
 Coventry University

DOCTOR OF PHILOSOPHY

A Fuzz Testing Methodology for Cyber-security Assurance of the Automotive CAN Bus

Fowler, Daniel S.

Award date:
2019

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/a-fuzz-testing-methodology-for-cybersecurity-assurance-of-the-automotive-can-bus(9fdb391a-00b7-4ac7-96c6-fe7e9612275b).html

A Fuzz Testing Methodology for
Cyber-security Assurance of the

Automotive CAN Bus

by

Daniel S. Fowler

May 2019

HORIBA MIRA Limited

A thesis submitted in partial fulflment of the University’s requirements for the Degree of
Doctor of Philosophy

Content removed on data protection grounds.

Certificate of Ethical Approval

Applicant:

Daniel Fowler

Project Title:

Automotive cyber-security - Testing simulated and experimental vehicle CAN

systems for resilience using a fuzz test methodology

This is to certify that the above named applicant has completed the Coventry

University Ethical Approval process and their project has been confirmed and

approved as Low Risk

Date of approval:

 10 November 2017

Project Reference Number:

P63333

To my wife, Julie, and my sons, Joel and Luke, for their support and continuous giving to all.
To all my family and friends for their love.

Acknowledgements

This research programme and thesis was possible due to the support of many individuals at Coventry
University and HORIBA MIRA Limited. I need to give special thanks to Dr. Jeremy Bryans, my
Director of Studies, for his excellent doctoral supervision. His guidance, suggestions, and insights
were very valuable. Likewise, Professor Siraj Shaikh, as the second supervisor, provided extremely
constructive comments and knowledge.

At HORIBA MIRA professionalism and helpfulness was provided throughout the programme.
Paul Wooderson, Dr. Madeline Cheah and Dr. Anthony Baxendale were especially supportive. All
HORIBA MIRA staff were approachable, including Dr. Alastair Ruddle, Chris Mellors and Pierre
Papon, who provided help at various times.

The Coventry University staff at the Faculty of Engineering, Environment and Computing, the
Doctoral College and the Institute for Future Transport and Cities aided in the completion of the
programme. This includes Kevin Vincent, Prof. Mike Blundell, Dr. Hoang Nga Nguyen and Prof.
Andrew Parkes.

The need for security testing of vehicles is part of an ongoing research collaboration between
HORIBA MIRA, who are a transportation and vehicle test, design and consultancy company, and
Coventry University. They both engage in research within many areas of automotive engineering and
are in central England, at the heart of the United Kingdom motor manufacturing industry. Vehicle
cyber-security is one of many joint areas of interest and is one of the topics for development within
the joint Centre for Connected and Autonomous Automotive Research (CCAAR).

Abstract

The cyber-physical vehicle is one of the underpinnings of modern society, however, if a vehicle’s
design is faulty it carries a risk of injury to the occupants and the public. It has been demonstrated
that intelligent agents can penetrate connected cars via cyber attacks and cause an unsafe state.
The possibility of a cyber attack means that cyber-security testing should be performed to maintain
assurance in vehicle systems. However, vehicle cyber-security testing methods are immature.

Fuzz testing is a dynamic testing method for software-based systems. Automotive industry
guidelines regard it as a component in the security testing process of cyber-physical systems. The
hypothesis is that fuzz testing can be used over a system’s lifecycle as part of the design and
maintenance process for cyber-security. However, there are few evidential results on the application
of fuzz testing to the automotive feld. This applied research provides one of, if not the frst, detailed
contribution on fuzz testing automotive systems.

A tool to performing vehicle fuzz testing, called a fuzzer, was constructed using an iterative
methodology to enable experimental observations on automotive systems and components. Using the
dedicated fuzzer empirical results were gathered. The target for the fuzz testing was a lab vehicle’s
Electronic Control Units, accessed via a common intra-vehicular communications bus, the Controller
Area Network. The results demonstrate that fuzz testing is indeed benefcial to the design of vehicle
systems and can contribute to system assurance. Furthermore, the construction of the fuzzer and its
application to vehicle systems has contributed a method for the development of additional security
tests for the automotive feld. However, the technology within a vehicle system is a challenge for
cyber-security testing, this includes the cyber-physical aspects of a car and the symbiotic interaction
of a vehicle’s computational elements. There remains signifcant research work required before fuzz
testing becomes commonly integrated into test procedures for all the systems within connected cars.

Table of contents

List of fgures

List of tables

Nomenclature

1 Introduction
1.1 The threat from cyber crime . 1

xvii

xxi

xxiii

1

1.2 Establishing the research aim . 2
1.2.1 Hardware-in-the-loop and software-in-the-loop 3
1.2.2 CAN is a common vehicle component interface and network 5
1.2.3 Testing for secure design . 5
1.2.4 The research motivation . 5
1.2.5 The research question . 6

1.3 This research program’s contributions . 7
1.4 Overview of the thesis . 8
1.5 Publications . 10
1.6 Summarising the introduction . 11

2 Literature review 13
2.1 Aims of the review . 13
2.2 The literature discovery method . 14
2.3 Software assurance and security properties . 15
2.4 Threats, targets, countermeasures and evaluation . 16
2.5 The malleability of the computer . 18
2.6 A brief automotive cyber-security history . 18
2.7 Insecure vehicle technology . 21

2.7.1 The Controller Area Network . 22
2.7.2 The exposed OBD port . 24

2.8 Applying existing security to the vehicle . 26
2.9 The vehicular cyber-security testing requirement . 27

xii Table of contents

2.10 Three non-functional security tests . 28
2.11 What is fuzz testing? . 31
2.12 Fuzz testing CAN . 31
2.13 Summarising the automotive fuzz testing literature 34
2.14 Drawing from the review . 35

2.14.1 Barriers to automotive cyber-security research 37
2.14.2 Understanding the motivation for this research 37

3 Method 39
3.1 Introduction to research methods . 39
3.2 The iterative Design Science Research Methodology 40
3.3 The DSRM process model . 40
3.4 Applying the DSRM to this research . 43
3.5 An automotive security test development methodology 44
3.6 Addressing the very large CAN state space . 46
3.7 Equipment, tools and test facilities used during this research 49
3.8 Summary on research methodologies . 50

4 A testbed for automotive security testing 51
4.1 Introducing the experimental work . 52
4.2 Experimental method . 52

4.2.1 HIL/SIL platform . 52
4.2.2 Attacking the HIL/SIL platform . 53
4.2.3 Aftermarket device threat assessment . 54
4.2.4 Confguration and diagnostic messages . 56
4.2.5 Raw CAN packets . 57

4.3 A vehicle security testbed . 58
4.4 OBD attack against the testbed . 59
4.5 Evaluation of the results . 62
4.6 Assessment of the testbed . 62

5 A new automotive CAN fuzzer 65
5.1 Introduction to the construction of a CAN fuzzer 66

5.1.1 The need for a dedicated CAN fuzzer . 66
5.1.2 Required CAN fuzzer aspects . 67

5.2 CAN fuzzer design and development . 67
5.2.1 A PC based fuzzer . 68
5.2.2 Link to the ToE via the vehicle data bus or ECU interface 68

5.3 Construction of the communications . 69
5.4 CAN fuzzer functionality . 70

xiii Table of contents

5.5 Using the CAN fuzzer, frst validation . 73
5.6 Fuzzer evaluation . 77
5.7 CAN fuzzer development summary . 77

6 Automotive fuzz testing 79
6.1 Introduction to a fuzz testing experiment . 79
6.2 Method used in applying the prototype fuzzer . 80
6.3 Development of the experiment . 81
6.4 Demonstration of automotive CAN fuzz testing . 82

6.4.1 Affecting a lab vehicle with CAN fuzz testing 82
6.4.2 Fuzz testing a bench based CAN bus . 83

6.5 Evaluating the fuzz testing . 87
6.5.1 Execution times for fuzz testing . 87
6.5.2 Observations from the fuzz testing . 89

6.6 Conclusion on automotive fuzz testing . 90

7 Investigations into an automotive gateway 91
7.1 Introduction to an in-vehicle gateway as a ToE . 91
7.2 The experimental method . 92
7.3 Vehicle gateway hardware overview . 93
7.4 Initial gateway experiment and results . 95
7.5 Use of the fuzzer with the gateway . 99

7.5.1 Gateway ECU grounded CAN lines . 99
7.5.2 In-vehicle gateway operation . 101

7.6 Gateway testing evaluation . 104
7.7 Conclusion . 105

8 Fuzz testing a media interface ECU 107
8.1 Introduction to the media ECU experiment . 107
8.2 Three stage experimental method . 108
8.3 Bench based media ECU CAN interface assessment 111
8.4 In-vehicle data capture stage . 113
8.5 Media ECU bench fuzz testing . 114
8.6 Evaluating the media ECU fuzz testing . 115
8.7 Concluding media ECU fuzz testing . 117

9 Fuzz testing a display ECU 119
9.1 Introduction to the display ECU . 119
9.2 Experimental method . 121
9.3 Display ECU CAN interfacing . 121

xiv Table of contents

9.4 Debugging the display ECU CAN bus connections 123
9.4.1 Lab vehicle display ECU . 124
9.4.2 Monitoring the display ECU connections 125

9.5 Display ECU CAN packets . 125
9.6 CAN Fuzz testing of the display ECU . 127
9.7 Using the CAN fuzzer to fnd ECU functionality . 129
9.8 Log fle search for a CAN packet . 129

9.8.1 Isolating message generating CAN packets 129
9.8.2 Resolving inconsistent CAN packet search results 130

9.9 Testing individual CAN packet bytes from found messages 135
9.10 Single byte testing for individual display messages 135

9.10.1 Experiment to test packet bit settings . 137
9.10.2 Experiment to test CAN packet byte values 137
9.10.3 Modifying the CAN fuzzer to aid the experiments 138
9.10.4 Known display ECU messages . 138

9.11 Results varying individual packet bit and bytes values 140
9.11.1 CAN packet ids 793 and 752 testing results for single bit settings 140
9.11.2 CAN packet ids 793 and 752 results discussion for single bit settings 140
9.11.3 CAN packet 793 testing results for byte values 146
9.11.4 CAN packet 752, byte value setting tests 148

9.12 Testing packet length variation . 149
9.12.1 Method for the packet length variation . 149
9.12.2 Results for the packet length variation . 150

9.13 Exclusions lists for fuzz testing and CAN packet 753 151
9.14 Reverse engineering confdential functionality . 153
9.15 Injecting display ECU messages . 154
9.16 Concluding the display ECU fuzz testing . 155

10 Discussion and conclusion 157
10.1 On determining the research aim . 157
10.2 Experimental outputs from this research . 158

10.2.1 Summary of the results from the security testbed experiment 159
10.2.2 Summary of the results from testing a vehicle gateway 160
10.2.3 Summary of the results from testing a media ECU 160
10.2.4 Summary of the results from testing the display ECU 160

10.3 Contributions from the research outputs . 161
10.3.1 Contribution from the literature review . 161
10.3.2 Contribution from the development of the fuzzer tool 161
10.3.3 Contribution from fuzz testing the CAN bus 162

xv Table of contents

10.3.4 Contribution from identifying new automotive testing challenges 162
10.3.5 Contribution of a method for developing automotive cyber-security tests . . . 163
10.3.6 Contribution in identifying combinatorial explosion in CAN fuzz testing . . . 163
10.3.7 Contribution from the bit rate attack experiment 163

10.4 Discovered challenges in automotive security testing 163
10.4.1 Challenge 1: The risk of damage versus obtaining trustworthy results 164
10.4.2 Challenge 2: Design of suitable protection mechanisms 164
10.4.3 Challenge 3: Vehicle components function as part of a CPS 165
10.4.4 Challenge 4: Observing CPSs . 165
10.4.5 Challenge 5: State-space explosion . 165
10.4.6 Challenge 6: Granularity of control . 166
10.4.7 Challenge 7: Other vehicle networks and technology 166

10.5 Summary of future research . 166
10.6 On answering the research question . 167
10.7 Research impact considerations . 168

10.7.1 Mitigating fuzz testing as an attack . 168
10.7.2 Impact of the research on additional stakeholders 169
10.7.3 Securing the connected car . 169

10.8 Conclusion . 170

References 173

Appendix A The computerised vehicle 185
A.1 The rise of the ECU . 185

A.1.1 The growth in connected and autonomous vehicles 188
A.1.2 List of computerised vehicle functions . 190

A.2 Summary . 191

Appendix B More on the CAN bus and OBD port 193
B.1 A brief history of CAN . 193
B.2 An overview of CAN . 194

B.2.1 Data transmission speed . 194
B.2.2 Packet id . 195
B.2.3 Data length and data bytes . 195
B.2.4 Control bits . 195

B.3 CAN example . 196
B.4 The On-Board Diagnostics port . 197

B.4.1 Internal operation of OBD dongle style devices 198
B.4.2 OBD physical security . 199

B.5 Summary . 199

xvi Table of contents

Appendix C Bit rate attack on the CAN bus 201
C.1 Introduction to the experiment . 201
C.2 Method . 202
C.3 Experiments against a simulated CAN bus . 204
C.4 Experiments against a component . 205
C.5 Experiments against vehicles . 206

C.5.1 Vehicle A . 206
C.5.2 Vehicle B . 206

C.6 Vehicle considerations . 207
C.7 Weaponizing the attack . 209
C.8 Additional attacking nodes . 209
C.9 Discussion and attack mitigation . 211
C.10 Possible further work . 212
C.11 Conclusion . 213

Appendix D Image permissions 215

Appendix E Safety considerations 217

Appendix F Log File Searching 219

Appendix G Ethics documentation 221

Appendix H Additional information on the CAN fuzzer software implementation 233
H.1 Limitations on access to the CAN fuzzer code . 233
H.2 The code’s project fle and components . 234
H.3 Open source components . 236

H.3.1 Ticker is a one millisecond timer . 236
H.3.2 PCAN_USB is a CAN to USB interface library 239

List of fgures

1.1 The V-model for vehicle systems development . 3
1.2 A Vector HIL/SIL vehicle simulator used in this research 4

2.1 ISO/IEC 15408-1:2009 security concepts and relationships 17
2.2 ISO/IEC 15408-1:2009 evaluation concepts and relationships 17
2.3 Intel’s 1997 Connected Car PC . 20
2.4 CAN busses in a small car . 22
2.5 A CAN data packet schematic . 23
2.6 An OBD port in a vehicle . 24
2.7 Start, Predict, Mitigate, Test (SPMT) security testing process 30
2.8 Testing methods used in the automotive industry . 32

3.1 The Design Science Research Methodology . 41
3.2 The overall research framed in terms of the DSRM 44
3.3 Software development and experimental methods iteration 44
3.4 A method to develop automotive security testing . 45
3.5 Applying the security test development methodology to CAN 47
3.6 Applying the security test development methodology to Bluetooth 47
3.7 Targeted CAN fuzz testing to address state space explosion 48

4.1 ELM OBD dongles used to read and write data via the CAN bus 54
4.2 Vulnerability test against a CAN bus via OBD dongles 55
4.3 Vulnerability test against a vehicle HIL/SIL testbed 58
4.4 A vehicle HIL/SIL design system being used for security testing 59
4.5 Simulation setup as shown within Vector CANoe 60
4.6 Terminal program window showing communications with CAN 60
4.7 CAN communications within Vector CANoe . 61
4.8 Injected packet causing the headlight to turn on . 61

5.1 The arrangement of the fuzzer . 68
5.2 CAN fuzzer development environment . 69

xviii List of fgures

5.3 The PEAK-System USB (PC) to CAN interface device 70
5.4 Overview of the CAN interface code . 71
5.5 The main CAN fuzzer window . 72
5.6 CAN fuzz testing confguration UIs . 72
5.7 Data analysis and packet monitoring UIs . 74
5.8 Single packet generation and log fle transmission UIs 74
5.9 Simulated vehicle signals . 75
5.10 Effect of fuzzing on signals . 76
5.11 Inappropriate value on a vehicle simulator display via fuzzing 76
5.12 Mean values analysis from captured vehicle CAN packets 77

6.1 Crashing a vehicle component as a result of fuzz testing 81
6.2 Vehicle control via a manufacturer’s smartphone app 84
6.3 CAN bus connecting three single board computers acting as ECUs 85
6.4 Remote vehicle unlock functionality . 86
6.5 PC vehicle lock/unlock app . 86
6.6 Chart of the timings for the fuzzed unlock CAN packet 88

7.1 A vehicle gateway component . 94
7.2 Inside the gateway ECU . 95
7.3 The gateway vehicle’s ECU network . 96
7.4 Vehicle gateway connected to the PC . 98
7.5 Gateway ECU grounded CAN signal . 100
7.6 Gateway ECU CAN wake-up . 100
7.7 Fuzzer ACK error sending a packet to the gateway ECU 102
7.8 Fitted vehicle gateway . 104

8.1 Custom cable for man-in-the-middle CAN monitoring 109
8.2 The media ECU circuit board (top view) . 111
8.3 Man-in-the-middle CAN connections to intercept in-vehicle communications 113

9.1 The display ECU operating in the laboratory vehicle 120
9.2 The display ECU’s communications network . 120
9.3 Display ECU component . 122
9.4 Bench based display ECU usage . 123
9.5 The CAN transceiver chip in the display ECU . 123
9.6 Using two CAN interfaces and fuzzers to debug a display ECU’s CAN connection . . 124
9.7 Accessing the display ECU in the lab car . 124
9.8 Bench ToE display ECU in the laboratory vehicle 125
9.9 Man-in-the-middle monitoring of the display ECU CAN busses 126

xix List of fgures

9.10 Displayed message during fuzz testing . 128
9.11 2nd display message seen during fuzz testing . 130
9.12 Different display message seen during the search for message two 132
9.13 Passenger door message seen during message search 132
9.14 A brake fuid message seen during CAN packet discovery 133
9.15 Steering lock messages . 134
9.16 Transmission messages . 134
9.17 A few of the messages discovered via a search . 136
9.18 Testing for individual display messages . 138
9.19 Fuzz testing CAN with an id exclusion list . 151
9.20 Injecting discovered messages into the vehicle’s internal network 154

A.1 Early 1970’s General Motors Alpha experiments 186
A.2 Computer-based features in vehicles . 187
A.3 In-vehicle networks in a medium-sized executive car 188

B.1 CAN signal voltage levels . 194
B.2 Transmitting vehicle sensor data on CAN . 196
B.3 CAN transmissions continuously update vehicle state 196

C.1 Connecting a PEAK-USB CAN interface to a vehicle OBD port 203
C.2 The open source CANtact device . 210
C.3 An internal view of the PCAN-USB interface . 210
C.4 CAN bus bit rate comparison . 211

H.1 The CAN fuzzer software project in the IDE . 235

Unless otherwise stated, all diagrams, photographs and fgures are the work of the author. Where a
diagram has been reinterpreted from its original source, that source is referenced.

List of tables

2.1 ECUs in a small car . 22
2.2 Data elements of a standard CAN packet . 23
2.3 Example Basic CAN Data Packet . 23
2.4 In-vehicle data communications networks in common use 25
2.5 A list of interfaces that do not require physical contact with the vehicle 29
2.6 General purposes fuzzers adapted for automotive fuzz testing 34

4.1 OBD scanning devices (dongles) investigated . 55
4.2 Commands sent to the OBD connected dongle . 56
4.3 Results of a diagnostic PID transmission to a vehicle 57
4.4 Security properties/functions and their violation via the testing 63

5.1 Fuzzing elements of a CAN data packet . 74
5.2 Sample Random CAN packet output from the fuzzer 75

6.1 Fuzzer run times to activate unlock . 87
6.2 Time to run through all possible combinations of standard CAN packets 89

7.1 Gateway ECU connections . 96
7.2 All the vehicle ECUs normally connected to the gateway 97
7.3 Gateway CAN transmissions on bench power up . 98
7.4 Gateway CAN responses to CAN activity . 99
7.5 Car medium speed CAN data verses bench readings 103

8.1 Physical connection to the media ECU . 112
8.2 Media ECU high speed CAN communications on power-up 112
8.3 Media ECU medium speed CAN communications on power up 112
8.4 The range of CAN packet ids observed from the in-vehicle media ECU 114
8.5 The range of CAN packets confgured for the fuzz testing of the media ECU 114
8.6 Monitoring one media ECU CAN bus when fuzz testing the other bus 115
8.7 The data differences for 3 out of 7 of the observed media ECU CAN packets 116

xxii List of tables

9.1 Some operational messages shown on the display ECU 120
9.2 Display ECU connection pins . 122
9.3 In vehicle display ECU counted CAN packets . 126
9.4 Display ECU CAN packets seen on initial bench testing 127
9.5 Fuzzing elements of a CAN data packet targeting the display ECU 128
9.6 CAN packet search for frst target message . 131
9.7 CAN packet search for second target message . 131
9.8 ECU messages displayed resulting from CAN packet with id 739 135
9.9 Known display messages from the owner’s manual 139
9.10 Display ECU CAN packet with id 793 bytes 1 to 3 bit setting results 141
9.11 Display ECU CAN packet with id 793 bytes 4 to 6 bit setting results 142
9.12 Display ECU CAN packet 793 bytes 7 and 8 bit setting results 143
9.13 Display ECU CAN packet with id 752 bytes 1 to 3 bit setting results 144
9.14 Display ECU CAN packet with id 752 bytes 4 to 6 bit setting results 145
9.15 Display ECU CAN packet 752 bytes 7 and 8 bit setting results 146
9.16 Display ECU CAN packet id 793 value results for byte 1 147
9.17 CAN packet transmission rate effect on the display ECU 149
9.18 Unexpected messages seen when decreasing CAN packet data length 150
9.19 CAN packet search for target message 3 . 152

A.1 ECUs in a German executive car . 189
A.2 List of connected vehicle services . 190

B.1 Section of CAN data captured from a car . 197
B.2 Usage of OBD port pins . 197
B.3 Devices that Connect to Vehicular Systems . 198

C.1 CAN data packet for the bit rate attack . 204
C.2 Bit rate attack at 50ms, results against a simulated vehicle 204
C.3 Bit rate attack at 100ms, results against a simulated vehicle 205
C.4 Bit rate attack at 50ms, results against a physical vehicle component 205
C.5 Vehicle A: Warning and malfunction messages at various supported bit rates 207
C.6 Vehicle B: Warning and malfunction messages at various supported bit rates 208

Unless otherwise stated, all tabular content is the work of the author.

Nomenclature

Acronyms / Abbreviations

ACL Access Control Lists, these are used by frewalls and other computer security systems to
provide security to various types of resources. A request to access a resource is checked
against a list of users and groups who have permission for the requested access level.

ADAS Advanced Driver Assistance Systems, vehicles that provide advanced driving aids, such as
collision avoidance and lane-keeping.

API Application Programming Interface, a method for software-based systems to provide
functionality to other programs. The functionality is provided by a library of documented
routines which make up the API.

AT Attention, a serial communications protocol called the Hayes command set that originated
in dial-up modems. AT commands are used by ELM based OBD devices

CAN Controller Area Network, a common data transmission network between computational
units (ECUs) within vehicles.

CAV Connected and autonomous vehicle, a term applied to the development and deployment of
highly computerised and sensor-enabled vehicles. Such vehicles are wirelessly connected
to remote services via the Internet and may provide a degree of autonomous driving, from
basic lane keeping to full driverless functionality.

CCAAR The Centre for Connected and Autonomous Automotive Research is a collaboration
between HORIBA MIRA Limited and Coventry University to investigate the technologies
required for future vehicles.

COMM a serial communications port on a PC, these were originally RS-232 ports but are now
often virtual ports using USB interfaces.

CPS Cyber-Physical System, a combined physical, computational and networked system. The
physical components are monitored or controlled by computational elements, often inter-
connected, a CPS can be connected to the Internet.

xxiv Nomenclature

CPU Central Processing Unit, the brain of a computer system which executes program code
read from the computer’s memory.

CRC Cyclic Redundancy Check, an algorithm used to enable detection of bit errors in a data
stream, often used in computer systems when data is moved between locations. For
example, over a network or from computer disk to memory. CAN uses CRC as part of its
error handling.

DCE Data Communications Equipment, in serial communications via RS-232 (includes emu-
lated RS-232 via USB) the term DCE to refers to the equipment at the end the connection,
i.e. the device sending the commands and data from a computer or terminal.

DLC Data Length Code, Part of the CAN protocol and a feld in a CAN packet. Sets the number
of bytes transmitted in the packet.

DLL Dynamic Link Library, a code library that contains specifc functionality that is loaded by
the main Windows program when that functionality is required.

DoS Denial of Service, an attack against a system that is performed by fooding the system with
data at a rate that the system is unable to handle, causing the system to slow down and
possibly halt.

DSRM Design Science Research Methodology, a research method that provides a framework to
enable the considered design of an artefact in information systems domains, see Chapter 4.

DTC Diagnostic Trouble Code, these are read from a vehicle, normally via the OBD port, and
provide a code that can be translated into a known fault or vehicle parameter. Often used
for fault fnding in vehicles.

DTE Data Terminal Equipment, serial communications via RS-232 (included emulated RS-232
via USB) the term DTE to refers to the computer side of the connection, i.e. the device
acting as a serial terminal.

DUT Device Under Test, in engineering felds this is what a component is called when being
subjected to a testing regime. See also SUT and ToE.

ECU Electronic Control Unit, an embedded computing device used to control an aspect of
vehicular functionality.

ELM The ELM company produces a CAN interface MCU that is popular in OBD dongles that
plug into cars. The ELM protocol is commonly used in apps that read vehicle data from
the OBD port. The ELM chips have been widely counterfeited.

Nomenclature xxv

escar Embedded Security in Cars, one of the frst (2003) regular conferences to address the
automotive cyber-security feld. Although a commercial conference, it is well established
and attracts interesting presentations.

EVITA E-safety Vehicle Intrusion proTected Applications, this European project ran from 2008 to
2011. It looked at vehicle security issues. EVITA outputs are often cited in other works in
the automotive cyber-security feld.

GM General Motors, one of the world’s oldest vehicle companies, and the World’s largest until
2007. GM was one of the frst companies to experiment with computers to control vehicle
functions.

HARA Hazard Analysis and Risk Assessment, the method defned in ISO 26262 to assess the
safety goals of a system and determine areas that require mitigation to avoid unreasonable
risk

HEAVENS HEAling Vulnerabilities to ENhance Software Security and Safety was a project involving
Volvo and Chalmers University, investigating methods and tools for security testing vehicle
systems.

hex hexadecimal, the base 16 number system is used in software to simplify the display of
binary and byte-sized data, four binary bits (half a byte) is displayed as a single character,
0 to F.

HIL Hardware-in-the-Loop, a way to test the hardware sub-components of a system by con-
necting the component to a test rig that partially or fully represents the fnal system.

HSM Hardware Security Module, implements cryptographic processes into silicon chips to
increase the performance of encryption and decryption algorithms. Similar chips can now
be found in cell phones, PCs and newer automotive MCUs.

id Identifer, an identifer is a unique sequence of characters given to an entity in a system to
distinguish it from other entities. For example, in this research, each CAN packet has an
id to allow the software to determine the meaning of the data in the CAN packet. In CAN
the id is called the arbitration feld.

IDE Integrated Development Environment, a software package that is used for part, or all,
of the work cycle in the production of new software. It commonly consists of a source
code editor, one or more compilers and code linkers, and it usually has code debugging
capabilities. Other tools may be present, for example, code packaging for installation.

IDS Intrusion Detection System, performs analyse of network and system behaviour looking
for anomalous activity that may signal a system compromise.

xxvi Nomenclature

IEC International Electrotechnical Commission, an international body that publishes global
electrical and electronic standards. They work with ISO on security standards, for example
ISO/IEC 15408.

IO Input/Output, the connections to and from a computer or microcontroller to read and write
data from and to the physical world.

IoT Internet of Things, widespread data gathering and analysis, using miniature sensor-enabled
and Internet-connected computing devices. This provides a high volume of granular
information (big data). The resultant information is used to improve the provision of
services.

IPR Intellectual Property Rights, the legal rights that an individual, group, or organisation
holds over an object, artefact, or original output created by their work or business.

ISO International Organization for Standardization, a global body that publishes standards in
many domains, including automotive hardware and software standards and security and
cryptography standards.

IT Information Technology, the umbrella term that covers the computer hardware and software
used by organisations to automate their offce, production and service functions. Whilst the
computerised offce was the frst application of information technology it now encompasses
all business, industrial and consumer areas.

JTAG Joint Test Action Group, an interface standard for on-board debugger access to CPU and
other circuit silicon. Direct access to the CPU can circumvent security mechanisms.

MAC Message Authentication Code, a mac is an additional element added to a message or data
packet that can be used to help ensure the validity of the message or data. MACs use
cryptography to help preserve data integrity and authenticity. Several MAC schemes have
been proposed for CAN.

MCU Microcontroller, a CPU that incorporates memory and IO for use in embedded computing
applications. Small and powerful MCUs are behind the growth in IoT.

MIRA Motor Industry Research Association, originally the UK’s vehicle research centre it became
a limited company in 2001 as MIRA Ltd., and was subsequently purchased by the Japanese
company HORIBA in 2015 to become HORIBA MIRA Ltd., a transportation test and
design consultancy company.

MITM Man-in-the-Middle, a security issue where an adversary inserts themselves in between
communicating parties. They eavesdrop and/or intercept and modify the communications
for their gain, usually without the victims being aware.

Nomenclature xxvii

MOST Media Oriented Systems Transport, a vehicle communications ring bus used for multimedia
data transmission within a vehicle.

OBU On-board Unit, another term for an embedded computing device ftted to a vehicle, see
ECU.

ODB On-Board Diagnostics, it is a requirement in many countries for a vehicle to have a port
that can be used to read vehicle emissions data, several SAE specifcations detail the OBD
technical design and operation.

OS Operating System, the software that runs a computer, handling all the hardware, task
scheduling and loading of programs, examples include Windows, Android, Linux and
QNX.

PC Personal Computer, usually a normal desktop computer or workstation running a popular
OS (Linux, Windows, macOS), can also refer to a laptop computer

PID Parameter Identifer, this is a number sent to an ECU during vehicles diagnostics to tell
the ECU to transmit certain vehicle parameters, usually related to engine emissions data or
ECU error codes. There are standard ids specifed in SAE J1979 and manufacturers will
implement custom ids for their diagnostics.

QNX Quantum UNIX, a UNIX like microkernel OS widely used in embedded applications,
including vehicles.

R&D Research and Development, the process of producing new products or services, usually
involving innovation and new design.

RS-232 A long-standing serial data communications, or COM, interface, RS-232 devices linked
to a computer are often converted to USB ports which then emulate the older RS-232
standard.

SAE Society of Automotive Engineers, started as an organisation of automotive engineers, SAE
International covers many forms of transportation and publishes many global standards in
their feld of expertise.

SBC Single Board Computer, a small computer with all the components on a single PCB,
requiring only a power supply for operation. A well-known example is the Raspberry Pi.
Arduino SBCs are another popular format.

SDL Secure Development Lifecycle, a software development process originating from Mi-
crosoft. It promotes a structured methodology for software development that includes
designing in security from the outset.

xxviii Nomenclature

SIL Software-in-the-Loop, a way to test a software component of a system by executing the
component in a simulator that partially or fully represents the fnal system.

SMMT Society of Motor Manufacturers and Traders, the trade body for the UK car industry.

SPP Serial Port Profle, a fundamental Bluetooth protocol to emulate serial data connections
between devices.

SUT System Under Test, in engineering felds this is what a system (consisting of multiple
interconnected components) is called when being subjected to a testing regime. See also
DUT and ToE.

ToE Target of Evaluation, in ISO/IEC 15408 (Common Criteria) this is the system or device
being security assessed. See also SUT and DUT.

UDS Unifed Diagnostics Services, a protocol (ISO 14229-1) to communicate with ECUs for
fault diagnostics and frmware updates.

UI User Interface, this is the screens and input controls of a program, used for interaction
with the software. The term Graphical User Interface, or GUI, is also used. A Windows or
Apple Mac computer has a GUI.

USB Universal Serial Bus, a high speed serial communications bus that provides a common
digital data IO and power connection to most modern computers, cell phones and devices.
This ubiquitous interface, present in modern vehicles, has been shown to have security
vulnerabilities.

V2D Vehicle-to-device, a vehicles wireless connection to a driver or passenger device to provide
enhanced services, example include telephone integration via Bluetooth and wireless
hotspots

V2I Vehicle-to-infrastructure, a vehicles wireless communication to city and road infrastructure
for value-added services, examples include traffc information and speed warnings

V2V Vehicle-to-vehicle, wireless communications between vehicles to provide enhanced ser-
vices, examples include collision pre-warning and platooning.

V2X Vehicle-to-X, a term to describe a vehicle’s multiple connections to multiple services,
covering V2V, V2I and V2D.

XCP Universal Measurement and Calibration Protocol, a protocol used to connect calibration
equipment with ECUs, allowing access to measurements and calibration data, supports
fash memory programming.

Chapter 1

Introduction

Hello, I’m Johnnycab. Where can I take you
tonight?

Johnnycab, Total Recall (Film, 1990)

Human imagination often considers machines that can aid us before the technology is available to
build them. Today’s pocket supercomputers (smartphones), voice-controlled digital assistants (e.g.
Alexa and Siri), and self-driving pods (e.g. Heathrow ULTra), were once science fction. However, as
computers, sensors and batteries become more powerful, smaller and effcient, more science fction
ideas enter the marketplace. For example, fully autonomous vehicles (our very own Johnnycabs)
are under development. Advances in mechanical, materials, battery, electronics, computer and other
technologies make possible these high impact machines. However, two technologies are of particular
importance. Firstly, software, a computer cannot do anything useful without its programming.
Secondly, wireless connectivity, the new technologies use untethered communications for command-
and-control and interaction with remote services. Software and connectivity not only allow systems to
provide their useful services, but they can also be a security issue. This is due to the possible presence
of undiscovered software vulnerabilities hidden in all the code running in a machine.

1.1 The threat from cyber crime

New technology is not only benefcial to its users, but it is also another target for criminal intentions.
Cyber crime has been in existence for almost as long as computers themselves [1]. Our hyper-
connected and computer-based world operates under a duality. On the one hand, billions of devices
successfully perform their correct functions every day. On the other hand news stories of successful
high profle, computer hacking events occur with regularity1. Organisations and governments are
engaged in the fght against computer-based crime performed via the Internet. This now includes car
manufacturers, as their products are now part of the hyper-connected world and have been shown to

1https://www.hackmageddon.com/

https://www.hackmageddon.com/

2 Introduction

be hackable [2]. Car manufacturers are having to adapt their product design and testing regimes to
address the need for cyber-security resilience. (In this research, resilience is the ability for a vehicle’s
systems to resist a cyber attack and continue to function safely. Cyber resilience is discussed further
in the literature review in Chapter 2.)

Cyber crime is an arms race between scientists and engineers, who build and need to defend their
new technologies, and the criminals that attack the new technology for illicit gain. This cyber arms race
will always continue, therefore, any new tools and techniques that can aid in producing a more secure
system design are benefcial. Fortunately, vehicle manufacturers and their suppliers are not starting
afresh. The knowledge gained from the many decades defending and testing traditional Information
Technology (IT) systems can be adapted to vehicular systems. There is also the existing experience in
performing functional testing on vehicles, where processes and procedures are rigorously applied.
Such rigour can be invoked for cyber-security testing regimes. However, automotive cyber-security is
only a recent feld of study, and although it is being actively researched across the globe, the practical
knowledge that can be deployed by manufacturers and testing companies is currently limited.

This research investigates how the systems in the many millions of connected vehicles being
produced can be tested to improve their security resilience. The research achieves this with a new
application of an existing technique known as fuzz testing. Fuzz testing is a dynamic analysis test
method using randomised data. Fuzz testing is investigated for its application as a security test for
vehicle systems.

1.2 Establishing the research aim

This research began with a high-level objective, which was to address the need to perform cyber-
security testing on vehicles. To establish the main topic of this research, i.e. to establish the specifc
research question, that high-level objective needed to be understood by assessing the question:

What does it mean to cyber-security test vehicles?

Answering this question requires an understanding of the nature of cyber-security and its application
to vehicles, and then understanding the problem of testing. These aspects were considered during the
literature review, which discusses the complexity and challenges faced by vehicle manufacturers in
testing their products for cyber-security resilience. Engineering a vehicle is a complex and challenging
task, in [3] a vehicle’s development stages are given as:

• Vehicle Concept
• Styling
• Engineering Start
• Integration
• Validation
• Pilot

http:onvehicles.To

3 1.2 Establishing the research aim

• Production

Furthermore, when engineering the vehicle components, the hardware and software development
occurs simultaneously [3]. The development process follows what is known as the V-model [3], [4]
(or Vee-model), see Figure 1.1.

Fig. 1.1 The V-model for vehicle systems development, drawn from [3], the dashed lines represent
verifcation and validation of phases

The nature of the V-model process, and complexity of vehicle systems engineering, has long
required the provision of specialised equipment for pre-production and developmental testing. One
research possibility was to use such test equipment for security testing early in the vehicle systems
design process.

1.2.1 Hardware-in-the-loop and software-in-the-loop

Commercial test equipment companies provide systems to enable unit and integration testing of
vehicular electronic systems [5]. This mimics the testing and development of systems and subsystems
performed in the space and aerospace industries. These test and design tools are referred to as
hardware-in-the-loop (HIL) and/or software-in-the-loop (SIL). A HIL takes the place of a physical
component in a system design to allow for detailed debugging. A SIL can emulate several components,
providing a full or partial virtual system to accelerate overall system development. Figure 1.2 shows
the software for a Vector2 HIL/SIL system emulating a vehicle’s network system. The Vector HIL/SIL
system was used in this research.

2https://www.vector.com/

https://www.vector.com/

4 Introduction

Fig. 1.2 A HIL/SIL system from Vector Informatik GmbH was used during this research, here their
CANoe software is executing a vehicle simulation

5 1.2 Establishing the research aim

1.2.2 CAN is a common vehicle component interface and network

The technology behind the computational networked elements in a modern vehicle are discussed in the
literature review, with further expansion in Appendix B. A computer in a modern vehicle is referred
to as an Electronic Control Unit (ECU). An ECU is an embedded computer designed to perform a
specifc computational task. ECUs are often interconnected with a data bus called the Controller Area
Network (CAN). The ubiquity of the CAN bus and its presence on vehicle ECUs made it a suitable
target for this research. The Vector HIL/SIL system is able to simulate multiple ECUs and CAN
busses.

1.2.3 Testing for secure design

To support the concept of designing security into a system, a HIL/SIL system can be used for cyber-
security testing early in the research and development (R&D) process of a new component or vehicle.
This would mean that automotive engineers will have to consider security from the outset. For this
research a HIL/SIL system was used to establish a cyber-security testbed, enabling an experiment to
validate the idea of using such testbeds for security testing [6], see Chapter 4. Whilst the experiment
demonstrated that cyber-security testing can be performed with a HIL/SIL development system, the
contribution to knowledge was limited. However, the presentation of the results at a conference
did encourage the consideration of dynamic test methods for vehicular cyber-security testing [7].
Examination of the literature showed a lack of publications on a dynamic test method, fuzz testing,
for security testing automotive systems.

1.2.4 The research motivation

Fuzz testing is a dynamic test procedure for systems. A dynamic test is one that is performed whilst
the system is in operation. Fuzz testing uses a large amount of randomly generated or mutated input
data to evoke a system failure. Causing a system failure may reveal an exploitable vulnerability,
breaking system security. The literature review revealed that there is no substantial detail available
in applying fuzz testing to automotive systems, providing an opportunity to formulate a research
question.

A lack of knowledge in automotive fuzz testing motivated this research, alongside the general
automotive cyber-security issues discussed in the literature review. Fuzz testing has been successfully
used in general computer systems testing [8] and is included as part of the Microsoft Secure Devel-
opment Lifecycle (SDL) [3]. Thus, the initial high-level objective to address the need to perform
cyber-security testing on vehicles became focused on the provision of a practical fuzz testing method
for automotive systems. This new method is intended for use as an aid for testing the resilience of
a vehicle system to cyber attack. The results from performing the fuzz testing may then be used to
improve system design. The overall aim of fuzz testing is to raise the level of cyber-security assurance
the manufacturers have in the software running in their vehicles. The issue of cyber-security assurance

6 Introduction

is discussed in the literature review, however, in the context of this research, it can be summarised
as the confdence that one has in a system’s ability to respond to a cyber attack. With the above
motivation in mind, the research question can be stated.

1.2.5 The research question

The research question examines fuzz testing as applied to automotive systems. Whilst fuzz testing
has been used successfully in non-automotive domains, is that success transferable to automotive
engineering? In particular, the use of fuzz testing is to test the security resilience of the automotive
system, therefore:

RQ - How can the results from fuzz testing contribute to vehicle system cyber-security
assurance?

The hypothesis is that fuzz testing will reveal system weaknesses, and thus indicate that the system
design needs to be changed to remove or reduce those weaknesses. This will be examined using
physical experiments. However, manufacturers will require a usefully deployable test method. This
means the test method should be cost-effective, in time as well as money. The initial and ongoing
overheads to set-up and execute the fuzz testing should not be onerous.

Factors for a practical automotive fuzzer tool

The literature review discusses the limitations of using existing tools for fuzz testing automotive
systems. To aid research into automotive fuzz testing the supporting tools should be practical to
deploy, a point made by HORIBA MIRA engineers. The factors for practicability include:

• The technology required to use the fuzz testing tool.

• The ease of deployment of the tool and setting up a fuzz testing session.

• The ability to fuzz the vehicle technology that is targeted (in this research it is the CAN bus).

• The performance characteristics of the tool (the rate of the data generation and data processing
capabilities).

Furthermore, any fuzz testing performed should provide test results that can be acted upon,
otherwise, the testing is a waste of resources. This means that the fuzz testing must add value to the
testing processes. These factors were in mind when considering this research program’s aims and
objectives.

7 1.3 This research program’s contributions

The aims to address the research question

The initial identifcation of a knowledge gap in the testing of vehicular cyber-security was the frst
high-level aim of this research. The knowledge gap is in the application of fuzz testing to automotive
systems development (see the literature review), and allowed for the formulation of further research
aims:

1. The frst aim of this research was to assess the potential to use fuzz testing as a component in
automotive cyber-security testing.

2. The second aim of this research is to provide a practical, based on the list of factors above, fuzz
testing method for use in automotive engineering.

3. The fnal aim is to use this applied research to contribute practical automotive fuzz testing
knowledge.

These research aims provide a focus for the objectives of this research.

The objectives of this research

The above aims are achieved via this research program’s objectives:

1. The frst objective is to test the hypothesis that fuzz testing will aid vehicle system resilience,
this will be achieved via fuzz testing experiments on vehicle systems and components.

2. To achieve the frst objective, the second objective is to develop and evaluate, to meet the factors
previously listed, a practical prototype automotive fuzzer (a fuzz testing tool).

3. The fnal objective is to evaluate the experience of using the fuzzer. This is to contribute to the
automotive cyber-security feld and provide future researchers and automotive engineers access
to automotive fuzz testing knowledge.

For the frst two objectives, the experiments and the tool development, the methodology used
during this research is iterative. The methodology is discussed in Chapter 3.

1.3 This research program’s contributions

In performing the applied research to achieve the objectives and meet the aims several contributions
are provided:

1. The frst contribution is to provide a literature review of the newly emerged feld of automotive
cyber-security, and to show that automotive fuzz testing has not been examined in detail. The
found gap provides the basis for the research question.

8 Introduction

2. The second contribution is to design, develop and deploy a prototype automotive fuzz testing
tool targeted at the CAN bus. The new CAN fuzzer tool allowed for automotive fuzz testing
experiments to be performed. This allowed for the collection of empirical evidence to aid in
answering the research question.

3. The third contribution is to demonstrate that fuzz testing can be used to test the resilience of a
vehicle system and vehicle components. The experimental results were evaluated to answer the
research question.

4. In answering the research question other issues on fuzz testing automotive systems were raised.
The fourth contribution is to provide a list of challenges to overcome by further research.

5. In performing this research program, a method was derived that can be used to develop other
automotive security tests, that method is the ffth contribution.

6. A sixth contribution is a method to address the problem of combinatorial explosion in fuzz
testing CAN. A method is provided to aid the reduction in the time involved in fuzz testing the
CAN bus.

7. An additional seventh contribution was made, whilst not related to the main topic of fuzz testing,
it was observed during this research. In Appendix C a potential vehicle systems cyber attack
method is provided via variation of a CAN device’s confgured bit rate.

The experimental results will show that the prototype CAN fuzzer functions as required. It is
a useful tool for fuzz testing automotive systems. It answers the research question by showing that
the assurance of vehicle software can be improved with the aid of fuzz testing. This thesis provides,
probably the frst, detailed study on the problems and methods in fuzz testing automotive CAN-based
systems and components.

1.4 Overview of the thesis

The literature review follows this introduction in Chapter 2. It begins by summarising the literature
gathering method. Then the review discusses the following areas:

• The meaning of software assurance and security properties in relation to computational systems.
Not only does this help understand the requirements of systems security, but it is also intended
to familiarise the reader, especially those who are new to cyber-security, with the security
concepts and terminology used in this research.

• There is a discussion on the emergence of the automotive cyber-security feld (with some further
history in Appendix A).

http:research.In

9 1.4 Overview of the thesis

• A description of the underlying technology of the vehicle systems that needs to be protected is
provided.

• There is a discussion on the problem of testing vehicle systems for cyber-security resilience.

• Any existing work on the application of fuzz testing to the automotive feld is covered.

To provide enough technical detail on the vehicle technology used in this research, but not
overburden the main review chapter, some of the technology descriptions are moved to Appendix B.
The review chapter then fnishes with the inferences drawn from the literature.

Following the literature review, Chapter 3 has the methodologies used in this research. Firstly,
the framework to guide the overall research; the Design Science Research Methodology (DSRM) [9]
applies to an information systems research programme. Secondly, a research method was developed
from the practical work performed; this six-step method is suitable for developing automotive cyber-
security testing tooling, methods and experiments.

The derived research method was developed from a set of experiments. Each experiment’s specifc
applicable method is described at the beginning of the chapter covering the experiment. The individual
methods are framed in terms of the DSRM and provide additional information on the specifc tools
and techniques used.

Following on from methodology chapter (Chapter 3), there is a series of chapters covering the
applied research that was performed:

• In Chapter 4 a vehicle systems design tool was used as cyber-security testbed.

• The application of fuzz testing to networked automotive systems begins with Chapter 5 which
describes the design of the software for an automotive CAN fuzzer.

• There is an evaluation of the developed fuzzer against physical targets in Chapter 6.

• In Chapter 7 a vehicle gateway component was a more complex target for the fuzzer. The
target’s hardware design is an obstacle, but the results are interesting.

• A car’s media interface component is the target in Chapter 8. The isolated bench testing of
CAN components again proved problematic but provided additional results.

• In Chapter 9 a vehicle’s display ECU is the target of fuzz testing. Using a component with a
visible interface overcomes a problem with the cyber-physical nature of a car’s systems. The
resilience of the component is found to be poor and there are indications of bugs present within
the component’s software.

The fnal chapter, Chapter 10, is the concluding discussion, covering:

• The conclusions drawn from the experiments.

10 Introduction

• The knowledge and challenges uncovered.

• A discussion on the developed methods.

• Suggestions for further research work.

Some of the information derived for this research program is not core to the main thesis. However,
the knowledge does provide useful supporting information. Due to limitations on thesis space that
information is provided in Appendices.

• Appendix A provides some additional historical background on the computerisation of vehicles
and computer-controlled vehicle functionality.

• Further technical details on vehicle networking technology and the CAN bus is provided in
Appendix B.

• Appendix C discusses a weakness of the CAN bus. The weakness is considered for use as
a possible cyber attack against a vehicle. This was derived from observations made during
the development and validation of the CAN fuzzer. It was noticed that connecting a node at
the wrong bit rate could cause the network to fail. This could be used as a cyber attack. An
experiment was performed to validate this observation.

There are three Appendices related to housekeeping:

• In Appendix D the permissions for any sourced images are provided.

• Safety considerations for any readers who wish to reproduce the experiments performed in this
thesis, or undertake similar experiments, are provided in Appendix E.

• Following the Coventry University’s thesis requirements, the ethics documentation is provided
in Appendix G.

Finally, two Appendices provide some additional technical information.

• Details on the CAN packet log fle search method, used in Chapter 9, are in Appendix F.

• Appendix H contains additional technical information on the CAN fuzzer software development,
supplementing to the content of Chapter 5.

1.5 Publications

The following publications were drawn from, or infuenced by, this research program and thus, contain
content that appears in this thesis.

http:attack.An

11 1.6 Summarising the introduction

• Daniel S. Fowler, Madeline Cheah, Siraj Shaikh, Jeremy Bryans, “Towards a Testbed for Auto-
motive Cybersecurity”, 2017 IEEE International Conference on Software Testing, Verifcation
and Validation (ICST), March 2017 (Chapter 4)

• Madeline Cheah, Jeremy Bryans, Daniel S. Fowler and Siraj Ahmed Shaikh, “Threat Intelli-
gence for Bluetooth-enabled Systems with Automotive Applications: An Empirical Study”, 3rd
Workshop on Safety and Security of Intelligent Vehicles (SSIV 2017), June 2017 (Chapter 4)

• Daniel S. Fowler, Jeremy Bryans, Siraj Shaikh, “Automating fuzz test generation to improve
the security of the Controller Area Network”, ACM Chapters Computer Science in Cars
Symposium: CSCS 2017, July 2017 (Chapter 5)

• Daniel S. Fowler, Jeremy Bryans, Siraj Ahmed Shaikh, Paul Wooderson, “Fuzz Testing for
Automotive Cyber-security”, 4th Workshop on Safety and Security of Intelligent Vehicles (SSIV
2018), June 2018 (Chapters 5 and 6)

• Daniel S. Fowler, Jeremy Bryans, Madeline Cheah, Siraj A. Shaikh, Paul Wooderson, “A
Method for Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example”, A3S
2019: IEEE International Workshop on Automobile Software Security and Safety (Chapters 3
and 9)

1.6 Summarising the introduction

This chapter began with an overview on how advances in technology have exposed the modern
vehicle to the threat of cyber attacks. In the age of the increasingly connected and software-driven car
cyber-security testing of vehicle systems needs to be addressed. This high-level need was formulated
into a research question on using fuzz testing in the automotive feld. It is motivated by the success of
fuzz testing in the general IT domain and by a gap in the existing published work, where a lack of
detail is evident.

To enable practical fuzz testing the common CAN bus is targeted due to its ubiquity and common
interface to vehicle ECUs. To meet the aims and objectives an easy to deploy and use CAN fuzzer
was developed to aid with gathering empirical evidence. The CAN fuzzer was used to experiment on
physical and simulated vehicle CAN systems and components. The experimental results were used to
assess the suitability of using fuzz testing in the automotive feld.

As a result of this research seven contributions are provided to the research and engineering
community. Furthermore, the discovered methodology can be used to further develop automotive
security tests and tooling. Applying security from early in the automotive system’s R&D process
will enable the consideration of secure-by-design from the outset and, thus, increase the resilience of
the software executing in the customer delivered vehicles. Improving resilience maintains assurance
levels in vehicular systems.

Chapter 2

Literature review

. . . there are known knowns; there are things
we know we know. We also know, there are
known unknowns, that is to say, we know
there are some things we do not know. But
there are also unknown unknowns, the ones
we don’t know we don’t know.

Donald Rumsfeld

The Introduction (Chapter 1) briefy discussed how advances in technology have led to vehicles
becoming part of our connected world. This means cars will be exposed to cyber attacks and, therefore,
the considerations of cyber-security become applicable. This literature review examines those issues
in detail, investigating the new feld of automotive cyber-security and the problem of testing vehicles
for cyber resilience. The review shows that this new feld is relatively young (a couple of decades-old),
multidisciplinary, complex and the focus of both commercial and academic attention.

2.1 Aims of the review

The aims of the literature review were to:

1. Review the concepts and defnitions of systems security.

2. Gain an understanding of the newly emerged feld of automotive cyber-security, and thus the
landscape under which this research was being performed.

3. Understand how topics in the new feld apply to the high-level objective of this research (how
to test a vehicle for cyber-security assurance).

4. Determine a gap in the automotive cyber-security feld.

5. Use the gap in the knowledge to determine the topic of this research.

14 Literature review

2.2 The literature discovery method

Automotive cyber-security is multidisciplinary in nature and contributions to the feld can be found
under these topics:

• Computer science - systems design, networking, cryptography, programming.

• Electronic engineering - embedded computers, electronics, wired and wireless data networks,
testing.

• Operations management - processes and procedures, policies, training, engineering teams.

• Systems security - investigating how security applies to all of the above items.

Therefore, papers that can be regarded as being relevant to the automotive security feld can
be found in many different types of journals and conference proceedings covering the above topic
areas, as well as specialised publications in the feld of transportation. Thus, despite automotive
cyber-security being a niche feld, relevant articles are published over a broad range of journals and
proceedings.

