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Abstract: A number of evolutionary algorithms such as genetic algorithms, simulated annealing, 

particle swarm optimization, etc., have been used by researchers in order to optimize different 

manufacturing processes. In many cases these algorithms are either incapable of reaching global 

minimum or the time and computational effort (function evaluations) required makes the 

application of these algorithms impractical. However, if the Nelder Mead optimization method is 

applied to approximate solutions cheaply obtained from these algorithms, the solution can be 

further refined to obtain near global minimum of a given error function within only a few additional 

function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead 

optimization can be obtained through multiple evolutionary algorithms. The results obtained using 

this hybrid method are better than that obtained from individual algorithms and also show a 

significant reduction in the computation effort. 

Keywords: genetic algorithm; simulated annealing; particle swarm optimization; Nelder-Mead 

optimization; TIG welding; bead geometry optimization 

1. Introduction 

In recent years, optimization of various manufacturing processes using machine learning and 

evolutionary algorithms are becoming a key requirement for various industries. This is because these 

algorithms can save a significant amount of time, effort and material wastage within the industry by 

eliminating unnecessary testing. A number of researchers have developed computational models that 

can be used to predict and optimize the outputs of commonly used manufacturing processes. In most 

of the research, prediction models were developed for the process under consideration based on 

experimental data using techniques such as regression analysis, artificial neural networks, etc. After 

developing the prediction models, evolutionary algorithms can be effectively used in order to 

optimize the input parameters of that particular process. Welding processes are no exception to the 

application of such algorithms in order to predict and optimize the geometrical, microstructural and 

mechanical properties of the weldment even before welding commences on components. 

Xiong, et al. [1] applied an artificial neural network (ANN) and a second-order regression 

analysis for predicting the weld bead geometry using the robotic gas metal arc welding process. They 

found that the ANN performed better than the second-order regression model since it has greater 
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capacity for approximating non-linear processes. Similar results were obtained by Lakshminarayan 

and Balasubramanian [2], when they compared response surface methodology (RSM) with ANNs to 

predict the tensile strength of friction-stir welded aluminium joints. Many other researchers 

including [3–6] have also demonstrated an improvement in the accuracy of predicting the weld 

properties using ANNs. This demonstrates that ANNs are extremely efficient in predicting the 

geometrical as well as mechanical features of a weldment. Microstructural features have also been 

predicted with improved accuracy using ANNs. Vitek, et al. [7] used an ANN to predict the ferrite 

number of austenitic stainless steel welds by considering the chemical composition and the cooling 

rate of the weld pool. This model had outperformed all the other internationally accepted methods 

for predicting the ferrite number at that time. 

Evolutionary algorithms have been effectively used by many researchers to optimize the input 

parameters of various manufacturing processes. These evolutionary algorithms include genetic 

algorithms (GA), simulated annealing (SA), particle swarm optimization (PSO), firefly optimization 

(FO), ant colony optimization (ACO), etc. All these algorithms search for a solution within a given 

solution space by moving towards a better solution in every iteration in most of the cases. 

Hu, et al. [8] applied the PSO algorithm to various engineering problems. They slightly modified 

the original algorithm such that only feasible solutions are retained in the memory of the algorithm 

in order to constrain the solution space. They concluded that PSO is an efficient and general approach 

to solve most nonlinear optimization problems with inequality constraints. Katherasan, et al. [9] also 

developed optimization models for a flux core arc welding process using PSO and ANNs in order to 

maximize the depth of penetration, minimize the bead width and reinforcement, which gave good 

results. 

SA was used by Roshan, et al. [10] to optimize a friction stir welding process in order to achieve 

desired mechanical properties of AA7075 welds. They found that the SA algorithm is capable of 

optimizing the welding process parameters to obtain the desired properties. A SA algorithm was also 

used by Tarng, et al. [11] to optimize the process parameters to obtain the desired bead geometry. 

They further classified the welds based on bead geometry quality using a fuzzy clustering technique. 

Similarly, other researchers [12,13] have also used SA to optimize the welding process and found it 

to be very effective in predicting process parameters for the weld bead geometry. 

Similarly to SA and PSO, GA has also been extensively used for optimization of parameters. 

