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Abstract 

We investigate the off-equilibrium dynamics of a classical spin system with O(n) sym-
metry in 2 < D < 4 spatial dimensions and in the limit n → ∞. The system is set up 
in an ordered equilibrium state and is subsequently driven out of equilibrium by slowly 
varying the external magnetic field h across the transition line hc = 0 at fixed temperature 
T ≤ Tc. We distinguish the cases T = Tc where the magnetic transition is continuous and 
T < Tc where the transition is discontinuous. In the former case, we apply a standard 
Kibble-Zurek approach to describe the non-equilibrium scaling and formally compute the 
correlation functions and scaling relations. For the discontinuous transition we develop 
a scaling theory which builds on the coherence length rather than the correlation length 
since the latter remains finite for all times. Finally, we derive the off-equilibrium scaling 
relations for the hysteresis loop area during a round-trip protocol that takes the system 
across its phase transition and back. Remarkably, our results are valid beyond the large-n 
limit. 
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1 Introduction 

The study of equilibrium statistical mechanics and especially of critical phenomena has lead to 
a refined physical understanding of complex, interacting systems and their collective behaviour 
[1–5]. In the last decades, the study of equilibration processes and out-of-equilibrium dynamics 
has gained significant attention in order to complement the equilibrium studies, to understand 
how systems behave far from equilibrium and how thermalisation may occur [6–9]. 

A standard way to produce non-equilibrium situations is by studying quench protocols where 
either an external parameter (e.g. the temperature) or a Hamiltonian parameter (e.g. the 
interaction strength) is varied in time across a phase transition. By means of such protocols, 
one is able to drive a system through different regions of the phase diagram and to investigate 
relaxation and thermalisation properties [6–8,10–24]. Most of the dedicated literature refers to 
quench protocols across continuous phase transitions, see e.g. [13, 14,21,22,25,26] but this list 
is far from being exhaustive. If the driving across such a transition is performed slowly (in a 
sense that will be specified later on), these quench protocols are described by the Kibble-Zurek 
(kz) scaling theory [27–31], which explains the formation of topological defects occurring after 
the quench. The main idea of this approach is illustrated in figure 1. The kz scaling theory 
has been tested in a variety of experiments [32–36] where it has been shown to describe the 
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off-equilibrium dynamics near transitions well and especially to predict experimental data for 
the density of topological defects accurately. In fact, the kz theory has proven itself to be 
of great use for the description of non-equilibrium properties especially since in general, more 
complicated methods are used to analyse such scenarios [25,37–39]. Therefore the kz theory has 
been inter alia extended to quantum phase transitions [40–45], where experiments with ultracold 
atoms in optical lattices provide an ideal platform for applications of the theory [46–52]. 

order disorder

adiabatic adiabatic

freeze-out

Figure 1: Qualitative illustration of the kz mechanism. We prepare the system initially in equilibrium 
at a certain temperature Ti > Tc in the disordered phase. We then vary the temperature in time at 
a finite rate f across the phase boundary up to a final value Tf < Tc. As long as the relaxation 
time tr < 1/f the system adapts to the temperature variation and adiabatically follows the quench 
protocol (yellow regions). In the vicinity of the transition point, the divergence of tr leads to a time 
τ where tr = 1/f after which the system cannot adjust to the temperature variation anymore and 
falls collectively out of equilibrium (blue region). The system remains frozen in this region until tr 

decays again in the ordered phase. This phenomenological picture can be better understood by means 
of finite time scaling [53–55]. 

The aim of this work is instead to extend the kz scaling theory to quench protocols across 
a first-order transition (fot). To do so, we consider a generic spin system which is known to 
show a phase transition from a magnetic down to up order, driven by an external magnetic field 
h at a fixed temperature T ≤ Tc, see figure 2. The nature of this transition depends on the 
temperature at which the magnetic transition is driven. 

• At T = Tc the transition is continuous and the standard kz scaling theory applies. 

• For T < Tc the transition is discontinuous and therefore the system correlation length 
remains finite at all times. 

In the latter case, a new description is needed since the kz theory is built on the fact that 
the correlation length ξ diverges at the critical point. Nevertheless, an equilibrium scaling 
theory has been developed for fots [56–59] by replacing the correlation length with the co-
herence length ξh, which corresponds to the typical domain size of ordered clusters in minimal 
energy configuration. As soon as the discontinuous transition is approached, the two ordered 
phases become energetically indistinguishable, leading to a divergence of ξh. This divergence 
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is physically reflected in magnetic systems by the long-range order arising in the spin-spin cor-
relation function which asymptotically (|x − x0| → ∞) approaches the value of the squared 
magnetisation of the system [57]. Notice that the correlation length ξ is instead defined by the 
connected part of the spin-spin correlator G(x, x0) ∝ exp (−|x − x0|/ξ) and remains finite in 
the non-critical regime. 

In this paper, we shall naturally extend this fot scaling theory to the non-equilibrium case 
à la kz and apply it to magnetic quench protocols in the ordered region as shown in figure 2 
(green). This treatment is complementary to previous renormalisation group studies [60–62] 
and recent numerical evidence of dynamical scaling across fots [63]. 

Figure 2: Schematic representation of the phase diagram for a generic spin system. The red dot 
indicates a continuous phase transition while the green line indicates a discontinuous transition. The 
corresponing arrows show qualitatively the quench protocols we shall study. 

A theoretical framework for the description of generic spin systems is provided by the O(n) 
model which is routinely cast as a field theory with the n-component vector field φ(x) of unit 
norm and the action (see e.g. [64]) Z 

n � � 
S[φ] = dx (rφ(x))2 + rφ2(x) + u(φ2(x))2 − 2hφ(x) (1.1)

2 

in 2 < D < 4 spatial dimensions. Here, u > 0 is a positive constant, h describes the exter-
nal magnetic field and r = r(T ) is the thermal coupling constant. This model includes the 
celebrated Ising model (n = 1), the xy model (n = 2) and the Heisenberg model (n = 3) as 
special cases [65]. In the particular case where n → ∞, the bulk critical behaviour reduces to 
the one of the spherical model [66] and allows analytic investigation [67–73]. The analyticity in 
the large-n limit arises due to the central limit theorem which implies that self-averaged O(n) 
symmetric quantities are normally distributed for n →∞. This allows us to replace [74] � 

