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Abstract 

Although our energy supply is not longed purely wedded to fossil fuels but produced from a 

wider range of sources such as solar or wind these days, there remains a considerable challenge 

in providing affordable and reliable energy to all households around the world. The oil and gas 

industry as the biggest supplier to address this demand for energy still plays the major role in 

the energy market and has an extensive influence on the energy price. Increasing the economic 

efficiency of the processes and the energy-producing systems in this industry can therefore 

significantly contribute to securing energy affordability. With the ever-increasing application 

of data in the oil and gas industry, its availability and accuracy are of vital importance in 

hydrocarbon field management and increasing the economic recovery of oil and gas. Perhaps 

the most important type of data in the oil and gas industry are production flow rates which is a 

basis of decisions in hydrocarbon field management. In many cases, however, the production 

data of wells contain large flow measurement uncertainties or are not available continuously 

due to the shortcomings of the traditional methods of flow measurement or estimation that are 

still used in the industry. This research has investigated the effects of these uncertainties on the 

economic recovery of oil and gas reservoirs and tried to propose solutions for mitigating them. 

In order to do that, the uncertainties in the production data have been statistically analysed and 

the effects of the frequency of flow tests on the accuracy of allocation calculations and 

hydrocarbon accounting have been investigated (Chapter 3). The case studies in the analysis 

showed up to 80 million dollars reduction in the annual cost of allocation uncertainties when 

flow tests were undertaken weekly instead of monthly in an oil field with 36 production wells. 

Based on the statistical analysis, a method that includes the application of an artificial neural 

network has been proposed to find the minimum frequency of flow tests required to achieve a 

desired allocation error (Chapter 4). The effects of the uncertainties of flow data on history 

matching and well testing (Chapter 5), which are two main exercises contributing to reservoir 

management, have been investigated subsequently. The results show the significance of the 

negative effect of systematic errors and therefore the importance of regular calibration and 

maintenance of flow meters, installing multi-phase flow meters on individual wells, and 

recording the data downhole instead of on the surface. 

Keywords: oil and gas, data analysis, flow measurement, reservoir management, allocation, 

machine learning, artificial neural network, reservoir simulation, modelling, uncertainty, 

hydrocarbon accounting, history matching, well testing 
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Nomenclature 

Symbols and abbreviations: 

AE% Allocation error (%) 

AFk Allocation factor for well k 

ANN Artificial neural network 

ATP Actual total production (STB) 

BU Build up test 

CP∆ti+1
 Cumulative production over the (i+1)th time interval (STB) 

𝐃𝐫𝐞𝐟 Vector of reference production data (STB/day) 

𝐃𝐬𝐢𝐦 Vector of the production data from the simulator (STB/day) 

DD Draw down test 

DF Vector of dispersion factors 

EETP Estimated total production error 

ETP Estimated total production (STB) 

K Permeability (mD) 

MER Maximising economic recovery 

MPFM Multi-phase flow meter 

m Total number of contributing wells 

n Number of data points 

P Pressure (psia) 

Q Average flow rate of the well during the test time (STB/day) 

Qi The i-th measured flow rate data point during the test (STB/day) 

Qti
 Production flow rate at the time 𝑡𝑖 (STB/day) 

q Flow rate (STB/day) 

RND Vector of random numbers between zero and one 

RSD Relative standard deviation 
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ref Reference data 

S Skin factor 

S Softmax function 

SD Standard deviation 

SD𝐑𝐍𝐃 Standard deviation of the RND vector 

STB Standard barrel 

TPfield Total production of the entire field (STB) 

T Tansig function 

TPM (Flow) test per month 

t Time (day) 

test Test results 

VFM Virtual flow meter 

W Weight 

x A single data point 

x Average of all data points 

ΔP Pressure change (psia) 

ΔP’ Derivative of the pressure change 

ΔPn Normalised pressure change 

ΔPn’ Derivative of normalised pressure change 

Δt Change in time 

λ Inter-porosity flow coefficient 

σ Standard deviation 

ω Storativity ratio 
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Chapter 1: Introduction 
 

1.1 Background 

More than 11% of the population in England live in fuel poverty according to the UK 

Department for Business, Energy, and Industrial Strategy (Annual fuel poverty statistics report 

2018) and the Office of Gas and Electricity Markets (State of the energy market 2018). This is 

equivalent to 2.55 million households in England who cannot afford to keep their houses warm 

during the winter. The statistics in some other areas of the world show even worse situations 

as a result of the high price of energy and poor economies (Bouzarovski and Petrova 2015; 

International Energy Agency (IEA) 2019a). Figure 1.1 shows a world atlas of total primary 

energy supply (TPES) per capita. TPES is an indication of energy consumption. Comparing 

this figure with the Gross Domestic Product (GDP) per capita statistics of countries around the 

world (United Nations 2019) shows that those countries which are at the bottom of energy 

consumption tables are normally the same countries that have the weakest economies. The 

entire aforementioned argument implies that energy affordability is still a major problem in our 

world. Therefore, at the same time as moving towards clean sustainable energy sources, the 

affordability of energy also needs to improve.  

 

Figure 1.1: World atlas of total primary energy supply (TPES) per capita (toe stands for a tonne 

of oil equivalent) (International Energy Agency (IEA) 2019b).  
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Although our energy supply is now produced from a wider range of sources, such as 

photovoltaic and thermal solar, the tides or wind and for some countries, a nuclear power base 

load, there still remains an important role for the oil and gas industry in the energy sector. 

Figure 1.2 displays the contribution of different sources in primary energy consumption around 

the world. Oil is still the largest energy source making over a 34% contribution and natural gas 

is in the third place providing almost 24% of the total consumption and increasing. It means 

the energy sector is still largely dependent on the oil and gas industry which supplies more than 

half (58%) of global primary energy. This dependency means that the oil and gas industry 

remains in a very important position in determining the price of energy and its security. 

  

 

Figure 1.2: The contribution of different sources in primary energy consumption around the 

world (British Petroleum 2019). Oil is still the biggest energy source.  

 

Not only do changes in the price of hydrocarbon products directly affect consumers, but also 

they have an immediate influence on the price of energy from other sources, such as 

renewables. One main factor in determining the price of energy is therefore the daily price of 

oil. Figure 1.3 shows the changes in the price of oil from 1861 to 2018. Although the figure 

shows peaks over time, the overall price trend shows an increase, especially after 1973 Gulf 

War that a sharp increase is observed. While world events have created a significant effect, 
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mostly temporary, on the oil price, the main reason for the current higher price compared to 

the past is the energy demand increase, in spite of the global economic turndown in 2010. 

Therefore, to maintain a reasonable price for energy and to maintain its affordability, especially 

for poorer societies, the energy supply needs to increase as fast as demand. This is, however, 

not the only factor that contributes to keeping energy affordable. Increasing the economic 

efficiency of energy-producing systems is another important element.  

 

 

Figure 1.3: Changes in the price of oil from 1861 to 2018 (British Petroleum 2019). The total 

trend in the price increasing especially after 1973.  

 

Since the oil and gas industry is still the main global supplier of energy, any method that can 

increase the efficiency of the production processes in this industry can reduce the price of 

energy and ameliorate energy poverty. Higher efficiency oil and gas production also reduces 

the costs of operating companies and increases oil and gas reserves (i.e. the amount of oil and 

gas that is financially feasible to be recovered considering production costs and the 

hydrocarbon price). Hence, higher efficiency not only increases the total recovery of oil and 
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gas, but also, more importantly, the total ‘economic’ recovery of oil and gas. Economic 

recovery is referred to the financial benefits of oil and gas production after considering all of 

its costs. 

Maximising economic recovery of oil and gas within existing laws and regulations (Energy 

Act 2016; Environmental Protection Act 1990; Petroleum Act 1998), such as regulations in 

regard to protecting the environment or health and safety, is the aim of oil and gas producing 

companies. An efficient field management programme must therefore be undertaken by 

companies to achieve these goals. Hydrocarbon field management, especially in its modern 

form, includes dealing with a large amount of data coming from different sources, such as 

production facilities, simulators, formation evaluation tests, and rock and fluid laboratories. 

Decisions about how to operate a field are made based on these sets of data. An important 

element of this data (perhaps the most important) is the production flowrates from wells in a 

reservoir that has a fundamental role in the reservoir management, production optimisation, 

decision-making process, hydrocarbon accounting, and tax payment. The accuracy of the 

production data can therefore directly (in hydrocarbon accounting) or indirectly (in reservoir 

management) affect the economic recovery of oil and gas. Larger measurement or estimation 

uncertainties in the flow rate data mean a higher cost of production for oil and gas companies 

and a lower energy production efficiency. This lower efficiency can potentially have an 

influence on the energy market and the final cost of energy for consumers. As a consequence, 

mitigating the uncertainty in the production flow rate data of oil and gas fields can play a role 

in increasing the economic recovery of oil and gas and providing affordable energy to the 

market.  

 

1.2 Thesis overview 

1.2.1 Aims and objectives 

The production from wells in the oil and gas industry mainly includes three fluids: oil, gas, and 

water. Operators normally have to deal with multi-phase flows that add to the complexity of 

any flow measurement exercise. The uncertainty in the recorded production flow rates is 

therefore large in many hydrocarbon fields around the world. This uncertainty, as mentioned 

above, can potentially increase the cost of production and reduce the economic recovery of oil 

and gas. The aim of this research is to provide recommendations and methods to increase the 
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economic recovery of oil and gas through mitigating the uncertainty in the production data. 

The exact effect of this uncertainty on the economic recovery, however, is not clear. To achieve 

the aim of this research, therefore, a thorough understanding of the influence of these 

uncertainties on the whole process of oil and gas production was required. The main research 

questions of this thesis are 

• Which exercises in the oil and gas production process can potentially be affected by 

flow measurement uncertainties? 

• Are the effects of the uncertainties on these processes significantly costly and can they 

reduce the economic recovery of oil and gas? 

• Are there any methods that can mitigate the uncertainties or their cost and ultimately 

increase the economic recovery of oil and gas?  

Hence, the objectives of this research to attain its aim and answer the questions are 

• Determining hydrocarbon production exercises in which flow measurement data is 

employed widely 

• Finding potential direct and indirect links between production flow rate uncertainties 

and the economic recovery of oil and gas in these exercises 

• Estimating the cost of the uncertainties for operators by undertaking case studies, 

simulations, and data analysis 

• Presenting recommendations for cost reduction based on the data analysis  

The research was focused on the role of flow measurement uncertainties in hydrocarbon 

accounting and reservoir management. In hydrocarbon accounting, the uncertainties have a 

direct and clear effect on the operating costs (OPEX) of oil and gas companies, while in 

reservoir management their effect is indirect and subtle. 

 

1.2.2 Thesis structure 

Different techniques are employed in the industry to monitor or estimate production flow rates. 

The most common method is still undertaking occasional flow tests on individual wells, 

although the application of other methods, such as multi-phase flow meters (MPFM) or virtual 

flow meters, has increased recently. In Chapter 2 of this thesis, these different methods of flow 

measurement or flow rate estimations in the oil and gas industry are explained. The common 
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errors and uncertainties which are associated with flow rate data are also discussed. This 

research has had two main phases; the first phase on the effects flow measurement uncertainties 

on allocation and hydrocarbon accounting and the second phase on the effects of these 

uncertainties on reservoir management. The results of the first phase are presented in Chapters 

3 and 4 and the results of the second phase are discussed in Chapters 5. Chapter 3 is dedicated 

to statistical analysis of the uncertainties and investigating their effects on allocation and 

hydrocarbon accounting calculations. Based on the analysis in Chapter 3, an artificial neural 

network (ANN) was developed and trained and the results of the application of this ANN for 

reducing the errors of allocation calculations are presented in Chapter 4. Chapter 5 is written 

on the role of flow measurement in reservoir management. The first section of Chapter 5 details 

effect of flow measurement errors on history matching which is a main sub-process of reservoir 

management. The second section of the chapter, however, discusses this role in well testing, 

another main element of reservoir management. Conclusions and recommendations of this PhD 

research are summarised in Chapter 6. 
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Chapter 2: Flow measurement in the oil 

and gas industry 
 

2.1 Introduction 

Flow measurement has an important role in the oil and gas industry. Flow meters are widely 

used to measure the flow of producing fluids from the reservoir or the injection of fluids into 

it. The data from the meters is used for different purposes, such as hydrocarbon accounting and 

reservoir management. In the case of hydrocarbon accounting, the amount of hydrocarbons 

which is transferred between operators or sold need to be recorded with an acceptable accuracy 

to enable operators to perform financial calculations and governments to determine taxation 

revenues. In many cases, producing fluids from different wells or oil fields are commingled 

and the total outcome is retrospectively allocated to the owners. Allocating the flow in an 

equitable way requires accurate flow measurement data. Therefore, flow meters are vital for 

hydrocarbon accounting in the oil and gas industry. Moreover, the production or injection data 

measured by flow meters can be analysed and used to secure a better management over the 

reserves. Since proper management can increase the recovery of oil and gas, the collected flow 

measurement data also has an indirect effect on the recovery factor of oil and gas reservoirs. In 

this chapter, the role of flow measurement in the oil and gas industry is discussed. In the 

following sections, different methods of flow measurement in the oil and gas industry are 

presented. Then, the application of flow meters in fiscal measurements, custody transfer, and 

hydrocarbon accounting are explained. Finally, the important role of flow measurement data 

in history matching, optimisation and reservoir management is elaborated. 

 

2.2 The role of flow measurement in hydrocarbon accounting 

Hydrocarbon accounting is also referred to as hydrocarbon production reporting or allocation. 

Although it can include a variety of activities in the oil and gas industry, the main aim of 

hydrocarbon accounting is to track and measure reservoir producing fluids, especially when 

they are being transferred from one owner to another or determining the share of each owner 

from the total production when production from different fields or wells is commingled. The 

amount of tax that should be paid to the government by the operator is also determined through 

hydrocarbon accounting. The accuracy of the measurements and methods which are used in 
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the hydrocarbon accounting process is important since a failure in providing acceptable 

measurements results in a non-fair distribution of the revenues between the owners. In addition, 

it can prevent sellers from being able to determine the correct price of the hydrocarbon that 

they are delivering to the next owners. Therefore, different guidelines have been developed in 

different countries to specify the required measurement accuracies for hydrocarbon accounting. 

For instance, in the United Kingdom, the details of the regulations for hydrocarbon 

measurements have been provided by the Oil & Gas Authority (2015). It is not just flow meters 

that control the accuracy of hydrocarbon accounting, however. Other software and hardware 

facilities are also involved in this process. Therefore, in addition to the accuracy of flow meters, 

the accuracy of the employed methods, calculations, and facilities are also important in the 

entire process. The role of these factors in the accuracy of hydrocarbon accounting can be 

different from one case to another depending on the design of the production facilities, the 

number of owners, or the necessity of back allocation. In the case where there is just one owner 

and the measurement is performed for equitable custody transfer, the role of flow meters is of 

the highest importance. However, when there is commingled production from different owners 

and back allocation is needed to determine the share, the methods of allocation have vital 

importance in addition to the accuracy of the flow meters. Chapter 3 and 4 of this thesis focus 

on hydrocarbon accounting and allocation and have presented a method to reduce their 

uncertainty. 

Custody transfer involves the activities which are necessary to determine the price of 

hydrocarbon production fluids which are transferred from a seller to a buyer. The terms 

‘custody transfer’ and ‘fiscal measurement’ are often interchangeable. However, in some 

references, fiscal measurement has been defined as being more general than custody transfer. 

In those references, fiscal measurement includes both custody transfer and allocation.  

Allocation (or back allocation) is the act of determining the share of each source when the 

producing fluids from different sources are mixed. The sources are normally for different 

owners which makes allocation necessary to determine the income of each. Section 2.4.3 of 

this chapter explains more about allocation techniques.  
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2.3 The role of flow measurement in reservoir management 

Many hydrocarbon reservoirs are located deep under the surface of the earth. This means that 

the reservoir is an unknown system for us, there is a limited access to it, and gathering 

information about the reservoir is difficult. Different methods have been developed and 

employed to obtain information from hydrocarbon reservoirs. Among these are seismic (Bacon, 

Simm and Redshaw 2007; Vermeer 2002), reservoir rock and fluid sample analysis (Schön 

2015; Tiab and Donaldson 2015), formation evaluation (Darling 2005), and well testing 

(Bourdet 2002; Horne 1995; Lee 1982). All the information that can be obtained from all of 

these methods, however, cannot give an accurate image of the reservoir. Knowing the 

characteristics of a hydrocarbon reservoir such as its size, the initial amount of oil in place, the 

reservoir rock and fluid properties (e.g. porosity, permeability, fluid viscosity, and fluid 

density), location of faults, type and location of the reservoir boundaries, and characteristics of 

aquifers is necessary for the operating companies. It enables them to have an integrated 

management over their hydrocarbon reservoirs and maximise their income from the reserves. 

Although these characteristics are measured or estimated using the aforementioned methods, 

there is still a vast uncertainty in the knowledge they provide from a reservoir (Babak and 

Deutsch 2008). Therefore, operators record and analyse any type of reservoir data that can help 

them reduce the uncertainty in the reservoir knowledge. Production data (i.e. oil, water and gas 

production flow rates, and downhole or wellhead pressure) can be analysed in an inverse 

problem to calculate the characteristics of a reservoir (for instance in well testing) or to mitigate 

the uncertainty in the reservoir model through history matching. History matching, well testing 

and other analyses based on production data are inverse problems. In a forward problem, by 

knowing the parameters of a system, the outputs of the system can be estimated. In contrast, in 

an inverse problem the characteristics of the system are unknown (Kern 2016; Kirsch 2011; 

Oliver, Reynolds and Liu 2008). In such a problem the outputs of the system are used to 

calculate the parameters of the system. Forward and inverse problems are shown in Figure 2.1. 
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Figure 2.1: Forward and inverse problems. History matching and well testing are two inverse 

problems in reservoir engineering. 

 

Proper reservoir management requires the solving of many inverse problems and dealing with 

numerous uncertainties. Therefore, the quality of the output data is of vital importance. 

Production data of the reservoir (oil, gas, and water flow rates and pressure data) is the main 

output of the reservoir system. Therefore, the data needs to be measured properly or estimated 

by using appropriate methods, then recorded for later analysis. In order to achieve this, different 

methods and technologies of flow measurement are used, such as single-phase flow meters, 

multi-phase flow meters (MPFM), virtual flow metering, and allocation. Moreover, the way 

that the measurement is undertaken and the interval between measurements vary in different 

oil and gas fields. The interval between measurements can vary from a near real time flow 

measurement, where multi-phase flow meters are used, to several weeks where regular 

production tests are undertaken using test separators. In addition, the hardware, software, and 

methods which are used have different accuracies. All of these factors affect the quality of the 

recorded data and can then indirectly affect reservoir management and hydrocarbon recovery.  

Reservoir management is a complicated process involving setting targets, making decisions, 

implementing the decisions, recording the results, analysing the data, and then modifying the 

initial decisions (Satter, Varnon and Hoang 1994). The fundamentals of reservoir management 

have been presented in different publications (Al-Hussainy and Humphreys 1996; Satter, 

Varnon and Hoang 1994; Thakur 1996; Trice Jr and Dawe 1992). A recently introduced method 

referred to as Closed-Loop Reservoir Management (CLRM) is presented in the following 

section and has been employed in this research to show the role of flow measurement in 

reservoir management. Although CLRM is a relatively new method in reservoir management, 
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several publications from different authors who have employed it can be found in the literature 

(Barros, Van den Hof and Jansen 2016; Hanssen, Codas and Foss 2017; Jansen et al. 2005; 

Jansen, Brouwer and Douma 2009; Lorentzen, Shafieirad and Naevdal 2009; Wang, Li and 

Reynolds 2009). The main advantage of the CLRM method over other management methods 

is that it has a standard procedure that clearly and simply shows the contribution of different 

components of reservoir management, including production data, to the entire process. This 

advantage makes it an appropriate method for investigating the effects of different parameters, 

such as the quality of data on the reservoir management. A schematic of CLRM which has been 

presented in the literature by Jansen, Brouwer and Douma (2009) is shown in Figure 2.2. 

 

Figure 2.2: Closed-Loop Reservoir Management (CLRM) process (Jansen, Brouwer and 

Douma 2009).  

 

The two main components in CLRM are the actual reservoir and the reservoir model. In order 

to manage the actual reservoir and meet the targets that have been set for the exploitation 

process, a reservoir model that properly represents the actual reservoir is necessary. The 

operators cannot examine their plans on the actual reservoir in a trial and error method since it 

will affect the production and recovery of the reservoir. In addition to that, since the life of a 

reservoir is normally of the order of tens of years, it takes a long time to see the results of their 

decisions on the actual reservoir and then modify them. Alternatively, a reservoir model based 

on the characteristics of the reservoir can be built in a simulator. Many decisions and 

modifications are made based on the simulations that are performed on the reservoir model. If 
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the reservoir model is similar to the actual reservoir, the results of the simulations will be 

similar to what actually happens in the reservoir in the future. Otherwise, the model cannot 

represent the actual reservoir. In such a case, the decisions made based on the model will not 

be the best decisions for the actual reservoir and will make it difficult for the operators to set 

proper goals and reach their desired targets. Therefore, as has been shown in Figure 2.2, all the 

information that is obtained from geology, seismic, well logs, well tests, and reservoir fluid 

and rock sample analysis is employed to build a better reservoir model. However, since the 

information obtained from the reservoir is vastly uncertain, the reservoir model still cannot 

represent the actual reservoir accurately. This uncertainty in the model needs to be reduced and 

the model modified over time. This process is performed in the sub-loop of history matching. 

In the history matching loop, the outputs of the model are compared to the measured outputs 

of the reservoir. Based on the comparison, the model is then modified in an iterative procedure. 

There is also another sub-loop for reservoir optimisation. During the optimisation, the optimum 

values for production parameters that can be controlled by the operator, such as production 

rates or the location of the new wells, are determined. The CLRM itself has a main loop that 

connects all of the components in the reservoir management process. The loop enables the 

reservoir management to change from an intermittent process to a dynamic, near continuous 

one. It relates the outputs of the reservoir to its inputs. In other words, the decisions as to how 

to control the input parameters are made based on the outputs of the system or the way that the 

reservoir reacts to changing input parameters. The effect of the outputs of the reservoir on its 

inputs shows the importance of the quality of the recorded data. Any possible errors in the 

recorded outputs affect history matching, the reservoir model, optimisation, and finally the 

inputs (controls) of the reservoir. Therefore, the performance of the reservoir and its recovery 

factor are influenced by the quality of the recorded data. Since the production flow rates are 

important parts of the reservoir output, one main focus of this research is on the role of flow 

measurement in reservoir management and hydrocarbon recovery.  

Flow measurement errors in hydrocarbon accounting is important for oil and gas companies 

because they can directly affect the share of each owner from the production of the field. When 

it comes to reservoir management, however, the effect of flow measurement on the income of 

the companies is not direct and clear. Operators normally deal with large uncertainties in the 

reservoir itself. In many cases, the effect of the uncertainties in the flow measurement data is 

ignored in comparison to other large uncertainties in the process or in the reservoir. The focus 

of many researchers and professionals has therefore been on quantifying and reducing the 
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uncertainties in the reservoir characteristics (Ahmadinia et al. 2019; Babak and Deutsch 2008; 

Oliver and Chen 2011). Since production data is used in mitigating uncertainties in the reservoir 

model (e.g. uncertainties in porosity, permeability, reservoir size, reservoir shape, and location 

of faults), however, the uncertainties in the data can impact this process. Therefore, 

investigating the effects of these uncertainties on the reservoir management is necessary. This 

issue has been addressed in this research.  

In the following sections, some main parts of a reservoir management process that can 

significantly be affected by flow measurement uncertainties are discussed. The two main sub-

processes of reservoir management, history matching and optimisation, in addition to well 

testing, are briefly explained in this chapter and the role of flow measurement in them has been 

elaborated. In Chapter 5 of this thesis, the effects of flow measurement errors on history 

matching and well testing which are two main exercises of reservoir management that directly 

employ flow measurement data have been discussed in details, respectively. 

 

2.3.1 History matching 

As stated previously, history matching is an inverse problem and its aim is to mitigate the 

uncertainties in the reservoir model. Since there are limitations in the methods that are currently 

available to gather data from the reservoir, there is normally a large uncertainty in the initial 

reservoir models, which are built based on the data. The data is gathered through geological 

investigations, seismic, well logging, well testing, and reservoir rock and fluid sample analysis. 

All of these sources of information have limitations and the accuracy of the technology and the 

methods which are used affect the accuracy of the obtained data. As an example, since the 

number of wells that are drilled in a reservoir is limited, the number of areas of the reservoir in 

which rock and fluid samples can be taken is restricted. The characteristics of these samples, 

such as porosity, absolute permeability, relative permeability, fluid viscosities, and fluid 

densities are measured in laboratories. However, since actual reservoirs are heterogeneous in 

their characteristics, the measured values in the laboratory based on a limited number of 

samples do not necessarily represent the characteristics of the entire reservoir. The measured 

values of a parameter or average of them may be used in the simulator to build the entire 

reservoir model, or a part of it, but such a model cannot accurately represent the actual 

reservoir. Due to heterogeneity, the value that is used as the average value of a parameter in 

the model is normally different from the actual average value of that parameter in the reservoir. 
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Therefore, the initial model cannot forecast the future production accurately and it needs to be 

modified. History matching is widely used in the oil and gas industry to modify reservoir 

models. In order to do that, the actual production data of the reservoir (observed data) is 

compared with the simulated production data obtained from the model. If the two sets of results 

do not match, the model is modified in an iterative procedure. In each iteration, the results of 

the model are again checked against the observed data. If the match is not acceptable the model 

is modified again, and the iterative procedure is continued until an acceptable match is 

achieved. Figure 2.3 shows the iterative process of history matching. 

 

 

 

 

 

 

 

 

 

Figure 2.3: The iterative procedure of history matching. The aim of history matching is to 

reduce the uncertainties in the reservoir model. 

