investigation, with a detailed profiling of broadcast patterns across a range
of cars. This is also an aspect that would benefit from consultation with automotive engineers,
assuming manufacturers could be persuaded to divulge information about broadcast timings.
However, even if such information were made available, Taylor et al’s [76] observation that
the behaviour of ECUs might not be fully known, and Checkoway et al’s [14] reminder that
many ECUs are programmed by suppliers rather than the car manufacturer, calls to question
how much credence could be placed on it.

The research also highlights the importance of ensuring the optimal threshold or error
rate, whatever method is adopted. In particular, the sensitivity of the detection methods falls
rapidly if these are set too high, leading to missed detections; whereas specificity is reduced
if these are low, leading to false positives. Whilst neither error is desirable, the preference of
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one over the other needs deciding. As discussed in Chapter 4, for a CAN attack detection
system false positives might be considered more disruptive than false negatives.

9.2 Payload Anomaly Detection

The results for the payload anomaly detection show that the detection by the Local Outlier
Factor (LOF) and One Class Support Vector Machine (OCSVM) out-performed the Com-
pound Classifier (CC) across all tests. The LOF achieved the fewer false negatives, and this
was especially pronounced on some fields. However, it also achieved a slightly higher false
positive rate on some of the tests compared with the OCSVM, so did not always achieve a
better Fβ (0.5) score.

As with the timing anomaly detection, for payload anomaly detection the reduction of
false positives would likely be a high priority since these would present a distraction to the
driver, or prompt unnecessary ameliorative action. Given that CAN broadcast rates typically
exceed 1000 per second, the number of false positives per second achieved (Tables 6.3 and
6.4) would clearly be problematical.

9.2.1 Payload Clustering

The clustering algorithm identified clusters of probable sensor data fields which tallied with
clustering the data using manual data analysis and visual inspection. There are though,
limitations of this approach, which are discussed in the Conclusion. Even so, clustering
the fields using correlations, as demonstrated here, is an aspect that might be automated for
system development without needing the underlying data dictionary for the car. In addition,
a training period comprising a few predefined, and isolated, driving tasks could be staged to
determine likely functional associations, should this be deemed useful.

9.2.2 Payload Profile Variations

One potential problem highlighted by including the second car was the different approaches
that seem to be taken in deriving sensor reading values, as observed in the differences in the
spread and range of the data. This makes direct comparison of results difficult. Car 1 showed
many data ranges with the origin starting at zero (as shown in the Figures in Appendix C),
whereas the data captured from Car 2 had most sensor fields with the origin starting at a
high number, often in the thousands, with a narrow range of values. As was highlighted
from initial runs of the classifier experiments, the first data manipulation method adopted
(multiplication of the legitimate value by a specific percent), resulted in simulated attack
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values that are far beyond the observed legitimate range for Car 2. Compare, for example,
100*1.5 versus 10100*1.5. Thus the results from the initial testing of Car 2, showed detection
rates that were high and similar for some fields and multiplier manipulations; whereas the
the results from generating attacks by manipulating scaled sensor data resulted in reduced
detection, but more uniform scores across fields.

Here lies a dilemma for the experiment and evaluation: whether it should be assumed
that the attacker or their method, would cause the value to change by an amount related to
the absolute value, or whether the value would be altered by an amount relative to the range
or information the field represents. Perhaps, depending on the goals, or the configuration
of attack equipment, or the modus operandi, either is possible. Miller and Valasek [51–53],
for example, conducted extensive analysis and reverse engineering to formulate their attacks
and were able to manipulate data (such as speed) to precise, known values. More naive
attacks, opportunist attacks, or attacks employing fuzzing, might not consider such precision
or require knowledge of the data derivation.

9.2.3 Attack Data Ranges

Another aspect that the data simulation methods did not consider are the constraints placed
on payload data in the CAN. In an actual vehicle the data field values are constrained by
the packet size, so some values generated by the attack manipulation methods used here
might not be permittable on the CAN. Also, ECUs are programmed to act on values within
a permitted range, thus some of the values generated in the experiment would be deemed
meaningless and be ignored. However, accounting for this would add complexity to both the
test implementation, and to the interpretation of the results; and probably would not alter
the conclusions drawn. Moreover, implementing it would imply detailed knowledge of the
field-value derivations, which, as discussed earlier, is not a constraint intended for a generic
anomaly detection system.

9.3 Common Implications

This section discusses factors that need considering for both tests. These concern com-
mon factors that might improve detection, and assessing the performance for in-vehicle
deployment.
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9.3.1 Improving The Detection

The results presented in Chapters 6 and 8 show that although detection of both timing
anomalies and payload anomalies was achieved, the rates of false positives and false negatives
were high and might result in multiple incorrect detections per second. There are a few
options that might be considered for potential detection improvement, some of which were
provisionally explored in the experimentation.

Refinements might be made to the method parameters. The parameters for both the
timing and payload detection were initially tested and optimised using data from single
journeys. The results were then taken to set the parameters for subsequent trials. Perhaps
other journeys would have produced different optimal parameter values. However, given that
both cars in the timing experiment provided optimal parameter scores that were identical (see
Section 6.1.1), it is possible that parameter values chosen could not be improved. For the
OCSVM used for the payload anomaly detection, there are alternative kernels that might be
tested; although preliminary testing of these during development, together with the published
recommendations for normally distributed data (e.g. [15, 67] suggested that the radial basis
function (RBF) kernel used here is probably the most suitable for the CAN data set.

Improved scores might also be gained from making refinements to the process configura-
tion. An example would be raising the correlation thresholds for determining the clusters
in the payload detection. However, reducing the number of data fields in a cluster would
lessen the breadth of coverage, which holds implications for both coverage across the car’s
full CAN set, and for the capture within each cluster. This would need exploring.

Although a window approach was used in the timing anomaly detection to facilitate
ARIMA processing and mitigate any effects from natural trend or seasonality in the broadcast
intervals, the necessity for this is unproven. As suggested in this study, a simple method of
comparing successive packet intervals against the mean might suffice, provided sufficient
uniformity of packet broadcast intervals can be proven. However, the implication from the
poorer performance when the fixed parameters were applied across all CAN IDs, would be
that gap-mean and variation thresholds might need to be established for each CAN ID, as
discussed above. In a non-window approach, these might be calculated by including multiple
journeys and multiple driving conditions to ensure sufficient natural variation is captured to
reduce the likelihood of false positives.

For the payload anomaly detection, similar improvements might also be suggested for
training the classifiers. However, the results from comparing different training sets (Section
8.3) show the complexities of this, and that simply considering more journeys in the training
set need not improve the detection across journeys. Improvements might also be made



9.3 Common Implications 109

by adjusting the training data-set size, although determining the optimal size to enable
generalisability without over-training, is an aspect that would require additional research.

9.3.2 Assessing In-Vehicle Performance

Additional work would be required to test these methods on a device suitable for imple-
menting within the vehicle. Basic process times were recorded during the testing, and the
performance of the algorithms observed here might inform the expectations of a production
deployment, but it should be born in mind that the code was written to facilitate testing
analysis, rather than for processing efficiency, and the architecture was different to that which
might be expected in an in-vehicle deployment.

The timing detection was tested using R, while the payload anomaly detection was
implemented in Python. These choices were made for reasons of library availability, inte-
gration and project collaboration, rather than a specific inherent requirement, though both
software products could be run on micro controllers or board computers. Since this research
was carried out, Auto ARIMA has been released for Python [72], and Python also offers a
CAN library to facilitate packet reading and processing, [82], which might be useful. The
implementation of a system in a mode suitable for in-vehicle running needs investigation.
For the payload anomaly detection, some processes, such as identifying the data field profiles
and clusters, and the classifier training, could be resource intensive and might not be be done
in situ. Data capture and testing would be far simpler. The classification process would
need the storing of the trained classifier and the most recent values for the included data
fields, though this would be a low overhead. For the payload anomaly detection running in
Python on a reasonably powerful laptop, the detection time for the CC was longer than for
the LOF and OCSVM, stretching to two seconds or more for 1000 records. In comparison,
the detection time was only fractions of seconds for the LOF and OCSVM, suggesting the
potential to cope with the rate of packet broadcasts on the automotive CAN.