In terms of the taxonomy, keywords that apply to the feld are fairly generic. For example keywords
such as automotive, vehicle, security, systems, networking, encryption and testing. Keywords such as
those, used in different combinations, generally return many thousands of search results. Therefore,
it would have been ineffcient to rely entirely on searches of databases for publications. Thus, the
methods to fnd relevant papers included:

• Paper recommendations from colleagues.

• Searches of databases (Google Scholar, IEEE Xplore, ACM Digital Library, SAE Mobilus),
concentrating on high citation peer-reviewed papers.

• Using references in relevant papers to fnd additional papers.

• Revisiting literature sources during this research to examine recent work.

This review chapter begins by looking at the concepts behind system security, starting with
a discussion on software assurance, security properties, and established security terminology. A
discussion is provided on the growth of the relatively new feld (when compared to other science and
engineering felds) of automotive cyber-security. Then the underlying digital technology of vehicles is
discussed, before examining how such systems should be security tested. The review fnishes with a
look at how a test method called fuzz testing applies to automotive systems.

15 2.3 Software assurance and security properties

2.3 Software assurance and security properties

The modern vehicle is a Cyber-physical System (CPS), a kinetic machine unable to function without
the computer systems operating under its metal skin. The kinetic nature of a car makes it different
from traditional information systems, however, it is still software that is providing the command and
control. Software security has been studied for several decades, and for users of computer systems,
which now includes cars, software security is related to the concept of software assurance. To provide
assurance is to provide a degree of confdence. Quoting from the United States (US) Department of
Defence [10]:

The subversion and sabotage of software always results in the violation of the software’s
security, as well as some if not all of the software’s other required properties. These
include such properties as correctness, predictable operation, usability, interoperability,
performance, dependability, and safety.
Software assurance has as its goal the ability to provide to software acquirers and users
the justifable confdence that software will consistently exhibit its required properties.
Among these properties, security is what enables the software to exhibit those properties
even when the software comes under attack.

Thus, software security is important for software assurance, which provides confdence to systems
users. Drivers and passengers are probably unaware of the complexity of a vehicle’s software.
However, the expectation is that all the vehicle’s functions work and the vehicle is safe to use. Ideally,
a cyber attack will not change that expectation if software assurance is high. But what constitutes
the security of a software-based system? The US National Institute of Standards and Technology
(NIST) provides three aspects: Confdentiality, Integrity, and Availability (CIA) [11]. These properties
are commonly known as the CIA triad. The NIST defnitions for the triad are quoted from the US
E-Government Act of 2002 [12], though earlier defnitions exist [13]:

• Confdentiality, which means preserving authorized restrictions on access and disclosure,
including means for protecting personal privacy and proprietary information.

A loss of confdentiality is the unauthorized disclosure of information.

• Integrity, which means guarding against improper information modifcation or destruction,
and includes ensuring information non-repudiation and authenticity.

A loss of integrity is the unauthorized modifcation or destruction of information.

• Availability, which means ensuring timely and reliable access to and use of information.

A loss of availability is the disruption of access to or use of information or an information
system.

16 Literature review

The CIA triad is used to analyse a system’s security methods. German and Swedish researchers
began viewing vehicle security in terms of CIA in the mid-2000s [14], [15], as did the European
Community (EC) E-safety vehicle intrusion protected applications (EVITA) project that ran from
2008 to 2011 [16]. However, there is some confusion in the literature with regards to the defnition of
security properties.

In [15] authentication and data freshness are listed as security properties alongside the CIA triad.
However, authentication and data freshness can be regarded as functions to help preserve integrity and
confdentiality. Likewise, in [16] CIA properties and requirements/functions (e.g. non-repudiation)
are listed together, however, the NIST defnition separates properties from the mechanisms to protect
them, thus non-repudiation is functionality required to aid data integrity. In this thesis, the NIST
defnition is used for the intrinsic nature of security (the CIA triad), and security functions are a
system’s requirements needed to protect those properties.

Indeed, a system will need to implement several security mechanisms to protect its CIA properties.
As an example, a system that allows access from a remote location may implement Triple-A security,
i.e. the functions of Authentication, Authorization, and Accounting (a.k.a. Auditing), as defned
in [17]. An example of AAA implementation is the established Remote Authentication Dial-In
User Service (RADIUS) protocol [17]. Thus, Triple-A is the mechanism to aid the protection of
the CIA triad. This separation of system security properties from the mechanisms that protect them
is important. A system can be tested for breaches of the CIA properties (if any), and then security
mechanisms applied to resolve the breaches.

2.4 Threats, targets, countermeasures and evaluation

When discussing cyber-security different terms are used for those that perform attacks. Many terms
exist, including adversaries, attackers, hackers, and malicious users. What the terms represent are
a security threat to a system. Threats can be automated by attackers. A software robot, known as a
bot, can be used to harvest data, fll in online forms, post to social media and scan for known system
weaknesses. The traditional computer viruses and malware are other automated threats.

To provide an all-encompassing term for security threats, an international standard is used.
ISO/IEC 15408-1:2009 [18], Information technology - Security techniques - Evaluation criteria for IT
security, defnes the term threat agent. Threat agents are not only malicious. Human errors, whether
through incorrect design, bugs in the implementation, use or confguration, can all represent a threat.

The standard provides a model for a high level view of threats. In Figure 2.1, derived from the
standard, security concepts and relationships are displayed. The model shows how threat agents
increase the risk to a system, an asset, and how countermeasures are required to reduce risk. The term
threat agent, as defned in the standard, will be used as the generic term for the source of threats.

The ISO/IEC standard provides another useful term. In engineering felds, such as automotive
manufacture, the term Device Under Test (DUT) is used when carrying out functional testing of
a component. The term System Under Test (SUT) is used when an entity consisting of several

17 2.4 Threats, targets, countermeasures and evaluation

Fig. 2.1 Security concepts and relationships were redrawn from ISO/IEC 15408-1:2009 [18]

Fig. 2.2 Evaluation concepts and relationships were redrawn from ISO/IEC 15408-1:2009 [18]

components is being tested. The term used by the ISO/IEC standard is Target of Evaluation (ToE).
This is a useful term to cover both DUT and SUT and to emphasise the security side of testing, as
opposed to the usual functional testing of a DUT/SUT. Thus, ToE will be used as the term to cover
the item being subjected to security testing.

The ISO/IEC standard provides a model for understanding the importance of security testing a
ToE. The evaluation of security, not only through testing but including audits and reviews, is shown in
Figure 2.2, redrawn from the standard [18]. It shows the evaluation concept’s relationship to reducing
risk and, hence, increasing confdence. This relates to the discussion on assurance in the previous
section. Both of these ISO/IEC models provide a useful and concise visual aid to understanding the
importance of security testing.

18 Literature review

2.5 The malleability of the computer

There are many benefcial features of modern vehicles that are the result of computerised systems.
What manufacturers need to be aware of is the fundamental security issues this presents. The car,
and the data it stores are the assets that are being targeted by threat agents. These agents will look
for weaknesses, known as vulnerabilities, in the vehicles computerised systems that they can exploit.
This will enable them to carry out malicious actions. This is where the fundamental problem exists,
the very nature of the computer itself.

The computer is a general-purpose machine. If you can manipulate or change the software you
can change the machine. Computer hacking is all about manipulating the computer software to get the
machine to do something beyond its designed functionality, and in doing so compromise the system
security. Thus, the act of hacking is regarded as a malicious operation, aimed at breaking the CIA triad
(see section 2.3) by gaining access to hidden or private data and resources (confdentiality), changing
data or operational settings (integrity), and disrupt, take control or damage systems (availability). In
many countries hacking is illegal, although security testers, researchers and white hats can obtain
permission to do it legally. Knowing that a computer-based system can be manipulated, manufacturers
must ensure adequate countermeasures are designed in, and tested, to maintain confdence, i.e.
assurance, as illustrated in Figure 2.2. Such cyber-security assurance now applies to the modern
connected car.

2.6 A brief automotive cyber-security history

Computers and security have always gone hand-in-hand. The frst programmable digital computer,
Colossus, was built to breach security. It was designed to help break the German Enigma codes
during World War II. In the 1960s the Rand Corporation produced a report highlighting many of the
security concerns that are still associated with computer-based information systems [1]. Computer
security breaches have been around for almost as long as computers themselves. The original room
size computers of the 1960s and 1970s, running time-sharing operating systems, were hacked to allow
for cheap access to valuable computing time, and long-distance hacking predates the Internet [19].
However, to compromise a car remotely it needs to be wirelessly connected. Although computers
have been in cars for over thirty years, for most of that time they have been a closed box, isolated
from other systems and each other. However, with the Connected and Autonomous Vehicle (CAV)
that box has been opened. Now the cyber-security problem that plagues enterprise IT, the Internet,
and the Internet of Things (IoT) systems, has been released onto vehicular systems.

The interest in car hacking was heightened in 2010 when Koscher et al. published a paper [2].
They demonstrated that previously theoretical cyber attacks [20] against cars where possible. They
were able to hack a vehicle and induce dangerous behaviour. They acknowledged that other papers
had previously expounded the risks to vehicle computer systems. Unlike previous papers, it was not a
theoretical threat assessment or a simulated attack, but a practical real-world cyber attack experiment

19 2.6 A brief automotive cyber-security history

against a vehicle. It successfully validated previous assessments and provided proof of the theoretical
possibilities of automobile hacking.

Koscher et al. noted that the attack surface of vehicle cyber systems is increasing in size due to the
increase in computerisation, including the use of software to control previously mechanical systems.
They showed how it was possible to compromise these systems with a variety of methods. The issues
identifed, and still relevant, include:

• Media systems: These are connected to the in-vehicle data communications networks and have
external interfaces (for example USB and Bluetooth), and can be upgraded by vehicle users.
Thus, they can be used as staging posts for gaining a foothold into the vehicle systems.

• Component standardisation: Components are used across a manufacturer’s vehicle models.
This is because it is not economical, in time and cost, for a vehicle manufacturer to build brand
new ECUs for every new model. Thus, a security weakness in a single component can affect
many models. Such standardisation is benefcial for aftermarket vehicle maintenance since
replacement components ft several models. However, this also benefts the community of car
modifers, as it eases knowledge dissemination on how to access vehicle systems, including
overcoming security [21].

• Weak or non-existent access controls: Controlling physical access to any system is part of
security engineering, however, access to vehicle systems and components is possible once
the vehicle is delivered. Furthermore, connections between functional boundaries within the
vehicle means that crossing those boundaries was possible, due to non-existent or poor security.

As a result, modern vehicles, with some initial effort, can be compromised. The researchers
stated that whilst vehicle systems were designed to be fail-safe, they had not been designed to be
attacker safe, the attackers being able to deliberately cause a failure or otherwise override the fail-safe
mechanisms.

In their opinion the opportunity for hacking will increase as more functionality is added to vehicles,
adding more attack vectors. Their research highlighted plenty of zero-day exploits (previously
unknown computer bugs that allow cyber-attackers into a system). The paper highlighted the failure of
ECU manufacturers to properly test their designs. The use of fuzzing (systematically trying all values
to a component interface) found operational modes that were inherently dangerous and should not be
allowed. The researchers could use combinations of settings that probably had not been conceived of
as a possibility, or tested, by the manufacturers. No part of the computerised vehicle system was safe
from tampering. It was possible for them to conclude that vehicle systems were not designed to be
tolerant to cyber attacks.

Criticism that physical access to vehicles was required to propagate attacks was addressed in
their follow up paper in 2011 [22]. After some substantial effort, the researchers reverse engineered
the software and the communications protocol for the telematics ECU. Used by the vehicle for

20 Literature review

Fig. 2.3 In 1997 Citroen demonstrated Intel’s Connected Car PC concept, designed to allow for
in-vehicle email and voice-controlled PC functionality, see Appendix D for image permission

communicating with a call centre. After discovering vulnerabilities with the code they were able to
execute remote attacks from a laptop, using it to control vehicle functions.

In 2015 researchers performed a remote attack against a vehicle travelling on a highway [23].
Substantial effort was required to reverse engineer code and fnd the vulnerabilities need to achieve
the hack. In the multi-stage attack, they used a laptop to remotely connect to the vehicle and control it.
The attacked resulted in worldwide media exposure and led to a recall of 1.4 million cars to address
the security issues discovered. Recalls are the mechanism to deal with fxing design faults in vehicles
that are deemed hazardous. Unlike some recent modern vehicles, where software updates can be
delivered over-the-air (OTA), the recall was required due to the update having to be applied locally to
the vehicle. Ultimately, the overriding concern is one of public safety, cars can cause injury and death.
The demonstrated 2011 and 2015 car hacking could compromise personal safety.

One key difference to point out with the car hacking versus traditional IT systems, is the emphasis
on which of the CIA properties are being compromised. Whereas in traditional IT systems confden-
tiality of data is highly important, in the safety important world of the cyber-physical car, system
integrity and availability is crucial.

A common theme in the recent automotive cyber-security research is the lack of resilience
within a vehicle’s computerised systems. The lack of system protection was known prior to the high
profle demonstrations of car hacking. The cyber-security issues had been prophetically discussed
in 2004 [20] in a presentation to the commercial Embedded Security in Cars (escar) conference.
This long-standing vehicle security conference began in 2003 in Germany [24]. 2003 was the same
year the UK government had banned the use of cell phones whilst driving, effectively mandating
hands free phone operation in vehicles, and thus vehicle connectivity to the cellular network via the
ftting of Bluetooth interfaces to vehicles. Earlier vehicle connectivity includes Intel’s Connected
Car PC technology, see Figure 2.3, demonstrated in Frankfurt in 1997. By then General Motors had
already launched OnStar for wireless-based vehicular services. With security implications of new
vehicular technology known in the early 2000s system security was one of the deliverables of the
EVITA project [16]:

21 2.7 Insecure vehicle technology

Deliverable D2.3: Security requirements for automotive on-board networks based on
dark-side scenarios

For that deliverable, a set of use cases and threats were examined to develop security requirements
that were then applied to in-vehicle networks. The EVITA project viewed vehicle security as a set of
objectives, those being:

• Operational – to maintain the intended operational performance of all vehicle and ITS functions;

• Safety – to ensure the functional safety of the vehicle occupants and other road users;

• Privacy – to protect the privacy of vehicle drivers, and the intellectual property of vehicle
manufacturers and their suppliers;

• Financial – to prevent fraudulent commercial transactions and theft of vehicles.

Real-world violation of EVITA operational and safety objectives has certainly been demon-
strated [2], [22], [23]. To meet the EVITA objectives, vehicle systems need security functions that
protect their fundamental CIA proprieties. However, how can the impact of security violations be
assessed? For EVITA the security objectives are assessed against a classifcation scale [16] which
are infuenced by, and extended from, the established hazard analysis and risk assessment (HARA)
method from the international ISO 26262 (Functional Safety for Road Vehicles) [4], [25]. (ISO 26262
is used by vehicle manufacturers and their suppliers for functional safety testing and risk reduction
in their complex electrical and electronic systems.) The EVITA severity classes have infuenced
subsequent work. They are being used to assess threats to automotive systems [26]. The classes
appear in the automotive industry’s SAE J3061 (Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems) [27], see Section 2.9, which also contains EVITA’s Threat Analysis and Risk Assessment
(TARA) (used to help assess risks from identifed potential threats).

2.7 Insecure vehicle technology

Much of the research into breaking vehicle security has been focused on exploiting technology that
was designed before the advent of connected cars, and therefore before cyber-security was a design
consideration. Published automotive exploits take advantage of a lack of security in aspects of vehicle
technology. In this section, two technologies, common to most manufactured vehicles, are briefy
examined. These are the Controller Area Network (CAN), and the On-board Diagnostics (OBD) port.
The following sections provide an overview of those two technologies, with further technical details
and resources provided in Appendix B.

22 Literature review

Fig. 2.4 Networks connecting ECUs in a small car, three are at 500 Kbps (2 named HS CAN - probably
for High Speed, one named IMS CAN - abbreviation unknown) and one at 125 Kbps (MS CAN,
probably for Medium Speed)

Table 2.1 ECUs in a small car, full abbreviations redacted for commercial confdentiality reasons

Abbr. Function Abbr. Function

OBD On-Board Diagnostics connector
or Data Link Connector (DLC)

IPC Instrument panel

PSCM Power steering control APIM Media functions interface
OCSM Passenger detection RFA Key fob functions
RCM Safety belt control ABS Anti-lock brake system
TCM Transmission control PCM Powertrain control
TPM/VSM Tire pressure mon./security BCM Body control
FCDIM Passenger display screen GPSM Global positioning system
ACM Audio control

2.7.1 The Controller Area Network

In examining the communications technology of the in-vehicle data networks, there is a common
protocol found across all manufacturers. The data communications between the vehicles ECUs
is dominated by the protocol known as Controller Area Network, often referred to as the CAN
bus. Figure 2.4 shows the in-vehicle networks for a small compact hatchback from a major vehicle
manufacturer. All the ECUs are interconnected via CAN.

Other communications networks are used in vehicles, see Table 2.4. In Figure A.3 in Appendix A
the in-vehicle networks for an executive saloon car are shown. In that case MOST is used for
multimedia and infotainment systems, Ethernet for software updates and advanced diagnostics, and
Flexray for vehicle dynamics (handling). However, it is CAN that is often used to control a majority
of the vehicle’s functions and thus, is an understandable attack vector.

Despite the sophistication of the modern vehicle some of the underlying digital technology can be
relatively straightforward, this includes the CAN bus. CAN is a serial communications protocol for
data exchange between computational units operating in harsh and electrically noisy environments,
such as the car (or factories).

23 2.7 Insecure vehicle technology

Fig. 2.5 A schematic of a CAN data packet, from the software it is seen as an id, data length and data
bytes, the CAN hardware handles the protocol, with any errors refected in a status code

Table 2.2 Data elements of a standard CAN packet, as seen by ECU software

Item CAN name Integer range Description

Packet id
Data length
Data bytes

Arbitration
Data Length Code
Data

{0,1,2,. . . ,2047}
{0,1,2,. . . ,8}

{0,1,2,. . . ,255}

Packet identifer
Number of data bytes
0 to 8 payload data bytes

Much of the CAN protocol is handled in dedicated hardware. The transmission of the CAN packet,
and the handling of any errors, over the cabling is performed by a CAN transceiver chip. This leaves
the software in the communicating ECUs to handle the packet contents. From the ECUs viewpoint a
CAN packet is in three parts, a packet identifer (id), a data length feld, and the data payload, see
Figure 2.5 and Table 2.2.

A CAN packet with an id of 8 and one byte of data, would be sent with the length byte set to 1,
see Table 2.3. Such a CAN packet could be used to transmit a command to turn on a headlight, with
the state of the second bit determining if the headlight is on or off, see section B.3 in Appendix B.

CAN predates the World Wide Web and thus, the advent of the connected car. Today’s car hacking
was not anticipated and, therefore, CAN was not designed with cyber-security considerations in mind.
Its simplicity (compared to other protocols) is part of its functional robustness, and that simplicity is
also due, in part, to not having a security mechanism. There are error handling and cyclic redundancy
check (CRC) bits as part of the data transmission protocol (see Figure 2.5 and Section B.2.4), but

Table 2.3 Example Basic CAN Data Packet

Id (Arbitration) Data Length Code Payload

Example 8 1 2
Hex 0x08 0x01 0x02

24 Literature review

Fig. 2.6 An OBD port in a vehicle

these are used for communications reliability, not for cyber-security. CAN’s lack of security has seen
research and proposals into retro-ftting security mechanisms, see Section 2.8.

CAN is a two-wire data bus, onto which multiple nodes (ECUs) can attach simultaneously. All
ECUs have simultaneous read/write access to the bus. There is a data packet priority mechanism
determined by a packet id (called the arbitration id). Each node does not have a network address,
instead, nodes listen out for the data packets with the specifc id they want to process. For further
information on the workings of CAN see Appendix B.

While CAN’s simplicity is good for functional robustness, simplicity becomes a vulnerability once
a vehicle’s systems have been compromised, making it a target for attacks [2], [22], [23]. Furthermore,
alongside the insecurity of the protocol, a physical connection to a car’s CAN bus is readily available
from the driver’s seat. This is covered in the next section.

2.7.2 The exposed OBD port

Several jurisdictions, for example, the USA, Europe, Australia and Japan, require a vehicle to provide
exhaust emissions data. This is read through an On-Board Diagnostics (OBD) port, located close to the
driver’s seat, see Figure 2.6. This port exposes a direct connection to a vehicle’s CAN bus. Aftermarket
OBD devices can use this port. Such devices are not under the control of the manufacturers, but can
still provide access to what manufacturers consider to be a closed internal network.

The aftermarket devices not only receive vehicle data, they are also capable of transmitting
data. Researchers have shown these devices can be used to attack the CAN bus. Foster et al. [28]
discovered several faws in an OBD telematics system, proving the security risk of plug-in OBD
modules. Furthermore, since the aftermarket units can provide remote access to the OBD port, even a
previously non-connected older vehicle model can be made connected, and thus becomes vulnerable.

There are OBD devices that provide a connection to a cell phone app. This opens up the possibility
of malicious apps being developed. App stores list apps that are used for the display and logging
of vehicle performance data and to access diagnostics information. Despite their intended use for
driver, technician and owner services they increase the security risk. An adversary does not have to
be physically present within the vehicle cabin. Woo et al. [29] showed how malicious apps can gain

25 2.7 Insecure vehicle technology

Table 2.4 In-vehicle data communications networks in common use, CAN is the most widely used

Network Name Description

CAN Controller Area Network Continuously transmits sensor and actua-
tor data around a vehicle using twisted-pair
cabling. The most widely used in-vehicle
network. Data rates up to 1Mbps (500Kbps
and 125Kbps are common).

CAN FD CAN with Flexible Data-Rate A version of CAN that increases the prac-
tical data rate to 4Mbps, not as popular as
standard CAN.

LIN Local Interconnect Network Simple low speed (typically 20Kbps) serial
bus to connect switches and actuators close
to an ECU.

FlexRay FlexRay Deterministic time-triggered protocol using
one or two twisted-pairs for up to 10Mbps.
Found in power train and braking systems.

MOST Media Oriented Systems Transport Fibre optic ring network for multimedia
data, 25-150Mbps.

USB Universal Serial Bus Provides a connection to an infotainment
ECU for devices brought into a vehicle, 1.1
to 450Mbps.

802.3 Ethernet Standard Ethernet (10-1000Mbps) may be
used to connect high speed diagnostic equip-
ment to a central gateway ECU.

FPD-Link Flat Panel Display Link Low-voltage differential signalling (LVDS)
for relaying vehicle camera data (1-3Gbps)
to an ECU. (LVDS is also used for laptop
screens.)

100BASE-T1 Automotive Ethernet A 100Mbps point-to-point two-wire version
of Ethernet for high speed data application.
1Gbps (1000BASE-T1) soon available.

26 Literature review

access to the in-vehicle network to perform the same attacks as other researchers, again compromising
vehicle safety.

In a similar fashion to the IoT security issues, the OBD devices can have very weak security;
a survey [30] showed that wireless Bluetooth OBD devices have unchangeable 4-digit PINs (some
revealed publicly on the Internet), and the PINs and devices are generally easily discoverable (the
Bluetooth process used to initiate a connection).

2.8 Applying existing security to the vehicle

Whilst in-vehicular networks and systems differ from business information systems, in many aspects
the principles (networked computational systems) remain the same. Thus, longstanding security
fundamentals can be applied. Bejtlich [31] argues that much of the existing body of security knowledge
from previous decades remains valid despite changing technology.

In general IT cryptography is widely deployed, and there has been plenty of research and designs
for its use on vehicle networks and systems [32]. For the CAN bus there are several security proposals,
summarised in [33]. These include, individually or in combination:

• Message Authentication Codes (MAC) (the most common proposal)

• Key distribution

• Message counters

• Hardware Security Modules (HSM)

There is a performance penalty in encrypting CAN bus traffc [34]. CAN has a small packet
size, supporting only eight bytes of data, and is designed for low latency data throughput. The act
of encrypting the data in a CAN packet adds a large transmission overhead, in both time delays and
packet volume. CAN’s ftness to support encryption is low because it is being pushed beyond the
initial 1980’s design objectives. The later CAN FD is better suited to supporting encryption with its
64-byte data payload, however, it brings higher costs and requires additional technical knowledge,
and, thus, has yet to be widely deployed.

HSMs were advocated for the EVITA project [16], which proposed an in-vehicle cryptography
solution that placed a HSM in each ECU. This was to ensure the effcient handling of cryptography
keys and the encryption and decryption processing time [35]. However, one aspect that is lacking in
the literature is the impact that encryption delays may have on the human driver. This would be in
terms of information display refresh rates and equipment initiation (start-up and activation) times,
especially under extreme motoring conditions (e.g. emergency braking). No proposed schemes cover
this aspect, therefore, published research is required in that area.

The EVITA HSM solution does not address other issues related to the management of cryptography
systems for vehicles. Issues with CAN encryption include the management of cryptographic keys [36],

27 2.9 The vehicular cyber-security testing requirement

manufacturer’s procedures, ECU parts compatibility and the knowledge of service technicians. These
are all issues that need addressing to manage an encryption system for a vehicle’s 20-year lifecycle.
This management problem may be the reason why CAN encryption has not been implemented by
vehicle manufacturers. However, work on adding encryption to vehicle networks continues, for
example the AUTOSAR1 vehicle software stack supports the use of MACs.

For now, for all of the above reasons, no proposed CAN security mechanism has been found to be
adequate for production purposes [33]. If encryption is currently unsuitable for vehicle networks what
are the other options? In other domains, frewalls are considered important. A gateway frewall is
suggested to protect system boundaries in vehicles in [20], and a patent for one appeared not long
after the frst experimental car PCs appeared [37]. Commercial companies have responded to the
emergence of automotive cyber-security by offering in-vehicle network frewalls 2.

In general computing, a frewall uses packet fltering and network Access Control Lists (ACLs)
to segment networks and flter traffc for security purposes. CAN does support rudimentary flters,
allowing ECUs to block packets not addressed to them. Correctly designed network segmentation and
fltering schemes would help in-vehicle systems security, especially considering the CAN weakness to
a Denial of Service (DoS) attack once a malicious connection has been made. Despite the weakness
of the CAN protocol, an Intrusion Detection System (IDS) may provide useful indicators of attacks.
An analysis of normal CAN packet traffc can be used to determine when malicious packets are
transmitted [38]. However, just as in traditional IT, the frewall and IDSs are useful for detecting
system compromise after product delivery. What can be done to improve vehicle security design?

2.9 The vehicular cyber-security testing requirement

The weakness in vehicle cyber-security resilience has already led to guidelines being published
by governments [39]. The United Kingdom (UK) Government has key principles [40] for CAV
security, requiring organisations to address security at all management levels, and throughout a
products lifetime. The industry was already aware of the risks and has responded. The SAE trade
body is interested in standardising automotive security testing. The work in SAE J3061 [27] lays
the groundwork for systematic consideration of vehicular cyber-security threats during a vehicle’s
lifecycle. The J3061 guidelines are infuenced by the processes within ISO 26262 [4] that apply to
vehicle systems development. J3061 addresses how cyber-security considerations need to be added to
the vehicle development process. As such J3061 intends organisations to treat cyber-security similarly
to functional safety considerations, designed into the whole vehicle lifecycle. Designing security into
a system from the outset is regarded as essential [10], [31], [40]–[42]. To that end, international efforts
continue with the formal standard ISO/SAE 21434 (Road Vehicles, Cybersecurity Engineering),
scheduled for release in 2020. The functional safety and cyber-security overlap is acknowledged in

1https://autosar.org/
2https://tekeye.uk/automotive/cyber-security/automotive-cyber-security-companies

https://autosar.org/
https://tekeye.uk/automotive/cyber-security/automotive-cyber-security-companies
http:process.As

28 Literature review

the new standard, and within ISO 26262. Finally, the SAE work-in-progress J3061-2 will include
recommendations for cyber-security testing methods.

For vehicle manufacturers and their suppliers’ guidelines and standards require the implementation
of practical security testing, an additional overhead in the development process for new models.
Fortunately, their existing investments and expertise in functional testing can be leveraged for the
challenges of cyber-security testing, and as the J3061 guidelines indicate, testing processes should
not need to change a great deal. Furthermore, if cyber-security testing is performed early enough it
can allow for feedback into designs prior to production. Such testing has to include the links beyond
the boundary of the vehicle because the vehicle is now part of a wider cyber ecosystem. In the next
section the types of security testing to be performed on vehicle systems and components are examined.

2.10 Three non-functional security tests

When engineers design a system they can specify functional security mechanisms, for example,
authentication of a user via a logging in facility. Any designed in security mechanisms are to protect
the CIA properties of the system. The functional security mechanisms will be defned in the system
specifcations. The test plans for the system will check that such defned security mechanisms function
as intended [43].

What is often exploited by malicious agents is hidden, and unwanted, functionality [44], caused
by engineering issues. In a system that uses software for much of its functionality, it is bugs that cause
engineering issues. These bugs can take the form of:

• Logical errors in code (or models used to generate code) resulting in run-time bugs.

• Weaknesses in system design, for example, if no consideration has been given to data encryption.

• Functional bugs due to a mismatch between what the system specifcation states and how the
system has been implemented, and these not being caught by the functional testing.

• Additional and undocumented features provided by third party components and software
libraries. Examples include test functions, or features present that were developed for another
use case (e.g. another customer).

Not all bugs can be exploited to reveal weaknesses, however, for the exploitable bugs three types
of testing can be performed in an attempt to uncover them [27], [43]. Indeed, Section 8.4.7 of J3061
describes them as “critical tools in evaluating the Cybersecurity performance of a system”:

• Vulnerability testing - performing tests for security weaknesses and exploits using scanning
tools and a corpus of known attacks.

• Fuzz testing - dynamically sending the system large amounts of random and malformed data
to see how it responds, in an effort to reveal a vulnerability.

http:ecosystem.In

29 2.10 Three non-functional security tests

• Penetration testing - using intelligence and tools to attack a system based on how adversaries
would attempt to overcome security mechanisms.

These three security tests are relatively new to automotive engineers [43]. Furthermore, they
add to the existing systems testing workload. Integrating security tests systematically and rigorously
into the existing vehicle systems testing regimes will take some effort, particularly considering the
complexity and number of interfaces that can now be found on a vehicle, Table 2.5 shows the extent of
the possible attack surface of a vehicle. Furthermore, an attack route is available via advanced features
supported through Internet-based services (see Table A.2 in Appendix A), which can be probed for
weaknesses at the client (vehicle) or server (service provider) ends.

Table 2.5 A list of interfaces that do not require physical contact with the vehicle, providing a large
attack surface

Interface

Key or fob
Infotainment/hands-free Bluetooth connection
Cellular (including eCall) connection
Cellular Internet connection (e.g. 3G/4G/5G)
Global Positioning System (GPS)
Tyre pressure monitoring system (TPMS)
Ultrasonic sensors
Parking cameras
LIDAR
On-board Diagnostics (OBD) port interfaces
Wi-Fi hot spot provision
Other cameras (vision systems)
Home/service centre Wi-Fi connection
V2X (IEEE 802.11p or 3GPP)

The work required to implement the three types of security tests into vehicle testing regimes has
begun [45], and this thesis and research is contributing to the required knowledge (see the publications
listed in Section 1.5). In [46] researchers at Chalmers University of Technology have used the three
security tests as part of a proposed Start - Predict - Mitigate - Test (SPMT) process to systematically
analyse vehicular cyber-security. The SPMT process, which has the high-level steps illustrated in
Figure 2.7, is very involved due to vehicle complexity and the nature of the possible threats, however,
here is a brief summary of the four phases:

• Start - Perform an analysis of the vehicle systems to determine what needs protecting.

• Predict - Perform a threat assessment to quantify and rank risks.

• Mitigate - Apply countermeasures to the ranked risks. Economic considerations infuence the
application of countermeasures.

30 Literature review

• Test - Apply the three security testing regimes (vulnerability, fuzz, penetration) to ensure
that designs are resilient to attack, and that applied countermeasures are effective. Use test
automation, where possible, for effciency. Any revealed security issues must be reviewed.

Mitigate Phase

Set Type=1

Set Integrated=No

Start Phase

Passed?

Predict Phase

Test Phase

Fuzz Testing Vulnerability Testing Penetration Testing

No

Type > 3?

If Type=1 If Type=2 If Type=3

Set Type=Type+1 Integrated?

Release

Set Type=1

Set Integrated=Yes

Yes
No

Yes

Yes

No

Fig. 2.7 The Start, Predict, Mitigate, Test (SPMT) security testing process, derived from [46], showing
fuzz testing as one element of their proposed method, based on SAE J3061

Having already discussed that CAN is a key communications technology within vehicles, how
do vulnerability, fuzz and penetration testing apply to CAN? In terms of vulnerabilities, its insecure
design has been shown to be exploitable and can be used to endanger vehicles, for example [2],
[22], [23], [28]. Indeed, the kudos and bounties available in discovering a vulnerability makes it a
popular area of automotive cyber-security research. For penetration testing there has been some work
performed on tools and techniques [21], [47]–[50], whereas, the available knowledge on fuzz testing
vehicles is limited (see Section 2.12 further below).

Furthermore, J3061 suggests that vulnerability and penetration testing is performed by parties
independent of the systems engineering development. Indeed, BMW proved the beneft of having
vehicles tested by independent automotive security specialists [51]. Having an unbiased and indepen-
dent analysis of a system by security experts can reveal unconsidered exploitation paths and system
weaknesses.

This leaves fuzz testing as a suitable security test for manufacturers to perform themselves. A
lack of publicly available resources and information to implement fuzz testing is likely to restrict fuzz

31 2.11 What is fuzz testing?

testing adoption. The following section discusses the application of fuzz testing to the automotive
feld.

2.11 What is fuzz testing?

As mentioned in the introduction (Section 1.2.4), fuzz testing is a dynamic test method, i.e. performed
against a running system, as opposed to the static analysis of source code. Fuzz testing is important
because of its track record of successfully revealing issues in the software of traditional information
systems [8], [52]. Once software errors are revealed a possible exploitation path may be found. The
fuzzed values may reveal unknown functionality, bypass security checks and cause internal buffer
overfows or exceptions that disrupt processes because of software crashes. Ultimately these bugs or
errors from fuzz testing may provide access to privileged areas or functions, reveal useful information,
or allow for code injection techniques, thus, overcoming a systems CIA security properties. This is
why fuzz testing is one part of the well regarded Microsoft SDL [3].

A fuzzer is a program that performs fuzz testing. The generation of random input data to a target
system is a primary function of the fuzzer. However, to be more effcient, and hence more effective,
a fuzzer can operate with an understanding of system data formats, communication protocols and
interfaces. The essence of fuzz testing is:

• Random input (fuzz) is sent to a system’s interfaces.

• The system response is monitored.

• If a system failure or issue occurs the conditions that caused it are recorded.

• The process is repeated a large number of times to cover a large input value space.

• Fuzz testing is automated for effciency due to the high volume of tests that are executed.

Despite the established use of fuzzing for security testing [53], its use in general testing of
automotive systems is low [54]. In a survey of testing methods in the automotive industry, fuzz testing
was given in less than 4% of responses to questions, see Figure 2.8. In regards to fuzz testing in the
automotive feld there are few papers available, which are examined in the next section.

2.12 Fuzz testing CAN

Vehicle hackers see fuzzing as a useful tool to help reverse engineer systems [21]. This is because
the operational details of vehicles internal systems are commercial secrets. Often the only way to
determine what the values in a particular CAN data packet mean, is to capture the network traffc
while operating a vehicle feature. If that fails then sending fuzzed data may get the required response.
But reverse engineering is not the only use of fuzzing in vehicle systems, it can make an effective

32 Literature review

Fig. 2.8 Testing methods used in the automotive industry, derived from data from [54]

denial of service (DoS) attack [2]. However, little work has been done on examining the usefulness of
fuzz testing for pre-production security testing. What is available with regards to fuzzing automotive
systems?

The design of a fuzzer for Unifed Diagnostics Services (UDS), used for ECU diagnostics, is
provided by [55]. That report is mainly concerned with the design of the fuzzer, which was tested
against a UDS simulator. It did fnd weaknesses in the simulator’s UDS implementation, though no
in-depth presentation of the results is provided.

A consideration when performing security tests is the oracle problem, how to distinguish correct
from incorrect responses from the ToE [56]. When testing the normal functionality of a system the
test oracle can be determined from the system specifcation, i.e. for a given input, a known output is
expected. However, for security testing, the expected behaviour may not be defnable, particular for
penetration and fuzz testing. For vulnerability testing, the expected responses from the known corpus
of attacks is defned.

Developing an oracle for fuzz testing is challenging. A basic test condition is to see if a system
stops working (crashes) when the inputs are subjected to fuzzed values. However, an oracle needs to
determine the incorrect responses, or for a CPS the incorrect behaviour, to fuzzed inputs when the
system appears to be functioning as normal. When fuzz testing CAN the challenges faced by this
research include:

1. The dynamic nature of CAN: Tests are dealing with running networks and not simple in-
put/output interfaces. The CAN protocol is not complex, however, the vehicle systems are
constantly transmitting data, usually without any time references, and despite the small packet
size, the number of possible combinations of packets is impractically large.

33 2.12 Fuzz testing CAN

2. Lack of network traffc specifcations: There is no access to the specifcations to know what
a CAN bus should be doing. This is due to the inner workings of vehicular systems being
trade secrets. Therefore, it’s hard to tell if a test value from the fuzzer is causing an incorrect
response, i.e. the value is producing incorrect behaviour.

3. No access to ECU code: The full behaviour of individual ECUs is unknown, again having no
knowledge of internal ECU software and design, therefore, determining the correct response to
an input is diffcult.

4. Interaction with the physical world: Since a car is a CPS (mixing the virtual world with
the physical world) a digitally generated test value or CAN packet may result in a physical,
real-world action. Feeding back such physical responses to the oracle is another consideration.

Whilst access to ECU and CAN bus specifcations present a challenge for this research, it should
not be problematic for the vehicle manufacturers. Their relationships with their suppliers and their
own designs provide the required knowledge to aid the development of appropriate oracles. For
pre-production systems developed on HIL/SIL testbeds, the test oracle could be derived from the
testbed confguration fles.

Consideration of the oracle problem is in a commercial report [57], where a link from an auto-
motive HIL and SIL test and development system, into the Python-based open source fuzzer, called
booFuzz, is presented. In the report they propose several ways that a test oracle can be used:

• Network communication monitoring: reading the values present in the network data and
checking against expected results.

• Monitoring through a component debug interface: a common electronics interface for debugging
purposes is a JTAG port (JTAG is for Joint Test Action Group, the body that defned the standard).
However, access to JTAG is not usually possible once manufacturing begins.

• Direct and indirect monitoring of simulator system signals: HIL/SIL testbeds can provide
programmatic access to the simulated systems internal data values, allowing access to those
values from the oracle.

• Accessing internal ECU values: Making use of the automotive Universal Measurement and
Calibration Protocol (XCP), which allows remote access to the internals of an ECU.

• Monitoring of the physical responses: the real responses to values input into a system can be
detected with external sensors.

However, one point to make, which was not made in [57], the monitoring capabilities maybe
used by the attackers themselves, who look for any source of information to help break systems. For
example, supporting XCP may help with detailed ECU diagnostics, but it provides another channel
that may be exploited. One interesting point noted from [57] is that automotive ECUs have different

34 Literature review

Table 2.6 General purposes fuzzers adapted for automotive fuzz testing

Tool License Approach

beStorm [58] Commercial Protocol based
Defensics [59], [60] Commercial Protocol based
booFuzz [57] Mixed Design based
Peach (www.peach.tech) Mixed Protocol based

operating modes. For most of its life, an ECU is providing normal operational functions. However,
during vehicle servicing an ECU can be locked or unlocked for software updates via UDS. The point
was made that it is important for testers to cover all the states of an ECU, as these different states have
been exploited [23].

How a commercial fuzzer is confgured to interface to an automotive network is provided in [58].
No practical application is given, only publishing results on data packet throughput rates. In [59],
presented at a commercial conference, another commercial fuzzing tool is used to test a single ECU.
The test environment defnes a comparison module that acts as the test oracle, providing a means of
verifcation for the operation of the ECU under test when its communication packets are being fuzzed.
Again, there is a lack of detail on the test setup and results.

An interesting solution to the oracle problem is provided by [60]. They propose fuzz testing a ToE
alongside an identical system (not subjected to the fuzz testing) as a reference point. Comparing the
output from the fuzzed system to the reference system. The proof-of-concept system uses two model
cars as the SUTs with the systems of the vehicles controlled by CAN busses. A dSpace HIL system is
linked to the commercial Defensics fuzzing tool. The HIL is able to load, start and stop the fuzzer.
When the fuzzer is active the measured analog and digital signals from two SUTs are compared, any
differences are logged as errors.

As with the other publications, there is a lack of detail. The reported results are sparse, being
a single high-level summary table, furthermore, detail on the internal operation of the fuzzer and
the communication between the HIL system and SUTs would be benefcial. Information on the
performance of the system would be useful, for example, does the analysis of the outputs keep up
with system operation. There is no discussion of the variation between the two SUTs. How much of a
difference between the outputs of the fuzz tested ToE, compared to the reference SUT, is required
before an error condition is considered. An interesting point is made about the reference SUT. If a
model of the SUT can run on the HIL system, and the model is accurate, then the reference SUT
could be virtual and used within the HIL system itself.

2.13 Summarising the automotive fuzz testing literature

All the fuzzers used in the discussed publications, plus the Peach fuzzer, which is advertised as
supporting automotive testing, are listed in Table 2.6. Most of the fuzzers are general-purpose

35 2.14 Drawing from the review

commercial products or have commercial versions (booFuzz is open source and Peach has an open
source version). They all require specifc knowledge on confguring them to work with automotive
systems. There are two main approaches used by the fuzzers:

• The network protocol approach, based upon knowledge derived from network specifcations,
for automotive CAN this means using the format of the CAN data packets (see Table 2.2).

• The design approach, using input from the system design, i.e. having pre-existing knowledge of
the data packet contents (which could be informed from the source code running in an ECU).

Whilst it can be seen that automotive fuzz testing is not new there are gaps in the literature. The
available information in the literature has two major concerns. Firstly, there is a lack of detail in
experimental design, data and results. Secondly, most publications are overviews of experiences
in implementing a commercial fuzzer, rather than providing details on the effectiveness of the fuzz
testing, and the practical methods used and lessons learnt from the experiences. There is a need, and
opportunity, to add to the fuzz testing knowledge in the automotive feld. This lack of knowledge of
automotive fuzz testing does not only apply to CAN. There are many technologies in use in a vehicle,
and the large attack surface (see Table 2.5) provides plenty of scope for more research into applying
fuzz testing to vehicle systems, particularly around methodologies. The experiences from the CAN
fuzz testing experiments in Chapters 6 to 9 is beginning to address the gaps.

2.14 Drawing from the review

The intention of the literature review was to begin to address the questions posed in the introduction.
What is cyber-security in relation to a vehicle, and therefore, how can testing for resilience be
addressed? Through gaining an understanding of the nature of the automotive cyber-security feld it is
possible to develop an understanding of related testing issues. The key areas addressed by the review
are:

• A description of issues with the literature discovery: The feld of automotive cyber-security
is complex and multidisciplinary in nature, using terminology that can be generic, for example,
system security, thus, subject terms are generally applicable across domains. To overcome this
problem literature was found by combining database searches with the use of references from
highly cited works, and recommendations.

• A historical look at automotive cyber-security: The security problems in this new feld is a
continuation of issues that have been with us since the early days of computing. Security issues
have emerged from the increasing use of computers in vehicles. Researchers in the 2000’s and
2010’s revealed the lack of security resilience, mainly through unconsidered security design.
However, the cyber-physical nature of the modern car adds another consideration.

36 Literature review

• Two security weak technologies in the modern vehicle: The CAN bus and the OBD port
were discussed. Issues in applying security to these two items were covered. Although there
have been some proposals for the use of cryptography in CAN, they have not been widely
adopted.

• The need to design security into vehicle systems: This was noted with reference to the
requirements of J3061 (and other sources). However, all three of the recommended security test
methods (vulnerability, fuzz and penetration) are immature in the automotive feld. In particular,
fuzz testing has seen little work, mainly covered in terms of describing the application of
existing fuzzers.

From the literature, it can be seen that the research feld of automotive cyber-security is young,
less than a couple of decades old. However, it is currently the focus of a lot of commercial and
academic research attention. The reports and papers demonstrate that research is occurring in many
countries and types of organisations, in Europe, particularly the UK, Scandinavia and Germany; in the
US, China, Korea, Japan and Israel; and in a variety of vehicle manufacturers, component suppliers,
cyber-security companies, start-ups, academia and governments.

Researchers have shown that for CAVs there exists the possibility of remote infltration and
vehicle component compromise, or the attachment of an aftermarket device that can be compromised
or purposefully modifed. The result is a CPS operating in the presence of one or more malicious
entities, either locally to the vehicle or remotely from a wireless connection. The scenario is similar to
man-in-the-middle (MITM) attacks, where the adversaries can manipulate the system for their goals.
In such scenarios, where the vehicle systems are breached, it raises issues:

• The threat agents may compromise the safety of the vehicle occupants and the public.

• The CIA security properties of the system have been violated and therefore the system design
needs to change.

• Security testing, e.g. fuzz testing, should be performed to improve resilience and reduce the
risk from future security breaches.

There is no doubt then, that for the automotive industry, security testing is now a consideration. It
will be adding to the cost of vehicle systems development, however, as stated Sections 1.2 and 2.9,
testing is part of the vehicle development process, and the industry will implement useful security
testing methods.

Whilst the review has looked at technical aspects of automotive cyber-security, the nature of the
automotive industry requires the consideration of business factors when implementing new technology.
Factors that are seemingly ignored in technical literature. Conversations with stakeholders at a
HORIBA MIRA Limited have raised the issues of barriers to research in this feld.

37 2.14 Drawing from the review

2.14.1 Barriers to automotive cyber-security research

For vehicle manufacturers, the complex engineering process is one part of designing a car. Other
aspects include design and production costs, weight, maintenance, vehicle servicing and vehicle
end-of-life. These aspects also apply to engineered cyber-security solutions, therefore, previously
proposed security solutions based around cryptography are challenging to implement [33]. The
long-term management of proposed cryptography solutions remains a challenge for manufacturers to
address.

Furthermore, research needs to contend with the nature of the automotive domain itself. Automo-
tive engineering is a high-cost enterprise, cyber-security researchers have noted this as an issue [61].
Purchasing vehicles for research is costly. Large facilities are needed to accommodate and to test
vehicles. Garage space is required, and access to proving grounds to test vehicles under dynamic
conditions. There are the associated costs of facilities (rental or purchase, energy and other utilities,
insurance, physical security). Other barriers to research in the feld are knowledge based. This
includes access to experienced personnel, investment in time (gaining requisite knowledge and reverse
engineering systems), and access to vehicle systems protocols and software (often restricted due
commercial confdentiality). Nor does the automotive industry sit still, e.g. continuous investment
is needed to research next-generation sensors and systems, as used, for example, in the evolving
Advanced Driver Assistance Systems (ADAS) and CAVs. Therefore, security testing is not a singular
target and will need to evolve as vehicle systems evolve. However, for now, manufacturers need
practical security tests that can be ftted into the existing testing processes.

2.14.2 Understanding the motivation for this research

There already exists a complex vehicle engineering processes (see Sections 1.2 and 2.9). Therefore,
vehicle manufacturers and their suppliers can consider adapting their existing pre-production test
procedures and ISO 26262 considerations to incorporate security testing according to J3061 guidelines.
Indeed, J3061 begins to answer the frst question posed in Section 1.2:

What does it mean to cyber-security test vehicles?

The answer provided by J3061 is the need to perform vulnerability, fuzz and penetration testing
on the vehicle systems. These three classes of testing need to be performed on multiple subsystems,
components, networks and connection points. Due to the size and complexity of the systems in
vehicles, the testing task is large. However, large scale testing is not new to the vehicle engineering
process, but it needs enhancing with the security testing requirements. This needs to happen without
being onerous to the manufacturers or suppliers costs, though the initial problem is likely to be a lack
of security testing knowledge and procedures specifc to the automotive feld.

Developing the new security testing knowledge will entail multiple research streams to examine
the many topic areas that are impacted. In this research, fuzz testing is seen as the area that requires
immediate attention due to an existing scarcity of knowledge, and considering how important the

38 Literature review

automotive industry regards it in the J3061 guidelines. Thus, the contribution made in this research is
to provide a new CAN fuzzer, Chapter 5, a tool that can be used to introduce fuzz testing early into
systems prototyping stages, Chapter 4. This may reduce future vulnerabilities because any issues
found during security testing can be fed back to the engineers, see Chapter 9 for an example. Early
feedback on security issues supports the concept of designing security into a product.

Chapter 3

Method

Science is what we know, and philosophy is
what we don’t know.

Bertrand Russell

This chapter presents the methodologies used and developed within this research program, a
program based upon empirical evidence. This applied research program aligns with the medium to
long term research aims of HORIBA MIRA Limited, Coventry University’s industrial collaboration
partner. One of the many areas of the collaboration’s research programs includes the development of
new methodologies suitable for testing aspects of vehicle resilience. As discussed in the literature
review in Chapter 2, resilience to cyber attacks is required in order to maintain assurance in vehicle
systems.

3.1 Introduction to research methods

At the outset of this research, the industrial collaboration had established a high-level objective. That
objective was to research solutions to the problem of cyber-security testing the modern connected
vehicle. The literature review covered the complexity of the modern vehicle and that the nature of
cyber-security presents a challenge when testing a vehicle’s security properties. That challenge needs
to be addressed as the review demonstrated the importance of vehicle resilience to hacking attempts.

Beyond the high-level objective, there were no specifc topics provided for this research program.
Thus, this research involved iterative goal-seeking to establish the work to be performed by the
program, perform that work, and provide the fnal contribution. The goal-seeking was in three major
stages:

1. Firstly, the literature review was performed to fnd a relevant gap in the existing knowledge that
could be investigated. This then raised the research question to be examined.

40 Method

2. The second major stage was developing suitable software to support experimentation (software
development), executing experiments with the developed software (experimental design) and
evaluating the results (quantitative observations).

3. The fnal stage was to document the security development testing method that could be moved
forward for future development by HORIBA MIRA Limited, and the wider automotive engi-
neering community (methodological design).

Thus, the major research methods were literature review, software development, experimental
design, quantitative observations and methodological design. Whilst gathering of data for qualita-
tive observations was not part of this research, some general observations could be made, where
appropriate, based upon the work performed throughout the program.

It is important to use a framework to provide some structure to any work being performed. Since
the nature of this research was goal-seeking, an iterative process model was followed. The next
section discusses the method used.

3.2 The iterative Design Science Research Methodology

Meeting an objective can be a process of stepwise refnement, performing an action, observing the
outcome, then modifying the action based on that outcome, and repeating until the desired outcome is
obtained. This is a feedback or goal-seeking process, such a process was required in this research.
The goal-seeking was to establish the specifc research question, design and implement software,
execute experiments, and evaluate the results. To frame this iterative systems research the process
model used follows the Design Science Research Methodology (DSRM).

DSRM provides a process model to guide systems related research. In this section, a summary of
DSRM is provided, for full details refer to Peffers et al. [9]. DSRM is an established process, highly
cited in Google Scholar. A search within those citations using the term (automotive OR vehicle OR
vehicular OR car OR truck) AND security shows a few hundred results, indicating the use of the
method in areas related to this research. For example, it is referenced in [62], which is an output of
the HEAVENS project (HEAling Vulnerabilities to ENhance Software Security and Safety) which
ran for three years between April 2013 and March 2016. HEAVENS was coordinated by Advanced
Technology and Research within Volvo Group Trucks Technology. A summary of DSRM is below,
and a description of how it relates to this research program follows.

3.3 The DSRM process model

The DSRM process model is shown in Figure 3.1. The six activities in the process are:

1. Problem Identifcation and Motivation - This covers the justifcation for the research, and
what need the research is addressing.

http:results.To

41 3.3 The DSRM process model

Fi
g.

 3
.1

 T
he

 D
es

ig
n

Sc
ie

nc
e

R
es

ea
rc

h
M

et
ho

do
lo

gy
 w

as
 re

dr
aw

n
fr

om
 [9

]

42 Method

2. Solution Objectives - These are quantitative and/or qualitative features of the expected outcome.
How the research is expected to solve problems or improve upon existing solutions.

3. Design and Development - An artefact is produced to solve the identifed problem. Whatever
the type of artefact constructed, e.g. a model, method, algorithm, program, device, system, etc.,
it encompasses the objectives.

4. Demonstration - The artefact is used to address the problem. This can be by experimentation,
simulation (virtual experimentation), case studies, proofs, etc.

5. Evaluation - The effectiveness of the artefact in addressing the problem should be determined.
Does the functionality meet the objectives? Does the quantitative data from usage meet
expectations? Should the process iterate back to improve the outcomes?

6. Communication - The research results are published and made available. The artefact is made
available for use. Feedback from the communication, for example, peer review comments,
may inform the research and thus, the process may iterate back to objectives and/or design and
development.

The DSRM is fexible in its approach. The entry point for the process (a. in Figure 3.1) may be
determined by different factors:

1. A formally observed problem, or a problem statement, can start the process from the beginning.

2. Research, business, or industrial need can trigger the process from a specifc objective, before
the problem has been accurately stated.