(φ2(x))2 → φ2(x) φ2(x) (1.2) 

and cast the action in eq (1.1) quadratically Z 
n � � 

S[φ] = dx (rφ(x))2 +m 2φ2(x)−2hφ(x) (1.3)
2 
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with the effective mass � 
2 φ2(x)m = r + u . (1.4) 

For this specific model, the O(n) model at large n, we shall derive the structure of the off-
equilibrium scaling functions of the magnetisation and of the transverse correlation functions. 
The latter are self-consistently related through an equation of state which describes - roughly 
speaking - the time-evolution of the magnetisation as a rotation generated by the dissipation of 
the initial equilibrium magnetisation into the transverse field modes (see section 3.2 for further 
details). We shall also provide a scaling prediction for the dissipated magnetic work W during 
a round-trip protocol which takes the system across the fot and back. If we call the quench 
time scale ts, one obtains in D = 3 spatial dimensions 

W ∝ 

⎧⎪⎨ ⎪⎩ 
−2/3 
ts , for T = Tc 

. (1.5) 
−1/2 
ts , for T < Tc 

Remarkably, these results apply beyond the large-n limit with 2/3 ≈ 0.66, as can be seen by a 
comparison with numerical results by Pelissetto and Vicari [75]. To complete our analysis, we 
shall numerically investigate the dynamics in the large-n limit and explicitly test our scaling 
predictions. 

The paper is organised as follows: After having set up the model in this introduction we turn 
to its general dynamical description in section 2. Here, we specify the magnetic quench protocol 
that we shall study and we determine the set of dynamical equations that describes the O(n) 
model self-consistently for n → ∞. In section 3 we then derive the dynamical scaling theory 
for the magnetic quench. We explicitly distinguish between (i) T = Tc where we verify the kz 
scaling and (ii) T < Tc where we develop a new out-of-equilibrium scaling theory. Finally, we 
apply these results in section 4 to a round-trip protocol for which we then derive the scaling 
behaviour of the hysteresis area and of the magnetic work performed over the cycle. We then 
briefly summarise our results and conclude the paper. Several technical aspects are described 
in the appendix. 

2 Dynamical description of the O(n) model 

We want to describe the dynamics of the system (1.3) at and below the critical temperature 
Tc when the external magnetic field is varied in time across the value hc = 0. We choose the 
linear1 ramp sketched in figure 3 along a fixed direction e1 which takes the system from a down 
order at initial time ti < 0 to an up order at the final time tf > 0, i.e. 

t e1
h(t) = = t/ts e1 . (2.1)

tf − ti 

Here, ts = tf − ti defines the time-scale of the quench. Within this convention, the critical value 
hc = 0 is reached at time t = 0 which is but a convenient choice. 

1The extension to non-linear protocols is straightforward, see e.g. [76]. 
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Figure 3: Schematic representation of the magnetic quench protocol (2.1). At initial time ti < 0 the 
system is in thermal equilibrium with the external magnetic field h(ti) < 0. This field is then linearly 
driven through the magnetic transition point hc = 0 on a time scale ts until it reaches its final value 
h(tf ) > 0. 

The dynamics of the components of the vector field is given by a Langevin equation 

δ 
∂tφa(x, t) = − S[φ] + ζa(x, t) , (2.2)

δφa 

where ζa(x, t) is a Gaussian white noise with zero mean, i.e.2 � 
ζa(x, t) = 0 , (2.3)� 

ζa(x, t)ζb(y, t
0) = 2δa,bδ(x − y)δ(t − t0) . (2.4) 

The dynamics of the system is more involved than the one of a standard Gaussian theory due 
to eq (1.4) which has to be taken into account self-consistently. To do so, we first introduce 
the time-dependent magnetisation � 

φa(x, t) = δ1,a M(t) (2.5) 

as order parameter of the transition. Moreover, we define the longitudinal and orthogonal 
(connected) correlation function as D� �� �E 

G||(x − y, t) ≡ φ1(x, t) − hφ1(x, t)i φ1(y, t) − hφ1(y, t)i , (2.6) D� �� �E 
G⊥(x − y, t) ≡ φa(x, t) − hφa(x, t)i φa(y, t) − hφa(y, t)i , a > 1 (2.7) 

Due to translational invariance, the dynamics is straightforwardly described in Fourier space 
and it is easy to show that it is governed by the following set of equations [77] 

d 
M(t) = −m 2(t)M(t) + h(t) , (2.8)

dt 

∂tG⊥(q, t) = −2(m 2(t) + q 2)G⊥(q, t) + 2 , (2.9) 

2The damping rate is set to unity here. The variance is set to 2 in order for the long-time limit of the 
two-point function to correctly reproduce the equilibrium value when h(t) = cst. 
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where the time-dependent effective mass m(t) is defined through the equation of state � Z � 
m 2(t) = r + u M2(t) + G⊥(q, t) . (2.10) 

q 

Here, we used the shorthand 
R 
q = 

R Λ 
dq/(2π)d with the momentum cut-off Λ. The dynamical 

eqs (2.8,2.9) can be formally solved as follows � Z � Z � Z �t t t 

M(t) = M0 exp − dum 2(u) + duh(u) exp − dsm 2(s) , (2.11a) 
ti ti u Z t � Z t � � � 

G⊥(q, t) = 2 du exp − 2 ds q 2 + m 2(s) , (2.11b) 
ti u 

with the initial equilibrium magnetisation M0. In the following, we shall use these formal 
solutions (2.11a,2.11b) together with the equation of state (2.10) in order to describe the model 
out of equilibrium. 

3 Dynamical scaling theory across phase transitions 

In this section we develop a scaling theory à la kz for fots in order to describe the magnetic 
quench specified in eq (2.1). We shall though first start with the instructive case T = Tc in 
section 3.1 in order to illustrate the standard kz theory for continuous transitions. We then 
turn to the case T < Tc in section 3.2 where we shall develop the non-equilibrium scaling theory 
for fots. 

Along with our scaling analysis, we shall provide numerical solutions of the dynamical 
equations of the O(∞) model (2.8, 2.9, 2.10) and we shall use these results to check our scaling 
predictions. The numerical calculations will be carried out in D = 3 spatial dimensions and 
with the normalisation u = 1 which implies rc ' −0.051 [76, 77]. For further details on the 
numerical method, see appendix D. 