Chapter 10

Conclusion and Future Work

Having considered the results, their implications and possible improvements to the detection
methods in the previous chapters, this final chapter considers the general conclusions that can
be drawn from the research presented here. In particular, it assesses the extent to which the
hypothesis and research questions have been addressed (Section 10.1), outlines the evidence
for the original contributions (Section 10.2), and discusses where future research might focus
(Section 10.3).

10.1 Evaluating the hypothesis and research questions

The underlying hypothesis for this research was that characteristics might be present in CAN
packet traffic that allow CAN network attacks to be detected through anomalies. This raised
research questions as to whether such characteristics could be identified; what detection
methods might be adopted to detect such anomalies, and how the detection methods could be
tested and validated. However, to progress these research questions, there are some important
constraints that must be confronted. The lack of CAN dictionary sharing by manufacturers,
together with the variety and legacy of car models, make it difficult to propose a system that
could use knowledge of ECU specifications. Automotive cybersecurity is a nascent field and
the nature of future attacks is difficult to predict. Finally, obtaining sample attack data is
difficult due to many problems in staging example attacks.

The attack detection approach adopted was to model characteristics that have been
shown to be altered across a broad range of attacks, rather than attempting to produce test
data that represented a single, but verified, attack on a car. While the latter would be an
important test for proof that the detection system could detect a real attack, the complexities
of generating such attacks, and the difficulty in comparing results across cars and attack
variations, suggested the approach taken here. For the payload anomaly detection, the test
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model allowed the testing of the characteristics across simulated attack manipulations of
varying magnitudes, enabling a comprehensive picture of detection capabilities. Such range-
testing could also be extended to the timing manipulations, though this would require some
adapting of the testing algorithms.

The experimental approaches taken provide an indication of the magnitude of changes
caused by an attack that might be detected, and the detection methods are not constrained
by having to understand the data derivation and meaning, thus are suitable for inclusion in
detection systems that assume no knowledge of the car’s CAN dictionary. Also, they provide
a generic approach which is suitable for a range of attacks, including attacks that might not
yet be envisaged.

The timing anomaly detection used time-defined window methods to detect changes
in CAN activity resulting from attacks such as injection and reflash attacks. The methods
compare each broadcast interval for CAN packets within a window against the averages for
all packets with the same ID within that window. A simple comparison of the window-mean
packet-interval against each time gap, showed high success in some situations; but also
was shown to be more vulnerable to higher rates of error in other situations compared to
ARIMA and Z-score methods. Whilst the mean comparison can give superior results, those
are dependent on it being configured for the target system. Unsupervised approaches tested
here (ARIMA and Z-score) offer solutions that are potentially less dependent on an analysis
of the specific CAN.

The detection of anomalies in payload values was considered a two stage process, each
stage coping with the constraint of not knowing the CAN dictionary for the cars. The
first stage was the identification of correlated sensor fields, including those that might be
composite amalgamations of packet fields. The algorithms developed were able to identify
composite sensor fields and group these into clusters that matched detailed manual inspections
of the data and functional analyses of the car operations. Testing, however, did not extend
to investigate different correlation cutoffs for deciding the cluster members, which would
impact subsequent detection rates. As mentioned in Chapter 7, identification of clusters does
not, of itself, give any indication as to what functionality might be relevant to the cluster.
Whilst knowing this is not vital to the subsequent detection process, it would be useful
from a security perspective, helping to identify which clusters might be more prone to be
attacked in certain situations. Such knowledge might be gained from performing a staged set
of independent operations on the car (for example, pressing the accelerator with the car in
neutral), perhaps extending this into a full analysis using a supervised clustering approach
such as random forest classification.
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Three field-value anomaly detection methods were chosen because of their ability to
cope with one-class classification, i.e. detection of anomalies which are not represented in
the training data sets. Of these methods, the One Class Support Vector Machine (OCSVM)
and Local Outlier Factor (LOF) showed better detection and faster performance than the
Compound Classifier (CC).

There are limitations to the study and the methods that need acknowledging. The payload
detection process assessed here would only include a subset of the data cohort – the two
clusters selected for testing comprised fewer than half of the sensor fields determined. Even
so, it is clear from Figures 7.3 and 7.4 that a few other smaller clusters might also be
considered. In addition, data for this experiment did not consider fields that might hold
category data or other representations. These might also be fabricated in an attack.

The use of ranges starting at a high value presented a dilemma for attack simulation, due
to the potentially increased effect on data field manipulation, as discussed in Section 9.2.2.
There are some options that might allow the attack simulation to be more independent of
the data origin, potentially facilitating test comparison across cars. The first option would
be to not simulate attacks, but use actual, understood values instead. This would ensure
the tested attack fields comprise properly proportioned values. However, the problems of
staging attacks, or of discovering the CAN dictionary, hinder this approach. Moreover, such
knowledge would be needed for all cars tested. Another option for testing (as demonstrated
here) is to generate the attack data on the scaled data. This ensures all cars are tested with data
having similar ranges. Potentially the standardisation process used in the experiments staged
here, which centres the normalised data around 0, could leave some naturally occurring
values standardised to 0 if their value coincides with the mean, thus they would not be
changed if the attack-by-multiplying-the-original-value method is used. However, examining
the data sets showed no records that held 0 values post standardisation.

For both strands of detection, the accuracy was below what would be acceptable in a
production classifier. The levels of false positives (normal snapshots classified as attacks)
would trigger a few unwarranted attack warnings per second. In addition, attacks on some
CAN packets were poorly detected. It is probable that accuracy would be improved by
adjusting parameters and conducting transformations on the data; though, of course, this
would add to the complexity of the process. Intuitively we might suppose that clustering the
CAN IDs into smaller, more rigorously chosen cohorts of higher correlation might improve
the payload anomaly detection. But this would be at the cost of monitoring fewer IDs within
each decision.



114 Conclusion and Future Work

10.2 Summary of Contributions

This research devised, demonstrated and evaluated methods that might continue to be adapted
and used in future research into CAN attack detection. Summarised here is the evidence for
the original contributions presented in Section 1.4.

• Methods for detecting cyber-attacks of the CAN: This thesis evaluated methods new
to this context, as discussed in Chapter 4. These focused on one-class training and
detection, which is suitable where attack data is not available. This is appropriate for
CAN attack detection systems because of factors such as: difficulties in generating
attack data; the diversity of CAN dictionaries stemming from the vast range of car
makes and models, and the nascent nature of automotive cyber-security and attack
modelling. Methods were proposed and tested for timing anomaly detection and
payload anomaly detection. The testing demonstrated the abilities of these to detect
attack-representative data, and showed situations where the detection might be less
successful.

• Processes for transforming the CAN packet flow into structures suitable for analysis
and detection: In addition to testing the anomaly detection methods discussed above,
the detection processes required transforming the packet flow into structures suitable
for anomaly detection. A challenge here is the secretive nature of the CAN dictionary,
meaning that characteristics, such as packet timings or the meaning of data values,
are not disclosed by the manufacturers. The timing detection was tackled by using
time-bound windows, within which analysis of each CAN ID’s packet broadcasts could
be compared (detailed in Chapter 5). For the payload anomaly detection, a process for
automating the discovery of sensor fields was devised, including detecting fields that
comprised concatenated data (detailed in Chapter 7). A method for clustering these
fields into associated groups was also included. Like the anomaly detection methods,
these were evaluated on cars of different makes, providing an gauge of validity.