3. An existing prototype artefact, maybe developed ad hoc as an interim solution, or an artefact
designed for a different use case can trigger the research process.

4. Observations of solutions in other domains, or analysis of existing processes, e.g. from
consultations, can begin the research process.

Entry points that do not start at the problem defnition stage can use the DSRM to frame the
research in a formal process and, thus, provide the justifcation for the desired outcome, i.e. follow
the DSRM nominal process sequence (from b. in Figure 3.1).

The output of each DSRM process stage provides information to the following stage. The problem
defnition and motivation infers the objectives (c. in Figure 3.1). The objectives are the theoretical
basis for the development of the artefact (d.). Knowledge of the artefact determines how it is applied or
used (e.). The observations from using the artefact are evaluated using measured metrics and analysis
(f.). Finally, the results become a body of knowledge and evidence on the artefact and the solution it
offers to solve or reduce a problem. This is then communicated in publications and to stakeholders and
interested parties (g.). The outputs from evaluations and the feedback from communications are likely

43 3.4 Applying the DSRM to this research

to trigger iterations in the research (h.), particularly during the early stages, when the information
available is not granular enough and experiments are under development, as was the case with this
research.

3.4 Applying the DSRM to this research

The aims of Peffers et al. with the DSRM [9] was to provide a formal defnition of a method for
applied information systems research that had new artefacts for outputs. They also wanted to provide
a mental model to encapsulate the development process that an information systems researcher goes
through before fnally presenting their work. They acknowledge that such a formal defnition for
information systems research has been considered before and have used previous research to aid the
design of the DSRM. In doing so the DSRM provides a solid framework to ensure that this research
program is correctly addressing the knowledge gap in automotive CAN fuzz testing.

In the introduction, in Section 1.2, it was stated that there was an initial need to investigate
cyber-security testing vehicles. This was the high-level objective that initiated this research program.
From that entry point the DSRM clarifes this research program:

1. Problem - The literature review, in Chapter 2, identifed a knowledge gap in automotive fuzz
testing. In particular, the ubiquity of CAN is chosen as a target technology for fuzz testing.
Thus, the problem is to determine if CAN fuzz testing is indeed suitable as a security test as a
component in vehicle resilience testing.

2. Objective - Fuzz testing has been applied to vehicular systems and CAN, but the published re-
sults are sparse and without detail. This research concentrates on the straightforward generation
of CAN fuzz testing data and results. To enable this objective a simple to deploy and confgure
CAN fuzzer is required, see Section 5.1.2 for further detail on the required aspects of the fuzzer.

3. Development - The CAN fuzzer, it’s interfacing to ToEs, and the methods of usage from the
experiments are the main outputs of this research. Chapter 5 discusses the software development
of fuzzer.

4. Demonstrate - The fuzzer is used against a variety of ToEs in the experimental Chapters 6 to 9.

5. Evaluation - The results from the experiments are used to improve the prototype CAN fuzzer,
its functionality, its methods of use and the effectiveness of CAN fuzz testing.

6. Communicate - This thesis is the main record of this research. There are also published
outputs, see Section 1.5, and additional papers to be produced. The CAN fuzzer has been
demonstrated to various stakeholders and the intellectual property contained in the software
and outputs are stored in HORIBA MIRA’s internal source code management system for access
by their engineers.

44 Method

Fig. 3.2 The overall research framed in terms of the DSRM

The DSRM process of this research is summarised in Figure 3.2. DSRM acknowledges the often
iterative nature of systems research. Development of new systems engineering methods and the
supporting software often involves developmental iterations. In this research the main iterations were
in the development and application of the prototype CAN fuzzer during the fuzz testing experiments
in Chapters 6 to 9, see Figure 3.3.

Fig. 3.3 Software development and experimental methods iteration

3.5 An automotive security test development methodology

The iterative process to establish the research question, develop the security test and tooling, and
perform the practical experiments resulted in an overall methodology for this research program. It can
be used for developing cyber-security resilience testing methods for automotive systems, and possibly
other CPSs. A high-level overview of the methodology is shown in Figure 3.4.

There are seven phases to this cyber-security testing development methodology:

1. Establishment and validation of a test environment - The complexity and costs of the
modern vehicle provide a challenging environment in which to develop new security testing
methods. For a new vehicle design the access to car’s internal systems and components may

45 3.5 An automotive security test development methodology

Fig. 3.4 A method to develop automotive security testing

not be possible in the early stages. The use of a testing environment, in the form of a reusable
testbed, provides a controlled setting for developing new testing methods. In Chapter 4 a
commercial HIL/SIL vehicle design and development system is deployed as a security testing
rig. Such systems are traditionally used for functional testing, but this research is stating that
they may be used for security testing.

2. Determine a security test to develop or perform - The literature review, Chapter 2 identifed
that three classes of security test can be executed against a vehicle system or component. Out
of those three tests, fuzz testing is the most suitable for a manufacturer or supplier to execute
themselves. The outcome of this phase is for the researcher to choose one of vulnerability, fuzz,
or penetration testing. However, each of these three tests will have specifc testing requirements
based upon the technology of the ToE (see the next phase), for example, a penetration test for a
Wi-Fi interface would differ in its details to one targeted at Bluetooth. In this research, the lack
of available detailed knowledge in fuzz testing automotive systems was the reason to choose it
over vulnerability or penetration testing.

3. Choose a technology to test - Vehicles contain multiple digital technologies. There are many
types of components, interconnections, interfaces, and communication protocols. For this
research CAN was chosen for its ubiquity within vehicle systems (CAN technology is discussed
in Chapter 4 and Appendix B). However, many vehicle technologies (see Tables 2.4 and 2.5 in
Chapter 2) require new research on security testing techniques.

4. Development of the test tooling - To execute the chosen security test against the chosen
technology tooling support is required. In testing digital technologies this invariably means
some form of software, but may include interfacing and measurement equipment. The software
and equipment can be commercially available or may require bespoke design and development,
or a mixture of the two. At the time of this research, no simple to use software tooling
was available to support fuzz testing of CAN. Simplicity here is in terms of ease of use and

46 Method

deployment. Chapter 5 discusses the development of a prototype software tool, known as
a fuzzer, for use in CAN fuzz testing. It uses off-the-shelf hardware to interface to CAN.
The testbed provided the controlled environment to enable the development of the tooling. It
is anticipated that developing security testing tooling for other vehicle technologies will be
required in the future.

5. Validation of the tooling - Any security test tooling will need to be performant for its intending
application. Therefore, it needs to be validated. In this research, some validation of the CAN
fuzzer was performed during its development (Chapter 5), with further validation during
experimental use. A similar validation phase is required for security tooling used against other
technologies.

6. Experimental methods using the tooling - In this phase, the established test environment
and the new test tooling is put to use performing the determined security test and the test
results are recorded. However, the lack of knowledge in security testing of vehicle systems
means that the experimental methods will require refning as testing experience is gained. For
example, the experimental use of the prototype CAN fuzzer revealed unforeseen issues. These
are discussed in the relevant chapters, Chapters 6 to 9. Thus, as well as evaluating the results
of the experiments, it is important to refne the experimental techniques used, this requires the
next phase.

7. Method and tooling improvements - This phase is used to improve the effectiveness of the
security testing methods and tooling against the targeted technologies. Use of the security
tooling can suggest, or require, improvements for future experiments, security tests and use
cases. This improvement is illustrated by the dashed line in the schematic in Figure 3.4.
The CAN fuzzer development discussion in Chapter 5 includes improvements from using
the fuzzer against ToEs. The near-continuous development of new and improved technology
in the automotive feld will require continuous improvements in security testing tooling and
techniques.

This security test development method was used for the CAN fuzz testing processes and construc-
tion of the CAN fuzzer tool for this research. In Figure 3.5 automotive components and systems with
CAN communications are the targets. It is plausible that the same method is suitable for developing
security tests for other technologies and domains. For example, applying the security test development
method for the Bluetooth interface, for smartphone targets, is shown in Figure 3.6.

3.6 Addressing the very large CAN state space

In fuzz testing the CAN bus, there is the problem of state space explosion. The combinatorial increase
in state-space means that the search for possible problematic system inputs can be impractically

47 3.6 Addressing the very large CAN state space

Fig. 3.5 An overview on applying the security test development methodology to CAN fuzz testing

Fig. 3.6 An overview of the security test development methodology applied to vulnerability testing
the Bluetooth stack on smartphones

48 Method

Fig. 3.7 A
three-stage process for targeted C

A
N

fuzz testing to address state space explosion

49 3.7 Equipment, tools and test facilities used during this research

large. Methods and processes to reduce this search space are therefore required. In Figure 3.7 the
methodology proposed is a three-stage process for targeted fuzz testing, which is outlined below.

1. The three-stage process begins by monitoring the normal activity of a CAN bus. This is then
analysed to determine the upper and lower bounds of the CAN data fowing on the network.
The data bounds may include all parameters of the CAN data, the id, length and data bytes
(see Table 2.2), plus temporal information. The bounds can be adjusted to allow the fuzzer to
generate values outside of the recorded values ranges.

2. The second stage is to use these parameters to inform the generation of the fuzzed CAN data
packets. Packets are randomised within the bounds, transmitted to the network, and responses
are logged. When the fuzzer exits (after all packet data combinations are exhausted, or after a
pre-determined period) the logs are available for analysis.

3. When the test logs are analysed, the positive tests (packets that produce an unexpected reaction)
are examined. Each positive test result will indicate either an incorrect expectation (in which
case the test oracle must be updated), or unexpected behaviour, and thus the system design will
need revisiting.

3.7 Equipment, tools and test facilities used during this research

This research program would not have been possible without the use of equipment, tools and facil-
ities provided by Coventry University and HORIBA MIRA Limited. Details are provided in each
experimental chapter. The following list summarises the equipment, tools and facilities used.

• The CCAAR (see the Acknowledgements) facility located at HORIBA MIRA was the location
for the laboratory experiments. The CCAAR facility includes garage space and workbenches.

• A garaged vehicle, a small hatchback registered in 2013, was available as a laboratory car.
Information on the lab car is not provided due to commercial confdentiality and a responsible
disclosure policy. The lab car and components from it, are used in the experimental chapters.
The instrument cluster is used in Chapter 6, the media interface ECU is used in Chapter 8, and
the display ECU is tested in Chapter 9. The car and the instrument cluster are also used during
the testing of the bit rate attack, discussed in Appendix C.

• A Windows desktop PC was used for software development and software testing.

• The Microsoft Visual Studio integrated development environment was used for software devel-
opment.

• A Windows laptop PC was used for software testing and data collection.

50 Method

• A Vector Informatik GmbH HIL/SIL system was used to simulate vehicle systems and its CAN
busses. The Vector system consists of a CAN hardware interface and the CANoe simulation
software environment. The system is used as an automotive cyber-security testbed in Chapter 4.

• PEAK-System Technik GmbH interface devices, called PCAN-USB, are used to connect
Windows PCs to CAN busses. They were used for the development of the CAN fuzzer in
Chapter 5, and in the experiments in Chapters 6 to 9 A PCAN-USB interface library was
developed from sample code provided by PEAK-System to allow access to the devices from
the developed CAN fuzzer software.

• An assortment of aftermarket devices, that connect to a vehicles OBD port, were used in the
validating the testbed in Chapter 4.

• An assortment of tools and test equipment typically found in an electronics lab was used for
cable construction, hardware debugging and data readings.

• An assortment of custom cables were constructed to facilitate interfacing with the lab car, ECUs
and other equipment. The custom cables were used in Chapters 4 to 9.

3.8 Summary on research methodologies

This chapter discussed the DSRM process model. DSRM is established in systems research, including
use in the automotive domain. The DSRM frames the iterative nature of software and experimental
design in systems research with artefact outputs, which was the case for this research. Additional
information on the practical methods used in the experiments are discussed in the relevant chapters,
Chapters 4 to 9, including any additional materials, equipment and techniques used.

In performing the experimental work the overall research methodology was established. That
method contains steps that allow for the development of automotive security tests. In the next chapter,
Chapter 4, the method begins to be applied to this research program with the establishment of the test
environment, the frst step in the methodology given above in Section 3.5.

Chapter 4

A testbed for automotive security testing

Nobody actually creates perfect code the
frst time around, except me. But there’s
only one of me.

Linus Torvalds

The literature review, Chapter 2, discussed security weaknesses found in vehicular systems. Such
weaknesses should be addressed for new and future vehicle models. Engineering security into products
with good design and systematic security testing is advocated, e.g. in SAE J3061 [27]. This is instead
of retroftting security once the functional design is complete. In Section 1.2.1 the use of HIL/SIL
equipment for vehicle systems development was introduced. The development process, when vehicle
components and systems are being prototyped, is an opportunity to begin security testing.

To verify that automotive HIL/SIL equipment can be used for cyber-security testing an experiment
was performed. This experiment provides a proof-of-concept that such equipment is indeed suitable
for cyber-testing. The output of the experiment is the establishment of an automotive security testbed
for evaluating both countermeasures and tools. For example, the prototype CAN fuzzer in this research
(see the following Chapter 5) was developed and initially verifed against the testbed.

The establishment of a test environment for vehicle cyber-security testing is the frst stage of
the automotive security test method, see Figure 3.4 in Chapter 3. This experiment was conducted
collaboratively with Dr. Madeline Cheah, who was completing her doctoral program of research
within the Systems Security Group at Coventry University. The publications [6], [63] derived from
this work are listed in Section 1.5. In [64] the idea of a virtual environment for early cyber-security
testing of vehicle systems is being continued, with their working referring to the publications from
this research.

52 A testbed for automotive security testing

4.1 Introducing the experimental work

The verifcation method to use the HIL/SIL equipment as a testbed for security testing was in two
stages. Firstly, to perform a cyber attack on a laboratory vehicle, then, secondly, to perform a similar
attack against the HIL/SIL equipment.

An attack on a vehicle’s internal communications network was performed wirelessly via an
aftermarket dongle, a third-party device used to read vehicle ECU data values. The dongle is plugged
into the vehicle’s ODB port, which contains a connection to the vehicle’s CAN bus. The attack method
used is then deployed against the testbed, which has been adapted to accept a dongle device. The
similar nature of the testbed attack to the real-world attack demonstrates that security testing can be
performed early in the development lifecycle.

The vehicle simulation used in the experiment is not as complex as a fully-featured vehicle, but
was adequate to demonstrate that cyber-security testing can be performed early in the R&D lifecycle.
The experiment provided the confdence to use the testbed for automotive fuzz testing development,
and demonstrate that it is useful for developing cyber-security testing algorithms and tools, prior to
use against vehicle components and systems.

4.2 Experimental method

Executing the experiment required the following:

• Development

– Obtain a suitable HIL/SIL platform

– Determine an attack to perform

– Implement the attack

• Demonstrate

– Validate the attack against a vehicle

– Perform the attack against the HIL/SIL equipment

• Assess the use of the HIL/SIL equipment for use as an automotive cyber-security testbed.

4.2.1 HIL/SIL platform

The complexity of automotive electronic systems has long required the development of specialised
equipment that can provide a comprehensive environment for out-of-vehicle testing. Commercial
test equipment companies provide HIL/SIL rigs that emulate vehicle functionality to enable unit and
integration testing of electronic systems. Such commercial automotive test rigs used to require large

53 4.2 Experimental method

cumbersome racks but modern units can be used on a desk with much of the vehicle functionality
simulated in software on a single PC, as done with this experiment.

The test equipment used is a CAN simulator from Vector Informatik GmbH. It is commonly used
in vehicle systems design and development. It was chosen as a testbed because it has:

• High powered hardware and software capable of running a multiple ECU simulation. The
simulated components reasonably and reliably emulate real-world behaviour.

• Functionally accurate networking and communications aspects.

• Interfaces to allow for external connections to the internal simulation.

• Adequate network traffc monitoring and analysis capabilities.

• Data capture and playback capabilities. This feature is valuable to investigate the repeatability
of experiments.

The testbed has CAN interfaces allowing it to be connected to external CAN buses. A comprehen-
sive PC based software package called Vector CANoe works in conjunction with the hardware. The
CANoe software allows for the design and simulation of ECU networks. Emulation of a vehicle’s
network of CAN buses can be full or partial, allowing for a mix of physical hardware and simulated
network nodes (HIL confguration). The simulator is capable of running a virtual vehicle, with the
vehicle controls operated via a GUI. Using the testbed as a development platform brings the following
advantages:

• It provides an isolated and controlled environment for developing and testing new algorithms
for security tests, and the software and tools to execute those algorithms.

• It allows new security testing processes to be developed and prototyped prior to deployment
against vehicle components and systems.

• It reduces the risks involved in security testing vehicles by allowing developed procedures to
be tested initially on the simulator, reducing the cost of using a real vehicle, and the risk of
damage to it.

4.2.2 Attacking the HIL/SIL platform

The security test to perform needed to be self-contained, straightforward to implement, suitably
time-bound (a short development and execution timescale), non-destructive to any shared resources,
and fall within ethical considerations, i.e. legal, in terms of computer misuse and personal data laws,
and not causing harm to people or property. From the three classes of security testing (vulnerability,
fuzz and penetration) vulnerability was chosen. The vulnerability test performed was the malicious
injection of CAN data packets into a vehicle via an aftermarket device. The accessibility of this attack
made it suitable to try against the HIL/SIL equipment, necessitating these steps:

54 A testbed for automotive security testing

Fig. 4.1 Examples of wired and wireless ELM OBD dongles, used to read and write data via a
vehicle’s CAN bus

1. Obtain a suitable aftermarket device that connects to a vehicle’s internal CAN bus.

2. Perform packet injection on a target vehicle to verify the known vulnerability.

3. Connect the aftermarket device to the testbed.

4. Perform packet injection on the test platform.

4.2.3 Aftermarket device threat assessment

There are several use cases for aftermarket devices that connect to a vehicle’s OBD port (see Table B.3
in Appendix B). One type of device is known as ELM327, named after a popular microcontroller
(MCU) this is used to interface to the OBD port. Examples are shown in Figure 4.1. In essence an
ELM device provides a serial terminal connection from a mobile phone or computer to the vehicle,
see section B.4.1 in Appendix B. This enables software to not only read vehicle data but to transmit
data into the vehicle. This functionality comes with few, if any, security mechanisms.

Five OBD dongles (Table 4.1) were connected in turn to the lab vehicle. Each dongle was used to
test packet injection into the vehicle’s internal CAN bus, Figure 4.2. These devices ranged from the
extremely cheap to more featured (and therefore more expensive) tools.

The frst observation of interest was that several dongles had an ELM chip version of 1.5. This
is a non-existent version [65] as the version after ELM 1.4b was ELM version 2.1. This could be
indicative of a counterfeit chip, but it did not affect the experiments. However, the probable counterfeit
ELM chips were not able to accept the full ELM AT command set nor did they correctly implement
some of the commands.

The second observation of interest was that every dongle except for the OBDLINK MX powered
up and started broadcasting its address as soon as it was connected to the vehicle’s OBD port. This

55 4.2 Experimental method

Table 4.1 OBD scanning devices (dongles) investigated, most had a fxed PIN of 1234 and the reported
ELM version may indicate the use of a counterfeit MCU

Dongle (OBD Port Device) PIN Discoverable Price ELM Version

Vgate Advanced OBD2 Bluetooth Scan Tool 1234 Always $13 v2.1
Exza OBD SCAN 1234 Always $25 v1.5
Vgate ELM327 Mini 1234 Always $15 v1.5
Pumpkin OBD2 ELM327 Bluetooth Car
Scanner

1234 Always $15 v1.5

Scantool OBDLINK MX Bluetooth dynamic
6-digits

button press $100 v1.3a

Fig. 4.2 Vulnerability test against a CAN bus via OBD dongles

56 A testbed for automotive security testing

Table 4.2 Commands sent to the OBD connected dongle

Command Purpose

ATI Information - to fnd the ELM chip version
ATSP6 Set Protocol 6 - sets the operating protocol to one that denotes the standard to

which this particular CAN bus adheres to (in this case, ISO 15765-4 for diagnostic
communication over CAN)

ATMA Monitor All - a confguration switch that allows monitoring of all traffc on all
exposed CAN buses

Mode & PID Mode and Parameter ID - in the form of two or more hexadecimal bytes
ATSH xyz Set CAN Header id - sets the CAN packet id to xyz for subsequent packets

was true regardless of whether the ignition was turned on. Even with the relatively small generic
Bluetooth Class 2 range of ten metres, this is a clear security risk, especially with fxed PINs and the
discoverable mode permanently enabled. Security in this regard is improved with the more expensive
scan tool, where the dongle has a two-minute discoverable window.

The third observation was that the cheap dongles used an insecure [66] legacy pairing mechanism,
with the PIN being 1234. The more expensive scan tool asked for a comparison with a dynamically
generated six-digit PIN on the phone; however, the dongle contained no input and so just selecting
confrm was enough to pair.

There is communications encryption and authentication, via the Bluetooth standard, between the
serial terminal (computer or cell phone) and dongle. However, the security is greatly diminished
by the fact that the PIN is short, fxed and easily determined (in the case of 1234) or just requires a
confrmation regardless of the PIN generated. Furthermore, once a phone or other device is paired, it
remains trusted by the dongle indefnitely and will pair automatically once within range.

4.2.4 Confguration and diagnostic messages

Once the devices were paired, a series of AT messages are sent in order to confgure the dongle and
monitor the traffc, from whatever CAN bus was exposed on the OBD port. Appropriate messages
were then sent via the dongle through a simple terminal program (running on a Bluetooth enabled
laptop or cell phone). The commands used are summarised in Table 4.2.

Modes and Parameter Identifers (PIDs) are used as a tool to perform diagnostic functions or
request data from the vehicle. The frst ten modes (01 to 0A, described in SAE J1979 [67]) are
standard PIDs and generic to all compliant vehicles. Even so, there are privacy implications as, for
example, sending the mode 09 with PID 02 retrieves the Vehicle Identifcation Number (VIN). The
VIN is unique to the vehicle and is used for many activities, from vehicle maintenance to the recovery
of a stolen vehicle.

The modes and PIDs used in the real-world demonstration are non-standard, with such PIDs being
defned by individual vehicle manufacturers. This seeming obscurity does not negate the danger as

57 4.2 Experimental method

Table 4.3 Results of sending one type of manufacturer diagnostic PID message to the lab vehicle

State of vehicle Observation

Ignition off Sending the mode and PID combination once returned NO DATA from
the vehicle

Ignition off Sending the mode and PID combination in a continuous stream caused
the key fob to stop working (door would not lock), ignition button is
non-responsive, vehicle beeped continuously, vehicle still returned NO
DATA

Ignition on Sending the mode/PID combination once caused the electronics (lights,
instrument cluster, blowers, boot lock and radio) to ficker once

Ignition on Sending the mode and PID combination in a continuous stream caused the
electronics to ficker continuously, the ignition button was unresponsive
(engine would not start)

Ignition on / engine on Sending the mode and PID combination in a continuous stream caused
the electronics to ficker on and off and the engine to cut off intermittently.
The engine malfunction light came on until next ignition cycle

many diagnostic functions are dangerous, and one can easily run through every combination of mode
and PID to see if there are any adverse physical reactions from the vehicle. Not every diagnostic
message elicits a physical response, however, anything that comes back from the CAN bus could be
used in future reverse engineering efforts.

The results of trials with one non-standard diagnostic message that did produce a physical response
are summarised in Table 4.3. The experiment was performed by sending the message both within and
outside the vehicle cabin (within a one-metre range) with the same result, regardless of whether the
chip contained within the dongle was a probable counterfeit (stating ELM version 1.5).

4.2.5 Raw CAN packets

The testing of directly injected non-diagnostic (raw) CAN packets was performed. Although the
CAN database for a vehicle is usually confdential, packets that have an effect on the vehicle can be
reverse-engineered given time and access. Here, a predetermined CAN packet was used, setting the
door state using CAN id 534 (0x216 hex) with data 00 DC 02 00 00 00 00 00 (hex). It had been
reverse-engineered previously using a wired OBD connection.

The injected raw CAN packets are transmitted through a serial terminal. The process starts with
sending ATSH xx xx xx, where xx is a hex byte, in order to set the CAN packet id that the ELM
chip will use when transmitting (the packet id effectively addresses the transmission to a particular
ECU). Then an 8-byte payload was sent through the terminal program. The packet sent was a valid
one, and although there was no physical response from the vehicle, the data was accepted, as it did
not return a ’?’ or a ’7F’ hex value (signifying a negative acknowledgement) within the response.

58 A testbed for automotive security testing

Fig. 4.3 Vulnerability test against a vehicle HIL/SIL testbed via an OBD dongle

4.3 A vehicle security testbed

From the results, it can be concluded that security testing for vehicles is essential, as injection of CAN
packets could result in undesired behaviours. The security risk is also increased because the injections
can happen from outside the vehicle. Thus, the design and implementation of a testbed is proposed to
aid security testing. The testbed addresses issues surrounding security testing, including issues of cost
and safety that might appear from testing a real-world vehicle.

A customised OBD cable was constructed to connect an OBD dongle to the simulator. These
OBD dongles require power that represents the approximate 12 volts normally supplied by a vehicle.
To enable this on the test bench the OBD power wires were separated and connected to a bench power
supply (the CAN simulator does not supply vehicle voltages). There are a variety of OBD extension
cables and splitter cables available and in this case, an OBD splitter cable was modifed by adding
the DB9 connectors accepted by the simulator (DB9 is a common format nine pin connector). This
modifed cable is used to connect any OBD device under test to the simulator. Figure 4.3 summarises
the setup of the testbed used to test the OBD aftermarket devices.

In Figure 4.4 the testbed is shown in operation on the bench, with the modifed OBD cable
connected to a bench power supply on the left. The VGATE Advanced OBD2 Bluetooth Scan Tool
(see Table 4.1) is connected to the OBD cable. The other end of the cable is connected to the CAN
simulator in the middle. A computer running the Vector CANoe software, used for the simulated
vehicle, is shown to the right. The serial terminal device (computer or cell phone) communicating
with the OBD dongle is not shown.

The operation of the CAN simulator is based around descriptive databases that provide a virtual
model of vehicle systems. To fully validate the testbed a model from a database of a series production
vehicle needs to be run on the simulator. A threat assessment against the model can then be performed.
The commercial sensitivity of vehicle software, ECU and CAN data packet design means that it is
extremely diffcult to get real vehicle ECU databases for testing and research purposes. Such databases
that have been provided to organisations are usually subject to strict non-disclosure agreements. Even
where some information is provided, it is generally in the form of partial databases for specifc ECUs
or use case functions, such as steering or braking, depending on the need.

http:systems.To

59 4.4 OBD attack against the testbed

Fig. 4.4 A vehicle HIL/SIL design system has been used for security testing (a power supply repre-
senting the vehicle power is on the left, the CAN simulator is central and connected to a PC running
Vector CANoe, a modifed OBD cable connects to an aftermarket OBD dongle)

An alternative is to generate databases through reverse engineering. This is achieved by monitoring
and recording packets on the vehicle network as all vehicle functions are systematically performed.
The actions with the vehicle can then be mapped to the recorded bus packets to determine which
packets are related to functions performed. This is sometimes impractical as data from a function
can be spread across different CAN packets and furthermore, not all data from a vehicle is generated
from an occupant accessible action. However, this practice is common for studies involving the
evaluation of intra-vehicular networks [2], [22], [23] where the original manufacturer’s CAN bus
communications database is not available.

Since such databases are diffcult to acquire, therefore, a generic database provided by the
simulator vendor to emulate a vehicle is used. This database is limited in that it would not have the
granularity one would expect of a full database. However, it is envisioned that a manufacturer (who
are one of the target end-users of this setup) would be able to use their own vehicle communications
databases in order to carry out security testing and analysis. The architecture of the model vehicle is
shown in Figure 4.5.

4.4 OBD attack against the testbed

Having set up a simulation model, with a representative network of ECUs and emulated CAN traffc,
the attack scenario was confgured. Performing an unauthorised pairing with a Bluetooth-enabled

60 A testbed for automotive security testing

Fig. 4.5 Simulation setup as shown within Vector CANoe, the icons give access to CANoe parameters

Fig. 4.6 Terminal program window showing 01 (hex), for LightState on, being sent, with CAN id 321
(hex). ATCAF0 is used to disable auto-formatting.

dongle that is connected to the OBD port of a simulated vehicle. This should result in the injection of
a CAN packet that affects an aspect of the simulated vehicle in an undesirable manner.

First, it was shown that a packet can be injected via the aftermarket device into the model system
(highlighted in Figure 4.7). This was performed both through a phone and a laptop after having paired
with the dongle. Figure 4.6 shows some of the confguration AT commands along with the actual
CAN packet that sent via a serial terminal running on the laptop or cell phone.

Next, it was demonstrated that the simulation responds with the undesirable behaviour of turning
the headlight on (Figure 4.8). Note, that although the headlight is turned on (the highlighted portion
to the left of Figure 4.8), the internal state of the ECU insists that the LightState is off (the frst byte
being 00). This required overriding with a continuous stream of on packets, causing the headlight in
the simulation to ficker.

This is similar to the real-world demonstration, where sending the packet once caused the vehicle’s
electronics to ficker once. This could be caused by the fact that the injected packet had to contend
with continuously generated ‘true’ packets from the attendant ECU. This effect has been observed by
other researchers in the automotive cyber-security feld. A mechanism to counter this could be a form

61 4.4 OBD attack against the testbed

Fig. 4.7 Screenshot of Vector CANoe Trace, Control and Display windows. The highlighted portion is
the packet of 01 00 00 00 00 00 00 00 on CAN id 321 (actually a shortened form of 00 03 21)
injected onto the simulated CAN bus. This trace window allows monitoring of the ongoing workings
of the simulation and the packets sent on to the CAN bus, both by the simulation and injected from
the OBD device

Fig. 4.8 Injected packet causing the headlight to turn on

62 A testbed for automotive security testing

of CAN traffc suppression. Traffc suppression can be performed by manipulating the individual bits
in the CAN data packets fowing on the CAN bus.

Additionally, only the headlight was confgured to respond. However, by creating and linking other
nodes together within the simulation it would be possible to replicate the real-world demonstration
that caused all electronics to malfunction.

4.5 Evaluation of the results

The implementation of the testbed fulflled the testbed requirements. The networking aspects are
accurate; the laptop or phone with a serial terminal is able to send information over Bluetooth to the
OBD dongle, and the OBD dongle, in turn, transmits the packet via the customised OBD cable to the
simulator. The simulator is able to see, log, and capture any information going through this dongle,
and monitor and capture the effects that packets have on the simulated system.

The case study demonstrates the violation of a number of security principles as shown in Table 4.4.
This compares directly with the security property violations within the simulated setup. The testbed
is performant for cyber-security testing use, being comparable to what happens in the real-world,
although acknowledging that the case studies used are simple. However, relevant modifcations can
be made to the simulation setup to add the required complexity. This can include adding different
interfaces other than OBD, testing different protocols (for example FlexRay), and including more
nodes within the simulation to allow a more realistic model of a fully functioning production vehicle.
Extending the use cases for the testbed is particularly relevant when considering the progressive
migration towards advanced driver assistant systems (ADAS), autonomous vehicles and different
technologies such as automotive Ethernet [68].

4.6 Assessment of the testbed

The barriers to fully virtualised advanced vehicle systems are in the same vein as the ones found
whilst performing the experiment. As pointed out in the literature review, Chapter 2, the information
on the internal workings of vehicles is not usually available due to commercial sensitivity, plus, the
cost of acquiring advanced vehicles is prohibitive. Future research in formal modelling of vehicle
systems is a possible route. Formal models can be used to provide simulation models to be used on
the testbed via the Functional Mock-up Interface (FMI) that the Vector tooling currently supports.

At the security engineering level, future work will look at using the testbed in several benefcial
ways for automotive cyber-security research. This includes verifcation of known or emerging attacks
in order to reliably reproduce them for study and development of mitigation methods. Previously
proposed or new cyber-security solutions for vehicular systems can be implemented on the testbed
in order to validate their claims and test their run time and security properties in a realistic and
controlled environment. Solutions may be for a particular system design or model, a software
algorithm, encryption scheme, communications protocol, optimisation or hardware confguration.

http:performingtheexperiment.As

63 4.6 Assessment of the testbed

Table 4.4 Security properties/functions and their violation via the real-world and simulated testing

Principle Real-world (device on vehicle) testing Testing on the CAN simulator

Confdentiality Information about the vehicle (via the
CAN bus) is disclosed once the Blue-
tooth connection has been made to the
OBD dongle, with the ability to mon-
itor CAN bus traffc as well as being
able to request vehicle information,
e.g. the VIN number

Information about the vehicle (via the
CAN bus) is being disclosed once the
Bluetooth connection has been made
to the OBD dongle, through being able
to monitor the CAN traffc

Integrity The state of the vehicle changed when
the electronics ficker from ‘on’ to
‘off’, and when the ‘Engine Malfunc-
tion’ light appears

The state of the vehicle is changed
temporarily, from headlight ‘off’ to
’on’ and vice versa

Availability Sending a continuous stream meant
that the electronics, ignition button
and locks stopped working, or worked
only intermittently

Sending a continuous stream caused
the headlight to ficker, meaning that
functionality is compromised

Authenticity The origin of the packet is from an un-
expected (non-authenticated) source

The origin of the packet is from an un-
expected (non-authenticated) source

Non-repudiation Neither vehicle nor the owner can
provide ’proof of innocence’, defned
by [69] as proof that a malicious com-
mand was received, or that such a
packet was not sent

Vehicle simulation cannot provide
’proof of innocence’ although this
could be incorporated into later simu-
lation models should this be a princi-
ple to be tested against

Freshness A CAN packet tested on the real ve-
hicle contained a counter, but this did
not seem to affect whether the vehicle
considered the packet valid. In this
sense, the communicated data is not
recent and is simply replaying old data

The CAN packet sent is the same, with
the same effects regardless of the num-
ber of times it was sent. Again, coun-
ters, rolling codes or other counter-
measures could be incorporated into
later simulation models to be tested
against

64 A testbed for automotive security testing

Product solutions can be analysed in detail to verify or refute any claims. Solutions can be examined
for functional performance including system initialisation timings, relative performance, signal latency
analysis, packet transmission performance, network contention issues and execution issues. The
solutions can include new security testing methods, as, in the case of this thesis, the development of
automotive fuzz testing.

An additional enhancement for the testbed would be to add appropriate gateway modules to
prevent the security principles (Table 4.4) being violated. These modules would, in effect, act as
frewalls to flter out packets that could provoke undesirable behaviours. Such devices are already
being marketed and vehicle manufacturers will require a method to test the validity of a device’s
claims.

The thesis objective of a security testing methodology, via fuzz testing, is aided with access to
a useful vehicle systems testbed. Having validated the suitability of the Vector HIL/SIL equipment
and its software for automotive cyber-security use, the testbed provides an environment to allow for
development of the tooling (a fuzzer), and experimentation to develop the processes to apply it. It is
envisaged that the testbed could be used for teaching and training, as a tool that can help lower the
barriers for future automotive cyber-security research.

Finally, the argument that the use of a HIL/SIL system is benefcial to moving security testing to
earlier in the development lifecycle has been pointed out in recent work [60], after the results from
this chapter were published (see Section 1.5 in Chapter 1 for the publication outputs).

Chapter 5

A new automotive CAN fuzzer

There are two ways of constructing a
software design: One way is to make it so
simple that there are obviously no
defciencies, and the other way is to make it
so complicated that there are no obvious
defciencies. The frst method is far more
diffcult.

C. A. R. Hoare

The literature review, Chapter 2, identifed the following:

• there is a knowledge gap in the application of fuzz testing to automotive systems development;

• fuzz testing is one type of security test that manufacturers can implement and execute;

• there is a sparsity of information on fuzz testing within the automotive security testing feld;

• CAN is a ubiquitous protocol for interfacing and interconnecting ECUs;

• a fuzzer is a software tool that is used to perform fuzz testing.

Therefore, fuzz testing is chosen for the second stage of the security test development method
shown in Figure 3.4 in Chapter 3. Furthermore, CAN is the determined test target for stage three of
the method. This chapter now covers stage four and fve of the method. It discusses the construction
and validation of the tooling, a specialised CAN fuzzer. The major features of the fuzzer’s design
are described. The security testbed, developed in the proceeding Chapter 4, is used during the fuzzer
development and initial validation. The automotive fuzz testing experiments in Chapters 6 to 9 were
performed with the built prototype fuzzer.

66 A new automotive CAN fuzzer

5.1 Introduction to the construction of a CAN fuzzer

The objective of fuzz testing is to dynamically test a system for weaknesses. It may then be possible
to use a discovered weakness to fnd a system vulnerability that, ultimately, violates the system’s CIA
security properties. Whilst fnding a system weakness is a step towards exploiting a vulnerability, it
has already been shown that fuzz testing itself can violate a systems availability property by causing a
denial-of-service[2]. Therefore, a CAN fuzzer can also be used to test a system’s response to a CAN
DoS attack.

5.1.1 The need for a dedicated CAN fuzzer

There are few existing options with regards automotive CAN fuzzers available to researchers, see
Section 2.13. The currently available open source and commercial fuzzers, Table 2.6, are complex
programs. They have been developed over many years to support many types of non-automotive
protocols and use cases. Some of the technologies that those fuzzers support have been deployed in
vehicles, for example, Wi-Fi.

Those general purposes fuzzers can be confgured and adapted for use with the specialised
technologies used within the automotive feld, however, it requires confguration knowledge. The
required knowledge also extends to how to install and set up the fuzzer software. Open source
fuzzers usually require Linux based machines, whereas automotive businesses often use systems
based upon Microsoft Windows machines (the HIL/SIL system for the pre-production security testbed
in Chapter 4 requires Windows-based computers). In addition, there are insuffcient peer-reviewed
detailed results on the effectiveness of the existing generic fuzzers used against automotive systems.
Therefore, there was motivation for the development of a specialised CAN fuzzer tool:

• It addresses a lack of dedicated fuzzer tooling for the automotive feld. Tooling is required to
enable the study of fuzz testing of vehicle systems.

• It was designed to provide a minimal learning curve and easy deployment, allowing for
researchers and engineers to start fuzz testing experimentation quickly.

• It allows for the publication of new results in fuzz testing vehicle systems. The lack of practical
and detailed knowledge needs to be addressed, particularly the lack of peer-reviewed output.
The limited knowledge that does exist is at too high a level.

• It provides a basis for the development of additional fuzz testing use cases within automotive
security testing R&D.

To research CAN fuzz testing, and the experimentation to support that research, a prototype
fuzzer tool was constructed and used against ToEs. The fuzzer can be used as the basis for further
enhancement by engineers in the automotive feld, and other transportation and industrial domains.

67 5.2 CAN fuzzer design and development

5.1.2 Required CAN fuzzer aspects

In terms of the vehicle technology required to be supported by a fuzzer, the literature review identifed
CAN as a common weakness in existing vehicle security issues. CAN is also the dominant in-vehicle
network communications bus. Therefore, a fuzzer to investigate weaknesses in the CAN protocol was
the aim. With this in mind some desired characteristics of an automotive fuzzer can be stated:

• The fuzzer should be easy to deploy (install).

• Confguration of the fuzzer should not be onerous.

• The confguration of the tests should provide a wide range of options, allowing for variation in
one or all of the CAN data packet elements (see Figure 2.5 and Table 2.2 in Chapter 2), and
over a full or restricted range of values.

• A fuzzer tool should ft into the existing testing infrastructure, therefore, it is advantageous for
the fuzzer to run on a Windows PC.

• The fuzzer needs to work with a readily available interface for the CAN physical network.

Having stated the objective of developing a fuzzer for vehicle technologies, what is the problem
it is addressing? Here, it is to test the viability of fuzz testing in the automotive feld. Furthermore,
it is to aid the generation of knowledge on automotive fuzz testing, via the provision of a prototype
tool for use in research. Researchers and engineers gain experimental fuzz testing experience, using a
dedicated CAN fuzzer that reduces the complexity with regards to confguration and test execution.

5.2 CAN fuzzer design and development

The starting point was to construct a fuzzer to generate the standard CAN packet format (see Figure 2.5
and Table 2.2 in Chapter 2). The fuzzer executes on a Windows PC (a common platform within
commercial engineering). The PC based fuzzer is transmitting CAN data packets into a ToE, and
captures the CAN bus traffc to enable monitoring of the ToE, see Figure 5.1. In this case, the ToE is
either a vehicle system, subsystem or component that communicates via CAN.

The CAN traffc that is captured can be written to a log fle. All the traffc that fows on the
network can be logged. That is the packets sent from the fuzzer, and packets that originate from other
CAN bus nodes. The fuzzer is dedicated to monitoring the CAN bus, however, a CAN transmission
may not have a network-related response. Indeed, most CAN transmissions are sent in response to
changes in external sensors and vehicle controls, and the receiving ECUs act upon those packets to
alter external, real-world systems. Thus, network monitoring is just one part of CAN bus traffc. The
CPS nature of the vehicle will require additional real-world monitoring solutions

The design of the fuzzer is infuenced by the technology that it is fuzz testing, see the following
Section 5.2.1, and by the experiments for which it is deployed. Thus, the fuzzer’s design was

68 A new automotive CAN fuzzer

Fig. 5.1 The arrangement of the fuzzer

infuenced by the needs of the experiments, and the possible experiments are infuenced by the
capabilities of the fuzzer. However, the fuzzer and the experiments are part of a process towards a fnal
aim, which is to contribute automotive security testing methodologies, implement the methodologies,
plus, have a software tool, the fuzzer, available to aid automotive cyber-security testing.

5.2.1 A PC based fuzzer

From a software viewpoint, the CAN data is a straightforward construct. The CAN interface hardware
(containing the CAN transceiver) automatically handles the CAN protocols at the bit level during
data packet transmission and receiving. This includes performing the CRC, checking for protocol
errors, and checking for the correct arbitration (id) process. This leaves the higher-level software only
needing to handle the packet identifer, data length and data bytes.

• Identifer (id), 0-2047 (11-bit) is used in standard CAN, though a value of 0-229-1 (29-bit) can
be defned if an extended CAN id is required (not commonly used in vehicles).

• Data Length Code (DLC), a value of 0 to 8 for standard CAN.

• Data bytes, from 0 to 8 (defned by the DLC), bytes can range in value from 0 to 255.

The fuzzer was developed on a computer and connected to the testbed validated in Chapter 4 (see
Figure 5.2). The use of the testbed simplifed the development cycle as access to the target vehicle
was not required during the development process.

The software for the fuzz test is written in the C# computer programming language. The Integrated
Development Environment (IDE) used is Microsoft Visual Studio. The major functional items for
the software fuzzer program are the User Interface (UI) screens for command and control, a timing
thread for regular CAN data transmission, a random bytes generator for the fuzzed CAN data packets,
a communications module, and a CAN bus traffc monitor.

5.2.2 Link to the ToE via the vehicle data bus or ECU interface

A USB to CAN hardware adaptor, Figure 5.3, is used to connect the fuzzer software on the PC to
the CAN bus. It is a PCAN-USB product manufactured by PEAK-System Technik GmbH. The USB
to CAN adaptor requires a 9-way D-type socket wired to conform to the CANopen specifcations

69 5.3 Construction of the communications

Fig. 5.2 The CAN fuzzer development environment using a PC running Visual Studio connected to a
Vector simulation

(CiA303-1)1. The two CAN communication wires are referred to as CAN High and CAN Low, with
CAN High wired to pin 7 and CAN Low wired to pin 2 on the 9-pin connector (an identical socket is
used to connect to the simulator hardware). The CAN bus requires 120 ohm termination resistors to
prevent network errors caused by signal refections2. Termination resistors were added to the cabling
during this research.

5.3 Construction of the communications

The PCAN-USB device’s Application Programming Interface (API) allows it to be controlled from
different computer languages, including C#. The fuzzer was initially coded to interface to a single
adaptor, however, it was soon evident when testing ECUs that multiple interfaces are required. The
fuzzer was re-engineered to support multiple CAN connections. An overview of the communications
construction is shown in Figure 5.4:

• The PCAN-USB adaptors connect to one or more CAN busses.

• The PCAN-USB adaptors are controlled by the PEAK System driver. The driver is called
PCANBasic.dll.

• The driver can be confgured through software to log data to a fle.

1https://www.can-cia.org/standardization/specifcations/
2https://tekeye.uk/automotive/can-bus-cable-wiring

https://www.can-cia.org/standardization/specifications/
https://tekeye.uk/automotive/can-bus-cable-wiring

70 A new automotive CAN fuzzer

Fig. 5.3 The PEAK-System USB (PC) to CAN interface device used during the development and use
of the fuzzer

• The PEAK System interface fle PCANBasic.cs, a C# class fle, is used for full access to
PCANBasic.dll (the interface driver).

• A developed C# class, CANInterface.cs, connects the UI to the CAN busses. The fuzzer uses
one instance of CANInterface.cs for each PCAN-USB adaptor it needs to control.

• CANInterface.cs uses another developed C# class, called PCAN-USB.cs, which controls each
PCAN-USB adaptor (via PCANBasic.cs).

• A developed timing class, Tick.cs, controls the rate of packet transmissions, the default packet
transmission is at 1 millisecond intervals, but can be confgured to be slower or faster.

• The status of the CAN busses and the packets sent and received are displayed in the fuzzer’s UI
(see next Section 5.4).

5.4 CAN fuzzer functionality

The functionality of the fuzzer was developed to enable the experimentation in Chapters 6 to 9. As
discussed in the methodology in Chapter 3, the use of the fuzzer resulted in additions, changes and
improvements.

http:class,Tick.cs
http:PCANBasic.cs
http:PCAN-USB.cs
http:CANInterface.cs
http:CANInterface.cs
http:class,CANInterface.cs
http:PCANBasic.cs

71 5.4 CAN fuzzer functionality

Fig. 5.4 The PEAK-System USB to CAN interface device is provided with an API via the PCANBa-
sic.dll, this is used by the fuzzer code to interface to the CAN bus

The fuzzer is confgured through its UI, providing control over the data injected to the ToE (via the
CAN bus). Figure 5.5 shows the main CAN fuzzer window, with the various UI screens for different
functionality loaded. The main window contains the menu to access all the UIs.

The frst step for the fuzz testing is to confgure the USB to CAN interface for the ToE. This is
done via the UI shown in Figure 5.6a. The fuzzer supports multiple interfaces and they can be given
a name (tag) to help with identifcation. The default bit rate is 500kbps but can be changed via the
Confgure button.

Once the USB to CAN interface is confgured, the parameters for the CAN fuzz testing can be set,
see Figure 5.6b. The range of random values generated for all parts of a CAN packet can be defned:

• id;

• payload length;

• payload values;

The range can be confgured to vary by only a single bit in a single packet, to all the bits in
every packet. This feature is important due to the combinatorial explosion problem with the CAN
data stream. For example, a standard CAN packet with an 11-bit id and a one-byte payload has
half a million packet combinations (219). At a 1ms transmission frequency (the current minimum

72 A new automotive CAN fuzzer

Fig. 5.5 The main CAN fuzzer window houses the other UI screens and the menu to load them.

(a) USB to CAN interface confguration UI (b) Packet generation confguration UI

Fig. 5.6 CAN fuzz testing confguration UIs

73 5.5 Using the CAN fuzzer, frst validation

for this fuzzer) it will take over eight minutes to transmit all combinations. Add another data byte
and all combinations transmit over a 1.5 days. Beyond that further increases in data length become
impractical and the fuzzing may need to be targeted, for example by fuzzing around known packet ids
monitored on the CAN bus, or being informed by the design.

The fuzz testing can exclude specifc CAN ids, useful for when it is known that certain packet
ids must not be generated during the fuzz testing. For example when a previous fuzz testing session
found a CAN packet that affected the ToE, or for other known functional ids.

Once confgured the Start button executes the fuzz testing against the ToE, sending out the random
CAN data, as constrained via the confgured ranges. If logging is turned on then the CAN bus traffc,
including the generated packets, are saved to a trace fle for later use. The trace fle can be processed
by the fuzzer for some data analysis, see Figure 5.7a. The analysis includes:

• a count of all CAN packets in the log fle;

• a count of packets by CAN id;

• a count of packets by data length;

• the mean packet data lengths;

• the mean value of byte values in each payload position;

• the mean value of all bytes.

The data analysis was used to validate the data generated by the fuzzer. It can be used to look for
patterns in the data, and the range of analysis functions will be expanded in further work.

The fuzzer includes functionality to monitor for specifc packets on the network, see Figure 5.7b.
This can be used when testing for a known event on the CAN bus.

The experiments with the fuzzer revealed the usefulness to be able to transmit individual packets.
Figure 5.8a shows the single shot UI. A CAN packet can be confgured and sent on a press of the Tx
button. It also features a repeat function for periodic transmission of a packet.

The fuzzer is able to load a log fle and replay the fle onto a CAN bus, see Figure 5.8b. The lines
from the fle to be played back can be confgured. This feature is useful when trying to fnd a CAN
packet that causes a system action.

5.5 Using the CAN fuzzer, frst validation

The ToEs used during this research program all transmit and receive standard CAN data packets
(11-bit ids). The packet parameters (id, data length, payload bytes) that are available to be fuzzed
are shown in Table 5.1. From the parameters defned in the fuzzer the random CAN data packets are
generated, Table 5.2.

http:ranges.If

74 A new automotive CAN fuzzer

(a) Data analysis UI (b) Packet monitoring confguration UI

Fig. 5.7 Data analysis and packet monitoring UIs

(a) Single shot packet transmission UI (b) Log fle transmission UI

Fig. 5.8 Single packet generation and log fle transmission UIs

Table 5.1 Fuzzing elements of a CAN data packet

Item Range Description

CAN Id {0,1,2,. . . ,2047} All standard packet ids
Payload length {0,1,2,. . . ,8} Vary payload length
Payload byte {0,1,2,. . . ,256} Vary payload bytes
Rate > 0 Vary transmission interval

75 5.5 Using the CAN fuzzer, frst validation

Table 5.2 Sample Random CAN packet output from the fuzzer

Time (ms) Id Length Data

3031.094 000F 6 59 63 BA 5A 77 D5
3032.846 0442 2 AC D3
3035.022 02C4 3 49 01 D8
3036.734 0068 0
3039.070 0694 5 F5 DA DA 03 A4
3040.854 065A 2 29 95

Fig. 5.9 Simulated vehicle signals

The randomly generated CAN packets transmitted from the fuzzer can be measured on the testbed
developed in Chapter 4. Simulated vehicle signals are seen in Figure 5.9, whilst Figure 5.10 (shown
at a higher rate) illustrates the effect of the randomised data packets on those signals.

The simulator responds erratically when the fuzzer is running and injecting CAN packets. This
is caused by the rapid variation in signals induced by the malformed CAN data. In Figure 5.11 the
simulated vehicle is displaying a negative engine RPM, showing that the vehicle simulation handles
physically invalid values in the same way as physically plausible ones.

The running of the fuzzer against the testbed provides the initial demonstration of the fuzzer tool.
Further validation of the tool will come with its deployment and use for subsequent experimentation.
However, there was a need to ensure that the random CAN data being produced was valid, this is
discussed in the next section.

76 A new automotive CAN fuzzer

Fig. 5.10 Effect of fuzzing on signals

Fig. 5.11 Inappropriate value on a vehicle simulator display via fuzzing

77 5.6 Fuzzer evaluation

(a) 100000 captured vehicle CAN packets (b) 66144 randomly generated CAN packets

Fig. 5.12 Mean values analysis of the byte values, for each data byte position from the captured
vehicle CAN packets

5.6 Fuzzer evaluation

The fuzzer was enhanced to perform analyses on CAN data. This was to done to check the validity of
the fuzzer’s output, however, it can be used to analyse any CAN data. The fuzzer can be confgured to
log CAN traffc. Those logs are then run through an algorithm to calculate means on the captured
data.

Figure 5.12a shows the mean data byte value for each byte position, calculated from 100,000
CAN packets captured from the target vehicle’s network. It shows a non-linear distribution of eight-bit
values. In comparison Figure 5.12b shows the same calculation on 66144 CAN packets generated
by the fuzzer. The linear distribution, with an overall mean value of 127 for all bytes in all packets,
provides evidence that the fuzzer is correctly generating an even spread of byte values.

5.7 CAN fuzzer development summary

This chapter discussed the development of an automotive fuzzer. The chapter’s aims were:

• document the rationale behind the need for a specialist automotive fuzzer;

• discuss the software development to produce the fuzzer;

• demonstrate the fuzzer was functional;

• perform an initial evaluation of the fuzzer to verify that it was working as intended.

The motivation for a specialist automotive fuzzer was discussed. An overview of its UI was
provided. The fuzzer’s use against a testbed demonstrated its operation. The data output of the fuzzer
was evaluated to ensure consistency of the generated CAN values. The availability of a simple to use

78 A new automotive CAN fuzzer

and confgure fuzzer provides a foundation for future enhancements that are required as a result of
its application in testing ToEs. The implemented functionality allowed it to be used against physical
targets, i.e. vehicles and vehicle components, in Chapters 6 to 9. The practical experiments provided
feedback for implementing new features and improving them.