 

The loop of history matching is employed to reduce the uncertainties in the measured or 

estimated input data (Figure 2.3). Although other uncertainties such as those related to the 

model selection or governing equations also exist, the history matching case study in this 

research will focus on  input parameters such as porosity and permeability because they are 

very important in reservoir engineering calculations and there are typically large uncertainties 

associated with their estimated values. Flow measurement data (observed data) has an 

important role in this process. The data is used as the reference for history matching to show 

how accurate the results of the model are. However, similar to the input data of the model, there 

is normally an uncertainty in the flow measurement. In other words, the reference data that is 
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used to reduce the uncertainty in the model, normally has some uncertainty in itself. This 

uncertainty has a potential effect on the performance of the history matching and the accuracy 

of the model. Since there are normally large uncertainties in reservoir models, the uncertainty 

in the observed data is ignored in the oil and gas industry in many cases. However, depending 

on the method of flow measurement protocol being used, this uncertainty can be large and its 

effect can be significant. Therefore, it is necessary to investigate the effect of flow measurement 

uncertainties on history matching. Evaluating this effect can assist the operators in improving 

their methods of flow measurement and data collection and subsequently obtain more accurate 

results from history matching and their reservoir models. This is one aim of Chapter 5 of this 

thesis. 

 

2.3.2 Optimisation 

Optimisation is the second sub-loop in CLRM (Figure 2.2) after the sub-loop of history 

matching. The aim of an optimisation process is to achieve the possible peak economic 

recovery of the reserves. An objective function, such as the ultimate hydrocarbon recovery or 

net present value (NPV), is therefore chosen that needs to be maximised within the existing 

constraints (Wheaton 2016). This is undertaken through an optimisation process by finding the 

best operating conditions or values for the controllable inputs of the reservoir. Some examples 

of these controllable inputs are the development plan (Vasantharajan, Al-Hussainy and 

Heinemann 2006), such as the location and number of the new wells and platforms (Bangerth 

et al. 2006), the water injection rates in a water flooding process (Lien et al. 2008; Peters et al. 

2010), and the gas injection rate in a gas lifting exercise (Bahadori, Ayatollahi and 

Moshfeghian 2001; Wilson 2015). The optimisation process, however, directly or indirectly 

through the history matching exercise is effected by the uncertainties in the recorded production 

data. Flow measurement data and the outputs of the history matching (such as the modified 

reservoir model) are the elements employed in the process of optimisation. Any uncertainty in 

these elements can therefore deter the process from finding the optimum operating conditions 

and values for the controllable inputs of the reservoir and, as a result, decrease its ultimate 

economic recovery.  
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2.3.3 Well testing 

Well testing (or pressure transient testing) is another practice in the oil and gas industry that 

significantly contributes to reservoir management through providing information from the 

reservoir. It is an inverse problem (similar to history matching) through which some 

characteristics of a reservoir and its wells, such as the average permeability, drainage area, 

storativity, distance to faults, and the shape of the drainage area, are calculated. The 

fundamentals of different well testing techniques have been discussed by Stewart (2011), 

Chaudhry (2004), and Zhuang (2012).  

The main parameters of a well measured during a well test and then analysed are pressure and 

flow rates. Pressure is normally measured both at the bottom of the wells (bottom-hole pressure 

or BHP) and at the surface (well head pressure or WHP). Flow rates, however, are typically 

measured using flow meters at the surface through standard flow measurement techniques 

common in the industry. Some of these techniques have been explained in Section 2.4. The 

most common technique is still using a test separator and single-phase flow meters. Since flow 

rate data plays a fundamental role in well testing analysis, any uncertainty in the data can also 

have a potentially significant effect on the analysis. It means these uncertainties can indirectly 

affect the reservoir management process and eventually reduce the economic recovery of oil 

and gas from the reservoir. Figure 2.2 illustrates the role of well testing in CLRM in developing 

the reservoir model. The potential effects of flow measurement errors in well testing on 

reservoir management and hydrocarbon economic recovery are discussed in Chapter 5. 

 

2.4 Methods of flow measurement in the oil and gas industry 

Different flow measurement techniques and technologies are used to monitor up-stream 

production flow rates in the oil and gas industry. The flow measurement method for each field 

is chosen based on many factors, such as the required accuracy, production conditions (e.g. 

stability and water cut), number of owners, and the associated costs. In the following sections, 

some of these flow measurement methods and the related technologies are explained. 
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2.4.1 Flow meters 

Flow meters are widely used in the oil and gas industry and they are the basis of production 

monitoring systems in all oil and gas fields. Although virtual flow metering and allocation 

methods are explained in separate sections below, even those methods are not fully independent 

of actual flow meters. The application of flow meters, as a result, has a long history in the oil 

and gas industry and their measurements are still considered the most accurate production flow 

rate data in the industry (compared to other available methods). There are two general types of 

flow meters: single-phase flow meters and multi-phase flow meters (MPFM). 

 

2.4.1.1 Single-phase flow meters 

Monitoring the flow rate of a multi-phase stream is a complicated practice. On the other hand, 

the technology for single-phase flow measurements has been available for a considerable time 

and is ubiquitous. Hence in the majority of oil and gas fields, the multi-phase flow production 

of wells is first separated into single-phase flow streams of oil, gas, and water, respectively and 

then each stream measured by single-phase flow meters. Although the application of multi-

phase flow meters has recently increased, the measurements of single-phase flow meters are 

still considered more reliable when a high accuracy is needed, such as in fiscal measurement 

and custody transfer. The main types of single-phase flow meter which are currently used in 

the oil and gas industry are differential pressure, ultrasonic, Coriolis, vortex, thermal, positive 

displacement, and turbine. In the following sections, the first three mentioned types are 

explained briefly. 

 

2.4.1.1.1 Differential pressure flow meters 

Flow meters that work based on a differential pressure mechanism have been available for 

more than a century and are still the most widely used flow meters in the industry (Liptak 

1993). They include an element that reduces the cross section of the pipe available to the flow 

and therefore create a pressure difference that can be measured. This pressure difference 

measurement can subsequently provide the flow rate of the phase through the associated 

equations (Baker 2016). Some of the most common types of differential pressure flow meter 

are venture meters, orifice meters, and flow nozzles.  These flow meters are suitable for gas or 
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liquid. Their mechanism is simple and there is no limitation on the pipe size. They, however, 

cause a larger pressure drop compared to some other flow meters such as ultrasonic. Another 

disadvantage is that the fluid density is required in equations, that they cannot measure 

themselves. The fluid density, therefore, should be measured or estimated independent from 

the flow meter. It can potentially introduce extra measurement or estimation errors to the flow 

measurement data. They are also intrusive that means production needs to be stopped while 

they are installed.   

 

2.4.1.1.2 Ultrasonic flowmeters 

The application of ultrasonic flow meters has recently increased in the oil and gas industry 

because of some advantages they have over other types of flow meter. They measure the time 

required for ultrasonic energy pulses to travel through the flowing fluid. The in-line (intrusive) 

type ultrasonic flow meters are accurate enough to be used in both gas and liquid custody 

transfers. They create less pressure drop compared to some other types of flow meter, such as 

differential pressure, and they can be produced in a non-intrusive design. Non-intrusive 

ultrasonic flow meters are typically referred to as the ‘clamp-on’ type. Although they have a 

lower accuracy than the in-line type, their installation does not need a process shut down 

(Liptak 2003). 

 

2.4.1.1.3 Coriolis flow meters 

The technology of Coriolis flow meters is relatively new even compared to ultrasonic flow 

meters. Their main advantages that differentiate them from the other flow meters is that they 

directly measure mass flow rate (while other flow meters normally measure volumetric flow 

rate) and the density of the flowing fluid. These two parameters are measured based the 

principle of the Coriolis force which is produced in their oscillating systems (Padmanabhan 

2012). The flow meter includes vibrating tubes which change their frequency and Coriolis force 

balance when a fluid flows through them. When the fluid enters the flow meter, it is divided 

between two tubes (a strait and a curved tube). These two tubes oscillate with different speeds 

and create sine waves with different frequencies. The time delay between the sine waves (that 

shows the relative speed of the tubes compared to each other) is directly proportional to the 

mass flow rate of the fluid. Although Coriolis flow meters have these inherent unique 



19 

 

advantages, they are more expensive and there are limitations on their operational flow range 

(Liptak 1993). 

 

2.4.1.2 Multi-phase flow meters (MPFM) 

One of the challenges of the oil and gas industry is dealing with the complications of multi-

phase streams. Although combining separators and single-phase flow meters enables operators 

to measure the flow rate of each phase, it is technically and financially not possible to have all 

these facilities for each production well. In some specific cases the available space is limited, 

such as on offshore production platforms, therefore placing even a single test separator is 

sometimes a challenge. In many oil and gas fields, the production of individual wells is 

therefore not measured or measured only occasionally through flow tests. Not only does this 

approach introduce large uncertainties to the available data, but it also increases the reaction 

time of operators to production flow rate changes because of the lack of real-time production 

data. Moreover, there is an increasing problem of ageing reservoirs meaning that there are more 

instabilities in their production caused by water or gas breakthrough. The need for a real time 

production monitoring system is therefore felt more than at any time in the past. As one 

response to this need, MPFMs were brought into use in the late 20th century. MPFMs can 

provide real-time measurements of two or three phase flows. Their technology has developed 

significantly since they were firstly introduced to the industry, leading to a higher measurement 

accuracy, lower prices, less health and safety problems, and a wider range of applicability. 

Some of the advantages of using MPFMs over traditional methods of flow measurement in the 

oil and gas industry are: 

• Providing real-time continuous data of production leading to less uncertainty and faster 

reactions by operators to production changes 

• Occupying less space; a factor which is important, especially in offshore fields 

• Enabling the operators to monitor flowrates remotely 

• Facilitating the monitoring of individual wells 

On the other hand, there are still some difficulties with the cost of MPFMs which can be up to 

hundreds of thousands of dollars that should be added to the cost of their regular calibration 

and maintenance. Categorising MPFM types is not as easy as single-phase flow meters since 

an MPFM includes different units which are responsible for the measurement of different 
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characteristics of the flow, such as phase densities, phase velocities, phase ratios, and total mass 

flow rate. Each flow meter, as a result, is a combination of different technologies and employs 

a variety of methods to obtain phase flow rates.  Detailed information about the technology of 

MPFMs and their measurement methods has been presented by Falcone, Hewitt and Alimonti 

(2009), Falcone et al. (2002), Corneliussen et al. (2005), and Thorn, Johansen and Hjertaker 

(2012). 

 

2.4.2 Virtual flow metering 

Virtual flow meters (VFM), as it is apparent from their name, are not physical flow meters. 

They are software packages that estimate flow rates based on the data they receive as their 

input that comes from the production facilities. The required input data can vary from a VFM 

to another but in many cases, it includes temperature, pressure, fluid properties, and 

characteristics of the production facilities such as choke opening. Despite the recent advances 

in developing more accurate VFMs by employing data science and machine learning methods 

(AL-Qutami et al. 2018; Andrianov 2018; Cramer et al. 2011; Shoeibi Omrani et al. 2018), 

VFMs are still not considered a replacement for physical flow meters. In most cases they are 

employed as a backup for physical flow meters or used where no flow meter is available.  

 

2.4.3 Allocation 

As mentioned above, single-phase flow meters are still widely used in the oil and gas industry. 

These flow meters need to be installed after the separation unit. Since it is financially not 

possible to have a separator for each individual well, the production of several wells is 

transferred to the same separation unit and then the total flow rates of oil, water and gas are 

measured by single-phase flow meters. It means these flow meters do not provide the flow rates 

of individual wells, but only provide the total combined production of all of them. Operators, 

therefore, use an extra separator other than the ones in the separation unit to measure the 

production of individual wells periodically. This separator is called a test separator and the 

periodic flow measurement exercise is called a flow test, a well test, or a daily test. The 

continuous data of total production and the non-continuous data of flow tests are subsequently 

combined in allocation calculations to estimate the production of each individual well over the 
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time between two flow tests. Different methods of allocation calculations can be found in the 

literature. Some of these methods are proportional allocation, uncertainty-based allocation, 

equity-based allocation, and allocation by process modelling (Energy Institute 2012). In the 

following sections, proportional and uncertainty-based methods that are the most common 

methods of allocation in the industry are explained. 

 

2.4.3.1 Proportional allocation 

Proportional allocation is a very common and easy to understand method. In this method, the 

total production is allocated to different producers in proportion to their allocation factors. 

Allocation factors are estimations of the contribution of each producer based on periodic flow 

tests or the measurements of upstream flow meters.  

𝐴𝐹𝑘 =
𝐵𝑘

∑ 𝐵𝑖
𝑚
𝑖=1

   1 ≤ 𝑘 ≤ 𝑚    (2.1)   

  

𝑄𝑘 = 𝐴𝐹𝑘. 𝑄 (2.2) 

  

where 𝐴𝐹𝑘 denotes the allocation factor for producer 𝑘, 𝐵𝑘 is the quantity (i.e. flow rate) 

measured or estimated for producer 𝑘, 𝑚 shows the total number of producers, 𝑄 represents 

the quantity that should be allocated, and 𝑄𝑘 is the quantity allocated to producer 𝑘. 

This method of allocation has been used in this research for hydrocarbon accounting 

calculations in Chapters 3 and 4. 

 

2.4.3.2 Uncertainty-based allocation 

Uncertainty-based allocation (UBA) is a more complicated method compared to the 

proportional method. This method considers errors in the system for allocating quantities. 

Therefore, it is considered a suitable method that provides equitable results where there is a 

significant difference between the accuracy of data coming from different sources. UBA gives 

more weight to the data with a higher accuracy. There are different approaches and 

formulations for UBA. As an example, Energy Institute (2012) has presented the following 

equations for UBA where 𝑚 number of sources are contributing to the total production.  
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𝐼 = 𝑄 − ∑ 𝐵𝑖

𝑚

𝑖=1

 
(2.3)   

𝛽𝑘 =
𝑈𝑘

2

∑ 𝑈𝑖
2𝑚

𝑖=1

                1 ≤ 𝑘 ≤ 𝑚 
(2.4)   

  

𝑄𝑘 = 𝐵𝑘 + 𝛽𝑘 × 𝐼 (2.5)   

 

where 𝐼 stands for the total imbalance in the system, 𝑄 denotes the quantity (i.e. total 

production) that should be allocated, 𝐵𝑘 is the quantity measured or estimated for producer 𝑘, 

𝑚 shows the total number of producers, 𝛽𝑘 represents the calculated weight for producer 𝑘, 𝑄𝑘 

is the quantity allocated to producer 𝑘 , 𝑈𝑘 is the absolute uncertainty of the estimated or 

measured quantity for producer 𝑘. 𝑈𝑘 is therefore equal to the error specification of the flow 

meter used on producer 𝑘 or it is the error of the estimation method.  

 

2.5 Flow measurement uncertainties and errors 

Uncertainties and errors are inevitably a part of observed data. Observation methods, employed 

technologies, and even human error affect the scale of uncertainties. In the oil and gas industry, 

the uncertainty in the observed data could potentially be high. Oil and gas reservoirs are 

complicated heterogeneous systems of multi-phase flows under high pressure. Reservoir 

production can include up to four phases (Oil, gas, water, and sand) and the flow rates can have 

large fluctuations. Therefore, measuring the multi-phase flow production of reservoirs under 

these circumstances can be quite difficult. In addition to the technical difficulty, the required 

capital (CAPEX) cost for installing flow meters that can work under these conditions is high 

and their regular calibration and maintenance (OPEX) is difficult and costly. The capital and 

operating cost of flow meters are the financial constraints that sometimes prevent operators 

from developing a measurement system that can monitor individual wells. All of these factors 

create a vast uncertainty in the observed flow measurement data from oil and gas reservoirs. 

The new improvements in the knowledge of reservoir management have made the importance 

of accurate flow measurement in the oil and gas industry clearer. Operators normally undertake 

regular production tests and the application of multi-phase flow meters in the oil and gas 

industry has increased. However, even where the new technologies and methods of flow 

measurement are employed, flow measurement errors are unavoidably a part of the collected 
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data. Flow measurement errors are typically divided into two categories: random errors and 

systematic errors. 

 

2.5.1 Random errors 

Random errors occur in both directions (positive and negative) and they shift the value of the 

measurement by a random amount. The causes of random errors are normally unpredictable 

and sometimes unknown. They can be caused by the environment, flow meter limitations or 

many other factors. Since it is currently impossible to control them all, random errors are 

inevitably a part of any measurement data. Therefore, if the same flow rate is measured several 

times, different values for it are obtained. In contrast to systematic errors, random errors can 

be analysed statistically. They can be explained mathematically in terms of their mean (Eq. 

2.6) and standard deviation (Eq. 2.7). 

𝑥 =
1

𝑛
(∑ 𝑥𝑖

𝑛

𝑖=1

)  
(2.6) 

𝜎 = √
∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1

𝑛
  

(2.7) 

 

where, 𝑥 is the mean of all measurements, 𝑥𝑖 refers to the value of the i-th measurement, 𝑛 

denotes the total number of measurements, and 𝜎 refers to the standard deviation of the 

measurement values. 

 In most cases, random errors have a Gaussian distribution (Figure 2.4). In Figure 2.4, 𝑥 is the 

mean of the population and 𝜎 is its standard deviation. 
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Figure 2.4: The Gaussian distribution. Around 68% of the measurements are within one 

standard deviation from the mean of the measurements (Lyman and Longnecker 1988). 

 

As illustrated in Figure 2.4, the Gaussian normal distribution has a symmetrical plot and the 

axis of the symmetry is where the mean is located. In other words, the distribution of the errors 

on both sides of the mean is so that if they are averaged, the average value will be equal to the 

mean. This average value is often close to the true (actual) value of the measured quantity. 

Therefore, although performing a measurement without any random errors is not possible, the 

measured error for any quantity can be reduced by repeating the measurement and averaging 

the values. However, performing several measurements for the same quantity is not possible in 

many cases in the oil and gas industry due to the dynamic nature of the processes in this 

industry. Another method that can decrease random errors is through increasing the precision 

of flow meters (Tombs et al. 2006). Introducing new technologies of flow measurement by 

different companies has resulted in the development of more precise flow meters with smaller 

error specifications. However, installing these new meters normally entails a high capital cost. 

Therefore, it is important to gain a full understanding of the effect of random errors on the oil 

and gas industry to be able to decide if paying such a capital cost is worthwhile.    
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2.5.2 Systematic errors 

Systematic errors normally occur just in one direction. They often have a constant value, or 

their value is a constant proportion of the quantity being measured. In these terms, systematic 

errors are divided into two general categories:  

Zero setting error (offset error): when the quantity being measured is zero but the measurement 

instrument shows another value except zero. This error can be reduced or eliminated by 

calibrating the meter. However, environmental factors can cause meters to go out of calibration 

over time (Liptak 1993). Therefore, meters need to be recalibrated regularly to prevent this 

type of error in the recorded data.  

Multiplier error (scale factor error): this error occurs when the meter reads a larger or smaller 

value than the actual quantity values and the measure value is proportional to the actual value. 

In other words, if a constant number (multiplier) is multiplied in the measured values, the actual 

values are obtained. The changes in the conditions of the environment in which the meter is 

operating can cause such an error. For instance, when the temperature increases, the length of 

a metal metre ruler is increased as a result of its material expansion. Therefore, the ruler will 

have a multiplier error in measuring the length and reads any measured length smaller than 

what it actually is. Meters, therefore, need to be used under the conditions (e.g. pressure and 

temperature) which are recommended by the manufacturer.  

Although systematic errors typically have a pattern, detecting them is quite difficult. Moreover, 

systematic errors have a non-zero mean. Therefore, in contrast to random errors, they cannot 

be reduced by averaging all the measurements. Despite all of these difficulties, however, there 

are  some approaches that can help minimise systematic errors. Careful and regular calibration 

and maintenance of flow meters, accepting their limitations and using them under the 

conditions suggested by the manufacturers are some of these approaches. In addition, operators 

need to be trained in their use by the manufacturers. Human error is categorised under 

systematic errors in some references. The accuracy of the data recorded can be increased if the 

operators of the flow meters are well trained.  
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2.5.3 Possible states of errors for a flow meter 

In terms of systematic and random flow measurement errors, a flow meter can have different 

states. Figure 2.5 illustrates all of these states.  

 

 

Figure 2.5: All possible states of a flow meter in terms of its precision and trueness. 

 

Figure 2.5 has two axes; precision as the horizontal axis and trueness the vertical, respectively. 

In technical terms, when the precision of a meter increases, random errors in the measurements 

decrease. Recorded data of a precise meter have a good repeatability. It means if the 

measurement is repeated several times for the same quantity using the same meter, the obtained 

values are close to each other. In the opposite case, if the measurement is repeated using a 

meter with a lower precision, the recorded data will be more divergent.  As shown in the right-

hand side of Figure 2.5, the data points are dense and close to each other while in the left-hand 

side of the figure the data points are scattered due to the low precision. As the figure suggests, 

however, a high precision does not necessarily mean that the average of the recorded data 

represents the true value of the measured quantity. In low trueness, the average of the 

measurements is not close to the actual value of the quantity even if the meter is precise. In 

other words, systematic errors in the data deviate the average of measurements from the actual 
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value. Trueness is therefore defined as the qualitative estimate of systematic errors in the 

measurements from a flow meter. Another term used frequently in the technical literature is 

‘accuracy’. Accuracy is the estimate of both random and systematic errors in a set of recorded 

data. Therefore, to improve the accuracy of a flow meter both precision and trueness of the 

flow meter need to be increased. 

In terms of precision and trueness, a flow meter can have a state in the range that has been 

shown in Figure 2.5. The state of the flow meter (or the accuracy of any measured or estimated 

data set) can be one of the four cases that have been written bellow, as well as any other state 

between them. 

1. High precision, high trueness (top right state in Figure 2.5) 

2. High precision, low trueness (down right state in Figure 2.5) 

3. Low precision, high trueness (top left state in Figure 2.5) 

4. Low precision, low trueness (down left state in Figure 2.5) 

 

 

 



28 

 

Chapter 3: Uncertainty analysis in 

allocation and hydrocarbon accounting* 

 

Although the application of multi-phase flow meters has recently increased, the production of 

individual wells in many fields is still monitored by occasional flow tests using test separators, 

as mentioned in Chapter 2. In the absence of flow measurement data during the time interval 

between two consecutive flow tests, the flow rates of wells are typically estimated using 

allocation techniques. Since the flow rates do not remain the same over the period between the 

tests, however, there is typically a large uncertainty associated with the allocated values. In this 

chapter, the effect of the frequency of flow tests on the estimated total production of wells, 

allocation, and hydrocarbon accounting has been investigated. The frequency of flow tests 

plays an important role in reducing or increasing the uncertainties of the estimated production 

data. Having a correct understanding of the potential effects of these uncertainties on 

hydrocarbon accounting is necessary for developing any method of mitigating them and 

increasing the economic recovery of oil and gas. The contents of this chapter, therefore, are the 

fundamentals for Chapter 4 where an approach based on an artificial neural network has been 

presented to mitigate the uncertainties of the production data that is estimated through 

undertaking flow tests.  

 
* The contents of this chapter have been extracted from the following paper: 

 

Sadri, M. and Shariatipour, S. (2019) 'Mitigating allocation and hydrocarbon accounting uncertainty using more 

frequent flow test data'. Journal of Energy Resources Technology, 142 (4). 

 

The candidate developed the methodology, undertook the required simulations, wrote the Matlab codes, analysed 

the results, and prepared the article. Seyed M. Shariatipour supervised the research. 
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3.1 Introduction 

In many oil and gas fields, multi-phase production from different wells is commingled and then 

the total flow is transferred to a separation unit, where the individual phase flow rates are 

subsequently measured (Figure 3.1). The fiscal meters that measure these flow rates provide 

continuous data of the total field production which is used for hydrocarbon accounting 

purposes. However, in such fields, there is no continuous data available for individual well 

flow rates since their production is not metered separately. The only data of individual wells 

which is available in these cases is the result of occasional flow tests (sometimes referred to as 

‘well tests’ or ‘daily tests’). During a flow test, the production of a single well is guided into a 

test separator for a short time (typically a few hours) before it is mixed with the total production. 

The phase flow rates of the well are subsequently measured over the test time by single-phase 

flow meters at the individual outputs of the test separator. The test is normally repeated after a 

certain time interval for all wells in a field. The production data for individual wells is 

consequently intermittent and there is typically a gap of a several weeks to a few months 

between the next set of data points depending on the decision of the operators. Although the 

installation of multi-phase flow meters (MPFM) for individual wells has become more popular 

recently (Falcone, Hewitt and Alimonti 2009; Falcone et al. 2002; Theuveny and Mehdizadeh 

2002), there are still many fields producing under the same circumstances as outlined. In such 

fields, the production data of an individual well is estimated by employing the results of the 

intermittent flow tests and the continuous measurements of the fiscal meters in a process which 

is called allocation or back allocation (Oil & Gas Authority 2015). The term ’allocation’ is also 

used in other exercises in the oil and gas industry, such as gas lifting (Alarcón, Torres and 

Gómez 2002; Camponogara and Nakashima 2006; Nishikiori et al. 1995; Sukarno et al. 2009) 

or water injection (Azamipour et al. 2017). In this thesis, however, the term refers to the 

exercise defined above.  
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Figure 3.1: Schematic of the flow measurement facilities in an oil and gas field. 

 

Different methods have been presented in the literature or employed in the industry for 

performing allocation calculations (Acuna 2016; Carpenter 2017; Cramer et al. 2011; Energy 

Institute 2012; Pobitzer, Skålvik and Bjørk 2016; Stockton and Allan 2012). The purpose of 

all of these methods is to estimate the production of a single well using the available data. A 

common approach which is widely used in the industry is to calculate allocation factors once 

flow tests are undertaken. The allocation factor of a well is the proportion of the total 

(commingled) flow that the well is producing. These factors are used to estimate the production 

of each well during the time between two tests and then are updated when the new test results 

are available. Therefore, in this approach, it is assumed that the allocation factors remain the 

same as the test time over the entire time taken to the next test. Since the duration of the test is 

just a few hours (e.g. six hours), and in many cases the flow tests are undertaken monthly, the 

allocation factors which have been calculated based on the data taken in less than 1% of time 

are assumed to be constant for the remaining 99% of the production period (Cramer et al. 2011). 