• Attack models assimilated according to CAN traffic implications: An extensive review
of CAN attack research was undertaken (Chapter 2), which informed the choice of
attack data simulation. Whilst actual data from specific attacks would verify that the
methods could capture actual attacks, which would certainly be a useful test, it would
provide only a validation that would be restricted to a specific attack on a specific
model of car. The approach adopted here was therefore to use data that might offer an
indication of the detection capabilities across categories of attack, and across vehicles.
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• Empirical testing of attack detection considered as a stage to be automated, facilitating
comprehensive testing: The testing of the payload attacks has been staged in a manner
that facilitates testing manipulations to individual data fields. The manipulations were
performed across stepped magnitudes, providing a gauge as to the performance of the
detection at different manipulation intensities (Chapter 8). This also facilitated the
testing of different attack simulations, and training deployments. Similarly, the testing
of the timing anomaly detection methods provided exploration of different window
sizes and method parameters (Chapter 6).

10.3 Further Work

This thesis has determined processes and methods that might be adapted for CAN attack
detection. As highlighted in Chapter 9, there is still much that needs exploring; in particular
to improve the detection accuracy and validate the methods against representative attacks.
Possible improvements and refinements of the individual methods and processes have been
discussed previously, such as in Chapter 9. Discussed in this section are the more general
suggestions for future work, which would be required regardless of the detection method
tested.

• Profiling and analysis of vehicles: Profiling and analysis of CAN data across car
models is needed to establish the full pattern of packet timings and payloads. In
particular, establishing how consistent packet timings are, and whether they show
any variation, trend or seasonality. Likewise, analysing the patterns of payload data
adopted by the manufacturers. Such profiling would be useful across cars, but also
across multiple journeys, scenarios, drivers, and driving conditions.

• Acquiring test data: Perhaps the biggest challenge still to be overcome is the production
of valid test data. The problems of acquiring such data have been discussed a few
times within the thesis. There exists, as yet, no standard set of labelled data akin to the
iris classification data set, or similar, often used in machine learning demonstrations.
The attack simulations generated in this thesis cannot embrace full CAN functionality,
such as by replicating CAN arbitration and error confinement. In addition, the lack of
any published CAN dictionaries compounds the problems of data understanding and
interpretation. Including attacks in CAN simulators might provide a useful compromise,
though the output will always be a simplification, run on a platform that is different to
an actual vehicle.
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• Improving the detection accuracy: There is much that could be explored to try to
improve the detection accuracy. This would be especially warranted given the safety
critical nature of driving, and the implications of detection errors causing incorrect
response or distraction. The payload anomaly detection, for example, showed the
challenges of detecting across journeys, and highlighted that incorporating additional
journeys or longer journeys into the training data does not necessarily improve general
detection performance. The size of the training sets also needs investigation, for
example, to avoid under- and over-training. It is possible, though, that no single
approach will suffice, and that multiple approaches, embracing many of the methods
outlined above, will be needed. Thus multiple classifiers would form a consensus-
ensemble of tests assessing a range of CAN properties.
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Appendix A

Compound Classifier

The Compound Classifier was devised by Batchelor [3, 4], and uses Euclidean distance and
nearest neighbour analysis. It requires that data is numeric, and normalised to give each
dimension parity.

Decision Making by Compound Classifier

Distance between instances can be used as an indication of their similarity. The Euclidean
distance D between any two vectors U = (U1, . . . ,Uq) and V = (V1, . . . ,Vq) can be calculated
as:

D(U,V ) =

√√√√ q

∑
j=1

(U j−Vj)2 (A.1)

Although distance-based nearest neighbour analysis might be used for deciding whether
an instance falls into either of two classes, it can not be used in its pure form for one-class
determination, and might be prone to over-fitting, where the classifier follows the training
set boundary too tightly, losing the capacity to generalise to the population. Also, there are
considerable overheads in searching the full dataset when making each prediction. Therefore
the Compound Classifier reduces the decision surface into a set of circles (for a vector
having two attributes), spheres (three attributes) or hyperspheres (four or more attributes),
which between them cover the instances in the training set1. Decision making compares the
coordinates of the target instance against the centre coordinates and radius of each sphere
(Figure A.1). If the target instance falls within any sphere, it is classed as normal. If it falls
outside all spheres, it is classed as an anomaly. Thus, the decision of the classifier is given

1The term "sphere" is used hence forth for convenience. Clearly the shape will depend on the dimensionality
of the vector.
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Fig. A.1 Decision surface of a Compound Classifier comprising three circles. Bi is the centre
a circle and its radius is given by Fi. Normal instances are assumed to lie inside the classifier,
anomalies lie outside. (Adapted from Batchelor [3].)

by:
M = sign{maxi=1...N [Fi−D2(Bi,X)]} (A.2)

Here N is the size of the set of spheres, F i is the radius of the ith sphere and Bi is the
centre of the ith sphere, D2() is the Euclidean distance as defined in (1), X is the target vector
we wish to classify. X is determined as a normal class member if M is positive or zero, and
an anomaly if M is negative.

Training the Compound Classifier

Training the Compound Classifier uses the above equations, and involves adjusting the size
and location of each sphere. The training set is processed for a few iterations, with the
training data shuffled between each to reduce the risk of systematic biases within the time
sequence of the data. During training, for each instance X :

i) If M is negative, the nearest sphere is moved towards X and is made larger. All other
spheres are made smaller.

ii) If M is positive, X lies within one or more spheres. Those spheres are moved towards
X and made smaller. All other spheres are made smaller [4].

The values for the sphere movement and the size-change are kept small to enhance the
accuracy of the classifier, and are suggested in [3, 4], together with the desired numbers of
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Fig. A.2 Maximindist: vector Y1 is furthest from sphere centres B1 and B2, so could be
considered as the new sphere centre. However, scoring candidates by density estimate, as
well as existing sphere-centre distance, favours Y2 as the new sphere centre.

training examples, training iterations, and initial spheres. Batchelor also devised processes
for adding and pruning spheres to give efficient coverage of the training data set. As more
spheres are added, the classification space could become messy, so methods are proposed
to remove spheres nested inside other spheres, and divide large spheres that reduce the
classifiers compactness and discernibility.

The parameters recommended by Batchelor [3] for data scaled between 0 and 100 are:

• Iterations between hypersphere addition: repeat until the equivalent of 10,000 vectors
have been processed.

• Sphere size adjustment: expand by 0.01*nd; shrink by (0.01*nd)/nh, where nd is the
number of dimensions and nh is the number of hyperspheres

• Sphere movement: 0.005

• Initial number of locates: ni / (10*(nd+1)), where ni is the number of data items and
nd is the number of dimensions .

At the start of training, the initial sphere centres could use the location of any candidate
instances. However, randomly assigned centres might not be optimal starting points. An
alternative is to choose a subset of instances that are furthest apart, ensuring the initial spheres
are spread throughout the data space. However, this might favour lone outliers, which again
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might be suboptimal. Therefore, following analyses conducted by [58], the Compound
Classifier adopts "Maximindist", which combines nearest neighbour measurements with
probability density function estimates, to locate the initial sphere centres close to cluster
centres (Figure A.2). The probability density is estimated as:

1
DNN

2 (A.3)

Here DNN is the distance to the nearest neighbour of the instance.
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Fig. B.1 CarB: Injection detection for the five highest priority CAN IDs: sensitivity, specificity
and accuracy. (Supervised method used a 0.0001 to 0.05 threshold.)

Fig. B.2 CarB: Dropped record detection for the five highest priority CAN IDs: sensitivity,
specificity and accuracy scores. (Supervised method used a 0.0001 to 0.05 threshold.)
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Fig. B.3 CarB: Combined detection scores for the five highest priority CAN IDs: sensitivity,
specificity and accuracy scores. (Supervised method used a 0.0001 to 0.05 threshold.)

Fig. B.4 CarB: ROC curves for combined detection in the five highest priority CAN IDs,
adjusting error rate (ARIMA and Z-score) and threshold (Supervised).
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Fig. B.5 CarB: Combined detection scores across all CAN IDs: sensitivity, specificity and
accuracy scores. (Supervised method used a 0.0001 to 0.05 threshold.)