Chapter 6

Automotive fuzz testing

So in war, the way is to avoid what is strong
and to strike at what is weak.

Sun Tzu, The Art of War

The literature review, Chapter 2, discussed the few publications that have covered fuzz testing
of automotive systems. In reviewing those publications it was apparent that there was a lack of
detail in the provided information. The papers or reports concentrated on high-level experiences of
deploying commercial fuzzers over reporting detailed results (Section 2.12). This sparsity of detail
is not conducive to reproducibility. Therefore, this research provided the opportunity to add to the
knowledge on automotive fuzzing testing.

Chapters 4 and 5 addressed stages one to fve of the security test development method (see
Figure 3.4 in Chapter 3). This chapter addresses stage six, application of the constructed tooling.
The prototype CAN fuzzer is deployed against vehicular systems and components. The experimental
results are useful to other researchers and engineers developing CAN fuzz testing procedures. Further-
more, the results feed into stage seven of the security test development method, to improve the tooling
and CAN fuzz testing techniques.

6.1 Introduction to a fuzz testing experiment

In order to gain knowledge on automotive fuzz testing, it is necessary to perform it. The sections
that follow provide coverage on the frst full use of the prototype CAN fuzzer. The aim here was to
assess the practicality of CAN fuzzing for automotive security testing. The results begin to address
how automotive fuzz testing can contribute to vehicle system assurance. Assurance is achieved
through engineering countermeasures to discovered weaknesses (see the security concepts diagram in
Figure 2.2 in Chapter 2). However, security testing methods to fnd weaknesses and test developed
countermeasures are required. Therefore, the objective in this chapter is to experiment with CAN fuzz
testing and in doing so:

80 Automotive fuzz testing

1. evaluate the built prototype CAN fuzzer tool for CAN fuzz testing use;

2. understand and document the processes required for CAN fuzz testing to aid the derivation of
CAN fuzz testing methods;

3. build the fuzz testing knowledge within the automotive engineering feld.

6.2 Method used in applying the prototype fuzzer

This experiment assessed the fuzzer’s applicability as a tool for use in vehicle cyber-security testing
and to inform further development of the fuzzer. In executing this experiment the tools used were:

• The prototype CAN fuzzer, developed in Chapter 5.

• A Microsoft Windows-based laptop computer as the PC to run the fuzzer.

• A PEAK-System Technik GmbH PCAN-USB device, see Figure 5.3.

• The PCAN-USB device drivers.

• A vehicle instrument cluster is driven from an Arduino Single Board Computer (SBC) provided
by HORIBA MIRA. This was the frst ToE used in the experiment, see Figure 6.1.

• The lab car was the second ToE used in the experiment.

• Three Arduino SBCs interconnected via a CAN bus. This was used as a ToE to replace the lab
car during the development of the experiment, see Section 6.3 below.

• Customised cabling to connect the PCAN-USB devices to the ToEs.

• Custom software developed to act as a proxy for a phone app.

The fuzzer was run and used against the ToEs listed above. The general method of using the fuzzer
against a ToE is as follows (it assumes that the PC has the PCAN-USB drivers and the prototype
fuzzer installed):

1. The PCAN-USB device is connected between the PC and a ToE.

2. The prototype fuzzer is run on the PC.

3. The CAN data packets to be transmitted by the fuzzer during the fuzz testing are confgured.

4. Optionally, confgure the data logging fle parameters.

5. The ToE is started.

6. Fuzz testing is started.

81 6.3 Development of the experiment

Fig. 6.1 Crashing a vehicle component as a result of fuzzing, the word CrASH appeared in the middle
of the display during the fuzz testing and would not clear on a power cycle, unlike the other warning
lights

7. Observations of the ToE are made during the fuzz testing.

8. Fuzz testing is stopped.

9. Fuzz testing results are evaluated.

There is additional detail on the execution of this fuzz testing method against the specifc ToEs in
the sections that follow.

6.3 Development of the experiment

The development of the CAN fuzzer in Chapter 5 resulted in an easy to deploy and use program for
running on a Windows PC (see Figure 5.1). The testbed used for automotive security testing, see
Chapter 4, aided in the development of the fuzzer. The CAN system on the testbed’s simulated vehicle
provided an environment and target against which the in-development software could be used. This
allowed for the fuzzer functionality to be refned and assessed, before deploying against physical
ToEs.

For manufacturers, the ToEs will be the systems in their own vehicles. For the experiment
developed here, the intended ToE was the lab vehicle. The internal systems of the vehicle are shown in
Figure 2.4 in Chapter 2. Previous car hacking research has shown that permanent damage to vehicles
is possible, for example, rendering an ECU non-functional (bricking) [22]. Therefore, before testing
against the target vehicle the effect of the prototype fuzzer was frst assessed against an instrument
panel cluster from the vehicle, see Figure 6.1. This is also the same bench based component as used

82 Automotive fuzz testing

in the CAN bit rate attack in Appendix C, see Section C.4. The instrument cluster has a connection to
a 500Kbps CAN bus within the vehicle (which is exposed to the standard OBD CAN pins).

Use of the instrument cluster was to allow assessment of the possible effects of using the full
functionality of the fuzzer on vehicle systems. The initial use of the fuzzer in Appendix C was
restricted to controlling the bit rate of the PCAN-USB device and transmitting a single packet. The
packet sent for that experiment was restricted to using a single CAN id with fxed values for the
payload data. For these experiments the full range of the fuzzers output would be tested, therefore,
the possible effect on the vehicle systems needed consideration. Expanding upon the method in
Section 6.2:

1. Set the instrument panel cluster as the ToE (the CAN bus bit rate is 500Kbps, the default packet
cycle time is 1 millisecond).

2. Perform the CAN fuzz testing using the method above in Section 6.2.

3. Determine if the fuzz testing had an effect on the instrument cluster.

4. If the fuzz testing operated as expected, then change the ToE to the lab vehicle and repeat the
fuzz testing method.

6.4 Demonstration of automotive CAN fuzz testing

The steps described in the previous section were followed. There were reactions from the instrument
cluster to the running of the fuzzer. It illuminated MILs, played warning sounds, and the gauge
needles behaved erratically. A digital display in the centre of the console began to fash the word
crash. Cycling the power to the cluster removes any MILs that became illuminated. However, the
crash message does not clear when the power is cycled. A method to clear this message has not been
found, it may require other signals from the full vehicle, or a specialised reprogramming tool.

6.4.1 Affecting a lab vehicle with CAN fuzz testing

The permanent display of the word crash on the component required a reassessment of using the
fuzzer against the target vehicle, a shared resource that would incur repair costs if damaged. In this
case, the crash message does not clear when the power is cycled to the instrument display, therefore,
it is regarded as component damage. The lab does not have the correct repair tools or knowledge to
remove the crash message. This meant that a different approach was required when using the vehicle
as a ToE, in order to reduce the possibility of the same component damage.

For the lab vehicle, it was decided to limit the experiment to just determine if the fuzzer had an
effect. Instead of confguring the fuzzer to generate random data across the entire CAN state space,
only a small range of packets would be fuzzed. A range of packet IDs that had been previously

83 6.4 Demonstration of automotive CAN fuzz testing

observed on the vehicles CAN buses in normal operation, for example, packets known to affect the
instrument cluster gauge needles.

The fuzzer was used against the target vehicle whilst the engine was idling. The fuzzer’s generated
CAN packets were sent into the two CAN busses exposed by the vehicle’s OBD port. The connection
from the fuzzer to the OBD port is via the PCAN-USB device using a custom made cable.

The vehicle exhibited similar behaviour to the cluster testing, namely the illumination of various
MIL lights, warning sounds from the instrument area, and fuctuating gauge readings. In addition,
the vehicle displayed error messages on a central display (the display is tested in Chapter 9) and
erratic engine idling speeds. Once it was observed that fuzzing had a signifcant effect it was halted to
prevent possible damage (as in Figure 6.1).

6.4.2 Fuzz testing a bench based CAN bus

Having made the decision to limit the amount of fuzz testing on the vehicle another ToE was required,
to continuing validating the CAN fuzzer. Further evaluation of fuzzer was performed against a
bench-top hardware confguration.

A bench based confguration was implemented to provide a physical CAN bus with hardware
controlled by CAN data packets. The hardware provides a representation of an increasingly common
feature of connected cars, namely the control of vehicle functionality via an app, Figure 6.2.

A CAN bus target was constructed from Arduino SBCs ftted with CAN-Bus Shields (containing
a MCP2515 CAN bus controller and MCP2551 CAN transceiver). Each SBC acts as a single ECU on
the network. The packets on the CAN bus were a subset of those transmitted on the target vehicle’s
CAN bus (based upon packets captured from the car). One of the ECUs acts as a Body Control
Module (BCM), with a Light Emitting Diode (LED) representing the lock status of the vehicle (off
for locked, on for unlocked), see Figure 6.3.

A diagram of the replicated functionality is shown in Figure 6.4. The external phone app sends
an unlock command to a vehicles infotainment ECU (a.k.a. head unit). This is a secure connection
(or should be). The infotainment unit transmits the unlock command over the vehicle CAN bus. The
fuzzer is acting as a malicious unit connected to the vehicle network (e.g. via the OBD port or a
compromised ECU). When the fuzzer runs it has no knowledge of the CAN data packet to activate the
locks.

For this experiment, a PC app is acting as the smartphone app, Figure 6.5, sending the lock and
unlock command, effectively as a proxy for the infotainment ECU. This causes the LED to turn on
(unlocked) and off (locked), indicating the normal system operation when locking and unlocking
the door. Running the fuzzer the unlock (or lock) functionality was activated after a few minutes
of randomly generated CAN data. To aid with the detection of the unlock state the testbench was
augmented to transmit an unlock acknowledgement CAN data packet. For the real vehicle another
detection mechanism would have been required, for example, a sensor on the door lock.

http:readings.In

84 Automotive fuzz testing

Fig. 6.2 Vehicle control via a manufacturer’s smartphone app available from the app stores

85 6.4 Demonstration of automotive CAN fuzz testing

Fig. 6.3 CAN bus connecting three single board computers acting as ECUs, the blue LED indicating
the door state, on for unlocked

86 Automotive fuzz testing

Fig. 6.4 Remote vehicle unlock functionality

Fig. 6.5 PC vehicle lock/unlock app

87 6.5 Evaluating the fuzz testing

Table 6.1 Fuzzer run times to activate unlock

Packet Times (s) Mean (s)

Single id and
byte

89, 1650, 373, 400, 223,
143, 773, 292, 21, 559,
572, 80

431

Single id, byte
plus data length

3039, 222, 1258, 1330,
314, 277, 959, 3788,
2872, 4472, 3581, 1394

1959

The fuzzer currently has a maximum packet transmission rate of one packet per millisecond. At
this rate the mean time to cause the unlock response, based on a small sample of 12 runs, was 431
seconds, Table 6.1. The unlock code was testing for a specifc byte value in byte position one in a
packet with a specifc id. When the code was changed to include a test for the length of the data
packet, the mean time increased to 1959 seconds. This simple change in the code greatly increased
the time taken for the fuzzer to fnd the correct unlock packet. If the change had been to check for a
two byte value the time increase would have even greater.

The bench based CAN bus is far simpler than the originally intended target of the vehicle. The
aim of the bench based CAN bus is to examine the operation of the CAN fuzzer without the possibility
of damaging the real vehicle. In the following section, the knowledge learnt from the experimentation
is provided.

6.5 Evaluating the fuzz testing

The CAN fuzz testing provided useful information. Prior to these experiments, the known effect of
random data injection on to a vehicle’s CAN bus had been summarised as having a denial-of-service
effect. With the prototype fuzzer connected to a CAN bus the transmitting of random CAN data
packets could be performed. In doing so the DoS effect was easily observed against the ToEs. What
had not been evident prior to the experiments was how quickly the possible damaging effect of the
fuzzer could manifest. The target vehicle’s systems and components are not resilient to transmissions
of randomly generated data injected onto the CAN bus.

6.5.1 Execution times for fuzz testing

There is one consideration that had not previously been discussed in the few reports related to
automotive fuzz testing. That consideration is the potential timescales involved in fuzz testing CAN.
In using the fuzzer against the constructed network the time involved was non-trivial.

Initially, the mean time for the fuzzer to fnd the unlock packet was approximately seven minutes.
The unlock command being just a check for a setting of a single byte value in a single packet. Adding
a check in the software for a packet length along with the single value quadrupled that mean time to

88 Automotive fuzz testing

Fig. 6.6 Chart of the (sorted) timings for the fuzzed unlock CAN packet, a simple software changed
increased the time to fnd the unlock CAN packet

approximately 32 minutes, see Figure 6.6. However, if the program had been changed to look for a
specifc two-byte value that mean time would have been larger, at over one day.

Looking into this further it can be seen that random fuzzing has a combinatorial explosion problem.
For standard CAN the packet id ranges in value from 0 to 2047, the payload range from 0 bytes to 8
bytes and each byte holding 256 values. To randomly test all possible CAN values is not sensible. At a
1ms transmission rate for CAN packets the calculated time to transmit all possible packet combinations
is provided in Table 6.2. It shows that using only random CAN data is not a practical solution to CAN
fuzz testing.

Despite the huge number of packet combinations, the vehicle systems in the lab car were certainly
processing the random packets from the prototype fuzzer. In Section 6.4 it was shown that an
immediate impact on the vehicle was observed. However, calculations show (see Table 6.2) that the
chance of a randomly generated CAN packet triggering a specifc ECU function is very low, due to
the number of possible combinations of the data payload bytes (88). However, the chance that a CAN
packet must be read and processed by an ECU is high. This is due to the short 11-bit standard CAN id,
providing up to 2048 addressable packets. The time to generate all possible ids is very short, at a 1ms
transmission rate all ids can be sent within 2.5 seconds (2048x0.001 = 2.48). Therefore, despite the
extremely high total number of packet combinations, the CAN fuzzer is often generating a data packet
with an id that the vehicle systems will attempt to process, hence, the immediate impact from the fuzz
testing on the vehicle systems. The problem for these experiments is a lack of information from the
internal design of the vehicle systems, it is black-box testing. Black-box testing is not something that

89 6.5 Evaluating the fuzz testing

Table 6.2 Time to run through all possible combinations of standard CAN packets, at 1ms transmission
rate with no repeated transmissions, for data payloads of zero to eight bytes

Data Length Time

0 2.048 seconds
1 524.288 seconds
2 1.553 days
3 397.682 days
4 278.731 years
5 713.552 centuries
6 18266.939 millennia
7 4676.336 myr (megayears)
8 3.77789 x 1019 seconds

a manufacturer should have to contend with, and therefore, they will be able to better assess what
impact fuzz testing will have on their designs.

6.5.2 Observations from the fuzz testing

As well as learning about execution timing issues with CAN fuzz testing, the experiments did prove
useful in confrming observations previously made within the few works available in the literature
(see Section 2.12):

1. Security testing vehicles and their components can lead to vehicle component damage. This
is demonstrated by the results from fuzz testing the instrument cluster, in Section 6.4, which
caused it to develop a fault. In Section 6.4.1 the lab vehicle also exhibited abnormal behaviour
during fuzz testing. If testing had continued if may have damaged vehicle components.

2. Fuzz testing can be used to reverse engineer vehicle functionality. In Section C.4 the fuzzer
activated the programmed proxy door locking mechanism.

3. Disruption of a vehicle’s communication network is not diffcult. As for the frst point, this was
seen on the instrument cluster and within the lab vehicle.

4. Fuzz testing can be used as a form of cyber attack. The denial-of-service effect from the fuzz
testing was evident in the behaviour of the lab vehicle (see Section 6.4.1). It would not have
been safe to drive the vehicle if random CAN packets were being injected into the vehicle’s
CAN busses.

Since fuzz testing can have a detrimental effect on a running vehicle it certainly suggests that
vehicle systems need additional logic to ignore nonsensical CAN packets, packet data values, and
sequences of such values. Thus, it would be benefcial for vehicle manufacturers to add additional
countermeasures to protect the CAN busses that operate in a connected car. Such protection of the

http:causedittodevelopafault.In

90 Automotive fuzz testing

CAN bus and vehicle components from external cyber attacks should be a requirement for the design
of connected vehicle systems, otherwise, manufacturers risk threats to their products, as discussed in
Section 2.6. For such vehicle systems, the aim of this chapter was to show a method that can be used
to start incorporating fuzz testing into the security testing regime.

As discussed in the literature review in Chapter 2, security testing is intended to improve system
resilience by revealing weaknesses in the security properties (the CIA triad) of a system. Whilst, fuzz
testing has achieved that in other domains, this research has begun to do address it in the automotive
feld. In this chapter the fuzzing test was able to activate security functions without prior knowledge
of the system design (confdentiality), it was able to change values displayed on instrumentation
(integrity), and disrupt component and vehicle operation (availability). This implies that for connected
vehicles designing functionality to correctly isolate security concerns must be a consideration. Indeed
the use of protection mechanisms in gateway ECUs in newer vehicles indicates that manufacturers
are responding to the issue. Furthermore, simple modifcations to a design can improve security. For
example, in this chapter adding a check for the length of the CAN data packet to activate the unlock,
and, thus, increase the time to fnd the unlocking feature via random fuzz testing. However, the bench
based system is far less complex and further development of the automotive fuzz testing is required
against production vehicle systems.

6.6 Conclusion on automotive fuzz testing

The prototype fuzzer developed in Chapter 5 was used against vehicle systems that use the CAN bus.
In applying it to a test vehicle it was evident that the vehicle’s systems were not resilient enough and
there was the possibility of component damage. Another scenario was developed which demonstrated
that fuzz testing is a useful technique to be added to the testing tool box. However, it is a technique
that has combinatorial limitations. As such its usefulness in the automotive feld is likely to be in fuzz
testing in a specifc CAN packet values space, close to the system’s known CAN packets, whether
determined from design or CAN bus traffc capture.

It was also apparent that vehicle and component manufacturers need to consider supporting such
research. It is not practical for security researchers to have access to a single component or vehicle,
ideally, access to several are required. This is due to the cost implications of obtaining, and potentially
replacing or repairing, components and vehicles.

In the next chapter, Chapter 7, another vehicle component, an automotive gateway ECU, is chosen
as a ToE. This is in order to further assess the capabilities of the prototype CAN fuzzer.

Chapter 7

Investigations into an automotive
gateway

I’m an egotistical bastard, and I name all
my projects after myself. First Linux, now
git.

Linus Torvalds

Chapters 4 to 6 have addressed all seven stages of the security test development method (see
Figure 3.4 in Chapter 3). Here, the prototype CAN fuzzer is applied to another target and scenario.
This is to provide an additional use case and add further knowledge to CAN fuzz testing and determine
any tooling improvements. This addresses the improvement mechanism beyond stage seven in the
security test development method.

In this chapter a gateway ECU is the ToE, beginning with a brief introduction on gateways and
the reasons for choosing a gateway ECU. The methodology used is described in Section 7.2, and
a teardown of the gateway hardware is provided in Section 7.3. The initial CAN communications
with the gateway are described in Section 7.4. Fuzz testing the gateway ECU did not succeed due
to restrictions with the hardware, discussed in Section 7.5. However, the results provided useful
knowledge to improve the prototype CAN fuzzer, to understanding the design of the particular gateway
ECU targeted, and, thus help with testing other ToEs in this research, see Sections 7.6 and 7.7.

7.1 Introduction to an in-vehicle gateway as a ToE

In general computing, the term gateway is common in digital communications systems, though its
meaning does vary depending upon the context. Usually, a gateway is used to interconnect dissimilar
networks. The networks may have different protocols, data speeds, topologies, physical characteristics
or security properties. The gateway is able to read data from one network and pass it onto another
network, suitably repackaged.

92 Investigations into an automotive gateway

Gateway functionality within ECUs is not uncommon. Various in-vehicle communications
networks exist and are implemented in various protocols and data speeds. A vehicle gateway will
interconnect these various networks, see Figure A.3 in Appendix A for an example. Furthermore, the
gateway will provide a connection to external networks when a vehicle is serviced, usually via the
OBD port. Increasingly, wireless support for vehicle servicing and diagnostics is provided, therefore,
gateways may interconnect the external wireless systems to the internal wired systems. In the next
sub-section, the reasons for choosing the gateway as a research target for fuzzing are covered.

A gateway was chosen as TOE for fuzz testing for several reasons:

1. It is a key communications component within a vehicle.

2. If a vehicle contains a CAN bus it is likely to be connected to a gateway. This is because vehicle
functionality is segmented, for example, the engine and transmission functionality (known as
the powertrain) is usually separate from the occupant cabin functionality. However, some data
needs to fow across segments, for example, vehicle speed from the powertrain to the in-cabin
instruments.

3. It is typically connected to the OBD port and thus easily exposes in-vehicle networks to
attackers.

4. Little, if any, work on how a real-world automotive gateway operates is available.

These factors enable any work on a vehicle gateway to provide useful information to researchers.
Here, the experiment’s aim was to determine if the CAN fuzzer can be used to infer any information
about the gateway’s operation:

1. Are any packets sent into a gateway CAN connection passed onto another CAN connection?

2. Is it possible to determine other gateway operational characteristics? Examples could include
blocking certain packets and the data it contains, or triggering different packets being transmitted
in response to packets received.

Answering these questions would have been useful towards testing the security of the gateway
ECU, however, as discussed in Sections 7.6 and 7.7 this did not prove possible.

7.2 The experimental method

The reason for security testing ECUs is to try and improve their assurance. In this case, the chosen
security test was fuzz testing. The target of this experiment was a gateway ECU accessed via CAN.
The initial experimental design was as follows:

1. Decide upon the gateway ECU to use and gather technical information required to use it in the
experimentation.

93 7.3 Vehicle gateway hardware overview

2. Identify the power and CAN connections.

3. Connect the gateway ECU to a power supply with the correct voltage.

4. Confgure the CAN fuzzer to send CAN data packets onto the CAN bus.

5. Connect the CAN fuzzer to an ECU CAN input as a CAN data packet sink.

6. Start the fuzzer transmitting randomised CAN data packets.

7. Monitor another CAN bus for a response as a CAN data packet source.

8. After a period of time (determined by the results obtained) stop the CAN fuzzer.

9. Repeat step 7 for each other CAN bus present.

10. Repeat step 5 for each CAN bus present.

The equipment for the experiment is:

• The ECU gateway.

• A laptop PC running the Windows operating systems.

• A PCAN-USB CAN interface to connect the PC to a CAN port on the ECU.

• A PCAN-USB CAN interface to connect to another CAN port on the ECU.

• Power supply to provide DC power to the ECU.

This initial experimental method was not fully achievable due the behaviour of the ECU. This
is discussed in Sections 7.6 and 7.7, where the gateway’s hardware design and symbiotic operation
are noted as restricting the experiment. However, the experiment did provide an insight into the
operation of the ECU, and the results provide input into the CAN fuzzer’s feature refnement, covered
in Section 7.7. The following sections describe the gateway and results from its bench usage.

7.3 Vehicle gateway hardware overview

The gateway used is from a current-generation modern estate car, sold in the global car market. The
vehicle details are withheld for reasons of commercial confdentiality. However, the same car is
available at MIRA. Access to the full vehicle proved useful. Although not a lab car, in this experiment
it was used for simple read-only CAN testing (to ensure that no damage was done).

The gateway ECU component was purchased second-hand, along with wiring diagrams for the
vehicle. The wiring diagrams are used to allow for correct interfacing to the gateway, and to apply the
correct power connections.

94 Investigations into an automotive gateway

(a) Vehicle gateway showing OBD port
(b) Reverse side of the gateway showing the
to-vehicle connection

Fig. 7.1 A vehicle gateway component

With the gateway purchased the investigations into its operation could be performed, the objective
was to run the CAN fuzzer on the gateway interfaces. The next stage was to examine the hardware to
determine how the gateway is physically connected.

The gateway is shown in Figure 7.1. It does not come with a manual, therefore, the following
information was derived from the vehicle’s wiring diagram and by examining the device itself.

The gateway is housed in a custom box with lugs for attachment to the vehicle, there is an OBD
port on one side, see fgure 7.1a. On the reverse, there is another connector that allows for the vehicles
wiring to be attached, Figure 7.1b.

The gateway ECU can be opened by separating the two halves of the plastic casing. This reveals a
circuit board, Figure 7.2.

Internally the gateway circuit consists of:

• 7 pins going to OBD the connector.

• 12 pins for the ECU connection.

• The power regulation circuit, taking the vehicles normal voltage levels, usually at least 12 volts,
and converting it to the power required by the digital circuits, usually 5 volts.

• A MCU, this is a custom Freescale (now NXP) part, SC667275.

• Four CAN ports (with space for one more). The CAN ports use a TJA1042 CAN transceiver.

The electrical connections for the gateway can be determined from the wiring service manual.
Seven of the twelve connections to the gateway from the vehicle are exposed to the OBD port, see

95 7.4 Initial gateway experiment and results

Fig. 7.2 Inside the gateway ECU

Table 7.1. The OBD power pins (16 and 4), supplied from the vehicle ECU pins (1 and 13), are
separate from the power going to the voltage regulator (ECU pins 14 and 24) to power the gateway
circuit.

The wiring service manual allows for the vehicles internal CAN communications to be mapped
out. This is shown in Figure 7.3 (see Table 7.2 for the abbreviations). All four of the vehicles CAN
buses are connected to the gateway ECU. Two of those CAN buses are exposed to the ODB port and
are thus directly accessible from the vehicle’s cabin. See Section 2.7.1 for an introduction to CAN.

On previous vehicles from the same manufacturer, the two OBD exposed CAN busses ran at
different transmission rates. On the lab car, the standard OBD CAN port (for reading emissions data)
runs at 500kbps, this is known as high speed CAN. The second OBD CAN bus, i.e. the manufacturer’s
propriety CAN connection, runs at 125kbps. This is known as the medium speed CAN bus.

On the newer model vehicle, both OBD exposed ports run at high speed (500kbps). For the
remaining two CAN busses, internal to the vehicle, one runs at high speed, the other at medium speed
(125kbps).

7.4 Initial gateway experiment and results

A DC supply was used to power the gateway. The voltage was set to 12.3v, a value measured on the
vehicle. The gateway is connected to the PC via the PEAK-System PCAN-USB adaptors, Figure 7.4.

When the gateway was supplied with power there was an initial bust of CAN activity from
each of the CAN connections, Table 7.3. Then the gateway stopped transmitting, after 5.6 seconds.
The frequency of the observed packets varied. Some of the packets were in the tens to hundreds
millisecond range (20ms to 250ms). Some packets are sent once, and several are sent at once per
second.

96 Investigations into an automotive gateway

Table 7.1 Gateway ECU connections

Usage ECU Pin OBD Pin

GND 1 4
No pin 2 to 12, 21 1, 2, 7 to 10, 12, 13, 15
VBATT 13 16
SIG GND 14 5
HS3 CAN- 15 n/a
HS3 CAN+ 16 n/a
HS2 CAN- 17 11
HS2 CAN+ 18 3
HS1 CAN- 19 14
HS2 CAN+ 20 6
MS CAN- 22 n/a
MS CAN+ 23 n/a
+VE 24 n/a

Fig. 7.3 The gateway vehicle’s ECU network

97 7.4 Initial gateway experiment and results

Table 7.2 All the vehicle ECUs normally connected to the gateway

Abbreviation ECU

GM Gateway Module
HCM Headlamp Control Module (option for adaptive lighting)
APIM Sync Module
TVM Torque Vector (AWD) Module (option)
BECMB Battery Energy Control Module B
BCM Body Control Module
PCM Powertrain Control Module
DDCM DC to DC Converter Control Module (with auto-start-stop system, option for

China)
GSM Gearshift Module
AIM Auto-dimming Interior Mirror (option)
OCSM Occupant Classifcation System Module (not China)
RCM Restraints Control Module (not China)
VDM Vehicle Dynamics Module (not China)
ABSM Anti-lock Brake System (ABS) Module
PWRU Proximity Warning Radar Unit
PSCM Power Steering Control Module
TRCM Transmission Range Control Module
HUDM Head-Up Display (HUD) Module
SCCM Steering Column Control Module
TCU Telematic Control Unit Module (with Telematics)
ADSPM Audio Digital Signal Processing (DSP) Module (option)
FCDIM Front Control/Display Interface Module
IPCM Instrument Panel Cluster (IPC) Module
ACM Audio Front Control Module
CDP Compact Disc Player (option)
RSEM Rear Seat Entertainment Module (option)
RTM Radio Transceiver Module
DDM Driver Door Module
PDM Passenger Door Module
SCMG Driver Contour Seat Module (option)
SCMH Passenger Multi-Contour Seat Module (option)
HSWM Heated Steering Wheel Module
FCIM Front Controls Interface Module
GPSM Global Positioning System Module
DSM Driver Seat Module (with Blind Spot Information System, BLIS)
SOD-R Side Obstacle Detection Control Module - Right (with BLIS, option)
SOD-L Side Obstacle Detection Control Module - Left (with BLIS)
RGTM Rear Gate Trunk Module (option with BLIS)

98 Investigations into an automotive gateway

Fig. 7.4 Vehicle gateway connected to the PC

Table 7.3 Gateway CAN transmissions on bench power up

Connection #Packets Min Id Max Id

High Speed 1
High Speed 2
High Speed 3
Medium Speed

10
6
33
10

0x091
0x078
0x048
0x083

0x59E
0x59E
0x59E
0x51E

99 7.5 Use of the fuzzer with the gateway

Table 7.4 Gateway CAN responses to CAN activity, number of packets sent from the connection

HS1 HS2 HS3 MS

HS1 10 - - -
HS2 - 6 - -
HS3 - - 33 -
MS - - - 10

Any CAN data packet sent to any of the connections, would cause that connection to send out
some packets in response. Those response packets are the same packets observed after initial power is
applied. As for the initial power on, the transmissions will stop if no further packets are sent to that
gateway’s connection. Unlike the initial power on, none of the other CAN connections sent out any
packets when one of the other CAN connections saw CAN activity. Thus, apart from initial power-up,
the CAN connections remain silent unless CAN activity is present.

This initial examination of the gateway ECU indicated it was at least operating and, therefore,
ready for fuzzing experiments.

7.5 Use of the fuzzer with the gateway

The aim of fuzz testing in traditional IT domains is to try and fnd weaknesses within a system’s
software. For automotive security research, another use of fuzzing is to reverse engineer component
functionality. Using a fuzzer it should be possible to gather information on an ECU’s functionality
(the range of packets it handles), i.e. reverse engineering. Furthermore, it is worth observing any
side-effect behaviours, for the gateway, this could be seeing if different packets get transposed on
different CAN interfaces. This operational information can then lead to other possibilities in attacking
the component or the vehicles to which it is ftted. The frst objective was to connect the fuzzer to the
gateway and send in random CAN data packets. This was to check basic operation of the fuzzer with
the gateway.

With the gateway ECU powered up, the CAN fuzzer, was confgured to send packets into one of
the gateway’s CAN connections. The frst attempt to use the CAN fuzzer against the vehicle gateway
revealed an interesting characteristic. The CAN fuzzer was unable to operate with the gateway. Any
CAN transmissions to the gateway from the fuzzer saw the PCAN-USB CAN device register errors.
An investigation was required to reveal the cause of the issue.

7.5.1 Gateway ECU grounded CAN lines

Investigations revealed that the gateway’s CAN connections were pulled to ground, registering a
nominal 0 volts. The normal voltage level expected for an idle CAN bus (i.e. in the recessive state) is
normally 2.5 volts. When the fuzzer sent a CAN data packet to the gateway the CAN lines returned to
that expected voltage level. The gateway’s usual power on packets would then transmit.

100 Investigations into an automotive gateway

Fig. 7.5 PCAN-USB sends a packet on the gateway’s ECU grounded CAN signal, taking CAN high to
1.4v and CAN low to -0.3v, a differential of 1.7v, 0.8v below the 2.5 volt nominal differential required
by CAN

Fig. 7.6 The gateway ECU wake-ups when it sees a CAN data packet, returning the CAN connection
from ground (0v) to 2 volts.

Figure 7.5 shows the PCAN-USB interface, used to connect the fuzzer to the gateway, transmitting
a short CAN packet (no data bytes) on one of the gateway’s CAN connections. The median voltage is
around 0V (ground). The PCAN-USB is able to drive the CAN high line to 1.4v and the CAN low
line to -0.3v, giving a differential of 1.7v, or 0.8v below the nominal CAN differential of 2.5 volts.

When the fuzzer transmits the packet to a gateway’s CAN connection, the gateway responds.
After a delay of 9ms, the CAN lines return to the normal CAN recessive voltage of 2.5v. The gateway
ECU then begins its data transmissions, as per power on. Figure 7.6 shows this process in action.

However, the packet from the fuzzer to the gateway is not acknowledged, this is the beginning of
the errors being indicated. This is as a result of the CAN protocol. A CAN bus needs a minimum of
two working nodes for successful packet transmission. One node is the packet transmitting node, and
at least one other node to acknowledge the correct transmission of that packets. This does not happen
when communicating with the gateway ECU from the fuzzer. What is the reason for the gateway ECU
not acknowledging the fuzzer packets?

It was noted in section 7.3 that the gateway uses a TJA1042 CAN transceiver. The following
statement was seen in the datasheet1 for that device:

1https://www.nxp.com/docs/en/data-sheet/TJA1042.pdf

https://www.nxp.com/docs/en/data-sheet/TJA1042.pdf

101 7.5 Use of the fuzzer with the gateway

In Standby mode, the bus lines are biased to ground to minimize the system supply
current.

This indicates that the gateway enters an idle mode and puts the CAN transceivers into a Standby
mode. When in the Standby mode the data sheet also states that normal data reception is not possible:

In Standby mode, the transceiver is not able to transmit or correctly receive data via the
bus lines.

Thus, when the fuzzer sends out the CAN data packet to the gateway, that packet is unable to
be acknowledged because the gateway does not correctly receive data. This causes the PCAN-USB
interface device to register a CAN acknowledgement error, even with sending the gateway a very
simple CAN packet, a CAN id of zero and no data bytes. In Figure 7.7 the transmission error count
has reached 136 before the gateway has sent its frst packet (signifying it has become operational),
11.5ms later.

However, despite the gateway becoming operational, the PCAN-USB interface continues to
indicate errors. The interface then enters a Bus Off state. This behaviour suggests that the simple
CAN data packet was being ignored by the gateway. How can the fuzzer operate against the gateway
device, if the gateway is causing the CAN interface to enter a Bus OFF state? This is an issue that
needed resolving to continue with the investigations.

7.5.2 In-vehicle gateway operation

As stated in section 7.3, a car ftted with the gateway is available at MIRA. Whilst it is not a lab car
available for full experimentation, it can be used to obtain data captures from the car’s CAN busses.
The gateway on the MIRA car is shown in Figure 7.8a. Two of the CAN busses are available on the
OBD port. The other two busses can be connected to via the rear connector of the gateway, Figure 7.8.

There is a difference in the in-vehicle CAN traffc compared to the bench based traffc, illustrated
in Table 7.5, where a small section of the captured data from the medium speed bus is present. The
capture shows the data from the moment the traffc on the bus began. There are CAN errors seen in
the vehicle. The errors are indicated with ER in Table 7.5. For example, packets with CAN id 033C
and 03C4 are followed by error indicators. However, they are not acknowledgement slot errors, as
seen with the gateway bench testing. That would be indicated with value 19 (hex) in the third byte
(see the Peak-System trace format manual2).

Observing the vehicle CAN traffc provides information on the data (CAN ids and bytes values)
that is travelling on the vehicles networks. This data can be used for the bench testing. It is not
possible to know, at this point in the investigations, which of the packets captured on the vehicle,
but not previously seen on the gateway, relate to the gateway. Indeed, this gateway has raised some
issues that require modifcations to the fuzzer to support additional functionality, see the conclusion
in Section 7.7.

2https://www.peak-system.com/produktcd/Pdf/English/PEAK_CAN_TRC_File_Format.pdf

https://www.peak-system.com/produktcd/Pdf/English/PEAK_CAN_TRC_File_Format.pdf

102 Investigations into an automotive gateway

Fig. 7.7 The CAN fuzzer signals an acknowledgement error when it sends a CAN data packet to the
gateway, and the gateway does not acknowledge the packet (due to being in a standby mode), with the
error count increasing by eight on each attempt (as per CAN specifcation) to the maximum of 128
until the passive error condition is reached

103 7.5 Use of the fuzzer with the gateway

Table 7.5 Car medium speed CAN (left) vs. bench readings (right), data (in hex) differences in bold

Id DLC Car Bytes Id DLC Bench Bytes

051E 8 1E 01 00 00 00 00 00 00 051E 8 1E 01 00 00 00 00 00 00
0083 8 00 00 00 00 00 00 7E F0 0083 8 00 00 00 00 00 00 FF FF
02FD 8 4C 00 E1 41 08 10 00 00 02FD 8 00 00 00 00 00 00 00 00
03BC 8 00 00 00 96 00 01 0C 00 03BC 8 00 00 00 96 00 00 00 00
03BE 8 00 52 FC C6 65 05 BA 01 03BE 8 00 00 00 00 00 00 00 00
03C4 8 D7 52 68 0F 00 00 92 4E 03C4 8 02 00 00 0F 00 00 0E 44
03B4 8 40 11 11 FF 20 20 00 00
03D5 8 04 00 00 00 00 00 00 00 03D5 8 04 00 00 00 00 00 00 00
042A 8 C3 00 00 80 00 00 00 00 042A 8 FF 00 00 00 00 00 00 00
01E6 8 80 0C E2 CE 00 00 00 00
042C 8 05 51 54 00 00 07 81 00 042C 8 00 00 14 00 00 00 00 00
042E 8 05 51 54 00 00 07 81 00 042E 8 00 00 00 00 00 53 00 00
0333 8 80 00 00 00 00 00 00 00
033C 8 24 00 00 00 00 00 00 00
ER 08 01 1B 01 00
EC 08 00
0504 8 04 01 00 00 00 00 00 00
EC 07 00
0505 8 05 01 00 00 00 00 00 00
EC 06 00
053B 8 3B 01 00 00 00 00 00 00
EC 05 00
0332 8 80 FE 90 FB 50 00 00 00
EC 04 00
033A 8 00 00 00 00 00 00 00 00
EC 03 00
033F 8 02 00 20 00 00 00 00 00
EC 02 00
03DE 8 00 01 07 02 80 00 00 00
EC 01 00
0084 8 12 00 00 9C 38 2A 0E 00
EC 00 00
0346 8 00 00 00 03 03 00 C0 00
0348 8 00 00 00 00 00 00 00 00
0359 8 00 3C 00 00 00 00 00 00
03E0 8 00 00 00 00 80 00 00 00
03BE 8 00 52 FC C4 00 05 BA 00
03C4 8 56 52 68 0F 00 00 02 46
ER 04 01 06 01 00
EC 00 00
0083 8 00 00 00 00 00 00 7E F0 0083 8 00 00 00 00 00 00 FF FF
03BC 8 00 00 00 96 00 01 08 00 03BC 8 00 00 00 96 00 00 00 00
042A 8 C3 00 00 80 00 00 00 00 042A 8 FF 00 00 00 00 00 00 00
042C 8 05 51 54 00 00 06 80 00 042C 8 00 00 14 00 00 00 00 00

104 Investigations into an automotive gateway

(a) The vehicle gateway ftted to a car (b) Gateway connected to vehicle

Fig. 7.8 Fitted vehicle gateway

7.6 Gateway testing evaluation

It was apparent, from viewing the gateway functioning in the vehicle, that individually testing an
ECU can be problematic. Attempting to operate the gateway on the testbed was not initially possible.
Whether the hardware protection of the CAN lines is intentional or not is not known at this time.
Even when the gateway was communicating it would not acknowledge packets from the fuzzer.
This indicates that some internal fltering is being performed. However, the gateway is constantly
communicating when it is part of the vehicle. This suggests that the gateway, as a component, is
designed to operate symbiotically, i.e. it needs to be part of the whole vehicle system to operate
normally. These observations feed into the functional requirements of the fuzzer. Modifcations to test
tooling has been anticipated in the automotive security testing development method (see Figure 3.4 in
Chapter 3). Continuous improvements to the test tooling is likely to be required to support the many
types of ECUs that will require security testing.

The requirement to support multiple CAN busses could be achieved through running several
instances of the CAN fuzzer on the same PC. However, this adds complications to test set-ups
and cross-network monitoring. Multiple network support for the fuzzer has been added to the
communications handling code (see Section 5.3 in Chapter 3). Further modifcations will enable
support for the cross CAN analyses. This will allow for the possible effect of fuzzing one CAN bus
producing a response on another network.

The ability to fuzz packets whilst playing back previously captured traffc from vehicles is a
requirement. If components are unable to operate unless part of the whole network, then the ability to
simulate a vehicle will be useful. For manufacturers who have full simulations of their systems, it may
not be a problem. However, for independent researchers, one method is to capture existing CAN traffc
and use the playback as the vehicle simulation. Interleaving the playback with the fuzzed packets
would be a requirement, as well as removing the packets to be fuzzed from the playback. These
requirements will be fully addressed in future modifcations. However, the playback functionality

105 7.7 Conclusion

alone has been implemented (see Figure 5.8b in Chapter 5), as it was useful for other experiments
(see Chapter 9).

7.7 Conclusion

The initially proposed experimental steps, see Section 7.2, could not be fully executed. This was
due to the hardware construction of the device. Whether that gateway’s design is constructed as to
intentionally restrict its operation outside of the car is not known. However, this is a recent model
vehicle and post-dates early work in the automotive cyber-security feld. Therefore, it may have
been designed with some protective measures. It is interesting to note how the physical circuit
design (ground CAN lines) provides a level of protection against external penetration. Again whether
intentional or not from a cyber-security viewpoint is unknown.

What the examination of the gateway has shown is that a fuzzer needs to cater for different
scenarios of use. For this component, additional features are required. These features can be added to
a list of future modifcations for the prototype fuzzer, they include:

• Support for 4 CAN busses.

• A CAN transmit to one CAN bus, whilst logging packets on 3 other CAN busses.

• The fuzzer must be able to detect and reset a CAN bus off state on any CAN interface.

Finally, whilst the original aims of the experiment have not been met, the knowledge extracted on
the gateway is useful:

• The physical construction of the gateway, it’s wiring to the vehicle’s systems, and how it is
mounted in the car. This practical experience was useful when using the other ECUs in the
research.

• The design of the gateway electronic, and the links to the vehicle’s CAN busses. Again,
understanding how CAN busses are connected in vehicles is important for this research and
future experiments.

• The gateway’s use of the low power standby features of the CAN transceivers (grounded lines)
and how it prevents testing of the gateway’s operation outside of the vehicle. Understanding the
nature of the hardware helps overcome similar problems with other ECUs.

• The need for CAN security testing tools to support multiple CAN busses, four in case of the
gateway, to fully monitor interfaces when testing vehicle components. The CAN Fuzzer tool
was re-engineered to allow for support of multiple CAN interfaces.

The knowledge from this experiment is not known to be recorded elsewhere and, thus, some will
fnd it useful for future research. The experiment can be revisited to build upon what has been learnt.

Chapter 8

Fuzz testing a media interface ECU

Scientists investigate that which already is;
Engineers create that which has never been.

Albert Einstein

In the previous chapter, Chapter 7, a gateway ECU was investigated as a fuzz testing target. The
gateway’s unique hardware and the current limitations with the prototype fuzzer restricted the useful
work that could be done. Another component from the lab vehicle was chosen as a ToE. As for the
gateway ECU, this was to further develop the automotive fuzz testing methods and feedback into
the design of the CAN fuzzer. Testing more components adds to the overall fuzz testing knowledge,
addressing the feedback loop from stage seven to stage three in the automotive security testing
development methodology (see Figure 3.4 in Chapter 3).

This chapter details the work in using the fuzzer against the laboratory vehicle ECU called an
Accessory Protocol Interface Module (APIM), here referred to as a media ECU.

8.1 Introduction to the media ECU experiment

In order to further develop the CAN fuzz testing methodology, another ToE is used with the fuzzer.
The chosen media ECU, the APIM module, is used to provide some of the audio and infotainment
functions for the lab car (interfaces to navigation, Bluetooth and radio features, including the optional
voice control of functions on some models of the vehicle). The media ECU connections are mainly
analogue audio interfaces used for audio signal routing. The media ECU is connected to several other
ECUs via two CAN busses, see Figure 2.4 in Chapter 2. The media ECU was chosen for fuzz testing
for the following reasons:

1. It is present in the lab car and therefore in-car data readings are possible.

2. An identical ECU can be obtained and used for bench based testing.

http:asaToE.As

108 Fuzz testing a media interface ECU

3. It has two CAN interfaces, one connects to a CAN bus that is exposed to the OBD port. One
connects to an internal vehicle CAN bus. Testing may reveal packets that can bridge from the
externally connected CAN bus to the internal CAN bus.

4. It has functionality related to the vehicle’s Bluetooth connectivity and navigation functions.
Poor security may reveal data stored as a result of those functions. For example map location
information and telephone numbers with contact names. However, this was not anticipated as
the internal operations of the ECU are unknown.

8.2 Three stage experimental method

For this experiment, the approach is to perform a security test of a vehicle component via its CAN
interfaces. The problem being addressed is the security testing of vehicle computational components,
in this case, the media ECU is acting as a proxy for a new ECU design that requires security testing.
The security test being applied is fuzz testing. The experiment has three high-level stages:

1. The media ECU is examined on the bench to determine the operation of the CAN interfaces.
This is used to inform the connectivity to the device for the second stage.

2. The media ECU is monitored to record its communications within the vehicle. The information
from this stage is used to inform the confguration of the fuzzer for the third and last stage.

3. The fuzzer is used against the ECU on the bench. The aim is to reduce the number of
combinations of packets that the fuzzer needs to transmit, and in turn, reduce the fuzz testing
time to a manageable level. This is done by using the information gained from stage 2.

Stage 1, media ECU CAN interface assessment

The equipment used to assess the CAN interface is:

• A bench power supply capable of 12v-13v to replicate the vehicle supply.

• Power leads to connect the power supply to the ECU.

• Two PCAN-USB adaptors to connect the ECU to a computer.

• Two custom cables to connect the PCAN-USB adaptors to the ECU.

• A laptop computer to run the prototype fuzzer and read data from the ECU CAN interfaces.

The method used to determine the operation of the media ECU CAN connections is:

1. Ensure the power supply is set to 12v and turned off.

109 8.2 Three stage experimental method

Fig. 8.1 Custom cable for man-in-the-middle CAN monitoring

2. Use the wiring manual for the vehicle to locate the connection points to the media ECU. The
connection points are the CAN interfaces and power input.

3. Connect the media ECU to the power supply.

4. Connect the PCAN-USB interfaces to the ECU via custom cabling.

5. Connect the laptop computer to the PCAN-USB interfaces.

6. Start the prototype fuzzer to monitor the ECU CAN interfaces.

7. Turn on the power supply to the ECU.

8. Observe the CAN communications on the ECU CAN interfaces.

Stage 2, media ECU in-vehicle monitoring

The equipment used to monitor the media ECU CAN communications in the vehicle is:

• Two PCAN-USB adaptors to connect a computer to the two vehicle CAN busses connected to
the media ECU, Figure 8.1 shows one of the constructed cables.

• Two custom cables to connect the PCAN-USB adaptors to the CAN busses.

• Custom patch cables to allow access to the media ECU connections in situ in the vehicle.

• A laptop computer to run the prototype fuzzer and read data from the ECU CAN interfaces.

The following method is used to monitor the in-vehicle CAN traffc to and from the media ECU.
The physical connection method used allows for the ECU to function but the prototype fuzzer to
connect in a man-in-the-middle style to monitor the ECU’s CAN communications:

1. The ignition for the car is off.

110 Fuzz testing a media interface ECU

2. Locate the media ECU in the car.

3. Disconnect the media ECU from the vehicle.

4. Using the information learnt in stage 1, splice the two PCAN-USB interface adaptors to CAN
busses using the custom cables

5. Using the custom patch cables reconnect the remaining active ECU pins to ensure the normal
operation of the ECU.

6. Connect the laptop computer to the PCAN-USB interfaces.

7. Start the prototype fuzzer to monitor the ECU CAN interfaces.

8. Turn on the vehicle ignition to power the vehicle, ECU and CAN busses.

9. Observe the ECU CAN communications on the computer.

Stage 3, Fuzz testing the media ECU

The equipment used for fuzz testing the media ECU is the same equipment used for stage 1 of the
experiment. The method used for fuzz testing the media ECU is:

1. Ensure the power supply is set to 12v and turned off.

2. Using the connection information from stage 1 wire the media ECU to the power supply and
PCAN-USB interfaces.

3. Connect the laptop computer to the PCAN-USB interfaces.

4. Use the information obtained from stage 2 to confgure the prototype fuzzer to generate random
packets with CAN ids in the range of observed data packets.

5. Turn on the power to the media ECU.

6. Start the prototype fuzzer to send packets into one CAN bus.

7. Observe the ECU CAN interfaces for packets.

The following sections describe the results of implementing the method stages.

111 8.3 Bench based media ECU CAN interface assessment

Fig. 8.2 The media ECU circuit board (top view)

8.3 Bench based media ECU CAN interface assessment

The frst stage was to determine the information needed to connect and work with the media ECU
on the bench and in the vehicle. The method described in Stage 1 of Section 8.2 is used. The
electrical/electronic wiring manual for the vehicle is used to determine what physical connections are
available on the ECU.

The ECU is connected to the vehicle via a 54 pin plug, see Figure 8.2. 23 of the pins are used,
31 have no connection. Two pins are used to provide power to the ECU, a ground pin and a positive
supply pin, usually in the range of 12v to 13v.

There are two CAN bus interfaces to the ECU. One interface is the high speed CAN bus (500kbps)
and connects to the same vehicle network that is connected to the OBD port. The other CAN interface
bus is the medium speed bus (125kps) and connects to an internal vehicle CAN bus. Table 8.1 provides
the connections that were determined, allowing connections from the media ECU to the power supply
and PCAN-USB adaptors, via custom cables.

With the media ECU correctly wired on the bench, the power supply could be turned on. The
medium speed CAN bus was displaying error messages. Double-checking all the connections did
not fnd any problems. However, a different bit rate confguration from the medium speed bus
connection resulted in the correct capture of CAN packets. The confgured bit rate for the medium
speed bus was changed from 125kbps to 500kps. This means that despite the two CAN interfaces
being labelled differently (one high speed and one medium speed) they both required a high speed bit
rate confguration of 500kbps.

112 Fuzz testing a media interface ECU

Table 8.1 Physical connection to the media ECU

Media ECU pin Usage Bench connection

1 +ve (12v) 12v on power supply (+ve)
37 ground (0v) gnd on power supply (-ve)
16 medium speed CAN high pin 7 on 1st PCAN-USB adapter
17 medium speed CAN low pin 2 on 1st PCAN-USB adapter
53 high speed CAN high pin 7 on 2nd PCAN-USB adapter
54 high speed CAN low pin 2 on 2nd PCAN-USB adapter

Table 8.2 Bench power on media ECU CAN communications on the high speed interface (Id and Data
columns are shown in hex)

Id Length Data Frequency Count

5E2 8 62 00 FF FF FF FF FF FF 1s 6
189 8 00 00 00 00 00 00 00 00 n/a 1
198 8 00 00 00 00 00 00 00 00 n/a 1
199 8 00 00 00 00 00 00 00 00 n/a 1
2E0 8 00 00 00 00 00 00 00 00 1s 9
3EB 8 00 00 00 00 00 00 00 00 1s 8
3F0 8 00 00 00 00 00 00 00 00 1s 8

Although the two CAN interfaces on the media ECU are both confgured for the same bit rate
(500kbps), the existing labelling will be used for the remainder of the chapter. This means that the
term medium speed will refer to the one CAN interface connected to the vehicle internal CAN bus.
The term high speed will refer to the CAN interface connected to a vehicle CAN bus that is exposed
on the OBD port.

On the high speed CAN bus seven packets were seen, these are shown in Table 8.2.
The observed packets on the medium speed interface are shown in Table 8.3. One of the packets

is the same on both CAN interfaces, the packets with an id of 1506, 5E2 hex.
Having determined that the media ECU powered on and CAN data packets were observed, the

knowledge could then be applied to enable monitoring of the ECU in the vehicle.

Table 8.3 Bench power on media ECU CAN communications on the medium speed interface (Id and
Data columns are shown in hex)

Id Length Data Frequency Count

5E2 8 62 00 FF FF FF FF FF FF 1s 6
455 8 00 00 00 00 00 00 00 00 100ms 81

113 8.4 In-vehicle data capture stage

Fig. 8.3 Man-in-the-middle CAN connections to intercept in-vehicle communications to media ECU
(used for Bluetooth and audio functions)

8.4 In-vehicle data capture stage

The second stage of the media ECU experiment is to monitor its communications in the vehicle. The
method used is described in Stage 2 in Section 8.2. The media ECU is located in a panel underneath
the dashboard and behind the glove box. Removing a retaining panel and disconnecting the ECU
allows access to the wiring loom that terminates with the ECU’s 54 pin connector. A retaining clip on
the connector is lifted to allow the connector to be unplugged from the ECU. The custom cables and
patch cables are then used to achieve a man-in-the-middle arrangement for the PCAN-USB adaptors,
see Figure 8.3. This allows the ECU to operate normally whilst enabling direct monitoring of the
ECU’s two CAN interfaces.