3.1 Scaling theory for the continuous transition (T = Tc) 

In this case the standard kz scaling theory [27,30] describes the universal scaling behaviour of 
the dynamics driven by the protocol (2.1). First, we have to express the correlation length ξ 
close to the critical point hc = 0 as a power-law of the control parameter [76] 

ξ(t) ∼ |h(t)|−νh , h → 0 (3.1) 

with the equilibrium critical exponent3 

1 2 
νh = = . (3.2)

dh D + 2 

From ξ in eq (3.1) we can define the typical time scale on which the system adapts to the 
variation of the magnetic field via tad(t) = ξ/ξ̇ and compare it to the relaxation time associated 

3The rg critical exponent for the O(∞) model is η = 0, see e.g. [70, 78]. 
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with ξ via tr(t) ∼ ξz, where z = 2 is the dynamical critical exponent [79]. These time scales 
do compete during the quench as the system tries to relax towards equilibrium and to follow 
the quench protocol simultaneously. The Ansatz that underlies the kz approximation is that 
the system manages to equilibrate and to follow the quench adiabatically as long as tad < tr, 
compare figure 1. In the opposite situation tad > tr the system cannot adapt to external 
changes anymore and is assumed to freeze out. The crossover time τ at which the system falls 
collectively out of equilibrium is then given by 

zνh 
! 1+zνhtad(τ) = tr(τ) ⇒ τ = ts . (3.3) 

From this, we define, in analogy to the equilibrium correlation length, a characteristic length 
scale ` via the dynamical exponent z, i.e. 

νh 

` = τ 1/z 1+zνh= ts . (3.4) 

This length scale encodes the characteristic distance on which the system is correlated and thus 
allows us to study the non-equilibrium regime in a scaling limit. In this kz scaling regime, the 
quench is assumed to be slow ts →∞ while t/τ and q ` are kept constant. It is well-known that 
the time-dependent correlation functions exhibit dynamical scaling behaviour for h → 0 [76] 

M(t) ∼ `−dφ M(t/τ) , (3.5a) 

G⊥(q, t) ∼ `2 G⊥(q ̀ , t/τ) , (3.5b) 

where dφ = (D − 2)/2 is the scaling dimension of the order parameter M and M(·), G⊥(·) are 
generic scaling functions [7]. 

60 40 20 0 20 40 60

t

1.0

0.5

0.0

0.5

1.0

M
(t

)

ts = 50

ts = 75

ts = 100

ts = 150

Figure 4: Numerical analysis of the dynamical magnetisation in D = 3 spatial dimensions and at 
the critical temperature T = Tc. Left panel: magnetisation as a function of time for different quench 
times ts, see eq (3.3). Right panel: data collapse and dynamical scaling function for the magnetisation 
(compare eq (3.5a)). The inset shows the convergence of the scaling functions at finite ts towards the 
asymptotic regime (ts →∞) for three different times. 

We briefly comment that finite-size scaling can be implemented in this theory as well. For 
a system of finite size L, we would consider the limit L, ts → ∞, t → 0 such that t/τ , q ` and 
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L/` are fixed. In this limit the time-dependent correlators present the scaling relations [7] 

M(t, L) ∼ L−dφ M(t/τ, L/`) , (3.6a) 

G⊥(q, t, L) ∼ L2 G⊥(q ̀ , t/τ, L/`) , (3.6b) 

such that the infinite-volume behaviour of (3.5) is recovered for L/` → 0 at fixed q `, t/τ . Notice 
also that, by construction, these scaling relations match the equilibrium scaling behaviour for 
|t| → τ (see appendix A). 

From a dimensional analysis, it is clear that the effective mass term must scale as [76] 

m 2(t) ∼ `−2 m 2(t/τ) (3.7) 

with a general scaling function m(·). From eq (2.11a), the magnetisation is then given as4 

Z � Z �¯

M(t̄) = duu exp − ds m 2(s) (3.8a) 
t t̄ 

−∞ u 

and from eq (2.11b) the transverse two-point function reads Z � Z �t¯ ¯

¯G⊥(q̄, t) = 2 du exp − 2 ds (q̄2 + m 2(s)) (3.8b) 
t 

−∞ u 

with the rescaled time t̄ = t/τ and momentum q̄ = q ̀ . The time evolution of the scaling 
functions is thus solely determined by the function m2 which has to be found from eq (2.10)5 Z 

M2(t,̄m) = (G⊥(q̄, t,̄ 0) − G⊥(q̄, t,̄m)) (3.9) 
q̄

where the critical thermal coupling constant has been expressed in terms of the critical two-
point function [74, 76] Z 

rc = −u G⊥(q, t, 0) . (3.10) 
q 

The equation of state (3.9) shows that the time evolution of the magnetisation is generated 
by a dissipation into the transverse field components. In other words, the deviations from 
equilibrium of the magnetisation and of the transverse correlations compensate each other. 

In figure 4 we show the numerical result for the time evolution of the magnetisation at the 
critical temperature. The numerical analysis confirms our scaling predictions, since clearly, for 

zνh 
1+zνhincreasing times τ ∼ t , the data collapse onto a master curve which represents the sought s

scaling function. Similar results are obtained for the zero mode correlation function and the 
for mass term, shown in figure 5 and 6 respectively. 

4The dependence on the initial condition is exponentially suppressed in the scaling limit, see appendix A.R R∞5 dq̄We use the shorthand notation ≡ Notice that the scaling limit is cut-off independent since 
q̄ (2π)D . 

Λ ̀  →∞ [76]. 
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Figure 5: Numerical analysis of the zero mode correlation function at T = Tc in D = 3 spatial 
dimensions. We see the data in the left panel for different quench times ts, see eq (3.3), and the 
data collapse (in log scale) for the dynamical scaling function in the right panel (compare eq (3.5b)). 
The inset shows the convergence of the scaling functions at finite ts towards the asymptotic regime 
(ts →∞) for three different times (the label “peaks” refers to the convergence of the maximum of the 
curves). 

3.2 Scaling theory for fots (T < Tc) 

In this section we argue that a kz-like theory can also be applied to the magnetic quench 
performed at T < Tc. 6 The main obstacle for transferring the kz scaling theory to the fot 
below Tc is that the system correlation length remains finite. We shall therefore turn to another 
length scale, the so-called coherence length or persistent length ξh [57] which may be defined as 
the typical size of domains of (aligned) spins in the minimum energy configuration. 