Sathiya, et al. [14] applied various optimization algorithms (GA, SA and PSO) in order to optimize 

friction-stir welding process parameters to obtain desired tensile strength and minimize metal loss. 

They found that among the algorithms they used, GA outperformed all the other algorithms and the 

results obtained from GA had a good agreement with the experimental data. Correia, et al. [15] 

compared GA and RSM in order to optimize the welding process based on four quality responses 

(deposition efficiency, bead width, depth of penetration and reinforcement). They also found that GA 

can perform better than RSM; however optimization using GA requires a good setting of its internal 

parameters. GA was also used by Pashazadeh, et al., [16] in order to optimize the electrode tip 

dressing operation for a resistance spot welding process, and found that it can be effectively used for 

optimizing the parameters. 

All the algorithms mentioned above are capable of optimizing the welding process, but the 

methodology used by these algorithms, the computation effort (function evaluations) and time 

required to obtain a feasible solution vary significantly. Although these algorithms can reach the 

global minimum of an error function, the amount of computation effort and time required by them 

can be significant. This paper demonstrates a reduction in this effort and time by initially finding 

approximate solutions using any of the above mentioned algorithms and then applying the Nelder-

Mead optimization (NMO) method to further refine them. NMO is an optimization method that is 

most effective when it is unconstrained, and hence cannot be applied directly to the optimization 

problem in many of the cases as it can lead to an infeasible solution. 
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2. Methodology 

2.1. Experiments 

The experimental data required for developing the prediction and optimization models for the 

weld bead geometry was obtained by welding 304L stainless steel sheets of thickness 1.5 mm. A 

tungsten inert gas (TIG) welding process was used for joining the sheets together. The experimental 

data included six variable input parameters and three output parameters. Welding was done 

heterogeneously using a 308LSi filler wire having a diameter of either 0.8 mm or 1 mm. A pulsed 

welding waveform was used for all the experiments in which the background current was fixed at 

30% of the peak current. The duty cycle and the arc length were also kept constant at 50% and 2.5 

mm respectively. No root gap was allowed between the plates. Various concentrations of nitrogen 

gas were added to pure argon and used as a shielding gas, making the composition of the gas one of 

the input variables to the process. Irrespective of the composition of shielding gas, the gas flow rate 

was maintained at 8 L/min. High purity argon (99.995%) was used as backing gas with a flow rate of 

5 L/min. The input variables included peak welding current (PC), torch travel speed (TS), pulsing 

frequency (PF), filler wire feed rate (WFR), filler wire diameter (WD) and the concentration of 

nitrogen (N) in the shielding gas. The outputs were the geometrical features that included crown 

height (CH), crown width (CW) and the weld penetration (WP). The chemical composition of both 

the sheet and wire materials is detailed in Table 1. 

Table 1. Chemical composition of the stainless steel materials used for experiments. 

Material C Cr Mn N Ni P S Si 

304L 0.026 27.795 2.000 0.100 8.120 0.025 0.001 0.497 

308LSi 0.010 20.000 1.800 0.000 10.000 0.015 0.015 0.800 

A central composite design (CCD) of experiments scheme was used to obtain the data. Out of 

the six variables mentioned above, only PC, TS, PF and WFR are continuous parameters. Due to the 

limitations on the material and equipment available, WD and N were treated as discrete parameters 

in the experiment design. The minimum and maximum values of the parameters used are mentioned 

in Table 2. This parameter range demanded that the entire experiment be divided into two sets since 

the combination at extreme values of some of these parameters would have resulted in either 

incomplete penetration or burn-through of the weld. For example, it was found from initial 

experiments that if a current of 60 A is used at a travel speed of 4 mm/s, the heat input is too low to 

obtain complete penetration through the joint. On the other hand, if a current of 120 A is used along 

with a travel speed of 1 mm/s, the heat input is too high causing burn-through of the joint. All the 

conventional design of experiments would have included the above mentioned combinations if the 

parameter ranges mentioned in Table 2 were used directly without splitting them into smaller sets. 