The two PCAN-USB interfaces were connected to the laptop and confgured at 500kbps as
discovered during stage 1. With the two CAN interfaces being monitored the car was started. The
lower and upper range of the CAN id values observed is shown in Table 8.4.

114 Fuzz testing a media interface ECU

Table 8.4 The range of CAN packet ids observed when connected to the in-vehicle media ECU, ids
shown in hex

CAN bus Min id Max id

High speed 023 5E2
Medium speed 030 5E2

Table 8.5 The range of CAN packets confgured for the fuzz testing of the media ECU, ids shown in
hex

CAN bus Fuzz min id Fuzz max id

High speed 022 5E3
Medium speed 029 5E3

The monitoring of the media ECU in-vehicle provides a range of values to use as a basis for the
bench based fuzz testing.

8.5 Media ECU bench fuzz testing

The third and fnal stage of the media ECU experiment is to use the information from the previous two
stages to perform fuzz testing. Here, the method used is described in Stage 3 of Section 8.2. When
the fuzz testing is executing the range of packets to use would be widened by one id step above and
below the observed range seen in Table 8.4. That is the CAN id range would be increased by one
below the bottom and one above the top seen CAN id values, as shown in Table 8.5.

The media ECU is confgured on the bench for the fuzz testing. As for stage 1, it is connected
to the power supply and PCAN-USB adaptors. The prototype CAN fuzzer is confgured to deliver
random CAN packets in the range shown in Table-8.5. The fuzzer is started using a 1ms packet
transmission rate (one random CAN data packet is sent every 1ms).

The fuzzer is started against the high speed interface and the output of the medium speed interface
is observed. Random CAN packets with ids in the range 022 (hex) to 5E3 (hex) are sent into the
ECU’s high speed interface. The same packets as when power is frst applied are seen on the medium
speed. The two packets seen are as shown in Table 8.3 from the initial stage 1 tests.

Next, the fuzzer is started against the ECU’s medium speed interface. Random CAN packets with
ids in the range 029 (hex) to 5E3 (hex) are sent into the ECU’s medium speed interface. The output of
the high speed interface is monitored. Packets were observed on the high speed interface. The packets
have the same ids as those observed during the initial power on of the ECU. However, three of the
packets had different values for some of the data bytes. The packets seen on the high speed interface
are shown in Table 8.6. The differences in the data byte values compared to the initial packets, seen in

115 8.6 Evaluating the media ECU fuzz testing

Table 8.6 Packets observed from the media ECU’s high speed interface when fuzz testing the medium
speed interface, bold values show changes from the packets observed at power-on (Id and Data
columns are shown in hex)

Id Length Data Frequency

5E2 8 62 00 FF FF FF FF FF FF 1s
189 8 C0 00 00 00 00 00 00 00 n/a
198 8 01 D3 01 E5 FE 1D 00 00 n/a
199 8 00 00 00 00 00 00 00 00 n/a
2E0 8 00 00 00 00 00 00 00 00 1s
3EB 8 00 0E 70 00 20 00 00 00 1s
3EB 8 00 0E 70 00 20 00 40 00 1s
3F0 8 00 00 00 00 00 00 00 00 1s

Table 8.2 are highlighted in bold. The packet with the id 3EB (hex) appears twice in the table due to
the differences observed with the value of the seventh byte, seen as either zero or 40 (hex).

8.6 Evaluating the media ECU fuzz testing

The fuzz testing of the media ECU followed a similar procedure as for gateway in ECU in Chapter 7.
Firstly, determining how the ECU hardware can be interfaced to the fuzzer. Secondly, observing its
operation in the vehicle, and thirdly assessing the effectiveness of the fuzz testing.

Unlike the gateway ECU, the media ECU is able to operate immediately with the prototype fuzzer.
For the gateway ECU its operation was very much tied to the functionality of the vehicle in which
it is installed. On the other hand, the media ECU is happy to operate on the bench with the fuzzer
sending it packets.

However, what is missing from the bench based testing of the media ECU is the other ECUs
against which it is designed to communicate. In this regards, it is similar to the symbiotic operation
of the gateway ECU. This means that other CAN packets to invoke the meaningful operation of the
media ECU are not present. What impact this has upon the bench based fuzz testing is currently not
determined. For example, does operating without the other ECUs restrict the possible interactions
that could result from the fuzz testing?

Even though the media ECU is not operating in a fully functional system, the fuzzer was able to
evoke a response when randomised CAN packets were input to the medium speed CAN interface.
In that case, the output from the high speed interface differed in three of the observed packets. This
is summarised in Table 8.7 where three CAN ids have four different data payloads compared to the
power on payloads.

Having shown that it is possible for the fuzzer to evoke a reaction from an ECU, how can that be
used for security testing? The end goal is to determine a weakness that could lead to a violation of the
CIA security properties. Steps towards that goal need to be investigated.

116 Fuzz testing a media interface ECU

Table 8.7 The data differences for 3 out of 7 of the observed media ECU CAN packets, id 3EB (hex)
has 2 different data results

Id (hex) Length Power on data Fuzz testing data

189 8 00 00 00 00 00 00 00 00 C0 00 00 00 00 00 00 00
198 8 00 00 00 00 00 00 00 00 01 D3 01 E5 FE 1D 00 00
3EB 8 00 00 00 00 00 00 00 00 00 0E 70 00 20 00 00 00
3EB 8 00 00 00 00 00 00 00 00 00 0E 70 00 20 00 40 00

It has not been determined from the testing of the media ECU so far that there has been any impact
on its internal operation. This makes it diffcult to investigate the integrity and availability properties.
In terms of confdentiality, the meaning of the data values in the packet payloads are not known since
there is no access to the ECUs design specifcations. However, the conditions for the triggering of the
data packets could prove useful, if not for this ECU, for other ECUs tested in the future. Is it possible
to determine which input packets cause the outputs seen?

It was not a direct objective of this experimentation to reverse engineer the media ECU operation
via its CAN packets. However, the results observed may provide the opportunity to fnd the packets
that do trigger the transmission of the other data values in the payloads. This would be an aid to
revealing confdential system information, i.e. the security property of confdentiality.

What is required is a method to determine which packet, or packets, from the hundreds of packets
sent into the CAN interface every second, evoke the media ECU response. In Table 6.2, in Chapter 6,
the impractical fuzz testing of all possible CAN values was illustrated. The experimentation here
was to restrict the CAN packets being transmitted from the fuzzer based upon the packets seen in the
normal ECU operation in the vehicle. How does that restriction help with determining the packets
that cause payload data transmissions?

It is possible to perform some calculations to compare the restricted fuzz testing range with the
full range of packets. The medium speed fuzz testing CAN id range was from 029 (hex) to 5E3 (hex).
That is a spread of 1466 packets. Although less than the full standard CAN id range of 2048 packets,
it still means an inordinate amount of time would be needed to fuzz all possible payload combinations.
However, the media ECU was sending out payload packets with data almost as soon as the fuzz testing
began. Therefore, the trigger for transmission must be very simple.

At the fuzzers default packet transmission rate of 1ms per packet is does not take long to randomly
generate nearly all the possible CAN ids (a few seconds), and less time for the 1466 range used in
this experimentation, even though all possible CAN packet combinations with all data bytes takes
immensely longer. Thus, it is possible that only a packet id is being used to trigger a response.
Having functionality within the prototype fuzzer to help determine if this is the case would be a useful
improvement to consider for future new development.

Another useful improvement to the prototype CAN fuzzer would be for it to support multiple
ranges of CAN packet ids. The spread of CAN data packets, calculated from monitoring the vehicle

117 8.7 Concluding media ECU fuzz testing

communications, still result in a too high a number of CAN packet combinations, more granular
support for ranges of packet ids is required.

8.7 Concluding media ECU fuzz testing

The development of the experimentation on the media ECU was restricted in two ways. Firstly, as for
the gateway ECU, the bench based testing does not provide a fully functional environment for the
media ECU. Secondly, the prototype fuzzer requires data analysis capabilities to help process the fuzz
testing results.

In terms of providing a fully functional testing environment, a vehicle manufacturer and its
suppliers have the advantage of access to the designs of the vehicle system in which an ECU sits. That
system knowledge can be useful for the testing processes, for example by using the same complex
HIL/SIL equipment that is used to design the vehicle systems. In doing so it can aid a bench based
security testing process [6]. This was not possible with this experiment, therefore the functionality of
the media ECU is restricted. Indeed, only eight CAN ids are observed on the bench, compared to the
many more seen when the media ECU is in the vehicle. However, whilst that restricted functionality
reduces what can be done on the bench, it also reduces the possible combinations that need to be
considered for testing, in this case only eight different packets are observed, of which three can be
triggered by the fuzz testing.

Determining the cause of the ECU’s packet transmissions resulting from the fuzzer’s input packets
requires new fuzzer functionality, or another program that can analyse the data as it is generated.
That new functionality needs to run dynamically for effciency. It also needs to change the fuzz
testing parameters to help narrow down, and possibly fnd, the exact packet or packets that trigger the
transmissions. These requirements are to be addressed in future development work. The following
Chapter on fuzz testing a display ECU covers a similar functional requirement. In the next chapter,
the search for CAN packets triggering ECU activity was performed with a semi-automated method.

Chapter 9

Fuzz testing a display ECU

C is quirky, fawed, and an enormous
success.

Dennis Ritchie

The testing of various targets in Chapters 6 to 8 revealed knowledge on CAN fuzz testing and
provided requirements to the CAN fuzzer that were unknown prior to this research. This chapter
builds upon those results by fuzz testing a vehicle dashboard display ECU. Testing another ToE allows
for further development of CAN fuzz testing methods and the fuzzer tooling. Further requirements for
the CAN fuzzer tool were revealed and weaknesses in the software and security of the lab vehicle’s
message display system were discovered.

9.1 Introduction to the display ECU

The ToE is a vehicle display ECU called a Front Control Display Interface Module (FCDIM), present
in the lab car, see Figure 9.1. This display ECU provides an interface to the vehicle’s media system,
air conditioning controls, and to display programmed informational messages to the vehicle occupants.
Some of the observed messages seen during normal stationary operation of the lab vehicle are shown
in Table 9.1.

The display ECU is connected to other vehicle ECUs via CAN. A schematic for the full vehicle
network can be seen in Figure 2.4 in Chapter 2. A partial schematic showing the display ECU’s
immediate ECU neighbours is shown in Figure 9.2. See Table 2.1 in Chapter 2 for the functions of
the ECUs.

According to the wiring diagram for the vehicle, the display ECU has two CAN bus connections.
One connection is for the vehicle’s medium speed (125kbps) CAN bus, MS CAN, which is accessible
via the vehicle OBD port. The other network connection is for an internal CAN bus labelled IMS
CAN, the meaning of the abbreviation IMS is unknown. What is known, based on the experience

120 Fuzz testing a display ECU

Fig. 9.1 The display ECU in the laboratory vehicle, a variety of messages are displayed in response to
occupants operating the vehicle

Table 9.1 Examples of some of the operational messages displayed on the laboratory vehicle’s display
ECU

Display ECU messages see during garage use

Turn ignition off use Power Button
No phone found Retry Cancel
To start press clutch
Key Battery low Replace Battery
Driver door open
Passenger door open
Climate control on
Climate control off
Climate control A/C on
Climate control A/C off
Climate control Auto mode on
Climate control Auto mode off
Blower
Temperature

Fig. 9.2 The communications networks connecting the display ECU (the double box) to other
neighbouring ECUs, one network is named IMS CAN (abbreviation unknown) running at 500kbps,
and one MS CAN, probably for Medium Speed, at 125 Kbps.

121 9.2 Experimental method

with the media interface ECU in the previous chapter (Chapter 8), is that the IMS CAN is known to
run at 500Kbps.

Although the display ECU’s CAN interface makes it suitable for CAN fuzz testing, it is the
graphical display that helps with this research. It has already been noted that a problem with fuzz
testing vehicle systems is the cyber-physical aspect. A CAN data packet may not cause a detectable
reaction from an ECU via the device’s CAN bus, instead the ECU triggers outputs that interface with
the real world. Experimenting on an ECU with a built-in visible aspect allows for testing that is not
reliant upon the expense and time to reverse engineer and recreate other vehicle sub-systems. Further
factors for choosing the display ECU are similar to those for the media ECU examined in Chapter 8.
Here are all the factors infuencing the choice of the display ECU:

1. it is available on the laboratory car to allow data capture from a working CAN bus;

2. a spare ECU can be obtained for bench based fuzz testing;

3. it has CAN interfaces;

4. it has a cyber-physical (visible) interface.

9.2 Experimental method

The approach to the experiment was the same as that taken in Chapter 8. The display ECU was acting
as a proxy for a new and untested vehicle component. The security test to be performed is fuzz testing.
The experimental stages follow the same stages as those for the experiment on the media ECU, see
Section 8.2, substituting display for media. There is a signifcant difference with the presence of the
screen. Which provided a visual indication of the fuzz testing action. Likewise, the equipment and
practical methods used are similar to those used for the display ECU, any differences are discussed in
this Chapter where required.

9.3 Display ECU CAN interfacing

In Chapter 6 and Appendix C the possibility of component or vehicle damage from fuzz testing,
however small, was discussed. To prevent possible damage to the lab car’s display ECU a spare,
shown in Figure 9.3, was obtained for the experiments. The display is attached to the vehicle using a
12 pin plug (the black socket for the plug is seen in Figure 9.3b). The function of each pin, obtained
from the vehicle’s wiring manual, is shown in Table 9.2.

The connections used for fuzz testing are power (pins 1 and 9), connected a bench power supply,
and CAN (pins 2 to 5), which are connected to PCAN-USB adaptors, see Figure 9.4.

122 Fuzz testing a display ECU

(a) Display ECU front (b) Display ECU internal view

Fig. 9.3 Display ECU component, the rear cover has been removed to show the internal circuit
board, the MCU used in the display ECU is a Freescale (now NXP) MC912XEP100VAL, this is a
16 bit computational device with various inputs and outputs, and on-board fash and static memory,
also visible were transceivers for LIN (a TJA1020) and CAN (a TJA1042/3). A power regulator
(7A6050Q1) converts the vehicles 12v power to 5v

Table 9.2 Display ECU connection pins, two are for power, four for CAN busses, three are unused,
three are connected to switches (including one labelled for controlling Media Oriented Systems
Transport (MOST), which is not present in the lab vehicle)

Pin Number Function

1 +VE (battery supply)
2 MS CAN+
3 MS CAN-
4 IMS CAN+
5 IMS CAN-
6 not used
7 control switch
8 control MOST
9 GND (battery ground)
10 switch
11 not used
12 not used

123 9.4 Debugging the display ECU CAN bus connections

Fig. 9.4 The display ECU is connected to a bench power supply and PCAN-USB adaptors

Fig. 9.5 The CAN transceiver chip in the display ECU is a TJA1042/3, shown in the left of the fgure,
this supports a low power standby mode and wakes up on bus activity

9.4 Debugging the display ECU CAN bus connections

The display ECU has the same standby CAN issue that was seen with the gateway ECU in Chapter 7.
The display ECU uses a similar CAN transceiver (a TJA10421, see Figure 9.5). The CAN transceiver
supports a low power standby mode, i.e. it will wake up when CAN traffc is detected. This feature
causes an issue with the CAN fuzzer interface which registers an error state. This is due to the frst
packet from the fuzzer not being acknowledged by another CAN node, therefore, an error is generated
(as per the CAN specifcation). The media ECU in Chapter 8 exhibits the same behaviour.

The solution was to debug the display ECU’s CAN connections using two interfaces with the
CAN fuzzer. The experimental setup is illustrated in Figure 9.6. This aided monitoring of the CAN

1https://www.nxp.com/docs/en/data-sheet/TJA1042.pdf

https://www.nxp.com/docs/en/data-sheet/TJA1042.pdf

124 Fuzz testing a display ECU

Fig. 9.6 Instead of interfacing to both CAN connections on the display ECU, two CAN fuzzers
are used to debug one CAN connection at a time, one fuzzer for sending a data packet and one for
monitoring the bus

(a) Display ECU access (b) Display ECU rear connection

Fig. 9.7 Using a trim removal tool the cover of the display ECU is removed, two Torx screws hold the
component in place, once removed the ECU plug is accessible

bus on one interface whilst data was being transmitted on the other. It also enabled the frst data
packet from the CAN fuzzer to be acknowledged and prevent error conditions from occurring.

The MS CAN connection and the IMS CAN connection were sent CAN data packets. There was
no observed CAN data or response from the MS CAN connection. To try and determine the issue
with the display ECU’s MS CAN connection its operation in the lab car was investigated.

9.4.1 Lab vehicle display ECU

The car’s display ECU was swapped with the one obtained. Access to the ECU required removal of
the plastic trim surrounding it using a trim tool, Figure 9.7.

The spare display ECU is not identical to the one ftted to the vehicle, compare Figures 9.3a
and 9.7a, however, when ftted it functions correctly, see Figure 9.8.

125 9.5 Display ECU CAN packets

Fig. 9.8 The bench ToE display ECU in the laboratory vehicle, the obtained display ECU is a lower
specifcation component than the one ftted to the lab car, however, it functions correctly (the correct
vehicle model and year was used to order the bench ToE, but after removing the vehicle’s display
ECU it was seen that the twelve character part numbers differed in the last two characters)

9.4.2 Monitoring the display ECU connections

In Figure 9.9 cabling is attached to the display ECU for monitoring. The same custom man-in-the-
middle cables were used (see Figure 8.1 in Chapter 8) as for the media ECU. Jumper wires ensure the
car’s power reaches the ECU.

The data traffc for the IMS CAN connection was easily captured. However, no CAN traffc was
visible on the MS CAN connection. A continuity tester was used to check the connections from
the MS CAN pins on the OBD port to the MS CAN pins on the display ECU plug. No connection
was found. This means that the display ECU’s MS CAN connection, shown in the vehicle’s wiring
diagram, is not present. This was checked by removing the man-in-the-middle connection to the MS
CAN pin, it did not affect the operation of the display. It still displayed messages when actions on
the vehicle were performed (e.g. opening doors). Therefore, for this model of vehicle, the display
ECU’s wiring diagram did not correspond to the physical connections for the MS CAN bus in the car.
This means packets related to functions not directly controlled by the display ECU, e.g. a door open
message data packet, are being routed through the media ECU, see the network schematic Figure 2.4
in Chapter 2. This test discovered that only the IMS CAN interface is used on the display ECU, thus,
only one CAN interface required fuzz testing.

9.5 Display ECU CAN packets

When the display ECU is functioning in the vehicle up to 75 different CAN ids were observed, this
compares to the 12 CAN ids seen when monitoring the display ECU on the bench, see Table 9.3. All
the CAN packets seen on the IMS CAN have eight bytes of data. The display ECU is only responsible
for one-sixth to one-quarter of the IMS CAN traffc.

126 Fuzz testing a display ECU

Fig. 9.9 Man-in-the-middle monitoring of the display ECU CAN busses

Table 9.3 The number of CAN packets seen at the display ECU’s IMS CAN connection within the
vehicle

Number of CAN ids Vehicle Operation

60 Vehicle ignition on, then off
72 Vehicle, ignition on, driver door open and then closed
75 Vehicle start and stop and wait for bus to go idle
52 Vehicle idle, waiting for CAN bus to go silent
12 Display ECU bench based CAN interfacing

127 9.6 CAN Fuzz testing of the display ECU

Table 9.4 The display ECU’s CAN packets, and packet cycle times, in the order observed on initial
bench testing

CAN id Id (hex) Cycle time (ms)

1371 55B 1000
402 192 1000
417 1A1 24
477 1DD 24
553 229 1000
647 287 200
656 290 200
675 2A3 1000
739 2E3 1000
801 321 1000
802 322 1000
1235 4D3 1000

During the bench testing, twelve CAN packets (see Table 9.4) are sent from the display ECU
when a single CAN packet is transmitted to it. In the absence of any further CAN packets being sent
to the ECU, it will stop transmitting after 5.5 seconds. The screen of the ECU is not turned on when
the ECU is powered up, even though it does communicate when frst switched on. It was discovered,
when the fuzz testing was performed, that the screen is only turned on when it is told to display a
message.

The isolated behaviour of the display ECU, compared with its in-vehicle environment, again,
raises the issue of the effectiveness of testing a single ECU component outside of the complete vehicle
system. A point discussed further in the fnal Chapter 10.

9.6 CAN Fuzz testing of the display ECU

The fuzzer was connected to the ECU and confgured to generate random CAN packets. The data
length was fxed at eight bytes, refecting the number of bytes seen during the vehicle monitoring.
The full standard CAN id range was set, 0 to 2047. Thus, the CAN id and byte values were being
varied. The confguration of the fuzzer is shown in Table 9.5. Later testing would examine variations
in payload length, see Section 9.12. The fuzzer’s packet generation rate was set at 1ms.

The fuzzer was started and after a short period (10s of seconds) the display fashed the message
Park brake applied, see Figure 9.10. This physical response to the CAN fuzz testing demonstrated
that the fuzzer generated a message that the display ECU is programmed to show. This is similar to
the initial fuzz testing in Chapter 6, where the fuzzer found the unlock CAN packet. Having the fuzzer
generate a response from the display meant that further testing with observable results was possible.

128 Fuzz testing a display ECU

Table 9.5 Fuzzing elements of a CAN data packet targeting the display ECU

Item Range Description

CAN Id {0,1,2,. . . ,2047} All standard packet ids
Payload length 8 Number of data bytes
Payload byte {0,1,2,. . . ,256} Vary payload bytes
Rate 1ms Packet transmission interval

Fig. 9.10 Displayed message during fuzz testing

129 9.7 Using the CAN fuzzer to fnd ECU functionality

9.7 Using the CAN fuzzer to fnd ECU functionality

The results from fuzz testing the display ECU allowed for reverse engineering. The functionality of
vehicle systems and components can be diffcult to obtain, mainly due to commercial confdentiality.
However, reverse engineering vehicle systems is useful for several reasons:

• for operational knowledge, by commercial competitors (vehicle manufacturers and component
suppliers) and independent repair companies;

• functional safety engineers, to understand the operation of vehicle systems;

• security engineers, to use system operational knowledge to aid penetration and vulnerability
testing;

• adversarial agents who have an interest in attacking vehicle systems.

The log fles from the fuzz testing are available, and knowing that a response from the display
ECU was seen, then the CAN data that caused the response is determinable. There is a constraint
because transmitted CAN packets may not invoke an immediate reaction from the ECU, due to
processing delays. The short time delays also mean that correlation between the transmitted CAN
packet and the ECU’s reaction is diffcult to determine from observation alone. However, by playing
back the logged CAN data packets, and systematically reducing the number of packets being played
back, it is possible, by a process of elimination, to determine a packet that invokes an ECU reaction.

9.8 Log fle search for a CAN packet

Using the CAN fuzzer’s log fle playback ability, the log fle from the fuzz testing was divided in half
and transmitted to the display ECU. This was repeated if the observed message was seen, otherwise,
the other half of the sub-divide log fle was played back. This was a search for the CAN packet that
caused the display ECU to react. (For the detailed method on the search see Appendix F).

When the log fle for the Park brake applied message was played back another message was also
seen, Auto StartStop Switch ignition off, see Figure 9.11. This new message was not observed on
the initial fuzz testing run. This required the search to be performed twice (to fnd the CAN packets
causing the display of both seen messages).

9.8.1 Isolating message generating CAN packets

The results for the searches for the two seen messages, Park brake applied and Auto StartStop Switch
ignition off are shown in Tables 9.6 and 9.7. In those tables the line numbers (from the log fles) of
the packets played back are listed, with the number of messages seen during the playback of those
packets. For the frst two steps in the search, the log fle playback causes both messages to display.

130 Fuzz testing a display ECU

Fig. 9.11 2nd display message seen during fuzz testing

The second, and subsequent divisions of the log fle cause only one, or no messages to be displayed
on the ECU’s screen.

However, when down to playing back the last few data packets in the search, the message display
is inconsistent. Several attempts at playing back the last few log fle search lines would, or would not,
cause a message to be displayed.

During the search for the CAN packet that displays Auto StartStop Switch ignition off, at the third
division of the playback (lines 653 to 1303), another message was seen. The message was Passenger
door with an overlay of Preset 23 stored, see Figure 9.12.

This behaviour was confrmed. Playing back all or half the fle showed the two messages Park
brake applied and Auto StartStop Switch ignition off. Isolating those messages individually to one-
quarter of the log fle showed either Park brake applied, or Passenger door/Preset 23 stored. As the
search progressed the message displayed changed again, from Passenger door/Preset 23 stored to just
Passenger door open OK, see Figure 9.13.

It would later be found that this behaviour is because individual bits in the data bytes are
responsible for different messages, see Section 9.11, and the CAN packet transmission rate affects the
display ECU operation. The impact of packet transmission rate is briefy examined in Section 9.11.3.

9.8.2 Resolving inconsistent CAN packet search results

As already noted in Section 9.5, when the ECU is sent a CAN packet it wakes from a standby mode
(and transmitting 12 different packets for 5.5 seconds). This standby mode was one reason for the
message display inconsistency. A CAN packet is essentially ignored whilst the display ECU is

131 9.8 Log fle search for a CAN packet

Table 9.6 Results on a search on a fuzz testing log fle for the message ’Park brake applied’, the
playback observed 2 messages, to begin with, and had inconsistent results once four data packets
remained

Playback start line Playback end line No. messages seen

1
1
1
1

490
571
612
571
591
571
571
582
587
582
584
582

2606
1303
652
326
652
652
652
611
611
590
581
590
590
586
586
583

2
2
1
0
1
1
0
1
0
1
0
1
0
1

Inconsistent
Inconsistent

Table 9.7 Results on a search on a fuzz testing log fle for the message ’Auto StartStop Switch ignition
off’, again, the playback observed 2 messages to begin with and had inconsistent results once 4
packets remained

Playback start line

1
1
1

653
653
653
653
653
694
694
714
714
714
724
724
729
729

Playback end line No. messages seen

2606 2
1303 2
652 1
1303 1
978 1
815 1
734 1
693 0
733 1
713 0
733 1
733 1
723 0
733 1
728 0
733 1
731 Inconsistent

732 733 Inconsistent

132 Fuzz testing a display ECU

Fig. 9.12 Different display message seen during the search for message two

Fig. 9.13 The passenger door message without the overlay during the search for the second message

133 9.8 Log fle search for a CAN packet

Fig. 9.14 A brake fuid message seen during CAN packet discovery

in standby. Furthermore, as mentioned in the previous Section 9.8.1, the rate of the CAN packet
transmission can also effect on the message being display.

To resolve the inconsistent CAN packet search results the displayed ECU has to be awake. Thus,
for component testing purposes a keep alive facility is likely to be required by the CAN fuzzer when
testing ECUs. This was noted in the testing of the gateway ECU in Chapter 7, and further provides
evidence that a component functions as part of a larger system.

The packets from the inconsistent log fle lines were sent to the display ECU using the CAN
fuzzer’s single packet transmission facility, whilst ensuring the ECU was not in standby (by sending
the packet twice). This found two packets that caused the display ECU to operate:

1. CAN id 793 with data bytes 94 41 1D DF 2B 9B AE E3 (hex), for the Park brake applied
message.

2. CAN id 752 with data bytes 57 29 61 43 CB 7B 79 59 (hex), caused the messages Auto
StartStop Switch ignition off or Passenger door open.

Sending the same CAN packet several times on its own resulted in different messages being
displayed. For example, for CAN packet with id 752 the message Brake fuid level low Service now
was also seen, see Figure 9.14.

A further variation on the transmission rate of CAN packet 752 caused additional messages to
be displayed, see Figures 9.15 and 9.16 for examples, including the message Auto StartStop Switch
ignition off, which stopped being displayed during the search.

In summary, the observations noted when fnding the message displaying CAN packets are:

1. As mentioned in Section 9.4, the display ECU needs to be awake and active to respond to CAN
packets.

134 Fuzz testing a display ECU

(a) Steering lock malfunction message (b) Steering lock service message

Fig. 9.15 Steering lock messages seen using CAN packet id 752

(a) Transmission over temperature message (b) Transmission service message

Fig. 9.16 Transmission messages seen using CAN packet id 752

135 9.9 Testing individual CAN packet bytes from found messages

Table 9.8 ECU displayed messages from CAN packet id 739, data bytes shown in hex

Data bytes Message

94 41 1D DF 2B 9B AE E3 Park brake applied
94 00 00 00 00 00 00 00 Check tyre pressures
44 00 00 00 00 00 00 00 MyKey Vehicle at top speed
55 00 00 00 00 00 00 00 Active City Stop Sensor blocked Clean screen
55 00 00 00 00 00 00 00 Active City Stop not available

2. A single CAN packet controls the display of several messages, but the rate of CAN packet
transmission can affect which of several possible messages are displayed.

9.9 Testing individual CAN packet bytes from found messages

During the fuzz testing and search, different messages had been seen on the ECU’s screen, including
messages not applicable to the lab car, see Figure 9.17. The discovered CAN packets responsible,
with ids 793 and 752, were examined in further detail.

The CAN data packets in the fuzz testing are randomly generated. The frst line in Table 9.8
shows CAN packet with id 739 that generated the Park brake applied message. Using the fuzzer’s
single shot transmission ability, see Figure 9.18, an attempt to isolate the byte causing the message
to display was performed. First, all bytes except one were zeroed, see the second line in Table 9.8,
and a CAN packet was sent. The result was another message, Check tyre pressures (see top left in
Figure 9.17).

Attempts to isolate the data responsible for a particular message was performed. The bit patterns
01010101 (41 hex) and 10101010 (55 hex) turn on and off each bit in the byte. This revealed three
more messages, see lines 3 to 5 in Table 9.8. For the data bytes 55 00 00 00 00 00 00 00 (hex)
one message is seen on the frst transmission of the packet, then subsequent transmissions display
the second message. (The power to the ECU needed to be turned off and on to get it to display the
original message again.)

In attempting to isolate the data that causes the originally observed Park brake applied message
seen during the fuzz testing, several messages were being found. A systematic approach to isolate the
data causing such messages was required.

9.10 Single byte testing for individual display messages

The identifed CAN data packets have eight bytes of data. Testing the effect of the byte values can be
done in three different ways:

1. Treat the individual bits in a byte as fags. Testing involves setting and clearing different bits in
each of the packet’s bytes.

136 Fuzz testing a display ECU

Fig. 9.17 Some display messages discovered from log fle analysis via a search, the frst four messages
and last but one message relate to systems not present on the lab vehicle, for example, the vehicle
does not have rear doors, even though the ECU functions in the lab car

137 9.10 Single byte testing for individual display messages

2. Treat the data bytes as integer numbers and increment the values from 0 to 255.

3. Generate random values over a byte’s range from 0 to 255.

Each of the methods has issues. The main problem, which was discussed in Section 6.5.1 in
Chapter 6, is a combinatorial explosion issue. Each byte has 28 values and there are eight bytes in
the standard CAN packets used in the lab vehicles. This gives a total number of discreet packet
combinations for one CAN id as 264, or nearly 18.5 Exa (1018) possible values.

The use of random bytes to investigate a particular packet’s properties is not effcient, due to
the number of possible packet combinations, unless each byte is considered isolated. In which case
randomising over the range 0 to 255 for the eight bytes gives 2048 combinations (256 ∗ 8 = 2048).
However, even for the 2048 possible tests some form of automation is required.

When viewing the bytes as bit fags the number of combinations is vastly simplifed, with eight
bits per byte and eight bytes, there are only 64 bits to test. However, if combinations of bits are used
then the number of combinations can explode.

Since restrictions are required on the testing to limit the effects of a combinational explosion,
the experiments start on a restricted range of values to help determine the best approach. The frst
experiment tests bit settings and second experiment tests combinations of bits, which also equates to
testing the frst few integer values.

9.10.1 Experiment to test packet bit settings

The following method is used to test the individual bit settings in a CAN packet for the display ECU:

1. The experiment starts by setting the contents of the data bytes in the CAN packet to zero.

2. The CAN packet is transmitted to the display ECU.

3. The screen on the display ECU is observed for any reaction.

4. Each bit is set to one in order (starting at the frst bit in the frst byte).

5. If the last bit has been set then fnish, otherwise go to step 2.

9.10.2 Experiment to test CAN packet byte values

The following method is used to test the individual byte values in a CAN packet for the display ECU:

1. The experiment starts by setting the contents of the data bytes in the CAN packet to zero.

2. The CAN packet is transmitted to the display ECU.

3. The screen on the display ECU is observed for any reaction.

4. Each byte is increment by one in order (starting at the frst byte).

5. If byte values reached a required number then fnish, otherwise go to step 2.

138 Fuzz testing a display ECU

Fig. 9.18 Testing for individual display messages

9.10.3 Modifying the CAN fuzzer to aid the experiments

To allow for easy manipulation and transmission of the CAN packets to the display ECU, a new single
packet transmission facility was added to the CAN fuzzer. The new Single Shot interface was based
upon functionality used in Chapter 6, the lock/unlock app seen in Figure 6.5.

The single shot interface allows for a CAN packet to be defned, with any value set for the data
bytes. The data values can be incremented and decremented using the arrows next to them, see
Figure 9.18.

9.10.4 Known display ECU messages

The fuzz testing and search revealed some messages, see Figure 9.17. Other messages were seen when
operating the vehicle, Table 9.1. To determine the range of possible messages that could be found the
user manual for the lab car was examined, available from the manufacturer’s customer website (the
reference has been redacted due to commercial disclosure reasons). The car’s user manual lists 78
possible messages that the display may show. Some of these relate to options and equipment that may
not be present due to the vehicle model. The messages from the user manual are listed in Table 9.9.
However, only two of the messages initially observed on the lab car’s original screen, see Table 9.1,
are listed in the user manual (Driver door open and Passenger door open), one message is similar, To
start press clutch compared to Press clutch to start. From the other eleven initially seen messages
eight are related to the climate control system.

139 9.10 Single byte testing for individual display messages

Table 9.9 Messages listed in the owner’s manual (reference redacted due to responsible disclosure)

Message text # Message text

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39

Active City Stop Auto braking
Active City Stop Sensor blocked Clean
screen
Active City Stop not available
Active City Stop off
Airbag malfunction Service now
Alarm triggered Check vehicle
Interior Scan deactivated
Driver door open
Alarm system mal. . . Service required
Driver side rear door open
Passenger door open
Passenger side rear door open
Boot open
Bonnet open
Engine preheating
Immobiliser malfunction Service now
Transmission overtemperature Stop
safely
Key not detected
Key outside car
Key Battery low Replace battery
Turn ignition off Use POWER button
Buckle up to unmute audio
Transmission not in Park
Close boot or use spare key
Steering lock engaged Turn steering
wheel
Left indicator malfunction Change bulb
Right indicator malfunction Change bulb
Brake fuid Level low Service now
Brake system malfunction Stop safely
Engine oil pressure low Stop safely
Engine malfunction Service now
MyKey ESC cannot be deactivated
Engine oil change due Service required
MyKey vehicle at top speed
MyKey active Drive safely
MyKey Speed limited to XX mph
MyKey Speed limited to XX km/h
MyKey Check speed Drive safely
MyKey Vehicle near top speed

40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78

MyKey Park aid cannot be deactivated
Auto wiper/lights malfunction Service
required
Park brake applied
Traction control off
Sport mode
Electronic stability control off
ABS malfunction Service now
ESP malfunction Next service
Tyre monitor mal. . . Service required
Engine start pending Please wait
Engine start cancelled
Diesel flter overloaded See manual
Press brake to start
Press clutch to start
Press brake and clutch to start
Cranking time exceeded
Auto StartStop Press a pedal to start
engine
Auto StartStop Switch ignition off
Auto StartStop Manual start required
Auto StartStop Select neutral
Power steering malfunction Service now
Steering lock malfunction Stop safely
Steering lock malfunction Service now
Check tyre pressures
Tyre pressure sys malfunction Service
required
Hill start assist not available
Tyre sensors not detected Check manual
Transmission malfunction Service now
ESP off
Use brake Stop safely
Vehicle not in Park Select P
Select N or P to start
Select N to start
Door open apply brake
Transmission hot Stop or speed up
Transmission hot Wait. . .
Transmission ready
Press brake to unlock selector lever
Selector lever unlocked

140 Fuzz testing a display ECU

9.11 Results varying individual packet bit and bytes values

The initial fuzz testing and search discovered two CAN ids that resulted in messages being shown on
the display ECU. The frst experiment, using the method described above in Section 9.10.1, was to set
each bit position in the CAN packet’s data for the CAN packets, with ids of 793 and 752.

9.11.1 CAN packet ids 793 and 752 testing results for single bit settings

The results from setting each bit in turn for CAN packets with ids 793 and 752 are split over in six
tables. In each case, only a single bit in one of the data bytes was being set. All the other bits in the
remaining seven data bytes were turned off (i.e. the byte value was zero):

• CAN packet id 793 - Table 9.10 shows bit setting results for bytes 1 to 3.

• CAN packet id 793 - Table 9.11 shows bit setting results for bytes 4 to 6.

• CAN packet id 793 - Table 9.12 shows bit setting results for bytes 7 and 8.

• CAN packet id 752 - Table 9.13 shows bit setting results for bytes 1 to 3.

• CAN packet id 752 - Table 9.14 shows bit setting results for bytes 4 to 6.

• CAN packet id 752 - Table 9.15 shows bit setting results for bytes 7 and 8.

9.11.2 CAN packet ids 793 and 752 results discussion for single bit settings

There are several observations that can be made from the results in Section 9.11.1. It can be seen that
for CAN packet 793, out of the total 64 bit positions there are 22 bits that result in a message being
displayed. However, one message is repeated twice, the message Park brake applied. Furthermore,
two messages are not present in the user manual, the message Engine on OK, and the message Selector
lever unlocked. Thus, the bit set testing for CAN packet 793 revealed 20 of the 78 known messages
listed in the user manual.

For CAN packet 752, out of a total of 64 bit positions there are 55 bit positions that result in a
message being displayed. However, not all 55 bit positions result in a unique message. Two messages
that are displayed via CAN packet 752 are also displayed by CAN packet 793. Two messages are
repeated by different bytes. One message is not listed in the user manual. Three messages have similar
text to messages in the user manual. Two messages are repeated by several bits. Here are the details:

1. The message Auto StartStop engine starting, displayed via bit 8 in byte 3 of CAN packet 752,
is not listed in the user manual.

2. The message Bonnet open is repeated by CAN packet 752, displayed via by bit 2 in byte 3 and
bit 3 in byte 4.

141 9.11 Results varying individual packet bit and bytes values

Table 9.10 Display ECU CAN packet id 793 bit setting results for bytes 1 to 3, all the other bytes in
the eight byte packet were set to zero

Byte 1 Byte 2 Byte 3 Message and #

0000 0000 0000 0000 0000 0000 none (blank screen)
0000 0001 0000 0000 0000 0000 Press brake and clutch to start (54)
0000 0010 0000 0000 0000 0000 Press brake to start (52)
0000 0100 0000 0000 0000 0000 Press clutch to start (53)
0000 1000 0000 0000 0000 0000 Active City Stop Auto braking (1)
0001 0000 0000 0000 0000 0000 Active City Stop not available (3)
0010 0000 0000 0000 0000 0000 Active City Stop Sensor blocked Clean screen (2)
0100 0000 0000 0000 0000 0000 Check tyre pressures (63)
1000 0000 0000 0000 0000 0000 Tyre pressure sys malfunction Service required (64)
0000 0000 0000 0001 0000 0000 Engine on OK (not listed)
0000 0000 0000 0010 0000 0000 MyKey active Drive safely (35)
0000 0000 0000 0100 0000 0000 MyKey Speed limited to 160 km/h (37)
0000 0000 0000 1000 0000 0000 MyKey vehicle at top speed (34)
0000 0000 0001 0000 0000 0000 none
0000 0000 0010 0000 0000 0000 none
0000 0000 0100 0000 0000 0000 none
0000 0000 1000 0000 0000 0000 none
0000 0000 0000 0000 0000 0001 MyKey Check speed Drive safely (38)
0000 0000 0000 0000 0000 0010 none
0000 0000 0000 0000 0000 0100 none
0000 0000 0000 0000 0000 1000 none
0000 0000 0000 0000 0001 0000 none
0000 0000 0000 0000 0010 0000 none
0000 0000 0000 0000 0100 0000 none
0000 0000 0000 0000 1000 0000 none

142 Fuzz testing a display ECU

Table 9.11 Display ECU CAN packet id 793 bit setting results for bytes 4 to 6, all the other bytes in
the eight byte packet were set to zero

Byte 4 Byte 5 Byte 6 Message and #

0000 0000 0000 0000 0000 0000 none (blank screen)
0000 0001 0000 0000 0000 0000 MyKey Park aid cannot be deactivated (40)
0000 0010 0000 0000 0000 0000 MyKey ESC cannot be deactivated (32)
0000 0100 0000 0000 0000 0000 none
0000 1000 0000 0000 0000 0000 none
0001 0000 0000 0000 0000 0000 none
0010 0000 0000 0000 0000 0000 none
0100 0000 0000 0000 0000 0000 none
1000 0000 0000 0000 0000 0000 none
0000 0000 0000 0001 0000 0000 Press brake to unlock selector lever (77)
0000 0000 0000 0010 0000 0000 Cranking time exceeded (55)
0000 0000 0000 0100 0000 0000 none
0000 0000 0000 1000 0000 0000 none
0000 0000 0001 0000 0000 0000 none
0000 0000 0010 0000 0000 0000 none
0000 0000 0100 0000 0000 0000 none
0000 0000 1000 0000 0000 0000 none
0000 0000 0000 0000 0000 0001 none
0000 0000 0000 0000 0000 0010 none
0000 0000 0000 0000 0000 0100 none
0000 0000 0000 0000 0000 1000 none
0000 0000 0000 0000 0001 0000 none
0000 0000 0000 0000 0010 0000 none
0000 0000 0000 0000 0100 0000 Transmission not in Park (23)
0000 0000 0000 0000 1000 0000 Selector lever unlocked (not listed)

http:Table9.11

143 9.11 Results varying individual packet bit and bytes values

Table 9.12 Display ECU CAN packet (id 793) bit setting results for bytes 7 and 8, all the other bytes
in the eight byte packet were set to zero

Byte 7 Byte 8 Message and #

0000 0000 0000 0000 none (blank screen)
0000 0001 0000 0000 Park brake applied (42)
0000 0010 0000 0000 none
0000 0100 0000 0000 none
0000 1000 0000 0000 none
0001 0000 0000 0000 none
0010 0000 0000 0000 none
0100 0000 0000 0000 none
1000 0000 0000 0000 none
0000 0000 0000 0001 none
0000 0000 0000 0010 none
0000 0000 0000 0100 none
0000 0000 0000 1000 none
0000 0000 0001 0000 none
0000 0000 0010 0000 MyKey Vehicle near top speed (39)
0000 0000 0100 0000 none
0000 0000 1000 0000 Park brake applied (42)

3. The message Boot open is repeated by CAN packet 752, displayed via by bit 1 in byte 3 and bit
4 in byte 4.

4. The message Key Battery low Replace battery is repeated by CAN packet 752, displayed via by
bit 3 in byte 5 and bit 6 in byte 5.

5. The message Press brake to start is repeated, displayed by bit 2 in byte 1 of CAN packet 793,
and bit 2 in byte 5 of CAN packet 752.

6. The message Press clutch to start is repeated, displayed by bit 3 in byte 1 of CAN packet 793,
and bit 1 in byte 5 of CAN packet 752.

7. The message Diesel flter overloaded Refer to manual, displayed by bit 5 in byte 1 of CAN id
752, is similar to the message Diesel flter overloaded See manual in the user manual.

8. The message Transmission hot Wait 4 mins, displayed by bit 8 in byte 8 of CAN id 752, is
similar to Transmission hot Wait. . . in the user manual.

9. The message Switch ignition off Press POWER, displayed by bit 8 in byte 6 of CAN id 752, is
similar to Turn ignition off Use POWER button in the user manual.

10. The message Alarm triggered Check vehicle is displayed by bits 1 to 4 of byte 8 in the CAN
packet 752.

144 Fuzz testing a display ECU

Table 9.13 Display ECU CAN packet id 752 bit setting results for bytes 1 to 3, all the other bytes in
the eight byte packet were set to zero

Byte 1 Byte 2 Byte 3 Message and #

0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
0001 0000
0010 0000
0100 0000
1000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
0001 0000
0010 0000
0100 0000
1000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
0001 0000
0010 0000
0100 0000
1000 0000

none (blank screen)
none
Transmission overtemperature Stop safely (17)
Transmission malfunction Service now (67)
Engine malfunction Service now (31)
Diesel flter overloaded Refer to manual (resembles 51)
Engine oil change due Service required (33)
Engine oil pressure low Stop safely (30)
Hill start assist not available (65)
Airbag malfunction Service now (5)
Brake system malfunction Stop safely (29)
Brake fuid Level low Service now (28)
ABS malfunction Service now (46)
none
none
Power steering malfunction Service now (60)
none
Boot open (13)
Bonnet open (14)
none
none
none
none
none
Auto StartStop engine starting (not listed)

http:Table9.13

145 9.11 Results varying individual packet bit and bytes values

Table 9.14 Display ECU CAN packet id 752 bit setting results for bytes 4 to 6, all the other bytes in
the eight byte packet were set to zero

Byte 4 Byte 5 Byte 6 Message and #

0000 0000 0000 0000 0000 0000 none (blank screen)
0000 0001 0000 0000 0000 0000 Left indicator malfunction Change bulb (26)
0000 0010 0000 0000 0000 0000 Right indicator malfunction Change bulb (27)
0000 0100 0000 0000 0000 0000 Bonnet open (14)
0000 1000 0000 0000 0000 0000 Boot open (13)
0001 0000 0000 0000 0000 0000 Passenger side rear door open (12)
0010 0000 0000 0000 0000 0000 Driver side rear door open (10)
0100 0000 0000 0000 0000 0000 Passenger door open (11)
1000 0000 0000 0000 0000 0000 Driver door open (8)
0000 0000 0000 0001 0000 0000 Press clutch to start (53)
0000 0000 0000 0010 0000 0000 Press brake to start (52)
0000 0000 0000 0100 0000 0000 Key Battery low Replace battery (20)
0000 0000 0000 1000 0000 0000 Auto StartStop Press a pedal to start engine (56)
0000 0000 0001 0000 0000 0000 Alarm system malfunction Service required (9)
0000 0000 0010 0000 0000 0000 Key Battery low Replace battery (20)
0000 0000 0100 0000 0000 0000 Interior Scan deactivated (7)
0000 0000 1000 0000 0000 0000 Auto wiper/lights malfunction Service required (41)
0000 0000 0000 0000 0000 0001 Auto StartStop Manual start required (58)
0000 0000 0000 0000 0000 0010 Close boot or use spare key (24)
0000 0000 0000 0000 0000 0100 Steering lock engaged Turn steering wheel (25)
0000 0000 0000 0000 0000 1000 Steering lock malfunction Stop safely (61)
0000 0000 0000 0000 0001 0000 Steering lock malfunction Service now (62)
0000 0000 0000 0000 0010 0000 Key outside car (19)
0000 0000 0000 0000 0100 0000 Key not detected (18)
0000 0000 0000 0000 1000 0000 Switch ignition off Press POWER (similar to 21)

146 Fuzz testing a display ECU

Table 9.15 Display ECU CAN packet id 752 bit setting results for bytes 7 and 8, all the other bytes in
the eight byte packet were set to zero

Byte 7 Byte 8 Message and #

0000 0000 0000 0000 none (blank screen)
0000 0001 0000 0000 Door open apply brake (73)
0000 0010 0000 0000 Select N to start (72)
0000 0100 0000 0000 Press brake to start (52)
0000 1000 0000 0000 Auto StartStop Select neutral (59)
0001 0000 0000 0000 Select N or P to start (71)
0010 0000 0000 0000 Vehicle not in Park Select P (70)
0100 0000 0000 0000 Auto StartStop Switch ignition off (57)
1000 0000 0000 0000 Immobiliser malfunction Service now (16)
0000 0000 0000 0001 Alarm triggered Check vehicle (6)
0000 0000 0000 0010 Alarm triggered Check vehicle (6)
0000 0000 0000 0100 Alarm triggered Check vehicle (6)
0000 0000 0000 1000 Alarm triggered Check vehicle (6)
0000 0000 0001 0000 Transmission hot Stop or speed up (74)
0000 0000 0010 0000 Transmission hot Stop or speed up (74)
0000 0000 0100 0000 Transmission ready (37)
0000 0000 1000 0000 Transmission hot Wait 4 mins (similar to 75)

11. The message Transmission hot Stop or speed up is displayed by bits 5 and 6 of byte 8 in the
CAN packet 752.

Taking the results from the bit testing, and excluding repeated messages, and the one unlisted
message, then at least 44 messages are displayed via CAN packet 752. This means that CAN packets
752 and 793 are capable of displaying 64 of the 78 messages listed in the user manual, suggesting that
one or more additional packets could be responsible for the remaining messages if combined bits,
covered in Section 9.11.3 below did not introduce additional messages.

9.11.3 CAN packet 793 testing results for byte values

Having determined that bit positions within a CAN packet’s data do result in messages being shown
on the display ECU, the next test was to set byte values.

Using the method described in Section 9.10.2 the frst 50 values of the frst byte were tried for
CAN packet 793. The frst 50 values are covered by the frst byte in the payload of a packet. The
results from trying values 0 to 49 are shown in Table 9.16, where each number in the messages column
corresponds to a message listed in Table 9.9.

The value set for byte 1 can be equivalent to setting multiple messages bits, for example, in
Table 9.10 bit 2 corresponds to Press brake to start, and bit 3 corresponds to Press clutch to start. A

147 9.11 Results varying individual packet bit and bytes values

Table 9.16 Display ECU CAN packet (id 793) value setting results for byte 1, all other 7 bytes set to
zero, the messages displayed corresponded to the bits set

Value Msg(s) # Value Msg(s) #

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

n/a
54
52
52, 54
53
53, 54
52, 53
52, 53, 54
1
54, 1
52, 1
52, 54, 1
53, 1
53, 54, 1
52, 53, 1
52, 53, 54, 1
3
3, 54
3, 52
3, 54, 53
3, 53
3, 54, 53
3, 53, 52
3, 54, 53, 52
3, 1

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

3, 53, 1
3, 52, 1
3, 54, 52, 1
3, 53, 1
3, 54, 53, 1
3, 53, 52, 1
3, 54, 53, 52, 1
2
2, 54
2, 52
2, 54, 52
2, 53
2, 54, 53
2, 53, 52
2, 54, 53
2, 1
2, 54, 1
2, 52, 1
2, 54, 52, 1
2, 53, 1
2, 53, 1
2, 54, 53, 1
2, 54, 53, 52, 1
2, 3
2, 3, 54

http:Table9.16

148 Fuzz testing a display ECU

value of 6 in byte 1 is equivalent to both bit 2 and 3 being set. The results show that each set bit can
cause its equivalent message to be displayed. However, there are a couple of conficts.

Transmitting multiple copies of the same data

The value was set in byte 1, and all other bytes set to zero. This was then sent repeatedly using the
CAN fuzzer’s single shot facility. This was done by pressing the single shot button or using the
fuzzer’s auto-repeat facility. When two or more data byte bits are set, then a fast or slow transmission
rate would vary which of the expected messages were displayed.

Rate of packet transmission

Packet transmission rate would affect how long a message was shown. At the bottom of each message
that is shown on the display ECU a small progress bar can be seen. It updates each second and after
ten seconds the bar is full or nearly full, at which point the message clears. The rate of CAN packet
transmission can affect this progress bar functionality. When the display ECU receives packets it will
perform one of several actions:

1. the messages being displayed will remain and the progress bar is reset;

2. the screen will clear (revert to blank);

3. a new message is displayed;

4. the current message will display for the ten seconds as the progress bar flls.

As an example, the display ECU was observed when sent packets at different rates. The value of
3 was set in the frst byte of CAN packet 793, and all other byte values were zero. The value of 3
has the bits set for messages Press brake to start and Press brake and clutch to start. The result of
sending this packet to the display ECU at four different transmission rates is shown in Table 9.17. At
all the tested transmission rates, when the transmission of the CAN packets stop, the screen will clear
and go blank straightaway.

Without having access to the source code for the display ECU, it is diffcult to understand the
variation in the display ECU’s behaviour due to different packet transmission rates. It is likely that a
single rate was designed for the vehicle. At a 100ms rate (10 packets per second) the display ECU
shows a ten-second message with a short pause, this behaviour appeared reasonable. Furthermore,
stopping packet transmissions stops the display of messages. Knowing these factors aids with potential
attacks aimed at manipulating the operation of the ECU display.

9.11.4 CAN packet 752, byte value setting tests

The byte value settings test was tried for CAN packet 752 to confrm the same behaviour. CAN
packet 752 had the value 6 set in the frst byte, the remaining bytes being set to the value of zero. The

149 9.12 Testing packet length variation

Table 9.17 The CAN packet transmission rate affects how the messages are displayed on the ECU, in
this example the CAN id was 793, and the eight bytes of data were 03 00 00 00 00 00 00 00

Packets per second Message display effect

0.5 The message Press brake to start is displayed for one second, the
screen clears, the message is displayed again, occasionally the message
Press brake and clutch to start is shown. The progress bar does not get
a chance to fll.