Production rate fluctuations, the natural decline of production, water or gas breakthrough, and 

many other similar phenomena in the reservoir, well, or production facilities, however, can 

change the allocation factors over time. Therefore, using constant allocation factors for a 

relatively long period of time such as a month seems to cause a large uncertainty in the 

estimated production data of individual wells. A number of researchers have therefore tried to 

find solutions for mitigating the allocation uncertainty. Cramer et al. (2011) suggested 

performing daily allocations using the estimations of virtual flow meters instead of 
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discontinuous allocations based on flow tests. Although the performance of virtual flow meters 

has improved over time, their accuracy under all condition ranges is still not the same as actual 

flow metering facilities. Kaiser (2014) presented two different allocation methods using decline 

curve analysis and mixing ratios. Neither of the methods need flow test data. A thorough 

comparison of their accuracy with the accuracy of the traditional allocation method, however, 

has not been presented. Pobitzer, Skålvik and Bjørk (2016) proposed an algorithm that helps 

choosing the right meter and its place in the allocation process. Therefore, their focus was on 

optimising the allocation system setup for reducing the allocation uncertainty. Shoeibi Omrani 

et al. (2018) employed a machine learning technique to improve the accuracy of back allocation 

and virtual flow metering. They used pressure, temperature, choke opening, and the number of 

wells in the field as the inputs to their artificial neural network. Although the machine learning 

method looks promising in reducing the error, its inputs must be chosen carefully. Pressure and 

temperature are related to the flow rate but they might not be the best inputs to represent the 

fluctuations in the production. In this chapter, we have employed statistical parameters to 

quantify the characteristics of flow rate fluctuations. The resulting values can therefore be used 

as inputs to machine learning techniques (as it is shown in Chapter 4). 

Coinciding with recent developments in multi-phase flow monitoring technologies (Kouba 

1998; Lindsay et al. 2020; Liu et al. 2001; Teodorczyk, Karim and Tawfiq 1988), some 

researchers such as Theuveny and Mehdizadeh (2002) or Falcone, Hewitt and Alimonti (2009) 

suggested that the application of MPFMs can reduce the uncertainty in production data. 

Although the improvements in the accuracy of MPFMs make them one of the main potential 

alternatives to the traditional allocation method, the high cost of their application still remains 

a challenge in replacing test separators with them. It requires a considerable capital cost to 

install MPFMs on each individual well and also an operating cost for their regular maintenance 

and calibration. Moreover, the wells need to be shut during the installation process if the 

MPFMs are intrusive. Shutting the wells can cost the operators up to millions of dollars each 

day. All of these factors show the importance of a careful consideration of the cost of the 

uncertainties of the traditional allocation method and comparing it against the cost of using 

MPFMs. One aim of this chapter is to present an approach to estimate the potential cost of 

uncertainties of the traditional allocation method based on some statistical analyses of the test 

data.  

Estimated production data is used for different purposes in the oil and gas industry. Therefore, 

not only can the uncertainty affect the allocation and hydrocarbon accounting calculations and 
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the income of all involving parties, but also the process of reservoir management and the actual 

performance of the reservoir. Sadri et al. (2019) showed how the uncertainty in the flow 

measurement data of individual wells can affect a history matching practice and cause 

uncertainty in reservoir models (please see Chapter 5 for more details). The reservoir model is 

used in the decision-making process for the actual reservoir. Therefore, the production data 

uncertainty can potentially influence the performance of the reservoir and reduce its economic 

recovery indirectly. Marshall et al. (2019) investigated the effect of flow measurement 

uncertainty on the estimated recovery factor of reservoirs. They concluded that the uncertainty 

in flow measurement data can lead to incorrect estimated values for the recovery factor (please 

see Chapter 5 for more details). Cramer (2018) focussed on the cumulative effect of the 

uncertainties over the whole time of production and concluded that the commercial penalty of 

uncertainties over a long time can be considerable. These publications suggest that allocation 

accuracy plays an important role in reservoir management which cannot be ignored. There is a 

plethora of publications that show the applications of production data in different parts of 

reservoir management and exploitation (Hou, Zhang and Guo 2019; Liu et al. 2019; Sadri, 

Mahdiyar and Mohsenipour 2019; Sun and Ayala 2019; Zheng et al. 2018). The uncertainty in 

the production data can also affect all these practices. 

Despite the indirect and subtle effect of flow measurement and allocation uncertainty on oil 

and gas recovery and reservoir management, its effect on hydrocarbon accounting is direct and 

clear, especially where there are several owners whose wells contribute to the total commingled 

production. In such a case, for every single barrel of oil which is allocated incorrectly, the 

equivalent amount of income goes to a wrong party. The allocation calculations should 

therefore be undertaken as carefully as possible since the cumulative effect of any small error 

over time can cost the owners a huge amount of income. When considering the importance of 

the allocation process in hydrocarbon accounting, oil and gas companies normally have specific 

standards and guidelines for how to undertake it. These standards should also be in line with 

government regulations. The UK Energy Institute (2012) has published some guidelines for 

the allocation of oil and gas streams which mainly presents different methods of allocation 

calculations. This document has been suggested as a reference by the British Oil and Gas 

Authority (Guidance Notes for Petroleum Measurement 2015).  The American Petroleum 

Institute (2011) has explained operating guidelines for allocation measurement systems in the 

oil and gas industry including suggestions on how to perform metering, calibration, 

calculations, and proving. These guidelines and recommendations can help operators to 
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mitigate the uncertainty in obtaining production data and undertaking hydrocarbon accounting 

calculations. Despite the existence of these guidelines, however, there still remain considerable 

uncertainties in the allocation processes in some cases. One significant source of uncertainty is 

the lack of continuously measured production data of individual wells between two consecutive 

flow tests, as discussed before.  

In this chapter, the effect of increasing the frequency of flow tests for individual wells on 

reducing the uncertainty of the allocation calculations has been investigated. In the following 

section, the methodology and the details of the calculations have been explained.  

 

3.2 Methodology 

The actual production data of three oil wells, measured by MPFMs, has been employed in this 

research (Well A, B, and C in Figure 3.4 and Table 3.1). In the first phase of the research study, 

the data has been used to calculate and compare the actual total production (ATP) of the wells 

based on the MPFM data and their estimated total production (ETP) based on occasional flow 

tests (Eq. 3.2 and 3.3). The error in estimations has subsequently been calculated and reported. 

In this phase, no allocation calculations have been undertaken since the data of a whole field is 

needed for such calculations. For each well, the total time of the investigation has been assumed 

to be the time that its production data is available and the estimated cumulative production of 

each well over the whole investigation time has been referred to as the estimated total 

production (ETP) of the well.  

 

Table 3.1: Statistics of the well data 

Well 

Name 

Time 

(days) 

Standard deviation 

(Eq. 2.7) 

Relative standard 

deviation* (Eq. 3.5) 

Arithmetic mean 

(STB/day) 

 

Well A 20 105.72 0.007444695 14200.86 

Well B 60 1169.55 0.060131618 17229.19 

Well C 150 25104.19 0.31186466 8336.77 

* The reported values for Wells B and C are the average monthly relative standard deviation. 

The value for Well A is based on its available production data in 20 days. 
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In the oil and gas industry, the cumulative production for each time interval is considered to be 

equivalent to the production flow rate multiplied by the length of the production time interval 

(Eq. 3.1). When there are multiple time intervals, the cumulative production for the total time 

(i.e. ETP) is calculated based on Eq. 3.2. Production flow rate, however, is not constant over 

time. Therefore, assuming a constant production flow rate over a long time interval (e.g. a 

month) causes uncertainties in the estimated total production. The assumption is more 

acceptable when the time interval is shorter. In other words, choosing shorter time intervals 

means a more accurate ETP. ETP is theoretically in its most accurate condition when the time 

intervals approach zero, as shown in Eq. 3.3. Under such a condition, ETP has the same value 

as the Actual Total Production (ATP) which is equivalent to the area under the production flow 

rate plot when it is sketched as a function of time (Figure 3.2). 

 

𝐶𝑃∆𝑡𝑖+1
≈ 𝑄𝑡𝑖

(𝑡𝑖+1 − 𝑡𝑖)             (3.1) 

𝐸𝑇𝑃𝑡𝑛
= ∑ 𝑄𝑡𝑖

(𝑡𝑖+1 − 𝑡𝑖)

𝑛−1

𝑖=0

= ∑ 𝑄𝑡𝑖
∆𝑡𝑖

𝑛−1

𝑖=0

≈ 𝐴𝑇𝑃𝑡𝑛
 

            (3.2) 

𝐴𝑇𝑃𝑡𝑛
= lim

∆𝑡𝑖→0
∑ 𝑄𝑡𝑖

∆𝑡𝑖

𝑛−1

𝑖=0

= ∫ 𝑄𝑑𝑡

𝑡𝑛

𝑡0

 

(3.3) 

 

 

In Eq. 3.1 to 3.3, t is time, 𝑡𝑛 is the total time of the investigation, 𝐶𝑃∆𝑡𝑖+1
 is the cumulative 

production over the (𝑖 + 1)𝑡ℎ time interval, 𝑄𝑡𝑖
 is the production flow rate at the time 𝑡𝑖, 𝐸𝑇𝑃 

is the estimated total production, and 𝐴𝑇𝑃 is the actual total production. The values of all the 

parameters in Eq. 3.1 to 3.3 must be calculated under standard conditions in the oil and gas 

industry (i.e. pressure and temperature equal to 101 KPa and 288.7K, respectively) to avoid 

any effect of pressure or temperature change on the results of equations.   
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Figure 3.2: Estimated Total Production (ETP) and Actual Total Production (ATP). The area 

between the dashed line and the solid line shows their difference. 

 

In practice, the time between two flow tests is the time interval in Eq. 3.2. It is the shortest time 

interval in which the production data for individual wells is available. Therefore, the most 

accurate ETP is obtained when production data for individual wells is recorded continuously, 

since in that case the time between two consecutive measurements approaches zero (Eq. 3.3). 

Although it is not always possible to obtain continuous data (e.g. installing MPFMs for each 

well) in practice, shortening the time interval between flow tests may be effective in decreasing 

ETP errors. In this research, first, the ETPs of the three aforementioned wells (Well A, B, and 

C) have been calculated using Eq. 3.2 for a case when one flow test per month is undertaken, 

that is common practice in the oil and gas industry. The results have then been compared to the 

respective ATPs based on the available MPFM data to determine the error in the ETPs based 

on Eq. 3.4:  

𝐸𝐸𝑇𝑃 =
𝐸𝑇𝑃 − 𝐴𝑇𝑃

𝐴𝑇𝑃
× 100                                                          (3.4) 

where 𝐸𝐸𝑇𝑃 denotes the estimated total production error, ETP stands for the estimated total 

production (based on flow test data), and ATP is the actual total production (based on MPFM 

data).  
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In the next step, for the wells having an ETP error of over 2%, the number of flow tests per 

month has been increased to two, three, and four and the observed trend of decreasing the error 

for each well has subsequently been presented. 

The ETP of individual wells is not just calculated based on the flow test measurements. In the 

oil and gas industry, flow test results are modified in the allocation process. Therefore, to have 

realistic research results, in the second phase of the research study in this chapter, the 

production results of a simulated oil field with 36 production wells were studied to investigate 

the effect of increasing the number of flow tests per month on allocation error and hydrocarbon 

accounting. The same fluctuations as the ones in the data sets of the three actual wells (Wells 

A, B, and C) were applied to the production results of the Schlumberger ECLIPSE Simulator 

(Schlumberger Information Systems) by employing Eq. 3.7 and using the relative standard 

deviation (RSD) of the real data. Therefore, three respective cases (Case A, B, and C) were 

created and subsequently used in the study. A relative standard deviation (RSD) (Eq. 3.5) was 

used instead of a standard deviation to quantify the dispersion of the data points because despite 

standard deviation, RSD is independent of the average production rate. In addition, the RSDs 

were calculated based on monthly time intervals to reduce the effect of production decline on 

their value. As a result, for Well B and C the reported RSDs in this work are their average 

monthly values. It should be mentioned that the effect of production decline over time on the 

value of RSDs cannot be completely eliminated since the exact trend of production decline 

cannot be detected in short periods of time. When the production period is short, such as a 

month, however, the production decline is normally small and negligible compared to the 

production fluctuations. Therefore, choosing short time intervals as the basis of the calculations 

can minimise this potential error. Combining the simulator outputs and the random numbers 

generated by a Matlab (The Mathworks Inc.) code based on Eq. 3.7 resulted in the reference 

production data for the allocation and hydrocarbon accounting calculations. 

𝑅𝑆𝐷 =
𝜎

𝑥
 

 

(3.5)   

𝐃𝐅 =    
𝑅𝑆𝐷

𝜎𝐑𝐍𝐃
(𝐑𝐍𝐃 −

1

2
) 

 

(3.6)   



37 

 

𝐃𝐫𝐞𝐟 = 𝐃𝐬𝐢𝐦. (1 + 𝐃𝐅) (3.7) 

In Eq. 3.5 to 3.7, 𝜎 denotes standard deviation, n is the number of data points, 𝑥𝑖 represents the 

i-th data point, 𝑥 is the average of all data points, RND denotes the vector of random numbers 

evenly distributed between zero and one, 𝜎𝐑𝐍𝐃 represents the standard deviation of the vector 

of random numbers, RSD is the relative standard deviation of the actual production data, DF 

stands for the vector of dispersion factors, 𝐃𝐬𝐢𝐦 is the vector of the production data from the 

simulator, and 𝐃𝐫𝐞𝐟 denotes the vector of reference production data which has been used in the 

allocation analysis. 

The allocation and hydrocarbon accounting calculations were subsequently undertaken using 

the Matlab code. The gap between two consecutive flow tests was considered to be a month 

and the length of each test was assumed to be six hours. The test flow rate for each well was 

considered to be the arithmetic mean of the available data points during the test time (Eq. 3.8). 

Allocation factors have been calculated using the test results and the accurate total flow rate of 

the entire field (which is equivalent to the measurements of the fiscal meters in an actual field) 

based on Eq. 3.9. Allocation factors which were calculated based on a flow test remained the 

same until the next flow test when they were updated with new values. ETP and allocation 

error for each well have been calculated according to Eq. 3.10 and 3.11, respectively. First, the 

average flow rate of each well during the test time is calculated using Eq. 3.8. The results are 

then used in Eq. 3.9 to determine the allocation factors for the wells. In Eq. 3.10, ETP of each 

well is estimated by employing its allocation factor in addition to the total production of the 

field. The allocation errors for the wells are subsequently calculated by Eq. 3.11. 

𝑄 =
∑ 𝑄𝑖

𝑛
𝑖=1

𝑛
 (3.8) 

𝐴𝐹𝑘 =
𝑄𝑘

∑ 𝑄𝑖
𝑚
𝑖=1

 (3.9)  

𝐸𝑇𝑃𝑘 = 𝐴𝐹𝑘. 𝑇𝑃𝑓𝑖𝑒𝑙𝑑 (3.10) 

𝐴𝐸𝑘% = 100
∑ |𝐸𝑇𝑃𝑘

𝑡𝑒𝑠𝑡 − 𝐸𝑇𝑃𝑘
𝑟𝑒𝑓

|𝑚
𝑘=1

2 ∑ 𝐸𝑇𝑃𝑘
𝑟𝑒𝑓𝑚

𝑘=1

 (3.11) 

In Eq. 3.8 to 3.11, 𝑄 is the average flow rate of the well during the test time, 𝑄𝑖 represents the 

i-th measured flow rate data point during the test, n denotes the total number of the available 

measurements of the test, 𝐴𝐹𝑘 stands for allocation factor for well k, m is the total number of 
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contributing wells, 𝐸𝑇𝑃𝑘 denotes the estimated total production of well k, 𝑇𝑃𝑓𝑖𝑒𝑙𝑑 is total 

production of the whole field (i.e. total production of all contributing sources which is 

measured by fiscal meters), 𝐴𝐸𝑘% shows the allocation error for well k, and test and ref 

superscripts denote the test results and reference data, respectively. 

Figure 3.3 illustrates the flow chart of the entire process of calculations undertaken by the 

Matlab code and the reservoir simulator. In this process, at the first step, the RSD (representing 

the production fluctuations) and the number of flow tests in each month for the well are given 

to the Matlab code as inputs. The code then generates a set of random numbers and uses them 

along with the production results coming from the reservoir simulator to create synthetic flow 

rate data with the same RSD as the inputs. Allocation calculations are then undertaken and 

allocation errors for the synthetic data are calculated. The generation of synthetic data and 

allocation calculations are repeated 100 times. The results are subsequently averaged and the 

cost of average errors is estimated. 

The aim of the allocation process is to determine the contribution of each well to the total field 

production. Therefore, the allocation error in this thesis is defined as the fraction of the total 

field production which has been allocated to wrong wells (Eq. 3.11). Each barrel of oil which 

is allocated incorrectly affects the ETP of two wells: the well that truly produces it and the well 

that incorrectly receives it. Therefore, each single percentage of allocation error causes a two-

percentage average error in the ETP of the individual wells. 

The resulting errors after undertaking the calculations can properly show the uncertainty in the 

allocation process for the reference production data. There is no guarantee, however, that the 

same results are obtained for the same field and the same RSDs if the calculations are repeated 

with a different pattern of production flow rate fluctuations. Although an RSD shows how 

scattered the data is, it does not give any information about the value of the individual data 

points. Therefore, the reference production data can take different patterns under the same RSD 

which can result in different calculated allocation errors. To resolve this problem, the allocation 

calculations for the same RSDs were repeated 100 times and the range and arithmetic mean of 

the errors were obtained and reported. For each new calculation, the Matlab code generated a 

new set of random numbers but with the same RSD to make a new pattern in the well flow rate 

fluctuations. Sensitivity analysis on the number of repetitions was undertaken to make sure that 

100 repetitions are enough to guarantee the reproducibility of the average results. 
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Figure 3.3: The flow chart of the process of calculations in the Matlab code and the reservoir 

simulator. 

 

After undertaking the allocation calculations for one flow test per month, all the calculations 

were repeated for two, three, and four tests per month, respectively. The average allocation 

errors have been calculated and compared for all the cases. The results show how the frequency 
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of the flow tests can affect the error in allocation calculations. For some cases, the equivalent 

total cost of allocation errors has also been reported (each standard barrel of oil has been 

considered to have a value of 60$). Finally, the change of the ETP errors of individual wells 

for Case C, which has had the greatest RSD, has been analysed when the number of flow tests 

per month has been increased from one to four. The results have been presented in the next 

section.  

 

3.3 Results and discussion 

As mentioned in the Methodology section, the measured flow rates data of three actual wells 

have been analysed in this work. The extent of the fluctuations (i.e. relative standard deviations) 

in these three data sets is significantly different. The ranges of fluctuations in the real data have 

been used to generate the ranges of fluctuations in the synthetic simulated data in this study.  

Figure 3.4 shows the flow data of the three actual wells (Couput 2015; Couput, Laiani and 

Richon 2017; Drysdale and Stockton 2015) and Table 3.1 (presented in Section 3.2) includes 

the values of some of their statistical parameters. The data have been measured by MPFMs and 

the gap between the available data points varies between 20 minutes to 18 hours. 

 The time interval between undertaking two flow tests with the test separator is different in 

different fields. Companies decide about the regularity of the tests based on different 

operational factors involved in the hydrocarbon production of the fields under their control. 

Therefore, different operators may choose to do the tests in different time intervals. It is 

common, however, for many companies in the oil and gas industry to test individual well flow 

rates at monthly intervals. One reason for this is that many companies undertake calculations 

related to hydrocarbon production (hydrocarbon accounting, allocation, tax payment) and 

prepare reports (for internal use, government authorities or publication on their websites) on a 

monthly basis. To investigate how accurate the results of intermittent flow tests can represent 

the average production of each well during the gap between two tests, the flow measurement 

data of the three oil wells shown in Table 3.1 was studied.   

Figure 3.4 shows the oil production plots against time for Wells A, B, and C. The solid lines 

show the well production based on the measurements of MPFMs and the dashed lines illustrate 

the values of monthly flow tests. The values for the flow tests are the average of the available 

MPFM data points for a duration of 6 hours.  
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Figure 3.4: Comparison between MPFM and Flow test data for (a) Well A, (b) Well B, and (c) 

Well C 
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Figure 3.4 clearly shows the difference between the measurements of the MPFMs and the flow 

tests. In most time periods for the three wells, as it can be seen in Figure 3.4, the values of flow 

tests are smaller than the MPFM measurements. This is completely random and any other 

pattern can happen in other cases. The total production for each well based on the MPFM and 

flow test data has been calculated and compared. The results have been shown in Table 3.2. 

 

Table 3.2: Production estimations for Wells A, B, and C 

Well name Period of 

production 

(days) 

Estimated total production (ETP) 

based on 

MPFM 

data (STB) 

based on 

monthly 

flow test 

data (STB) 

Difference 

(STB) 

Difference 

($) 

ETP error 

(Eq. 3.4) 

 

Well A 20 284205 281135 3070 184200 -1.08 

Well B 60 1022175 958974 63201 3792060 -6.18 

Well C 150 3799238 2085391 1713847 102830820 -45.11 

 

 

The RSD of Well C is the largest in Table 3.1, suggesting that the measured data is scattered 

over a larger range compared to the other two wells. Values in Table 3.1 and 3.2 show that a 

greater RSD has caused an increase in the absolute value of ETP difference in the studied cases. 

The MPFM data has been assumed to be the actual production data of the wells since it is the 

most accurate data which is available in this work. The last column of Table 3.2 shows the 

errors in estimating the total production for the wells based on the monthly flow tests. These 

errors are -1%, -6%, and -45% for Wells A, B, and C, respectively, which is equivalent to 0.2M 

(Million), 3.8M, and 102.8M dollars’ worth of oil, respectively. The absolute values of the 

estimation errors for the RSDs of the three wells have been presented in Figure 3.5.  
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Figure 3.5: Absolute Estimated Total Production (ETP) error for Wells A, B, and C as a 

function of the Relative Standard Deviation (RSD) of their production data 

 

The absolute ETP error has significantly increased when the relative standard deviation (RSD) 

has risen. The error goes higher than 10% when the RSD is greater than 0.08, as shown in 

Figure 3.5. Therefore, the results suggest that for larger RSDs in the investigated cases, 

estimations based on monthly flow tests include larger uncertainties. Although a general 

conclusion cannot be made just based on three data points, the case studies show a possibility 

of having large uncertainties when production fluctuations are large. It should be added, 

however, that in practice in the oil and gas industry, the data taken through monthly tests are 

combined with the measurements of the fiscal meter in allocation calculations (the details of 

this exercise have been explained in Section 2.4.3). Therefore, employing the data from the 

fiscal meter which is more accurate and regular, mitigates the uncertainty in production 

estimations for individual wells. The effect of the uncertainty of monthly flow test data on 

allocation calculations has been studied in the second phase of this research study. The results 

have been presented in the following lines.  

The effect of increasing the number of tests per month on the absolute ETP error was 

investigated in order to see how the regularity of the flow tests (i.e. the time gap between two 

consecutive flow tests) can affect the uncertainty in the ETP of individual wells. The aim of 

this work was to reduce the error to less than 2%. The error for Well A based on monthly flow 

tests is 1.08%, as shown in Table 3.2. Therefore, the error is already within the specification. 
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However, for Wells B and C, the errors are greater than the target value. Figure 3.6 shows how 

increasing the number of flow tests per month can decrease the ETP error.  

 

 

Figure 3.6: Effect of increasing the number of flow tests per month on the absolute estimated 

total production error for Wells A, B, and C 

 

For Well B, however, undertaking two flow tests per month has decreased the error to less than 

2%, while for Well C, with a larger RSD, four tests per month is required to achieve the same 

goal. It should be added that it is not always possible in practice to increase the number of flow 

tests per month to achieve the desired ETP error limit. What the results do show, however, is 

that where it is possible to regularly conduct tests, there is a reduction in the uncertainty in the 

estimations. Figure 3.7 shows how increasing the number of flow tests from one to four times 

per month can step-by-step make the estimated production plot of Well C more reflective of its 

production plot based on the MPFM measurements. Figure 3.7 is an example that visually 

shows how increasing the frequency of flow tests can make production estimations more 

accurate.  
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Figure 3.7: Comparison between MPFM data and flow test data when the number of flow tests 

per month is (a) one, (b) two, (c) three, and (d) four for Well C. When there are more flow tests 

per month, the test results better match the MPFM data.  
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As mentioned above, in the oil and gas industry, the data from the fiscal meter which 

continuously measures the cumulative production of several wells is employed to reduce the 

uncertainty in individual well production estimations. Therefore, undertaking further studies 

on the data of an entire field with several wells was required to see how the non-continuous 

scattered data of production from individual wells can affect hydrocarbon accounting.  

 

3.3.1 Allocation calculations 

An oil field with 36 production wells was simulated using the Schlumberger ECLIPSE 

reservoir simulator (Schlumberger Information Systems) and its production results were used 

to investigate the effects of uncertainties in the production data of individual wells on 

hydrocarbon accounting calculations in a full scale oil and gas industry case. The reservoir has 

been assumed to be heterogeneous in order to make it more representative. Well controls and 

production scenarios are set so that there is a variety in the production flow rates of different 

wells and their trends. The reason has been to provide enough complexity to make the 

hydrocarbon accounting calculations of the field similar to a real case. The simulations have 

been run over a year based on daily time steps which has provided enough data points for the 

allocation calculations. In Figure 3.8 the output of the simulator which shows the production 

of all wells during the year has been illustrated.  

As shown in Figure 3.8, each well starts its production regime under one of the three initial 

flow rates (1870, 5615, or 9360 STB/day). The initial production flow rates in this scenario 

have been determined based on the characteristics of the drainage area of the wells. Wells 

which are located in more permeable areas of the reservoir start their production at a higher 

flow rate. Each well, however, shows a different trend of production later during the year. The 

characteristics of the reservoir and the wells, in addition to the constraints of production such 

as high water cut, have been the reasons for the later changes in the well production control. 