For h → 0, the system cannot energetically distinguish between the two ordered phases and 
long-range order arises which leads to an increase of the coherence length. Eventually, this 
results in a macroscopic coherence length ξh ∝ L, see figure 7. 

In order to construct the scaling theory, we need to know the scaling behaviour of the 
coherence length as a function of the magnetic field in analogy to eq (3.1) and the dynamical 
exponent z. It is well-known that the behaviour of ξh close to the fot can be expressed as a 
power-law [56–59] 

ξh(t) ∼ |h(t)|−1/D , h → 0 (3.11) 

from which we can identify the critical exponent 

νh = 1/D . (3.12) 

For the dynamical exponent z, a lengthy but straightforward calculation reveals 

z = D , (3.13) 

which can be qualitatively understood as follows. Initially, the equilibrium magnetisation is 
aligned with the initial magnetic field h < 0. As this field is driven across the critical value 

6In what follows, the scaling theory does not depend on the specific value of the temperature T < Tc. 
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Figure 6: Numerical analysis of the effective mass at T = Tc in D = 3 dimensions. We see the data in 
the left panel for different quench times ts and the data collapse for the dynamical scaling function in 
the right panel (compare eq (3.7)). The inset shows the convergence of the scaling functions at finite 
ts towards the asymptotic regime (ts →∞) for three different times. 

hc = 0, the magnetisation has to flip in order to align with the final magnetic field h > 0. 
Therefore, the vector of the magnetisation has to perform a rotation which needs a characteristic 
time of the order of the system volume LD [75]. For further details on how to determine z in 
the low temperature regime, we refer to appendix B. 

We are now able to draw the analogy to eq (3.3), i.e. the freeze-out condition reveals 
√ 

1/2Dτfot = ts, ` fot = ts . (3.14) 

We notice that the freeze-out time τfot coincides with the coercive time of the model [80] that is 
the typical time scale after which a ferromagnet reacts to an inversion of the external magnetic 
field. 

Extending this analogy further, we assume that the time-dependent magnetisation of the 
system in the vicinity of the transition point h → 0 shows dynamical scaling behaviour in line 

E

M

E

M

E

M

Figure 7: Visualisation of the coherence length ξh and the associated Ginzburg-Landau functional E 
as a function of the order parameter M for a generic spin system. The different pictures show the 
variation of ξH and E during the protocol described in eq (2.1). At the fot h = 0, the degeneracy of 
the two vacua associated to the different realisations of the ordered phase leads to a divergence of ξh. 
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Figure 8: Numerical analysis of the dynamical magnetisation below Tc (r = −1) in D = 3 spatial 
dimensions. Left panel: dynamical magnetisation as a function of time for different quench time 
scales ts. Right panel: data collapse and dynamical scaling function for the magnetisation (compare 
eq (3.15)). The inset shows the convergence of the scaling functions at finite ts towards the asymptotic 
regime (ts →∞) for three different times. 

with eq (3.5) in the limit ts →∞ (with t/τfot fixed) 

M(t) ∼ `
−dφ (3.15)fot M(t/τfot) , 

where the scaling dimension of the order parameter is known to be dφ = 0 [57]. The numerical 
result for the dynamical magnetisation below the critical temperature is shown in figure 8 and 
explicitly verifies our scaling prediction (3.15). 

We describe our model in the spin-wave approximation [81, 82] which states that at low-
temperatures T < Tc it is sufficient to study long-range excitations, i.e. only the degrees of 
freedom with |q| < q ∗ turn out to be relevant for the off-equilibrium dynamics. The boundary 
value q ∗ which separates the short-distance fluctuations |q| > q ∗ from the low-energy modes 

−1/4|q| < q ∗ can be estimated as q ∗ ∝ ts , see appendix C. In the scaling limit h → 0, ts → ∞ 
keeping q `fot fixed we notice that 

2−D 

|q| ̀  fot < q ∗ ` fot ∝ ts 
4D → 0 , (3.16) 

which implies that the zero-momentum contribution alone provides a good description of the 
off-equilibrium behaviour arising during the quench in the asymptotic limit. We introduce 
therefore the transverse susceptibility χ⊥ that obeys the scaling relation 

χ⊥(t) ≡ G⊥(0, t) ∼ `D X⊥(t̄) ,fot (3.17) 

as shown in figure 9. Notice that, by construction, the off-equilibrium scaling behaviours 
(3.15,3.17) match again the equilibrium scaling when |t| → τfot (see appendix A). For the 
effective mass we write the analogous scaling behaviour to eq (3.7) 

m 2(t) ∼ `−D 2(t/τfot) (3.18)fot m 

due to the presence of a small magnetic field with scaling dimension dh = D. 7 The numerical 
result for the effective mass is shown in figure 10. � � 

d7From eq (2.8) we may write m2(t) = M(t)−1 h(t) + M(t) from which we conclude eq (3.18).dt 
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Figure 9: Numerical analysis of the transverse susceptibility below Tc (r = −1) in D = 3 spatial 
dimensions. In the left panel, the data for different quench times ts is shown in log scale and the right 
panel shows the data collapse for the dynamical scaling function (compare eq (3.20)). The inset shows 
the convergence of the scaling functions at finite ts towards the asymptotic regime (ts →∞) for three 
different times. 

The time-dependent magnetisation satisfies the (trivial) scaling relation in eq (3.15) with 
the scaling function Z t̄ � Z t̄ � 

M(t) ≡M(t̄) = ds s exp − du m 2(u) , (3.19) 
−∞ s 

while the scaling function of the transverse susceptibility reads Z t � Z t �¯ ¯

X⊥(t̄) = 2 ds exp − 2 du m 2(u) , (3.20) 
−∞ s 

where now t̄ = t/τfot was redefined. In the spin-wave approximation we introduce the quantity Z 
S (t) = G⊥(|q| < q ∗ , t) ∼ S(t/τfot) (3.21) 

q 

with a trivial scaling relation that follows from eq (3.17). 