1 Displays the message Press brake to start for ten seconds as the
progress bar flls. The screen clears for six seconds. This process
repeats. At the start of the transmission, the message Press brake and
clutch to start is shown once.

10 Displays the message Press brake to start for ten seconds as the
progress bar flls. The screen clears for four seconds. This process

100
repeats.
Displays the message Press brake to start for ten seconds as the
progress bar flls. The screen blanks for twelve seconds. The process
repeats. At the start of the transmission, the message Press brake and
clutch to start is shown once for ten seconds.

value of 6 corresponds to the 2nd and 3rd bits of byte 1 being set and the messages Transmission
overtemperature Stop safely and Transmission malfunction Service now for display on the ECU’s
screen (as shown in Figure 9.16).

Transmitting CAN packet 752 with byte 1 set to value 6 did result in those two messages being
display. Thus, the value behaviour is as for CAN packet 793. Again, varying the packet transmission
rate did affect whether or not either message were displayed or only one of the messages was displayed.

9.12 Testing packet length variation

The two CAN packets that showed messages on the display ECU were discovered via fuzz testing.
During that fuzz testing, the CAN fuzzer was confgured to vary the CAN id and data values. The
fxed variable was the data length, set to 8, the value observed on the lab vehicle’s CAN networks.
Next, an experiment was performed to vary the data length of the CAN packet for the two found
packets, to see if it infuenced the ECU.

9.12.1 Method for the packet length variation

The following method is used to test the variation in the data length for CAN packets 793 and 752.

1. The CAN fuzzer’s single shot function was confgured to transmit CAN packets 793 and 752 to
the display ECU.

2. The data length of the CAN packet was varied from a maximum of 8 to a minimum of 0.

150 Fuzz testing a display ECU

Table 9.18 Unexpected messages seen when decreasing packet data length for CAN ids 793 and
752, zeroed eight byte data values generate no messages and is used as the baseline, when more
than one message was seen they were viewed with consecutively sent packets and/or seen one after
another from one sent packet, however, the byte values that would normally be used to generate the
seen messages would be present beyond the end of the data in the sent packet, as indicated by the
underlines, this indicates a buffer overfow problem with the ECU’s software.

Id Data length Message(s) seen Sent vs decoded data (hex)

793 8 none 00 00 00 00 00 00 00 00
793 7 42 00 00 00 00 00 00 00 80
793 6 42 00 00 00 00 00 00 01 00
793 5 42 00 00 00 00 00 00 01 00
793 4 Selector lever unlocked, 42 00 00 00 00 00 80 01 00
793 3 77, 23 00 00 00 00 01 40 00 00
793 2 40 00 00 00 01 00 00 00 00
793 1 34 and Engine on OK 00 09 00 00 00 00 00 00
793 0 64, 3 and Engine on OK 90 01 00 00 00 00 00 00
752 8 none 00 00 00 00 00 00 00 00
752 7 6 00 00 00 00 00 00 00 0F
752 6 6 00 00 00 00 00 00 00 0F
752 5 62 00 00 00 00 00 01 00 00
752 4 62, 61, 57 00 00 00 00 00 18 40 00
752 3 11, 62 00 00 00 40 00 01 00 00
752 2 12, 11, 13 00 00 01 48 00 00 00 00
752 1 28, 10 00 04 00 20 00 00 00 00
752 0 67, 17, 28, 29, 10 06 06 00 20 00 00 00 00

3. All the data values were fxed at zero.

4. The display ECU was observed for a reaction when the confgured CAN packets were transmit-
ted.

9.12.2 Results for the packet length variation

The results from vary the data length for CAN packets 793 and 752 are shown in Table 9.18. When
the data length is set to 8, with all bytes set to a value of zero, the display ECU does not show any
messages. This is expected and was seen in the bit setting experiments (see Section 9.11.1). However,
reducing the length of the data sent in the packet, whilst keeping the data values set to zero, does
result in messages being displayed.

For example, transmitting the CAN packet 793 with the eight bytes of data 00 00 00 00 00 00

00 80 (hex) results in the message Park brake applied on the display ECU. However, this message
is displayed when CAN packet 793 is sent with the 7 bytes of data 00 00 00 00 00 00 00 (hex).
Similar results occur at all data lengths. This indicates that the software in the display ECU is probably

151 9.13 Exclusions lists for fuzz testing and CAN packet 753

Fig. 9.19 Fuzz testing CAN with an id exclusion list

programmed to always read eight bytes from the data buffer. If this buffer overfow error was found
prior to production, it would require a bug being raised. The software in the ECU should ignore any
message that was not of the correct length.

9.13 Exclusions lists for fuzz testing and CAN packet 753

The use of the CAN fuzzer to determine component functionality has shown to be useful. Though, as
previously noted, the discovery of functionality is dependent upon the ability to obtain a cyber-physical
reaction from the component. In the case of the display ECU, it is a visible response being observed.
Further functional discovery requires repeating the fuzz testing whilst excluding the CAN packets that
have been determined. This required a modifcation to the CAN fuzzer to prevent the transmission of
packets with a known id. In Figure 9.19 the CAN fuzzer can be seen confgured with packet ids to
exclude from the fuzz testing.

Having excluded the generation of CAN packets with ids 752 and 793 the next fuzz testing
observed four additional messages:

• OFF Traction control off, see message 43 in Table 9.9;

• SYNC connection error, not explicitly listed in the vehicles user manual;

• HH:MM DD:MM:YYYY, a time and data template;

• 00:09 01:01:2000, a time and date display.

The search for the CAN packet that produces the message OFF Traction control off is shown in
Table 9.19. As for the previous searches, once the search narrows to the last four packets the results
become inconsistent, variable based on the transmission frequency of the CAN packets. However, as
for the other searches, the CAN fuzzer’s single packet transmission functionality identifed the CAN

152 Fuzz testing a display ECU

Table 9.19 Results on a search on a fuzz testing log fle for another display ECU CAN packet

Playback start line Playback end line No. messages seen

1 1343 3
1 671 0

672 1343 2
672 1007 0
1008 1343 2
1008 1174 3
1008 1091 0
1092 1174 2
1133 1174 2
1133 1153 0
1154 1174 2
1154 1164 2
1154 1159 0
1160 1164 2
1160 1162 Inconsistent
1163 1164 Inconsistent

packet responsible for the shown message, packet id 753 with the data 1C 39 32 CF DA 92 FE 00

(hex).
For the CAN packets with ids 752 and 793, an experiment to set individual bits in the data bytes

revealed many of the messages that the ECU display shows, see Tables 9.13 to 9.15. However, for the
next discovered message, id 753, the setting of individual bits did not work in the same manner:

1. For data 00 00 00 00 00 00 00 00 (hex) to 08 00 00 00 00 00 00 00, all zeros and the
frst fve bits, showed the message OFF Traction control off.

2. For data 10 00 00 00 00 00 00 00, the sixth-bit set, the message changed to Interior scan
To deactivate press OK with OK and Cancel also displayed.

3. All subsequent bit settings were as for 2., including resetting the data values as for 1.

4. Turning the power to the display ECU off, waiting two minutes, and turning the power back on
cleared the message in 2.

5. When the display ECU was reset via 4. then the frst values worked again, as in 1.

The hypothesis for the above results is that the ECU display requires the message to be acknowl-
edged by a button press. However, this cannot be tested because the bench testing does not have the
vehicles buttons connected.

It was further discovered that almost all the bits for CAN packet 753 display the same message,
the message OFF Traction control off, except for:

153 9.14 Reverse engineering confdential functionality

• Byte 1 bit 6 (value 16) displays Interior scan To deactivate press OK with OK and Cancel;

• Byte 2 bit 7 (value 64) displays nothing;

• Byte 2 bit 8 (value 128) displays OFF Electronic stability control off ;

• Byte 4 bit 6 (value 32) displays Hold to switch ESC off

Thus, the behaviour of packet 753 is different to packets 752 and 793. It is not possible to
determine why this is the case. However, it can be speculated that the code processing 753 must be
structured differently to code processing 752 and 793.

9.14 Reverse engineering confdential functionality

On frst appearances, the display ECU appears to be a simple device, a screen for communicating
messages to the vehicle occupants. However, there is a degree of complexity:

• the vehicle’s user manual shows 78 possible messages, many of them would only be seen if a
fault occurs or certain vehicle options are ftted (e.g. a manual transmission compared to an
automatic transmission);

• the transmission rate of CAN packets infuences the message display;

• different CAN packets are responsible for its operation;

• different bit settings, singular or in combination, invoke different messages;

• the vehicles buttons affect the operation of the display.

This information may not normally be available to those outside of a vehicle manufacturer’s
engineering functions and maintenance network. However, in Section 9.7 a list of entities who would
fnd knowledge on the operation of an ECU useful was provided. The experiments against the display
ECU have shown that the prototype CAN fuzzer is useful for revealing functionality, more than that
which can be determined from operating the vehicle alone. However, the main aim of this research
was not to fully reverse engineer a component. The primary aim was to determine the usefulness of
fuzz testing to improve automotive systems assurance levels. To that end, the results from testing
against various ECUs have provided useful evidence to support the use of automotive fuzz testing.
Further support is added by using such results, and for the display ECU, it is to inject unexpected
messages into the lab vehicle.

154 Fuzz testing a display ECU

9.15 Injecting display ECU messages

One of the results from the experiments in this chapter is learning enough about a component in order
to use it to compromise the vehicle. In doing so it illustrates the need to improve component and
system design to make such compromising diffcult.

For the display ECU, the knowledge to control what is shown to vehicle occupants is useful for
any potential adversary. In this case, the knowledge allows for the display of incorrect messages to
the vehicle users, including messages that may not be understood because they are not in the user
manual. Displaying those messages would be disturbing in a variety of situations.

In Figure 9.20 the message injection can be seen in action. It should also be noted that the
messages cause a loud beeping sound within the vehicle which is not heard during the bench based
experiments, and would heighten anxiety for vehicle users.

Fig. 9.20 CAN packets discovered from the fuzz testing are injected into the lab vehicle’s internal
network, note that the lab vehicle required the brake to be pressed to start, the bonnet was closed, the
brake fuid level was not low, and the car had not been used as was therefore cold

It had already been determined that the display ECU is not connected to the OBD port, see
Section 9.4.2. Thus, the CAN packets need to be sent via a connection to the lab vehicles internal
CAN bus. This is achieved using the same man-in-the-middle connection as for the display ECU
investigated in Chapter 8, see Figure 8.3.

155 9.16 Concluding the display ECU fuzz testing

This means that the message injection is not as straightforward as it could be. However, access to
the network is not diffcult and certainly possible by someone knowledgeable. There is the argument
that if physical access is required then some other attack would be performed. However, the principles
behind the discovery of the display ECU functionality and the message injection, are applicable to
future security testing. Furthermore, there are multi-stage scenarios in which a similar, or the same,
type of attack would be useful to certain adversaries, for example, state actors or unscrupulous repair
businesses planting controllable devices in a vehicle, in order to facilitate a vehicle stop or false repair.
Although an attack is possible it may not necessarily be used, however, there are always lessons to
learn, and knowledge that can be applied elsewhere.

9.16 Concluding the display ECU fuzz testing

This chapter began with an overview of the display ECU engineering and how it fts within the
vehicle’s systems. It was chosen as a ToE because of its cyber-physical characteristics, in other words
it has a visual aspect that is enabled via the CAN communications. Unless access to the internal
designs of vehicles is provided, it may not be immediately possible to determine if a CAN packet
will result in a system reaction. This can make fuzz testing vehicle systems diffcult in comparison
to normal IT systems, where calling an API or sending a communications data packet often results
in a response. This is one of the challenges automotive security researchers need to address (see
Section 10.4.4).

The frst stage in fuzz testing the display ECU was to get it communicating and working with the
prototype CAN fuzzer. The work with the gateway ECU in Chapter 6 and the media ECU in Chapter 7
provided valuable knowledge in achieving a reliable bench experiment. However, the vehicle’s wiring
diagram did not fully match the display’s design. This showed that documentation is not always
accurate and can hamper experimentation.

Fuzz testing provided immediate results. The combinatorial explosion problem of the CAN bus
protocol was not encountered in this instance, due to ECUs operational design. The internal operation
of the display ECU’s software comes across as fairly straightforward. It would not be diffcult to
strengthen the resilience of the ECU with some additional checks on the messages that the ECU needs
to process (also see Section 10.4.2).

The use of a simple fle halving search technique to discover functionality proved useful in fnding
the CAN ids used to control the display. A further granularity of functionality was achieved by setting
individual bits within the discovered packets. Varying the length of the data packets also revealed
potential issues with the ECU’s software which suggests that only functional testing was performed.

If fuzz testing had been available when the display ECU was developed and was performed prior
to production, then benefcial system design changes and bug fxes would have been made. The
fuzz testing is also applicable to the post-production vehicle life cycle, where security testing can be
applied to design iterations.

156 Fuzz testing a display ECU

Finally, the techniques revealed by the experiments performed in this chapter have helped to
improve the functionality of the prototype CAN fuzzer and suggest additional functionality. The results
on the display ECU provide useful knowledge for automotive CAN fuzz testing and demonstrating
that it is a useful technique for automotive systems testing.

Chapter 10

Discussion and conclusion

We hope you enjoyed the ride!

Johnnycab, Total Recall (Film, 1990)

In this chapter, the knowledge uncovered is summarised. This includes how the contributed
knowledge addresses the original objective and research question. There is a discussion on the
challenges revealed when fuzz testing within the automotive feld. Taking this research further to
solve discovered problems is covered, along with other future directions for the work, which includes
improvements to the prototype CAN fuzzer.

10.1 On determining the research aim

In the introduction, in Chapter 1, the point was made that the two technologies of software and
wireless connectivity provides a conduit for cyber attacks. Researchers have proven that CAVs can
be susceptible to hacking. The hacking can be as easy as relaying key fob signals in order to steal a
vehicle, or, require many man-years of work to fnd multi-stage attacks that can be used to take over a
car remotely via the Internet or cellular networks.

The point was also made that cyber threats are not a new phenomenon, and much of the security
knowledge learnt from other domains can be applied to vehicular systems. Indeed, in the literature
review in Chapter 2, long established concepts of software assurance, the CIA triad, threats, threat
agents, and ToEs are the foundations for viewing the cyber-security issues faced by CAVs.

Building upon these security foundations are the specifc threats against technologies relevant to
the automotive feld. The history and background to the attacks on vehicle systems were covered,
particularly the problems of the ubiquitous CAN bus as the favoured in-vehicle communications
network.

Manufacturers must now be fully aware of the possible threats to their products. The vehicle
is no longer just about its physical engineering, it is a malleable and connected software platform.
As such it brings new dimensions to the engineering operations of the vehicle manufacturers and

158 Discussion and conclusion

their suppliers. Connectivity increases the potential exposure to malicious agents, and therefore,
system designs need to be made cyber resilient. This requirement for cyber resilience, along with the
publishing of security guidelines and standards by various organisations, means cyber-security testing
of vehicles should be considered, if not a requirement, in order for consumers to maintain confdence
in new vehicle models.

It is the security testing of connected vehicles which was the high-level objective at the beginning
of this research. In Section 2.10 vulnerability, fuzz, and penetration testing were provided as three
classes of testing considered suitable for improving cyber-security resilience in vehicles. From these
three classes of security testing, fuzz testing was identifed as having little meaningful evidence in the
literature on its application to the CAN bus, or the automotive feld in general. The published work on
fuzz testing the CAN bus has been more concerned with the experience of using commercial fuzzers
(see Table 2.6) for use in automotive testing, rather than publishing the results that directly examine
the use of fuzz testing to tackle CIA weaknesses in automotive systems. It was the lack of CAN fuzz
testing knowledge that provided the focused research question, namely to see how fuzz testing can
contribute to vehicle cyber-security assurance.

Whereas the standards and guidelines say that automotive fuzz testing should be performed, this
research adds the evidence as to why it should be performed, and for CAN, the how. This applied
research adds to the knowledge by demonstrating what CAN fuzz testing means in the automotive lab
and workshop. This research is useful to several stakeholders:

• Academic vehicle cyber-security researchers will fnd new information to which they can refer.

• Academic researchers entering the feld will fnd the knowledge useful in guiding the direction
of their work. The practical knowledge from the experiments will be useful.

• Automotive frms which offer vehicle security consultancy can incorporate this knowledge from
this academic research into their testing procedures and processes.

• This research within in the area of vehicle systems security is ongoing within Coventry Uni-
versity and HORIBA MIRA Limited. In addition, HORIBA MIRA offers commercial testing
services, which now includes fuzz testing. The outputs of this research are integrated into
HORIBA MIRA’s internal knowledge base and processes for access by relevant staff. The proto-
type software will be used for current and future engineering and research at both organisations.

10.2 Experimental outputs from this research

The outputs begin with the literature review, before following the DSRM process (Chapter 3) to
perform practical experiments and software development, building the knowledge required to answer
the research question. The research program experimental outputs are:

1. The establishment of an automotive cyber-security testbed in Chapter 4. It was validated by
performing an attack via an aftermarket Bluetooth enabled device, known as an OBD dongle.

159 10.2 Experimental outputs from this research

2. The construction of a CAN fuzzer in Chapter 5, which used the testbed for its development and
validation.

3. In Chapter 6 the prototype fuzzer was used against several targets. Using the CAN fuzzer against
a lab vehicle and its components presents the possibility of component damage. Therefore,
a bench-based CAN network was constructed to continue the CAN fuzz testing research,
demonstrating the ability to discover data packets in a CAN controlled cyber-physical system.

4. Testing the prototype fuzzer against a vehicle gateway ECU in Chapter 7. The experiment
provided another ToE, its design revealed additional functional issues in using the fuzzer,
contributing to improvements in its design to support multiple CAN interfaces.

5. Using the prototype fuzzer against a media ECU in Chapter 8. Again, experimentation against
another ToE reinforced the knowledge being learnt and confrmed the problems with testing an
ECU outside of a full vehicle system.

6. The fuzz testing of a display ECU, which has a cyber-physical aspect, in Chapter 9 revealed
confdential operational information, software problems and integrity design issues.

7. An additional experiment, not core to this research was performed. The verifcation of a bit
rate attack, against the CAN bus is recorded in Appendix C. It documents a known engineering
issue with CAN that could be deployed as a cyber attack.

The experiments contributed to addressing the research question and raised challenging issues
that are discussed in Section 10.4.

10.2.1 Summary of the results from the security testbed experiment

This research began by examining the use of HIL/SIL systems for not only R&D and functional
testing, but for use as a cyber-security testbed. The use of HIL/SIL test equipment as a proxy for
a vehicle during cyber-security testing not only allows for the development and refnement of new
tools and techniques, it also allows for manufacturers to address cyber-security testing earlier in the
vehicle development lifecycle, prior to manufacturing. This will require automotive engineers to
design security in from the beginning, meeting the principle of secure-by-design, and allows for more
time to fnd any potential security issues.

A further advantage of an automotive cyber-security testbed is the alleviation of the costs involved
with automotive security research. Reducing the need to access vehicles, components, garages and
proving grounds.

The main output from the establishment of the testbed was the conclusion that HIL/SIL equipment,
that is normally used for functional design and testing, can be used for non-functional security testing.
A view that other researchers have now taken [64]. A further output is the testbed itself, a useful
platform for automotive security testing that can be augmented with additional technologies as
research progresses.

160 Discussion and conclusion

10.2.2 Summary of the results from testing a vehicle gateway

In applying the prototype fuzzer against a vehicle gateway ECU, the main output was how ECU
design can impact upon testing. Firstly, it interesting to see how the hardware design from a later
model vehicle, compared to the older model lab car, afforded improved protection of the CAN bus. It
is not known if this was by intention or as a by-product of using the low power features of the CAN
transceiver chip used in the gateway ECU.

Secondly, the number of CAN busses in the gateway ECU adds an interesting dimension to the
fuzz testing. Ideally, the prototype fuzzer would be able to inject a packet into all four CAN interfaces
and monitor all four busses for responses. Whilst the CAN fuzzer was enhanced to handle multiple
busses, cross-network data analysis would be a benefcial enhancement to the fuzzer.

Finally, the symbiotic operation of the gateway ECU adds an interesting dimension to fuzz testing
components. It has been seen with other components, for example, the instrument cluster, the media
ECU and the display ECU, that vehicle components are designed to operate as part of a whole
system. Removing them from that system and attempting to test them on their own provides additional
considerations to the testing environment.

10.2.3 Summary of the results from testing a media ECU

The media ECU exhibited similar issues as the gateway ECU. Again it had more than one CAN
interface (two), and, therefore, would beneft for simultaneous monitoring of multiple ports. It was an
easier device to work with in terms of being able to communicate with it on the bench. However, it
also needs to be part of the system in which it is designed to make progress with the fuzz testing.

The output taken from using the media ECU was that fuzz testing via CAN will require the
tooling to support multiple boundaries in the confguration of the CAN testing parameters. The initial
parameters calculated from monitoring the lab vehicle’s CAN busses still had too large a spread of
CAN packet ids. Therefore, a useful addition to the prototype CAN fuzzer would be the capability of
entering multiple ranges of fuzzing variables, to reduce the spread of randomised data that needs to be
generated.

Another fnding from testing the media ECU is the need for the ability to dynamically narrow in
on a CAN packet causing an ECU reaction. That additional functionality is to be added to the fuzzer
in future work. A process that was partially automated in the display ECU testing.

10.2.4 Summary of the results from testing the display ECU

The fuzzer was used against a display ECU and it revealed problems with the ECU’s software
(buffer overfow, undocumented messages, repeated messages, and incorrect messages), confdential
operational information (how to display messages to vehicle occupants), and system integrity issues
(how to inject incorrect packets into the system). If the fuzz testing was performed prior to production,
then design changes could have been made to improve vehicle assurance levels:

http:protectionoftheCANbus.It

161 10.3 Contributions from the research outputs

• correcting the software issues;

• adding extra checks in the software, an example of a packet length check as in Chapter 6, which
increased the time to fnd a CAN packet;

• securing access to the wiring beneath the dashboard.

As for the media ECU, functionality within the fuzzer to dynamically fnd a CAN packet causing
an ECU action would be benefcial. It was partially achieved by adding the ability to playback specifc
lines from a CAN log fle, which was supplemented by a manual search process with the single shot
message transmission functionality.

Another useful addition to the fuzzer was the ability to confgure the exclusion of packets with
certain ids. It enabled easier reverse engineering of functionality. Further work will investigate if it
would be worth extending this functionality to include values within the packet payload.

Another observation to make is that technical information is not always accurate. Although the
display ECU wiring diagram indicated two CAN busses, there was only one, and the indicated wiring
for the second bus was not present in the vehicle.

10.3 Contributions from the research outputs

Having summarised the experimental outputs, the contributions to knowledge are discussed, derived
from the literature review, experimental outputs, and the methods and tooling development from this
research.

10.3.1 Contribution from the literature review

The contributions begin with the literature review itself, which had identifed the gap in the knowledge
in relation to fuzz testing automotive systems, particularly the CAN bus, fnding that fuzz testing
has not been rigorously studied in the automotive feld. Not only did the literature review show how
existing cyber-security terms are applicable to vehicle systems, but it also provides a useful summary
of the history and context of the automotive cyber-security feld, supplemented with a brief history of
the computerised vehicle in Appendix A.

10.3.2 Contribution from the development of the fuzzer tool

The contribution of a specialised prototype CAN fuzzer is of beneft to researchers and security testers
performing automotive fuzz testing research. Chapter 5 discussed the rationale for a new CAN fuzzer
tool and outlined its desired aspects. The resultant prototype fuzzer has benefts over the existing
commercial and open source tools.

• The prototype CAN fuzzer meets the need for a dedicated CAN fuzzer tool for the automotive
feld. It enables automotive systems testers and security researchers to concentrate on the

162 Discussion and conclusion

process of fuzz testing, removing the need to develop knowledge of a complex general-purpose
fuzzer tool.

• The minimal learning required for using the CAN fuzzer extends to its deployment. It is simple
to deploy with the binaries being copied to an empty directory on a Windows machine, and the
drivers for the PCAN USB interfaces installed. Unlike some of the commercial and open source
fuzzers, there is no need to use a dedicated Linux computer and install a complex software
stack.

• Set-up of the prototype CAN fuzzer is via a simple GUI interface, unlike some of the general-
purpose fuzzers, which can require in-depth editing of a variety of text based confguration
fles.

• The use of a single modern high level language (C#) and modular software design (see Chap-
ter 5) means it is adaptable in the future to other CAN hardware interfaces and is usable for
implementing new testing algorithms. Commercial fuzzers are closed source and diffcult to
extend to new automotive technologies. Some open source fuzzers are based upon scripting
languages and are not performant enough for commercial use.

The engineers at the commercial partner for the research program, HORIBA MIRA Limited (see
Acknowledgements), are implementing the prototype CAN fuzzer due to its advantages for automotive
use over the existing commercial and open source fuzzers.

10.3.3 Contribution from fuzz testing the CAN bus

When the prototype fuzzer was deployed against a vehicle (Chapter 6), the immediate impact upon the
vehicle systems was surprising. Even though the number of possible CAN packet combinations are
inordinately high, the effect of fuzz testing CAN, in terms of a DoS effect, is immediately noticeable.
Further detailed research is required into mitigating the effects of fuzz testing.

The main contribution from the experiments is to demonstrate that fuzz testing does have a
useful role to play in the security testing of automotive CAN systems. It provided evidence that
vehicle subsystems require segmentation, isolation and protection from outside interference (see
Section 10.4.2 later). The ECUs in this research were found not to be resilient to fuzz testing. If
ECUs are made resilient to fuzz testing, e.g. through improved software checks on CAN packet data
contents, further research is required to address potential issues around combinatorial explosion (see
Section 10.4.5).

10.3.4 Contribution from identifying new automotive testing challenges

The several obstacles that presented themselves during the research enabled observations on challenges
in the automotive security testing feld. These challenges are discussed in 10.4, below. The contribution

163 10.4 Discovered challenges in automotive security testing

of identifying these challenges allows future researchers to use them as an opportunity to inform their
research.

10.3.5 Contribution of a method for developing automotive cyber-security tests

The process of researching CAN fuzz testing, developing and improving the prototype CAN fuzzer
tooling, and the experimental use of the new fuzzer, resulted in a new methodology that can be applied
to develop future automotive cyber-security test methods and tooling. The seven-step automotive
security test development methodology is discussed in detail in Section 3.5 in Chapter 3.

10.3.6 Contribution in identifying combinatorial explosion in CAN fuzz testing

The problem of a combinatorial explosion is well established in the computer science and testing felds.
However, it has not been addressed to any depth within the automotive security testing literature. In
Section 3.6 in Chapter 3 a method is proposed that would limit the state-space to be searched during
CAN fuzz testing and its use is discussed in Section 10.4.5. However, a combinatorial explosion has
been identifed as an issue with automotive fuzz testing and further research work to investigate the
issue will be performed.

10.3.7 Contribution from the bit rate attack experiment

Whilst not part of the main research, the CAN bit rate attack was as a result of operational observations
during the development of the practical experiments. It was interesting to discover that what many
considered to be a mere confguration error has the potential to be weaponised. The contribution from
the bit rate experiment is to show that the bit rate attack is a possibility, whilst acknowledging that
further research is required to fully deploy, and counter, the attack.

10.4 Discovered challenges in automotive security testing

Having summarised the main contributions from this research the lessons learnt can be gathered. This
section lists the issues identifed during this research, and the possible solutions are outlined.

Whilst CAN technology is straightforward, applying CAN fuzz testing to vehicles and compo-
nents is challenging. However, the experimental results did confrm previously made researchers
statements [2], [21], [38], namely:

• Fuzz testing can be used to reverse engineer vehicle packets.

• Disruption of a vehicle’s communication network is not diffcult.

• The fuzz test can be used as a form of cyber attack.

• Cyber-security testing vehicles and their ECUs can lead to vehicle component damage.

http:literature.In

164 Discussion and conclusion

10.4.1 Challenge 1: The risk of damage versus obtaining trustworthy results

The work outlined in Chapter 6, when the prototype fuzzer was tried against physical systems and
components, reinforced the fact that damage to the ToE is a possibility, however slight. To mitigate
this issue, and avoid the potential expense of repairing or replacing components, the systems and
components should reject invalid sequences of inappropriate data (see the next challenge). In this
research the potential for damage caused a restriction on the use of the prototype fuzzer against the
vehicle, instead, targeting bench-based ToEs. However, rejecting invalid sequences of inappropriate
data still does not guarantee the fuzzer will not generate a CAN data packet, or sequence of data
packets, that will not damage the internal state of the ECUs. However, the fuzz testing must provide
meaningful results, and means it must be used against valid ToEs, including full vehicle systems.

10.4.2 Challenge 2: Design of suitable protection mechanisms

Since fuzz testing can have a detrimental effect on a running vehicle, it follows that to be safe from
attackers, vehicle systems connected to a CAN bus should have additional validation checks to enable
them to ignore nonsensical CAN data packet values. These could be at the level of the CAN bus or
part of the internal logic of the ECUs.

Typical protection mechanisms include network segmentation, packet encryption, frewalls and
intrusion detection. Although functional segmentation of vehicle networks is common (see Figure A.3
in Appendix A), exploits [23]) have shown that cross-network protection is not always achieved. This
is in part due to the need for data to fow across network boundaries, for example updating vehicle
displays to inform the driver of system statuses (e.g. what gear the vehicle is in).

Proposals for CAN packet encryption have been made (e.g. [33]), however, the bandwidth
restrictions and timing requirements imposed by the CAN protocol mean that practical schemes have
not been produced. Vehicle frewalls have long been proposed [37], and commercial companies exist
that sell frewalls and intrusion detection devices1. It is not known whether such protection devices are
to be deployed in forthcoming vehicle models, or even if they are effective. However, their protection
properties will need to be assessed, and security testing, including fuzz testing, of such products will
be required. Yet, complex solutions are not the only protection method, our research suggests that
simple protection mechanisms may be effective:

• The use of the fuzzer against the bench-based network in Chapter 6 showed that a simple
modifcation to the packet increased the search time required for the fuzzer to fnd a packet.
This suggests that increasing the complexity of the packet will require attackers to take more
time designing their attacks.

• The gateway investigated had a hardware protection mechanism that prevented its examination
outside of the vehicle. The grounded CAN lines and packet fltering hindered the use of the

1https://tekeye.uk/automotive/cyber-security/automotive-cyber-security-companies

165 10.4 Discovered challenges in automotive security testing

gateway in the development of the fuzzer, but those features would also hold back anyone trying
to learn more about the internal operation of the vehicle.

10.4.3 Challenge 3: Vehicle components function as part of a CPS

The point to make here is that the examination of the gateway ECU, media ECU and display ECU
in Chapters 7 to 9 indicates that components, which are designed to be part of a network, would not
function correctly as a stand-alone device. Further work here could consider some form of network
emulation within the fuzzer. CAN traffc playback functionality from a log fle, as discussed in
Section 7.6 in Chapter 7, is one way of emulating a vehicle’s CAN traffc and has been partially
implemented (see Figure 5.8b in Chapter 5).

10.4.4 Challenge 4: Observing CPSs

Correct or incorrect responses to CAN fuzz testing are rarely possible through an examination of the
network data. The CAN bus operates within a physical thing (the vehicle), and the incorrect response
to a packet may be a physical reaction from a component.

A tool such as OpenCV2 (which contains video processing software for real-time monitoring)
would help in capturing incorrect physical responses from the vehicle. Tackling the observance and
operation of a CPS is a challenge, and will require a variety of skills, covering both hardware and
software.

10.4.5 Challenge 5: State-space explosion

Combinatorial explosion is not uncommon when dealing with computational systems. The lab vehicle
uses a standard CAN packet with an eight-byte payload. Even though this is a simple protocol it
produces an inordinately large number of possible CAN packet combinations. Visual examination
of source code, formal methods and functional testing can provide a high degree of assurance for
ECU programs, but they cannot allow for bugs caused by human errors, design errors, or the tools
that compile and assemble the code. Could an unknown CAN packet in the large state space cause an
issue with the ECU code?

The method outlined in Section 3.6 in Chapter 3 was applied in Chapter 8 to the media ECU.
However, the CAN fuzzer requires further refnement around the state space issue. Testing the media
ECU identifed that multiple CAN packet ranges should be defnable when fuzz testing.

In Chapter 9 the state space was restricted by retaining the full eight-byte payload length. The
discovery of a probable buffer overfow issue suggests that restriction was not required as the ECU
incorrectly responded to packets of different lengths. What the designers of ECU software should
do is use the large state space to their advantage. As in Chapter 6, using a length check increased
the time to fnd a CAN packet by fuzz testing. Simple checks on invalid data combinations would

2https://opencv.org/

http:2https://opencv.org

166 Discussion and conclusion

have increased the time dramatically. Instead, the fuzz testing was effective due to the lack of data
checking mechanisms.

The functionality for fner-grained confguration within the prototype fuzzer will enhance its
usefulness. The refnement is one of the improvements that will be made to the fuzzer in future work.
Furthermore, research is needed to explore the benefts of running more targeted fuzz tests, particularly
with regards to fnding unconsidered code paths in ECUs. The state-space problem remains an issue
in automotive fuzz testing.

10.4.6 Challenge 6: Granularity of control

Currently, the fuzzer operates by altering byte values in the id and data felds of a CAN packet. This
is at the same software level as the ECU code. Reducing the fuzz testing to the protocol bit level
would allow an investigation into how systems respond to corrupt packets, such as an incorrect cyclic
redundancy check in the CRC feld. However, this additional control would need to be set against the
previous challenge, the state space explosion. It would also require specialised interfaces capable of
manipulating the CAN protocol at the bit level.

10.4.7 Challenge 7: Other vehicle networks and technology

CAN is only one of the possible data networks in a vehicle (see Table 2.4 in Chapter 2), and fuzz
testing should be applied across them all. The frst to consider will be CAN-FD, the Flexible Data-rate
(FD) version of CAN. This is derived from CAN, but has a larger range of id values and allows for a
larger data feld (up to 64 bytes). It is anticipated that it will be relatively straightforward to support
CAN-FD in the prototype fuzzer.

The technology does not stop at data networks. There is a variety of digital technologies within
vehicles providing a large attack surface. Newer and more complex technologies are coming with
autonomous driving. There is likely to be a need for a range of different fuzz testing tools and methods
which are dependent upon the system are under test. For example, the tools to perform fuzz testing
against Bluetooth will be different from the tools used against ultrasonic parking sensors.

10.5 Summary of future research

In the previous sections recommendations for further research were made, summarised here:

1. Expansion of the security testbed: Adding additional vehicle systems technologies to the
fuzzer. The lists of possible technology additions are shown in Tables 2.4 and 2.5. Adding
support for extended CAN (29-bit ids) and CAN FD will be considered frst.

2. Addressing combinatorial explosion: In common with many computational systems, methods
to handle the search for possible software issues within the large state spaces of vehicle systems
need investigation. Input from the general software testing research community would be

167 10.6 On answering the research question

benefcial. To help address this problem for CAN based systems the fuzzer will be modifed to
enable fner control of the range of generated packet data.

3. Symbiotic testing: Vehicle ECUs are reliant upon the systems in which they operate. Bench
testing, whilst possible, will be more effective if the network traffc and ECU I/O fully repre-
sented the whole system interactions. This is where the use of virtual systems on the testbed
could be benefcial. Additions to the fuzzer to include network and ECU emulation can be
considered. Furthermore, monitoring of the physical world with sensor and vision systems will
be required for future testing requirements. Partial symbiotic testing may be possible with the
implemented CAN log fle playback facility, and this will be tested in future work.

4. Protocol fuzz testing: This research tested CAN at the feld level. Fuzzing at the CAN protocol
bit level is an area for future work.

5. Dynamic packet searching: The ability to automate the fnding of a CAN packet that evokes
an ECU operation requires further work. It is currently performed in a semi-automated manner
with log fle playback and single shot packet transmission. Such functionality needs to consider
the monitoring of physical actions, see point 3. The use of packet id exclusion lists aids the
search for functional ECU CAN packets, consideration of extending the exclusion functionality
to include data values is required.

In addition, this research can be extended into other areas:

1. Fuzz testing is not only new to the automotive feld, the science of fuzz testing, itself, requires
further knowledge. The immaturity of the tools in terms of systems monitoring, analysis of
results, and obtaining useful metrics provides research opportunities.

2. Whilst the developed software will be used and extended for further studies in fuzz testing
vehicle systems, it could also be adapted for fuzz testing engineering tools themselves. For
example, HIL/SIL interfaces and CAN interfacing devices. This is to ensure assurance in the
tooling that is used to design and test vehicle systems.

10.6 On answering the research question

The literature review, Chapter 2, covered the concept of software assurance. Violating the CIA triad
reduces software assurance, and ultimately customers confdence in products that rely on software for
functionality. For CPSs, such as vehicles, lower assurance reduces the physical safety of people and
property. In Section 1.2.5 the question was posed as to whether the results from fuzz testing, which is
used successfully in traditional IT systems testing, can contribute to vehicle system security assurance.
To do this it needed to be demonstrated that fuzz testing had an effect on vehicle systems with regard
to the CIA triad.

168 Discussion and conclusion

The developed CAN fuzzer was used against a variety of targets. It did reveal system weaknesses,
the experiments demonstrated that the CIA security properties of a CAN based system can be
compromised. Whilst the fuzzer could not be fully deployed against the lab vehicle, it did reveal
problems with component software (see Chapter 9), confdential component operational information
(Chapters 6 and 9), vehicle system integrity issues (Chapters 6 and 9), and affected system availability
(Chapters 5 and 6).

Straightforward engineering changes would mitigate the security issues (as discussed in Sec-
tions 9.16 and 10.4.2). Therefore, CAN fuzz testing does improve a vehicle’s security assurance,
provided the results are acted upon. Furthermore, it demonstrates that the development of security
tests, and appropriate tooling, is a requirement in automotive engineering, and supplements traditional
functional testing.

However, a further demonstration of the ability to compromise confdentiality is required. This
research was not against a full vehicle system, a preferred scenario to research the confdentiality of
the personal data that is increasingly stored within vehicle ECUs.

Fuzz testing has been demonstrated to be viable and practical in identifying security design faws
in the automotive feld. However, to move from fuzz testing in its wider sense, i.e. not just CAN
but including other automotive technologies, additional research is required. This is to gather more
knowledge in applying fuzz testing to those technologies and to invent, enhance and mature the
tooling support, methods and experimental techniques.

10.7 Research impact considerations

Section 10.3 discussed the direct contributions from this research program. In this section consid-
eration of the wider impact of the research is covered, by discussing how fuzz testing as an attack
can be mitigated, looking at how the research applies to wider stakeholders and considering how
manufacturers approach securing the connected car.

10.7.1 Mitigating fuzz testing as an attack

This research verifed the usefulness of fuzz testing as an attack or reverse engineering technique
for potential threat agents. The use of fuzzing as a DoS attack, or for reverse engineering vehicle
functionality, requires consideration of mitigation techniques. Such techniques can include the
protection mechanisms discussed in Section 10.4.2, i.e. network segmentation, frewalls, IDPSs, data
encryption, physical protection of the CAN bus, and additional checks on the sanity of the data within
a CAN packet. However, there are trade-offs, for example, the use of various types of encryption
(discussed in Section 2.8 in the literature review in Chapter 2) has not resulted in a commonly accepted
scheme. The uptake of CAN protection methods is limited due to various non-technical factors [33]
that make them unsuitable for production deployment, which can be summarised as stating that new
technology must have a cost-beneft and, importantly, be maintainable over the full lifecycle of a

169 10.7 Research impact considerations

vehicle by the dealer network. Any encryption system must not prevent a vehicle from being repaired
years after it has been produced. The automotive industries need a solution to long term management
of encryption keys.

One of the mitigation techniques not yet widely considered is the move away from the standard
CAN bus itself. The natural evolution of the technology used within vehicles may see the improved
protection required for in-vehicle data networks. There is a recent two-wire point-to-point automotive
Ethernet standard, IEEE 802.3bw (also called 100BASE-T1). Using automotive Ethernet as a high
speed link between ECUs may eventually see the end of the CAN bus within vehicle systems. However,
that is some time in the future, in the short term, manufacturers should, where possible consider
isolating certain ECUs from those that are connected to external communications networks to mitigate
risk.

10.7.2 Impact of the research on additional stakeholders

In Section 10.1, at the beginning of this chapter, some of the stakeholders that would beneft from the
knowledge from this research were listed. In addition, consideration is given to what manufacturing
organisations gain from the research, and the fnal users of a vehicle, i.e. the car owners and their
passengers.

Vehicular cyber-security testing is still in its infancy, even compared to the recent car hacking
research feld, which started in the early 2000s. This research has contributed new knowledge to
demonstrate the value of security testing, particularly fuzz testing. It provides some new evidence for
deploying security testing earlier in the design cycle for automotive systems. Early security testing
can help manufacturers uncover potential issues, including any related safety issues that can occur as
a result of a cyber attack. This increases the confdence in the resilience of the vehicle systems before
the vehicles reach the customers. Fixing issues post vehicle delivery not only has a fnancial cost but
can also impact upon an organisation’s reputation.

The use of security testing to maintain system resilience will help retain the confdence of
customers in the cars that they drive and use. Cyber-security issues are reported with regularity in
the media, and some vehicle users will be aware of the threats to computerised systems. When they
ask questions about cyber-attacks, the ability of manufacturers to communicate to customers about
potential threats, and how they test for resilience to resist and prevent them, helps with the confdence
argument. In Chapter 2, Section 2.3 the concept of software assurance was stated and how assurance
promotes confdence, and it is the role of security testing to aid software assurance.

10.7.3 Securing the connected car

Testing for resilience aids with the discovery of software issues and unconsidered use cases of systems.
However, designing in security mechanisms to help secure the connected car must be considered.
Whilst data encryption of the CAN bus has not been practically implemented, the use of encryption at
the vehicle’s boundary is already present, built into the Bluetooth and WiFi protocols. However, this

http:listed.In

170 Discussion and conclusion

encryption needs to be implemented correctly, and, as seen in Chapter 4, poor PINs, or passwords, are
not helpful to security. The lessons learnt from the many years of securing traditional IT systems must
be applied. This includes not only strong passwords but regular software updates as issues become
known. These updates will be over the vehicle’s connected channels, or in the absence of wireless
connections, via dealer or user administered updates. Furthermore, vehicle users must be informed of
good security practices, ideally, when a vehicle is handed over, or via online resources or the user
manual. Users are a potential security weak spot in any system.

10.8 Conclusion

Automotive cyber-security is a relatively new cross-disciplinary feld of study. It requires the deploy-
ment of a wide variety of security skill sets and tooling to deal with the complexity and range of
technologies in use, particularly since a CPS differs from traditional information systems. Developing
those skills and the applicable tooling is challenging for researchers and security engineers. It is easier
to achieve for those working within the automotive industry who have access to confdential design
information, compared to those working in a purely academic capacity. As discussed in the literature
review (Section 2.14.1) researchers have barriers to overcome. The cost of components, vehicles
and facilities is restrictive, and the issue of commercial confdentiality often means that there is no
detailed information available on how systems under test operate internally.

To aid automotive security research a method has been implemented that is suitable for developing
testbeds, tooling and security tests (Section 3.5). The method has been applied to automotive fuzz
testing, starting with the insecure CAN, which is present within all mass-manufactured vehicles.
However, the method not only applies to fuzz testing. It is designed to apply to the two other types of
security testing, penetration and vulnerability (see Section 2.10).

The SAE J3061 guidelines and forthcoming ISO/SAE 21434 standard state that fuzz testing is
desirable for vehicle systems engineering. To achieve widespread use of fuzz testing there is a need
for on-going research. This is to cover all the digital technologies in a vehicle and to fully develop a
range of tools and techniques.

Applying the method from this research to fuzz testing has resulted in an easy to use and easy to
deploy prototype CAN fuzzer. The fuzzer has been used to increase the knowledge in automotive
CAN fuzz testing. However, there is still more research work to be done on fuzz testing techniques.
The fuzz testing of CAN is only one piece of the connected car’s complex security engineering process.
The contributions here only address part of the picture within the automotive security feld, but they
provide a base for making fuzz testing a common automotive security test.

The results from this research will be useful to anyone interested in how software assurance
applies to the automotive feld, and how the security properties of systems can be tested to improve
assurance levels. There are challenges that need to be addressed, however, meeting those challenges
will be useful to design, test and security engineers, not only in the automotive feld but also other
industries that use CPS and CAN based technologies.

http:engineering.To

171 10.8 Conclusion

Research on vehicle security assurance will not end since cyber-security is not a solvable problem.
There is a need for an automotive security testing knowledge base to be continually built upon.
The security test development method from this research will be used to add to that knowledge
by developing other security tests and tools. This on-going research is aimed at expanding testing
methods within the automotive cyber-security feld.

References

[1] W. H. Ware, “Security and Privacy in Computer Systems,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, Atlantic City, New Jersey: ACM, 1967, pp. 279–282.
DOI: 10.1145/1465482.1465523.

Covers security concepts related to computer systems, showing that computer system security
is a long standing issue. Subsequent cyber-security issues were foreseen as possibilities in this
report.

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage, “Experimental Security Analysis of a Modern
Automobile,” in Security and Privacy (SP), 2010 IEEE Symposium on, 2010, pp. 447–462.

The authors practically demonstrated previously theoretical possibilities on controlling a
vehicle via a cyber attack. Numerous attacks on a running car were performed. Security
implications were discussed. This research was reported widely in the media and probably
accelerated interest in the automotive cyber-security feld.

[3] M. Meng and W. Khoo, “An Analysis of Secure Software Development Lifecycle from
an Automotive Development Perspective,” SAE, Warrendale, Tech. Rep., 2016, p. 4. DOI:
10.4271/2016-01-0040.

A brief look at the importance of the SDLC process for automotive systems. Provides an
overview of the vehicle development process, the V-model, SDLC and applicability to component
development.

[4] ISO, ISO 26262-2:2018 Road vehicles - Functional safety - Part 2: Management of functional
safety, Geneva, 2018.

ISO 26262 is the international standard used by vehicle manufacturers and their supplies to
analyse and reduce risks in the functional operation of cars and their components. The latest
2018 version acknowledges the intersection with cyber-security.

[5] H. Schuette and M. Ploeger, Hardware-in-the-Loop Testing of Engine Control Units - A
Technical Survey, Warrendale, 2007. DOI: 10.4271/2007-01-0500.

ECU testing has a long tradition of using test rigs for R&D. Manufacturers need to consider
the use of test rigs for vehicle cyber security R&D.

[6] D. S. Fowler, M. Cheah, S. A. Shaikh, and J. Bryans, “Towards a Testbed for Automotive
Cybersecurity,” in Software Testing, Verifcation, and Validation, ICST, International Confer-
ence on, Tokyo: IEEE Computer Society, 2017, pp. 540–541, ISBN: 9781509060313. DOI:
10.1109/ICST.2017.62.

The use of a HIL/SIL testbed for cyber-security testing vehicular systems was presented at the
2017 IEEE International Conference on Software Testing, Verifcation and Validation.

https://doi.org/10.1145/1465482.1465523
https://doi.org/10.4271/2016-01-0040
https://doi.org/10.4271/2007-01-0500
https://doi.org/10.1109/ICST.2017.62

174 References

[7] A. Zeller, “Search-Based Testing and System Testing: A Marriage in Heaven,” in 2017
IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST), 2017,
pp. 49–50. DOI: 10.1109/SBST.2017.3.

This paper summarises a keynote that was given at the 2017 IEEE International Conference
on Software Testing, Verifcation and Validation. The keynote of Professor A. Zeller provided
impetus to investigating dynamic testing as a vehicle system test method. He provides the
argument that search based inputs at the system level can complement, and improve, the results
from static analysis, unit testing and integration testing.

[8] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for Security Testing,”
Queue, vol. 10, no. 1, 20:20–20:27, 2012, ISSN: 1542-7730. DOI: 10.1145/2090147.2094081.

Microsoft have successfully used fuzzing to test their Windows OS for many years.

[9] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science research
methodology for information systems research,” Journal of management information systems,
vol. 24, no. 3, pp. 45–77, 2007.

DRSM is a method that can be used for systems engineering where the details of a process,
system, program, design, etc. (an artefact) is not fully known from the outset. It is good for
covering the various aspects of the design process that need to be considered, from the initial
problem to the fnal communication of results.

[10] K. M. Goertzel, T. Winograd, H. L. McKinley, L. Oh, M. Colon, T. McGibbon, E. Fedchak, and
R. Vienneau, “Software Security Assurance State-of-the-Art Report,” DTIC, Fort Belvoir, Tech.
Rep., 2007, p. 396. [Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a472363.pdf.

A report by the US military, covers security risks, engineering and formal methods, testing,
initiatives, standards, resources and observations. Provides a useful defnition for the meaning
of software assurance.

[11] NIST, “FIPS PUB 199: Standards for Security Categorization of Federal Information and
Information Systems,” Fips, vol. 199, no. February 2004, p. 13, 2004.

Provides a defnition of the CIA security properties triad and how those properties can be clas-
sifed in term of the impact (low, moderate, and high) upon operations, assets and individuals.

[12] US Govt, E-Government Act of 2002, 2002. [Online]. Available: https://www.gpo.gov/fdsys/
pkg/STATUTE-116/pdf/STATUTE-116-Pg2899.pdf.

This act required the US Government to implement Internet based services to improve effciency
and access to government services. It included coverage of security and a defnition for the
CIA triad.

[13] European Communities, “Information Technology Security Evaluation Criteria (ITSEC) Provi-
sional Harmonised Criteria,” Luxembourg, Tech. Rep., 1991, p. 171.

ITSEC was an early defnition of a certifcation system for IT systems security and assurance.
It provides a defnition of the CIA triad. It subsequently contributed to the ISO/IEC 15408
international security standard, a.k.a. Common Criteria.

[14] K. Lemke, C. Paar, and M. Wolf, Eds., Embedded Security in Cars. Berlin, Heidelberg:
Springer-Verlag, 2006, p. 273, ISBN: 9783540283843.

This is an early book covering security issues in cars. Written by Germans who led the way in
early vehicular security research. The same researchers are amongst the frst contributors to
the long running commercial conference of the same name, commonly known as "escar".

https://doi.org/10.1109/SBST.2017.3
https://doi.org/10.1145/2090147.2094081
http://www.dtic.mil/dtic/tr/fulltext/u2/a472363.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-116/pdf/STATUTE-116-Pg2899.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-116/pdf/STATUTE-116-Pg2899.pdf
http:Queue,vol.10

References 175

[15] D. K. Nilsson and U. E. Larson, “Simulated attacks on CAN buses: vehicle virus,” Fifth
IASTED International Conference on Communication Systems and Networks (AsiaCSN 2008),
pp. 66–72, 2008.

An early look at how the security properties of a vehicle can be attacked. Defnes building
blocks for a vehicle attacking "virus" and the need for preventative measures.

[16] A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald, T. Leimbach, A. Fuchs,
S. Gürgens, O. Henniger, R. Rieke, M. Ritscher, H. Broberg, L. Apvrille, R. Pacalet, and
G. Pedroza, “Security requirements for automotive on-board networks based on dark-side
scenarios,” Tech. Rep. 1.1, 2009, p. 149.

The European E-safety vehicle intrusion protected applications project ran from 2008 to 2011
and investigated protection of in-vehicle networks. This output looked at security engineering,
threats and security requirements.

[17] C. Metz, “AAA protocols: authentication, authorization, and accounting for the Internet,” IEEE
Internet Computing, vol. 3, no. 6, pp. 75–79, 1999, ISSN: 10897801. DOI: 10.1109/4236.807015.

The CIA triad defnes the properties of computer security. Triple-A security is a protocol used
to implement a security mechanism to preserve CIA.

[18] ISO, ISO/IEC 15408-1:2009(E) Information technology - Security techniques - Evaluation
criteria for IT Security, 2014.

This introduces concepts and terminology for the evaluation of security techniques in systems,
software and components. Much of the work is derived from Common Criteria. It defnes terms
such as Target of Evaluation and threat agent.

[19] C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer Espionage, 1st.
Doubleday, 1989, ISBN: 9780385249461.

One of the earliest writings on tracing a remote cyber attack on computer systems.

[20] M. Wolf, A. Weimerskirch, and C. Paar, “Security in Automotive Bus Systems,” Proceedings
of the Workshop on Embedded Security in Cars, pp. 1–13, 2004.

Provides an early discussion on a vehicle’s digital systems and networks, and the security
implications, this includes attacks, encryption defences and frewalls.

[21] C. Smith, The Car Hacker’s Handbook : A Guide for the Penetration Tester. No Starch Press,
2016, ISBN: 9781593277031.

A comprehensive look at techniques for manipulating, breaking and controlling vehicle systems.

[22] S. Checkoway, D. Mccoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A.
Czeskis, F. Roesner, and T. Kohno, “Comprehensive Experimental Analyses of Automotive
Attack Surfaces,” in 20th USENIX Security Symposium, San Francisco, 2011, p. 6.