Fig. B.6 CarB: ROC curves for combined detection across in all CAN IDs, adjusting error
rate (ARIMA and Z-score) and threshold (Supervised).
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Fig. C.1 Field value distributions: Car 1 Accelerator cluster.
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Fig. C.2 Field value distributions: Car 1 Speed cluster.
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Fig. C.3 Field value distributions: Car 2 Cluster A.
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Fig. C.4 Field value distributions: Car 2 Cluster B.





Appendix D

Payload Anomaly Detection - Attacks
Generated on Unchanged Data

The detection results in this Appendix are from attack simulations generated by multiplying
the payload field values by 0.1, 0.5, 0.8, 0.9, 1.1, 1.2, 1.5, 2.0, 3.0 prior to standardising the
data. The multiplications were applied sequentially to each field, with the remaining fields
being unchained.

D.0.1 Car 1

Table D.1 False positives recorded for Car 1 with attacks generated on unscaled data (1000
record test data set).

Accelerator Speed
LOF 59 57
CC 100 167
OCSVM 14 12

Table D.2 Fβ (0.5) scores recorded for Car 1 with attacks generated on unscaled data (1000
record test data set).

Accelerator Speed
LOF 0.8500 0.9079
CC 0.6510 0.6276
OCSVM 0.7748 0.8332
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Table D.3 Car 1 Accelerator packet cluster: LOF False Negatives by CAN field manipulated.
Actual number out of 1000 attack outliers generated per cell.

Multiplier 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
0.1 0 469 433 0 9 88
0.5 62 476 458 49 54 167
0.8 87 630 597 77 219 368
0.9 183 754 702 173 446 557
1.1 206 713 695 199 427 575
1.2 67 625 575 60 332 397
1.5 4 477 459 4 223 147
2.0 0 440 433 0 115 76
3.0 0 423 407 0 0 43

Table D.4 Car 1 Accelerator packet cluster: CC False Negatives by CAN field manipulated.
Actual number out of 1000 attack outliers generated per cell.

Multiplier 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
0.1 0 451 455 0 195 180
0.5 0 591 563 0 451 448
0.8 266 873 868 265 841 839
0.9 828 901 901 828 893 887
1.1 795 898 898 795 894 898
1.2 417 861 870 419 834 833
1.5 0 623 572 0 473 453
2.0 0 456 440 0 249 238
3.0 0 443 437 0 1 0



141

Table D.5 Car 1 Accelerator packet cluster: OCSVM False Negatives by CAN field manipu-
lated. Actual number out of 1000 attack outliers generated per cell.

Multiplier 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
0.1 0 449 448 0 0 0
0.5 0 489 482 0 195 193
0.8 8 760 738 8 632 675
0.9 508 951 952 503 887 895
1.1 668 953 950 676 941 934
1.2 260 751 731 264 691 660
1.5 0 490 456 0 437 421
2.0 0 450 428 0 201 62
3.0 0 429 419 0 0 0 0

Table D.6 Car 1 Speed packet cluster: LOF False Negatives by CAN field manipulated.
Actual number out of 1000 attack outliers generated per cell.

Multiplier 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
0.1 20 236 229 229 239 239 0 0
0.5 22 237 235 233 241 241 0 0
0.8 58 275 274 274 276 276 3 1
0.9 119 310 309 308 311 310 62 64
1.1 111 308 307 306 312 313 97 63
1.2 53 277 275 274 277 278 26 5
1.5 21 238 233 233 243 243 0 0
2.0 18 235 229 229 239 239 0 0
3.0 12 235 229 229 239 239 0 0

Table D.7 Car 1 Speed packet cluster: CC False Negatives by CAN field manipulated. Actual
number out of 1000 attack outliers generated per cell.

Multiplier 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
0.1 280 304 314 314 312 310 162 161
0.5 367 545 545 545 545 545 442 456
0.8 652 558 557 558 559 559 839 837
0.9 828 800 800 797 799 800 849 848
1.1 847 815 815 817 816 816 845 846
1.2 682 559 560 560 558 558 822 825
1.5 427 520 520 520 521 521 435 426
2.0 253 339 340 338 335 339 97 99
3.0 243 260 260 260 260 261 0 0
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Table D.8 Car 1 Speed packet cluster: OCSVM False Negatives by CAN field manipulated.
Actual number out of 1000 attack outliers generated per cell.

Multiplier 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
0.1 126 295 295 295 295 295 0 0
0.5 267 308 308 308 308 308 48 48
0.8 435 492 490 495 505 497 520 560
0.9 848 754 757 753 754 753 663 668
1.1 761 729 728 727 723 729 675 647
1.2 582 589 586 586 587 591 503 536
1.5 427 306 307 307 307 307 106 88
2.0 381 292 292 292 292 292 0 0
3.0 337 266 266 268 267 267 0 0

Table D.9 Car 1 Accelerator packet cluster: LOF Fβ (0.5) scores by CAN field manipulated.

Multiplier 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
0.1 0.9549 0.7902 0.8091 0.9549 0.9529 0.9337
0.5 0.9403 0.7863 0.7961 0.9435 0.9422 0.9118
0.8 0.9339 0.6811 0.7075 0.9365 0.8956 0.8395
0.9 0.9070 0.5541 0.6137 0.9100 0.8024 0.7364
1.1 0.8998 0.6019 0.6209 0.9020 0.8121 0.7238
1.2 0.9390 0.6853 0.7238 0.9408 0.8547 0.8265
1.5 0.9540 0.7858 0.7956 0.9540 0.8943 0.9176
2.0 0.9549 0.8055 0.8091 0.9549 0.9265 0.9367
3.0 0.9549 0.8141 0.8218 0.9549 0.9549 0.9449

Table D.10 Car 1 Accelerator packet cluster: CC Fβ (0.5) scores by CAN field manipulated.

Multiplier 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
0.1 0.9259 0.7633 0.7612 0.9259 0.8712 0.8761
0.5 0.9259 0.6736 0.6941 0.9259 0.7633 0.7650
0.8 0.8464 0.3328 0.3423 0.8468 0.3905 0.3938
0.9 0.4119 0.2756 0.2756 0.4119 0.2927 0.3051
1.1 0.4617 0.2821 0.2821 0.4617 0.2906 0.2821
1.2 0.7811 0.3553 0.3385 0.7801 0.4021 0.4038
1.5 0.9259 0.6482 0.6877 0.9259 0.7511 0.7623
2.0 0.9259 0.7606 0.7692 0.9259 0.8526 0.8566
3.0 0.9259 0.7676 0.7708 0.9259 0.9257 0.9259
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Table D.11 Car 1 Accelerator packet cluster: OCSVM Fβ (0.5) scores by CAN field manipu-
lated.

Multiplier 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
0.1 0.9889 0.8451 0.8456 0.9889 0.9889 0.9889
0.5 0.9889 0.8242 0.8280 0.9889 0.9413 0.9419
0.8 0.9873 0.5952 0.6226 0.9873 0.7278 0.6897
0.9 0.8135 0.1957 0.1923 0.8164 0.3747 0.3557
1.1 0.6963 0.1889 0.1990 0.6888 0.2283 0.2500
1.2 0.9213 0.6067 0.6309 0.9200 0.6741 0.7036
1.5 0.9889 0.8236 0.8416 0.9889 0.8510 0.8585
2.0 0.9889 0.8446 0.8553 0.9889 0.9396 0.9755
3.0 0.9889 0.8548 0.8595 0.9889 0.9889 0.9889

Table D.12 Car 1 Speed packet cluster: LOF Fβ (0.5) scores by CAN field manipulated.