Notice that once again the scaling functions above depend implicitly on m2 via the equation 
of state (2.10) which in the scaling limit and for T < Tc reads 

M0
2 = M2(t,̄m) + S(t,̄m) − S(t,̄ 0) , (3.22) 

where we have expressed the thermal coupling r < rc as
8 � � 

M2 r = −u 0 + S (t, 0) . (3.23) p
Eq (3.22) states that the magnetisation deviates from its equilibrium value |M0| = (rc − r)/u 
(see e.g. [64]) by dissipating in the transverse modes. The magnetisation may be viewed as a 

8This relation can be easily deduced from eq (2.10) considering a system prepared in equilibrium without p
external fields h = 0. In this case m2 = 0 and the magnetisation is equal to M0 = (rc − r)/u. 
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Figure 10: Numerical analysis of the effective mass below Tc (r = −1). We see the data in the left 
panel for different quench times ts and the data collapse for the dynamical scaling function in the right 
panel (compare eq (3.18)). Notice that the effective mass term can also take negative values below Tc, 
see also [80]. This is not surprising in the presence of a broken symmetry and refers to the formation 
and the propagation of massless modes who connects degenerate vacua, see e.g. [64]. The inset shows 
the convergence of the scaling functions at finite ts towards the asymptotic regime (ts →∞) for three 
different times. 

n-vector Ma(t) ≡ hφa(x, t)i whose longitudinal component M(t) in eq (2.11a) is coupled to 
the other components Ma(t), a > 1, through the transverse correlation function. For weak 
magnetic fields, we may interpret the magnetisation as a n-vector of fixed length |M0| whose 
longitudinal component M is decreased in favour of the transverse modes. The dynamical 
behaviour across the transition point is then nothing but a rotation of this vector. Moreover, 
this kind of dynamics is compatible with the O(n − 1) symmetry, because the n − 1 transverse 
planes are equally likely to contain the vector magnetisation at any time. One may also verify 
that the definition of the scales (3.14) is the only compatible with the dynamics z = D that 
preserves the equilibrium limit at |t| → τfot. 

In figure 11 we numerically investigate the off-equilibrium scaling across the fot for different 
values of the temperature T < Tc. As expected from phase kinetic arguments [11], the scaling 
theory does not depend on the specific value of the temperature considered. 

4 Hysteresis in the round-trip protocol 

In this section, we consider a round-trip protocol γ(h) in which the magnetic field (2.1) is varied 
from an initial value h(ti) < 0 to h(tf ) > 0 across the transition point hc = 0 at t = 0 and 
back in the reversed manner. By integrating the curve described by the magnetisation in time 
(2.11a) over γ(h) we obtain the hysteresis loop area A I Z tf 

Z t � Z t � 
A ≡ dt M(t) = 2 dt du h(u) cosh ds m 2(s) (4.1) 

γ(h) ti ti u 

which is a quantifier of the deviation from equilibrium during the process [75,83]: the larger the 
deviations from equilibrium are, the larger is the value of A, while for a system in equilibrium 

13 



10 5 0 5 10

t/
√
ts

4

3

2

1

0

1

2

3

4
M

(t
/
√ t s

)

r= − 1

r= − 5

r= − 10

ts = 50

ts = 75

ts = 100

ts = 150

10 5 0 5 10

t/
√
ts

100

101

102

103

104

X
(t
/
√ t s

)

r
=
−

1

r
=
−

5
r
=
−

10

ts = 50

ts = 75

ts = 100

ts = 150

Figure 11: Off-equilibrium scaling behaviour of the magnetisation (left panel) and of the transverse 
susceptibility (right panel) for different values of the temperature (r = −1, −5, −10) below the critical 
value in D = 3 spatial dimensions. The data collapse is observed for each value of the temperature 
confirming that the scaling behaviour is not modified by the specific value of T < Tc considered. 

A = 0 since the magnetisation only depends on the instantaneous value of the external field. 
The hysteresis loop area A is related to the magnetic energy W dissipated by the system during 
the round trip. For a linear quench (2.1) we have9 I 

A 
W ≡ dh M(h) = . (4.2) 

γ(h) ts 

For further considerations, we shall work in the scaling limit ts → ∞, h → 0 at t̄, |q̄| fixed 
(where we refer to the definitions (3.4) for T = Tc and (3.14) T < Tc respectively). 
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Figure 12: Numerical analysis of the dynamical magnetisation at Tc during a round-trip protocol 
in D = 3 spatial dimensions. Left panel: hysteresis loop area for different quench time scales ts. 
Right panel: data collapse and dynamical scaling of the hysteresis area (compare eq (4.3)) 

9This picture is compatible with a quasi adiabatic quench where ts → ∞ and therefore W = 0 since the 
system will not fall out of equilibrium. 
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At the critical temperature T = Tc the hysteresis loop area scales as 

6−D 
6+DA ∼ `z−dφ A ∼ ts A , (4.3) 

where the constant A reads Z +∞ Z ̄t �Z ̄t � 
A= 2 dt̄ ds s cosh du m 2(u) . (4.4) 

−∞ −∞ s 

Consequently, the dissipated energy (in form of magnetic work) W in D = 3 spatial dimensions 
obeys the scaling relation 

−2/3W ∼ ts A , (4.5) 

i.e. the slower the protocol is performed, the less energy is dissipated during the round-trip 
protocol. This can be intuitively understood since the system will stay longer in equilibrium for 
a slow quench. Applying the same arguments to the magnetic fot below the thermal critical 
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Figure 13: Numerical analysis of the dynamical magnetisation below Tc (r = −1) during a round-trip 
protocol in D = 3 spatial dimensions. Left panel: hysteresis loop area for different quench time scales 
ts. Right panel: data collapse and dynamical scaling of the hysteresis area (compare eq (4.6)) 

point T < Tc we obtain for the hysteresis loop 

√ 
A ∼ `D 

fot A ∼ ts A (4.6) 

where the factor A has the same structure as (4.4) in terms of the quantities at low temperature. 
For the magnetic work, we find the scaling relation 

W ∼ `−D 
fot A = 

A √ 
ts 

(4.7) 

independently from the spatial dimensions 2 < D < 4. Numerical results for the hysteresis 
loop area are given in the figures 12 and 13, respectively for the cases T = Tc and T < Tc. 

The scaling relations in eqs (4.5,4.7) apply beyond the spherical limit n → ∞ and are in 
agreement with the numerically obtained scaling behaviour for a 3D Heisenberg ferromagnet 
[75]. Indeed, in the case T < Tc, we showed that the dynamics is independent on the number of 

15 



Table 1: Numerical estimations of the critical exponent η for different universality classes in three 
spatial dimensions [84]. 

universality class η Ref. 