For instance, in those wells, such as Well 34, where a sudden decrease in the production has 

been shown, the water cut has reached 80% (their perforations are in a lower depth compared 

to the other wells). Therefore, the production flow rate for these wells has been decreased to 

reduce the total barrels of producing water from the field.  
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Figure 3.8: Oil production plots for all 36 wells in the simulated field 

 

Regardless of how heterogeneous the reservoir model is made in the simulator, the actual 

reservoir is far more complex. There are always some fluctuations in the measured production 

data of the actual reservoir while the output of reservoir simulators are normally smooth, as 

shown in Figure 3.8. Therefore, the available production data from the actual wells which was 

used in the previous section (Table 3.1), was statistically analysed and the same fluctuations as 

the actual data were applied to the results of the simulator. In order to do that, the RSD (Eq. 

3.5) of each well for each month was calculated. The average of the RSD values for each well 

was considered the final RSD for that well. In the next step, a Matlab (The Mathworks Inc.) 

code generated random numbers (positive and negative) with the same RSD as the real data 

and applied them to the results of the simulator. Therefore, three different sets of production 

data (Case A, B, and C) for the whole field with the trend of the simulator outputs and the same 

fluctuations (i.e. RSDs) as the real data were created for the hydrocarbon accounting analysis. 

As an example, Figure 3.9 compares the output of the simulator and the final production flow 

rate after applying the fluctuations for Well 34. It should be noted that using real data for 

production in a research undertaking is ideal. It is difficult, however, to find the production 

data of an entire field where the production flow rate of all wells is measured by MPFMs or in 

daily intervals (if such data exists at all). In addition, the simulator can provide an unlimited 
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number of data sets which is necessary for securing the repeatability of the research results. 

This clearly could not happen with the limited number of real data sets if they were available. 

As a result, in this research the limited available actual data for three individual wells were 

combined with the outputs of the reservoir simulator (Schlumberger ECLIPSE) to benefit from 

the advantages of performing an unlimited number of simulations and make the case similar to 

a real case in the oil and gas industry.   

 

 

Figure 3.9: An example of the reference data generated by combining the simulation results for 

Well 34 and the real data of Well B. Simulator output plots are smooth while real production 

data is dispersed. 

 

After adding the fluctuations to the production outputs of the simulator, the resulting data set 

was employed as the reference data set in the hydrocarbon accounting calculations. This 

implies that we assumed that the resulting data set was equivalent to the measured production 

data of the field. The same approach as the one explained in the previous section was employed 

to extract monthly flow test data for the individual wells. Allocation based on combining 

accurate measurements of the fiscal meter and the data from intermittent well flow tests is the 

main part of hydrocarbon accounting calculations. Therefore, in the next step, the flow test data 

and the total flow rate of the field (which is equivalent to the data of the fiscal meter) were 

input to a Matlab code. The code was prepared to undertake allocation calculations based on 
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the methods and equations presented previously in the methodology section and the flow chart 

in Figure 3.3. The results of allocation calculations were subsequently used in the hydrocarbon 

accounting and compared with the calculation results based on the reference data to investigate 

the extent of errors caused by the uncertainty in the intermittent individual well flow data. Since 

fluctuations have different distribution patterns in different production data, it might not be 

accurate to generalise the research results based on one or a few study cases. Therefore, the 

entire process explained earlier, was repeated 100 times. Since the Matlab code generates new 

random numbers each time, the pattern of fluctuations in the production data is different from 

the previous times. As a result, for each case, 100 production data sets have been analysed. In 

addition to the three RSDs from the actual wells, similar calculations have been undertaken for 

six more RSDs (0, 0.05, 0.1, 0.2, 0.3, and 0.4). The results of all the calculations have been 

summarised in the shape of the box and whisker plot in Figure 3.10. 

 

 

Figure 3.10: Box and whisker plot of absolute allocation errors as a function of relative standard 

deviations of Cases A, B, and C and six more arbitrary RSDs.  

 

Figure 3.10 shows the average and the distribution of errors in allocating total production to 

wells in 300 times calculations which have been undertaken for the three cases (100 times per 

case). The same calculations have been performed for six other boxes in the plot. The six 
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arbitrary boxes have been added to the graph to extend the RSD range and have enough RSDs 

to make sure the plot shows a correct trend. The solid line in the graph shows how the mean of 

the absolute allocation errors changes against the RSDs.  Moreover, the boxes and whiskers 

show the range of errors and their median and upper and lower quartiles for each RSD. The 

error has been calculated based on the method explained in the methodology section (Eq. 3.11) 

and shows the percentage of the total production of the field which has been allocated to a 

wrong well. Both the average and the range of the error increase with a greater RSD. The 

average error was 0.85% for Case A (RSD=0.0074), while it has risen to 1.05% for Case B 

(RSD=0.0601) and 3.58% for Case C (RSD=0.3119). The range of error has also increased 

from Case A to Case C. The largest errors were 0.90%, 1.29%, and 4.67% for Cases A, B, and 

C, respectively. Figure 3.10 shows the error for the entire field. The error for an individual 

well, however, is different from the error for the entire field-being twice the error of the entire 

field. Note that each barrel of oil which is allocated to a wrong well is counted once for the 

entire field so it affects two individual wells: one well loses the barrel of oil in the estimations 

and the same barrel of oil is allocated to another well. Therefore, it increases the error of both 

wells (for one of them in the positive and the other one in the negative direction) and hence 

makes the average absolute error of all wells double the size of the field error. Performing 

allocation calculations for the individual wells also approves it. The calculated average absolute 

errors for the individual wells were 1.7%, 2.10%, and 7.16% for Cases A, B, and C, 

respectively. Figure 3.11 shows the average absolute errors of all individual wells for each 

case.  

Comparing the results in Figure 3.5 (flow test errors) and Figure 3.11 (allocation errors) shows 

how allocation calculations can affect the errors in the estimated production of wells. The 

absolute errors for actual Wells A, B and C (Figure 3.5) were 1.08%, 6.18%, and 45.11%, 

respectively. The average absolute results for Case A (1.7%) is more than the error for Well A 

(1.08%). The reason is that the available data of Well A is for just 20 days and its production 

trend has not changed significantly while the allocation error is based on one year production, 

including ups and downs in the well production trends. For the other two wells (B and C), the 

allocation errors of their respective cases (B and C) are significantly smaller than the flow test 

errors, although the RSDs are the same.  
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Figure 3.11: Absolute average allocation error for all individual wells in each case. The average 

absolute error for individual wells is twice as the average absolute error for the entire field. 

 

Although employing allocation techniques and using more accurate data of the fiscal meter, in 

addition to less accurate data of flow tests, can mitigate the uncertainty in the results, the errors 

for some cases are still unacceptable in terms of hydrocarbon accounting. The average total 

amount of produced oil during the year which has been allocated to a wrong well and its 

equivalent price (assuming the value of each barrel is 60 US dollars) has been reported in Table 

3.3.  

 

Table 3.3: Hydrocarbon accounting calculation results including the total cost of wrong 

allocations for one flow test per month 

Case Period of 

production 

(days) 

Average total 

oil 

production 

(STB) 

Average total 

oil allocated 

to wrong 

wells (STB) 

Total cost of 

wrong 

allocation 

(US$) 

Percentage 

of the total 

production 

(allocation 

error) 

Case A 365 70,396,118 598,367 35,902,013 0.85% 

Case B 365 70,069,333 735,728 44,143,661 1.05% 

Case C 365 69,625,196 2,492,582 149,554,906 3.58% 
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As shown in Table 3.3, allocation error shown in the last column might not look significant in 

some cases but its cumulative effect over a long time has a significant financial impact on the 

operator companies. In cases where different companies own different wells in the same field 

or the production from the wells of one company is commingled with the production of other 

companies for any reason, these costs can cause the companies to lose a large amount of income 

over a long time due to the allocation errors. The errors can also affect tax calculations or 

reservoir management (Chen and Xu 2019; Cramer 2018; Marshall et al. 2019; Sadri, 

Shariatipour and Hunt 2017; Sadri et al. 2019). Table 3.3 shows that the total costs for Cases 

A, B, and C are 35.9M (Million), 44M, and 149.5M dollars during a year of production. These 

numbers show the price of the total amount of produced oil that has been allocated to wrong 

wells. If we assume every single one of the 36 wells in this field has a separate owner, it means 

the reported cost is the sum of the money which has gone to wrong owners. Under such an 

assumption in Case C, some owners lose 149.5 million dollars of the total value of their yearly 

production while the rest of the owners receive the same amount of money more than the value 

of the oil that they have produced. Table 3.3 clearly shows that the allocation errors can cause 

owners to lose large amounts of their income over time, especially when the RSD of the 

production data is high (i.e. the production rate has large fluctuations and the recorded 

production data is highly scattered) such as in Case C. As a result, reducing allocation errors 

can have significant benefits for the companies in the oil and gas industry. The results that have 

been presented here are for the studied case. In oil and gas fields, the same analysis can be 

undertaken by calculating RSDs obtained from flow test results.      

Previously, it was shown that by performing more frequent flow tests, the errors in the 

estimated total production (ETP) of individual wells can be reduced. In this section, the effect 

of increasing the frequency of flow tests on allocation error has been presented. In order to 

obtain the following results, the number of flow tests per month was increased from 1 to 2, to 

3, and then to 4 and its effect on the accuracy of allocation results for all three cases was 

investigated. As before, all calculations have been repeated 100 times with different input 

random data sets and then the results have been averaged to make sure that the final results are 

reproducible. The allocation error as a function of the number of flow tests per month has been 

shown for Case A, B, and C in Figure 3.12. 
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Figure 3.12: Average absolute allocation error as a function of the number of flow tests per 

month. Undertaking more flow tests per month has decreased allocation uncertainty in all cases. 

 

Increasing the number flow tests per month decreased the allocation error in all three cases, as 

illustrated in Figure 3.12. In all cases there is a sharper decrease from one test per month to 

two, then it continues with a smoother slope to three and four tests per month. Increasing the 

number of flow tests per month from one to two decreased the allocation errors of Cases A, B, 

and C by 0.43%, 0.45%, and 1.11%, respectively, which are equivalent to 18.2M, 18.9M, and 

46.8M US dollars reduction in the yearly cost of allocation error for the respective cases. Table 

3.4 shows how increasing the number of the tests per month (TPM) can reduce the cost of 

allocation error for all cases.  

 

Table 3.4: Reduction in the total yearly cost of allocation error when increasing the number of 

flow tests per month 

Case Reduction in the total yearly cost of allocation error when 

increasing the number of flow tests per month (million dollars) 

1TPM to 2TPMs  1TPM to 3TPMs 1TPM to 4TPMs 

Case A 18.2 24.0 27.1 

Case B 18.9 24.5 29.0 

Case C 46.5 65.7 80.1 
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Based on Table 3.4, the results show that undertaking more flow tests per month can reduce 

the total cost of allocation. In practice, however, there are many other factors which should be 

considered. Firstly, performing more frequent tests may not always be possible due to 

operational constraints. Secondly, more flow tests require more operational or even capital 

expenditure. Therefore, the constraints need to be considered and the costs and benefits be 

estimated and compared for each individual field. Another option is installing MPFMs for 

individual wells. MPFMs can provide real-time continuous production data for individual 

wells. Some MPFM manufacturers and experts also believe that, as there is no need for test 

separators when MPFMs are installed on wells, therefore they can eliminate the capital cost 

spent on installing the test separator and its related flow lines. Installing MPFMs, however, 

also requires spending on capital and operating costs. The price of MPFMs and the cost of their 

maintenance should also be considered. The well which is equipped with the flow meter might 

also need to be shut for the duration of the installation of the hardware if the MPFM is intrusive. 

All these aforementioned factors create extra costs which should be compared with the benefits 

before making any decision. Another fact that needs to be regarded is that the benefit to all 

owners from increasing the accuracy of the measurements is not the same. Although the 

average cost for the entire field is reduced, some owners might benefit more than the others. 

To show how more frequent tests can affect each single well, allocation calculations for Case 

C were performed using the same random number data set (i.e. exactly the same fluctuations 

in the production flow rates) for when 1, 2, 3, and 4 flow tests per month are performed.  Figure 

3.13 illustrates the allocation errors for all 36 individual wells and also the average absolute 

allocation errors for all wells.  

Although the average error decreased with more flow tests per month, the same trend is not 

seen for all individual wells. This is because of the random pattern of the fluctuations in well 

productions and the random nature of allocation calculations. While for Wells 10, 31, and 36 a 

decreasing trend in the absolute value of the errors is seen, the rest of the wells have a random 

trend. Well 22 has had the largest error of all for one test per month (TPM) which has been 

22.92%. It has gone down to -0.91% for four TPMs. The largest negative errors are those for 

Wells 26 and then 17 with -15.94% and -15.46%, respectively, associated with one TPM. It 

can potentially mean over 15% of the value of their yearly production does not go to their 

owner but to the owners of other wells. 
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Figure 3.13: The change of allocation errors for individual wells in Case C when the number 

of tests per month is increased. Avg. abs. denotes average absolute error of all wells.  

 

For one TPM, there are seven wells which have negative errors larger than -10%. There are 

just two wells that have the same condition for two TPMs. For three TPMs and four TPMs it 

decreases to one and zero wells, respectively. Therefore, the allocation is ‘fairer’ when there 

are more TPMs as it is also approved by the average values in Figure 3.13. Figure 3.13 also 

shows the largest errors occur under a different number of TPMs. Despite the falling trend, the 

largest error increased from two TPMs to three TPMs. When many cases are analysed, 

however, the overall trend is expected to fall. Therefore, the above exercise was repeated 100 

times with different sets of random numbers (i.e. different well production rate fluctuations) to 

examine it. The results approve the expectation as shown in Figure 3.14.  

Figure 3.14 suggests that performing more flow tests on individual wells not only is important 

in hydrocarbon accounting, but can also be effective on reservoir management. Although the 

average absolute error of all wells for one TPM might be negligible (7.16%) in reservoir 

management compared to other large uncertainties in a reservoir, the errors of individual wells 

that can go up to 35% cannot be ignored. Therefore, decreasing the maximum error for 

individual wells through performing more frequent flow tests can play a role in having 

improved reservoir management and increase the oil and gas recovery. The best results in 

theory, however, are achieved when each individual well is equipped with an MPFM which 

can provide accurate continuous real-time data.  
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Figure 3.14: Maximum and average absolute allocation errors of individual wells in 100 

allocation calculations for Case C when one to four flow tests per month are undertaken. The 

trends of both average and maximum errors are falling.  

 

3.4 Conclusions 

In this chapter, the effect of the frequency of performing flow tests for individual wells on their 

Estimated Total Production (ETP), allocation errors, and hydrocarbon accounting for the entire 

field was studied. The near-continuous real production flow rate data of three actual wells was 

employed to investigate how increasing the number of flow tests per month (TPM) can reduce 

the uncertainty in estimating total production of each well. Results showed that for wells with 

largely dispersed production data (i.e. flow rates with large fluctuations), there is a larger error 

in ETP. Increasing the number of TPMs, however, can significantly reduce ETP errors. For the 

well with the largest data dispersion in this research, the ETP error was reduced from 45% to 

less than 2% when the number of TPMs was increased from one to four. 

In order to investigate the effect of the number of TPMs on allocation errors and hydrocarbon 

accounting, the production data of a simulated oil field with 36 production wells was analysed. 

The same data dispersion as the three actual wells was applied to the simulator outputs using 

the relative standard deviation of the actual data to make three cases similar to the real 

situations. Allocation and hydrocarbon accounting calculations for one, two, three, and four 

TPMs were subsequently undertaken for all the cases using a Matlab code. All calculations 
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were repeated 100 times to secure reproducibility of the results and to provide the opportunity 

for statistical analysis. The results show larger average allocation errors and also wider ranges 

of error for higher RSDs. The average allocation errors were 0.85%, 1.05%, and 3.58% for 

RSDs equal to 0.007, 0.060, and 0.312, respectively, when there was only one TPM. These 

errors lead to $36M (Million), $44M, and $150M total yearly cost for the whole field for the 

respective cases. The results show that increasing the number of TPMs from one to four can 

reduce the allocation errors to 0.21%, 0.36%, and 1.64% which are respectively equivalent to 

$27.1M, $29.0M, and $80.1M reduction in the total yearly allocation cost for the entire field.  

There can be operational constraints and capital and operating costs involved in undertaking 

more frequent flow tests in some fields. Moreover, as the analysis of the errors for individual 

wells has shown, all owners who have a share of the total production might not benefit equally 

from more TPMs. However, the results show that when there are more TPMs, the total cost for 

the entire field is reduced, hydrocarbon accounting calculations are more accurate, there is a 

fairer allocation of the total production to individual well owners, and there is less uncertainty 

in the production data used in reservoir management.  



58 

 

 

Chapter 4: Application of an artificial 

neural network for mitigating allocation 

uncertainties† 
 

In many oil and gas fields, the production data of individual wells is estimated by undertaking 

occasional flow tests and through an allocation process. There are, however, large uncertainties 

associated with the obtained production data that can subsequently affect hydrocarbon 

accounting and reservoir management. As discussed in Chapter 3, increasing the regularity of 

flow tests can reduce the uncertainty, but it also incorporates extra costs. Finding the minimum 

number of flow tests required to reduce the error of the data to less than a desired value is 

therefore of vital importance. In this chapter, a machine learning technique has been employed 

to achieve this aim. An artificial neural network (ANN) has been trained to find the relationship 

between the statistical characteristics of the production data of oil wells and the minimum 

number of flow tests a month required for each well to secure an estimate of the production 

data within a target error specification. Employing this method can help to minimise the cost 

of increasing the number of flow tests at the same time as securing a desirable accuracy for the 

obtained production data. 

 

 

  

 
† The contents of this chapter have been extracted from the following paper: 

 

Sadri, M. and Shariatipour, S. (under revision) 'Employing an artificial neural network to reduce the uncertainty 

in oil and gas production data '. Journal of Energy Resources Technology. 

 

The candidate developed the methodology, undertook the required simulations, wrote the Matlab codes, analysed 

the results, and prepared the article. Seyed M. Shariatipour supervised the research. 
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4.1 Introduction 

Oil and gas production data is largely used in different exercises in the oil and gas industry, 

such as for hydrocarbon accounting (Chen and Xu 2019; Cramer, Schotanus and Colbeck 2009; 

Cramer et al. 2011; Ikiensikimama and Ajienka 2012), production engineering (Azamipour et 

al. 2017; Sadri, Mahdiyar and Mohsenipour 2019; Sun and Ayala 2019), and reservoir 

management (Marshall et al. 2019; Sadri, Shariatipour and Hunt 2017; Sadri et al. 2019; Zheng 

et al. 2018). The calculations, simulations, and forecasts in these exercises and the decisions 

made for the hydrocarbon field can, therefore, be affected by any uncertainties in the 

production data. As a result, these uncertainties can create additional costs for operators, or 

reduce hydrocarbon recovery from reservoirs. The cost of these uncertainties can be significant 

in hydrocarbon accounting (Cramer et al. 2011; Sadri and Shariatipour 2019) and reservoir 

management (Marshall et al. 2019; Sadri et al. 2019). 

 Although the application of multi-phase flow meters (MPFM) in the oil and gas industry has 

recently increased (Falcone, Hewitt and Alimonti 2009; Falcone et al. 2002; Theuveny and 

Mehdizadeh 2002), there still remains many hydrocarbon fields in which the flow rates of 

production wells are only estimated using allocation methods. In such fields, the production 

streams from different wells are mixed without their flow rates being measured individually. 

The total flow of all wells is subsequently sent to the separation unit and the single-phase flows 

of oil, gas, and sometimes water, are measured by flow meters. Therefore, the only continuous 

production data which is available is the data of the total production of all the wells. The flow 

rates of individual wells, on the other hand, are only measured during a short occasional 

exercise which is called a ‘flow test’, ‘well test’, or ‘daily test’. During a flow test, the 

production of an individual well is sent to a ‘test separator’ for a short time (the test time can 

be as short as an hour or as long as a full day) before it is commingled with the total production 

flow. The phase flow rates of the well are therefore measured during the test time. The results 

of the test are used to calculate ‘allocation factors’ that determine the contribution of each well 

to the total production (Energy Institute 2012). These allocation factors, in addition to the total 

flow rate measurements, are employed to estimate the production flow rates of individual wells 

when no flow test is performed. Flow tests are normally repeated in certain time intervals to 

update allocation factors. The time intervals can vary between a few days to a few months 

based on well characteristics, technical and financial considerations, and the difficulty of 

accessing a well. 



60 

 

Although the process of allocation provides an estimation of production flow rates for 

individual wells, there remains a large uncertainty in the obtained production data. Flow rates 

of production wells do not remain constant over the timespan between two consecutive flow 

tests and, in addition, there are normally natural fluctuations in the production flow rates. There 

are also other perturbations, such as water or gas breakthrough, during the time between two 

flow tests that can dramatically diverge the production flow rate of the well from what it was 

at the time of the flow test. As a result, there are normally large errors in the production data 

obtained through an allocation process as it was discussed in Chapter 3. Considering the 

potential costs that these errors can cause, some oil and gas companies are trying to find 

solutions to improve the accuracy of the data. One solution is installing MPFMs on individual 

wells, which requires large capital and operating costs. Moreover, if the MPFMs are intrusive, 

the wells need to be shut during the installation phase, adding considerably to the costs of the 

operation. Therefore, finding alternative methods that can improve the accuracy of the 

production data of individual wells can play an important role in reducing the cost of 

production. A number of researchers, therefore, have undertaken studies to mitigate allocation 

uncertainties. Cramer et al. (2011) reported using a data-driven modelling application in the 

allocation process. They recommended that performing a daily allocation through their 

approach provides more accurate production data than traditional allocation methods based on 

periodic well flow tests. Stockton and Allan (2012) described potential pitfalls in analytical 

allocation uncertainty calculations and provided recommendations on how to avoid them. They 

used a stochastic Monte Carlo approach in addition to the typical analytical calculations and 

concluded that the approach can improve calculating uncertainties.  Kaiser (2014) compared 

the production rates of individual wells estimated based on decline curves and allocation 

techniques. The author concluded that although a more accurate estimated ultimate recovery 

and a better understanding of individual well behaviour can be obtained through the decline 

curve method, it incorporates more calculations. Pobitzer, Skålvik and Bjørk (2016) employed 

a cost-benefit approach to optimise metering uncertainty in allocation setups. Their algorithm 

helps finding a proper meter and locate it in its right place for a more accurate allocation 

process. Acuna (2016) used real-time virtual flow metering by employing pressure and 

temperature data in a case study. The author reported that the allocation errors of the studied 

field were reduced to less than 10% by employing the promoted method.  

In Chapter 3, we showed that increasing the regularity of flow tests can improve the accuracy 

of production data significantly. Undertaking more flow tests, however, necessitates a higher 
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operational cost and in some cases, it incorporates technical difficulties. A good example of 

the latter case is where wells are located in remote and difficult to access areas. One way to 

undertake the occasional flow tests on these types of well is to employ portable multi-phase 

flow meters (MPFM) installed on trucks. There are normally no facilities around these wells, 

making the operation practically difficult and financially expensive. Therefore, an optimisation 

procedure is needed to secure an acceptable production data accuracy required for hydrocarbon 

accounting and reservoir management for a minimum number of flow tests. 

The frequency of flow tests is typically decided by operators based on the circumstances they 

face in the field, such as the stability of production rates. Performing one test each month is 

common in many oil fields since it is consistent with monthly report formats and calculations 

(e.g. hydrocarbon accounting, tax payment) in the oil and gas industry. If the accuracy of the 

data of individual wells is important, for instance where there are several owners whose wells 

contribute in the total production, however, the tests might be undertaken more regularly. 

Another example of a situation in which more regular tests are needed is where well production 

rates are unstable or have large fluctuations.  

As a general rule, when the frequency of the flow tests is increased, the possibility of achieving 

more accurate production data increases (Sadri and Shariatipour 2019). There still remains one 

question, however, about the exact number of flow tests per month needed to be taken which 

can guarantee a reduction in the well data errors to less than a desired error specification. For 

instance, if the desired error specification for a well is 4%, the question is with how many flow 

tests per month on that well its estimated production rates (obtained by allocation calculations) 

will have errors within the range of -4% to +4%. Although at present, finding a completely 

correct answer to this question looks difficult, the aim of this chapter is to suggest a machine 

learning technique that can provide acceptable and helpful responses for certain ranges of error 

specifications. 

The application of machine learning or specifically Artificial Neural Network (ANN) in virtual 

flow metering has been addressed in some research projects before (Ahmadi et al. 2013; AL-

Qutami et al. 2018). There is, however, a dearth of publications in the literature about the 

application of these techniques in an allocation process.  Shoeibi Omrani et al. (2018) employed 

a machine learning approach to increase the accuracy of both virtual flow metering and 

allocation results for individual wells. The inputs of their ANN were the choke opening, the 

number of wells, the pressure, and temperature. They, therefore, used a data-driven virtual flow 
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metering model to improve the accuracy of the estimated flow rates of individual wells. Their 

model, however, does not analyse or consider the fluctuations in the production flow rates 

directly and it also does not provide any outputs about the required regularity of flow tests for 

wells in the field.  

The research presented in Chapter 4 has focused on improving the accuracy of the allocation 

process itself and not through virtual flow metering. The effect of production fluctuations, 

which is one of the main sources of allocation uncertainty, has been analysed and considered 

in this research. In this chapter, an ANN algorithm has been employed to find the minimum 

number of flow tests per month (TPM) that should be performed to guarantee that allocation 

errors remain below a certain error specification. The details of the methodology and the results 

have been presented below.  

