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Abstract: Abstract 

National development and resilience are strained by shifting regional 

water storage patterns. The water shifting pattern has been found over 

China, but the underlying climate mechanisms of the pattern remain 

largely unexplored. In this study, how shifting regional moisture 

conditions are related to intra-annual and inter-annual atmospheric 

oscillations can be explored by terrestrial water storage (TWS) derived 

from the Gravity Recovery and Climate Experiment (GRACE). Using a 

principal component analysis (PCA), the TWSs over the East China were 

divided into two spatial empirical orthogonal functions (EOFs), 

accounting for more than 70% of the total spatial variance. The first TWS 

EOF is related to the seasonal variation, whereas the second TWS EOF is 

associated with the spatial distribution of TWS trend. In addition, the 

PCA trend results for precipitation and actual evapotranspiration (ET) 

are consistent with TWS, with a correlation of 0.44 (p << 0.05) and -0.47 

(p << 0.05), respectively. Based on these PCA results, the Yangtze River 

Basin (YARB) was wetting, while the North China Plain (NCP) was drying 

between 2003 and 2015. This unbalance water distribution pattern was 

potentially linked to regional changes of the Hadley-type meridional 

circulation which aggravated the unevenness between north and south water 

distributions over the East China. Furthermore, a wavelet transform 

coherence (WTC) analysis was used for investigating multi-scale 

relationships between TWS and different climate factors. The local wind 

intensity and Asian monsoons were related to the regional unbalance TWS 

pattern on an intra-annual scale, with significance correlations of  -

0.49 (p << 0.05) and 0.9 (p << 0.05) respectively. Meanwhile El Nino 

Southern Oscillations (ENSO) was significantly negatively linked 

(correlation of  -0.41, p << 0.05) with TWS variability at the inter-

annual scale. However, based on partial WTC results, the association 

between ENSO and TWS can be explained away by the Asian monsoons, so that 

ENSO is only indirectly related to TWS through monsoons. Overall, the 

approaches and results of this study not only explained that the shifting 

TWS distribution over the East China was related to varying strength of 

local wind intensity and Asian monsoons, and ENSO at intra-annual and 



inter-annual scales respectively, but also provided a framework for 

studying TWS redistribution over other regions, which are crucial for 

sustainable regional development and resilient water future. 

 

 

 

 

 

 

 

 



Abstract 

National development and resilience are strained by shifting regional water storage patterns. The water 

shifting pattern has been found over China, but the underlying climate mechanisms of the pattern remain 

largely unexplored. In this study, how shifting regional moisture conditions are related to intra-annual and 

inter-annual atmospheric oscillations can be explored by terrestrial water storage (TWS) derived from the 

Gravity Recovery and Climate Experiment (GRACE). Using a principal component analysis (PCA), the TWSs 

over the East China were divided into two spatial empirical orthogonal functions (EOFs), accounting for more 

than 70% of the total spatial variance. The first TWS EOF is related to the seasonal variation, whereas the 

second TWS EOF is associated with the spatial distribution of TWS trend. In addition, the PCA trend results 

for precipitation and actual evapotranspiration (ET) are consistent with TWS, with a correlation of 0.44 (p << 

0.05) and -0.47 (p << 0.05), respectively. Based on these PCA results, the Yangtze River Basin (YARB) was 

wetting, while the North China Plain (NCP) was drying between 2003 and 2015. This unbalance water 

distribution pattern was potentially linked to regional changes of the Hadley-type meridional circulation which 

aggravated the unevenness between north and south water distributions over the East China. Furthermore, a 

wavelet transform coherence (WTC) analysis was used for investigating multi-scale relationships between 

TWS and different climate factors. The local wind intensity and Asian monsoons were related to the regional 

unbalance TWS pattern on an intra-annual scale, with significance correlations of  -0.49 (p << 0.05) and 0.9 (p 

<< 0.05) respectively. Meanwhile El Nino Southern Oscillations (ENSO) was significantly negatively linked 

(correlation of  -0.41, p << 0.05) with TWS variability at the inter-annual scale. However, based on partial 

WTC results, the association between ENSO and TWS can be explained away by the Asian monsoons, so that 

ENSO is only indirectly related to TWS through monsoons. Overall, the approaches and results of this study 

not only explained that the shifting TWS distribution over the East China was related to varying strength of 

local wind intensity and Asian monsoons, and ENSO at intra-annual and inter-annual scales respectively, but 

also provided a framework for studying TWS redistribution over other regions, which are crucial for 

sustainable regional development and resilient water future. 
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Highlights  

 Unbalance water distribution over the East China was found during 2003-2015. 