XY 0.0380(4) [85] 
Heisenberg 0.0375(5) [86] 
O(4) 0.0365(10) [87] 
O(∞) 0 e.g. [70] 

Table 2: Off-equilibrium scaling relations for the O(n) universality class with n ≥ 2 during a magnetic 
1quench (2.1): at the continuous transition T = Tc with dφ = (D − 2 + η), νh = 1/(D − dφ) and 2 

z = 2 − η and for T < Tc. 

observable 

magnetisation M(t) 

scaling T = Tc 

∼ `−dφ M(t/τ) 

scaling T < Tc 
√ 

∼ t0 M(t/ )s ts

trans. susceptibility χ⊥(t) ∼ `2−η X⊥(t/τ) 
√1/2∼ ts X⊥(t/ ts) 

hysteresis area A ∼ `z−dφ A 1/2∼ ts A 

transverse components (see appendix B) while at the criticality T = Tc the critical exponents 
of the O(n) universality classes weakly depend on the rg exponent η (see table 1) so that 
the large-n limit provides a reliable guideline. In this sense, we can conclude that the scaling 
behaviour of the system is not modified by considering a finite number of components n ≥ 2. 
The off-equilibrium scaling relations presented in this work are briefly summarised in table 2 
for a generic O(n ≥ 2) model. 

5 Summary and conclusion 

We investigated the off-equilibrium scaling arising in classical spin systems due to the presence of 
a time-dependent magnetic field h(t) = t/ts which drives the system from an initial equilibrium 
state across the transition point hc = 0 at constant temperature T ≤ Tc. In particular, we 
considered a system with O(n) symmetry in the large-n limit and in 2 < D < 4 spatial 
dimensions. We analysed the two distinct scenarios T = Tc and T < Tc which are qualitatively 
different since the magnetic transition is continuous at T = Tc and discontinuous for T < Tc. 

After recalling the general features of the kz scaling for a continuous transition, we focused 
on the protocol below the critical temperature. Here, in the absence of a diverging correlation 
length, an equilibrium scaling theory is routinely formulate by referring to the coherence length 
ξh as the characteristic scale. We extended this equilibrium theory to the non-equilibrium case 
by following the general ideas of the kz approach. To do so, we deduced several equilibrium 
exponents such as e.g. the dynamical exponent z = D for the fot, needed to formulate the off-
equilibrium scaling theory. As a result, thermodynamic observables such as the magnetisation 
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or the magnetic susceptibility present dynamical scaling relations in terms of appropriate off-
equilibrium scales. The latter are functions of the quench time scale ts and depend on the set 
of static and dynamic fot exponents. Quite remarkably, these scaling relations have the same 
structure as those at T = Tc but with different exponents. 

We then applied this scaling theory to a round-trip protocol, where we proposed the hystere-
sis area as a quantifier of the deviation from equilibrium and we derived its scaling behaviour. 
Moreover, the hysteresis can be easily connected to the dissipated magnetic energy by the 
system during a protocol and therefore with an energy cost. 

As mentioned, all results presented in this work are derived in the large-n limit. However, we 
argued that the dynamics of the system is not affected by the number of transverse components 
so that our results apply for any finite n ≥ 2, as confirmed by a comparison with numerical 
studies [75]. 

Although there are several works on the dynamical off-equilibrium scaling at fots, e.g. 
in [88] where thermal quenches are analysed and in [89–91] where finite-size scaling in quantum 
systems is discussed, the study of non-equilibrium behaviour at fots is much less understood 
and investigated than its continuous counterpart. We do therefore believe that the simple and 
clear physical picture that the kz mechanism provides, opens new perspectives to this field 
of research which becomes experimentally more and more relevant, especially in the light of 
recent experiments in the area of ultracold atoms, where fots can be generated and studied 
systematically [22, 50, 92–94]. 

A next step might be the extension of the present work to a system with inhomogeneities, 
for which the continuous counterpart is already analysed in the literature e.g. [95–97]. The 
latter case is closely related to real experimental setups where ultracold atomic gases typically 
do not have a flat density profile due to the effects of a trapping potential [98–100]. 

Acknowledgements: SW is grateful to the LPCT Nancy for their warm hospitality. The 
authors would like to thank Ettore Vicari for his support during the development of this work. 
We appreciate fruitful discussions with Dragi Karevski and Malte Henkel and are thankful for 
their critical remarks on the manuscript. Furthermore, we would like to thank the referee for 
his or her careful reading and useful comments on the manuscript. 

A Equilibrium limit 

In this appendix we provide further details on how the off-equilibrium scaling behaviour (3.6) 
and (3.15) match their equilibrium counterparts. Therefore, we have to distinguish T = Tc and 
T < Tc. 

A.1 The continuous transition (T = Tc) 

By construction, in equilibrium we can identify the effective mass term of the system with the 
inverse of the square of the instantaneous correlation length obtaining 

m 2(t/τ) ∝ |t/τ |2νh . (A.1) 
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Notice that this kind of behaviour for m2(·) provides an exponential suppression of the initial 
conditions in (2.11a) and ensures the universality of the scaling behaviour [76]. The assumption 
(A.1) can be easily checked as follows. The equilibrium scaling behaviour can be defined as the 
limit ξ →∞ at fixed t/ξz for which the magnetisation (2.11a) shows the behaviour 

M(t) ∼ ξ−dφ (t) M0 , (A.2) 

where M0 is a constant. On the other hand the equilibrium matching at |t| → τ imposes that 

M(t) ∼ `−dφ M(t/τ ) . (A.3) 

Therefore the scaling function (3.8a) must satisfy 

lim M(t/τ) = M0 |t/τ |1/δ, (A.4) 
t→−τ 

with δ = dh/dφ being the equilibrium critical exponent. One may verify that by inserting the 
Ansatz (A.1) into (3.8a), a direct calculation gives the result (A.4). With the same method we 
can derive for the transverse susceptibility 

lim χ⊥(t/τ) ∝ |t/τ |−γ , (A.5) 
t→−τ 

where γ = 2νh is the equilibrium critical exponent for the system at large-n [74]. 

A.2 The discontinuous transition (T < Tc) 

Below the critical temperature and close enough to the transition point hc = 0, we can ap-p
proximate the equilibrium value of the magnetisation by a constant M0 = − (r − rc)/u [80].10 

From this observation eq (2.8) gives for the effective mass 

h(t) 
m 2(t) ≈ 

M0 
, (A.6) 

which becomes in the scaling limit 

t/τ fot 
m 2(t/τ fot) = . 