Multiplier 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
0.1 0.9518 0.8917 0.8940 0.8940 0.8907 0.8907 0.9564 0.9564
0.5 0.9514 0.8914 0.8920 0.8927 0.8900 0.8900 0.9564 0.9564
0.8 0.9428 0.8781 0.8785 0.8785 0.8778 0.8778 0.9557 0.9562
0.9 0.9270 0.8651 0.8655 0.8659 0.8647 0.8651 0.9418 0.9413
1.1 0.9291 0.8659 0.8662 0.8666 0.8643 0.8639 0.9329 0.9415
1.2 0.9440 0.8774 0.8781 0.8785 0.8774 0.8771 0.9504 0.9553
1.5 0.9516 0.8910 0.8927 0.8927 0.8893 0.8893 0.9564 0.9564
2.0 0.9523 0.8920 0.8940 0.8940 0.8907 0.8907 0.9564 0.9564
3.0 0.9537 0.8920 0.8940 0.8940 0.8907 0.8907 0.9564 0.9564

Table D.13 Car 1 Speed packet cluster: CC Fβ (0.5) scores by CAN field manipulated.

Multiplier 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
0.1 0.7916 0.7817 0.7774 0.7774 0.7783 0.7791 0.8347 0.8350
0.5 0.7536 0.6522 0.6522 0.6522 0.6522 0.6522 0.7154 0.7076
0.8 0.5686 0.6432 0.6439 0.6432 0.6425 0.6425 0.3482 0.3513
0.9 0.3650 0.4052 0.4052 0.4093 0.4066 0.4052 0.3323 0.3339
1.1 0.3355 0.3841 0.3841 0.3812 0.3827 0.3827 0.3387 0.3371
1.2 0.5408 0.6425 0.6418 0.6418 0.6432 0.6432 0.3739 0.3695
1.5 0.7235 0.6689 0.6689 0.6689 0.6682 0.6682 0.7192 0.7240
2.0 0.8022 0.7665 0.7660 0.7669 0.7683 0.7665 0.8551 0.8545
3.0 0.8060 0.7995 0.7995 0.7995 0.7995 0.7991 0.8821 0.8821
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Table D.14 Car 1 Speed packet cluster: OCSVM Fβ (0.5) scores by CAN field manipulated.

Multiplier 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
0.1 0.9617 0.9113 0.9113 0.9113 0.9113 0.9113 0.9905 0.9905
0.5 0.9209 0.9067 0.9067 0.9067 0.9067 0.9067 0.9802 0.9802
0.8 0.8540 0.8247 0.8258 0.8230 0.8174 0.8219 0.8086 0.7835
0.9 0.4589 0.6053 0.6015 0.6066 0.6053 0.6066 0.7033 0.6987
1.1 0.5963 0.6356 0.6367 0.6379 0.6424 0.6356 0.6921 0.7175
1.2 0.7684 0.7634 0.7655 0.7655 0.7648 0.7619 0.8185 0.7989
1.5 0.8578 0.9074 0.9071 0.9071 0.9071 0.9071 0.9667 0.9710
2.0 0.8783 0.9124 0.9124 0.9124 0.9124 0.9124 0.9905 0.9905
3.0 0.8959 0.9212 0.9212 0.9205 0.9209 0.9209 0.9905 0.9905
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D.0.2 Car 2

Table D.15 False positives recorded for Car 2 with attacks generated on unscaled data (1000
record test data set).

Cluster A Cluster B
LOF 41 52
CC 322 99
OCSVM 23 27

Table D.16 Fβ (0.5) scores recorded for Car 2 with attacks generated on unscaled data (1000
record test data set).

Cluster A Cluster B
LOF 0.9584 0.9598
CC 0.7776 0.9157
OCSVM 0.9669 0.9788

Table D.17 Car 2, Cluster A: LOF False Negatives by CAN field manipulated. Actual number
out of 1000 attack outliers generated per cell.

Multiplier 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
0.1 0 0 0 0 0 244 0
0.5 0 0 0 0 0 241 0
0.8 0 0 0 0 0 253 0
0.9 0 0 0 0 0 281 0
1.1 0 0 0 0 0 279 0
1.2 0 0 0 0 0 252 0
1.5 0 0 0 0 0 241 0
2.0 0 0 0 0 0 241 0
3.0 0 0 0 0 0 241 0
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Table D.18 Car 2, Cluster A: CC False Negatives by CAN field manipulated. Actual number
out of 1000 attack outliers generated per cell.

Multiplier 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
0.1 0 0 0 0 0 24 0
0.5 0 0 0 0 0 60 0
0.8 0 0 0 0 0 526 0
0.9 0 0 0 0 0 636 0
1.1 0 0 0 0 0 641 0
1.2 0 0 0 0 0 496 0
1.5 0 0 0 0 0 55 0
2.0 0 0 0 0 0 17 0
3.0 0 0 0 0 0 7 0

Table D.19 Car 2, Cluster A: OCSVM False Negatives by CAN field manipulated. Actual
number out of 1000 attack outliers generated per cell.

Multiplier 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
0.1 0 0 0 0 0 273 0
0.5 0 0 0 0 0 281 0
0.8 0 0 0 0 0 289 0
0.9 0 0 0 0 0 562 0
1.1 0 0 0 0 0 570 0
1.2 0 0 0 0 0 290 0
1.5 0 0 0 0 0 280 0
2.0 0 0 0 0 0 269 0
3.0 0 0 0 0 0 251 0

Table D.20 Car 2, Cluster A: LOF Fβ (0.5) scores by CAN field manipulated.

Multiplier 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
0.1 0.9682 0.9682 0.9682 0.9682 0.9682 0.9026 0.9682
0.5 0.9682 0.9682 0.9682 0.9682 0.9682 0.9036 0.9682
0.8 0.9682 0.9682 0.9682 0.9682 0.9682 0.8996 0.9682
0.9 0.9682 0.9682 0.9682 0.9682 0.9682 0.8899 0.9682
1.1 0.9682 0.9682 0.9682 0.9682 0.9682 0.8906 0.9682
1.2 0.9682 0.9682 0.9682 0.9682 0.9682 0.8999 0.9682
1.5 0.9682 0.9682 0.9682 0.9682 0.9682 0.9036 0.9682
2.0 0.9682 0.9682 0.9682 0.9682 0.9682 0.9036 0.9682
3.0 0.9682 0.9682 0.9682 0.9682 0.9682 0.9036 0.9682
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Table D.21 Car 2, Cluster A: CC Fβ (0.5) scores by CAN field manipulated.

Multiplier 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
0.1 0.7952 0.7952 0.7952 0.7952 0.7952 0.7881 0.7952
0.5 0.7952 0.7952 0.7952 0.7952 0.7952 0.7771 0.7952
0.8 0.7952 0.7952 0.7952 0.7952 0.7952 0.5664 0.7952
0.9 0.7952 0.7952 0.7952 0.7952 0.7952 0.4861 0.7952
1.1 0.7952 0.7952 0.7952 0.7952 0.7952 0.4820 0.7952
1.2 0.7952 0.7952 0.7952 0.7952 0.7952 0.5855 0.7952
1.5 0.7952 0.7952 0.7952 0.7952 0.7952 0.7787 0.7952
2.0 0.7952 0.7952 0.7952 0.7952 0.7952 0.7902 0.7952
3.0 0.7952 0.7952 0.7952 0.7952 0.7952 0.7931 0.7952

Table D.22 Car 2, Cluster A: OCSVM Fβ (0.5) scores by CAN field manipulated.

Multiplier 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
0.1 0.9819 0.9819 0.9819 0.9819 0.9819 0.9087 0.9819
0.5 0.9819 0.9819 0.9819 0.9819 0.9819 0.9060 0.9819
0.8 0.9819 0.9819 0.9819 0.9819 0.9819 0.9032 0.9819
0.9 0.9819 0.9819 0.9819 0.9819 0.9819 0.7700 0.9819
1.1 0.9819 0.9819 0.9819 0.9819 0.9819 0.7646 0.9819
1.2 0.9819 0.9819 0.9819 0.9819 0.9819 0.9028 0.9819
1.5 0.9819 0.9819 0.9819 0.9819 0.9819 0.9063 0.9819
2.0 0.9819 0.9819 0.9819 0.9819 0.9819 0.9101 0.9819
3.0 0.9819 0.9819 0.9819 0.9819 0.9819 0.9161 0.9819

Table D.23 Car 2, Cluster B: LOF False Negatives by CAN field manipulated. Actual number
out of 1000 attack outliers generated per cell.

