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Abstract—Chassis control systems play a significant role in achieving the desired vehicle performance 

and stability during various severe maneuvers. A probabilistic estimation approach by hybridization of 

optimal robust control and a damped least-square backpropagation based neural networks (NN) is proposed 

to design a control system for dealing with unknown nonlinear dynamics of a passenger car. To this end, a 

four-wheel active steering (4WAS) model is employed and a multilayer perceptron (ML) feed-forward 

backpropagation neural network (FFBPNN) model is developed as an approximator. The optimal robust 

control is employed to regulate the yaw rate and side-slip angle of the vehicle to follow the desired vehicle 

response. The developed FFBPNN model is trained to distinguish the nonlinear dynamics of the vehicle 

and the corresponding optimal feedback gain during a wide range of operating conditions via the state 

variables. The robustness of the controller is evaluated using Lyapunov stability method. The performance 

of the proposed controller is analyzed considering the open-loop and closed-loop responses of the 

nonlinear vehicle model and a sliding mode controller to track the desired yaw rate and side-slip‎ angle 

responses. The results obtained during severe maneuvers suggest that the proposed control method can 

substantially enhance the handling and stability performances of the vehicle. 
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I. INTRODUCTION 

Active chassis control systems such as anti-lock braking system, four-wheel steering, and active front 

steering are several effective control methods to stabilize the vehicle performance and handling severe 

maneuvers [1-3]. The limited region of functionality related to each controlling scheme is the major 

bottleneck in the mass commercialization and employment of such active controllers [3]. The main 

objective of the active chassis controlling approach is to attain the real-time vehicle response close to the 

desired vehicle states obtained from the reference vehicle model by reducing the tracking errors. The 

vehicle lateral chassis control systems have demonstrated capabilities of enhanced shared steering control 

for cooperative automated driving [4], reducing single-vehicle accidents in order to increase the passenger 

safety [5], vehicle maneuverability and steering flexibility [6].  

Various factors can deteriorate vehicle stability, such as the spontaneous change in road-tire grip, side 

wind force, tire inflation pressure and disturbance due to the steering input [7]. Therefore, it is essential to 

generate a sufficient yaw moment to compensate for any disturbance that the driver may not respond well. 

Four-wheel-steering (4WS) vehicles have revealed a substantial capacity to enhance the maneuverability 

of vehicles at low speed and improve the stability at high speed because rear wheels participate in the 

steering process and the transient response of a vehicle can be increased drastically [8].  

On the other side, a direct yaw control (DYC) method can be used by generating an external yaw moment 

through a differential braking system in order to improve vehicle active safety [9]. For increasing the 

performance of such controllers, an integrated DYC and active front steering (AFS) methods are typically 

utilized [10-12], which can increase the power demand of the system. Furthermore, because DYC depends 

on regulating the tire longitudinal and ‎lateral force differences in the left ‎and right wheels rather ‎than 

directly employing the tire lateral force, it may not be sufficient in ‎controlling the ‎side-slip‎ angle. 

There exists a bulk of studies related to the integrated active chassis control systems to improve the 

handling and stability of a vehicle under harsh driving conditions effectively. Zhang and Wang [12] 

employed a combined AFS/DYC control method for the enhancement of vehicle lateral stability and 

vehicle handling performance while the major concept was to employ a varying longitudinal velocity rather 

than a constant vehicle speed, which may typically impose the fore-aft discomfort for the passengers. In 

another time-varying velocity based vehicle lateral dynamics stabilization problem, a robust 

gain-scheduling ‎state-feedback controller by an energy-to-peak control of DYC for stabilizing lateral 

motion of electric vehicles was proposed in [13]. Although the proposed linear matrix inequality (LMI) 

based controlling method was shown to present robustness to parametric uncertainties, it may not be 

sufficiently effective in the region of tire nonlinearities. Li et al., [14] proposed a three-dimensional 

dynamic stability controller considering the effect of time delay on vehicle stability control. The potential 

of an integrated stability control related to the yaw and yaw-roll stabilities and rollover prevention was 

evaluated by using an upper and a lower controller. The framework showed effectiveness in achieving 

lateral stability and rollover prevention. The discussed integrated AFS/DYC methods, however, typically 

display extra power demand and potential inefficiency in ‎controlling the ‎side-slip‎ angle which serves as a 

critical state parameter to reach the desired vehicle performance.  

The performance of drive-by-wire systems has also been explored for integrated motion control [15,16]. 