Weld joints that have incomplete penetration or those that are burnt-through produce no useful 

results for developing computational models. Consequently, the experiment was split into two sets 

as shown in Table 3, which are based on only the peak welding current and travel speed, since the 

other parameters do not have any direct influence on the heat input. With four continuous variables, 

a total of 31 experiments were designed using the standard CCD for a single combination of the 

discrete parameters (WD = 1 and N = 0). Only 12 experiments from this were repeated at other levels 

of N (2.5%, 5% and 10%) each in every set in order to reduce the total number of experiments. Some 

additional random experiments were performed using a WD of 0.8 mm. Another 20 random 

experiments were also performed, the data from which was reserved for testing the obtained 

computational models. Consequently, a total of 180 experiments were performed in order to generate 

the training and test data. Metallographic samples were cut and prepared from all the welds 

mentioned above. The bead geometry was measured using a Leica S65D stereo optical microscope. 

The measured output parameters are shown in Figure 1. 
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Table 2. Parameter ranges used for experiments.


Parameter Minimum Maximum 

Peak Current (A) 60 120 

Travel Speed (mm/s) 1 4 

Frequency (pps) 1 6 

Wire Feed Rate (mm/min) 100 800 

Wire Diameter (mm) 0.8 1 

Nitrogen in Shielding Gas (%) 0 10 

Table 3. Split parameter set used for designing the experiment. 

Parameter Minimum Maximum 

Set 1 

Peak Current (A) 60 90 

Travel Speed (mm/s) 1 2 

Set 2 

Peak Current (A) 90 120 

Travel Speed (mm/s) 3 4 

Figure 1. Output parameters considered to quantify bead geometry. 

2.2. Development of Prediction Models 

Before developing the optimization algorithms, it is necessary to develop computational models 

that can predict the bead geometry for a given set of input parameters. An artificial neural network 

(ANN) was developed to compute the required bead geometry parameters, Crown Height, Crown 

Width and Weld Penetration (CH, CW and WP). This ANN contains six input neurons, six hidden 

nodes and three output nodes. All the data available for developing the prediction as well as 

optimization models was normalised between 0 and 1 and all the error values mentioned in the entire 

paper are based on the normalised data. There was one bias node in the input and hidden layer each. 

The details of this ANN development is discussed in [17]. However, it is important to note that the 

overall root mean square (RMS) error of the network for the training data is 0.0021 and for the test 

data is 0.0037. This level of error in predicting the bead geometry was considered to be acceptable. 

The ANN used for predicting bead geometry is shown in Figure 2. 
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Figure 2. Neural Network used for the prediction of bead geometry. 

2.3. Development of Optimization Models 

Optimization of weld bead geometry can be done using a number of algorithms that have been 

mentioned earlier. Some of the most commonly used algorithms include genetic algorithm (GA), 

simulated annealing (SA) and particle swarm optimization (PSO). These algorithms have the 

capability to find a solution within a solution space, but may require large number of function 

evaluations depending on the targeted maximum error in optimization. If the targeted maximum 

error is sufficiently high, the computation can be done within a few iterations, consequently requiring 

a small number of function evaluations and computation time. On the other hand, if the targeted 

maximum error is very small, an extremely large number of iterations may be required by all of these 

algorithms to obtain an acceptable solution. This large number of required iterations can make the 

application of that algorithm impractical. It is important to note that the optimization algorithms can 

only be used to find the parameters that can be used for obtaining the desired outputs, but not to 

predict the outputs from the inputs. 

The computational effort required to obtain low levels of error can be significantly reduced by 

applying NMO method on the approximate solutions obtained from the above-mentioned 

algorithms. NMO is also commonly known as the simplex method. This research demonstrates the 

use of this simplex method to reduce the number of iterations and consequently the computation 

effort and time required to obtain low error levels. The steps followed for applying NMO alongside 

other algorithms to optimize the weld bead geometry are shown in Figure 3 and explained in detail 

in the following section. 
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Figure 3. Flowchart of steps followed to optimize welding process using Nelder-Mead optimization 

(NMO). 

Error Function 

The aim of the algorithm demonstrated in this research is to optimize the six welding input 

parameters in order to obtain the desired bead geometry measured considering the three outputs 

mentioned previously. First, the already developed ANN is used to predict the three outputs of the 

process. These outputs are then used to evaluate the error function shown in Equation (1). It is 

important to note here that all the outputs in this case have been given equal weight. Consequently, 

the Error function for optimization was defined as the square root of the sum of squares of individual 

errors. 