Multiplier 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
0.1 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0
0.9 0 0 0 0 0 44 0
1.1 0 0 0 0 0 31 0
1.2 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0
3.0 0 0 0 0 0 0 0
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Table D.24 Car 2, Cluster B: CC False Negatives by CAN field manipulated. Actual number
out of 1000 attack outliers generated per cell.

Multiplier 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
0.1 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0
0.8 0 0 0 0 0 51 0
0.9 0 0 0 0 0 686 0
1.1 0 0 0 0 0 648 0
1.2 0 0 0 0 0 157 0
1.5 0 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0
3.0 0 0 0 0 0 0 0

Table D.25 Car 2, Cluster B: OCSVM False Negatives by CAN field manipulated. Actual
number out of 1000 attack outliers generated per cell.

Multiplier 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
0.1 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0
1.1 0 0 0 0 0 2 0
1.2 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0
3.0 0 0 0 0 0 0 0

Table D.26 Car 2, Cluster B: LOF Fβ (0.5) scores by CAN field manipulated.

Multiplier 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
0.1 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
0.5 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
0.8 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
0.9 0.9601 0.9601 0.9601 0.9601 0.9601 0.9499 0.9601
1.1 0.9601 0.9601 0.9601 0.9601 0.9601 0.9530 0.9601
1.2 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
1.5 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
2.0 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
3.0 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601 0.9601
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Table D.27 Car 2, Cluster B: CC Fβ (0.5) scores by CAN field manipulated.

Multiplier 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
0.1 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266
0.5 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266
0.8 0.9266 0.9266 0.9266 0.9266 0.9266 0.9139 0.9266
0.9 0.9266 0.9266 0.9266 0.9266 0.9266 0.5920 0.9266
1.1 0.9266 0.9266 0.9266 0.9266 0.9266 0.6277 0.9266
1.2 0.9266 0.9266 0.9266 0.9266 0.9266 0.8840 0.9266
1.5 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266
2.0 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266
3.0 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266 0.9266

Table D.28 Car 2, Cluster B: OCSVM Fβ (0.5) scores by CAN field manipulated.

Multiplier 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
0.1 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
0.5 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
0.8 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
0.9 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
1.1 0.9789 0.9789 0.9789 0.9789 0.9789 0.9784 0.9789
1.2 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
1.5 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
2.0 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789
3.0 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789 0.9789





Appendix E

Payload Anomaly Detection - Attacks
Generated Using Offset to Standardised
Data

The detection results in this Appendix are from attack simulations generated by adding the
offsets -1.0, -0.5, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3, 0.5, 1.0 to the standardised data. The offsets
were added sequentially to each field, with the remaining fields being unchained.

E.0.1 Car 1

Table E.1 False positives recorded for Car 1 with attacks generated on standardised data
(1000 record test data set).

Accelerator Speed
LOF 43 48
CC 86 185
OCSVM 22 10
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Table E.2 Fβ (0.5) scores recorded for Car 1 with with attacks generated on standardised data
(1000 record test data set).

Accelerator Speed
LOF 0.8655 0.9607
CC 0.5785 0.4995
OCSVM 0.6657 0.8241

Table E.3 Car 1 Accelerator packet cluster attacks generated on scaled data: LOF False
Negatives by CAN field manipulated. Actual number out of 1000 attack outliers generated
per cell.

Offset 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
-1.0 105 46 29 88 19 195
-0.5 174 193 122 164 103 393
-0.3 293 413 323 294 291 432
-0.2 335 405 399 336 402 443
-0.1 489 454 436 501 530 515
0.1 501 454 442 476 629 537
0.2 396 410 400 399 575 490
0.3 343 298 394 342 409 407
0.5 232 149 412 206 87 331
1.0 14 29 345 16 24 158

Table E.4 Car 1 Accelerator packet cluster attacks generated on scaled data: CC False
Negatives by CAN field manipulated. Actual number out of 1000 attack outliers generated
per cell.

Offset 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
-1.0 72 117 97 71 111 106
-0.5 457 416 384 456 408 414
-0.3 738 701 704 741 741 708
-0.2 877 876 876 878 884 882
-0.1 895 901 899 894 895 901
0.1 902 898 898 900 898 901
0.2 853 880 877 851 847 856
0.3 713 700 702 714 759 764
0.5 485 462 493 486 486 494
1.0 44 50 45 43 47 45
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Table E.5 Car 1 Accelerator packet cluster attacks generated on scaled data: OCSVM False
Negatives by CAN field manipulated. Actual number out of 1000 attack outliers generated
per cell.

Offset 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
-1.0 0 0 0 0 0 0
-0.5 177 55 26 142 40 95
-0.3 584 469 469 567 527 531
-0.2 767 637 586 766 701 701
-0.1 877 808 764 878 847 876
0.1 955 982 979 954 968 968
0.2 918 966 961 917 939 914
0.3 848 813 861 850 723 613
0.5 320 103 271 338 37 107
1.0 0 0 0 0 0 0

Table E.6 Car 1 Speed packet cluster attacks generated on scaled data: LOF False Negatives
by CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
-1.0 0 0 0 0 0 0 0 0
-0.5 0 0 0 0 0 0 0 9
-0.3 0 0 0 0 0 0 1 18
-0.2 1 1 1 1 1 1 7 45
-0.1 51 22 22 22 22 22 80 66
0.1 50 24 23 21 20 15 91 68
0.2 3 2 2 2 2 1 23 40
0.3 3 2 2 2 2 1 23 40
0.5 0 0 0 0 0 0 3 0
1.0 0 0 0 0 0 0 0 0

Table E.7 Car 1 Speed packet cluster attacks generated on scaled data: CC False Negatives
by CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
-1.0 197 190 196 195 185 183 127 125
-0.5 569 555 555 555 555 554 550 534
-0.3 800 776 776 777 777 777 786 778
-0.2 843 836 836 834 837 835 832 828
-0.1 854 852 852 853 852 852 851 850
0.1 854 855 854 854 854 854 848 848
0.2 848 836 836 837 835 835 826 824
0.3 810 790 792 791 792 789 776 777
0.5 551 532 532 532 533 533 551 555
1.0 551 532 532 532 533 533 551 555
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Table E.8 Car 1 Speed packet cluster attacks generated on scaled data: OCSVM False
Negatives by CAN field manipulated. Actual number out of 1000 attack outliers generated
per cell.

Offset 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
-1.0 115 0 0 0 0 0 0 0
-0.5 245 4 3 3 2 2 70 86
-0.3 436 235 239 242 255 244 245 272
-0.2 533 531 531 529 526 525 457 484
-0.1 617 672 678 678 669 668 648 905
0.1 935 915 915 915 912 914 667 655
0.2 798 774 770 770 771 769 531 505
0.3 651 319 312 313 319 329 294 312
0.5 464 18 16 16 15 17 47 75
1.0 90 0 0 0 0 0 0 0

Table E.9 Car 1 Accelerator packet cluster attacks generated on scaled data: LOF Fβ (0.5)
scores by CAN field manipulated.

Offset 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
-1.0 0.9417 0.9563 0.9602 0.9461 0.9625 0.9164
-0.5 0.9227 0.9170 0.9372 0.9256 0.9422 0.8431
-0.3 0.8838 0.8338 0.8724 0.8834 0.8845 0.8246
-0.2 0.8677 0.8376 0.8403 0.8673 0.8389 0.8191
-0.1 0.7945 0.8135 0.8226 0.7876 0.7700 0.7792
0.1 0.7876 0.8135 0.8196 0.8017 0.6984 0.7655
0.2 0.8417 0.8352 0.8399 0.8403 0.7399 0.7939
0.3 0.8645 0.8819 0.8426 0.8649 0.8357 0.8366
0.5 0.9048 0.9299 0.8343 0.9131 0.9463 0.8693
1.0 0.9636 0.9602 0.8637 0.9632 0.9614 0.9273

Table E.10 Car 1 Accelerator packet cluster attacks generated on scaled data: CC Fβ (0.5)
scores by CAN field manipulated.