Song et al., [15] designed a multiple hierarchical layers system for the purpose of integrated chassis 

controller of full drive-by-wire vehicles. Two control methods of sliding mode control (SMC) and terminal 

SMC were used for vehicle motion control purposes. It was shown that the method could satisfactorily deal 

with the constraints of the tire adhesive by employing polygonal simplification method. Abe and 

Mokhiamar [16], proposed an integrated vehicle motion control for a full drive-by-wire vehicle in order to 

control the steering angles and torques of the wheels independently. However, these methods depend on 

                  



 

optimum tire force distribution rather than directly dealing with the tire lateral force and may thus offer 

undesired performance for high-speed maneuvers.  

In view of control methods, a broad range of techniques have been applied for the active chassis control 

problems such as fractional order [17], Adaptive Neuro-Fuzzy Inference System (ANFIS) [18], Fuzzy 

Logic Control (FLC) [19,20], optimal control [11, 21], and SMC [5,15,16]. Reinforcement learning-based 

adaptive optimal exponential algorithms, resilient adaptive    have also demonstrated satisfactory 

performance for tracking control systems with unknown dynamics, actuator faults, and actuator 

nonlinearities [21-23]. An integrated system for controlling the nonlinear vehicle system was proposed 

based on ANFIS and Fractional-order PI
λ
D

μ
 control algorithms, respectively, while the multibody vehicle 

dynamic response was considered [18]. The model was designed to control the yaw velocity and side-slip‎ 

angle while the control rules and membership functions of fuzzy control rules were updated by of ANFIS, 

and the parameters of Fractional-order PI
λ
D

μ
 control were adjusted using genetic algorithm (GA) 

optimization. Li and Fu [24] designed an FLC to enhance vehicle performance for the integrated 4WS and 

active braking system. The two inputs of FLC were the yaw rate error and side-slip‎ angle error while the 

outputs were the yaw moment and rear steering angle. Type-1 Takagi-Sugeno and Mamdani fuzzy systems 

however exhibit low robustness to uncertainties, although interval type-2 fuzzy systems can potentially 

address this challenge by fuzzy definition of membership functions [25]. Esmailzadeh et al. [26] 

investigated the ability of two optimal and semi-optimal controllers to generate yaw moment through 

traction forces on two sides of the vehicle for an electric vehicle. It was reported that the optimal controller 

is suggestive of improved performance when compared to the semi-optimal controller at high lateral 

accelerations at the expense of higher complexity as it requires both yaw rate and lateral velocity feedback. 

Similarly, hybrid multi-level optimal control solvers have shown effectiveness in enhancing the stability 

and narrow down the initial guess sensitivity for trajectory optimization and parking maneuvering of 

autonomous vehicles [27, 28]. Among the methods mentioned above, the optimal control strategy has 

demonstrated a reasonably good performance to deal with the linear time-invariant (LTI) systems. These 

control schemas, mainly linear quadratic regulator (LQR), are vulnerable when subject to disturbances and 

thereby cannot provide a reliable and satisfactory result particularly when the dynamical system is 

nonlinear. However, the capacity of artificial intelligence (AI) can be employed to estimates the feedback 

gain of the optimal control for a nonlinear vehicle model after a dynamic programming implementation to 

learn the time-variant dynamics of the system.   

The reviewed literature indicates that 4WAS serves as an effective method to stabilize the vehicle lateral 

dynamics in terms of the desired yaw-rate and side-slip‎ angle responses. However, further studies are 

required regarding the optimal controllers to deal with the nonlinear vehicle model while the feedback 

gains are generated under a wide range of vehicle operating conditions. 

To this end, this paper spearheads training an optimized neural network (NN) model to learn the 

nonlinear vehicle dynamic model and estimate the optimal feedback gains for the controller using a 

damped leas-square backpropagation algorithm while the robustness of the system is guaranteed through 

Lyapunov stability method. Subsequently, the output of the optimized NN model as the feedback gain is 

updated progressively based on any disturbance to the system, such as the front steering angle or wind 

force. The dynamically updating feedback estimator for the nonlinear vehicle model will be evaluated for 

different steering inputs compared to the classical SMC method. 

 

II. PROBLEM FORMULATION 

 

In order to control a vehicle to follow the desired yaw rate and side-slip‎ angle, it is essential to develop a 

mathematical model that includes the vehicle lateral dynamics and identifies the relationship between the 

                  



 

vehicle and the road. In this section, the nonlinear tire model, together with the vehicle dynamic model and 

a linear vehicle model as the model reference are described. 