 

4.2 Methodology 

Fluctuations in continuous production data (measured by MPFMs or test separators) of seven 

actual wells have been statistically analysed in this work. These fluctuations are important since 

they change the actual production flow rates over time and cause the average flow rate 

estimations based on allocation calculations to be different from the real well flow rates. The 

range, magnitude, and distribution of fluctuations in the real data have been quantified using 

the standard deviation (Eq. 2.7), mean (Eq. 2.6), skewness (Eq.4.1), and kurtosis (Eq. 4.2) of 

the data sets. These four parameters were chosen for the quantification because they are well-

known parameters in statistics that can properly represent the average and the distribution of 

the data. 

𝑠 =
∑ (𝑄𝑖 − 𝑄)

3𝑛
𝑖=1

𝑛 𝜎3
   (4.1) 

𝑘 =
∑ (𝑄𝑖 − 𝑄)

4𝑛
𝑖=1

𝑛 𝜎4
 

(4.2) 

 

 

where 𝜎 stands for the standard deviation, 𝑛 is the number of production flow rate data points 

which are available, 𝑄𝑖 denotes the i-th data point, 𝑄 is the average production flow rate, 𝑠 

stands for skewness, and 𝑘 represents kurtosis. 



63 

 

Based on the calculations, the ranges of all four aforementioned parameters were obtained for 

the actual wells. 

The value of these four parameters have later been used as the inputs of the neural network. 

Training the neural network only with the available real data sets was, however, not possible. 

The reason is that, in order to train a neural network, the outputs (network targets) must also 

be known, as well as the inputs. For real cases, however, the targets (i.e. the exact minimum 

number of flow tests per month that must be undertaken to reduce the error to less than a certain 

specification) were unknown. Therefore, employing a reservoir model (i.e. reservoir simulator) 

was necessary to calculate the targets (outputs) corresponding to the inputs. Therefore, the 

production results of a simulated oil field with 36 oil wells were used to perform allocation 

calculations and calculate the network targets. The length of production for all wells was set to 

be one year. 

The results of a reservoir simulator can show the trend of production and its changes over time. 

Since there is always more complexity and heterogeneity in an actual reservoir compared to a 

reservoir model, however, the same fluctuations seen in actual data are normally not seen in 

simulation results. Therefore, to make the flow rates as similar as possible to the real production 

data, similar fluctuations were added to the simulator (Schlumberger ECLIPSE (Schlumberger 

Information Systems)) results based on the ranges of the four statistical parameters (mean, 

standard deviation, skewness, and kurtosis) previously calculated for the seven actual wells. In 

order to make sure that the magnitude and distribution of the implemented fluctuations cover 

all the ranges possible to occur during actual production, 10000 random numbers within the 

calculated ranges of the statistical parameters were generated for each parameter by a Matlab 

(The Mathworks Inc.) code. Mean and standard deviation were combined in one parameter, 

which is called the Relative Standard Deviation (RSD). RSD is defined as the standard 

deviation (𝜎) divided by the mean (𝑄) as shown in Eq. 3.5. 

The ranges for the parameters (RSD, skewness, and kurtosis) are shown in Table 4.1.  As a 

result of implementing all 10000 sets of the three random numbers to the production flow rates 

of the 36 simulated wells, 360000 different realisations with different well production patterns 

were obtained. These realisations were later used in allocation calculations and subsequently 

in training and validating the neural network. 
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Table 4.1: Range of values of statistical parameters in all realisations 

Parameter Minimum value Maximum value 

Relative standard deviation  0 0.5 

Skewness -1 1 

Kurtosis 1 5 

 

An artificial neural network (or generally any machine learning technique) needs a set of targets 

for its training. After obtaining the realisations by combining the actual data and the results of 

the reservoir simulator, the allocation errors of each realisation need to be calculated to enable 

them to be used as the targets of the ANN. Therefore, a piece of the Matlab code undertook 

allocation calculations based on one, two, three, and four flow tests per month, respectively. 

The details of allocation calculations have been presented in Chapter 3 and by Sadri and 

Shariatipour (2019). It was assumed that each test flow rate was equal to the average flow rate 

of the well during the test time. The duration of each test was six hours. Allocation errors for 

each realisation were therefore calculated as a function of the number of flow tests per month. 

The Matlab code, in the next step, was used to find the minimum number of TPMs needed to 

reduce the allocation error for each realisation to less than the determined error specification. 

The Matlab code also flagged those realisations in which undertaking up to four TPMs could 

not reduce their allocation error to less than the error specification. For these flagged 

realisations, ‘more than four TPMs’ are needed to meet the error specification.  The process 

was repeated for different error specifications and for each error specification the matrix of 

targets was calculated and stored for the later use in the neural network.  

The Neural Network Toolbox (Hudson Beale, Hagan and Demuth R2017a) of Matlab was 

trained in the last stage of this research to find the relationship between the inputs and targets. 

An ANN was chosen to be used in this work because it is more versatile compared to other 

methods such as a regression. ANNs are powerful tools in estimation and classification and 

provide the flexibility to find both linear and non-linear relationships between independent and 

dependent variables. Moreover, when the input data set is large, working with ANNs is easier 

compared to many other estimation methods because ANNs can be trained data sample by data 

sample. In other words, all the data set is not required at the same time for training. This is a 

considerable advantage of ANNs, especially for oil and gas production analysis, because 

normally new data samples are provided over time and the ANN needs to be retrained. 
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The employed ANN (Figure 4.1) consisted of an input layer of four parameters, a hidden layer 

of 10 neurons and an output layer of five possible results. The input parameters to the network 

were chosen to be the mean, standard deviation, skewness, and kurtosis of each realisation. The 

target (or output), on the other hand, was the minimum number of TPMs that reduced the 

allocation error of the realisation to less than the chosen error specification. The five possible 

outputs were chosen to be one, two, three, four, and more than four tests per month. 

 

 

Figure 4.1: The structure of the employed artificial neural network in this research. TPM stands 

for test per month. 

 

Figure 4.2 and Eq. 4.3 to 4.6 show how the weights and functions in the nodes of the network 

operate. The activation (transfer) function that has been employed in the hidden layer of this 

ANN is a tansig(x) function of Matlab (Eq. 4.3). This function is mathematically equivalent 

to tanh(x) and provides faster calculations. For the output layer, the Softmax Function (Eq. 

4.5) has been used as the activation function. Softmax normalises the outputs of different 

classes and provides numbers between zero and one, which represent the probability of each 

input value being in a specific class.  

𝑇(𝑛𝑖) =
2

1 + 𝑒−2𝑛𝑖
+ 1  (4.3) 
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𝑛𝑖 = (𝑏 + ∑ 𝑊𝑗𝑥𝑗

𝑀

𝑗=1
)

𝑖

 

 

(4.4) 

𝑆(𝒏)𝑖 =
𝑒𝑛𝑖

∑ 𝑒𝑛𝑘𝐶
𝑘=1

 

 

(4.5) 

𝒏 = (𝑛1, 𝑛2, … , 𝑛𝐶) (4.6) 

 

where 𝑛𝑖 is the net input to the activation function of the ith neuron of a network layer,  𝒏 

denotes the vector of all inputs to the activation function of neurons of the same layer, T stands 

for the tansig function (or equivalently, the tanh function), S represents the softmax function, 

𝑀 is the number of connections to each neuron coming from the previous layer, 𝑊𝑗 denotes the 

weight of the jth connection, 𝑥𝑗 is the activation (i.e. final calculated value in a neuron) of the 

jth neuron of the previous layer, 𝑏 stands for the bias, 𝐶 is the number of output classes. 

 

 

Figure 4.2: A neuron in the artificial neural network with its functions, inputs and outputs. Eq. 

4.3 to 4.6 show the activation functions that have been used in this ANN. 

 

70% of the total 360,000 realisations (252,000 realisations) were used to train the network 

using scaled conjugate gradient backpropagation, 15% of them (54,000 realisations) were used 

for the validation process, and the remaining 15% (54,000 realisations) was used for testing the 

network. All of these procedures were repeated several times for different error specifications 
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and for each error specification the accuracy of the network was recorded. Finally, the 

performance of the neural network as a function of the error specification was obtained and 

reported.  

In Chapter 3, it was shown that by increasing the number of TPMs, there is a better chance of 

reducing the average error of the entire field rather than to reduce the error of an individual 

well. Therefore, it was expected that finding the patterns of the data and the relations of inputs 

and targets would be easier for the neural network and it would have a better performance when 

the target is chosen based on the average allocation error of the entire field rather than the error 

of each well. Therefore, in the second phase of this research, the target was changed to ‘the 

minimum number of flow tests per month on the wells of a field which can reduce the average 

allocation error of the field to less than an error specification’. For instance, if the output of the 

neural network is ‘two’ in this case, it means two tests per month must be performed on each 

individual well. The output is the same for all wells in the same field regardless of their different 

production patterns and the target is to reduce the average allocation error of the entire field to 

less than an error specification. Therefore, the entire procedure, which was explained for the 

first phase for individual wells, was repeated with the difference being that all the pieces of 

Matlab code were modified to provide outputs which were for the entire field (i.e. the average 

value of all 36 wells) rather than individual wells. The neural network was subsequently trained 

with the new targets and its performance was observed and reported as a function of the error 

specification of the field.  

 

4.3 Results and discussion 

Figure 4.3 illustrates the accuracy of the neural network to predict the minimum number of 

flow tests per month required to reduce the allocation error of the individual wells. The 

accuracy has been plotted as a function of the desired error specification. Error specification is 

referred to the maximum magnitude of measurement or estimation errors. As shown by Eq. 

4.7, the accuracy of a neural network is defined as the fraction of the correct predictions of the 

network out of all of its predictions. 

𝐴𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100      (4.7) 
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Figure 4.3: The accuracy of the artificial neural network as a function of the aimed error 

specification for individual wells.  

 

Figure 4.3 shows the neural network has a good accuracy for the larger error specifications. As 

the error specification is reduced, however, the accuracy of the ANN predictions decreases. 

While the accuracy is 99.53% for a 30% error specification, when the error specification is 

chosen to be 2%, the accuracy drops to 35.14%. It means if we ask the neural network to 

provide us the minimum number of flow tests which is required to reduce the allocation error 

of the well to less than 30%, almost all of its predictions will be correct. Only one out of each 

three predictions of the ANN is, however, correct when 2% is chosen as the maximum 

allocation error permitted. Such a trend was expected since finding a relationship between the 

inputs and the targets is more difficult and complicated for the ANN when the error 

specification is reduced. In such a case, the range for the ANN target is small and therefore 

there is a lower probability of having a correct prediction in such a small range. It should be 

added that in this research, cost-benefit analysis has not been undertaken along with the data 

analysis. Including cost-benefit analysis can lead to even more valuable results and is suggested 

for a future research. 

Although the result for small error specifications incorporate uncertainties, the ability of the 

ANN to provide good predictions in larger error specifications can have a significant 

application in the oil and gas industry. The errors in the allocation process are normally large 

and they can be as substantial as 50% (Sadri and Shariatipour 2019). The results in Figure 4.3 

show that implementing the machine learning technique can reduce the errors of individual 

wells to less than 15% with 91.47% certainty, to less than 10% with 80.53% certainty, or to 
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less than 7% with 68.53% certainty. These results can make the method interesting for the 

industry since achieving a maximum error of 15%, 10%, or 7% for individual wells means 

obtaining even smaller average errors for the entire field, which is a significant achievement.  

For any single point in Figure 4.3, the entire process of training, validation, and testing has 

been undertaken separately. The following figures show the performance of the AAN in the 

aforementioned processes for an error specification of 2% as an example. Limited space 

precludes the inclusion of other error specification figures. The artificial neural network 

toolbox of Matlab uses Cross-Entropy as its cost function (Hudson Beale, Hagan and Demuth 

R2017a). Figure 4.4 shows the minimisation of the cross entropy as a function of the number 

of epochs for the case with the error specification of 2%. The best validation performance has 

been observed at epoch 192 with a cross entropy equal to 0.29.  

 

 

Figure 4.4: Cross-entropy as a function of the number of epochs for an individual well error 

specification of 2%.  

 

Figure 4.5 shows the log-normal plot of the leaning gradient as a function of the number of 

epochs for the error specification of 2%. The initial gradient was 0.2 and the final gradient at 

epoch 198 reduced to 0.00036. The run time of the code, even for small learning gradients, 

remained reasonable. Figure 4.5 also shows the number of consecutive validation fails as a 

function of the number of epochs. The maximum number of consecutive validation fails is set 

as six as a default in the ANN tool box of Matlab to make sure that the ANN would not suffer 
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from poor performance in predicting outputs of non-training data. The training process was 

therefore stopped at the epoch where six consecutive validations failed to occur. The training 

process was terminated at epoch 198, as shown in Figure 4.5. Validation data is used to prevent 

overfitting in the training process. When training is in process, the predictions of the ANN are 

also checked against validation (non-training) data. When the error of validation starts to 

increase while the error of training is still decreasing, overfitting is detected and the training 

process is consequently terminated.  

 

 

Figure 4.5: Learning gradient and validation check as a function of epochs for an individual 

well error specification of 2%.  

 

4.3.1 Field average allocation error 

In the first set of results (shown in Figure 4.3), the purpose of the ANN is to reduce the 

allocation error of individual wells. Therefore, the predicted number of TPMs by the ANN for 

different wells in the same field can potentially be different. In the second phase of this 

research, the ANN was trained to predict the minimum number of TPMs required to reduce the 

average allocation error of the entire field. Therefore, in this case, the number of TPMs 

suggested by the ANN is the same for all wells in the field. Although the wells, as a result, 

might have an allocation error more or less than the error specification, the aim is for the 

average allocation error of all of them to be under the error specification. The reason for 

undertaking the new training process is that reducing the average error of all wells is normally 
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easier than reducing the error of individual wells. Our previous research study (Sadri and 

Shariatipour 2019) that was presented in Chapter 3, shows there is a clearer relation between 

increasing the number of flow tests and the reduction of the allocation error when the aim is 

the average error of the field instead of the error of the individual wells. Therefore, it was 

expected that the ANN would be able to provide more accurate predictions when its goal is to 

reduce the field average error instead of the error of individual wells. 

The same ANN with the same inputs but different targets was trained in the second phase of 

the research to test this idea. The target for the ANN in this phase was ‘the minimum number 

of flow tests per month that can reduce the average allocation error of the field to less than an 

error specification’. The training, validation, and testing processes were undertaken for 

different error specifications, similar to the first phase. The accuracy of the ANN as a function 

of the error specification is shown in Figure 4.6. 

 

 

Figure 4.6: The accuracy of the artificial neural network as a function of the aimed error 

specification for an entire field. It shows how accurate the ANN has been in estimating the 

minimum number of flow tests in a month required to reduce the average allocation error of 

the entire field to less than the error specification. 

 

Figure 4.6 shows that when the aim is the field average error, the predictions of the ANN are 

more accurate. Although the same trend as in Figure 4.3 is observed, the accuracy of the ANN 
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is always greater for the same error specifications in Figure 4.6. For instance, the accuracy is 

seen to be 58.09% and 99.89% for 2% and 5% error specification, respectively, in Figure 4.6 

while it was equal to 35.14% and 55.82% for the same error specifications in Figure 4.3. As 

seen in Figure 4.3 an accuracy of over 95% had been achieved in more than 18% error 

specification, while in Figure 4.6 this accuracy was attained for error specifications greater than 

only 4%.  

As an example of the performance of the ANN in the second approach, Figure 4.7 and 4.8, 

which belong to the training case with the field average error specification of 2%, have been 

presented below. Figure 4.7 shows the cross entropy as a function of the number of epochs. 

The best validation performance was observed at epoch 34 with a cross entropy equal to 0.17. 

 

 

Figure 4.7: Cross-entropy as a function of the number of epochs for an average field error 

specification of 2%. The best validation performance has happened when the cross-entropy has 

been 0.07461 at epoch 34. 

 

Figure 4.8 shows the leaning gradient as a function of the number of epochs and also illustrates 

the number of consecutive validation fails for each epoch. The training process was terminated 

at epoch 40. The final learning gradient at this epoch was 0.00302. 
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Figure 4.8: Learning gradient and validation check as a function of epochs for an average field 

error specification of 2%. The number of consecutive validation fails has reached six at epoch 

40 where the gradient has been 0.0030239. 

 

4.3.2 A discussion on both approaches 

We can see that for the two different approaches outlined above, each has their own advantages 

and disadvantages. In the first approach (Figure 4.3), the accuracy of the ANN is less 

(disadvantage) but its predictions help operators to make decisions for each well individually 

(advantage). In the second approach (Figure 4.6), the decision for all wells is similar 

(disadvantage) but there is more certainty in the decisions made since the ANN is more accurate 

(advantage). Therefore, this question remains unanswered as which approach is better to 

employ in an oil and gas field. The answer to this question surely depends on the situation of 

each individual field. If the production flow rates of different wells exhibit similar or a close 

range of fluctuation and stability, the second approach is probably enough to help in making 

decisions about the required number of flow tests for the wells. If some wells have larger 

fluctuations, instability, water production, or any other significant production uncertainty, 

however, the decision for those wells must be made individually. In such a case, considering 

the outputs of both approaches might be helpful in making the final decision.  

Although the proposed machine learning technique in both of approaches exhibits acceptable 

accuracy over some ranges, large uncertainties still remain in other ranges of the error 
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specification. It should be mentioned that this work is not suggesting that the technique can 

fully replace the current procedures for making decisions for the regularity of flow tests, but 

proposing it as a supplementary tool to help in the decision making process. The current 

procedures are mainly dependent on the experience of the operators, something that is 

definitely needed when applying this new method in a field.  All other production conditions 

found in the wells such as their water cut, gas-oil ratio, or their production history, must also 

be considered. Another factor is the difficulty or the cost of undertaking more flow tests. 

Considering all of these aspects is still not a task that can completely be given over to a 

computer.  

The main purpose of this chapter has been to propose the machine learning technique and show 

that it has the potential to reduce the uncertainty in the oil and gas production data. Improving 

the accuracy of the technique for smaller error specifications can be suggested for a future 

research project. A potential solution for it can be the addition of an extra input to the ANN 

that represents the trend of production for each well. A proper method to quantify the general 

trend of production must, however, be found first. 

 

4.4 Conclusions 

In this chapter, a machine learning approach was employed to mitigate allocation uncertainties 

in oil and gas fields. An artificial Neural Network (ANN) was therefore trained to find the 

minimum number of flow tests required to achieve errors less than a target value. The target of 

the ANN was a desired maximum error (error specification) for the individual wells in the first 

phase of the research and a desired maximum average error for the entire field in the second 

phase. The results of both phases show that the outputs of the ANN can be useful in making 

decisions about the regularity of flow tests. In both phases, the accuracy of the predictions of 

the ANN decreased when the target error specification was reduced. In both cases, for larger 

error specifications, however, the accuracy was found to be high. The ANN had a higher 

accuracy in the second phase (i.e. when its target was the maximum average error of the entire 

field). For error specifications greater than 4% in this phase, the accuracy was over 95%. The 

same accuracy was achieved when the error specification was between 15% to 20% in the first 

phase. 
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Chapter 5: Effect of flow measurement 

uncertainties on reservoir management 
 

 

Chapters 3 and 4 focused on hydrocarbon accounting and allocation errors and explained 

a method to reduce the uncertainty in the production data. Chapter 5, however, is 

dedicated to investigating the effects of flow measurement uncertainties on two important 

tools of reservoir management: history matching and well testing. 

History matching and well testing provide valuable information for the process of 

reservoir management and in decision making. They are therefore indirectly effective on 

the economic recovery of oil and gas. This chapter investigates the potential impacts of 

flow measurement uncertainties on the outcomes of these two industry exercises and 

provides recommendations for mitigating the uncertainties. The first section of the 

chapter (Section 5.1) is on history matching and the second section (Section 5.2) focuses 

on well testing. 
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5.1 History matching‡ 

History matching is the process of modifying a numerical model (representing a reservoir) 

in the light of observed production data. In the oil and gas industry, production data is 

employed during a history matching exercise to reduce the uncertainty in associated 

reservoir models. However, production data, normally measured using commercial flow 

meters that may or may not be accurate depending on factors such as maintenance 

schedules, or estimated using mathematical equations, inevitably has inherent errors. In 

other words, the data which is used to reduce the uncertainty of the model may have 

considerable uncertainty in itself. This problem is exacerbated for gas condensate and wet 

gas reservoirs as there are even greater errors associated with measuring small fractions 

of liquid. The influence of this uncertainty in the production data on history matching has 

not been addressed in the literature so far. In Section 5.1, the effect of systematic and 

random flow measurement errors on history matching is investigated. In order to do that 

two case studies based simulations of an oil reservoir and a wet gas reservoir have been 

undertaken. 

 

5.1.1 Introduction 

The knowledge of reservoir management has dramatically improved. Managing 

hydrocarbon reservoirs to maximise the profit from them, which had a limited knowledge 

and involved just simple calculations in the early years of the oil and gas industry, has 

become a complicated dynamic process of setting goals, decision making, implementing, 

monitoring, analysing data, and modifying decisions (Satter, Varnon and Hoang 1994). 

Reservoir management in its present form needs a multidisciplinary approach and the 

 
‡ The contents of Section 5.1 have been extracted from the following paper: 

 

Sadri, M., Shariatipour, S., Hunt, A. and Ahmadinia, M. (2019) 'Effect of systematic and random flow 

measurement errors on history matching: a case study on oil and wet gas reservoirs'. Journal of Petroleum 

Exploration and Production Technology, 9(4). 

 

The candidate developed the methodology, undertook the required simulations, wrote the Matlab codes, 

analysed the results, and prepared the article. The history matching exercise has been undertaken by the 

help of Schlumberger ECLIPSE software package. The required ECLIPSE data files and reservoir models 

were developed by the candidate. Seyed M. Shariatipour supervised the research and Masoud Ahmadinia 

helped in preparing some graphs in the article.  
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integrated application of different technologies and professional software. In this process, 

a large amount of data is recorded and analysed and engineers need to deal with numerous 

uncertainties. Trice Jr and Dawe (1992), Satter, Varnon and Hoang (1994), Al-Hussainy 

and Humphreys (1996), and Thakur (1996) have explained principles of reservoir 

management in their publications. Recently, the concept of Closed-Loop Reservoir 

Management (CLRM) has been introduced in the literature and several studies have been 

published on this title (Barros, Van den Hof and Jansen 2016; Hanssen, Codas and Foss 

2017; Jansen et al. 2005; Jansen, Brouwer and Douma 2009; Lorentzen, Shafieirad and 

Naevdal 2009; Wang, Li and Reynolds 2009). CLRM (Figure 5.1) is a combination of 

history matching and model-based optimisation and its aim is to change reservoir 

management from a periodic to a near continues process (Jansen, Brouwer and Douma 

2009). As shown in Figure 5.1, history matching plays an important role in the 

management process as it has a direct effect on the reservoir model and an indirect effect 

on the decisions and plans for the reservoir through its impact on the model and on the 

reservoir optimisation. Therefore, perhaps we can name history matching as ‘the heart of 

CLRM’ since it synchronises the two reservoirs (actual reservoir and reservoir model) in 

the loop. 

 

 

 

Figure 5.1: Closed-Loop Reservoir Management (Jansen, Brouwer and Douma 2009).  
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History matching is an inverse problem. In a forward problem, the output of a system is 

calculated based on the characteristics of the system (Figure 5.2). In an inverse problem, 

the system is unknown and the observed output of the system is used to determine its 

characteristics (Kirsch 2011). However, the output data usually has inherent errors that 

affect the calculations. As a consequence, the obtaining system characteristics might be 

different from the actual ones. In history matching, the system is a reservoir and the output 

is its production data. The difference is that the reservoir is not completely unknown and 

an initial model is available based on the information obtained from other sources such 

as seismic data, well testing, and laboratory experiments on the characteristics of the 

reservoir rock and fluid samples. However, since this initial model is highly uncertain, 

the production data is used to mitigate the model uncertainties. History matching is widely 

used in the oil and gas industry and many different methods of performing it have been 

published in the literature (Chakra and Saraf 2016; Hamdi et al. 2015; Makhlouf et al. 

1993; Obidegwu, Chassagne and MacBeth 2017; Oliver and Chen 2011; Oliver, Reynolds 

and Liu 2008; Tunnish, Shirif and Henni 2018). 

 

 

Figure 5.2: Forward and inverse problems. In an inverse problem, such as history 

matching, the characteristics of an unknown system are estimated based on its observed 

output data. 

 

As stated above, production data is employed in history matching to reduce the 

uncertainty of the reservoir model. However, production data (oil and gas production 

rates, water cuts, and downhole or wellhead pressures) similarly has inherent uncertainty. 

Any observed data inevitably contains errors and the extent of an error depends on the 

estimation method or the measurement equipment which is employed to gather the data. 
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Therefore, history matching does not merely deal with the uncertainty in the system, but 

also with the uncertainty in its own inputs which can potentially affect the results. 

Although different types of reservoir uncertainty have been comprehensively studied 

previously (Abdollahian, Tadayoni and Junin 2018; Babak and Deutsch 2008; Habib et 

al. 2017; Mozaffari et al. 2017; Stephen and Macbeth 2008; Tavassoli, Carter and King 

2004; Xu et al. 2018), the uncertainty in the observed data has not drawn the attention of 

researchers so far.  

 

Oil, gas, and water production flow rates are the main observed data sets used in history 

matching. In different oil and gas fields, different methods are used to record production 

flow rates. As it was mentioned in Chapter 4, in many cases, production from different 

wells is commingled and the total production is sent to the separation unit. The single-

phase stream flowing out of the separation unit is measured by flow meters subsequently. 