����� = �(���)� + (���)� + ������
� (1) 

where, 

��� (error in crown width) = Target crown width − Obtained crown width 

���(�rror in crown height) = Target crown height − Obtained crown height

����(error in penetration) = Target penetration − Obtained penetration 
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All the algorithms mentioned in this paper try to minimize this error function to obtain a set of 

optimized input parameters. In order to be able to compare different algorithms, the number of 

function evaluations (ANN in this case) required by individual algorithms to obtain the solution are 

considered. Every time the ANN is triggered, it is counted as one evaluation, even if the evaluation 

is a part of the same iteration for any particular algorithm. This helped in comparing the algorithms 

using a common scale, since GA and PSO are calculation intensive requiring multiple function 

evaluations per iteration whereas SA requires only one evaluation per iteration. 

3. Application of Algorithms and Results 

3.1. Genetic Algorithm 

Genetic algorithms were first developed by John Holland in 1975 inspired from principles of 

genetics and natural selection. These algorithms have been successfully applied by researchers to a 

variety of optimization problems. The general steps involved in the optimization process are shown 

in Figure 4. 

Figure 4. General Flowchart for Genetic Algorithm (GA). 
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The genetic algorithms start with initializing a number of chromosomes (random solutions) 

collectively known as the initial population. The number of chromosomes in the population can have 

a significant impact on the results obtained as well as on the time and computational effort required 

to obtain the optimized solution. In this case after a few trial and error runs, the number of 

chromosomes was set to 10 since increasing them beyond this value only increased the computation 

effort without significantly reducing the final error level. Once the initial population is obtained, the 

error function for every chromosome is evaluated and the chromosomes are ranked according to their 

fitness based on the error (chromosomes with least error are the fittest). Elitism is a process of always 

selecting the best chromosome for next generation. In this case, out of the 10 chromosomes required 

in the next generation, the elite chromosome from the parent population was directly absorbed. The 

next six spaces were filled using a rank based selection method, whereas the last three spaces were 

filled by randomly generated chromosomes. From the six selected chromosomes, three pairs were 

formed for crossover operation with a crossover rate of 0.8. After crossover, some elements of these 

chromosomes were replaced (mutation) with a mutation rate of 0.3. All the operations including 

elitism, crossover and mutation, were repeated until the stopping criteria were met. Two stopping 

criteria were used to terminate the computation: 

a. Error in the elite chromosome falls below 0.1. 

b. Total number of generations (iterations) is more than 1000. 

The computation is terminated when either of these criteria is met. These termination criteria 

were used only for the production runs i.e., the solutions obtained from which were fed in Nelder 

Mead optimization algorithm as discussed later in this section. They were removed from the 

algorithm during the trial runs done to understand the increase in number of function evaluations 

required on reducing the targeted maximum error, as illustrated in Figure 5. The algorithm 

parameters used for GA optimization are mentioned in Table 4. 

Figure 5. Number of artificial neural network (ANN) evaluations required by GA to obtain a certain 

maximum permissible error. 

Table 4. GA parameters used for optimization. 

Parameter Value 

Number of chromosomes 10 

Crossover rate 0.8 

Mutation rate 0.3 

Termination error 0.1 

Maximum number of generations before termination 1000 
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Although GAs could have been used to further reduce the error mentioned above, the 

computation effort and time required would have significantly increased making its implementation 

impractical. The plot in Figure 5 shows the number of ANN evaluations required to obtain a certain 

minimum error on a logarithmic scale. Every data point on the plot is taken as an average of 50 

individual observations. This is because the number of ANN evaluations required by GA to reach an 

acceptable solution can vary significantly depending on the chromosomes obtained after crossover 

and mutation. It can be seen in Figure 5 that the number of ANN evaluations required increase 

following a power law for errors down to roughly 0.01. Below this error level, the power law index 

jumps, dramatically increasing the number of function evaluations required. Below a certain targeted 

error level, the high number of function evaluations required to obtain the solution can make the 

implementation of this algorithm impractical. To overcome this problem, approximate solutions 

(targeted maximum error = 0.1) that require very few generations have been fed into NMO method 

which can reduce the error significantly with only a few additional ANN evaluations as shown in 

later sections. 