 

A. Nonlinear tire model 

 

The Burckhardt tire model [29] is employed with combined longitudinal and lateral slip in order to 

describe the tire longitudinal and lateral forces as it is particularly suitable for analytical purposes while 

retaining a good degree of accuracy in the description of the friction coefficient [30]. The longitudinal and 

lateral tire forces are expressed as a function of the longitudinal slip and side-slip‎ as well as the vertical 

force applied to the wheels as follows. 

,      -   (           )                                   (1) 

Burckhardt method is one of the models, which illustrates different longitudinal and lateral tire forces. It 

is valid for a wide range of road surfaces, together with the validity in the nonlinear region of the tire.  

  

B. Vehicle Dynamics model 

 

The vehicle considered in this paper is a mid-sized vehicle with four independent drive wheels. The 

model includes the longitudinal and lateral forces in the yaw plane obtained from nonlinear tire model 

based on Burckhardt technique [29]. It is assumed that the contribution of the pitch and roll modes of 

motion on the lateral dynamics of the vehicle are infinitesimal due to the symmetricity of the car about the 

right- and left-side tracks. Additionally, the longitudinal dynamics of the vehicle are ignored by assuming 

the constant speed cornering of the car. Moreover, the longitudinal dynamics of the car can be controlled 

independently. Therefore, the 2 degree-of-freedom (DOF) vehicle model is considered for the purpose of 

vehicle dynamics modeling as appreciated from Fig. 1 wherein the degrees of freedom include the vehicle 

yaw rate and side-slip‎ angle. The governing equations of the 2-DOF model can be described as follows 

 
Fig. 1. Planar 2-DOF vehicle handling model 

 

(       )      (       )      (       )      (       )         ( ̇   )                       (1) 

 

[(       )      (       )     ]   [(       )      (       )     ]   
 

 
[(       )      

(       )     ]  
 

 
[(       )      (       )     ]      ̇                    (2) 

where m is the mass of vehicle, vx stands for the longitudinal velocity of the vehicle center of gravity 

(C.G.), Izz is the yaw moment of inertia, γ is the yaw rate, Fxj, and Fyj (j = 1, ., 4) are the longitudinal forces 

and lateral forces respectively, developed by tire j (j = 1, ., 4), lf and lr are the distances from vehicle C.G. to 

the front and rear axles, respectively, w is the track width and δf and δr are the front and rear-wheel steering 

angles, respectively. 

                  



 

A Burckhardt method based nonlinear tire model was incorporated in the governing equations of motion 

(1) and (2), where the longitudinal force Fp and the lateral force Fq of the tires are described in terms of the 

longitudinal and lateral slip variables, respectively. 
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                                            (3)                                       

where Fz is the vertical load of the tires,    and     are the longitudinal and lateral slip, c1, c2, c3, and c4 

are the model parameters of the tires obtained empirically depending on surface and tire interaction. The 

longitudinal and lateral slips can be obtained as follows. 
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where   denotes the wheel radius,   is the steering angle of the wheel,   expresses the side-slip‎ angle 

and   and    are the wheel rotational and actual translational velocities, respectively. The longitudinal and 

lateral load transfers are ignored for the 2-DOF vehicle model, and the vertical loads on the front and rear 

tires are expressed by 
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The resultant slip of the tires can be also described according to: 

     √                                                                                      (7) 

Therefore, (3) can be rewritten as: 
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The tire forces estimated from the Burckhardt tire model are expressed in the wheel coordinate system. 

The tire forces are translated to the chassis-fixed coordinate system based on to their steering angle δ as 

following: 

[
   
   
]  [

           
          

] [
   
   
]                                                           (9) 

where Fxj and Fyj are the vehicle-fixed coordinate forces in the (x,y) coordinate obtained from Fpj and Fqj 

tire forces. 

 

C. Reference model 

The reference model is developed by assuming the linear response of tires. The simplified model is 

obtained by attributing constant cornering stiffness values to the front and rear tires. The yaw rate is a direct 

function of the steering angle in the linearized vehicle handling state thereby the vehicle response can be 

estimated at any input steering angle. Accordingly, the constant cornering stiffness parameter multiplied by 

the side-slip‎ angle estimates the lateral force through the Burckhardt model at zero longitudinal slip-ratio. 