 Asian monsoons positively contributed to unbalance pattern at intra-annual scale. 

 ENSO negatively contributed to unbalance pattern at inter-annual scale. 

*Highlights (3 to 5 bullet points (maximum 85 characters including spaces per bullet point)



1 

 

Water storage redistribution over East 1 

China, between 2003 and 2015, driven by 2 

intra- and inter-annual climate variability 3 

Qing He
1
, Kwok Pan Chun

1
*, Hok Sum Fok

2
, Qiang Chen

3
, Bastien Dieppois

4
, Nicolas 4 

Massei
5
,  5 

1
 Department of Geography, Hong Kong Baptist University, Hong Kong, China 6 

2  
School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China 7 

3
 Geophysics Laboratory, Faculty of Science, Technology and Communication, University of 8 

Luxembourg, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg  9 

4
 Coventry University, UK  

 10 

5
 The University of Rouen Normandy, France

 11 

* Corresponding author: 12 

Kowk Pan Chun, Department of Geography, Hong Kong Baptist University, Kowloon Tong, 13 

Hong Kong, China. E-mail: kpchun@hkbu.edu.hk 14 

Highlights  15 

 Unbalance water distribution over the East China was found during 2003-2015. 16 

 Asian monsoons positively contributed to unbalance pattern at intra-annual scale. 17 

 ENSO negatively contributed to unbalance pattern at inter-annual scale. 18 

 19 

Abstract 20 

National development and resilience are strained by shifting regional water storage patterns. 21 

The water shifting pattern has been found over China, but the underlying climate mechanisms of 22 

the pattern remain largely unexplored. In this study, how shifting regional moisture conditions are 23 

related to intra-annual and inter-annual atmospheric oscillations can be explored by terrestrial 24 

*Revised Manuscript with no changes marked
Click here to view linked References

mailto:kpchun@hkbu.edu.hk
http://ees.elsevier.com/hydrol/viewRCResults.aspx?pdf=1&docID=50917&rev=2&fileID=1475359&msid={76E55A9C-DA7D-4EB9-9C2F-12CB2E48B928}


2 

 

water storage (TWS) derived from the Gravity Recovery and Climate Experiment (GRACE). 25 

Using a principal component analysis (PCA), the TWSs over the East China were divided into two 26 

spatial empirical orthogonal functions (EOFs), accounting for more than 70% of the total spatial 27 

variance. The first TWS EOF is related to the seasonal variation, whereas the second TWS EOF is 28 

associated with the spatial distribution of TWS trend. In addition, the PCA trend results for 29 

precipitation and actual evapotranspiration (ET) are consistent with TWS, with a correlation of 30 

0.44 (p << 0.05) and -0.47 (p << 0.05), respectively. Based on these PCA results, the Yangtze 31 

River Basin (YARB) was wetting, while the North China Plain (NCP) was drying between 2003 32 

and 2015. This unbalance water distribution pattern was potentially linked to regional changes of 33 

the Hadley-type meridional circulation which aggravated the unevenness between north and south 34 

water distributions over the East China. Furthermore, a wavelet transform coherence (WTC) 35 

analysis was used for investigating multi-scale relationships between TWS and different climate 36 

factors. The local wind intensity and Asian monsoons were related to the regional unbalance TWS 37 

pattern on an intra-annual scale, with significance correlations of  -0.49 (at p << 0.05) and 0.9 (at 38 

p << 0.05) respectively. Meanwhile El Nino Southern Oscillations (ENSO) was significantly 39 

negatively linked (correlation of  -0.41, p << 0.05) with TWS variability at the inter-annual scale. 40 

However, based on partial WTC results, the association between ENSO and TWS can be 41 

explained away by the Asian monsoons, so that ENSO is only indirectly related to TWS through 42 

monsoons. Overall, the approaches and results of this study not only explained that the shifting 43 

TWS distribution over the East China was related to varying strength of local wind intensity and 44 

Asian monsoons, and ENSO at intra-annual and inter-annual scales respectively, but also provided 45 

a framework for studying TWS redistribution over other regions, which are crucial for sustainable 46 

regional development and resilient water future. 47 

Key Words: 48 

Terrestrial water storage; Asian monsoons; El Nino Southern Oscillations; East China; climate 49 

variability 50 

1. Introduction 51 

Regional water redistributions emerged from changing global climate at various spatiotemporal 52 

scales (Näschen et al., 2019), and these redistributions caused hydrological hazards and uneven 53 
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water resources (Sharma and Shakya, 2006). Water challenges over China are related to a shifting 54 