3.2. Simulated Annealing 

Simulated annealing is a probabilistic search algorithm inspired from the process of annealing 

of metals in order to obtain the desired properties and microstructure. General steps followed for 

optimization of parameters using SA algorithm are shown in Figure 6. 

Figure 6. General Flowchart for Simulated Annealing (SA) algorithm. 
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Simulated annealing only considers one solution at a time unlike the genetic algorithm method, 

which considers a number of chromosomes simultaneously. The fitness of this solution is compared 

to the fitness of a neighbouring solution. If the fitness of the neighbouring solution is better than that 

of the current solution, the neighbouring solution is always accepted. However, if the fitness of the 

neighbouring solution is worse than the current solution, the neighbour may still be accepted with a 

certain probability. This probability of acceptance of the worse solution depends on the difference in 

error between the two solutions and the current temperature. The annealing schedule, which is the 

rate at which the “temperature”, that is stepsize, is reduced in the SA algorithm, plays a critical role 

in obtaining a global minimum since it has a direct impact on the probability of acceptance of worse 

solution. A logarithmic cooling scheme, introduced by Geman and Geman, uses the cooling schedule 

as shown in Equation (2) [18]. 

�
�(�) = 

log(� + �) 
(2) 

where, 

T(t) is temperature at time t 

c and d are constants 

It has been proven that if c is greater than or equal to the largest energy barrier of the system, 

this cooling schedule can lead to the global minimum. However, this may require extremely large 

number of function evaluations, making its application impractical. Some other cooling schedules 

that are commonly used in order to overcome this problem are the linear schedule and exponential 

schedule as shown in Equations (3) and (4) respectively. 

� = �� − �� (3) 

� = ���� (4) 

where, 

T is the temperature at time t 

T0 is temperature at time (t−1) 

η, α are constants 

For the SA algorithm in this case, the exponential cooling schedule was applied since it gave 

good results within acceptable computation time. The initial temperature used for the algorithm was 

1 °C and was reduced using the cooling schedule to 0.01, after which the computation was 

terminated. This range of temperatures varied the probability of selection of worse solution roughly 

between 0.99 at high temperatures and 0.01 at low temperatures (depending on the error in the 

output). Another termination criteria used was that the error evaluated using the error function 

mentioned in Equation (1) falls below 0.1. When either of the two stopping criteria was met, the best 

solution obtained till that point was accepted as the solution from SA algorithm. These stopping 

criteria were used only for the production runs and were removed from the algorithm for trial runs. 

The stopping criteria on error could be reduced for the production runs, but the computation effort 

and time significantly increase with reduction in targeted maximum error as shown on a logarithmic 

scale in Figure 7. In this case also, every data point on the plot is taken as an average of 50 

observations. The SA parameters used for the optimization in this case are mentioned in Table 5. 
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Figure 7. Number of ANN evaluations required for SA to obtain certain maximum permissible error.


Table 5. Parameters used in SA algorithm.


Parameter Value 

Initial Temperature 1 °C 

Decay Rate (α) 0.95 

Termination temperature 0.01 °C 

Number of iteration at every temperature 100 

Similar to GA, reduction in maximum permissible error increases the number of ANN 

evaluations following a power law for errors down to 0.02, below which the power law index jumps. 

Consequently, further error reduction requires greater computational expenditure as seen from the 

line having steeper slope on the top left in Figure 7. In order to avoid this high computation effort to 

optimize, the maximum permissible error for the production runs was limited to 0.1 as mentioned 

earlier and the solutions obtained from SA were fed into the Nelder-Mead optimization algorithm to 

further reduce the error to 0.001 within only a few additional ANN evaluations. 

3.3. Particle Swarm Optimization 

Particle swarm optimization has similar characteristic to genetic algorithms, in that both of them 

start with assuming a number of solutions within the solution space. However, the methodologies 

these algorithms use to move towards the optimum solution vary significantly. PSO works primarily 

on two parameters, particle (solution) position and velocity. During every iteration, a particle is 

accelerated towards that particle’s best and global best solution obtained till that point. This is done 

by first updating the particle velocity using Equation (5). 

���(� + 1) = ���(�) + � × � × ������ − ���� + � × � × (����� − ���) (5) 

where,


Vij(t+1) is the velocity of particle i at dimension j at time t+1.