Furthermore, the desired yaw rate is a function of front steering angle and vehicle forward speed while the 

desired body side-slip‎ angle is considered at zero for the sake of simplicity. The 2-DOF linear reference 

model can be described in the state-space form as follows. 
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where  
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The matrices of the state-space above are defined by the front and rear axle tire cornering stiffness values 

    and    . The minimum side-slip angle of the vehicle chassis, which is ideally zero, with the ideal 

yaw-rate response, which is obtained from the steady-state yaw response of the linearized vehicle model 

describes the objectives for the handling performance of the vehicle. In this manner, the desired side-slip 

angle and yaw-rate responses that a typical vehicle should follow during cornering maneuvers can be 

defined at zero and a function of the front steering wheel input, respectively [3].  
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                                                             (11) 

Therefore, the control objective is to make the system states   in (10) converge to the reference values 

     defined in (11)       . The developed controller for this system should efficiently deal with the 

disturbances basically created by the front steering input. There have been controllers that could effectively 

consider the uncertainties in the dynamic responses of the system, including different vehicle design 

parameters tire properties [3]. In the present paper, the controller is designed to provide the yaw moment 

and force through the rear steering-wheel angles in order to follow the desired trajectories. The inputs to the 

proposed optimal controller are the yaw rate error and the side-slip‎ angle error while the designed 

controller is synthesized to perform reasonably well in the vehicle nonlinear operating region.  

In order to describe the nonlinear vehicle dynamical model in a more general form (12), the cornering 

stiffness values of the tires are rephrased using the Burckhardt tire model in the chassis-fixed coordinates 

and are replaced instead of the constant linearized reference model. 

 ̇( )   (   ( )  ( ))

 ( )   (   ( )  ( ))
                                                                          (12) 

Therefore, the variations of local forces of the tires obtained from Burckhardt model with respect to the 

side-slip‎ angle are derived and the state-space form is rewritten [3]. 
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Finally, (14) can be stated in general form as following: 

 ̇( )   (   ( ))   (   ( )) ( )   (   ( ))                                                      (15) 

 

where the functions  (   ( )) and  (   ( )) defined in (14) are functions of the system parameters and 

 (   ( ))   is the disturbance term caused by the front steering-angle input. 

III. CONTROLLER DESIGN 

A.  Optimal Robust Controller 

The cost index, related to the vehicle lateral stability problem, to be minimized can be written in general 

form of a cross-weighted cost: 

  ∫ ( ̃   ̃    ̃        )  
 

 
                                                                      (16) 

                  



 

Where  ̃        , and the algebraic Riccati equation is defined [1]: 

 (        )  (        )            (        )                    (17) 

where Q and R are positive-definite Hermitian matrices and        is a positive-definite matrix to 

satisfy the (17). ‎If  ̅ is the solution, the optimum gains obtained through: 

     (      ̅)                                                                             (18) 

The transformation of the nonlinear vehicle dynamics model into the state-space through the neural 

network method is a key factor to identify the variable feedback gains by the increment of step size. The 

represented form of equations enables us to employ well-developed analysis and design methods. 

Nevertheless, if the knowledge about the system is inadequate, it is a difficult task to derive a 

representation with classical methods and thereby, an NN based approach is employed to define a 

state-space representation by means of the input-output data of the system. Regarding the state-space 

model presented in (12), one can also write that at any operating point ( ̂   ̂ ) for the state function   : 
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And similarly, for the same operating point for the output function   , it can be stated that:  
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the linearized state space equations are obtained as 
 ̇( )     ( )     ( )

 ( )     ( )     ( )
                                                                         (21) 

Now it is possible to assign state-space matrices at any time step (t) and obtain the corresponding 

full-state feedback using the optimal control theory. Therefore, the feedback gains at any point is obtained 

considering (21) and its equivalent index function (16) with the solution to find the feedback gains so that 

the controller input is:  

 ( )     ̃( )                                                                                    (22) 

Herein, we provide proof of stability for the developed optimal controller subject to disturbance and 

uncertainty as follows. One can consider a generic representation for the linear, time-variant system in 

state-space form as follows [1]: 

 ̇( )   ( ) ( )   ( ), ( )   ( )-                                                   (23) 

where  ( )     is the disturbance vector, and  ( ) and  ( ) are the time-variant matrices including the 

disturbance with appropriate dimensions such that: 

  ( )      ( ), ( )      ( )                                                     (24) 

  ( )     ( )  ,    ( )     ( )                                               (25) 

where ‖ ( )‖    and             vectors with appropriate size such that (25) forms the disturbed 

terms in (24). According to the Pontryagin minimum principle, we can develop the minimum quadratic 

performance index in finite horizon and time interval   ,     - as follows: 
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where        is a symmetric positive definite matrix, the disturbance is considered norm-bounded and 

 ( ) is designed as expressed in (26).  