North and South gradient due to irregular seasonality (Cheng et al., 2009). A large coastal region 55 

over the East China has a continental monsoon climate with wet summers and dry winters 56 

(Domrös and Gongbing, 1988). Spatially, annual precipitation in China varies from less than 50 57 

mm.year
-1

 in the northwest region, to more than 1600 mm.year
-1

 in the southeast region (Cheng et 58 

al., 2009). This uneven north to south precipitation distribution has been observed from the late 59 

1970s (Ding et al., 2009; Wang, 2001; Yang and Lau, 2004). Different explanations of potential 60 

drivers were suggested, including a weakening of the Asian summer monsoon (Wang, 2001), 61 

variations of sea surface temperature (SST) in the Pacific, Indian and Atlantic Oceans (Wang and 62 

An, 2002; Yang and Lau, 2004), and changes in snow coverage over Tibetan Plateau (Ding et al., 63 

2009). 64 

Changing catchment storage has been a derivative quantity from a water balance equation 65 

(Peixoto and Oort, 1992). The Gravity Recovery and Climate Experiment (GRACE) provided 66 

time-variable terrestrial water storage (TWS) measurements based on remote sensing (Xie et al., 67 

2018; Zhao et al., 2015). Hydrological signals over world major river basins were well 68 

reconstructed from the GRACE data (Schmidt et al., 2006). For example, Reager and Famiglietti 69 

(2009) designed a monthly flood index based on the global water storage distribution from 70 

GRACE. The accuracy of global TWS estimated from GRACE had been further evaluated in 71 

Landerer and Swenson (2012). 72 

Focusing on China, GRACE has been used to quantify TWS variations, estimate runoff and 73 

monitor hydrological extremes (Li et al., 2016; Luo et al., 2016; Zhang et al., 2016; Zhao et al., 74 

2015). Over China, the TWS trend showed uneven spatial pattern: decreasing in North China, 75 

while increasing in the western and southern China (Zhao et al., 2015). For specific regions, TWS 76 

studies can be found for the North China Plain (NCP) region (Su et al., 2011), the Yellow River 77 

Basin (Li et al., 2016), the Pearl River Basin (Luo et al., 2016), the Yangtze River Basin (YARB) 78 

(Fok and He, 2018; Zhang et al., 2016), southwestern China (Tang et al., 2014). However, there 79 

are rarely studies focusing the spatiotemporal TWS dynamic over the East China, the most 80 

developed region in China (Démurger et al., 2002). 81 

The variability of TWS over China has been attributed to the monsoons and teleconnections 82 
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such as El Nino Southern Oscillation (ENSO) (Long et al., 2014; Ni et al., 2018; Tang et al., 2014; 83 

Zhang et al., 2015). ENSO has been demonstrated to have significant impacts on precipitation and 84 

TWS over China (Han et al., 2019; Luo et al., 2016; Sun et al., 2017; Yang et al., 2018; Zhang et 85 

al., 2015). Although abovementioned studies discussed the possible roles of monsoons and ENSO 86 

to the spatiotemporal patterns of TWS in China, how TWS is related to ENSO and monsoons 87 

simultaneously at different spatial and temporal scales have not been widely studied. In this study, 88 

the Principle Component Analysis (PCA), Wavelet Transform Coherence (WTC) and partial 89 

WTC were used to investigate the temporal and spatial variability of TWS. Several studies have 90 

applied the PCA method to investigate TWS patterns in different regions, like South America 91 

(Frappart et al., 2013), Africa (Ramillien et al., 2014), Australia (Ramillien et al., 2014; Rieser et 92 

al., 2010) and China (Kang et al., 2015; Zhao et al., 2015). Although the PCA analysis of TWS in 93 

China showed spatiotemporal patterns based on EOFs (Kang et al., 2015) and emphasised 94 

changing TWS patterns by the GRACE error reduction (Zhao et al., 2015), the strengths of 95 

relationships between different EOF patterns of TWS and climate factors at different scales are 96 

still largely not explored.  97 

In next section, the details of data and method were provided. In the results part, spatiotemporal 98 

characteristics of TWS over the East China was characterized based on local wind intensity and 99 

Asian monsoons, and ENSO at intra- and inter-annual scales. In the discussion, shifting TWS 100 

distribution over the East China between 2003 and 2015 was explained based on different scaled 101 

climate drivers. In the concluding section, the implications and possible future applications of 102 

shifting TWS based on this study were summarized.   103 

2. Materials 104 

   In this study, multiple satellites products were used to get hydrological variables, and reanalysis 105 

datasets to derive meteorological variables and the climate indices. The detailed information of 106 

datasets was summarized in Table 1. 107 

Table 1. The description of datasets used in this study. 108 

Products Variables Spatial range and 

resolution 

Temporal range 

and resolution 

References 
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GRACE 

RL05 

TWS Global, 

1×1° 

2003-2015, 

monthly 

Tapley et al. 