M0 
(A.7) 

By inserting (A.7) in (3.19) we obtain for the magnetisation 

lim M(t/τ fot) = M0 . (A.8) 
t→−τfot 

Furthermore, a direct calculation of (3.20) using eq (A.7) leads to 

M0 M0
χ⊥(t) = ∼ `D 

fot , (A.9)
h(t) t/τ fot 

in agreement with the general predictions for the transverse susceptibility below the critical 
temperature [74]. 

10In other words, we are assuming that weak magnetic fields do not significantly modify the value of the 
magnetisation, see appendix C for the regime of validity of this approximation. 
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B Dynamics at low temperature T < Tc 

Here, we analyse the dynamical behaviour of the system in the regime T < Tc. The components 
φa(x, t) of the vector field satisfy the equation of motion (2.2) � � 

∂t φa(x, t) = − r 2 + m 2(t) φa(x, t) + δ1,a h(t) + ζa(x, t) (B.1) 

from which we notice that all transverse components a > 1 follow the same evolution. Hence, 
the number of transverse components does not influence the dynamics and all n − 1 transverse 
planes are equivalent. It is thus useful to reduce the system to an O(2) model [101] where the 
2-component vector field can be parametrised as 

φ(x, t) = |M0|(1 + r(x, t)) exp[iθ(x, t)] , (B.2) 

with a radial fluctuating field r(x, t) and a dynamical phase θ(x, t) ∈ [0, 2π). The equation of 
motion (2.2) is decomposed in a set of two coupled equations 

h(t)
∂t θ(x, t) (1 + r(x, t)) = r 2θ(x, t) + 2rθ(x, t)rr(x, t) − sin(θ(x, t)) + ζθ(x, t) ,|M0| 

(B.3a) 

h(t)
∂t r(x, t) = (1 + r(x, t))(rθ(x, t))2 − m 2(t) (1 + r(x, t)) + cos(θ(x, t)) + ζr(x, t) ,|M0| 

(B.3b) 

where now x = (x1, x2). We have redefined the white Gaussian noise (2.3) as 

1 � � 
ζθ(x, t) ≡ − ζ1(x, t) sin[θ(x, t)] + ζ2(x, t) cos[θ(x, t)] (B.4)

|M0| 

for the angular motion, and 

1 � � 
ζr(x, t) ≡ ζ1(x, t) cos[θ(x, t)] + ζ2(x, t) sin[θ(x, t)] (B.5)

|M0| 

along the radial direction, both with zero mean and variance 2/M0
2 . 

We shall consider the following approximations: 

1. Radial fluctuations are negligible (1 + r) ≈ 1, which provides a good description for weak 
magnetic fields at low temperatures. 

2. The angular and radial degrees of freedom are decoupled hrθ · rri = 0. 

3. The kinetic term is given by long wavelength modes |q| < q ∗ (see appendix C). 

Under these assumptions the evolution of the dynamical phase is described in the Fourier 
space by 

h(t)
∂t θ(q, t) = −q 2 θ(q, t) − sin(θ(q, t)) + ζθ(q, t), |q| < q ∗ (B.6)

|M0| 
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where ζθ(q, t) is the Fourier transform of the noise distribution having the same cumulants. 

Eq (B.6) shows two opposite regimes depending on the value of the magnetic field 

h(t) 
�������� h(t) ∗ )2∂t θ(0, t) = − � (q ' 0 ,sin(θ(0, t)) + ζθ(0, t) , (B.7a)

|M0| M0 

h(t) 
���� ����� (q ∗ )2 . (B.7b)∂t θ(q, t) = −q 2 θ(q, t) + ζθ(q, t), 
M0 

The former case corresponds to the equilibrium limit |t| � τfot while the latter describes the 
off-equilibrium regime |t| � τfot. We shall refer to these two regimes with the shorthand 

As we discussed in appendix A, in this regime the value of the magnetisation is not modified 

notation h 6= 0 and h = 0 respectively. 

Case h 6= 0 

We start by analysing the phase dynamics away from the transition point. Here, the time 
evolution is given by (B.7a) 

h(t)
∂t θ(0, t) = − 

|M0| 
sin(θ(0, t)) + ζθ(0, t) . (B.8) 

significantly. It is therefore convenient to consider the Taylor expansion of the phase θ(0, t) 
around the initial value θ(0, ti) = π. At the leading order we obtain 

h(t)
∂t ϑ(t) = ϑ(t) + ζθ(t) (B.9)

|M0| 
where ϑ(t) ≡ θ(0, t) − π and with the formal solution � Zt t h(s) 

�Z
ϑ(t) = du exp ds ζθ(u) . (B.10)

|M0|ti u 

"The mean value of the phase is zero hϑ(t)i = 0 while its variance is � p
t2 π|M0|ts 

2 

#� 
|t|
|M0| ts 

σ2(t) ≡ h(ϑ(t) − hϑi)2i = 2 
Erfc (B.11)p

(in which the small-angle approximation holds) a straight-

lim σ2(t) = 
1 

χ⊥(t) . (B.12) 
t→−τfot M0

2 

The distribution P (ϑ, t) of the dynamical phase ϑ(t) can be derived solving the associated 

exp . 
M2 
0 |M0| ts 

In the equilibrium limit |t| → τfot 

forward calculation shows 

Fokker-Plank equation �� 
δ2 

+ P (ϑ, t) , (B.13)
δϑ2 

δ h(t)
∂t P (ϑ, t) = − ϑP (ϑ, t)

δϑ |M0| 
with the initial condition P (ϑ, t0) = δ(ϑ) and having a standard gaussian solution � � 

1 ϑ2 

P (ϑ, t) = √ exp − . (B.14)
2πσ2(t) 2σ2(t) 

In this regime, we conclude that the phase dynamics consists of Gaussian fluctuations (z = 2) 
due to the transverse modes and it leaves the mean value of the magnetisation unchanged. 
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Case h = 0 

Here, we focus on the phase dynamics in the off-equilibrium regime. It is convenient to introduce 
a finite size L in a way that, in absence of anisotropies11, the volume of the system is V = LD . 
In a finite-geometry the dynamical phase and its Fourier modes are related through Z X 

iq x θ(x, t) , 
1 −iq x θ(q, t) .θ(q, t) = dx e θ(x, t) = e (B.15)
VV q 

The time-evolution of the phase is given by eq (B.7b) 