A comprehensive view of how a vehicle can be exploited remotely through software. This paper
expanded upon previous work in performing cyber attacks on a vehicle. The focus in particular
was to research the possibility of a true cyber attack, i.e. from a remote distance from the vehicle
over existing wide area transmission networks (the Internet and cell phone communications).
This remote compromise was to address concerns that prior work had unrealistic physical
access to vehicles, closing a gap in the knowledge that remote compromise is possible.

[23] C. Valasek and C. Miller, “Remote Exploitation of an Unaltered Passenger Vehicle,” Black
Hat USA, vol. 2015, pp. 1–91, 2015. [Online]. Available: https://ioactive.com/pdfs/IOActive_
Remote_Car_Hacking.pdf.

https://doi.org/10.1109/4236.807015
https://ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf
https://ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf

176 References

The aim of this paper was to take further the previous work of Kocher (2010) and Checkoway
(2011). The authors were able to engineer an attack that could be deployed over a cell phone
connection and gain physical control of a vehicle.

[24] isits AG International School of IT Security, escar Europe conference history, 2019. [Online].
Available: https://www.escar.info/escar-europe/history.html (visited on 03/27/2019).

The commercial Embedded Security in Cars conference was established in 2003, attracting
many researchers and businesses involved in automotive cyber-security.

[25] D. Ward, I. Ibarra, and A. Ruddle, “Threat Analysis and Risk Assessment in Automotive Cyber
Security,” SAE International Journal of Passenger Cars - Electronic and Electrical Systems,
vol. 6, no. 2, 2013, ISSN: 19464614.

Examines how a security risk analysis of computer based systems can be performed similarly
to the hazard based analysis used for functional safety, whilst acknowledging and accounting
for the differences.

[26] D. Klinedinst and C. King, “On Board Diagnostics: Risks and Vulnerabilities of the Connected
Vehicle,” Pittsburgh, 2016, p. 21.

Funded by the US Government this report is a summary of CAN and the OBD port, and their
vulnerabilities, evaluated under the STRIDE and EVITA criteria.

[27] SAE International, J3061 - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,
Warrendale, 2016. [Online]. Available: http://standards.sae.org/wip/j3061/.

Provides detailed considerations for the management of a cyber-security process for a product’s
development and its lifecycle. It mirrors the functional safety V-model and draws infuence from
the ISO26262 functional safety standard. Additional cyber-security resources are referenced.

[28] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and Vulnerable: A Story of
Telematic Failures,” in Proceedings of the USENIX Workshop On Offensive Technologies
(WOOT), Washington, D.C.: USENIX, 2015.

A comprehensive security review of a vehicle telematics device that plugs into the OBD port
was performed. Several security faws allowed the researchers to compromise the safety of a
vehicle remotely.

[29] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on the Connected Car and Security
Protocol for In-Vehicle CAN,” IEEE Transactions on Intelligent Transportation Systems, vol. 16,
no. 2, pp. 993–1006, 2015, ISSN: 15249050. DOI: 10.1109/TITS.2014.2351612.

Korean researchers reverse engineered CAN packets and programmed a phone app to send them
over a Bluetooth dongle connected to a car. The phone could maliciously affect ECU functions
and inject CAN messages to impact the vehicle safety. A security protocol was designed to
mitigate the attack.

[30] D. K. Oka, T. Furue, L. Langenhop, and T. Nishimura, “Survey of Vehicle IoT Bluetooth
Devices,” in 2014 IEEE 7th International Conference on Service-Oriented Computing and
Applications, IEEE, Nov. 2014, pp. 260–264. DOI: 10.1109/SOCA.2014.20.

Bluetooth is one of the multiple interfaces to a vehicle. Supplemental devices, e.g. OBD dongles,
may also use Bluetooth for communications. Bluetooth does provide reasonable security if used
correctly. This survey shows that poor choice in Bluetooth pairing schemes lowers the security
threshold for vehicle connectivity.

[31] R. Bejtlich, “Strategy, Not Speed: What Today’s Digital Defenders Must Learn From Cyber-
security’s Early Thinkers,” Brookings, no. May, pp. 1–18, 2014. [Online]. Available: http:
//www.brookings.edu/research/papers/2014/05/07-strategy-not-speed-digital-defenders-
early-cybersecurity-thinkers-bejtlich.

https://www.escar.info/escar-europe/history.html
http://standards.sae.org/wip/j3061/
https://doi.org/10.1109/TITS.2014.2351612
https://doi.org/10.1109/SOCA.2014.20
http://www.brookings.edu/research/papers/2014/05/07-strategy-not-speed-digital-defenders-early-cybersecurity-thinkers-bejtlich
http://www.brookings.edu/research/papers/2014/05/07-strategy-not-speed-digital-defenders-early-cybersecurity-thinkers-bejtlich
http://www.brookings.edu/research/papers/2014/05/07-strategy-not-speed-digital-defenders-early-cybersecurity-thinkers-bejtlich
http:lifecycle.It

References 177

Infltration of systems is a long standing issue. The need to keep abreast of on-going cyber-
security problems today means learning from the past. Experience from previous decades can
still be applied.

[32] Q. Hu and F. Luo, “Review of Secure Communication Approaches for In-Vehicle Network,”
International Journal of Automotive Technology, vol. 19, no. 5, pp. 879–894, Oct. 2018, ISSN:
1976-3832. DOI: 10.1007/s12239-018-0085-1.

Provides a good summary of the technology used for in-vehicle networks and the approaches
that have been investigated for securing communications within the vehicle.

[33] N. Nowdehi, A. Lautenbach, and T. Olovsson, “In-Vehicle CAN Message Authentication: An
Evaluation Based on Industrial Criteria,” in 2017 IEEE 86th Vehicular Technology Conference
(VTC-Fall), Toronto: IEEE, 2017, pp. 1–7. DOI: 10.1109/VTCFall.2017.8288327.

CAN’s lack of security features means that several schemes have been devised to increase
CAN’s security resilience. None of these schemes have been adopted. This paper looks at the
reasons behind this lack of adoption and concludes that schemes do not take into all required
factors.

[34] J. A. Bruton, “Securing CAN Bus Communication: An Analysis of Cryptographic Approaches,”
PhD thesis, NUI Galway, 2014, p. 205.

Cryptography can be used to added security to a system and many cryptography methods have
been proposed to add security to CAN. However, this causes performance issues.

[35] M. Wolf and T. Gendrullis, “Design, Implementation, and Evaluation of a Vehicular Hardware
Security Module,” in International Conference on Information Security and Cryptology, 2011.
[Online]. Available: http://www.evita-project.org/Publications/WG11.pdf.

Hardware based cryptography is seen as one solution to overcoming performance issues in
adding a security layer to vehicle networks. Here, the design, implementation and evaluation
of a hardware security module on an FPGA is provided.

[36] T. Sugashima, D. K. Oka, and C. Vuillaume, Approaches for Secure and Effcient In-Vehicle
Key Management, Apr. 2016. DOI: 10.4271/2016-01-0070.

Encryption of data for in-vehicle networks has yet to be widely established. One reason is the
handling of cryptographics keys. Here, two theorectical in-vehicle proposals to the problem are
examined. However, practical research results on key management solutions are still required.

[37] R. J. Chutorash, Firewall for vehicle communication bus, 2000. [Online]. Available: https:
//patentscope.wipo.int/search/en/detail.jsf?docId=WO2000009363.

The possibility of a frewall in vehicles has been considered for some time. Here, the frewall
blocks communication to the vehicle network bus if the correct access code is not provided.

[38] C. Miller and C. Valasek, “Adventures in Automotive Networks and Control Units,” Technical
White Paper, p. 99, 2013. [Online]. Available: http:/ /www.ioactive.com/pdfs/IOActive_
Adventures_in_Automotive_Networks_and_Control_Units.pdf.

Provides a commentary on the methods and procedures used to reverse engineer vehicles CAN
messages and use the results maliciously. Problems encountered are discussed and ways to
detect the attacks are indicated.

[39] National Highway Traffc Safety Administration, “Cybersecurity Best Practices for Modern
Vehicles,” U. S. Department of Transportation, Washington, DC, Tech. Rep., 2016, p. 22.
[Online]. Available: https://www.nhtsa.gov/document/cybersecurity-best-practices-modern-
vehicles.

https://doi.org/10.1007/s12239-018-0085-1
https://doi.org/10.1109/VTCFall.2017.8288327
http://www.evita-project.org/Publications/WG11.pdf
https://doi.org/10.4271/2016-01-0070
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2000009363
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2000009363
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
https://www.nhtsa.gov/document/cybersecurity-best-practices-modern-vehicles
https://www.nhtsa.gov/document/cybersecurity-best-practices-modern-vehicles
http:WhitePaper,p.99

178 References

Provides guidelines for vehicle engineering while keeping cybersecurity considerations in
mind.

[40] HM Government, “The Key Principles of Cyber Security for Connected and Automated
Vehicles,” HM Government, Tech. Rep., 2017, pp. 1–17. [Online]. Available: https://www.
gov.uk/government/uploads/system/uploads/attachment_data/fle/624302/cyber-security-
connected-automated-vehicles-key-principles.pdf.

Lays down some over-arching security principles that need to be addressed by parties involved
in providing CAVs and ITSs. It covers lifecycle, management and system design. Contains a list
of useful standards.

[41] R. J. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems,
2nd. Indianapolis: Wiley Publishing Inc., 2008, p. 1080, ISBN: 9780470068526. [Online].
Available: http://www.cl.cam.ac.uk/%7B~%7Drja14/book.html.

An essential read to understand the whole security picture. Cyber-security is only part of the
security picture. The best security requires thoughtful engineering to fully reduce risks.

[42] BSI, PAS 1885:2018 The fundamental principles of automotive cyber security - Specifcation,
2018.

Following on from the UK Government’s Key Principles of Cyber Security for Connected and
Automated Vehicles, providing guidance on managing risks, security and the related safety
aspects. Encourages a secure-by-design approach and vehicle systems that are resilient to
attack.

[43] S. Bayer, T. Enderle, D.-K. Oka, and M. Wolf, “Automotive Security Testing-The Digital
Crash Test,” in Energy Consumption and Autonomous Driving Proceedings of the 3rd CESA
Automotive Electronics Congress, Paris, 2014, J. Langheim, Ed., Paris: Springer, 2016, pp. 13–
22.

A brief look at the need to provide security testing in the the automotive feld. Acknowledges that
security testing is not widely used in the industry. As for J3061, beyond the known functional
tests the security testing needs to address vulnerability scanning, fuzz testing and penetration
tests.

[44] H. H. Thompson, “Why security testing is hard,” IEEE Security and Privacy, vol. 1, no. 4,
pp. 83–86, 2003, ISSN: 15407993. DOI: 10.1109/MSECP.2003.1219078.

Summarises security testing as the need to fnd functionality that exists beyond what has
been specifed. Contains a diagram often replicated in other papers, succinctly showing the
difference between the required functionality and the implemented system.

[45] P. Wooderson and D. Ward, “Cybersecurity Testing and Validation,” in SAE Technical Paper,
SAE International, 2017. DOI: 10.4271/2017-01-1655.

Provides a concise view of the need and challenge in integrating cyber-security testing into the
vehicle systems testing process. Identifes the contributions from SAE J3061 that need to be
considered.

[46] K. Strandberg, T. Olovsson, and E. Jonsson, “Securing the Connected Car: A Security-
Enhancement Methodology,” IEEE Vehicular Technology Magazine, vol. 13, no. 1, pp. 56–65,
Mar. 2018, ISSN: 1556-6072. DOI: 10.1109/MVT.2017.2758179.

Drawing on previous European automotive security projects (EVITA and HEAVENS), Microsoft
secure development practices (STRIDE and DREAD), J3061, and attacking Volvo cars, they
suggest a Start, Predict, Mitigate, Test (SMPT) methodology for systematic security testing of
vehicles.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624302/cyber-security-connected-automated-vehicles-key-principles.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624302/cyber-security-connected-automated-vehicles-key-principles.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624302/cyber-security-connected-automated-vehicles-key-principles.pdf
http://www.cl.cam.ac.uk/%7B~%7Drja14/book.html
https://doi.org/10.1109/MSECP.2003.1219078
https://doi.org/10.4271/2017-01-1655
https://doi.org/10.1109/MVT.2017.2758179

References 179

[47] S. Talebi, “A Security Evaluation and Internal Penetration Testing Of the CAN-bus,” PhD thesis,
2014.

Dicusses CAN and possible attacks against CAN, implemented as a penetration test against the
Vector CANoe vehicle simulator.

[48] J. Wurzinger, P. Priller, A. Kolar, and M. Nager, “Real world evaluation of a novel secu-
rity testing environment for vehicular control units via CAN networks,” in Informatik 2016,
Gesellschaft für Informatik eV, 2016, pp. 1509–1521.

Describes CAN Communication Tester (CAN-CT), a software program used to run attacks
against the CAN bus and ECUs attached to it.

[49] M. Cheah, S. A. Shaikh, O. Haas, and A. Ruddle, “Towards a systematic security evaluation of
the automotive Bluetooth interface,” Vehicular Communications, vol. 9, pp. 8–18, 2017, ISSN:
2214-2096. DOI: 10.1016/j.vehcom.2017.02.008.

Examines the Bluetooth vehicle interface and attacks against it. Provides a method for enumer-
ating Bluetooth weaknesses with an Attack Tree based Threat Modeling technique.

[50] X. Zheng, L. Pan, H. Chen, R. D. Pietro, and L. Batten, “A Testbed for Security Analysis of
Modern Vehicle Systems,” in 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 1090–1095.
DOI: 10.1109/Trustcom/BigDataSE/ICESS.2017.357.

Provides information on a bench based CAN testbed based upon a National Instruments
scientifc computer. An example of security testing CAN is given.

[51] Tencent Keen Security Lab, “Experimental Security Assessment of BMW Cars: A Summary
Report,” Keen Security Lab, Tech. Rep., 2018, p. 26.

A large team of security researchers found multiple vulnerabilities in components and ECUs
ftted to several models of BMW vehicles. This allowed for an attack chain to be used to control
ECUs on the CAN bus.

[52] N. Rathaus and G. Evron, Open Source Fuzzing Tools. Burlington: Syngress, 2007, p. 210,
ISBN: 9781597491952.

Provides a foundation on what is fuzz testing. Whilst primarily targeted at traditional IT the
knowledge provides a foundation for fuzz testing other domains. Contributed to by Charlie
Miller who went on to compromise vehicles.

[53] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security Testing and Quality
Assurance, ser. Artech House information security and privacy series Fuzzing for software
security testing and quality assurance. Norwood: Artech House, 2008, ISBN: 978-1-59693-214-
2.

Introduces fuzz testing and its use for software quality and security testing. Co-authored by
Miller who later produced seminal work on car hacking.

[54] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in the automotive industry:
results from a survey,” in Proceedings of the 2014 Workshop on Joining AcadeMiA and
Industry Contributions to Test Automation and Model-Based Testing - JAMAICA 2014, San
Jose, California: ACM, 2014, pp. 1–6, ISBN: 9781450329330. DOI: 10.1145/2631890.2631891.

A survey of testing methods used in the automotive domain. The results show that functional
testing dominates.

[55] S. Bayer and A. Ptok, “Don’t Fuss about Fuzzing: Fuzzing In-Vehicular Networks,” in escar
Europe 2015, Cologne: isits AG International School of IT Security AG, 2015, pp. 1–10.

Covers fuzzing in an automotive domain. Provides an account of fuzzing a UDS implementation
though results are only given at a high level.

https://doi.org/10.1016/j.vehcom.2017.02.008
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.357
https://doi.org/10.1145/2631890.2631891

180 References

[56] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The Oracle Problem in Software
Testing: A Survey,” IEEE Transactions on Software Engineering, vol. 41, no. 5, pp. 507–525,
2015, ISSN: 0098-5589. DOI: 10.1109/TSE.2014.2372785.

Surveys the issues related to test oracles (determining whether systems outputs are correct or
not) and provides commentry on the challenges faced in software testing due to a lack of oracle
automation.

[57] P. Lapczynski, H. Heinemann, T. Schöneberger, and E. Metzker, “Automatically Generating
Fuzz Tests from Automotive Communication Databases,” isits AG International School of IT
Security, Detroit, Tech. Rep., 2017, p. 12. [Online]. Available: https://www.escar.info/escar-
usa/history.html.

A commercial report that describes the integration of the Open Source booFuzz Python tool
with the commercial Vector CANoe vehicle network simulator.

[58] R. Nishimura, R. Kurachi, K. Ito, T. Miyasaka, M. Yamamoto, and M. Mishima, “Implemen-
tation of the CAN-FD protocol in the fuzzing tool beSTORM,” in 2016 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), 2016, pp. 1–6. DOI: 10.1109/ICVES.
2016.7548161.

A commercial fuzzing tool is confgured to fuzz a device with a CAN FD interface. Covers
issues with processing time and provides summarised results but little in-depth results data.

[59] D. K. Oka, A. Yvard, S. Bayer, and T. Kreuzinger, “Enabling Cyber Security Testing of Auto-
motive ECUs by Adding Monitoring Capabilities,” in Embedded Security in Cars Conference,
15th escar Europe, Berlin: isits AG, 2016, pp. 1–13.

An ECU security test system is described, a comparison module acts as a test oracle to
determine correct operation of the ECU when a commercial fuzzer (Defensics) sends fuzzed
messages onto the CAN bus.

[60] R. Kurachi and T. Fujikura, “Shift Left: Fuzzing Earlier in the Automotive Software Develop-
ment Lifecycle using HIL Systems,” in 16th escar Europe, Brussels: International School of IT
Security AG, 2018, p. 9.

Proposes fuzz testing a SUT alongside an identical (not subjected to fuzz testing) system as a
reference, comparing the results from the two SUTs to spot issues. Uses a dSpace HIL system
with the commercial Defensics fuzzing tool. Describes a high-level view of the system but only
provides a brief summary table and no detailed results.

[61] C. Miller and C. Valasek, “Car Hacking: For Poories a.k.a. Car Hacking Too: Electric Booga-
loo,” p. 27, 2014. [Online]. Available: http://illmatics.com/car_hacking_poories.pdf.

Automotive cyber-security researchers write about their practical experience. They give tips
that can lower the practical costs required to perform research in the domain.

[62] R. K. Dutta, “A Framework for Software Security Testing and Evaluation,” PhD thesis,
Linköping University, 2015, p. 89.

An output from the HEAVENS project, used white box testing and malformed data injection
(termed fuzzing). The testing found several issues with software. Referred to the DSRM as their
methodology.

[63] M. Cheah, J. Bryans, D. S. Fowler, and S. A. Shaikh, “Threat Intelligence for Bluetooth-enabled
Systems with Automotive Applications: An Empirical Study,” in 3rd Workshop on Safety and
Security of Intelligent Vehicles (SSIV 2017), Denver, 2017, p. 8.

A study on weaknesses in the use of Bluetooth technology in vehicles. Notably the use of older
versions of Bluetooth which expose vehicles to lower security.

https://doi.org/10.1109/TSE.2014.2372785
https://www.escar.info/escar-usa/history.html
https://www.escar.info/escar-usa/history.html
https://doi.org/10.1109/ICVES.2016.7548161
https://doi.org/10.1109/ICVES.2016.7548161
http://illmatics.com/car_hacking_poories.pdf
http:loo,�p.27

References 181

[64] P. S. Oruganti, M. Appel, and Q. Ahmed, “Hardware-in-loop Based Automotive Embedded
Systems Cybersecurity Evaluation Testbed,” in Proceedings of the ACM Workshop on Auto-
motive Cybersecurity, ser. AutoSec ’19, New York, NY, USA: ACM, 2019, pp. 41–44, ISBN:
978-1-4503-6180-4. DOI: 10.1145/3309171.3309173.

Describes the ongoing development of a multi-modal automotive cyber-security testbed. The
aim of the testbed is to allow for security testing of several in-vehicle and out of vehicle systems.
It references the work published from this research.

[65] ELM Electronics, ELM Electronics: OBD, 2017. [Online]. Available: https://www.elmelectronics.
com/products/ics/obd/ (visited on 04/11/2017).

ELM is a common format used in consumer devices to connect to the OBD port.

[66] J. P. Dunning, “Taming the Blue Beast: A Survey of Bluetooth Based Threats,” IEEE Security
and Privacy, vol. 8, no. 2, 2010.

Covers Bluetooth technology, its threats and mitigating them.

[67] SAE International, SAE J1979 E/E Diagnostic Test Modes, 2014. [Online]. Available: http:
//standards.sae.org/j1979_201408/.

The specifcation for the minimum OBD diagnostics messages to be supported by test equipment.

[68] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard, W. R. Harris, S. Jha, T. Peyrin,
A. Poschmann, and S. Chakraborty, “Security Challenges in Automotive Hardware/Software
Architecture Design,” in Proceedings of the Conference on Design, Automation and Test in
Europe, Grenoble: EDA Consortium, 2013, pp. 458–463, ISBN: 9781450321532. [Online].
Available: https://dl.acm.org/citation.cfm?id=2485398.

Summarises some of the security threats to vehicle electronics. Coverage of threats to electric
vehicles and their battery systems is provided.

[69] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN networks - Practical
examples and selected short-term countermeasures,” Reliability Engineering & System Safety,
vol. 96, no. 1, pp. 11–25, 2011, ISSN: 09518320. DOI: 10.1016/j.ress.2010.06.026.

Early bench based CAN bus attacks by German researchers. They apply well-known IT secu-
rity concepts and properties to automotive systems. They recommend that cyber security be
improved in vehicles and discuss countermeasures.

[70] EPA, “The Clean Air Act in a Nutshell: How it Works,” EPA, Washington, D.C., Tech. Rep.,
2013, p. 23. [Online]. Available: https : / /www.epa .gov/sites /production /fles /2015- 05/
documents/caa_nutshell.pdf.

The US Government’s Clean Air Act was introduced to address environment pollution. It
include provisions to reduce vehicle emissions, which accelerated the adoption of computer
controlled systems in vehicles, as a means of achieving a cleaner fuel burn in the engine.

[71] D. F. Moyer and S. M. Mangrulkar, “Engine Control by an On-Board Computer,” in 1975
Automotive Engineering Congress and Exposition, SAE International, Feb. 1975. DOI: 10.4271/
750433.

The introduction of computer control to engines increased fuel effciencies. This early example
shows improvement in effciency from 10% to 20%.

[72] G. H. Czadzeck and R. A. Reid, “Ford’s 1980 Central Fuel Injection System,” in Passenger
Car Meeting & Exposition, SAE International, Feb. 1979. DOI: 10.4271/790742.

A 1979 description of Ford’s frst digitally controlled fuel delivery system using an Engine
Control Unit (ECU).

https://doi.org/10.1145/3309171.3309173
https://www.elmelectronics.com/products/ics/obd/
https://www.elmelectronics.com/products/ics/obd/
http://standards.sae.org/j1979_201408/
http://standards.sae.org/j1979_201408/
https://dl.acm.org/citation.cfm?id=2485398
https://doi.org/10.1016/j.ress.2010.06.026
https://www.epa.gov/sites/production/files/2015-05/documents/caa_nutshell.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/caa_nutshell.pdf
https://doi.org/10.4271/750433
https://doi.org/10.4271/750433
https://doi.org/10.4271/790742

182 References

[73] F. P. Caiati and J. F. Thompson, “The Feasibility of a Car Central Computer,” in 1973 Inter-
national Automotive Engineering Congress and Exposition, Detroit: SAE International, Feb.
1973, pp. 125–145. DOI: 10.4271/730126.

In the early 1970’s General Motors used a PDP computer to control several vehicle functions.

[74] BMW, “BMW Technical Training - F30 General Vehicle Electronics,” BMW Group, Munich,
Tech. Rep., 2012, p. 78.

A vehicle’s maintenance and repair is covered by workshop manuals. Usually provided by a
manufacturer via an online portal. The manuals will include wiring diagrams that cover ECUs
and the relevant fault diagnosis procedures.

[75] M. Broy, “Challenges in automotive software engineering,” in Proceeding of the 28th inter-
national conference on Software Engineering - ICSE ’06, Shanghai: ACM, 2006, pp. 33–42,
ISBN: 1595933751. DOI: 10.1145/1134285.1134292.

Discussed are the issues that a highly computerised vehicle presents due to the complexity of
the hardware and software platform. There is discussion on how the vehicle has a whole has
become a programmable platform as the sensors and computers reach into all parts of the
vehicle and are connected by communication busses. This raises issues that have been seen in
other industries, but other issues exist due to the historical operation of vehicle manufacture.

[76] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in Object Oriented Real-Time
Distributed Computing (ISORC), 2008 11th IEEE International Symposium on, 2008, pp. 363–
369.

Covers the challenges presented through the emergence of the CPS. The interface of discrete
computational components with analogue physical components in large complex systems needs
new abstractions to understand and design the resultant complexity.

[77] R. Coppola, M. Morisio, and P. Torino, “Connected Car: Technologies, Issues, Future Trends,”
ACM Computing Surveys, vol. 49, no. 3, pp. 1–36, 2016, ISSN: 15577341. DOI: 10.1145/
2971482.

A comprehensive examination of what a connected car means, the services provided and an
overview of the technologies involved. Includes in the discussion autonomous vehicles, software
engineering and security issues.

[78] European Commission, “Cybercars, the ecological future of automobile technology,” Tech.
Rep., 2004, p. 2. [Online]. Available: http://cordis.europa.eu/result/rcn/45177_en.html.

The European CYBERCARS project (CYBERnetic CARS for a new transportation system in the
cities) ran from 2001 to 2004. It was interested in how small electrically powered autonomous
vehicles could help improve transportation in the urban environment and thus reduce issues
associated with traffc congestion.

[79] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE Vehicular Tech-
nology Magazine, vol. 2, no. 2, pp. 12–22, 2007, ISSN: 1556-6072. DOI: 10.1109/MVT.2007.
912927.

A survey on Vehicular Ad Hoc Networks, VANETs are required to implement Intelligent
Transportation Systems. Provides an overview of the key concepts and technology for V2V and
V2I.

[80] KMPG, “Connected and Autonomous Vehicles – The UK Economic Opportunity,” SMMT,
Tech. Rep. March, 2015, pp. 1–24.

This report for the Society of Motor Manufacturers and Traders looks at the positive potential
impact of CAVs on the UK economy.

https://doi.org/10.4271/730126
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.1145/2971482
https://doi.org/10.1145/2971482
http://cordis.europa.eu/result/rcn/45177_en.html
https://doi.org/10.1109/MVT.2007.912927
https://doi.org/10.1109/MVT.2007.912927
http:Surveys,vol.49

References 183

[81] NHTSA, “Vehicle-to-vehicle communications: Readiness of V2V technology for application,”
National Highway Traffc Safety Administration, Washington, DC, Tech. Rep., 2014, p. 305.

The US National Highway Traffc Safety Administration looks at the benefts of introducing
V2V technology, particular with regards to road safety. Covers privacy and security issues.

[82] V. S. Zeimpekis, C. D. Tarantilis, G. M. Giaglis, and I. E. Minis, Dynamic feet management:
concepts, systems, algorithms & case studies. Springer Science & Business Media, 2007,
vol. 38.

Logistics management has a long history of using routing algorithms to improve effciency.
The latest vehicle connectivity provides for dynamic situational management. As illustrated by
papers in this book.

[83] Bosch, “CAN Specifcation Version 2.0,” Tech. Rep., 1991, p. 72.

Bosch defned the frst specifcation for the Controller Area Network. It subsequently evolved to
become ISO 11898.

[84] ARB, Modifcations to Malfunction and Diagnostic System Requirements for 2004 and Subse-
quent Model-Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines
(OBD II), Section 1968.2, Title 13, California Code Regulations, Sacramento, 2002. [Online].
Available: https://www.arb.ca.gov/regact/obd02/att2.doc.

The Californian Air Resources Board issued requirements for emissions testing of vehicles.
This includes the location and access to the OBD port.

[85] J. Wetzels, “Broken keys to the kingdom: Security and privacy aspects of RFID-based car
keys,” CoRR, vol. abs/1405.7, p. 20, 2014. arXiv: 1405 . 7424. [Online]. Available: http :
//arxiv.org/abs/1405.7424.

A comprehensive review of the security of vehicle wireless key fobs. Reveals the security
mechanisms used in such keys and the weaknesses in the security implementations.

[86] J. D. Howard and T. A. Longstaff, “A common language for computer security incidents,”
Sandia National Laboratories, vol. 10, p. 32, 1998.

Establishes a high level taxonomy for computer security.

[87] C. Miller and C. Valasek, “CAN Message Injection - OG Dynamite Edition,” Tech. Rep., 2016.
[Online]. Available: http://illmatics.com/can%20message%20injection.pdf.

Discusses the techniques used for ECU reverse engineering for penetrating vehicle systems,
taking their Jeep hack as the example.

[88] K.-T. Cho and K. G. Shin, “Error Handling of In-vehicle Networks Makes Them Vulnerable,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna: ACM, 2016, pp. 1044–1055, ISBN: 9781450341394. DOI: 10.1145/2976749.2978302.

Discusses in detail attacks on the CAN bus via bus-off states. Shows how a bus-off attack can
be used to disable ECUs and CAN networks. Demonstrated against vehicles and bench based
networks.

[89] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A Stealth, Selective, Link-Layer Denial-
of-Service Attack Against Automotive Networks,” in Detection of Intrusions and Malware, and
Vulnerability Assessment: 14th International Conference, DIMVA 2017, Bonn, Germany, July
6-7, 2017, Proceedings, M. Polychronakis and M. Meier, Eds., Cham: Springer International
Publishing, 2017, pp. 185–206, ISBN: 978-3-319-60876-1. DOI: 10.1007/978-3-319-60876-
1_9.

https://www.arb.ca.gov/regact/obd02/att2.doc
http://arxiv.org/abs/1405.7424
http://arxiv.org/abs/1405.7424
http://arxiv.org/abs/1405.7424
http://illmatics.com/can%20message%20injection.pdf
https://doi.org/10.1145/2976749.2978302
https://doi.org/10.1007/978-3-319-60876-1_9
https://doi.org/10.1007/978-3-319-60876-1_9
http:abs/1405.7,p.20

184 References

Attacking the CAN protocol at the bit level can induce errors to cause a CAN node to enter a
bus-off state. This is demonstrated as an attack against the parking sensors functionality of a
car.

[90] S. Abbott-McCune and L. A. Shay, “Intrusion prevention system of automotive network CAN
bus,” in 2016 IEEE International Carnahan Conference on Security Technology (ICCST), 2016.
DOI: 10.1109/CCST.2016.7815711.

Discusses security issues with CAN based systems and investigates a mechanism to detected
replay attacks.

https://doi.org/10.1109/CCST.2016.7815711

Appendix A

The computerised vehicle

I was originally supposed to become an
engineer but the thought of having to expend
my creative energy on things that make
practical everyday life even more refned,
with a loathsome capital gain as the goal,
was unbearable to me.

Albert Einstein

Small, computationally powerful, and energy-effcient embedded computers are hidden beneath
the surface of all the cars manufactured today. In this appendix, a brief discussion on the origination
of the computerised vehicle is given, plus the emergence of the connected car. This was originally part
of the literature review (Chapter 2), however, length consideration has moved some of the historical
content out of the main thesis to here.

A.1 The rise of the ECU

Computers in vehicles began in the last quarter of the 20th century, there was an increase in the
number of new vehicle designs that included electronic and then computational systems. The addition
of microprocessor systems to vehicles was initially spurred on by the Clean Air Act in the United
States [70]. The act was introduced to reverse the increasing levels of smog in US cities. To meet the
requirements of the new pollution limitation regulations, i.e. emissions targets, manufacturers ftted
computers, called Electronic Control Units (ECUs), to vehicle engines. The ECUs improved fuel
effciency (and hence reduced pollutants) by improving fuel burn in combustion engines [71][72].

Since the frst ECUs were used to control engine functions, they were sometimes referred to a
Engine Control Units. However, ECU is a general term for any vehicular embedded computing device.
Another term occasionally used for an ECU is On-board Unit (OBU).

In the 1970s automotive engineers began to experiment with digital electronics and computer
control of other vehicular functions [73], Figure A.1 showing the dashboard of a General Motors

186 The computerised vehicle

(GM) early 1970’s Alpha experimental car. By the frst decade of the 21st century new vehicle designs
had deployed digital computers to simplify wiring and add enhanced functionality.

Some materials have been removed from this thesis due to Third Party Copyright. Pages where material has
been removed are clearly marked in the electronic version. The unabridged version of the thesis can be viewed
at the Lanchester Library, Coventry University.

Fig. A.1 Early 1970’s General Motors Alpha experiments, used with permission from the GM Heritage
Center.

Multiple ECUs have become commonplace, a mid-range executive car can have 30 to 40
ECUs [74] covering the entire range of vehicle functions. In a luxury limousine, the number of
computers can approach 100. An entry-level car may have less than 10 computers.

All the computers in vehicles are interconnected using data networks. Typically the systems are
functionally segmented, see Figure A.3 and Table A.1. A network of computers for the power-train
(engine, fuel, transmission). A subsystem focused entirely on the safety of the vehicle and occupants
(anti-lock braking systems and airbag deployment). A network for cabin functions (often called body
control). A network for entertainment systems (sometimes referred to as infotainment), and wireless
connectivity and telematics. Finally, a network for external functions (lights and parking sensors).
A central gateway computer will provide cross-segment functionality, such as turning on rear lights
when reverse is engaged, or allowing diagnostics information from all computers to be accessed.

In essence, an ECU is a specialist computer hardened for use in a vehicle, often referred to as an
embedded computer. The central processing unit (CPU) in an ECU is referred to as a microcontroller
or MCU. A MCU is normally a highly integrated device with on-board memory and input and
output ports. This reduces component counts in embedded applications. The ECU runs custom
software written in C code (produced by developers or generated from models designed by engineers).

187 A.1 The rise of the ECU

Fig. A.2 Emergency assistance, navigation and cell phone integration are examples of computer-based
features.

Increasingly the power and sophistication of the ECUs have allowed for full operating systems to be
used (including Linux, Android, QNX and versions of Microsoft Windows). The development of
autonomous vehicles (a.k.a. driverless cars) is adding more sensors and computers, turning cars into
mobile supercomputers.

An issue noted by Broy [75] is that the highly computerised vehicle presents challenges due to
the complexity of the hardware and software platform. It impacts traditional vehicle engineering due
to the management challenges of software-based projects. The established automotive mechanical
engineering, being based around a parts supply chain, has to contend with the differences between the
computer and mechanical domains. The car as a whole has become a programmable platform as the
sensors and computers reach into all parts of the vehicle and are connected by data networks. The road
vehicle has moved into the CPS arena. The challenges presented are not limited to the automotive
feld, they apply to other types of CPS [76].

These new programmable platforms provide new modes of functionality. Previously software
was initially a solution to an engineering requirement. Now the software in these programmable
CPSs drives the engineering as new features are offered. A point made by Broy is how to ensure the
increasing software complexity can be handled without loss of control of safety and costs. Modelling
is proposed as a solution, how systems can be modelled from the top down. However, Broy does
not discuss other factors that have driven computerisation of vehicles; this includes market forces
(economics and consumer requirements) and governmental, environmental and safety legislation.

In becoming CPS entities our cars, previously entirely dependent upon driver actions, now require
the electronics, sensors, computers and software to enable operation. Furthermore, the car is no longer
an isolated machine. Manufacturers have added wireless connectivity to vehicles in order to provide
additional services to the drivers [77]. The vehicle’s wireless connectivity uses high speed data
(3G and later) technology from telecommunications companies. The connectivity is supplemented
by the devices the driver and any passengers carry (e.g. cell phones), thus even older vehicles can

188 The computerised vehicle

Fig. A.3 In-vehicle networks in a medium-sized executive car [74], see table for abbreviations

become connected cars. This wireless connectivity allows the connected car to access multiple remote
information exchanging services, and this sees changes in how vehicles are used.

A.1.1 The growth in connected and autonomous vehicles

CAVs would not be possible without advances in computer-based vehicular functions. New and
improved sensors, electronics, microprocessors and software allow for continual innovation by
vehicle manufacturers and their component suppliers. These innovations add to the computerised
vehicle to provide value-added functions for the driver and passengers. These functional additions
are for improved safety, comfort, convenience and entertainment. Some functions provide product
differentials or unique selling points for manufacturers. Innovation in the wider transportation
infrastructure sees the computerised vehicle as an entity within city-wide and countrywide Intelligent
Transportation Systems (ITS). ITS and CAV are seen as technologies to aid in accident, traffc and
pollution reduction for the beneft of future societies [78].

189 A.1 The rise of the ECU

Table A.1 ECUs in a German executive car

Reference Function Reference Function

ACSM Crash Safety Module ICM Chassis Management
AMPT Hi-Fi Amplifer IHKA Air Conditioning
COMBOX Emergency Call and Media KAFAS Driver Camera Systems
CON Controller (For Driver Input) KOMBI Instrument Cluster
DME/DDE Engine Electronics PMA PDC Parking Assistant
DSC Dynamic Stability Control REM PDC Rear Parking Module
DVDC DVD Changer REMA LI Left Automatic Reel
EGS Transmission Control REMA RE Right Automatic Reel
EKPS Fuel Pump Control SMFA Driver Seat Module
EPS Power Steering SWW Lane Change Warning
FLA High Beam Assistant TPMS Tire Pressure Monitoring
FEM Front Electronic Module TRSVC Vision Camera Control Unit
FZD Roof Function Centre VDM Vertical Dynamics
GWS Gear Selector Lever ZGM Central Gateway Module
HU/CIC Head unit/Car Computer

The number of computerised systems in a vehicle is extensive, see Section A.1.2 below. The
computerisation of vehicular systems continues to increase in complexity as further technological
advances are made. The highly advanced CAVs use radar and vision systems, machine learning
and machine intelligence software to perform the driving functions of a human. Furthermore, each
new version of a system has lower costs and weight yet can do more, facilitating new engineering
applications, however, complexity increases.

As vehicular systems continue to increase in functionality the car connections multiply to cover
vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to device (V2D) applications, col-
lectively V2X. V2V and V2I are an essential feature of Intelligent Transportation Systems (ITS) [79].
The number of cars ftted with connectivity continually increases as the vehicles on the road age
and are replaced with new models. The Society of Motor Manufacturers and Traders (SMMT)
estimate that by 2025 all cars sold will be connected vehicles and the connected cars on the road
will outnumber unconnected vehicles [80]. The advantages of V2V safety systems are regarded as
particularly benefcial with the potential to decrease vehicle accident rates and reduce the loss of
life, serious injury, impact on emergency services, infrastructure repairs, traffc fows and insurance
costs [81].

A connected car allows for the provision of many value-added services to a vehicle driver and
the passengers (Table A.2). Any such service is based on the exchange of information between the
vehicle and the remotely located service provider. The information exchange is in the form of digitally
encoded data (e.g. for route guidance: vehicle location via GPS, vehicle identifcation, vehicle speed).

190 The computerised vehicle

Table A.2 List of connected vehicle services

Description of Service

Crash detection and response
Route guidance (navigation, traffc reports and avoidance, local facilities)
Weather reports
Breakdown assistance
Vehicle diagnostics
Stolen vehicle tracking and recovery
Personal safety alerts
Internet connectivity (Wi-Fi hotspot)
Safer driving guidance (behavioural footprinting, insurance telematics)
Fleet monitoring (feet management telematics services, effcient logistics routing)
Vehicle to infrastructure (V2I) information and safety notices
Vehicle to vehicle (V2V) sensing
Vehicle apps, vehicle to device (V2D) connectivity
Vehicle functionality via smartphone apps (e.g. locate, lock/unlock, preheat, servicing)

The use of vehicle connectivity is not limited to private cars. The effcient delivery of goods
and maximising resources is a concern for the logistics industry [82]. In that case data from and to
connected vehicles is used by algorithms in feet management systems to maximise resources (vehicles
and drivers) and minimise costs (time, fuel and mileage). However, the new-found functionality
achieved via vehicle connectivity has downsides. As well as the increase in engineering complexity,
there is the perennial IT problem of cyber-security, which has now entered the automotive feld.
Indeed, vehicle connectivity, combined with having nearly all vehicle subsystems using some form of
computer control, means there is now a permanent link between cyber-security and physical safety in
the cyber-physical systems that are modern vehicles.

A.1.2 List of computerised vehicle functions

The following is a (non-exhaustive) list of vehicular functions that are or can be computer-controlled.
It is non-exhaustive because computerised vehicular functions are under constant development by
vehicle manufacturers and their suppliers. These computerised functions are developed in response
to technological advances, innovations, technology cost reductions, consumer demands and product
differentiation:

• controlling the engine and regulating power and emissions, via controlled fuel and air delivery
(for fossil-fuelled engines), and controlling energy charging and discharging in hybrid and
electric engines;

• controlling gear changes and power delivery to the driving wheels;

• monitoring wheel traction and tyre pressure and providing handling and skid control;

A.2 Summary 191

• monitoring and operating actuators for windows, wiper blades, washers, doors, locks and
sunroofs;

• controlling radio, media and navigation playback (infotainment);

• running the security systems, including arming and sounding the security alarm and disabling
the engine for theft deterrence, providing keyless entry and starting, and central locking;

• providing advanced driver assistance services, for example, cruise control, parking sensors and
park assist, collision avoidance (automatic braking and steering), lane-keeping assistance, blind
spot warning;

• linking with driver and passenger devices (smartphones, tablets and computers) via Blue-
tooth and Wi-Fi, and providing software applications (apps) through these devices or via a
manufacturer’s portal;

• updating the cars displays (dashboard) and responding to driver and passengers operation of the
vehicle’s switchgear and controls;

• controlling the vehicle’s interior climate (air circulation via fans, air conditioning, heating,
heated seats, window demisting);

• de-icing windows and mirrors.

Computerised vehicle functions can originate from electronic control of previously mechanical
and hydraulic systems (e.g. braking and steering), or functions that result from the availability of
new sensor technologies and improved computational power (e.g. blind spot warning, lane-keeping
assist). The development of a computerised function does not necessarily lead to its presence in a
series production vehicle. The adoption is driven by factors that include production cost, energy
requirements (the load on the vehicle’s electrical system), size, weight, return on investment, market
requirements and local laws.

A.2 Summary

This appendix was derived from the work performed for the literature review in Chapter 2. The
literature review provides enough information to support the background and motivation for this
research, however, this appendix provided some additional historic and background information that
may be useful to other readers. Covered was the rise of the computerised car from early work in
1970’s and the introduction of ECUs to improve emissions from combustion engines, to the rise of the
connected car. The list of computerised vehicle functions and remotely provisioned services are now
extensive.

Appendix B

More on the CAN bus and OBD port

One of the biggest risks for autonomous
vehicles is somebody achieving a feet wide
hack.

Elon Musk

The literature review, Chapter 2, introduced the CAN bus and the OBD port, two pieces of
technology common to most cars, and both are examined in this research. Whilst the literature review
provided introductory technical information, additional detail is provided here for readers who want
to further their understanding of these vehicle technologies. Although this appendix expands upon
the overview information provided in the literature review, it does not provide extensive depth. For
in-depth technical information use the references provided in this appendix.

B.1 A brief history of CAN

CAN has evolved since its initial release. There are now three types of CAN protocol, here is a short
history.

• In 1983 the German company Robert Bosch GmbH starts development on a new serial bus
for vehicles. They had failed to fnd a suitable serial bus for use in vehicles to support new
functionality.

• The frst Automotive Serial Controller Area Network was announced in 1986 [83]. Thus it
precedes the World Wide Web and was designed in the era prior to widespread connectivity.

• In 1987 Intel delivers the frst CAN integrated circuits.

• Standard CAN, the frst CAN protocol, has a data packet with an 11-bit packet identifer (id)
feld, a 4-bit data length feld, and up to eight bytes (64 bits) of data. (Standard CAN was
observed in all vehicles and components used in this research.)

194 More on the CAN bus and OBD port

Fig. B.1 Part of a CAN signal from a bench measurement showing voltage levels, the 2.5v recessive
(logic 1) level is taken to 1.2v for CAN low and 3.9v for CAN high to create the dominant (logic 0)
level, a 2.7v differential (and 0.7v above a nominal differential of 2 volts)

• 1991 sees an updated CAN specifcation and the release of Extended CAN. The second version
of the CAN specifcation was split into part A for Standard CAN and part B for Extended CAN
and hence Extended CAN is sometimes referred to as CAN 2.0B. The main change in Extended
CAN was the introduction of a 29-bit id feld.

• The increase in data transmission volumes in vehicles (including the time taken when fashing
new frmware to vehicles) saw CAN bus utilisation design issues. The introduction of a new
CAN with Flexible Data Rate, or simply CAN FD, in 2012 was in order to increase data
throughput. There were two main changes. Firstly, an increase in the maximum size of the
number of data bytes that a packet can contain, from 8 to a maximum of 64. Secondly, the data
transmission speed can be increased during the transmission of the data bytes packet section
(hence Flexible Data Rate). This is to keep the overall packet transmission time in line with
normal CAN. CAN FD devices are able to co-exist with standard CAN devices.

For a more detailed history of CAN see https://www.can-cia.org/can-knowledge/can/can-history/.
Although originating from Bosch, CAN is now specifed in an international standard, ISO 11898.

B.2 An overview of CAN

CAN uses twisted-pair wire to connect devices in a bus topology (with 120 ohm termination resistors
at each end of the bus), supporting physical (a grounded or cut wire) and electrical (electromagnetic
interference) fault tolerance due to differential signalling (see Figure B.1).

B.2.1 Data transmission speed

Compared to a typical enterprise computing environment the transmission speed of CAN is modest.
When CAN was originally designed data speeds were low, in the tens to hundreds of kilobits per
second (kbps). Subsequent CAN specifcation releases have increased transmission speeds to a more

https://www.can-cia.org/can-knowledge/can/can-history/

195 B.2 An overview of CAN

modest 2 megabits per second (mbps) maximum throughput. However, a common transmission speed
used for in-vehicular networks is 500 kbps.

The data transmission on the CAN bus is continuous, as the vehicle’s state is constantly updated
for effective command and control, and to provide human feedback on vehicle status. This means a
CAN bus has a high load, usually 50 to 70 percent. The complexity of modern cars means that there
may be more than one CAN bus in a vehicle, several networks are common.

In the literature review in Chapter 2, a schematic of a CAN data packet was provided in Figure 2.5.
The software in the ECUs using CAN as a communications network read and write the packet id, data
length, and data bytes. The protocol control is handled automatically by the CAN interface hardware.

B.2.2 Packet id

Each device, or node, on the bus, can initiate data transmission, i.e it is a multi-master network, with
only one node at a time transmitting a complete packet. The protocol is designed to allow a higher
priority packet to continue transmission in the event of two to more nodes transmitting simultaneously.
Packet priority is determined via the id, encoded into 11-bits (Standard CAN) or 29-bits (Extended
CAN).

The lower the id the higher the priority of a packet. The id is referred to as the Arbitration Field.
For example, a packet with an id of zero would take priority over a packet with an id of 16. In which
case packet 16 would re-transmit once the data bus was quiet.

B.2.3 Data length and data bytes

Although the Standard CAN payload is only up to eight bytes in length, this is all that is required
for the main application of CAN in a vehicle. CAN is used to transmit sensor, switches and actuator
settings to and from ECUs located around a vehicle.

For example, a door open sensor only requires a single bit. A window position sensor can use a
single byte (256 positions) or less (a half byte or nibble for 16 positions may suffce). Thus, the data
packet size only needs to be small.

The number of data bytes in a frame is stored in the Data Length Code (DLC) feld, encoded into
4-bits and transmitted immediately before the data. Data is transmitted as common 8-bit bytes.

B.2.4 Control bits

The CAN hardware adds control, CRC and other error handling bits to the transmitted packet. The
CRC is sent immediately after the data bytes. The other bits sent in a complete data frame, e.g. End
of Frame (EOF), are used by the CAN transmission protocol, implemented and handled automatically
in CAN transceiver chips. The chips pass on the packet id, data length, data bytes and error states to
the higher-level application (e.g. the software in an ECU).

196 More on the CAN bus and OBD port

B.3 CAN example

In Figure B.2 an ECU microcontroller is reading a switch, e.g. on a dashboard. The switch state
(shown on) is encoded into the second bit of a data byte (00000010 or 0x2 hex). This is sent out
by the CAN transceiver as a data packet with id 8 and one byte of data. In the receiving ECU,
handling the vehicle lighting, the MCU software sees that the bit for the headlight is set and turns
it on. Likewise, when the switch is off the data byte is zero (00000000 or 0x0 hex) and the light is
turned off, Figure B.3.

Fig. B.2 Transmitting vehicle sensor data on CAN, here packet id 8 is sending data to turn on a
headlight

Fig. B.3 CAN transmissions are continuously updating vehicle state, here packet id 8 is turning off
the headlight

A modern car has hundreds of sensors, lights, actuators, switches and motors. Therefore, many
CAN packets are constantly sent around the vehicle’s internal networks to operate and control the car,
and to keep the driver informed of the vehicle’s state. Table 2.3 shows a brief amount of CAN data
read from a vehicle. Several CAN packets have been captured, each packet having 8 bytes of data.

197 B.4 The On-Board Diagnostics port

Table B.1 Section of CAN data captured from a car

Time ID Length Data
3.157253 190 8 00 00 00 01 93 01 00 00
3.157551 275 8 00 00 FF 00 00 00 00 00
3.157850 2C1 8 00 00 E0 00 00 00 00 00
3.158144 400 8 01 17 00 01 01 92 01 04
3.158430 405 8 01 66 4D 4E F2 49 FF FF
3.158708 430 8 51 64 01 35 59 14 78 C0
3.159010 432 8 28 00 00 00 00 00 00 40
3.159294 433 8 00 19 35 00 00 00 ED 08
3.159584 4E3 8 CC 00 00 02 10 4C 00 06

B.4 The On-Board Diagnostics port

The On-Board Diagnostics (OBD) port, Figure 2.6, is a legal requirement for the provision of
emissions data. Beyond the legal requirement manufacturers use it for other maintenance purposes.
This includes the ability to update ECU software (called frmware) and use spare pins on the OBD
connector to add manufacturer-specifc functionality, see Table B.2.

Table B.2 Usage of OBD port pins

Pin Use
1 Manufacturer defned, e.g. VW/Audi/BMW ign. on
2 SAE J1850 PWM Bus+
3 Manufacturer defned, e.g. Chrysler CCD bus+
4 Chassis Ground
5 Signal Ground
6 CAN+ (High), ISO 15765-4, SAE J2284
7 K-Line (ISO 9141-2, ISO 14230-4)
8 Manufacturer defned, e.g. BMW second K-Line
9 Manufacturer defned, e.g. BMW engine RPM
10 SAE J1850 PWM Bus-
11 Manufacturer defned, e.g. Chrysler CCD bus-
12 Manufacturer defned
13 Manufacturer defned, e.g Ford PCM programming
14 CAN- (Low), ISO 15765-4, SAE J2284
15 L-Line (ISO 9141-2, ISO 14230-4)
16 Vehicle Battery +ve (live 12v or 24v)

Data packets known as Diagnostic Trouble Codes (DTCs) provided the emissions and maintenance
values. DTCs are read from the vehicle’s ECUs over CAN. This is done with test equipment and
devices known as scan tools, or dongles, which plug into the OBD port. The tools provide a wired or
wireless (via Bluetooth or Wi-Fi) connection to a diagnostics computer.

198 More on the CAN bus and OBD port

The CAN data connection is a universal standard, always on pins 6 and 14. Thus, the OBD port is
providing a two-way communications connection to the nervous system of the modern vehicle. As
such use of the port has spread beyond its initial function. It is utilised by independent service centres,
car modifers and enthusiasts. There are many inexpensive, easily obtainable and usually unregulated
aftermarket devices which connect to the OBD port (Table B.3). These devices can be used to read
vehicle performance data for custom displays and provide telematics services. Examples of obtainable
data through the OBD port are engine speed, vehicle speed, throttle position and tyre pressures. Plus,
OBD is used by home mechanics to read DTCs when fxing their vehicles. Finally, other devices and
software using OBD allegedly improve fuel consumption and/or engine performance.

Table B.3 Devices that Connect to Vehicular Systems

Aftermarket Device Type Connection
Technician diagnostic tools (scan tools) OBD, Wi-Fi
Consumer targeted diagnostic tools (including dongles) OBD
Fleet management telematics units OBD, Wired
Insurance telematics units for driver monitoring OBD, Wired
High-end infotainment (or head) units Wired
Tire pressure monitoring system (TPMS) OBD, Bluetooth
GPS vehicle tracking units Wired, OBD
Cell phones Bluetooth, USB, Wi-Fi
Navigation systems Bluetooth, USB
Consumer targeted vehicle performance enhancing dongles OBD

The vehicle data that is available via OBD is not generally encrypted nor access controlled.
Though the Unifed Diagnostic Services (UDS) protocol, ISO 14229, used in most cars to access
advanced ECU diagnostics, does provide the facility to implement a seed and key service. The
seed-key security access may be implemented by an ECU for higher-level functions other than reading
ECU data values, for example to program the ECU with a new frmware.