 ( )      ( )  ( ) ( ) ̃( )                                                              (27) 

Owing to the time-invariant matrices in (23), the matrix differential Riccati equation can be developed as 

follows: 

 ̇( )     ( ) ( )   ( ) ( )   ( ) ( )   ( )  ( ) ( )   ( )              (28) 

A Lyapunov function can be selected such as (29).  

   ̃ ( ) ( ) ̃( )                                                                            (29) 

                  



 

The time derivative of (29) yields: 
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By plugging (23) in (30) we get: 
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Considering that (31) is composed of two nominal and disturbed components, and that substituting (28) in 

(30), a component of (31) related to the nominal terms can be described as: 
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Considering an algebraic manipulation, (32) can be shown by the semi-negative function (33):        
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One should note that the only condition  ̇     ̃   . The perturbed side of (30) can also be 

developed as: 
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Lemma 1 [31]: For any matrices (or vectors)   and   with appropriate dimensions, one can write: 

  ( )  (  ( ) )                                                                     (35) 

where  ( )  ( )    and     are valid above.  

Considering Lemma 1, the time varying uncertain terms of (31) can be bounded using arbitrary    , it 

can be shown that:  
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From (33) and (36) it can be safely concluded that  ̇   ̇   ̇     and this completes the proof. ■ 

 

B.  Neural Network Design 

The main objective of the design of the neural network (NN) system here is to estimate the optimal 

robust feedback gains (Fig. 2). Therefore, the inputs to the NN are the states of the vehicle model  

  ,       -
  multiplied by the corresponding synaptic weights   ,          - 

element-wise where      . The total input to an individual unit h is simply the weighted sum of the 

separate outputs from each of the connected units plus an offset term θjh.  

  
  ∑    

 
                                                           (37) 

And the transfer function passes the net input of the above neuron through the following tangent-sigmoid 

function: 

 (  
 )  
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The increased units, so-called hidden layers, from one to       * + , forms the multilayer 

perceptron neural network as follows.  

     (      (         (    (     
 )    

 )    
   )  

 )            (39) 

The outputs of the perceptron in (39) are equivalent to the controller feedback gains (K). It is inferred that 

the output of each neuron in the first layer is fed into the neurons in the subsequent layer and so forth. The 

complexity and nonlinearity of inputs, together with data size are suggestive of the increased layers at the 

expense of potential over-fitting drawbacks. Therefore, a single hidden layer was employed in the present 

study.  

 
Fig. 2. The general layout of Neuro-Optimal full state feedback controller 

 

The total quadratic error at the output units is designated as the error measure: 
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Where   and   
  represent the desired and actual AORC feedback gain values, respectively. The cost 

function above that represents the squared error between the desired feedback gains of the optimal 

controller and the ones predicted by the developed neural model is applied to the gradient descent method 

by finding the weights that minimize the error function as follows: 
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where   is the learning rate and (42) can be written using a chain rule: 
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By plugging (37) in (42): 
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And by defining 
   

   
     

 
                                                                        (44) 

The updating rule that functions as gradient descent on the error surface is thereby created as following: 

         
   

                                                                (45) 

However, the optimization method in the present study is the damped least-squares by interpolation of 

the above gradient descent and Gauss–Newton algorithm that fits well for the nonlinear least-squares 

problems and to avoid to trap in the local minima rather than the global solution, which typical gradient 

descent algorithms exhibit. 

If we assume that  ( ) is a sum of squared function: 
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      ( ) ( )                                      (46) 

                  



 

Then the jth element of the gradient would be 

,  ( )-  
  ( )

   
  ∑   ( )
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                                    (47)  

The gradient can, therefore, be written in matrix form: 

  ( )     ( ) ( )                                                           (48) 

where  ( ) is the Jacobian matrix, however, the Newtonian method is proportional to the second order 

gradient of the sum of square function, thus the Hessian matrix can be presented as: 

   ( )     ( ) ( )   ∑   ( ) 
   ( )

 
   ⏟            

     