Having the total flow rate of all wells, engineers then allocate flow rates to each well 

based on allocation factors. Allocation factors are normally determined based on flow 

rate measurements from intermittent tests on individual wells. To perform the tests, 

operators disconnect individual wells from the main production pipe and send the flow 

rate of the well to a test separator. As a result, they can measure production flow rates for 

individual wells and hence calculate the proportion of the production of each well to the 

total production. The gap between two tests varies for different fields but normally the 

test is not undertaken more than once a month. The uncertainty in allocation methods is 

large since the actual proportion of the production of each well to the total production 

does not remain the same as the measured one. Moreover, there is no guarantee that the 

production conditions over the test time are the same as the conditions during normal 

production. The principles of different methods of allocation have been explained by the 

Energy Institute (2012). The focus of many publications on allocation is its application in 

hydrocarbon accounting (Cramer et al. 2011; Kaiser 2014; Pobitzer, Skålvik and Bjørk 

2016). There is a dearth of publications on the application of allocation data in reservoir 

analysis, reservoir management and history matching. Among the latter publications is 

the work of Bergren, Lagerlef and Feldman (1997). They reported their successful 

experience in employing an allocation system including computers, communications 

hardware, and software for both hydrocarbon accounting and reservoir management for 
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Prudhoe Bay oil field in Alaska. In another research study, Marshall et al. (2019) 

investigated the effect of random errors in production data on forecasted hydrocarbon 

recovery. They showed that in a case where the reservoir model is selected incorrectly 

due to the errors, it can have a significant effect on the estimated recovery factor and 

reservoir parameters which are obtained in well testing. 

 

Another method that is currently employed in some fields, especially for offshore ones, 

is the use of multi-phase flow meters (MPFM) for individual wells. In this method, 

although the production data of individual wells is recorded with a higher accuracy the 

data still has some errors. The error is larger for gas reservoirs where gas void fractions 

are greater than 90% (Leeson, Heering and Dykesteen 2001). MPFMs normally struggle 

to recognise small fractions of liquid. Therefore, for a gas void fraction greater than 90%, 

the inaccuracies rapidly rise with the increasing percentage of gas. Generally, flow 

measurement in wet gas and gas condensate reservoirs is more challenging than oil 

reservoirs and the flow measurement data for gas reservoirs normally includes more 

uncertainty (Letton and Hall 2012). Falcone et al. (2002) have undertaken a thorough 

research on the applications of MPFMs in the oil and gas industry. A book on principles 

and applications of MPFMs has been published based on their research later (Falcone, 

Hewitt and Alimonti 2009).  

 

Flow meters exhibit two types of error: systematic and random. Random errors shift each 

measurement by a random amount up to the error specification of the flow meter in a 

random direction. Therefore, different measured values are obtained when a measurement 

is repeated several times for a constant quantity. Random errors have no pattern and they 

are unpredictable. Although there is no way to have zero random error and the existence 

of random errors in the measured data is unavoidable, it is possible to increase the 

precision of the flow meter and reduce the error specification by using new flow metering 

technologies (Tombs et al. 2006). Random errors tend to be normally distributed. They 

can be analysed statistically and explained in terms of their mean (Eq. 2.6) and standard 

deviation (Eq. 2.7). 

In this chapter, the word ‘precision’ has been used to describe the magnitude of the 

random errors qualitatively. In technical terms, a more precise flow meter has smaller 
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random errors. On the other hand, systematic errors are normally predictable and they 

usually exhibit a pattern. Systematic errors shift all of the measurements in the same 

direction and by the same magnitude. The error is typically constant or proportional to 

the true value of the measured quantity. Since the shift of the data is in one direction, 

systematic errors do not have a zero mean. Another difference between systematic and 

random errors is that systematic errors can be avoided by identifying and eliminating their 

causes, these primarily being improper calibration and poor maintenance. Flow meters 

are normally subjected to high pressure and temperature, friction with fluids, and 

deposition of asphaltene, wax, and scale. These factors and other similar environmental 

impacts change the operational conditions of a flow meter (Lindsay et al. 2017; Liu et al. 

2017). Therefore, they need to be calibrated and maintained regularly to be able to work 

within the desired error specifications and it takes a part of annual operational costs of oil 

and gas companies. The term that has been used in this article to explain the extent of 

systematic error is “trueness”. “Accuracy” is another more general technical term that 

includes both types of errors. An accurate flow meter is a flow meter with a high precision 

and trueness (i.e. low systematic and random errors). The terminology is the same as most 

technical articles on errors. Figure 5.3a shows the different possible states of a data set in 

terms of its trueness and precision. More information about systematic and random errors 

has been presented by Taylor (1997). Figure 5.3b shows the data sets which were 

employed for the oil cases in this research. As the comparison between Figures 5.3a and 

5.3b suggests, each data set based on its random and systematic error represents a 

different level of precision and trueness. More details about Figure 5.3b and the 

generation of the data sets have been presented below in the oil reservoir section of this 

chapter.  



82 

 

 

Figure 5.3: (a) Different states of a data set in terms of its trueness and precision and; (b) 

the error values of the data sets employed in this research (each blue point represents both 

systematic and random error values for one of the data sets). The defined data sets in 

Figure 5.3b represent different states in Figure 5.3a. 

 

So far, the focus of many oil and gas industry researchers and professionals has been on 

investigating the effects of flow measurement errors on custody transfer and fiscal 

measurement (i.e. hydrocarbon accounting). Custody transfer is when oil or gas is 

transferred from one operator to another. Fiscal measurement is a more general term. It 

includes any flow measurement used to determine the financial value of the delivered oil 

and gas. In these cases, the accuracy of the measurements is indeed important. Therefore, 

countries have precise regulations and standards for custody transfer and fiscal 

measurement that determines the acceptable error ranges. As a result, operators use 

approved flow meter technologies to meet these regulations. Several publications about 

flow measurement regulations for custody transfer and fiscal measurement are available 

online. For instance, Guidance Notes for Petroleum Measurement (2015) explains the 

regulations in the UK. So far, the role of flow measurement in reservoir management has 

not drawn the attention of professionals as much as its role in fiscal measurements. 

However, the new methods of reservoir management are strongly dependent on data 

analysis and as a result, they are highly sensitive to the quality of the data. As shown in 

Figure 5.1, the output data from the actual reservoir is inevitably noisy and this noise and 

any other error in the observed data impacts on the whole process of reservoir 



83 

 

management, including history matching and reservoir optimisation. The quality of the 

data also indirectly affects the hydrocarbon recovery by affecting the reservoir 

management and decision-making process. Therefore, it is important to have an idea of 

the required quality for the data which can guarantee a good management over the 

reserves and maximised oil and gas recovery. In this chapter, the effect of systematic and 

random flow measurement errors on history matching has been investigated. Production 

data is the main group of data which is employed in reservoir management. Investigating 

the effects of flow measurement errors in production data on history matching opens up 

new ways to undertake further research on the effects of flow measurement errors on 

reservoir management and hydrocarbon recovery. In a previous study, we showed that 

flow meters which have errors just in one direction (i.e. positive or negative) cause more 

errors in the results of history matching compared to when they have errors in both 

directions (Sadri, Shariatipour and Hunt 2017). In this chapter, as a more general 

investigation, the effect of systematic and random flow measurement errors on history 

matching in an oil and a wet gas reservoir is addressed. In the following lines, first, the 

methodology of this work including the details of the simulation models, the prepared 

Matlab code, and the error data sets has been explained, the results presented and 

discussed, and finally the conclusions and suggestions have been briefly stated. 

5.1.2 Methodology 

Two case studies on two synthetic reservoirs, an oil and a wet gat reservoir, have been 

undertaken in this research to investigate the effects of systematic and random flow 

measurement errors on history matching.  

 

5.1.2.1 Oil Reservoir 

For the oil reservoir case, a reference reservoir model with the characteristics shown in 

Table 5.1 was employed in the Schlumberger ECLIPSE simulator to produce reference 

production data (oil, gas and water production rates) over ten years.  
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Table 5.1: Characteristics of the reference oil reservoir. These characteristics were 

employed to build the reservoir model. 

Initial reservoir pressure 304.20 bar 

Porosity 0.18 

Horizontal permeability 60 mD 

Vertical permeability 10 mD 

Saturation pressure of reservoir hydrocarbon 386.11 bar 

Density of oil at the surface conditions 721 kg/m3 

Density of water at the surface conditions 1009 kg/m3 

Density of Gas at the surface conditions 1.12 kg/m3 

 

The data was then imported into the Matlab software and a Matlab code generated 15 data 

sets with different ranges of systematic and random error, as shown in Figure 5.3b. 10% 

was chosen as the highest error in each category (random or systematic). It means the 

highest error that was possible to happen for this case was 20%. These data sets were later 

used as observed production data in history matching. Random errors have been produced 

using randomly generated numbers within the specified ranges (i.e. 0%, 5%, and 10%) in 

both the positive and negative directions. For instance, when the error specification was 

5%, random errors could take any value between -5% to +5%. However, systematic errors 

were set to fixed percentages (i.e. 0%, 1%, 2%, 5%, and 10%) and their values were 

proportional to the reference values. After creating the data sets, the Matlab code 

generated RSM files (a format which can be imported into ECLIPSE for further 

simulations and history matching) including the observed data. The code can also perform 

a statistical analysis and report the results in terms of the mean (Eq. 2.6) and standard 

deviation (Eq. 2.7) of the data sets in an Excel file. The statistical information about the 

data sets used in this work is shown in Table 5.2.   
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Table 5.2: The details of the errors in different data sets which were used in the history 

matching. The data sets in the lighter shaded rows have been used for both oil and wet 

gas reservoirs and the data sets in the darker shaded rows have been used only for the wet 

gas reservoir. These data sets in addition to the reference production data have been 

employed to generate the observed data in the history matching. 

Data Set 

Number 

Systematic 

Error (%) 

Random 

Error (%) 

Mean of Errors 

(%) 

Standard Deviation of Errors 

(%) 

1 1 0 1.00 0.00 

2 2 0 2.00 0.00 

3 5 0 5.00 0.00 

4 10 0 10.00 0.00 

5 20 0 20.00 0.00 

6 0 5 -0.07 2.92 

7 1 5 0.93 2.92 

8 2 5 1.93 2.92 

9 5 5 4.93 2.92 

10 10 5 9.93 2.92 

11 20 5 19.93 2.92 

12 0 10 -0.13 5.84 

13 1 10 0.87 5.84 

14 2 10 1.87 5.84 

15 5 10 4.87 5.84 

16 10 10 9.87 5.84 

17 20 10 19.87 5.84 

18 0 20 -0.27 11.68 

19 1 20 0.73 11.68 

20 2 20 1.73 11.68 

21 5 20 4.73 11.68 

22 10 20 9.73 11.68 

23 20 20 19.73 11.68 
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In the next stage of the work, the observed data (i.e. reference data with errors) was used 

in history matching to modify an uncertain reservoir model. The only differences between 

the uncertain model and the reference model were the values for porosity and 

permeability. These values were 0.28 and 40 mD for the uncertain model, respectively. 

Finally, the data from the modified model was compared to the data from the reference 

model to show the effect of the systematic and random flow measurement errors on the 

results of the history matching (i.e. estimated porosity, permeability, oil and gas 

production). This process was undertaken for all the data sets with different random and 

systematic errors and the results were compared and analysed. The systematic and random 

errors were defined so that they represent different states of a flow meter (or allocated 

data) based on its trueness and precision, as shown in Figure 5.3. The density of the data 

sets around (0,0) point was higher because in high precision and high trueness even a one 

percent change in the error might have a significant effect. Also, the number of the chosen 

values for systematic error was greater than random errors because initially we expected 

to see a more significant effect due to systematic errors; an expectation which was later 

proved to be correct based on the results.   

In this chapter, the traditional method of history matching has been used to modify the 

uncertain reservoir model. In the traditional method, the best match between the 

simulation results and the observed data is used for reservoir model modifications. The 

best match is obtained by performing the simulations and comparing the simulation 

results to the observed data in an iterative procedure. In each iteration, the sum of the 

squared residuals (the difference between the observed and simulated values) is 

calculated and compared to that of the previous iteration. The aim of this method (least-

squares method) is to minimise the mentioned calculated value. When the difference 

between two calculated values in two consequent iterations is less than a specified value 

(e.g. 0.1), the iterative procedure is stopped and the match is considered as the best 

possible one. Since the parameters of the reservoir model (in our case the porosity and 

permeability) are updated in each iteration to gain a better match, in fact, the model 

modification is also performed in the iterative procedure at the same time. Therefore, the 

model of the last iteration is considered the most up to date reservoir model and used for 

production forecast. We refer to this model as the “modified model” in this chapter. 
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 Porosity and permeability were chosen as the parameters to be modified because they are 

among the most important characteristics of a reservoir that can affect its production 

forecast. The other characteristics of the uncertain model were kept the same as the 

reference model to make the problem simple and enable us to see the pure effect of flow 

measurement data on the modifications and future forecast. In the final step, the porosity 

and permeability of the modified model and the oil and gas production forecast for the 

next 20 years have been compared to those of the reference model and the error of these 

parameters has been reported to show the effect of flow measurement errors on history 

matching. The errors in porosity, permeability, and forecasted oil and gas production were 

calculated based on Eq. 5.1. 

 

𝐸𝑃 = |
𝑣𝑒𝑠𝑡 − 𝑣𝑟𝑒𝑓

𝑣𝑟𝑒𝑓
× 100|                                                                                   (5.1) 

 

where 𝐸𝑃 is the parameter error (%), 𝑣𝑒𝑠𝑡 is the estimated parameter value, and 𝑣𝑟𝑒𝑓 is 

the reference parameter value.  

Figures 5.4a to 5.4c show the obtained matches between the simulation results (oil, gas 

and water production rates) and the data set with 5% systematic error and 10% random 

error after the history matching. The results of the reference oil reservoir have also been 

illustrated for comparison. The gap between the results of the history matching and the 

reference reservoir clearly show that the errors have affected the history matching. 
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Figure 5. 4: The history matching results of the oil reservoir for: (a) oil; (b) gas, 

and; (c) water production rates based on the data set with 5% systematic and 10% 

random error.  
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5.1.2.2 Wet Gas Reservoir 

The same procedure for the oil reservoir was undertaken for a synthetic wet gas reservoir, 

with characteristics shown in Table 5.3. As stated earlier, measuring flow rates in wet gas 

reservoirs is more challenging than oil reservoirs due to the small fraction of producing 

liquid compared to gas. Therefore, there is normally more uncertainty associated with 

observed data for wet gas reservoirs than oil reservoirs (Letton and Hall 2012). To address 

this issue in the research, the range of systematic and random flow measurement errors 

in the observed data for the wet gas reservoir was increased to 20%. As a result, 23 

observed data sets with different values of systematic and random flow measurement 

errors were employed in the history matching for the wet gas reservoir. The statistical 

information of the data sets is shown in Table 5.2.  

 

Table 5.3: Characteristics of the reference wet gas reservoir. These characteristics have 

been employed to build the reservoir model. 

Initial reservoir pressure 302.06 Bar  

Porosity 0.18 

Horizontal permeability 60 mD 

Vertical permeability 10 mD 

Density of liquid hydrocarbon at the 

surface conditions 

640 kg/m3 

Density of water at the surface 

conditions 

1009 kg/m3 

Density of Gas at the surface 

conditions 

0.84 kg/m3 

 

 

5.1.3 Results and discussion 

Figures 5.5a to 5.5d show the final errors in the oil reservoir history matching results from 

different observed data sets. The figures illustrate the errors in the simulated oil 

production, gas production, porosity and permeability, respectively.  
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Figure 5.5: Final errors of the history matching in estimating: (a) oil production; (b) gas 

production; (c) porosity; and (d) permeability for all the employed data sets for the oil 

reservoir (“sys” and “rand” refer to systematic and random errors, respectively).  

 

The plots clearly illustrate the substantial effect of systematic errors on history matching, 

with a contradictory suggestion that the effect of random errors is insignificant. While 

history matching errors of all of the considered parameters (oil production, gas 

production, porosity, and permeability) are less than 2% when systematic error is 0% and 

random error is 10%, they increase to more than 9% for the opposite case when systematic 

error is 10% and random error is 0%.  Therefore, based on the results, an increase in the 

systematic error (i.e. decreasing trueness) is seen to cause a significant increase in the 

history matching error for all the investigated parameters. However, all the simulation 

0

2

4

6

8

10

12

sys 0% sys 1% sys 2% sys 5% sys 10%

Er
ro

r 
%

(b)

rand 0%

rand 5%

rand 10%

0

2

4

6

8

10

12

sys 0% sys 1% sys 2% sys 5% sys 10%

Er
ro

r 
%

(a)

rand 0%

rand 5%

rand 10%

0

2

4

6

8

10

12

sys 0% sys 1% sys 2% sys 5% sys 10%

Er
ro

r 
%

(c)

rand 0%

rand 5%

rand 10%



91 

 

results show that increasing random error (i.e. decreasing precision) does not have a major 

effect on history matching. A possible explanation for this observation is that random 

errors have a distribution in both the positive and negative directions. Therefore, they 

dampen the effect of each other. Systematic errors, however, are distributed in only one 

direction (positive or negative). Unexpectedly, for the oil production, gas production, and 

porosity, we see a decrease in the history matching errors with the increase of the random 

error when the systematic error is more than 2%. Therefore, the results show that in this 

region, not only does the lower precision of the flow meter not increase the error in history 

matching, but the results are seen to be improved by a dampening in the effect of the 

systematic errors. This dampening effect can be a consequence of the even distribution 

of the random errors.  

The results of three out of four parameters (oil production, gas production, and porosity) 

show a decreasing trend in the history matching error when the systematic error is small 

(i.e. from 0% to 1%). The trend then increases for larger systematic errors (i.e. from 2% 

to 10%). Therefore, it can be concluded that for these three parameters the effect of 

random error is dominant when the systematic error is small (i.e. less than 2% in this 

case). However, beyond two percent, the systematic error has a dominant effect. The plot 

for the fourth parameter (permeability), though, shows a continuous increase of history 

matching error for all the range of the systematic error (i.e. from 0% to 10%). In contrast 

to the other three parameters, increasing the random error also leads to a continuous 

increase in the permeability error for the whole range. All these results, in addition to the 

higher value of permeability errors compared to the errors of the other parameters, suggest 

that the estimated permeability is more sensitive to flow measurement errors. Therefore, 

for the permeability, even the effect of a one percent increase in the systematic error can 

clearly be seen in the plot. 

Figures 5.6a to 5.6d show the final errors in the history matching results for the gas 

reservoir causing from different observed data sets. Similar to the oil reservoir, the plots 

show errors in hydrocarbon liquid production, gas production, porosity, and permeability.  
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Figure 5.6: Final errors of the history matching in estimating: (a) hydrocarbon liquid 

production; (b) gas production; (c) porosity; and (d) permeability for all the employed 

data sets for the wet gas reservoir (“sys” and “rand” refer to systematic and random errors, 

respectively).  

 

In wet gas reservoirs, the hydrocarbon under the reservoir conditions (reservoir pressure 

and temperature) is in the gas phase. The liquid hydrocarbon appears in their production 

as a result of the low pressure on the surface. Since no liquid hydrocarbon is formed and 

accumulated in the formation around the wells (inside wet gas reservoirs) during 

production, the composition of the producing hydrocarbon does not change over time. 

Therefore, in contrast to oil or gas condensate reservoirs, the gas to liquid ratio (GLR) 

remains the same during the life of a wet gas reservoir. As a result of the constant GLR 

in wet gas reservoirs, the error in hydrocarbon liquid and gas production forecast is 

exactly the same because their ratio remains the same. This is the reason why Figures 
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5.6a and 5.6b show similar errors for the liquid and gas production forecasts. More 

information about characteristics of wet gas reservoirs have been presented by Ahmed 

(1989), McCain (1990) and Dandekar (2013).  

The results of the history matching exercise for the wet gas reservoir generally agree with 

the results obtained from the oil reservoir. Similar to the previous case, the effects of the 

random flow measurement errors were seen to be insignificant but the effect of the 

systematic errors are seen to be considerable. In considering all the plots in Figures 5.5 

and 5.6, it is observed that there is no general trend in the changes of the history matching 

error as a function of the random error. It occurs due to the nature of random errors since 

they unsystematically deviate the data points towards both directions. Therefore, the total 

effect of the random errors may boost the effect of the systematic error if they are in the 

same direction or balance it if they are in opposite directions. Although greater errors (up 

to 20%) were applied to the wet gas data sets, the effect of the flow measurement errors 

on the wet gas reservoir model parameters (i.e. porosity and permeability) was seen to be 

less than their effect on the oil reservoir model. For instance, the largest error in the oil 

reservoir model parameters was 10.13% which occurred for an estimated permeability 

based on the data set with 10% systematic and 10% random error. This value in the wet 

gas reservoir results is just 5.15% for estimated permeability based on the data set with 

20% systematic and 20% random error. However, the small errors in the wet gas reservoir 

model resulted in greater errors in the liquid and gas production forecasts. For example, 

based on the data set with 20% systematic and 0% random error, 4.92% and 4.04% error 

occurred for an estimated porosity and permeability respectively, while the error rose to 

14.13% for both liquid and gas production forecasts. As a conclusion, although systematic 

flow measurement errors might not have a significant effect on a wet gas reservoir model, 

they can affect its production forecasts considerably.  

In the results of the wet gas reservoir, no meaningful trend is seen for the change in the 

parameter errors as a function of random errors. Although for porosity, similar to the 

results of the oil reservoir, when the random error has increased the effects of the 

systematic error have dampened, for the other three estimated parameters there is no clear 

trend in the change of the parameter errors when the random error has changed. The effect 

of systematic errors in some cases has boosted and in other cases has been mitigated by 

increasing random errors. This observation is not surprising due to the nature of random 
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errors. However, since the effect of the random errors is not considerable compared to the 

effect of systematic errors, in many cases it can be ignored without any significant change 

in the estimated results.  

 

The significant effect of systematic errors on the final parameter estimations and 

production forecasts for both reservoirs shows the importance of the careful calibration 

and maintenance of flow meters. As previously stated in the introduction, systematic 

errors can be prevented if the source of the error is found and eliminated. In contrast to 

systematic errors, although random errors can be reduced by installing new more precise 

flow meters, this can be a costly exercise for oil and gas companies. The results of this 

study suggest that in terms of history matching and reservoir management, replacing 

current flow meters with new ones might not be the best decision to improve the quality 

of observed production data. An alternative would be to invest in the regular calibration 

and maintenance of existing flow meters, which would be a more effective and at the 

same time more economic decision. In addition to suggesting that regular calibration is 

valuable, this chapter provides justifications (e.g. the possible cost of errors in history 

matching) to help in establishing a cash value for that re-calibration in future, hence 

allowing better management decisions. This cash value may vary substantially for 

different fields and wells and may also lead to justifications for a different approach such 

as placing one meter per well, or replacing one type of meter with another, or placing 

meters on specific high uncertainty wells. It can be an interesting topic for future research 

studies. 

Recalibration and maintenance of flow meters are already undertaken properly by many 

oil and gas companies based on their production protocols. However, the error in the 

production data that can affect history matching is not just caused by the flow meters. In 

many oil and gas fields, production streams of different wells are commingled and only 

the total flow rate of all wells is measured by flow meters. In these cases, the flow rates 

of individual wells are estimated by allocation calculations based on the results of 

occasional flow tests and the total flow rate of all wells. Allocation errors are normally 

larger than flow meter errors and they can have a more significant effect on history 

matching. Increasing the regularity of flow tests or installing multi-phase flow meters on 
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individual wells can reduce the systematic and random errors in the production data of 

individual wells and therefore reduce the uncertainty in the history matching process. 

 

5.1.4 Conclusions 

The results of the study clearly show the considerable effect of systematic flow 

measurement errors on the results of history matching. However, for the simulated oil and 

wet gas reservoir cases used in this study, the effect of random flow measurement errors 

on history matching was seen to be insignificant. Although systematic errors can be 

reduced by more careful calibration and maintenance of flow meters, random errors are 

normally reduced by replacing an old flow meter with a more precise one that as a 

consequence entails considerable expense for oil and gas producing companies. However, 

this study shows that particularly for history matching exercises, reducing random error 

doesn’t lead to a consequent considerable reduction in the errors in the final results. 

Therefore, for the case of history matching, this study emphasises the importance of 

regular calibration and maintenance schedules for existing flow meters as being a 

potentially more effective alternative to investing in replacing the flow meters with new, 

more precise ones. Moreover, as the need for calibration is primarily to reduce systematic 

errors, it is important that the calibration is focussed on the actual operating range of the 

meter in its installed location.  

Based on the results, history matching has been seen to be more sensitive to the flow 

measurement errors for an oil reservoir than for a wet gas reservoir. However, although 

the effect of flow measurement errors on the wet gas model parameters (i.e. porosity and 

permeability) has not been substantial, they have considerably affected the output 

parameters of the model (i.e. gas and liquid production forecast). In addition, there is 

normally a significant uncertainty in the production data of wet gas reservoirs due to the 

difficulty of measuring low fractions of liquid. This study shows that the effect of the 

uncertainty on the results of history matching for wet gas reservoirs can be noticeable. 
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5.2 Well testing§ 

Another main source of information from a reservoir and its production wells is well 

testing. In a  well test (it is also called a pressure transient test) production parameters 

(mainly production flow rates and well pressure) are monitored for a short period of time 

(i.e. normally a few tens of hours to a few hundreds of hours) and then the recorded data 

are analysed to calculate the characteristics of the tested well and the reservoir. Well tests 

are therefore different from flow tests (flow tests were explained in the previous chapters) 

although test separators are normally used in both of them. The main difference is that in 

a flow test the purpose is achieving production flow rates of individual wells while in a 

well test the recorded pressure data are also analysed in an inverse problem to estimate 

some parameters of the well and the reservoir.  

The information that is provided by well test analysis plays an important role in reservoir 

management since it is used in simulations, reservoir optimisation and the decision-

making process. On the other hand, flow measurement facilities (such as the test 

separator, single-phase flow meters, or MPFMs) are fundamental elements of well testing 

systems. Flow measurement uncertainties, therefore, can have an impact on reservoir 

management and the economic recovery of oil and gas through well testing. Section 5.2 

focuses on the impacts of flow measurement uncertainties on well testing and has 

provided some recommendations on eliminating some of these uncertainties. 

 

5.2.1 Background 

The majority of hydrocarbon reservoirs are located under the surface of the earth. It means 

the only access to the reservoir is through a limited number of drilled wells. Although 

some reservoir characteristics can be obtained by analysing rock and fluid samples taken 

from inside the wells, generalising these obtained characteristics based on a limited 

 
§ The contents of Section 5.2 have been extracted from the following paper with permission from the 

publisher (Begell House) and the authors: 

Marshall, C. D., Sadri, M., Hamdi, H., Shariatipour, S. M., Lee, W. K., Thomas, A. and Shaw-Stewart, J. 