∂t θ(q, t) = −q 2 θ(q, t) + ζθ(q, t) , (B.16) 

having the formal solution Z t 
2 t 2

θ(q, t) = e −q du eq u ζθ(q, u) , (B.17) 
t0 

where, without loss of generality, we assumed θ(q, t0) = 0. Using (B.17) and (B.2), we are able 
to compute the autocorrelation function of the magnetisation Z 

M2 
iθ(x,t)−iθ(y,s)ihM(t) M(s)i ≡ 0 dx dy he . (B.18)

V 

At this point, if we consider the spatial average of the dynamical phase Z 
1 

Θ(t) ≡ dx θ(x, t) (B.19)
V V 

√ 
such that θ(x, t) = Θ(t) + O(1/ L), we may approximate the autocorrelation function (B.18) 
as [75] � � 

iΘ(t)−iΘ(s)i = M2 |t − s|hM(t) M(s)i ≈ M0
2 he 0 exp −

M2 (B.20) 
0 V 

from which we deduce that the autocorrelation time is of the order of LD implying that the 
dynamical exponent is z = D. 

C Spin-wave approximation 

We consider the expression (2.11b) for the transverse correlation function Z t � Z t � 
G⊥(q, t) = 2 du exp − 2 ds (q 2 + m 2(s)) . (C.1) 

t0 u 

As argued in appendix A, below the critical temperature and for weak magnetic fields h ' 0 the 
magnetisation can be approximated by its equilibrium value M0. In this approximation scheme, 
we obtain the estimate of the mass term (A.7). We already know that this approximation breaks 

11The geometry of the finite-size system influences the scaling behaviour, see [75] for more details. The cubic 
geometry is the one compatible with the infinite-volume considered here. 

21 



down when |t| ≤ τfot, where the magnetisation cannot be considered as constant anymore. 
However, the naive use of the Ansatz (A.7) permits to compute the value of the transverse 
correlation function explicitly r � �p

2 
G⊥(q, t) ≈ e s

π |M0| ts Erfc(s(q, t)) − Erfc(s(q, t0)) , (C.2)
2 p

where s(q, t) ≡ (q2 |M0| ts + |t|)/ |M0| ts. For large s � 1 the equilibrium propagator is 
recovered 

1 1 
lim G⊥(s(q, t)) = = . (C.3) 
s→∞ q2 + h(t)/M0 q2 + m2(t) 

Notice that the limit s →∞ does not necessarily imply |t/τfot| → ∞, i.e. the equilibrium limit. 
Indeed, considering large momenta, the system appears at any time in equilibrium. We shall 
therefore consider for the non-equilibrium dynamics only long-wavelength fluctuations |q| < q ∗ 

while we assume that modes |q| > q ∗ are always in equilibrium. The boundary value q ∗ which 
separates the two regimes can be obtained imposing the condition s(q ∗ , t = 0) ∼ O(1) [80]. 
From the latter we have the estimation 

∗ −1/4 q ∝ ts . (C.4) 

D Numerical Implementation 

The dynamical eqs (2.8,2.9,2.10) can be numerically solved using an iterative method, see 
e.g. [14]. We first divide the time-window of the protocol ts = tf − ti into N parts 

ts
k = , k � ts (D.1)

N 

and we consider the discretised time variable t(j) = ti + kj, j = 0, . . . , N . Any function of time 
f(t) may then be written in discretised version as a N + 1-vector � � � � 

f(t) 7−→ f = f0, . . . , fN , fj = f t(j) (D.2) 

and the time derivative may be replaced by a finite difference 

d fj+1 − fj
f(t) 7−→ , ∀j . (D.3)

dt k 

We then have to consider the integral over the momenta of the transverse correlation function Z 
ΩD 

Z Λ 

G⊥(q, t) = dq q D−1 G⊥(q, t) (D.4) 
q (2π)D 

0 

since the transverse correlation function depends only on |q|. To estimate this integral, we 
discretise the momenta 

Λ 
κ = , κ � Λ (D.5)

Nq 
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so that the discretised momentum is q = κz, z = 0, . . . , Nq. Momentum integrations can then 
be evaluated as Z Λ NXq −1 ! 

ΩD ΩD D−1 1 
dq q D−1 G⊥(q, t) ≈ κ (κz) G⊥(κ z, t) + ΛD−1 G⊥(Λ, t) (D.6)

(2π)D 
0 (2π)D 2 

z=1 

using the extended trapezoidal rule [102]. The discretised versions of the eqs (2.8,2.9,2.10) then 
read 

Mj+1 = Mj + k [hj − sj Mj ] (D.7a) �� � � 
gz,j+1 = gz,j − 2k (κz)2 + sj gz,j − 1 (D.7b) � �NXq −1 �� 

ΛD−1ΩD D−1M2 sj = r + u j + κ (κz) gz,j + gNq ,j (D.7c)
(2π)D 2 

z=1 

with Mj ≡ M(t(j)), gz,j ≡ G⊥(κz, t(j)), sj ≡ m2(t(j)) and hj = t(j)/ts. This set of algebraic 
equation can be solved iteratively starting from the initial equilibrium constraints 

h0 1 
s0 = , gz,0 = (D.8)

M0 κ2z2 + s0 

with M0 given by (D.7b) for j = 0. For simplicity, we focus on D = 3 and we set u = 1. The 
thermal critical coupling then reads rc = −1/2π2 ' −0.051 and we can explore the cases r = rc 

and r < rc respectively. 

References 

[1] Amit D. Field Theory, the Renormalization Group, and Critical Phenomena. International 
series in pure and applied physics. World Scientific (1984). 

[2] Cardy JL. Scaling and Renormalisation in Statistical Physics. Cambridge University Press, 
Cambridge (1996). 

[3] Sachdev S. Quantum Phase Transitions. Cambridge University Press (2001). 

[4] Nishimori H and Ortiz G. Elements of Phase Transitions and Critical Phenomena. Oxford 
Graduate Texts. Oxford University Press, Oxford (2011). 

[5] Wipf A. Statistical Approach to Quantum Field Theory, vol. 864 of Springer Lecture Notes in 
Physics. Springer, Heidelberg (2013). 
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