Vij(t) is the velocity of particle i at dimension j at time t.

α, β are constants having a value of 2.

r is a random number.

gbest is the global best solution.

pbest is the particle best solution.

pij is the position of particle i at dimension j at time t.
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On calculating the updated velocities, the particle positions are updated using the Equation (6). 

���(� + 1) = ���(�) + ���(� + 1) (6) 

where, 

pij is the position of particle i at dimension j. 

vij is the velocity of particle i dimension j. 

The flowchart of the steps followed in PSO is shown in Figure 8. Similar to all the other 

algorithms mentioned above, this algorithm also used two different criteria for termination for the 

production runs. The first criterion was based on the maximum number of iterations, which was 

limited to 1000 at every temperature for this case, and the other was based on the error function, 

which was set to 0.1. When either of the two criteria is met, the algorithm terminates and the global 

best till that point is taken as the solution from PSO. The solutions from this algorithm can also be 

fed to the NMO method in order to further reduce the error which has been explained in detail later. 

Both these criteria were removed from the algorithm for the trial runs in order to understand the 

increase in computation effort required by PSO on lowering the targeted maximum error. 

Figure 8. General Flowchart for particle swarm optimization (PSO) Algorithm. 

Figure 9 demonstrates the number of function evaluations required by PSO in order to obtain 

certain minimum error in the output on a logarithmic scale. As seen from the figure, it becomes 

impractical to reduce the error below a certain point as the computation effort and time increase 
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significantly for no perceivable processing benefit. Similarly to the previous two algorithms, the data 

points in Figure 9 are taken as an average of 50 runs each. 

Figure 9. Number of ANN evaluations required for PSO to obtain certain maximum permissible error. 

On comparing the three algorithms mentioned so far, it was found that at a relatively high 

targeted error levels, GA required the highest number of ANN evaluations, whereas PSO required 

minimum evaluations. However, when the targeted maximum error is reduced, GA starts 

performing better than SA and PSO. In fact, in this case, a targeted maximum error of 0.001 could 

only be obtained using a GA, although it required close to one million ANN evaluations. This low 

error level could not be obtained using SA or PSO. This indicates that GA outperforms SA and PSO, 

which is in agreement to the results obtained by Sathiya, et. al. [14]. However, if function to optimize 

is costly to evaluate, one million evaluations to reach near the global minimum can be unacceptable. 

3.4. Nelder-Mead Optimization Method 

The Nelder-Mead optimization (simplex) method was first developed by John Nelder and Roger 

Mead in 1965. A simplex consists of n + 1 vertices in an n-dimensional space, each of which represents 

a potential solution to the optimization problem. The worst solution in every iteration is replaced by 

a better solution obtained through some operations on the vertices. The steps followed in the 

application of NMO in this case are shown below: 

1.	 Initialize the simplex using (n+1) potential solutions, where n is the number of parameters to be 

optimized. 

2.	 Define the error function 

3.	 For each simplex vertex, calculate the error using the error function. Consider that the best 

solution is vertex B, the worst solution is vertex W and the next worst solution is N with errors 

EB, EW, EN, respectively. 

4.	 If EB is less than the desired error, terminate; else follow the next steps 

5.	 Find the centroid, C, of the best n vertices of the simplex. 

6.	 Reflect point W through the centroid obtained and calculate the error for the reflected point R. 

7.	 Further steps depend on the error obtained at the reflected point as follows: 

Case 1 ER < EW: 

a.	 If ER < EB, extend point R to point E by an equivalent distance between C and R. Calculate EE. 
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b.	 If EE < EB, replace W by E, else replace W by R. This extension process can develop skinny 

simplices which can restrict the ability of NMO to find good search directions. See below for the 

way the simplex can be re-fattened. Repeat the process from step 4 

Case 2 ER >= EW 

a.	 Calculate EC, the error value at the centroid. If EC < EB, construct a fat simplex about half the size 

about the centroid. Repeat the process from step 3. 

b.	 If EC < EN, find the midpoint, M, between C and R and find EM. If EM < EC, replace W by M 

otherwise replace W by C. Repeat the process from step 4. 

c.	 If EC > EN, construct a fat simplex about half the size about B. Repeat the process from step 3. 