    ( ) ( )                                (49) 

where the higher-order term is considered to be negligible, and thus the cost function for multilayer 

network training is the mean squared error (40), (46) can be rewritten as following for the O targets in the 

training set: 

 ( )  ∑ (     )
 (     )
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                                       (50) 

where do and so are the desired and predicted output using the neural representation. The critical task in 

the damped least-square minimization is to obtain the Jacobian matrix as well as the pseudo-inverse of the 

matrix while the damping factor plays a substantial role to avoid the singularities in the optimization 

problem. In order to implement such computation in the neural model, the derivatives of the errors were 

computed instead of the derivatives of the squared errors. 
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where the error and input vectors can be defined as the following: 
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By plugging (52) in (51), the Jacobian matrix for the multilayer network learning is developed and by 

considering the backpropagation method as: 
  ( )
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For the elements of the Jacobian matrix that are needed for the damped least-square algorithm, we need 

to calculate the terms such as 

, -    
   ( )

   
                                                                                (54) 

Moreover, considering the variables n and layer m and using a chain rule, derivation of backpropagation 

is obtained where the right-hand term is the sensitivity: 
  

     
 

  

   
  

   
 

     
                                                                        (55) 

The backpropagation process calculates the sensitivities by a recurrence relation for the sensitivity by 

using the chain rule in matrix form. 
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During the backpropagation, the sensitivities can be computed through the same recurrence relations as 

the standard sensitivities [32]. 

The NN architecture is formulated considering the data obtained from the state-space model of the 

system and employing a reasonably large range of operating conditions generating a total of 2×10000 data 

                  



 

size. Considering the dynamics of the system, two outputs are identified and thereby two corresponding 

feedback gains are obtained optimally using the feedback gains at any step increment. The NN observer is 

then employed to learn the correct feedback gains required to track the desired response given any running 

point of the simulation. The first and second elements of the feedback vector correspond to the yaw rate and 

side-slip angle variables.  

The proposed multilayer perceptron algorithm among the class of feed-forward networks has the 

capability of universal approximation of nonlinear phenomena and complex systems, therefore, the 

multilayer feed-forward neural network with damped least-square optimization method was employed. 

The designed neural network architecture consists of one input layer comprising both of the state variables, 

namely the yaw rate and side-slip angle. The single hidden layer is chosen due to the large size of the data 

and complex dependence of the feedback gains with those of state variables. 

The challenging tasks for developing ANN models are to identify an optimal number of neurons in each 

hidden layer, number of hidden layers, training algorithms, transfer functions, and tuning of learning rate 

and momentum. Determination of an optimal number of hidden layers generally involves a difficult 

tradeoff between the prediction ability and computational demand of the model. The preliminary 

simulations performed with the proposed NN model with a single hidden layer revealed reasonably well 

estimations of the feedback gains over the entire range of adopted inputs. The designed neural network 

with a single hidden layer with neurons ranging from 1 to 20 was subsequently employed, which showed 

satisfactory convergence in terms of mean squared error (MSE). It is noteworthy that employing a greater 

number of neurons in each hidden layer may lead to the over-fitting drawback, which reduces the 

forecasting ability of the model [33]. The neurons within the selected range did not exhibit over-fitting, 

ensured smooth learning of the ANN model and provided reasonably good correlations between the 

predicted and measured responses during the cross-validation phase. 

The network selects the weights and biases in a random manner at the start of the training phase, which 

not only entails greater computational demands but also may not yield satisfactory model performance. In 

order to overcome this drawback, each structure was trained 50 times to minimize the effect of random 

adoptions of weights and biases. Although increasing the number of repetitions may result in convergence 

toward zero MSE, it will impose excessive computational demands. The preliminary simulations revealed 

that the convergence towards minimal MSE could be realized within 1000 iterations. Subsequently, the 

network structure with least MSE over 100 iterations was explored. To ensure that each input variable 

provides an equal contribution in the ANN simulation and to reduce the challenge of numerical instability 

in the process of adjusting weights, the inputs to the model were normalized and scaled into the numeric 

range [-1,1]. 

The tangent-sigmoid transfer function was selected that is compatible with the normalization range of 

input variables since it is known to show the least sensitivity to the numerical method for computing the 

differentials. Moreover, the adaptive characteristic of tangent-sigmoid facilitates the operations over the 

entire range of inputs, which yields significantly higher slope of the transfer function curve under small 

input magnitudes and substantially lower slope under higher input magnitudes. This improves the rate of 

the learning performance of the network. The linear activation functions were used in the output layer. 