Offset 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
-1.0 0.9177 0.9055 0.9110 0.9180 0.9071 0.9085
-0.5 0.7722 0.7935 0.8088 0.7727 0.7974 0.7945
-0.3 0.5477 0.5886 0.5854 0.5441 0.5441 0.5812
-0.2 0.3350 0.3370 0.3370 0.3330 0.3208 0.3249
-0.1 0.2976 0.2845 0.2889 0.2998 0.2976 0.2845
0.1 0.2823 0.2911 0.2911 0.2867 0.2911 0.2845
0.2 0.3804 0.3289 0.3350 0.3840 0.3911 0.3750
0.3 0.5758 0.5896 0.5875 0.5748 0.5221 0.5157
0.5 0.7565 0.7695 0.7518 0.7559 0.7559 0.7512
1.0 0.9249 0.9234 0.9247 0.9252 0.9242 0.9247
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Table E.11 Car 1 Accelerator packet cluster attacks generated on scaled data: OCSVM
Fβ (0.5) scores by CAN field manipulated.

Offset 1DC_D2D3 136_D5 13A_D2 17C_D3D4 136_D4 383_D5D6
-1.0 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827
-0.5 0.9395 0.9706 0.9771 0.9491 0.9740 0.9611
-0.3 0.7558 0.8266 0.8266 0.7677 0.7936 0.7912
-0.2 0.5767 0.7146 0.7544 0.5781 0.6546 0.6546
-0.1 0.3892 0.5172 0.5807 0.3871 0.4500 0.3914
0.1 0.1774 0.0776 0.0896 0.1808 0.1316 0.1316
0.2 0.2895 0.1389 0.1568 0.2923 0.2290 0.3003
0.3 0.4481 0.5093 0.4227 0.4443 0.6307 0.7341
0.5 0.8929 0.9592 0.9103 0.8860 0.9747 0.9582
1.0 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827

Table E.12 Car 1 Speed packet cluster attacks generated on scaled data: LOF Fβ (0.5) scores
by CAN field manipulated.

Offset 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
-1.0 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630
-0.5 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9610
-0.3 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9628 0.9590
-0.2 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9615 0.9527
-0.1 0.9513 0.9581 0.9581 0.9581 0.9581 0.9581 0.9442 0.9476
0.1 0.9515 0.9576 0.9578 0.9583 0.9585 0.9597 0.9414 0.9472
0.2 0.9624 0.9626 0.9626 0.9626 0.9626 0.9628 0.9578 0.9539
0.3 0.9628 0.9630 0.9630 0.9630 0.9630 0.9630 0.9617 0.9610
0.5 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9624 0.9630
1.0 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630 0.9630
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Table E.13 Car 1 Speed packet cluster attacks generated on scaled data: CC Fβ (0.5) scores
by CAN field manipulated.

Offset 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
-1.0 0.8108 0.8133 0.8111 0.8115 0.8150 0.8157 0.8343 0.8349
-0.5 0.6221 0.6321 0.6321 0.6321 0.6321 0.6328 0.6356 0.6465
-0.3 0.3937 0.4249 0.4249 0.4236 0.4236 0.4236 0.4122 0.4224
-0.2 0.3315 0.3422 0.3422 0.3453 0.3407 0.3438 0.3483 0.3542
-0.1 0.3141 0.3173 0.3173 0.3157 0.3173 0.3173 0.3189 0.3205
0.1 0.3141 0.3125 0.3141 0.3141 0.3141 0.3141 0.3237 0.3237
0.2 0.3237 0.3422 0.3422 0.3407 0.3438 0.3438 0.3571 0.3601
0.3 0.3800 0.4070 0.4044 0.4057 0.4044 0.4083 0.4249 0.4236
0.5 0.6349 0.6478 0.6478 0.6478 0.6472 0.6472 0.6349 0.6321
1.0 0.7231 0.7316 0.7341 0.7346 0.7292 0.7287 0.8317 0.8195

Table E.14 Car 1 Speed packet cluster attacks generated on scaled data: OCSVM Fβ (0.5)
scores by CAN field manipulated.

Offset 1D0_D7D8 164_D6D7 158_D1D2 158_D5D6 1D0_D1D2 1D0_D5D6 191_D4 191_D5
-1.0 0.9662 0.9921 0.9921 0.9921 0.9921 0.9921 0.9921 0.9921
-0.5 0.9298 0.9912 0.9914 0.9914 0.9917 0.9917 0.9769 0.9732
-0.3 0.8556 0.9329 0.9317 0.9307 0.9266 0.9301 0.9298 0.9211
-0.2 0.8030 0.8042 0.8042 0.8054 0.8072 0.8078 0.8453 0.8312
-0.1 0.7446 0.6973 0.6916 0.6916 0.7001 0.7010 0.7190 0.3345
0.1 0.2500 0.3080 0.3080 0.3080 0.3161 0.3107 0.7019 0.7128
0.2 0.5465 0.5813 0.5867 0.5867 0.5854 0.5881 0.8042 0.8195
0.3 0.7163 0.9046 0.9072 0.9068 0.9046 0.9009 0.9136 0.9072
0.5 0.8417 0.9883 0.9887 0.9887 0.9890 0.9885 0.9821 0.9757
1.0 0.9722 0.9921 0.9921 0.9921 0.9921 0.9921 0.9921 0.9921
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E.0.2 Car 2

Table E.15 False positives recorded for Car 2 with attacks generated on standardised data
(1000 record test data set).

Cluster A Cluster B
LOF 47 42
CC 316 86
OCSVM 7 16

Table E.16 Fβ (0.5) scores recorded for Car 2 with with attacks generated on standardised
data (1000 record test data set).

Cluster A Cluster B
LOF 0.9634 0.6840
CC 0.5999 0.2810
OCSVM 0.9288 0.3405

Table E.17 Car 2, Cluster A packet attacks generated on scaled data: LOF False Negatives by
CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
-1.0 0 0 0 0 0 0 0
-0.5 0 0 0 0 0 0 0
-0.3 0 0 0 0 0 0 0
-0.2 1 0 1 0 1 0 1
-0.1 5 9 16 5 9 5 9
0.1 4 10 8 6 2 4 2
0.2 0 8 0 1 0 1 0
0.3 0 11 0 0 0 0 0
0.5 0 0 0 0 0 0 0
1.0 0 0 0 0 0 0 0
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Table E.18 Car 2, Cluster A packet attacks generated on scaled data: CC False Negatives by
CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
-1.0 0 0 0 0 0 0 0
-0.5 277 262 274 258 271 267 271
-0.3 548 546 548 545 548 550 548
-0.2 548 546 548 545 548 550 548
-0.1 678 687 682 688 680 684 680
0.1 693 692 694 693 694 698 694
0.2 619 625 617 627 621 631 621
0.3 530 524 530 527 534 539 534
0.5 288 279 285 286 286 279 287
1.0 0 0 0 0 0 0 0

Table E.19 Car 2, Cluster A packet attacks generated on scaled data: OCSVM False Negatives
by CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
-1.0 0 0 0 0 0 0 0
-0.5 0 0 0 0 0 0 0
-0.3 72 74 81 85 77 74 77
-0.2 197 211 308 293 236 185 238
-0.1 498 459 525 504 520 482 521
0.1 717 746 676 710 707 725 705
0.2 255 498 164 131 192 220 192
0.3 45 61 45 53 49 59 49
0.5 0 0 0 0 0 0 0
1.0 0 0 0 0 0 0 0
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Table E.20 Car 2, Cluster A packet attacks generated on scaled data: LOF Fβ (0.5) scores by
CAN field manipulated.