The NMO algorithm has been summarized in the flowchart shown in Figure 10. In order to 

simplify the understanding of the algorithm, a schematic with two variables (three vertices) is shown 

in the Figure 11. 

Figure 10. Flowchart for the Nelder-Mead optimization algorithm. 
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(a) (b) 

(c) 

Figure 11. Schematic representation of the Nelder-Mead simplex search in a 2-dimensional space. 

Different cases are represented in three different sub-figures (a,b) and (c). (a) To begin reflect the worst 

vertex (W) through the centroid of the other vertices. Following steps as demonstrated in Figure 11b 

or Figure 11c depend of the outcomes of point R. (b) If the error at R is lower than B, extend R in the 

same direction to point E; else repeat previous steps with new simplex B-N-R. (c) If the error at R is 

more than W, calculate error at C; if error at C is less than B, construct a fat simplex about half the size 

about the centroid. Repeat the process till the final solution is obtained. 

NMO can be implemented to include constraints, but the process of taking the constraints into 

account usually makes the algorithm inefficient. Thus, NMO is almost invariably implemented as an 

unconstrained optimization algorithm, meaning that there is no control over the search space of the 

solution. If applied directly to optimize welding parameters, using an initial simplex that spans the 

feasible regime, the solution search would normally go into infeasible region. 
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Consequently, the above mentioned three algorithms (GA, SA and PSO) are first applied to find 

approximate solutions, with targeted maximum error of 0.1, following which the Nelder-Mead 

algorithm is used to further refine the solution. This in almost all the cases can guarantee that the 

solution obtained is inside the solution space. Finding an approximate solution initially also reduces 

the number of iterations within NMO required for obtaining significantly low errors. 

The vertices (solutions) required to start the algorithm can be obtained through any of the above 

mentioned algorithms. Figure 12 shows the reduction in error on application of Nelder-Mead 

optimization to vertices obtained from GA. Since the stopping criteria error used for this GA 

optimization was relatively high (~0.1), only a few GA iterations were required to generate these 

initial vertices. This led to a very small computation effort and time. The number of ANN evaluations 

required by the GA to form a simplex of 7 vertices for 6 different trials is shown in Table 6. On an 

average 119 ANN evaluations were required for obtaining of each vertex. For the Simplex method, 

the stopping criterion was that the error at the best vertex falls below 0.001, which on an average 

required another 51 evaluations over and above the ones required by GA. The average number of 

total ANN evaluations required by the combined GA and NMO algorithm was 884 as seen in Table 

6. If only GA was used to obtain this level of error, the number of evaluations required would be 

close to one million as mentioned previously. Thus, application of Nelder-Mead optimization in 

combination with GA can significantly reduce the computation effort and time. 
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Figure 12. Reduction in error on applying simplex optimization on solutions obtained from GA. 

Table 6. Number of iterations required by GA to obtain maximum targeted error for further 

application of Simplex method. 

Trial 

No. 

Vertex 

1 

Vertex 

2 

Vertex 

3 

Vertex 

4 

Vertex 

5 

Vertex 

6 

Vertex 

7 

Simplex 

Iterations 
Total 

1 36 36 234 243 711 90 90 56 1496 

2 90 117 45 36 9 324 99 46 766 

3 54 126 36 9 54 99 216 49 643 

4 225 45 234 153 36 81 216 55 1045 

5 333 90 135 9 36 54 9 58 724 

6 216 54 54 99 90 9 63 42 627 

Average 159 78 123 92 156 110 116 51 884 
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For every trial in Figure 12, each vertex was obtained by running the GA once to obtain an error 

below 0.1 and taking the elite chromosome (solution) as one of the vertices. Consequently, for every 

trial, the GA has been run 7 times. 

It can be similarly shown that the number of ANN evaluations for optimization can also be 

significantly reduced by applying NMO method on the approximate solutions obtained from SA. 

Figure 13 shows the reduction in the error in outputs when the same NMO algorithm was applied to 

the approximate solutions obtained from SA. In this case also, each vertex for every trial is obtained 

by evaluating the SA algorithm once. On an average 151 ANN evaluations were required by SA to 

reduce the error to 0.1 and form each vertex of the simplex. Additionally, NMO required another 48 

ANN evaluations in order to reduce the error below 0.001 as shown in Table 7. As mentioned earlier, 

this low level of error could not be obtained if only SA was used with the existing parameters such 

as the cooling schedule and decay rate. The average total number of ANN evaluations required for 

the combined SA and NMO to obtain the error below 0.001 is 1105; consequently, proving the 

efficiency of NMO. 
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Figure 13. Reduction in error on applying simplex optimization on solutions obtained from SA. 