Backpropagation (BP) training algorithm employs the iterative-based gradient descent optimization 

technique to minimize the mean square error between the actual and predicted output. In this manner, the 

synaptic weights are updated in an iterative manner until the predefined goal of realizing either 0 or a 

minimum of MSE within the preset 1000 iterations is attained. The damped least-square optimization 

method was employed to yield rapid convergence during the training phase by updating the weights and 

biases. The reliability of any neural representation is generally verified using different statistical indices for 

quantifying the closeness of the actual and predicted outputs. In this study, the mean square error (MSE) 

between the predicted and actual feedback gains of the optimal controller and the coefficient of 

determination (R
2
) are adopted to evaluate performance of the proposed NN.  

                  



 

IV. RESULTS AND DISCUSSION  

The neural network system herein accommodates 2 inputs (i.e., the states of the system) and estimates 2 

outputs referring to the feedback gains of the optimal controller. The NN representation includes a single 

hidden layer with varying neurons. The weights were randomly scaled into the interval [-1 1] while training 

and testing data sets were obtained by employing independent and identically distributed uniform sequence 

over [-1,1] for 10000 data points. Using a trial-error approach in order to identify the least MSE value, the 

optimal number of neurons in the single hidden layer was obtained at 25 considering the system 

nonlinearities and the considerable size of data. To ensure the reliable learning speed of the neuro-optimal 

controller, the learning rate and momentum factors were employed. The learning rate regulates the 

intensity of decreasing the error iteratively and applies either a greater or smaller magnitude of 

modification to the preceding weight [28]. The neural network can potentially be trained rapidly in case the 

learning factor is considered large at the cost of losing the accuracy and generalization particularly when 

there is a large variableness in the input set. Therefore, setting the learning rate to a large value is improper 

and counterproductive to learning. Consequently, it is advised to set the factor to a small value and edge it 

upward where the learning rate seems to be at a low pace [33]. Momentum on the other side performs as a 

low-pass filter to settle sudden changes in the training procedure by allowing a variation to the weights in 

order to persevere for a number of adjustment cycles. If the momentum factor is set to a nonzero value, then 

progressively greater persistence of previous adjustments is acceptable in changing the current adjustment. 

The optimal values for the learning rate and momentum were obtained at 0.4 and 0.7 through a trial and 

error examination.  

Fig. 3 shows the results of the training, validation, and testing phases of the proposed neural network 

representation to estimate the feedback gains of the system in terms of the coefficient of determination. The 

error convergence toward zero at the desired rate and minimal complexity in NN can be appreciated from 

Fig. 3. It is further inferred that the estimated feedbacks have converged toward the unity slope line with a 

very small bias magnitude invariably for all of the three phases. It is further perceived that the range of 

feedback gains cover both the positive and negative values depending on the state the system. 

Fig. 4 presents the MSE curves in the logarithmic scale for both the training and testing data sets. Fig. 4 is 

suggestive that most of the NN learning was progressively continued until it reached the maximum of 1000 

iterations; however, MSE reduction for the testing phase was finalized within the iterations less than 40. 

The modeling performance for the testing phase indicates that the proposed neural estimator can predict the 

desired feedback gain adaptively to follow the desired trajectories given any disturbance or uncertainties in 

the system. The lowest MSE pertaining to the outperforming representation was obtained at 9.92e-10, 

which also equals to the best validation performance.  

 

                  



 

 
Fig. 3. The coefficient of determination of the NN estimator for the three phases of training, testing and validation, 

respectively. 
  

Furthermore, the augmented neural training, testing, and validation outputs compared to the actual 

feedback gains reveal that there was a very small error during all of the number of data indices although 

there were very negligible variations in the error estimation for feedback matrix (Fig. 5).  

 

 
Fig. 4. The variations in MSE for the training and testing phases in the logarithmic scale 

 
Fig. 5. The instantaneous modeling error 

 

The vehicle forward speed was initially set at 110 km/h, while the road friction coefficient was 

considered at 0.6 in order to limit the upper bound of the desired yaw rate. Two sinusoidal steering 

maneuvers were utilized characterized by 0.75 Hz and 1.25 Hz of frequency. In the first scenario, a 0.75 Hz 

open-loop sinusoidal steering maneuver for the duration of 2 seconds was applied after a lapse time of 

1.25s. In the second scenario, a 1.25 Hz sinusoidal steering maneuver was utilized applied for duration of 