Offset 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
-1.0 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638
-0.5 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638
-0.3 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638
-0.2 0.9635 0.9638 0.9635 0.9638 0.9635 0.9638 0.9635
-0.1 0.9627 0.9618 0.9602 0.9627 0.9618 0.9627 0.9618
0.1 0.9629 0.9615 0.9620 0.9624 0.9633 0.9629 0.9633
0.2 0.9638 0.9620 0.9638 0.9635 0.9638 0.9635 0.9638
0.3 0.9638 0.9613 0.9638 0.9638 0.9638 0.9638 0.9638
0.5 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638
1.0 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638 0.9638

Table E.21 Car 2, Cluster A packet attacks generated on scaled data: CC Fβ (0.5) scores by
CAN field manipulated.

Offset 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
-1.0 0.7982 0.7982 0.7982 0.7982 0.7982 0.7982 0.7982
-0.5 0.7011 0.7074 0.7024 0.7091 0.7037 0.7054 0.7037
-0.3 0.5550 0.5564 0.5550 0.5571 0.5550 0.5536 0.5550
-0.2 0.4941 0.4876 0.4949 0.4860 0.4901 0.4909 0.4917
-0.1 0.4533 0.4451 0.4497 0.4442 0.4515 0.4478 0.4515
0.1 0.4396 0.4405 0.4386 0.4396 0.4386 0.4349 0.4386
0.2 0.5029 0.4981 0.5045 0.4965 0.5013 0.4933 0.5013
0.3 0.5671 0.5710 0.5671 0.5691 0.5644 0.5611 0.5644
0.5 0.6964 0.7003 0.6977 0.6973 0.6973 0.7003 0.6968
1.0 0.7982 0.7982 0.7982 0.7982 0.7982 0.7982 0.7982

Table E.22 Car 2, Cluster A packet attacks generated on scaled data: OCSVM Fβ (0.5) scores
by CAN field manipulated.

Offset 4B0_D1D2 4B0_D3D4 4B0_D5D6 4B0_D7D8 20E_D1D2 201_D5D6 20F_D3D4
-1.0 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944
-0.5 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944
-0.3 0.9789 0.9784 0.9768 0.9759 0.9778 0.9784 0.9778
-0.2 0.9469 0.9429 0.9115 0.9168 0.9354 0.9503 0.9347
-0.1 0.8267 0.8474 0.8111 0.8234 0.8141 0.8355 0.8135
0.1 0.6551 0.6213 0.6971 0.6627 0.6659 0.6461 0.6680
0.2 0.9294 0.8267 0.9561 0.9647 0.9484 0.9402 0.9484
0.3 0.9849 0.9814 0.9849 0.9832 0.9841 0.9818 0.9841
0.5 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944
1.0 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944
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Table E.23 Car 2, Cluster B packet attacks generated on scaled data: LOF False Negatives by
CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
-1.0 56 54 48 214 224 101 803
-0.5 406 406 309 441 432 372 940
-0.3 651 654 574 571 617 594 881
-0.2 767 756 673 677 695 711 862
-0.1 728 730 775 791 802 833 849
0.1 727 730 763 761 762 781 850
0.2 770 732 663 662 695 718 887
0.3 678 624 544 574 551 656 885
0.5 363 362 374 402 351 385 953
1.0 47 52 156 158 91 84 777

Table E.24 Car 2, Cluster B packet attacks generated on scaled data: CC False Negatives by
CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
-1.0 826 824 796 808 797 800 839
-0.5 907 907 916 918 904 908 906
-0.3 920 919 925 926 916 915 922
-0.2 922 922 929 927 919 919 924
-0.1 926 926 927 928 924 926 925
0.1 931 931 928 927 932 931 929
0.2 926 926 923 922 928 927 929
0.3 922 922 915 919 926 929 920
0.5 914 914 904 907 911 914 906
1.0 914 914 904 907 911 914 906

Table E.25 Car 2, Cluster B packet attacks generated on scaled data: OCSVM False Negatives
by CAN field manipulated. Actual number out of 1000 attack outliers generated per cell.

Offset 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
-1.0 59 68 164 255 73 181 766
-0.5 915 916 831 872 828 783 944
-0.3 965 967 934 951 929 939 966
-0.2 973 978 966 972 957 964 976
-0.1 978 979 975 980 974 978 982
0.1 978 978 981 978 978 978 979
0.2 972 971 970 969 968 964 972
0.3 956 955 954 947 945 943 964
0.5 890 892 909 809 850 838 931
1.0 15 14 435 84 95 120 836
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Table E.26 Car 2, Cluster B packet attacks generated on scaled data: LOF Fβ (0.5) scores by
CAN field manipulated.

Offset 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
-1.0 0.9547 0.9552 0.9566 0.9114 0.9082 0.9435 0.5036
-0.5 0.8380 0.8380 0.8787 0.8211 0.8256 0.8533 0.2131
-0.3 0.6806 0.6779 0.7416 0.7438 0.7093 0.7271 0.3619
-0.2 0.5548 0.5690 0.6603 0.6565 0.6386 0.6218 0.4012
-0.1 0.6028 0.6005 0.5440 0.5215 0.5051 0.4548 0.4261
0.1 0.6040 0.6005 0.5600 0.5626 0.5613 0.5357 0.4242
0.2 0.5508 0.5982 0.6697 0.6706 0.6386 0.6141 0.3488
0.3 0.6555 0.7036 0.7620 0.7416 0.7574 0.6761 0.3532
0.5 0.8571 0.8575 0.8524 0.8399 0.8621 0.8476 0.1733
1.0 0.9568 0.9556 0.9287 0.9281 0.9461 0.9478 0.5413

Table E.27 Car 2, Cluster B packet attacks generated on scaled data: CC Fβ (0.5) scores by
CAN field manipulated.

Offset 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
-1.0 0.4265 0.4297 0.4722 0.4545 0.4708 0.4664 0.4049
-0.5 0.2710 0.2710 0.2500 0.2452 0.2778 0.2687 0.2733
-0.3 0.2404 0.2428 0.2281 0.2256 0.2500 0.2524 0.2355
-0.2 0.2355 0.2355 0.2181 0.2231 0.2428 0.2428 0.2306
-0.1 0.2256 0.2256 0.2231 0.2206 0.2306 0.2256 0.2281
0.1 0.2130 0.2130 0.2206 0.2231 0.2104 0.2130 0.2181
0.2 0.2256 0.2256 0.2331 0.2355 0.2206 0.2231 0.2181
0.3 0.2355 0.2355 0.2524 0.2428 0.2256 0.2181 0.2404
0.5 0.2547 0.2547 0.2778 0.2710 0.2618 0.2547 0.2733
1.0 0.4590 0.4605 0.4590 0.4590 0.4605 0.4635 0.4500

Table E.28 Car 2, Cluster B packet attacks generated on scaled data: OCSVM Fβ (0.5) scores
by CAN field manipulated.

Offset 73_D5D6 90_D7D8 200_D1D2 200_D5D6 205_D1D2 205_D7D8 211_D3D4
-1.0 0.9745 0.9725 0.9483 0.9211 0.9713 0.9435 0.5850
-0.5 0.3027 0.3000 0.4856 0.4061 0.4909 0.5616 0.2174
-0.3 0.1453 0.1380 0.2485 0.1944 0.2634 0.2332 0.1417
-0.2 0.1152 0.0955 0.1417 0.1190 0.1739 0.1490 0.1034
-0.1 0.0955 0.0915 0.1074 0.0874 0.1113 0.0955 0.0792
0.1 0.0955 0.0955 0.0833 0.0955 0.0955 0.0955 0.0915
0.2 0.1190 0.1229 0.1267 0.1305 0.1342 0.1490 0.1190
0.3 0.1774 0.1809 0.1843 0.2077 0.2142 0.2206 0.1490
0.5 0.3657 0.3610 0.3186 0.5224 0.4507 0.4731 0.2575
1.0 0.9842 0.9844 0.8499 0.9687 0.9661 0.9599 0.4767
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