B.4.1 Internal operation of OBD dongle style devices

Many OBD aftermarket devices work as an OBD to RS-232 interpreter (RS-232 is a well-established
serial data communications interface for computers). The signal conversion from the vehicle CAN bus
to serial date is performed via a CAN transceiver chip to a MCU with a USB interface. A computer
can provide a virtual RS-232 port to the USB interface. The ELM1 MCU is a popular choice for
OBD to RS-232 interfacing. The ELM chip allows a serial connection to be created between data
terminal equipment (DTE), such as the computer or a cell phone, and data communication equipment
(DCE), in this case, the OBD devices. The devices expose a RS-232 port via the standard Serial Port
Profle (SPP) of a Bluetooth Class 2 (low power 10 metre range) wireless interface. Attention modem
commands, known as AT commands, can then be sent through this serial channel via a terminal

1https://www.elmelectronics.com/products/ics/obd/

https://www.elmelectronics.com/products/ics/obd/

B.5 Summary 199

program (the terminal program can run on a laptop or cell phone). AT commands are a longstanding
method of confguring a RS-232 device, in this case, the ELM MCU.

Once a serial connection has been established between an OBD dongle and a computer (or mobile
phone), then messages can be sent from the computer to the OBD device (see Chapter 4). The sent
messages cause CAN packets to be transmitted on the in-vehicle network. A relatively unsophisticated
attack, often using no more than a terminal program, can disable a sophisticated vehicle. This can
compromise vehicle safety and security. Furthermore, this method has been been used to steal vehicles,
leading to the issue of addressing the physical security of the OBD port.

B.4.2 OBD physical security

When US legislation mandated access to the OBD systems it stated [84]:

the connector shall be capable of being easily identifed by a crouched technician entering
the vehicle from the driver’s side

This allows for convenient access for the emissions tester and service technicians, but also everyone
else, including criminals. Especially when it is coupled with poor engineering, as was the case of
being able to reprogram a blank keyless entry fob for a luxury car via the OBD port [85], resulting in
a spike in luxury vehicle thefts.

With the physical and the operational security of the OBD port generally weak, the marketplace
provides a variety of lockable OBD covers2 providing a physical deterrent to mitigate mechanical
access to the OBD port. However, a knowledgeable agent will know that, due to the physical nature
of CAN, a CAN tap is possible by accessing a vehicle’s wiring elsewhere. Furthermore, no study of
the physical resilience testing of such locks has been performed.

B.5 Summary

In this appendix CAN bus and OBD port information was provided to supplement the overview in the
literature review. A short history of CAN was given along with a brief technical description. The use
of the OBD port and its physical access was described.

2https://www.maplefeetservices.co.uk/product/obd-protector/

https://www.maplefleetservices.co.uk/product/obd-protector/

Appendix C

Bit rate attack on the CAN bus

When in doubt, use brute force.

Ken Thompson

In the literature review, Chapter 2, it was discussed how previous research has demonstrated
the security weaknesses of the CAN bus. Therefore, CAN’s use as a data transmission network for
connected vehicles needs additional security considerations. Furthermore, a vehicle’s vulnerability to
attacks via CAN is not helped by CAN’s ease of accessibility. Not only through the use of aftermarket
devices, see Chapter 4, but other methods include compromised ECUs and network wiretaps. The
security weaknesses in CAN was not an issue, or an even consideration, in the pre-connected car and
pre-Internet era (when CAN was designed). However, due to vehicle connectivity, any weaknesses
in the CAN protocol that could be exploited by a malicious adversary needs to be highlighted as a
potential security issue. In this appendix, a confguration error with a CAN node is examined for its
use as an attack against vehicle systems. Note, for this work, the experiments on the physical vehicles
were was performed collaboratively with HORIBA MIRA researchers and engineers.

C.1 Introduction to the experiment

In the literature review (Chapter 2) the CAN communications protocol was introduced and described
(with further technical material provided in Appendix B). In that description, the data transmission
throughput of the CAN bus was described as modest, in the hundreds of kilobits per second (Kbps)
range, compared to the modern home and business networks running at the megabits or gigabits range.

At the CAN hardware level any discrete bit rate is confgurable, up to the protocols maximum of
1Mbps. The common rates found in cars are 500kbps, sometimes referred to as high speed CAN, and
125kbps, which is sometimes referred to as medium-speed CAN.

In performing this research program it was observed that it is possible to disable a CAN bus
through a simple attack. The attack is a manifestation of a known problem with the CAN bus and
had been experienced during this research. The problem manifests itself as a consequence of setting

202 Bit rate attack on the CAN bus

the incorrect bit rate, i.e. the CAN protocol bit rate, on a CAN bus node. The incorrect bit rate was
set on several occasions during the development of the CAN fuzzer, and when developing the OBD
experiment in Chapter 4.

When the incorrect bit rate was set on a device connected to the CAN node it had the effect of
either disabling the connecting device or disrupting some or all of the communications on the CAN
bus. The latter effectively halts all functionality for the affected network, in security terms this is
a DoS attack. For vehicles, this DoS attack can result in diagnostic messages being displayed on
screens, erratic engine idling and actuator operation, and a possibility of causing damage to ECUs.
This problem raises a safety concern for vehicle users.

The cause of the CAN communications failure is a consequence of the protocol’s design. When
CAN nodes on a network detect errors at the bit level it will cause internal error counters to increase.
Once the error count gets too high within a CAN node, the node will shut down, known as a bus
off state [83]. This bus off state is intended to protect a CAN bus from faulty nodes, however, this
protection mechanism is triggered by a node with an incorrect bit rate confguration.

The bit rate CAN confguration issue was discussed with automotive engineers on the MIRA
Technology Park. The problem of an incorrect bit rate is encountered during vehicle systems R&D
and testing, it is considered simply as a confguration error. Confguration, however, has long been
recognised as a vulnerability in an attack process [86]. A search in the literature on using the bit rate
confguration as a possible attack against in-vehicle systems did not uncover any published research.
Therefore, presented here are experiments to examine the problem. The motivation is to determine the
kinds of errors that an incorrect bit rate can cause, and whether it is justifed as a threat vector.

The CAN bit rate attack threat could be via a compromised ECU or aftermarket device connected
to the OBD port, or a device attached to the CAN bus elsewhere in the vehicle. Depending upon the
attacker’s intentions the attack could be timed to be immediate, delayed, intermittent or controlled
remotely via wireless communications.

C.2 Method

In security terms, the DoS from an incorrect bit rate setting affects a systems availability security
property. To gather data on this problem experiments are performed, the objective is to test CAN
nodes and CAN packets at different bit rates and investigate the effect. Experiments are executed to
meet that objective and demonstrate the use of an incorrect CAN bit rate setting as an attack against
in-vehicle networks. The results are evaluated to determine the security implications.

The following experiments test the effect of incorrectly confgured CAN nodes being connected to
a running CAN bus. The incorrect confguration is that the bit rate on the connecting node is different
from the running CAN bus. The effects that the incorrectly confgured CAN node have is observed
in three types of ToEs; frstly, against a simulation of a CAN bus running on a bench based testbed
(Section C.3), secondly, against a vehicle component taken from a car (Section C.4), and fnally
against real-world vehicles (Section C.5). The details of the vehicles, including the manufacturer

C.2 Method 203

names, are withheld for ethical reasons of commercial sensitivity and responsible disclosure. The use
of different ToEs aids the development of the experiment and the determination of the effectiveness of
the attack, both as a security testing method in itself, as well as its usefulness to a threat agent.

The USB to CAN interface used for the development of the fuzzer, see Figure 5.3 in Chapter 5, is
connected to a PC to act as the attacking CAN node. It is a PEAK-System PCAN-USB device that
supports fourteen different bit rates and is thus suitable for testing the bit rate attack. The supported
bit rates (in Kbps) are 5, 10, 20, 33.333, 47.619, 50, 83.333, 95.238, 100, 125, 250, 500, 800, 1000 (1
Mbps).

For the physical connections to the ToE, the PCAN-USB node uses a common DB9 (9-pin D-Sub)
connector, cabled according to the CAN in Automation (CiA) 303-1 specifcation1. When testing
against the testbed, i.e. the CAN bus HIL simulator, the connector is directly plugged in. For both
the bench based vehicle cluster component and the real vehicles, additional cabling is required. The
custom cabling either connects directly to the CAN bus under test, or via an OBD port. To interface
to an OBD port a DB9 to OBD cable was constructed, the wiring for the custom cable is shown in
Figure C.1.

Fig. C.1 Connecting a PEAK-USB CAN interface to a vehicle OBD port

With the PCAN-USB attached to the ToE being tested different bit rate confgurations are tried.
For each of the PCAN-USB supported bit rates the following is performed:

1. The ToE is initialised and starts.

2. If the ToE is observed to be operating normally, continue.

3. The bit rate for the attacking CAN node (PCAN-USB device) is set.

4. In the case of the simulated vehicle, a CAN packet transmission was necessary to start the test.
This is because the PCAN-USB device was not recognised as a node on the simulated network
until a CAN transmission was sent. Against the real-world ToEs, all that was needed was for
the PCAN device to be initialised.

1https://www.can-cia.org/groups/specifcations/

https://www.can-cia.org/groups/specifications/

204 Bit rate attack on the CAN bus

5. Observations on the system responses were made.

6. If all bit rates have been tried then fnish, otherwise choose the next bit rate, reset the ToE and
go to 1.

C.3 Experiments against a simulated CAN bus

It was observed that the attacking CAN node, the PCAN-USB device, was not recognised by the
testbed’s HIL equipment unless a CAN data packet was transmitted. Therefore, a fxed CAN packet
was defned within the fuzzer tool for transmission during the bit rate testing. Any packet could
have been chosen. In this case, one of the packets observed on the simulated vehicle’s CAN bus,
running on the testbed is used. The packet used is shown in Table C.1. To reduce the variability of the
experimental parameters all the data bytes are set to a fxed value, in this case, zero.

Table C.1 CAN data packet for the bit rate attack

Id (Arbitration) Data Length Code Payload

Dec 100 8 all 0
Hex 0x64 0x08 all 0x0

The simulated vehicle’s CAN bus is executed on one of the testbed’s physical CAN busses. The
CAN bus bit rate for the simulated car is 83.333 Kbps. The attacking node was confgured with a
packet cycle time 0.05s (50ms). The results from the frst bit rate attack against a simulated vehicle
are shown in Table C.2.

Table C.2 Bit rate attack at 50ms, results against a simulated vehicle

Attacking bit rate (Kbps) Observation

5, 10, 20, 33.333, 50, 125, 250, 500, 1000 Stopped the simulation traffc
47.619, 95.238, 100, 800 Attacker entered bus off state
83.333 Partial attack success then attacker enters bus off

The same experiment was performed with a different packet cycle time, doubled to 0.1s (100ms).
This was in order to test the packet cycle time as a variable in the experiment. The second attack
results are shown in Table C.3.

The experimentation against the simulated vehicle on the testbed produced different results. The
attacker either stopped the simulation CAN data traffc, caused the attacker to enter a bus off state,
or was partially successful (with the attack functional for a short time before the attacker reports
transmission errors or enters a bus off state). The CAN packet transmission rate (not the bit rate but
the frequency of the packets) did cause a variation in the results of the attack. Between the 50ms and
100ms packet rates the results of the 33.333, 47.619, 83.333 and 95.238 kbps rates varied. Thus, at
these rates the combination of the bit rate and packet rate determined whether the CAN bus traffc

http:chosen.In

205 C.4 Experiments against a component

Table C.3 Bit rate attack at 100ms, results against a simulated vehicle

Attacking bit rate (Kbps) Observation

5, 10, 20, 50, 47.619, 125, 250, 500,
1000

Stopped the simulation traffc

33.333, 100, 800 Attacker entered bus off state
83.333 Runs normally but an occasional bus off observed
95.238 Attacker reports bus errors or enters bus off state

was halted or the attacker entered bus off. At the attack bit rate confguration of 83.333kbps the bus
off state was unexpected. This is because the CAN bus is confgured to operate at 833.333kbps and
thus an attacker node confgured at the same rate should not have any affect. This was the case for the
100ms packet transmission setting, but for that setting, an occasional bus off state was seen. Further
experimentation is required to investigate in detail the operation at a bit level.

The experiments against the simulated vehicle on the testbed show that a bit rate attack is a
possibility. The next step was to investigate the bit rate attack against physical hardware, aiming to
check the attack validity on a non-simulated ToE.

C.4 Experiments against a component

An instrument cluster component that matches the one ftted to the lab car is driven from an Arduino
SBC, together, the SBC and vehicle component are a small CAN bus. The bit rate for the small CAN
bus is 500 Kbps. The results from a bit rate attack against the vehicle components CAN bus is shown
in Table C.4.

Table C.4 Bit rate attack at 50ms, results against a physical vehicle component (instrument cluster)

Attacking bit rate (Kbps) Observation

1000 Stopped the CAN traffc and thus the component
5, 10, 20, 33.333, 50, 47.619, 95.238,
100, 125, 250, 500, 800

Attacker enters bus off state

500 Attacker and component runs normally

At the instrument cluster’s network correct operational bit rate (500 Kbps) the attacker did not
have any impact on the system. The attack was only successful at one bit rate, at 1 Mbps, where it
halted the instrument cluster network. Although the attack was successful at the one bit rate (in this
case), it was a demonstration of the ability to disable a CAN bus using this tactic. The next step was
to execute the attack against a running vehicle.

206 Bit rate attack on the CAN bus

C.5 Experiments against vehicles

Attacks on vehicles are diffcult due to their complexity and CPS nature, furthermore, vehicles can be
regarded as black boxes with information on their internal systems being proprietary. This means it is
not always possible to predetermine the effect of attacking the vehicle’s systems. Attacks on vehicle
systems via the CAN bus can result in damage to those systems [38], [87], and for a driven vehicle it
has safety implications. The possible damage to vehicles must be considered due to their cost, their
possible use as a shared resource, and the not insignifcant repair costs (hence the value of a testbed
for experimental development). To mitigate that possibility of damage in this case, the testing was
limited to two vehicles, and constrained only to short bursts of exposure to the incorrect bit rates.

C.5.1 Vehicle A

The frst vehicle, Vehicle A, is a small hatchback from a major manufacturer manufactured in 2013.
The attacking node was attached via the OBD port. Firstly, a quick test was performed to determine
if a bit rate attack would have an effect. Based upon the attack against the instrument cluster the
attacking node would run a 1 Mbps with a 50ms packet transmission rate. When the attack was started
the following was immediately observed:

• Engine idling disrupted with engine revolutions dropping below normal idle speed.

• Buzzers and warning lights were activated.

• Vehicle dials behaved erratically.

• Warning and malfunction messages appearing on the displays.

The attack was brief, at around fve seconds, and then stopped because of the reaction of the
vehicle. If the attack continued the possible effect on the vehicle is unknown.

Knowing that the attacking node has an effect, the range of bit rates supported by the attacking
device (PCAN-USB) could be used. The attacking node was run at its various supported bit rates
using the design procedure (Section C.2). The vehicle’s reactions were observed. The vehicle’s
displays showed warning messages and warning lights for a variety of bit rates, these are shown in
Table C.5. The vehicle’s general response, as for the initial test above, was disruption of the engine
speed and erratic behaviour of dials. As for the simulation, Section C.3, at the correct operational rate
for the vehicle’s CAN bus (500 Kbps), there was no perceived effect.

C.5.2 Vehicle B

The second test vehicle, B, is a premium fve-door hatchback, a model produced from 2012 to 2018.
This particular vehicle contains a gateway ECU between the diagnostics (OBD) port and in-vehicle
networks. To eliminate any effects of the gateway the attacking node (PCAN-USB device) was wired

http:networks.To
http:forexperimentaldevelopment).To

207 C.6 Vehicle considerations

Table C.5 Vehicle A: Warning and malfunction messages at various supported bit rates (Y=appeared,
N=no reaction)

bit
rate
(Kbps)

Engine
Mal-
func-
tion

Immobiliser
Malfunc-
tion

Engine
Coolant

Cruise
Control

ABS Powertrain
Warning

Stability
Control

Temperature
Reset

5 Y N Y Y N Y N Y
10 Y N Y Y N Y N Y
20 N N N N N N Y N
33.33 N
47.619 N
50 N
95.238 N
100 N
125 N
250 N
500 N
800 N
1000 Y

directly into the in-vehicle network (effectively bypassing the gateway). As with Vehicle A, there
were marked reactions when the attacking node was attached to the network. This is summarised in
Table C.6.

There were two effects observed in addition to the warning lights:

• Firstly, each time the attacking node was connected, the vehicle would beep. To prevent possible
permanent vehicle damage, as with Vehicle A, the node was connected only for a short time
(maximum of three beeps).

• Secondly, there was a small movement of the steering wheel, this may be due to engagement or
disengagement of power steering.

All the reported effects were permanent as long as the attacking node was connected, and some
effects remained even after the attacking node was disconnected. Cycling the ignition (turning the car
off and back on) one or more times removed the effects. As with Vehicle A, at the correct operational
rate of 500 Kbps the vehicle operates normally.

C.6 Vehicle considerations

It was not unexpected to fnd differences in specifc reactions (such as the type of warning light), as
the vehicles are different in construction. Vehicle A did not respond to as many bit rates but displayed
an increased array of errors. Vehicle B was much more sensitive to the effects of the various bit rates,

http:bypassingthegateway).As

208 Bit rate attack on the CAN bus

Table C.6 Vehicle B: Warning and malfunction messages at various supported bit rates (Y=appeared,
N=no reaction)

bit rate
(Kbps)

Inoperative Restrain System
Malfunction

Power Steering
Malfunction

Parking Brakes Ignition Coil light

5 Y
10 Y
20 Y N Y Y Y
33.33 Y N Y Y Y
50 Y N N N Y
47.619 N
95.238 Y N Y N Y
100 Y N Y N Y
125 Y N N Y Y
250 Y N N Y N
500 N
800 Y N Y Y Y
1000 Y N Y Y Y

but had fewer error types. There are several factors that are likely to be the cause for the different
reactions to incorrect bit rate settings. These include:

• The physical design of the vehicle systems; whilst each vehicle model of the same age from a
manufacturer has the same internal systems, the systems used between manufacturers will vary.
Furthermore, the same model of car from a manufacturer may have different options specifed
and hence have more or less ECUs ftted. These differences will change the characteristics of
the vehicle’s internal systems. Matching the exact specifcation of the vehicle with the errors is
a non-trivial effort since these exact specifcations are usually commercially sensitive and thus
closely guarded.

• The CAN transceiver hardware; there are a number of different manufacturers of CAN
transceiver chips. Whilst all chips are developed to pass the CAN certifcation tests, there will
be variations in implementations that will affect CAN bus characteristics.

• The ECU hardware; many of the MCUs used within ECUs have built-in support for CAN. As
for the CAN transceiver chips, there are many types of MCUs in use by different manufacturers.
This will affect the characteristics of the on-board systems.

• The ECU software; the programming of the ECUs will vary greatly depending upon their
functionality and design. How the error handling code is written will also be a factor. Thus, the
vehicle’s internal software will have an effect on the characteristics of the on-board systems
and would, therefore, be likely to respond differently to induced errors.

209 C.7 Weaponizing the attack

Due to safety reasons, it was not possible to perform the bit rate attack experiments on a moving
vehicle, but this would be desirable for future work (Section C.10). This would be to determine the
physical threat to the vehicle and other road users. The nature of the errors appear to be severe and
would be worth cataloguing in case a threat agent produces a malicious node (or compromises an
existing node) to launch an attack. Thus, the tests performed here would be desirable as a defned
security test. This is particularly important because of the observed physical reactions, such as the
movement of the steering wheel and problems with the engine, which confrms the safety dimensions
of the errors caused by the attack.

C.7 Weaponizing the attack

Further experimentation is required to enable full deployment of the attack and to provide additional
data to determine, in detail, the required conditions for a successful attack.

The testing here was limited to scenarios where physical proximity was required. However, it is
not inconceivable that a malicious bit rate manipulating device, with wireless communications for
remote control, could be ftted to a car. Other researchers and the work on the testbed in Chapter 4
have demonstrated the ability for rogue devices to be connected to a CAN bus.

The assumption of the tests was that a malicious device had been attached, or an existing ECU
compromised. Furthermore, such a device must be able to control the confguration of the bit rate.
With such conditions, the bit rate attack appears viable for deployment as a real-world weapon.

C.8 Additional attacking nodes

There has been a preliminary investigation into which particular kinds of CAN nodes cause an effect.
This is an initial exploration to help determine how an attacking node could be constructed and to
further understand the threat. The main experimentation used the PCAN-USB device, and it was
demonstrated that a bit rate attack is successful with such a device. Following this, two other devices
were tried. The HIL equipment used as the testbed for the vehicle simulation (see Section C.3 and
Chapter 4 for details) has Vehicle-In-The-Loop capabilities. The testbed acted as an attacking node
on Vehicle A. This was also successful in performing the bit rate attack, resulting in the same error
messages and physical effects appearing.

A device called CANtact2 was then used as the attacking node (Figure C.2), which is an open
source tool, a low-cost PC to USB interface, of a similar nature as the PCAN-USB device. The use of
CANtact proved unsuccessful in executing the bit rate attack. This may be due to physical hardware
considerations. The CANtact device uses a generic CAN transceiver (an MCP2551 manufactured by
Microchip) that remains passive until initialised directly from the microcontroller. The PCAN-USB
device (see Figure C.3) is implemented with a powerful ARM Cortex-M3 32-bit MCU supported by

2http://linklayer.github.io/cantact/

http://linklayer.github.io/cantact/

210 Bit rate attack on the CAN bus

Fig. C.2 The open source CANtact device

Fig. C.3 The top and bottom printed circuit board of the PCAN-USB interface, compared to the
CANtact device it is a more complex design

custom hardware and is actively monitoring the CAN bus when connected. The software controlling
CANtact may also be the reason it was not successful in performing the attack. Unlike the PCAN-USB
device which uses the developed GUI fuzzer tool on a Windows PC, the CANtact device is driven
from a Linux command line terminal. At this stage no further investigations have been performed to
determine why the CANtact device did not execute the bit rate attack, it would be a topic for further
work.

The weaponizing of the bit rate-attack will require further exploration of using different nodes,
and the toleration of different types of vehicles to such nodes. Finally, performing the attack via an
externally connected device, for example, with a wirelessly enabled rogue node, possibly attached to
the ODB port, would allow for further understanding of the risks from the bit rate attack method.

211 C.9 Discussion and attack mitigation

C.9 Discussion and attack mitigation

These bit rate attack experiments have confrmed another weakness of the CAN bus. CAN is
susceptible to a DoS attack by a malicious device that is able to manipulate the bit rate of the packet
transmissions. The simplicity of the CAN protocol is the root cause of the issue. At any given bit rate
the CAN hardware is sampling the CAN signal to determine the bit values to decode into the data
elements (see Table 2.2 in Chapter 2 for a summary of those elements). If CAN nodes are confgured
with different bit rates then their sampling frequencies will differ. For a given CAN signal the different
sampling frequencies will result in different interpretations of the bitstream. The nodes confgured
with the same bit rate as the CAN bus bitstream will decode the data correctly. However, a mismatch
between the confgured bit rate and the bit rate of the CAN bus bitstream causes nodes to indicate
errors with the transmitted data packets. At the bit level, too many errors will cause a CAN node to
shut down, known as a bus off state [83].

A more concrete example is illustrated in Figure C.4. In this schematic, the lower bitstream is
twice the bit rate of the upper bitstream, and the upper bitstream fts into the frst half of the lower
bitstream. In CAN, a high differential signal is a zero, therefore, the signal peaks are sampled as a
binary 0, and binary 1 for the signal valleys. A node confgured to match the upper bitstream’s bit rate
will interpret the signal values from the faster bit rate differently. This is the cause of protocol errors
and, thus, nodes entering a bus off state. Getting a CAN node to enter this state has been used as an
attack method by other researchers [88], [89], by directly manipulating the bits in the CAN protocol.

Fig. C.4 Schematic comparing bit rates and why it results in errors, for the same sampling frequency
the faster signal results in a different interpreted bit values

212 Bit rate attack on the CAN bus

At a more macro systems level, the CAN bus errors usually manifest within the vehicle as error
messages, warning lights and diagnostic indicators on the vehicle’s displays, or physical effects on
vehicle controls and engine.

There are not likely to be many mitigations to the bit rate attack. This is due to it being an
attack directly affecting the bit level physical characteristics of the data transmissions. Cryptography
solutions to protect CAN [33], or a CAN Intrusion Detection Systems (IDS) [90] will not work
because of the physical disabling (bus off) effect of the attack. For devices attached directly to the
OBD port, a frewall or gateway device would be able to detect incorrect bit rates and not allow those
signals to propagate through to the vehicle networks.

The emergence of alternative protocols, such as automotive Ethernet (100BASE-T1), as another
in-vehicle communications bus is benefcial for future vehicle systems design. This is because vehicle
systems that use automotive Ethernet would not be subjected to this attack because of its single
transmission speed of 100 megabits per second (Mbps) and point-to-point topology.

C.10 Possible further work

These experiments were conducted to confrm observations during this research, and by others, on
CAN bus failures due to incorrect bit rate settings. However, these experiments need to be expanded
further too fully quantify the threat. There are several variables that affect how successful a particular
CAN bit attack is at affecting a vehicle, these include:

1. CAN bus bit rate

2. Attacker bit rate

3. Attacker data packet transmission rate

4. The functionality of existing nodes

5. The functionality of the attacking node

6. The design of the in-vehicle systems

These variables need to be studied further in order to gather more data to fully quantify the threat,
and aid methods to mitigate the attack. It will require further detailed experimental work to determine
how the above variables individually affect the attack process. The experimental work can address the
following:

• Perform the CAN bit rate attack against other targets, particularly vehicles, to study the variety
of responses to the attack.

• An additional variation on the packet cycle time variable.

213 C.11 Conclusion

• Investigations to determine if the CAN bandwidth utilisation affects the effciency of the attack.
This would be to determine if a CAN bus with a higher or lower traffc load has an effect on
executing the attack.

• Examine the attacks in detail at the hardware level to fnd protocol factors that determine attack
success or failure.

• Demonstrations of weaponizing the attack, for example via an OBD interface, and wirelessly,
to demonstrate the attack in action against a running vehicle in a safe environment.

• Examine how the attack could apply elsewhere, for example, CAN is used in other transportation
systems, IoT and factories. Performing this attack on systems in other domains that also use
CAN would enable further understanding of the generalised implications of the bit rate attack.

These experiments looked at standard CAN as this is the most widely used CAN protocol found
within vehicles. Studying the effect of the confguration attack on the higher speed CAN with Flexible
Data-rate (CAN FD) would be one extension to this work. It would likely yield interesting results due
to the higher data transmission rates of CAN FD. These results could form a point of comparison with
the current widespread use of standard CAN.

C.11 Conclusion

The examination of a bit rate attack against CAN was not part of the original research aims but a
consequence of observations made during this research. However, it provided an initial use, and hence
operational validation, of the testbed and the fuzzer tool. It was interesting to note that the bit rate attack
had not been previously considered as a possible threat in the literature, despite acknowledgement by
automotive engineers that bit rate confguration errors can affect CAN functionality.

In summary, the experiments performed do confrm that deliberate manipulation of the bit rate
may disrupt a CAN bus and thus, its use as a possible attack against vehicle systems is feasible. For
this attack, the security property compromised is availability, as it is a DoS attack.

It was important to examine the attack from an automotive cyber-security viewpoint, even though it
was peripheral to the main research. The experiment provides a starting point for further investigations
by researchers into the bit rate attack. The investigations can include weaponizing and packaging of
the attack for real-world deployment, examining the detail of its operation at the bit level, protection
and mitigation mechanisms to prevent such an attack, and use of the attack in other domains.

The experiment provided further evidence on the weakness of the CAN protocol, particularly in
the age of the connected car, and thus the importance of security testing systems. This experiment
further validated the testbed for automotive cyber-security testing, and provide a frst application for
the developed fuzzer, although limited to controlling the bit rate of the USB adaptor as the attack node
and transmitting a single packet.

Appendix D

Image permissions

Just as iron rusts unless it is used, and water
putrefes or, in cold, turns to ice, so our
intellect spoils unless it is kept in use.

Leonardo da Vinci C
o
n
t
e
n
t
r
e
m
o
v
e
d
o
n
d
a
t
a
p
r
o
t
e
c
ti
o
n
g
r
o
u
n
d
s

Content removed on data protection grounds

216 Image permissions

Content removed on data protection grounds

Appendix E

Safety considerations

Engineering is too important to wait for
science.

Benoit Mandelbrot

This research program was conducted in accordance with Coventry University’s and HORIBA
MIRA Ltd’s ethical guidelines and health and safety policies. For readers of this thesis who are
embarking on similar research it is important, for ethical and health and safety reasons, to understand
the risks involved in working with vehicles and vehicle systems, particularly for those who are not
familiar with automotive or electrical and electronic engineering.

This research required interaction with the electrical systems of vehicles and vehicle components
that require voltages of 12 to 13 volts. It is important to be aware of safety issues when dealing with
electrical voltages. If replicating the experiments in this research please be aware of the following
considerations:

• Read the health and safety procedures of your organisation.

• Turn off power supplies, equipment and vehicles when they are not being used.

• Never leave the positive and negative and power leads touching.

• Always unplug power cabling when not in use.

• Ensure power supplies, equipment and vehicles are turned off prior to connecting cabling.

• Double-check all voltage connections to ensure components and equipment are safely con-
nected.

• Never leave powered equipment or running vehicles unattended or in an unsafe state.

• Always check that voltage levels from power supplies are set correctly. Voltage levels are
important, too high a voltage may damage a component, test equipment, an ECU, or cause a
fre.

218 Safety considerations

• If necessary seek help from qualifed technicians.

Appendix F

Log File Searching

There’s a humorous side to every situation.
The challenge is to fnd it.

George Carlin

The cyber-physical nature of the modern vehicle means that there is a transition from the digital
signals to the physical world and vice versa. A CAN packet transmitted on the vehicle network will
generally not result in a CAN packet in response. Instead, a physical action will occur. If a log fle
of CAN data is available for playback in a system it is possible to use it to fnd the CAN packet
responsible for the physical action using a search. This was done with the display ECU in Chapter 9.
A divided-by-half search is well understood, however, the following is a formal defnition of the
process used in this research.

1. The CAN data being played back by the fuzzer is taken from each recorded line in a log fle.
The data line being played back is given as Lx, where x is the xth line in the log fle. After the
search, the packet stored at Lx should contain data that causes a reaction from the ECU.

2. The number of log fle lines to playback is given as t, initially set to the total number of lines
read from the log fle.

3. The starting line for the playback, Ls, begins at the frst line, Ls = L1.

4. The number of CAN packets to playback, n, is set to half (rounded down) of the total lines,
n = ⌊t/2⌋, this halving is the important search part.

5. The ending line for the play back, Le, is set at the nth line from, and including the starting line,
Le = Ls+n−1.

6. The set of packets being played back, Sp, is Sp = {Ls . . .Le}.

7. The fuzzer plays backs each packet, Lx, in set Sp.

220 Log File Searching

8. If the ECU does not react to the playback then the starting and end lines are set to the next half,
Ls = Le+1 and Le = Le+t−n, return to step 6.

9. If a packet causing the ECU to respond is within the played back set, the search space is reduced
to the count of the packets in the set, t = |Sp|.

10. If t = 1 then all packets have been played back and the search is stopped, jump to step 12.

11. The search returns to step 4.

12. The log fle line Lx will (or should) have the CAN bus packet data that caused an ECU reaction.

Appendix G

Ethics documentation

And remember. . . don’t be evil, and if you
see something that you think isn’t right –
speak up!

Google Code of Conduct

This following pages contain the supporting document for the ethics process, reference number
P6333.

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Content removed on data protection grounds

Appendix H

Additional information on the CAN
fuzzer software implementation

Truth is ever to be found in simplicity, and
not in the multiplicity and confusion of
things.

Isaac Newton

This appendix provides additional information on the software that was written during the
development of the CAN fuzzer tool. It adds to the high-level information provided in Chapter 5,
which discussed the rationale for a new CAN fuzzer tool, its required characteristics, its interface to
the CAN bus, the user interface, and its initial operational validation. Whilst the primary focus of
the research was to apply fuzz testing to automotive systems, the CAN fuzzer was an output from
the research and will be of interest to others working in the automotive systems feld. This Appendix
provides some additional information on accessing and obtaining the source code for the CAN fuzzer
tool, it also includes an example of the log fle output for the CAN fuzzer.

H.1 Limitations on access to the CAN fuzzer code

This research was conducted under a partnership agreement between HORIBA MIRA Limited and
Coventry University (see the Acknowledgements at the beginning of the thesis). The agreement gives
HORIBA MIRA the Intellectual Property Rights (IPR) to the output of the research, and Coventry
University a no-cost licence to use the output. To protect their commercial IPR HORIBA MIRA
have requested that information on the internal’s of the CAN fuzzer software tool is not disclosed.
Specifcally, there is a restriction on the amount of detail that can be revealed about the software’s
source code and its operation. The outcome on a discussion to open source the entire project was
made, the decision was for the project to remain close sourced, as confrmed in the email shown in
listing H.1.

234 Additional information on the CAN fuzzer software implementation

Listing H.1 Email confrmation on keeping the CAN fuzzer tool closed source
From : Pau l Wooderson < pau l . wooderson@horiba−mira . com>
Sen t : 08 August 2019 12 :38
To : Fowler , Dan < fowle rd3@coven t ry . ac . uk>
S u b j e c t : RE : The CAN f u z z e r

Hi Dan ,

We’ ve d i s c u s s e d h e r e and our p r e f e r e n c e i s t o keep i t c l o s e d s o u r c e
f o r t h e t ime be ing , a l t h o u g h keep ing an open mind f o r t h e f u t u r e .

Bes t r e g a r d s ,
Pau l

The IPR restrictions have prevented the source code from being included, and only the descriptive
overviews in Chapter 5 and this appendix are provided. However, two components have been made
open source as they are not covered by the IPR. Links to a publicly available source code repository,
on GitHub, 1 are provided for those two components in Section H.3.

H.2 The code’s project fle and components

The project fle for the CAN fuzzer tool is shown opened in the Microsoft Visual Studio environment
in Figure H.1, the main start-up and UI project, FuzzMainMDI, is highlighted.

The Program.cs fle contains a stub class that is called by Windows to start the CAN fuzzer and
load the main UI interface (FrmFuzzMDI). In the main project each C# class with a name beginning
Frm, for Form, is a UI component.

• FrmInterfaces and FrmCANInterface are used to select, start, stop and confgure the CAN
bus interfaces and data packet logging.

• FrmFuzzTest, FrmFuzzFlood and FrmRunFuzzer confgure the parameters for the CAN fuzz
testing and executes the testing.

• FrmFuzzMDI is the UI container for all other interfaces.

• FrmMonitor reads data packets from the CAN bus and then logs data that matches defned
criteria.

• FrmSingleShot allows the tester to send a single packet of a specifc format to the CAN bus,
on a button press or at a regular interval.

• FrmStatus displays status and error messages generated by the tool.

1https://github.com/

https://github.com/
http:Program.cs
mailto:fowlerd3@coventry.ac
mailto:paul.wooderson@horiba�mira

235 H.2 The code’s project fle and components

Fig. H.1 The CAN fuzzer software project in the Microsoft Visual Studio IDE, the main program and
UI interfaces project is highlighted

236 Additional information on the CAN fuzzer software implementation

• FrmTransmitLog allows for a previously recorded log fle (see listing H.2 for an example) to
be sent to the CAN bus.

The remaining class fles in the project are used to store CAN data packet fuzz testing values,
CANFuzzValue.cs, and provide some UI utility functions, MDIUtils.cs. The main project is supported
by four C# Windows Dynamic Link Library (DLL) components.

• The CANInterfaces library contains the defnitions and confguration for each CAN bus
interface being used, it exposes a reference for each defned interface that can be used by each
UI component.

• The CANLogs library contains the functionality to handle CAN bus log fles and provides a
reference to be used by other components to access a log fle .

• The PCAN_USB library is the code that is used to talk to the CAN to USB interface adaptor. This
is one of two open source components used with the project, see Section H.3.2.

• The Ticker library is the second open source component in the project. It is used to provide a
timing signal for CAN data packet transmission, see Section H.3.1.

H.3 Open source components

The CAN fuzzer tool has two software components that have been made open source. Firstly, the
Ticker component is a novel one millisecond timer for Windows programs. Whilst code to wrap the
Windows high-resolution timer is commonly available, the implementation here has the advantage of
being very simple and short. Secondly, the code to interface to the PCAN-USB interface device is
based upon its device driver interface sample code. That code was extended into a useful general-
purpose library for Windows C# programs, and not being core to the logic of the CAN fuzzer it was
made open source.

H.3.1 Ticker is a one millisecond timer

One of the frst restrictions encountered when developing the CAN fuzzer was the default timer
control provided by the programming framework. The general timer has a minimum interval of
15 milliseconds. To get an interval timer below 15ms the Windows high-resolution timer must be
used. Example code to use the high-resolution timer from C# is available by doing an Internet
search, however, it often relies on complex interaction with the Windows API. A simpler solution
was implemented using the programming frameworks Stopwatch component and a component to
handle a background thread called a Background worker. The fnal solution for a 1ms timer is a
small standalone class fle that is used by the software to control CAN data packet transmission, see
listing H.3 for the class Tick.cs.

http:MDIUtils.cs
http:CANFuzzValue.cs

237 H.3 Open source components

Listing H.2 Example log fle captured by the CAN fuzzer, the fuzzer’s output begins at message 117
; $FILEVERSION=1.1
; $STARTTIME=43497.4380077083
;
; C : \ Fuzz−message . t r c
;
; S t a r t t ime : 01 / 02 / 2019 1 0 : 3 0 : 4 3 . 8 6 6 . 0
;
; Message Number
; | Time O f f s e t (ms)
; | | Type
; | | | ID (hex)
; | | | | Data Length
; | | | | | Data By tes (hex) . . .
; | | | | | |
;−−−+−− −−−−+−−−− −−+−− −−−−+−−− + −+ −− −− −− −− −− −− −−

1) 6372 .8 Rx 055B 8 5B 01 00 00 00 00 00 00
2) 6472 .9 Rx 055B 8 5B 02 00 00 00 00 00 00
.
.
.

106) 11509 .7 Rx 0290 8 00 7E 00 00 00 00 00 00
107) 11510 .0 Rx 02A3 8 00 00 00 70 00 00 00 10
108) 11510 .3 Rx 02E3 8 00 00 00 00 00 00 00 00
109) 11510 .6 Rx 0321 8 00 00 00 00 00 00 00 00
110) 11510 .9 Rx 0322 8 00 04 00 01 00 00 00 00
111) 11511 .2 Rx 04D3 8 31 50 54 28 00 00 00 00
112) 11709 .1 Rx 0287 8 00 00 00 00 00 00 00 00
113) 11709 .4 Rx 0290 8 00 7E 00 00 00 00 00 00
114) 11812 .9 Rx 055B 8 5B 14 00 00 00 00 00 00
115) 11908 .9 Rx 0287 8 00 00 00 00 00 00 00 00
116) 11909 .2 Rx 0290 8 00 7E 00 00 00 00 00 00
117) 96882 .9 Rx 03EE 8 44 3B 99 FF 5E 7F C6 97
118) 96883 .1 Rx 01C1 8 5E 19 A5 96 56 2F 81 C6
119) 96884 .6 Rx 0270 8 BD 9F 42 9D D1 10 0D 35
120) 96886 .3 Rx 0723 8 94 7F 0C C1 0D CA 2C 36
121) 96887 .5 Rx 03EC 8 90 D4 11 CA C9 16 BA 1C
122) 96889 .4 Rx 0169 8 5E 48 AC 5A 21 A5 F8 FC
123) 96890 .5 Rx 0174 8 71 91 B2 2E 6B DE 0D E3
124) 96892 .6 Rx 0448 8 02 4A 49 71 92 E8 8D 78
125) 96894 .4 Rx 06A0 8 56 F1 07 40 AA 4C D2 B1
126) 96896 .4 Rx 0503 8 D1 30 08 2F 6B FF 22 E2
127) 96897 .5 Rx 02F9 8 08 D7 93 A1 A0 13 FF 3B
128) 96899 .4 Rx 0642 8 18 80 27 74 F7 80 89 72
129) 96899 .7 Rx 055B 8 5B 01 00 00 00 00 00 00
130) 96901 .3 Rx 0421 8 0C 5C 43 21 B9 D2 42 19
131) 96902 .5 Rx 0031 8 C6 AA 19 E9 B1 7F 5D 66
132) 96904 .3 Rx 04FD 8 4C 96 E9 67 4F 51 08 94
133) 96906 .4 Rx 01BE 8 76 AF 5E 40 DE AC 94 72
134) 96907 .5 Rx 0741 8 D1 E5 35 35 71 6D 67 3E
135) 96909 .3 Rx 0612 8 22 22 D2 ED D2 75 73 DB
136) 96910 .5 Rx 068D 8 C9 AE E1 1B 1B 16 4C D9
137) 96912 .3 Rx 005C 8 EB EB 7D D1 C5 67 61 B3

238 Additional information on the CAN fuzzer software implementation

Listing H.3 Tick.cs implements a 1ms timer
u s i n g System . ComponentModel ;
u s i n g System . D i a g n o s t i c s ;
u s i n g System . Th r ead ing ;

namespace T i c k e r {
p u b l i c c l a s s T ick : BackgroundWorker {

S topwatch sw = new S topwatch () ;
boo l t i c k i n g ;
p u b l i c boo l T i ck i ng {

g e t { r e t u r n t i c k i n g ; }
}
p u b l i c i n t M i l l i s e c o n d s { g e t ; s e t ; } = 100 ;
p u b l i c vo id S t a r t () {

i f (I sBusy != t r u e) {
RunWorkerAsync () ;

}
}
p u b l i c vo id S top () {

t i c k i n g = f a l s e ;
}
p u b l i c T ick (P rog r e s sChangedEven tHand l e r Ca l lOnTick) {

Wo rke rRepo r t sP r og r e s s = t r u e ;
P rog re s sChanged += Ca l lOnTick ;
DoWork += RunStopwatch ;

}
p r i v a t e vo id RunStopwatch (o b j e c t s ende r , DoWorkEventArgs e) {

BackgroundWorker worker = s e n d e r a s BackgroundWorker ;

l ong d i f f = 0 ;
l ong n e x t T r i g g e r = 0 ;
i n t t i c k = 0 ; / / t o g g l e s from 1 t o 0 and s e n t back v i a p r o g r e s s

sw . S t a r t () ;
t i c k i n g = sw . I sRunn ing ;
do {

n e x t T r i g g e r = sw . E l a p s e d M i l l i s e c o n d s + M i l l i s e c o n d s ;
do {

Thread . S l e ep (1) ; / / o r Thread . S l e ep (0)
d i f f = n e x t T r i g g e r − sw . E l a p s e d M i l l i s e c o n d s ;

} wh i l e (d i f f > 0) ;
/ / D i s p l a y t i c k
worker . R e p o r t P r o g r e s s (t i c k) ;
i f (t i c k == 0)

t i c k = 1 ;
e l s e

t i c k = 0 ;
} wh i l e (t i c k i n g) ;
sw . S top () ;
sw . Rese t () ;

}
}

}

http:H.3Tick.cs

239 H.3 Open source components

The Tick class extends the BackgrounderWorker class, of which an instance is declared when
RunStopWatch is called. The stopwatch checks to see if the correct number of milliseconds has lapsed
(default 100), and if they have, an event is raised to the main program via the call to ReportProgress.
The use of BackgroundWorker prevents the Tick class from blocking the main UI thread.

The Ticker DLL, along with a demonstration program is available as an open source project
that extends the timing capability from 1ms into the tens of microseconds. It can be found at
https://github.com/GR8DAN/C-Sharp-Microtimer.

H.3.2 PCAN_USB is a CAN to USB interface library

The interface from the computer to the CAN bus is via the PCAN-USB device manufactured by PEAK-
System Technik GmbH. When the device is supplied it comes with example software, PCANBasic.cs,
to interface to the device driver DLL. The example software has been used in the PCAN_USB component
DLL to allow the CAN fuzzer to communicate with multiple PCAN-USB devices. A program was
developed to test and verify the operation and functionality of this DLL. The source code for the
DLL is too large to include in the Appendix, however, it can be viewed on Github, along with the test
program which doubles up as a demonstration of PCAN_USB. The open source project is located at
https://github.com/GR8DAN/PCAN_For_USB.

https://github.com/GR8DAN/C-Sharp-Microtimer
https://github.com/GR8DAN/PCAN_For_USB
http:PCANBasic.cs

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 The threat from cyber crime
	1.2 Establishing the research aim
	1.2.1 Hardware-in-the-loop and software-in-the-loop
	1.2.2 CAN is a common vehicle component interface and network
	1.2.3 Testing for secure design
	1.2.4 The research motivation
	1.2.5 The research question

	1.3 This research program's contributions
	1.4 Overview of the thesis
	1.5 Publications
	1.6 Summarising the introduction

	2 Literature review
	2.1 Aims of the review
	2.2 The literature discovery method
	2.3 Software assurance and security properties
	2.4 Threats, targets, countermeasures and evaluation
	2.5 The malleability of the computer
	2.6 A brief automotive cyber-security history
	2.7 Insecure vehicle technology
	2.7.1 The Controller Area Network
	2.7.2 The exposed OBD port

	2.8 Applying existing security to the vehicle
	2.9 The vehicular cyber-security testing requirement
	2.10 Three non-functional security tests
	2.11 What is fuzz testing?
	2.12 Fuzz testing CAN
	2.13 Summarising the automotive fuzz testing literature
	2.14 Drawing from the review
	2.14.1 Barriers to automotive cyber-security research
	2.14.2 Understanding the motivation for this research

	3 Method
	3.1 Introduction to research methods
	3.2 The iterative Design Science Research Methodology
	3.3 The DSRM process model
	3.4 Applying the DSRM to this research
	3.5 An automotive security test development methodology
	3.6 Addressing the very large CAN state space
	3.7 Equipment, tools and test facilities used during this research
	3.8 Summary on research methodologies

	4 A testbed for automotive security testing
	4.1 Introducing the experimental work
	4.2 Experimental method
	4.2.1 HIL/SIL platform
	4.2.2 Attacking the HIL/SIL platform
	4.2.3 Aftermarket device threat assessment
	4.2.4 Configuration and diagnostic messages
	4.2.5 Raw CAN packets

	4.3 A vehicle security testbed
	4.4 OBD attack against the testbed
	4.5 Evaluation of the results
	4.6 Assessment of the testbed

	5 A new automotive CAN fuzzer
	5.1 Introduction to the construction of a CAN fuzzer
	5.1.1 The need for a dedicated CAN fuzzer
	5.1.2 Required CAN fuzzer aspects

	5.2 CAN fuzzer design and development
	5.2.1 A PC based fuzzer
	5.2.2 Link to the ToE via the vehicle data bus or ECU interface

	5.3 Construction of the communications
	5.4 CAN fuzzer functionality
	5.5 Using the CAN fuzzer, first validation
	5.6 Fuzzer evaluation
	5.7 CAN fuzzer development summary

	6 Automotive fuzz testing
	6.1 Introduction to a fuzz testing experiment
	6.2 Method used in applying the prototype fuzzer
	6.3 Development of the experiment
	6.4 Demonstration of automotive CAN fuzz testing
	6.4.1 Affecting a lab vehicle with CAN fuzz testing
	6.4.2 Fuzz testing a bench based CAN bus

	6.5 Evaluating the fuzz testing
	6.5.1 Execution times for fuzz testing
	6.5.2 Observations from the fuzz testing

	6.6 Conclusion on automotive fuzz testing

	7 Investigations into an automotive gateway
	7.1 Introduction to an in-vehicle gateway as a ToE
	7.2 The experimental method
	7.3 Vehicle gateway hardware overview
	7.4 Initial gateway experiment and results
	7.5 Use of the fuzzer with the gateway
	7.5.1 Gateway ECU grounded CAN lines
	7.5.2 In-vehicle gateway operation

	7.6 Gateway testing evaluation
	7.7 Conclusion

	8 Fuzz testing a media interface ECU
	8.1 Introduction to the media ECU experiment
	8.2 Three stage experimental method
	8.3 Bench based media ECU CAN interface assessment
	8.4 In-vehicle data capture stage
	8.5 Media ECU bench fuzz testing
	8.6 Evaluating the media ECU fuzz testing
	8.7 Concluding media ECU fuzz testing

	9 Fuzz testing a display ECU
	9.1 Introduction to the display ECU
	9.2 Experimental method
	9.3 Display ECU CAN interfacing
	9.4 Debugging the display ECU CAN bus connections
	9.4.1 Lab vehicle display ECU
	9.4.2 Monitoring the display ECU connections

	9.5 Display ECU CAN packets
	9.6 CAN Fuzz testing of the display ECU
	9.7 Using the CAN fuzzer to find ECU functionality
	9.8 Log file search for a CAN packet
	9.8.1 Isolating message generating CAN packets
	9.8.2 Resolving inconsistent CAN packet search results

	9.9 Testing individual CAN packet bytes from found messages
	9.10 Single byte testing for individual display messages
	9.10.1 Experiment to test packet bit settings
	9.10.2 Experiment to test CAN packet byte values
	9.10.3 Modifying the CAN fuzzer to aid the experiments
	9.10.4 Known display ECU messages

	9.11 Results varying individual packet bit and bytes values
	9.11.1 CAN packet ids 793 and 752 testing results for single bit settings
	9.11.2 CAN packet ids 793 and 752 results discussion for single bit settings
	9.11.3 CAN packet 793 testing results for byte values
	9.11.4 CAN packet 752, byte value setting tests

	9.12 Testing packet length variation
	9.12.1 Method for the packet length variation
	9.12.2 Results for the packet length variation

	9.13 Exclusions lists for fuzz testing and CAN packet 753
	9.14 Reverse engineering confidential functionality
	9.15 Injecting display ECU messages
	9.16 Concluding the display ECU fuzz testing

	10 Discussion and conclusion
	10.1 On determining the research aim
	10.2 Experimental outputs from this research
	10.2.1 Summary of the results from the security testbed experiment
	10.2.2 Summary of the results from testing a vehicle gateway
	10.2.3 Summary of the results from testing a media ECU
	10.2.4 Summary of the results from testing the display ECU

	10.3 Contributions from the research outputs
	10.3.1 Contribution from the literature review
	10.3.2 Contribution from the development of the fuzzer tool
	10.3.3 Contribution from fuzz testing the CAN bus
	10.3.4 Contribution from identifying new automotive testing challenges
	10.3.5 Contribution of a method for developing automotive cyber-security tests
	10.3.6 Contribution in identifying combinatorial explosion in CAN fuzz testing
	10.3.7 Contribution from the bit rate attack experiment

	10.4 Discovered challenges in automotive security testing
	10.4.1 Challenge 1: The risk of damage versus obtaining trustworthy results
	10.4.2 Challenge 2: Design of suitable protection mechanisms
	10.4.3 Challenge 3: Vehicle components function as part of a CPS
	10.4.4 Challenge 4: Observing CPSs
	10.4.5 Challenge 5: State-space explosion
	10.4.6 Challenge 6: Granularity of control
	10.4.7 Challenge 7: Other vehicle networks and technology

	10.5 Summary of future research
	10.6 On answering the research question
	10.7 Research impact considerations
	10.7.1 Mitigating fuzz testing as an attack
	10.7.2 Impact of the research on additional stakeholders
	10.7.3 Securing the connected car

	10.8 Conclusion

	References
	Appendix A The computerised vehicle
	A.1 The rise of the ECU
	A.1.1 The growth in connected and autonomous vehicles
	A.1.2 List of computerised vehicle functions

	A.2 Summary

	Appendix B More on the CAN bus and OBD port
	B.1 A brief history of CAN
	B.2 An overview of CAN
	B.2.1 Data transmission speed
	B.2.2 Packet id
	B.2.3 Data length and data bytes
	B.2.4 Control bits

	B.3 CAN example
	B.4 The On-Board Diagnostics port
	B.4.1 Internal operation of OBD dongle style devices
	B.4.2 OBD physical security

	B.5 Summary

	Appendix C Bit rate attack on the CAN bus
	C.1 Introduction to the experiment
	C.2 Method
	C.3 Experiments against a simulated CAN bus
	C.4 Experiments against a component
	C.5 Experiments against vehicles
	C.5.1 Vehicle A
	C.5.2 Vehicle B

	C.6 Vehicle considerations
	C.7 Weaponizing the attack
	C.8 Additional attacking nodes
	C.9 Discussion and attack mitigation
	C.10 Possible further work
	C.11 Conclusion

	Appendix D Image permissions
	Appendix E Safety considerations
	Appendix F Log File Searching
	Appendix G Ethics documentation
	Appendix H Additional information on the CAN fuzzer software implementation
	H.1 Limitations on access to the CAN fuzzer code
	H.2 The code's project file and components
	H.3 Open source components
	H.3.1 Ticker is a one millisecond timer
	H.3.2 PCAN_USB is a CAN to USB interface library