4s including laps time after and before the start of sinusoidal input. Fig. 6 shows the vehicle response to the 

first sinusoidal input which indeed acts as the system disturbance. The vehicle response is synthesized in 

                  



 

terms of the yaw rate and the side-slip‎ angle to follow the desired trajectories as shown in Fig. 6. It can be 

distinguished that proposed controller compensates the vehicle to follows the desired yaw rate and side-slip‎ 

angle rapidly. The controller input generated by the proposed nonlinear neuro-optimal controller is shown 

in Fig. 6. Fig. 7 illustrates the yaw rate and vehicle side-slip‎ angle responses in step steer maneuver 

condition for uncontrolled system, conventional SMC method according to [34], and the proposed AORC 

to track the desired trajectories. It can be seen that since the tires exceeding the saturation region (i.e. 

            ), the conventional vehicle cannot generate enough lateral forces for cornering, SMC 

converges toward the desired trajectory and the uncontrolled system diverges from the desired responses. 

In terms of the controller input, the proposed controller is suggestive of considerably lower magnitude 

which can be attributed to the optimization of the cost function related to the controller. Fig. 8 presents the 

desired and closed-loop yaw rate and side-slip‎ angle of the vehicle model using the conventional SMC, 

uncontrolled method, and proposed controller with the controller input under the higher frequency steering 

input representative of double lane change maneuver according to [34]. It can be seen that the uncontrolled 

system diverges from the desired trajectory and the conventional SMC converges to the desired trajectory 

with an offset when compared to the proposed AORC method. 

  

 
Fig. 6. The vehicle response to the low-frequency sinusoidal input using the proposed closed-loop controller 

 
Fig. 7. Yaw rate and vehicle side-slip‎ angle responses in step steer maneuver condition for different controlling 

methods 

                  



 

 
Fig. 8. The vehicle response to the high-frequency sinusoidal input using the proposed closed-loop controller 

 
Fig. 9. The vehicle response to the parametric uncertainty and bounded external disturbance 

 

The effectiveness of the proposed controller to withstand the parametric uncertainty and bounded 

external disturbance according to the proof provided from (23) to (36) is presented in Fig. 9 while mass, 

cornering stiffness of tires and mass moment of inertia are perturbed by 20% about their nominal values 

and a limited external disturbance due to the wind force is considered. It can be seen that although both of 

the controllers remain in the stable region, the proposed AORC keeps tracking of the desired yaw rate and 

side-slip‎ angle in a more effective manner. Fig. 10 compares the open-loop and closed-loop accelerations 

during the high-frequency sinusoidal front steering angle variations. It can be perceived that the lateral 

acceleration corresponding to the closed-loop acceleration is considerably less than the open-loop vehicle 

response, which is achieved through the decrease of the closed-loop controller yaw rate response. This is 

critically significant particularly during severe maneuvers at high speeds to guarantee the lateral stability 

and handling. Furthermore, the capacity of the obstacle avoiding and path following the vehicle at high 

speed can also improve drastically. 

                  



 

 
Fig. 10. The open-loop and closed-loop accelerations during the high-frequency sinusoidal front steering angle 

V. CONCLUSIONS  

In this paper, an optimal robust controller coupled to a damped least-square Backpropagation training of 

neural networks (NN) was proposed to enhance the vehicle lateral dynamics stability and handling 

performance. To this end, a four-wheel active steering (4WAS) vehicle model was employed to control the 

yaw rate and side-slip‎ angle of the vehicle to track the desired responses. The nonlinearities and uncertainties 

in the vehicle model, together with the effect of external disturbance were handled using the developed 

FFBPNN algorithm while the corresponding optimal feedback gains for a wide range of operating conditions 

were generated. The stability of the proposed controller was proved using a Lyapunov stability method 

and ‎three maneuvering conditions, including step steering and double lane change, were employed ‎to verify 

the effectiveness of the proposed controller with and without the presence of ‎parametric uncertainties and 

external disturbance. The results of the proposed controller were ‎also compared to classical SMC and 

open-loop system, and it is concluded that the proposed ‎control schema can substantially enhance the 

handling and stability performances of the vehicle ‎for a broad range of operating conditions in a robust 

manner. ‎Although this algorithm provides  a satisfactory performance when compared to the benchmarking 

methods‎, ‎the effect of actuator  saturation and time‎-‎delay on the performance of the proposed controller will 

be further studied    in future works‎.  ‎ 
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