(2019) 'The role of flow measurement in hydrocarbon recovery forecasting in the UKCS'. Journal of Porous 

Media, 22 (8). 

The candidate contributed to analysing the results, adding literature review and some extra test, and 

preparing and getting published the article. Other authors developed the methodology, undertook the 

calculations, contributed to analysing the results, and preparing the final article. The simulations have been 

undertaken by Hamidreza Hamdi and the results are presented in this section with his permission. 
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number of samples to the entire reservoir creates a large uncertainty in the knowledge of 

the reservoir. In other words, even after drilling the wells and starting oil or gas 

production, the reservoir is still a largely unknown system to us. Therefore, the recorded 

data from the reservoir during the production period or when well testing is being 

undertaken is analysed in order to mitigate the reservoir uncertainty through an inverse 

problem. Using the data, engineers try to gain a better understanding of the reservoir 

which is a necessary precursor to ensure a good management of the reserves and helps to 

maximise the economic recovery through increasing the exploitation of the well. 

Therefore, many articles can be found in the literature that have addressed methods of 

reservoir uncertainty quantification (Abdollahzadeh et al. 2012; Hajizadeh, Christie and 

Demyanov 2011; Scheidt and Caers 2009), history matching (Abdolhosseini and 

Khamehchi 2015; Zeng, Chang and Zhang 2011; Zhao et al. 2016) and well testing 

(Ahmadi, Aminshahidy and Shahrabi 2017; Bottomley et al. 2016; Hamdi 2014).  

The data that is used in all methods developed to reduce the reservoir uncertainty has 

some uncertainty in itself. The data from a reservoir is measured or estimated using 

mathematical formulas. Therefore there is always some measurement or estimation error 

within the data (Lindsay et al. 2017). This error can potentially change the calculated 

values for reservoir characteristics (e.g. porosity and permeability) and therefore 

negatively affects the decisions made for the reservoir (e.g. location of new wells and 

production rates). In other words, the error in the data can indirectly reduce the economic 

recovery from the reservoir. This issue has not been thoroughly addressed in the literature 

so far. There is a dearth of literature pertaining to the effect of flow measurement on 

reservoir performance. Falcone et al. (2001) discussed the benefits and shortcomings of 

using multi-phase flow meters (MPFM) in oil fields. In their article, they mentioned that 

in well testing and production allocation, the cost of the operation is reduced by replacing 

the test separator with an MPFM. MPFMs can also provide real-time continuous data that 

helps operators to identify sudden changes in the production (e.g. water or gas 

breakthrough) and react faster. Therefore, using MPFMs can indirectly increase the 

recovery of oil and gas. Sadri, Shariatipour and Hunt (2017) investigated the effect of 

flow measurement errors on the production forecast. They performed several history 

matches based on different sets of observed data with different ranges of measurement 

error and concluded that flow meters which either overestimate or underestimate the flow 
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rate have a more negative effect on history matching compared to the flow meters that 

have errors in both directions. Sadri, Shariatipour and Hunt (2018), in a later work (it is 

presented in Section 5.1), studied effects of systematic and random flow measurement 

errors on history matching. The results of their case study show that although the effect 

of random errors are not significant, systematic errors substantially influence the results 

of history matching.  

The aforementioned studies have focused on the role of flow measurement in reservoir 

management but not specifically through well testing. In Section 5.2 the effects of flow 

measurement errors on the results of a well test analysis have been briefly investigated. 

In addition, the possible indirect effect of flow measurement errors on hydrocarbon 

recovery has been discussed and the impact of accurate flow measurement on maximising 

economic recovery has been emphasised. 

In order to manage a reservoir appropriately, the produced fluids have to be measured 

accurately. As it was discussed in Section 5.1, history matching is an important exercise 

of reservoir management that can be affected by the accuracy of flow measurements.  

Figure 5.1 shows well testing as another element in the loop of reservoir management. 

This exercise is also sensitive to the accuracy of flow measurement data. 

Well testing is typically accomplished by ‘flow sampling’, through the use of test 

separators and associated equipment – namely single-phase flow measurement 

technologies. Well test data is critical to operations in the offshore industry and covers a 

wide variety of applications. The data can be used to allocate produced fluids to particular 

wells either directly, or through verification of multi-phase flow meters. The data can also 

be used in the determination of reservoir size and in the positioning of new wells and 

installations. Another key use of well test data is in the optimisation of well production 

where well stream parameters can be altered to maximise hydrocarbon production levels. 

Recent first-hand audit experience by the UK’s Oil and Gas Authority (OGA), however, 

suggests that well test measurement systems may not be operating near their optimal 

levels (Oil & Gas Authority 2015). For instance, primary measurement elements (flow 

meters) are often not removed and recalibrated on a routine basis. There is also evidence 

of flow meters being exposed to two-phase flows resulting in meter degradation. In 

addition, the interval between the testing of individual wells may extend to several weeks, 

with the flow rates between tests inferred by interpolation. The risk is therefore that these 
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measurements may result in a measurement bias or increased uncertainty. Basing 

reservoir optimisation efficiency and production strategy on measurements where there 

are fundamental issues that cause unknown levels of uncertainty is clearly not a good 

practice. As such, mechanisms to provide measurement confidence, such as audits, are in 

place to ensure compliance.  

One of the first comprehensive studies on the analysis of well test pressure responses was 

presented by Matthews and Russell (1967). Among the other early works that explain the 

principles of well test analysis in detail are Ramy, Kumar and Gulati (1973) and 

Earlougher (1977). Numerous studies have been published with a focus on specific 

methods of well testing and their advances. Build-up (Barbe and Boyd 1971; Foster, 

Wong and Asgarpour 1989; Hegeman, Hallford and Joseph 1993) and draw down (Chase 

2002; Khosravi and Ketabi 2014) tests have been the most common methods addressed 

in the literature. In a build-up test, a producing well is shut in and then the downhole 

pressure change is recorded over time and analysed. In a draw down test, the downhole 

pressure change is measured for a well that is initially (or after an extended shut-in period) 

brought into production.  Many other techniques of well testing, such as the drill stem test 

(DST), production test, multi rate test, and interference test, have been presented in the 

literature. More details about different well test methods have been presented by Stewart 

(2011).   

A basic well test system consists of a subsurface string, incorporating downhole tools 

such as gauges, check valves, flow switching valves, isolation valves and packer 

assemblies, together with a surface or deck system for separating, sampling and metering 

the fluids flowing from the well. A detailed explanation of the operational aspects of well 

testing has been presented by McAleese (2000). Well tests mainly incorporate estimating 

some reservoir properties such as reservoir size or reservoir storage capacity. They are 

used to obtain dynamic data from a reservoir during different stages of the life of that 

reservoir. It therefore, affects decision-making regarding further development. Well 

testing objectives are diverse and can be used to confirm the existence of hydrocarbon 

fluids in the drilled wells, to obtain downhole samples and to characterise the reservoir. 

The duration of a typical well test is usually short, of the order of tens or hundreds of 

hours. The main well test deliverables that can influence maximising economic recovery 
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(MER) and will be discussed further in Section 5.2 are reservoir parameter 

characterisation, reservoir model selection, and production flowrate determination. 

These three deliverables link closely to MER through reservoir optimisation and the 

ability to maximise the recovery factor for the well. Typically, a reservoir characterisation 

is achieved by finding a model that matches the empirical data which can provide the well 

characteristics, such as flow capacity (i.e. permeability-thickness product), skin factor, 

and the structural and/or hydrodynamic boundaries.  

The ultimate goal of either test is to describe a reservoir such that it can reproduce the 

same output for a given input signal. Therefore, because well testing is effectively an 

inverse problem - one which needs the data to match the model - its interpretation largely 

depends upon the quality of input and output data. Hence, the focus of the study is on 

investigating the role of measurement uncertainty upon MER. 

 

5.2.2 Methodology 

The focus of the work lays in running a number of simplified models in order to explore 

the importance of rate measurement for well test interpretations; as opposed to developing 

in-depth models akin to those in use commercially. The scope of the study encompasses 

downhole rate measurement as a necessary means of comparing and contrasting such 

measurement with surface techniques. The modelling intends to establish, in broad terms, 

the nature and strength of the link between the uncertainty in the surface well test 

measurement and its importance in maximising future extraction.  

In order to successfully optimise production from a particular well, the well itself has to 

be characterised so that its future production can be accurately modelled with a low 

uncertainty. Only once production has been predicted can the most optimum production 

pattern be obtained. There are two parts to this prediction, namely the characterisation of 

the parameters within the well/reservoir itself e.g. porosity, permeability, skin factor, etc. 

and the model used to calculate the outputs given the input parameters. Both of these parts 

are determined through data collected from the well tests. Traditionally, surface flow 

measurements have been a key component in the analysis. 

In this work, an example reservoir was created and a series of sensitivity runs were 

conducted to assess the output from the example with respect to the changing input 
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parameters. The example reservoir was based on a typical 100 ft vertical well within a 

cylindrical fractured reservoir with an outer radius of 5000 ft (1524 meters). A fractured 

model was chosen as the reference model in this work because it provides the opportunity 

to investigate the effect of flow measurement errors on more reservoir parameters 

compared to a sandstone model. The values for the other parameters of the reservoir are 

shown in Table 5.4. 

 

Table 5.4: Characteristics of the simulated reservoir 

Storativity ratio (ω) Inter-porosity flow 

coefficient (λ) 

Permeability (K) Bulk porosity (S) 

0.1 2 E-6 500 mD 0.27 

 

 

Storativity ratio is the fraction of total porosity associated with fractures and inter-

porosity flow coefficient is the ratio of the permeability of the matrix to the permeability 

of the fracture. The parameters can be taken as descriptors of how fluids flow through a 

reservoir and their definitions can be found in various sources such as (Lee 1982; Terry, 

Rogers and Craft 2013; van Golf-Racht 1982). However, for the purpose of this study 

they can be thought of as inputs to a model where the closeness of the predicted values of 

these inputs to the actual values dictates the accuracy of the model as a whole. 

During each test run, the example reservoir was ‘produced’ with varying levels of 

measurement information recorded and utilised. This measurement data was then used as 

a disturbing signal to generate the pressure data and the predicted reservoir parameters 

using the transient well test interpretations. In other words, we try to investigate how the 

measurement error can lead to a completely different well test interpretation for similar 

models with exactly the same parameters. A comparison could then be made between the 

accuracy of the model and correct parameters in the example reservoir. The test runs 

consisted of a single-phase oil drawdown at a constant flow of 9200 STB/D with a 

duration of 158 hours. Then the well was shut-in for 8 hours for a build-up phase before 

being produced again.  

The second stage production could be applied for any time frame and for these tests the 

well was assumed to produce for 20 years allowing for a direct comparison of cumulative 
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production i.e. how much total hydrocarbon was recoverable over the timeframe 

compared with values obtained during other test runs. This then allows a comparison as 

to which methodology allows for maximising recovery factors, and hence MER.  

The test runs considered during these tests were: 

1. Correct flow rate measurements taken at the surface (well head) 

2. Correct flow rate measurements taken downhole 

3. 10% random error in flow rate measurement taken at the surface  

4. 10% random error in flow rate measurement taken downhole 

The purpose of defining the scenarios is to generally show the effect of random flow 

measurement errors on the calculated hydrocarbon recovery. 

The well test scenario in this work includes a draw down (DD) and then a build-up (BU). 

This scenario is similar to the reported well test by Meunier, Wittmann and Stewart (1985) 

but in a fractured environment. 

 

5.2.3 Results and discussion 

The monitored production flow rates for test runs 1 and 2 are different, particularly at the 

transition between drawdown and build-up. This is due to the fact that once the well is 

shut-in, there will be no flow at the surface. However, with downhole measurement, once 

the well is shut-in the reservoir still flows until it reaches an equilibrium where there is a 

pressure balance and the produced area becomes stable again. Surface flow rate 

measurements do not record this additional flow post well shut-in and therefore do not 

include them in parameter predictions which can cause an error as shown in Figure 5.7a 

and 5.7b. 
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Figure 5.7: Well test diagnostics plot for synthetic test run 1 with standard (a) surface 

flow metering and test run 2 with (b) downhole flow metering (Marshall et al. 2019) 

 

Figure 5.7a and 5.7b show the well test log-log diagnostic plots for test runs 1 and 2 

respectively. The shape, slopes, and plateaux of the curves found on a well test diagnostic 

plot are used to estimate parameters to describe a reservoir which will be used in a 

reservoir model. 

The curves in Figure 5.7a and 5.7b describe the same reservoir but Figure 5.7b conforms 

to a significantly different model than Figure 5.7a. The Y axes of the plots are different 

merely because when variable rates and pressures are employed, as for the case with 

downhole measurements, the well test theory requires the use of a superposition function 

to be able to plot the data on the specialized plots, such as log-log plots, and subsequently 

analyse them. This is based on fundamental well test theory for multi-rate/pressure cases. 

For a simple case with one draw down and one build-up this function will be reduced to 
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a case where we have ΔP (pressure difference) and ΔP' (derivative of pressure difference). 

More information about the superposition function can be found in well test literature that 

provides the fundamental theory of well test data analysis under variable and/or single 

rate change scenarios such as Bourdet (2002) or Houzé et al. (2015). Figure 5.7a is related 

to the case when the variable rate is ignored and only one draw down and one build-up 

are considered. However, in Figure 5.7b the variable downhole rate measurements have 

been implemented. 

 

The results in lower modelling uncertainties and better prediction capability, suggesting 

that for MER, surface flow rate measurements are not the best method of measurement 

available. Figure 5.7a denotes an area as wellbore storage (WBS) on the curve. This is an 

effect that masks well flow rates from surface flow rate measurements through essentially 

a dampening effect. Owing to the distance, pressure differential and other factors, the 

production profile at the well perforations and any associated pulsations or changes in 

component fractions at these points will be ‘smoothed’ out as the fluids flow to the 

production platform. What could have been a high pressure region or high water cut 

region will be averaged out by the rest of the fluids, meaning the information will be lost. 

This is shown in Figure 5.7a. Again, it is important to point out the data itself is used to 

help choose the subsequent correct model to use. 

For test runs 3 (surface measurement) and 4 (downhole measurement) a 10% error was 

introduced into the flow rate measurements to assess the impact of these errors on the 

estimated recovery factor of hydrocarbons. It was found that a 10% flow rate 

measurement error resulted in a 17% permeability estimation error. The location of the 

flow rate measurements (surface or downhole) did not impact this relationship. The 

calculated parameters for test run 2 (no error downhole measurements) and 4 (10% error 

downhole measurements) are compared in Table 5.5. 
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Table 5.5: Parameters calculated based on test runs 2 and 4 

Parameter No error in downhole 

rate (test run 2) 

10% error in 

downhole rate (test 

run 4) 

Permeability 470 mD 550 mD 

Wellbore storage 0.24 0.07 

Storativity ratio (ω) 0.1 0.1 

Inter-porosity flow coefficient (λ) 2E-6 2E-6 

 

ω and λ have the same values in test runs 2 and 4, as shown in Table 5.5. This can be 

because both parameters are ratios between quantities associated to the matrix and 

fracture, as defined in Section 5.2.2. Hence, if the estimated quantities for the two 

aforementioned media change to the same extent due to the flow measurement errors, 

their ratios remain the same. These parameter errors, however, were not found to have a 

significant effect on the estimated recovery factor. As an extreme case, when the flow 

rate error (or equivalently the resulting estimated permeability) is ±50% under the 

conditions in the example reservoir, the recovery factor after 20 years was found to have 

only a 3% error. It should be noted that the effect of permeability is on the accelerated 

recovery i.e. the speed at which the reservoir is producing oil, not on the ultimate recovery 

(Lake and Walsh 2003). It should also be added, however, that in this work, only the 

effect of random errors has been investigated. In reality, flow meters may also have bias 

errors in addition to their random errors as it was discussed in Section 5.1. In most cases, 

random errors have a normal distribution in both the positive and negative direction. 

Therefore, they cancel out or dampen the effect of each other. In contrast to random 

errors, bias (systematic) errors are mostly distributed in just one direction (positive or 

negative). As a result, if the effect of systematic errors is considered, the results may be 

completely different. However, while the effects of systematic errors are widely 

appreciated in the industry, the effects of random errors are sometimes ignored. 

Therefore, in this section the potential significant effects of random errors have been 

analysed and emphasised. 
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As discussed earlier, there are two elements in reservoir prediction necessary to optimise 

production successfully. The main impact on MER from flow rate measurement errors is 

not from the reservoir parameter estimation but from the use of the data to select the most 

appropriate model. For each test run, the data generated on reservoir parameter 

estimations and the most appropriate reservoir model were used to ‘produce’ the example 

reservoir for a period of 20 years. For test runs 1 and 3 a single medium model was 

selected since it was the best match to the data and for test runs 2 and 4 a dual medium 

model was selected for the same reason. Dual medium denotes a reservoir fracture being 

detected whereas single medium denoted no fracture. For all four cases the final recovery 

of the reservoir was estimated.  The results show that the model uncertainty has a higher 

impact on the estimated final recovery compared to the reservoir parameter (e.g. 

permeability) uncertainty. For the single medium and the dual medium models the 

estimated recovery factors are 31.2% and 35%, respectively. Using a single medium 

model, therefore, the reduction in the estimated recovery factor is around 12% compared 

with the dual medium model. Potentially this could be a huge number in terms of an 

estimation of reservoir economics.  

The model and parameter uncertainties which are caused by flow measurement errors not 

only affect the estimated recovery factor but also the actual one. Since the model and the 

parameters are used in simulations and reservoir optimisation then the results are 

employed to make decisions about the reservoir (e.g. deciding about production rates and 

locations of new wells).  The uncertainties caused by flow measurement errors indirectly 

affect the actual performance of the reservoir and the recovery factor. Therefore, they 

influence MER.    

 

5.2.4 Conclusions and recommendations 

As the study shows, the use of downhole flow rate measurements can provide additional 

information on well flows that is not available from surface measurements. Wellbore 

storage issues affect all surface flow rate measurements to some degree resulting in 

dampened measurement results that can induce inaccuracies. Downhole flow rate 

measurements, on the other hand, are the most valuable sources of information for MER 

as they provide real-time, continuous, and undampened reservoir responses. This 
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provides the most accurate and useful data for reservoir engineers in production 

optimisation. In terms of the effects of measurement errors on reservoir parameter 

estimation, it was found that there is a weak link to the estimated recovery factor. Instead, 

the largest contributor to the estimated and actual recovery factor from measurement is 

when the well test data is used to select a reservoir model. This means that the typical 

estimated uncertainties seem to be acceptable in terms of measurement requirements, as 

long as the reservoir model is correct. 
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Chapter 6: Conclusions and 

recommendations 
 

 

6.1 A summary of the results 

In this thesis, the direct and indirect effects of flow measurement uncertainties on the 

economic recovery of oil and gas reservoirs through hydrocarbon accounting and 

reservoir management were investigated. The role of flow testing on the accuracy of 

allocation calculations, which is still the most common method of well flow rate 

estimations in the oil and gas industry, was firstly studied in Chapter 3. In this chapter, 

the effect of increasing the frequency of flow tests on the estimated total production of 

wells, allocation, and hydrocarbon accounting was evaluated. Allocation calculations 

were undertaken for three different cases using actual and simulated production data 

based on one to four flow tests per month. Allocation errors for each case were 

subsequently obtained. The results showed that for all the investigated cases, the average 

allocation error decreased when the number of flow tests per month increased. The 

sharpest error reduction was observed when the frequency of the tests increased from one 

to two times per month. It reduced the allocation error for the three investigated cases by 

0.43%, 0.45%, and 1.11%, respectively, which are equivalent to $18.2M (Million), 

$18.9M, and $46.8M reduction in the yearly cost of the allocation error for the respective 

cases. The reductions in the allocation error cost for the three cases were $27M, $29M, 

and $80M, respectively, when the flow tests were undertaken weekly instead of monthly. 

Although the results of Chapter 3 showed a higher frequency of flow tests can potentially 

increase the accuracy of the allocation process, the question remained as to the minimum 

number of flow tests necessary to reduce the error of the allocation data to less than a 

desired value. In Chapter 4, a machine learning technique was employed to achieve this 

aim. An artificial neural network was trained to find the relationship between the 

statistical characteristics of the production data of oil wells and the minimum number of 

flow tests a month required for each well to secure an estimate of the production data 

within a target error specification. The results showed that the accuracy of the estimations 
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of the network is higher when its target is the average error of the entire field rather than 

the error of its individual wells. For an error specification of 5%, over 99% of the 

estimations were found to be correct when the target was the field error. The accuracy for 

the same error specification was 60% when the target was chosen to be the error of 

individual wells. For both cases, although the estimations exhibited good accuracy in 

larger error specifications, this accuracy decreased when the target error specification was 

reduced. The research results, however, show that the application of a neural network can 

have a significant effect on reducing allocation errors when considering the large 

uncertainty associated with an allocation process. 

To gain a better understanding of the effects of flow measurement uncertainties on the 

economic recovery of oil and gas, Chapter 5 of the thesis was dedicated to studying their 

effects on two main tools of reservoir management, namely history matching and well 

testing. In the first section of Chapter 5, the effects of systematic and random flow 

measurement errors on history matching were investigated. Initially, 14 production data 

sets with different ranges of systematic and random errors, from 0% to 10%, were 

employed in a history matching exercise for an oil reservoir and the results were 

subsequently evaluated based on a reference model. Subsequently, 23 data sets with errors 

ranging from 0% to 20% were employed in the same process for a wet gas reservoir. The 

results showed that for both cases systematic errors considerably affected history 

matching, while the effect of random errors on the considered scenarios was seen to be 

insignificant. Although reservoir model parameters in the wet gas reservoir were not as 

sensitive to the flow measurement errors as in the oil reservoir, for both cases the future 

production forecast was significantly affected by the errors.  Permeability was seen to be 

the most sensitive history matching parameter to the flow measurement errors in the oil 

reservoir, while for the wet gas reservoir the most sensitive parameter was the forecast of 

future oil and gas production. Finally, considering the noticeable effect of systematic 

errors on both cases, it was suggested that flow meter calibration and regular maintenance 

be prioritised, although the subsequent economic cost needs to be considered.  

The second section of Chapter 5 focused on the role of analysing flow measurement errors 

in well testing. The impacts of the location of the flow meter (downhole or on the surface) 

and the existence of random errors (0% or 10%) on the estimated recovery factor of a 

simulated reservoir were investigated.  As the results of the case study showed, although 
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random errors had a small direct effect on the estimated recovery factor, they could have 

a significant indirect effect on it by misleading to the choice of a wrong reservoir model. 

The research results also suggest that downhole flow measurement data are more valuable 

than the surface data since downhole data eliminates the well bore storage effect.   

 

6.2 Concluding remarks and recommendations 

The results of this research show the significant importance of the availability of real-

time continuous flow measurement data. Having it reduces uncertainty, improves 

reservoir management and decision making, enables more accurate and fairer 

hydrocarbon accounting calculations, faster reactions to sudden production changes, and 

finally increases the economic recovery of oil and gas. Installing MPFMs on individual 

wells, hence, is highly recommended where it is financially and technically feasible. In 

the cases where installing MPFMs is not feasible, however, it is still essential to make 

sure that the uncertainties in the production data measured or estimated based on flow 

tests are in an acceptable range. It was shown in this research that in such cases 

undertaking a proper data analysis and increasing the frequency of flow tests can have a 

substantial effect on the accuracy of the data and the results of the allocation calculations, 

therefore, increasing the economic recovery of oil and gas. Employing data science and 

machine learning techniques was shown to be promising in finding the optimum 

frequency of flow tests needed to achieve estimations within the desired error range.  The 

analysis showed the significant effect of systematic errors on history matching and 

reservoir management. On the other hand, it was shown that even the effect of random 

errors on hydrocarbon accounting and well testing can potentially be large. Sticking to 

the aforementioned recommendations, in addition to regular calibration and the 

maintenance of flow meters can help in eliminating them. 

 

6.3 Recommendations for future work 

Despite all the aforementioned benefits of MPFMs for the oil and gas industry, some 

challenges remain for those oil and gas companies that want to install them on their wells. 

If the MPFM is intrusive, they need to shut down their well during the installation process 

that can be considerably costly. Although different non-intrusive MPFMs have 
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successfully been developed by different companies and individuals recently, they have 

proven to be less accurate in some applications. Another challenge in the application of 

MPFMs is their capital cost. Their capital cost, in addition to the cost of their regular 

calibration and maintenance, can still dissuade oil and gas companies from using them. 

More work on developing affordable accurate nonintrusive MPFMs that can work under 

the range of operating conditions that is seen in the oil and gas industry is deemed 

necessary. On the other hand, parallel to developing better MPFMs, it is worth working 

on improving the application of data science and machine learning in flow rate 

estimations and optimising flow measurement systems and procedures. A method based 

on an ANN was presented in this work. The accuracy of this method can potentially be 

improved by adding other inputs to the network or the same approach can be used in 

mitigating flow measurement uncertainties of the data coming from other sources, except 

allocation, such as flow meters or VFMs. 