Table 7. Number of iterations required by SA to obtain maximum targeted error for further 

application of Simplex method. 

Trial 

No. 

Vertex 

1 

Vertex 

2 

Vertex 

3 

Vertex 

4 

Vertex 

5 

Vertex 

6 

Vertex 

7 

Simplex 

Iterations 
Total 

1 48 174 96 195 40 163 75 43 834 

2 30 337 36 23 205 97 244 68 1040 

3 20 63 111 179 31 398 33 55 889 

4 8 33 213 31 71 263 563 48 1230 

5 255 290 223 26 133 29 58 35 1059 

6 871 105 158 133 92 44 135 38 1576 

Average 205 167 140 98 95 167 185 48 1105 

Nelder-Mead optimization is equally effective on the approximate solutions obtained from PSO 

as shown in Figure 14. The average number of total ANN evaluations required by the combined PSO 

and NMO algorithm to reduce the error below 0.001 was 317 as shown in Table 8. This value is lower 
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than that required by the GA+NMO and SA+NMO mainly due to the fact that PSO requires fewer 

ANN evaluations to develop the initial simplex compared to GA and SA. This low level of error could 

not be obtained on using only PSO as previously mentioned. 
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Figure 14. Reduction in error on applying simplex optimization on solutions obtained from PSO. 

Table 8. Number of iterations required by PSO to obtain maximum targeted error for further 

application of Simplex method. 

Trial 

No. 

Vertex 

1 

Vertex 

2 

Vertex 

3 

Vertex 

4 

Vertex 

5 

Vertex 

6 

Vertex 

7 

Simplex 

Iterations 
Total 

1 20 40 100 60 50 30 20 51 371 

2 20 10 20 30 20 70 120 39 329 

3 10 40 10 10 50 30 10 49 209 

4 100 10 100 30 70 20 10 58 398 

5 20 50 10 80 40 80 20 42 342 

6 20 20 40 50 10 20 40 51 251 

Average 32 28 47 43 40 42 37 48 317 

Figure 15 shows the number of ANN evaluations required to obtain certain levels of maximum 

error using different algorithms for a randomly chosen desired outputs of the welding process. The 

significant drop in the number of evaluations required when NMO is used along with any other 

algorithm makes the application of such a combined system extremely practical and easily applicable 

in solving optimization problems. 
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Figure 15. Comparison of number of ANN evaluations required to obtain different error levels by 

different algorithms. 

4. Conclusions 

From the experimental data obtained and the computational models developed, the following 

can be concluded: 

1.	 A number of evolutionary algorithms can be used for optimization of weld bead geometry of a 

TIG welding process using a filler material. However, the computation effort and time required 

by these algorithms to achieve the desired error can make the use of these algorithms 

impractical. 

2.	 When GA, SA and PSO are compared at a sufficiently high targeted maximum error, the number 

of function evaluations required by PSO to find a solution is minimum. However, when the 
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targeted error is reduced, GA proves to be more efficient, requiring fewer ANN evaluations as 

compared to the other two algorithms. 

3.	 In all the algorithms mentioned above, as the targeted error is reduced, the number of function 

evaluations required increases following a power law initially until a certain error is reached, 

after which the power law index jumps increasing the number of function evaluations to increase 

dramatically. 

4.	 On cheaply obtaining approximate solutions that don’t violate constraints from any of the 

above-mentioned algorithms, the Nelder-Mead (Simplex) optimization method can be applied 

to the solutions to further reduce the error significantly within a very few additional evaluations. 

Thus, this hybrid optimisation method, using algorithms that can easily take account of 

constraints, and which, because of their nature, are effective at finding the general region in 

parameter space wherein the global optimum resides relatively cheaply, and using the remarkably 

efficient Nelder-Mead algorithm to home in on the precise global optimum, without violating 

physical parameter constraints, shows a high level of robustness, combined with great efficiency. 
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