112 

 

References 

 
Abdolhosseini, H. and Khamehchi, E. (2015) 'History Matching Using Traditional and 

Finite Size Ensemble Kalman Filter'. Journal of Natural Gas Science and 

Engineering, 27 1748-1757 

 

Abdollahian, A., Tadayoni, M. and Junin, R. B. (2018) 'A New Approach to Reduce 

Uncertainty in Reservoir Characterization Using Saturation Height Modeling, 

Mesaverde Tight Gas Sandstones, Western Us Basins'. Journal of Petroleum 

Exploration Production Technology, 1-9 

 

Abdollahzadeh, A., Reynolds, A., Christie, M., Corne, D. W., Davies, B. J. and Williams, 

G. J. (2012) 'Bayesian Optimization Algorithm Applied to Uncertainty 

Quantification'. SPE Journal, 17 (03), 865-873 

 

Ahmadi, M. A., Ebadi, M., Shokrollahi, A. and Majidi, S. M. J. (2013) 'Evolving 

Artificial Neural Network and Imperialist Competitive Algorithm for Prediction 

Oil Flow Rate of the Reservoir'. Applied Soft Computing, 13 (2), 1085-1098 

 

Ahmadi, R., Aminshahidy, B. and Shahrabi, J. (2017) 'Well-Testing Model Identification 

Using Time-Series Shapelets'. Journal of Petroleum Science and Engineering, 

149 292-305 

 

Ahmadinia, M., Shariatipour, S. M., Andersen, O. and Sadri, M. (2019) 'Benchmarking 

of Vertically Integrated Models for the Study of the Impact of Caprock 

Morphology on Co2 Migration'. International Journal of Greenhouse Gas 

Control, 90 102802 

 

Ahmed, T. H. (1989) Hydrocarbon Phase Behavior. Gulf Pub Co 

 

Al-Hussainy, R. and Humphreys, N. (1996) 'Reservoir Management: Principles and 

Practices'. Journal of Petroleum Technology, 48 (12), 1,129-121,135 

 

AL-Qutami, T. A., Ibrahim, R., Ismail, I. and Ishak, M. A. (2018) 'Virtual Multiphase 

Flow Metering Using Diverse Neural Network Ensemble and Adaptive Simulated 

Annealing'. Expert Systems with Applications, 93 72-85 

 

Alarcón, G. A., Torres, C. F. and Gómez, L. E. (2002) 'Global Optimization of Gas 

Allocation to a Group of Wells in Artificial Lift Using Nonlinear Constrained 

Programming'. Journal of Energy Resources Technology, 124 (4), 262-268 



113 

 

 

American Petroleum Institute (2011) Manual of Petroleum Measurement Standards 

Chapter20-Allocation Measurement. American Petroleum Institute 

 

Andrianov, N. (2018) 'A Machine Learning Approach for Virtual Flow Metering and 

Forecasting'. IFAC-PapersOnLine, 51 (8), 191-196 

 

Annual fuel poverty statistics report (2018) UK: Department for Business, Energy, and 

Industrial Strategy 

 

Azamipour, V., Assareh, M., Dehghani, M. R. and Mittermeir, G. M. (2017) 'An Efficient 

Workflow for Production Allocation During Water Flooding'. Journal of Energy 

Resources Technology, 139 (3), 032902 

 

Babak, O. and Deutsch, C. (2008) 'Reserves Uncertainty Calculation Accounting for 

Parameter Uncertainty'. Journal of Canadian Petroleum Technology, 47 (08), 41-

49 

 

Bacon, M., Simm, R. and Redshaw, T. (2007) 3-D Seismic Interpretation. Cambridge 

University Press 

 

Baker, R. C. (2016) Flow Measurement Handbook: Industrial Designs, Operating 

Principles, Performance, and Applications. Cambridge University Press 

 

Bangerth, W., Klie, H., Wheeler, M. F., Stoffa, P. L. and Sen, M. K. (2006) 'On 

Optimization Algorithms for the Reservoir Oil Well Placement Problem'. 

Computational Geosciences, 10 (3), 303-319 

 

Barbe, J. and Boyd, B. (1971) 'Short-Term Buildup Testing'. Journal of Petroleum 

Technology, 23 (07), 800-804 

 

Barros, E., Van den Hof, P. and Jansen, J. D. (2016) 'Value of Information in Closed-

Loop Reservoir Management'. Computational Geosciences, 20 (3), 737-749 

 

Bergren, F. E., Lagerlef, D. L. and Feldman, S. (1997) 'Three-Phase Well-Level 

Production Allocation at Prudhoe Bay'. SPE Computer Applications, 9 (02), 55-

60 

 

Bottomley, W., Schouten, J., McDonald, E. and Cooney, T. (2016) 'Novel Well Test 

Design for the Evaluation of Complete Well Permeability and Productivity for 

Csg Wells in the Surat Basin'. Journal of Natural Gas Science and Engineering, 

33 1002-1009 



114 

 

 

Bourdet, D. (2002) Well Test Analysis: The Use of Advanced Interpretation Models. 

Elsevier 

 

Bouzarovski, S. and Petrova, S. (2015) 'A Global Perspective on Domestic Energy 

Deprivation: Overcoming the Energy Poverty–Fuel Poverty Binary'. Energy 

Research Social Science, 10 31-40 

 

British Petroleum (2019) Bp Statistical Review of World Energy.  

 

Camponogara, E. and Nakashima, P. H. (2006) 'Optimal Allocation of Lift-Gas Rates 

under Multiple Facility Constraints: A Mixed Integer Linear Programming 

Approach'. Journal of Energy Resources Technology, 128 (4), 280-289 

 

Carpenter, C. J. J. o. P. T. (2017) 'Cost-Effective Production Metering and Allocation in 

a Mature Offshore Oil Field'. 69 (03), 61-62 

 

Chakra, N. C. and Saraf, D. N. (2016) 'History Matching of Petroleum Reservoirs 

Employing Adaptive Genetic Algorithm'. Journal of Petroleum Exploration 

Production Technology, 6 (4), 653-674 

 

Chase, R. (2002) 'Improved Estimation of Gas Well Deliverability from Single-Point 

Tests'. Journal of Canadian Petroleum Technology, 41 (11), 52-59 

 

Chaudhry, A. (2004) Oil Well Testing Handbook. Elsevier 

 

Chen, B. and Xu, J. (2019) 'Stochastic Simplex Approximate Gradient for Robust Life-

Cycle Production Optimization: Applied to Brugge Field'. Journal of Energy 

Resources Technology, 141 (9), 1-17 

 

Corneliussen, S., Couput, J., Dahl, E., Dykesteen, E., Frøysa, K., Malde, E., Moestue, H., 

Moksnes, P., Scheers, L. and Tunheim, H. (2005) Handbook of Multiphase Flow 

Metering, Revision 2. Norway: Norwegian Society for Oil Gas Measurement 

(NFOGM) 

 

Couput, J. P. (2015) 'Remote Metering Monitoring and Smart Metering Room for Cost 

Effecttive Operation of Multiphase Meters'. in (ed.) 33rd International North Sea 

Flow Measurement Workshop, . held at Norway.  

 

Couput, J. P., Laiani, N. and Richon, V. (2017) 'Operational Experience with Virtual Flow 

Measurement Technology'. in (ed.) 35th International North Sea Flow 

Measurement Workshop, . held at Norway.  



115 

 

Cramer, R., Schotanus, D., Ibrahim, K. and Colbeck, N. (2011) 'Improving Allocation 

and Hydrocarbon Accounting Accuracy Using New Techniques'. SPE Economics 

& Management, 3 (04), 235-240 

 

Dandekar, A. Y. (2013) Petroleum Reservoir Rock and Fluid Properties. CRC press 

 

Darling, T. (2005) Well Logging and Formation Evaluation. Oxford: Elsevier 

 

Drysdale, E. and Stockton, P. (2015) 'Could Allocation Be Rocket Science? Using the 

Kalman Filter to Optimise Well Allocation Accuracy'. in (ed.) 33rd International 

North Sea Flow Measurement Workshop, . held at Norway.  

 

Earlougher, R. C. (1977) Advances in Well Test Analysis. Dallas: Society of Petroleum 

Engineers 

 

Energy Institute (2012) Hm 96: Guidelines for the Allocation of Fluid Streams in Oil and 

Gas Production. 1st edn. London:  

 

Falcone, G., Hewitt, G. and Alimonti, C. (2009) Multiphase Flow Metering: Principles 

and Applications. Elsevier 

 

Falcone, G., Hewitt, G., Alimonti, C. and Harrison, B. (2002) 'Multiphase Flow Metering: 

Current Trends and Future Developments'. Journal of Petroleum Technology, 54 

(04), 77-84 

 

Foster, G., Wong, D. and Asgarpour, S. (1989) 'The Use of Pressure Build-up Data in 

Pressure Transient Testing'. Journal of Canadian Petroleum Technology, 28 (06),  

 

Habib, M., Guangqing, Y., Xie, C., Charles, S. P., Jakada, H., Danlami, M. S., Ahmed, 

H. A. and Omeiza, I. A. (2017) 'Optimizing Oil and Gas Field Management 

through a Fractal Reservoir Study Model'. Journal of Petroleum Exploration 

Production Technology, 7 (1), 43-53 

 

Hajizadeh, Y., Christie, M. and Demyanov, V. (2011) 'Ant Colony Optimization for 

History Matching and Uncertainty Quantification of Reservoir Models'. Journal 

of Petroleum Science and Engineering, 77 (1), 78-92 

 

Hamdi, H. (2014) 'Well-Test Response in Stochastic Permeable Media'. Journal of 

Petroleum Science and Engineering, 119 169-184 

 



116 

 

Hamdi, H., Behmanesh, H., Clarkson, C. R. and Sousa, M. C. (2015) 'Using Differential 

Evolution for Compositional History-Matching of a Tight Gas Condensate Well 

in the Montney Formation in Western Canada'. Journal of Natural Gas Science 

and Engineering, 26 1317-1331 

 

Hanssen, K. G., Codas, A. and Foss, B. (2017) 'Closed-Loop Predictions in Reservoir 

Management under Uncertainty'. SPE Journal, 22 (5), 1585-1595 

 

Hegeman, P. S., Hallford, D. L. and Joseph, J. A. (1993) 'Well Test Analysis with 

Changing Wellbore Storage'. SPE formation evaluation, 8 (03), 201-207 

 

Horne, R. N. (1995) 'Modern Well Test Analysis'. Petroway Inc,  

 

Hou, X., Zhang, X. and Guo, B. (2019) 'Mathematical Modeling of Fluid Flow to 

Unconventional Oil Wells with Radial Fractures and Its Testing with Field Data'. 

Journal of Energy Resources Technology, 141 (7), 070702 

 

Hudson Beale, M., Hagan, M. T. and Demuth, H. B. (R2017a) Matlab Neural Network 

Toolbox. Natick, MA: The MathWorks, Inc. 

 

Ikiensikimama, S. S. and Ajienka, J. A. (2012) 'Impact of Pvt Correlations Development 

on Hydrocarbon Accounting: The Case of the Niger Delta'. Journal of Petroleum 

Science Engineering, 81 80-85 

 

International Energy Agency (IEA) (2019a) World Energy Statistics.  

 

International Energy Agency (IEA) (2019b) Iea Atlas of Energy [online] available from 

<http://energyatlas.iea.org/#!/tellmap/-297203538/4> [11 November 2019] 

 

Jansen, J.-D., Brouwer, D., Naevdal, G. and Van Kruijsdijk, C. (2005) 'Closed-Loop 

Reservoir Management'. First Break, 23 (1), 43-48 

 

Kaiser, M. J. (2014) 'Multiple Well Lease Decomposition and Forecasting Strategies'. 

Journal of Petroleum Science and Engineering, 116 59-71 

 

Kern, M. (2016) Numerical Methods for Inverse Problems. John Wiley & Sons 

 

Kirsch, A. (2011) An Introduction to the Mathematical Theory of Inverse Problems. 

Springer Science & Business Media 

 

http://energyatlas.iea.org/#!/tellmap/-297203538/4


117 

 

Kouba, G. (1998) 'A New Look at Measurement Uncertainty of Multiphase Flow Meters'. 

Journal of Energy Resources Technology, 120 (1), 56-60 

 

Lee, J. (1982) Well Testing. New York: Society of Petroleum Engineers 

 

Lien, M. E., Brouwer, D. R., Mannseth, T. and Jansen, J.-D. (2008) 'Multiscale 

Regularization of Flooding Optimization for Smart Field Management'. SPE 

Journal, 13 (02), 195-204 

 

Lindsay, G., Hay, J., Glen, N. and Shariatipour, S. (2017) 'Profiling and Trending of 

Coriolis Meter Secondary Process Value Drift Due to Ambient Temperature 

Fluctuations'. Flow Measurement and Instrumentation, 59 225-232 

 

Lindsay, G., Hay, J., Glen, N., Shariatipour, S. and Henry, M. (2020) 'Coriolis Meter 

Density Output - Detecting and Correcting Errors Induced by Ambient Air and 

Fluid Temperature Differentials'. Journal of Flow Measurement and 

Instrumentation, (in press) 

 

Liptak, B. G. (1993) Flow Measurement. CRC Press 

 

Liptak, B. G. (2003) Instrument Engineers' Handbook, Volume One: Process 

Measurement and Analysis. CRC press 

 

Liu, F., Darjani, S., Akhmetkhanova, N., Maldarelli, C., Banerjee, S. and Pauchard, V. 

(2017) 'Mixture Effect on the Dilatation Rheology of Asphaltenes-Laden 

Interfaces'. Langmuir, 33 (8), 1927-1942 

 

Liu, G., Meng, Z., Li, X., Gu, D., Yang, D. and Yin, H. (2019) 'Experimental and 

Numerical Evaluation of Water Control and Production Increase in a Tight Gas 

Formation with Polymer'. Journal of Energy Resources Technology, 141 (10), 

102903 

 

Liu, R., Fuent, M., Henry, M. and Duta, M. (2001) 'A Neural Network to Correct Mass 

Flow Errors Caused by Two-Phase Flow in a Digital Coriolis Mass Flowmeter'. 

Flow Measurement and Instrumentation, 12 (1), 53-63 

 

Lyman, O. and Longnecker, M. (1988) An Introduction to Statistical Methods and Data 

Analysis. PWS-Kent, Boston: Cengage Learning 

 

Makhlouf, E. M., Chen, W. H., Wasserman, M. L. and Seinfeld, J. H. (1993) 'A General 

History Matching Algorithm for Three-Phase, Three-Dimensional Petroleum 

Reservoirs'. SPE Advanced Technology Series, 1 (02), 83-92 



118 

 

 

Marshall, C. D., Sadri, M., Hamdi, H., Shariatipour, S. M., Lee, W. K., Thomas, A. and 

Shaw-Stewart, J. (2019) 'The Role of Flow Measurement in Hydrocarbon 

Recovery Forecasting in the Ukcs'. Journal of Porous Media, 22 (8), 957-973 

 

Matthews, C. S. and Russell, D. G. (1967) Pressure Buildup and Flow Tests in Wells. 

Dallas: Society of Petroleum Engineers 

 

McAleese, S. (2000) Operational Aspects of Oil and Gas Well Testing. Elsevier 

 

McCain, W. D. (1990) The Properties of Petroleum Fluids. PennWell Books 

 

Mozaffari, S., Tchoukov, P., Mozaffari, A., Atias, J., Czarnecki, J. and Nazemifard, N. 

(2017) 'Capillary Driven Flow in Nanochannels–Application to Heavy Oil 

Rheology Studies'. Colloids Surfaces A: Physicochemical Engineering Aspects, 

513 178-187 

 

Nishikiori, N., Redner, R., Doty, D. and Schmidt, Z. (1995) 'An Improved Method for 

Gas Lift Allocation Optimization'. Journal of Energy Resources Technology, 117 

(2), 87-92 

 

Obidegwu, D., Chassagne, R. and MacBeth, C. (2017) 'Seismic Assisted History 

Matching Using Binary Maps'. Journal of Natural Gas Science and Engineering, 

42 69-84 

 

Oliver, D. S. and Chen, Y. (2011) 'Recent Progress on Reservoir History Matching: A 

Review'. Computational Geosciences, 15 (1), 185-221 

 

Oliver, D. S., Reynolds, A. C. and Liu, N. (2008) Inverse Theory for Petroleum Reservoir 

Characterization and History Matching. Cambridge University Press 

 

Padmanabhan, T. R. (2012) Industrial Instrumentation: Principles and Design. Springer 

Science & Business Media 

 

Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R. J., Chen, Y., Dunlop, 

N., Vossepoel, F. C. and Xu, R. (2010) 'Results of the Brugge Benchmark Study 

for Flooding Optimization and History Matching'. SPE Reservoir Evaluation 

Engineering, 13 (03), 391-405 

 

 

 



119 

 

Pobitzer, A., Skålvik, A. M. and Bjørk, R. N. (2016) 'Allocation System Setup 

Optimization in a Cost-Benefit Perspective'. Journal of Petroleum Science and 

Engineering, 147 707-717 

 

Ramy, H., Kumar, A. and Gulati, M. S. (1973) Oil Well Test Analysis under Water-Drive 

Conditions. Arlington: American Gas Association 

 

Sadri, M., Mahdiyar, H. and Mohsenipour, A. (2019) 'A Compositional Thermal 

Multiphase Wellbore Model for Use in Non-Isothermal Gas Lifting'. Journal of 

Energy Resources Technology, 141 (11), 1-23 

 

Sadri, M., Shariatipour, S. and Hunt, A. (2017) 'Effects of Flow Measurement Errors on 

Oil and Gas Production Forecasts'. Computational & Experimental Methods in 

Multiphase & Complex Flow IX, 115 133 

 

Sadri, M., Shariatipour, S. and Hunt, A. (2018) 'Effect of Systematic and Random Flow 

Measurement Errors on History Matching'. in (ed.) The 5th international 

conference on oil & gas engineering and technology, . held at Kuala Lumpur.  

 

Sadri, M., Shariatipour, S., Hunt, A. and Ahmadinia, M. (2019) 'Effect of Systematic and 

Random Flow Measurement Errors on History Matching: A Case Study on Oil 

and Wet Gas Reservoirs'. Journal of Petroleum Exploration and Production 

Technology, 1-10 

 

Sadri, M. and Shariatipour, S. M. (2019) 'Mitigating Allocation and Hydrocarbon 

Accounting Uncertainty Using More Frequent Flow Test Data'. Journal of Energy 

Resources Technology, 142 (4), 12 

 

Satter, A., Varnon, J. E. and Hoang, M. T. (1994) 'Integrated Reservoir Management'. 

Journal of Petroleum Technology, 46 (12), 1,057-051,064 

 

Scheidt, C. and Caers, J. (2009) 'Uncertainty Quantification in Reservoir Performance 

Using Distances and Kernel Methods--Application to a West Africa Deepwater 

Turbidite Reservoir'. SPE Journal, 14 (04), 680-692 

 

Schlumberger Information Systems (2017) 'Eclipse 100, Version 2017.1'. in (ed.) held at 

Houston, Texas.  

 

Schön, J. H. (2015) Physical Properties of Rocks: Fundamentals and Principles of 

Petrophysics. Elsevier 

 

 



120 

 

 

State of the energy market (2018) UK: Office of Gas and Electricity Markets (OFGEM) 

 

Stephen, K. D. and Macbeth, C. (2008) 'Reducing Reservoir Prediction Uncertainty by 

Updating a Stochastic Model Using Seismic History Matching'. SPE Reservoir 

Evaluation & Engineering, 11 (06), 991-999 

 

Stewart, G. (2011) Well Test Design & Analysis. PennWell Corporation 

 

Sukarno, P., Saepudin, D., Dewi, S., Soewono, E., Sidarto, K. A. and Gunawan, A. Y. 

(2009) 'Optimization of Gas Injection Allocation in a Dual Gas Lift Well System'. 

Journal of Energy Resources Technology, 131 (3), 033101 

 

Sun, Q. and Ayala, L. F. (2019) 'Analysis of Multiphase Reservoir Production from 

Oil/Water Systems Using Rescaled Exponential Decline Models'. Journal of 

Energy Resources Technology, 141 (8), 082903 

 

Tavassoli, Z., Carter, J. N. and King, P. R. (2004) 'Errors in History Matching'. SPE 

Journal, 9 (03), 352-361 

 

Taylor, J. (1997) Introduction to Error Analysis, the Study of Uncertainties in Physical 

Measurements. 2nd Edition edn. New York: University Science Books 

 

Teodorczyk, A., Karim, G. and Tawfiq, H. (1988) 'Critical Mass Flow Gas Meters—the 

Role of Errors Due to the Presence of a Restriction Downstream'. Journal of 

Energy Resources Technology, 110 (1), 55-58 

 

Terry, R. E., Rogers, J. B. and Craft, B. C. (2013) Applied Petroleum Reservoir 

Engineering. Pearson Education 

 

Thakur, G. C. (1996) 'What Is Reservoir Management?'. Journal of Petroleum 

Technology, 48 (06), 520-525 

 

The Mathworks Inc. (2017) Matlab 2017a. Natick, Massachusetts, United States:  

 

Thorn, R., Johansen, G. A. and Hjertaker, B. T. (2012) 'Three-Phase Flow Measurement 

in the Petroleum Industry'. Measurement Science Technology, 24 (1), 012003 

 

Tiab, D. and Donaldson, E. C. (2015) Petrophysics: Theory and Practice of Measuring 

Reservoir Rock and Fluid Transport Properties. Gulf professional publishing 

 



121 

 

Tombs, M., Henry, M., Zhou, F., Lansangan, R. M. and Reese, M. (2006) 'High Precision 

Coriolis Mass Flow Measurement Applied to Small Volume Proving'. Flow 

Measurement and Instrumentation, 17 (6), 371-382 

 

Trice Jr, M. and Dawe, B. (1992) 'Reservoir Management Practices'. Journal of 

Petroleum Technology, 44 (12), 1,344-341,349 

 

Tunnish, A., Shirif, E. and Henni, A. (2018) 'History Matching of Experimental and Cmg-

Stars Results'. Journal of Petroleum Exploration Production Technology, 1-11 

 

United Nations (2019) World Economic Situation and Prospects. New York, United 

Stastes:  

 

van Golf-Racht, T. D. (1982) Fundamentals of Fractured Reservoir Engineering. 

Elsevier 

 

Vasantharajan, S., Al-Hussainy, R. and Heinemann, R. (2006) 'Applying Optimization 

Technology in Reservoir Management'. Journal of Petroleum Technology, 58 

(05), 82-88 

 

Vermeer, G. J. (2002) 3-D Seismic Survey Design. Society of Exploration Geophysicists 

 

Wang, C., Li, G. and Reynolds, A. C. (2009) 'Production Optimization in Closed-Loop 

Reservoir Management'. SPE Journal, 14 (03), 506-523 

 

Wheaton, R. (2016) Fundamentals of Applied Reservoir Engineering: Appraisal, 

Economics and Optimization. Gulf Professional Publishing 

 

Wilson, A. (2015) 'Gas Lift Nodal-Analysis Model Provides Economical Approach to 

Optimization'. Journal of Petroleum Technology, 67 (07), 93-95 

 

Xu, B., Wu, Y., Cheng, L., Huang, S., Bai, Y., Chen, L., Liu, Y., Yang, Y. and Yang, L. 

(2018) 'Uncertainty Quantification in Production Forecast for Shale Gas Well 

Using a Semi-Analytical Model'. Journal of Petroleum Exploration Production 

Technology, 1-8 

 

Zeng, L., Chang, H. and Zhang, D. (2011) 'A Probabilistic Collocation-Based Kalman 

Filter for History Matching'. SPE Journal, 16 (02), 294-306 

 

Zhao, H., Li, Y., Cui, S., Shang, G., Reynolds, A. C., Guo, Z. and Li, H. A. (2016) 'History 

Matching and Production Optimization of Water Flooding Based on a Data-



122 

 

Driven Interwell Numerical Simulation Model'. Journal of Natural Gas Science 

and Engineering, 31 48-66 

 

Zheng, J., Leung, J. Y., Sawatzky, R. P. and Alvarez, J. M. (2018) 'A Proxy Model for 

Predicting Sagd Production from Reservoirs Containing Shale Barriers'. Journal 

of Energy Resources Technology, 140 (12), 122903 

 

Zhuang, H. (2012) Dynamic Well Testing in Petroleum Exploration and Development. 

Newnes 

 

 


	Structure Bookmarks
	Chapter 1: Introduction 
	1.1 Background 
	1.2 Thesis overview 
	1.2.1 Aims and objectives 
	1.2.2 Thesis structure 
	Chapter 2: Flow measurement in the oil and gas industry 
	2.1 Introduction 
	2.2 The role of flow measurement in hydrocarbon accounting 
	2.3 The role of flow measurement in reservoir management 
	2.3.1 History matching 
	2.3.2 Optimisation 
	2.3.3 Well testing 
	2.4 Methods of flow measurement in the oil and gas industry 
	2.4.1 Flow meters 
	2.4.1.1 Single-phase flow meters 
	2.4.1.1.1 Differential pressure flow meters 
	2.4.1.1.2 Ultrasonic flowmeters 
	2.4.1.1.3 Coriolis flow meters 
	2.4.1.2 Multi-phase flow meters (MPFM) 
	2.4.2 Virtual flow metering 
	2.4.3 Allocation 
	2.4.3.1 Proportional allocation 
	2.4.3.2 Uncertainty-based allocation 
	2.5 Flow measurement uncertainties and errors 
	2.5.1 Random errors 
	2.5.2 Systematic errors 
	2.5.3 Possible states of errors for a flow meter 
	Chapter 3: Uncertainty analysis in allocation and hydrocarbon accounting* 
	3.1 Introduction 
	3.2 Methodology 
	3.3 Results and discussion 
	3.3.1 Allocation calculations 
	3.4 Conclusions 
	Chapter 4: Application of an artificial neural network for mitigating allocation uncertainties† 
	4.1 Introduction 
	4.2 Methodology 
	4.3 Results and discussion 
	4.3.1 Field average allocation error 
	4.3.2 A discussion on both approaches 
	4.4 Conclusions 
	Chapter 5: Effect of flow measurement uncertainties on reservoir management 
	5.1 History matching‡ 
	5.1.1 Introduction 
	5.1.2 Methodology 
	5.1.2.1 Oil Reservoir 
	5.1.2.2 Wet Gas Reservoir 
	5.1.3 Results and discussion 
	5.1.4 Conclusions 
	5.2 Well testing§ 
	5.2.1 Background 
	5.2.2 Methodology 
	5.2.3 Results and discussion 
	5.2.4 Conclusions and recommendations 
	Chapter 6: Conclusions and recommendations 
	6.1 A summary of the results 
	6.2 Concluding remarks and recommendations 
	6.3 Recommendations for future work 
	References 
	 
	 