(2004) 

GLDAS V2.1 

NOAH 

TWS 60°S-90°N, 180°W-

180°E, 

1×1° 

2000-2018 

monthly 

(Rodell and 

Beaudoing, 

2017) 

TRMM 3B43 

V7 

precipitation 50°S-50°N, 180°W-

180°E, 

0.25×0.25° 

1998-2016, 

monthly 

Huffman et al. 

(2007) 

MOD 16A2 ET Global, 

0.5×0.5° 

2000-2014, 

monthly 

Mu et al. (2011) 

ERA-Interim  Wind, specific 

humidity 

Global, 

0.7×0.7° 

1979-2018, 

monthly 

Dee et al. (2011) 

 Asian monsoon 

indices 

 2003-2015, 

monthly 

Wang et al. 

(2001); (Zhu et 

al., 2005) 

 Nino 3.4 SST 

index 

 2003-2015, 

monthly 

Rayner et al. 

(2003) 

 109 

2.1 GRACE and Global Land Data Assimilation System (GLDAS) 110 

For monitoring TWS based on gravity anomalies, the average of three different gravity solution 111 

of GRACE Level-2 Release 05 (RL05) derived from the Jet Propulsion Laboratory (JPL) of 112 

National Aeronautics and Space Administration (NASA) 113 

(ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05), the Center for Space Research (CSR) at 114 

University of Texas, Austin (http://www2.csr.utexas.edu/grace) and the GeoforschungsZentrum 115 

(GFZ) in Potsdam (http://isdc.gfz-potsdam.de/grace) was used, in the form of Stokes spherical 116 

harmonic coefficients (SHCs) up to degree and order 90 for JPL and 60 for CSR and GFZ (Tapley 117 

et al., 2004). Wahr et al. (1998) gave the equation of equivalent water height (EWH), which is a 118 

measure of TWS based on the SHCs. It can be defined as follow: 119 

ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05
http://www2.csr.utexas.edu/grace
http://isdc.gfz-potsdam.de/grace
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                      (1) 120 

where   and   are the colatitude (i.e., the complementary angle of a given latitude) and east 121 

longitude respectively,   and      are the mean radius and density (around 5517 kg/m
3
) of the 122 

Earth,    is the water density (1000 kg/m
3
).  

 

   is the normalized Legendre function,    123 

represents the loading Love number loading,      and      are the of residual SHCs (i.e. SHCs 124 

minus their long-term mean field) at degree n and order m.  125 

For reducing the estimate errors of gravity anomalies from GRACE, the degree-1 SHCs 126 

representing the geocenter motion coefficients were added into the gravity field (Swenson et al., 127 

2008), and the term C20 terms were replaced by the results from Satellite Laser Ranging (SLR), 128 

because the near-circular orbit of GRACE satellite was not sensitive to the second-order 129 

coefficient C20 term (Cheng and Tapley, 2004). The Gaussian filtering with a radius of 350 km 130 

and the detriping procedure were applied to reduce the uncertainties of SHCs at high degrees 131 

(Swenson and Wahr, 2006). In this study, the arithmetic mean of JPL, CSR and GFZ solutions 132 

was chosen to reduce the noise of gravity field solutions within the available scatter, as 133 

recommended by Sakumura et al. (2014). The GRACE data was spanning from January 2003 to 134 

December 2015, and missing data were interpolated linearly from the adjacent values of missing 135 

months. 136 

For removing the groundwater variation in TWS, the GLDAS Version 2.1  Noah product was 137 

applied in this study, available at Goddard Earth Sciences Data and Information Services Center 138 

(https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.1/summary?keywords=GLDAS) 139 

(Rodell and Beaudoing, 2017). Since the GRACE TWS includes the soil moisture in all layers, 140 

snow content, plant conopy water, surface runoff, reservoir water and groundwater, the GLDAS 141 

TWS is the combination of precipitation, ET and runoff, without groundwater variations. The 142 

product has the time span from 2000 to 2018 at monthly scale, with a spatial coverage of 60°S-143 

90°N, 180°W-180°E and 1 degree resolution. 144 

2.2 Precipitation and Evapotranspiration 145 

For relating TWS data to precipitation fields, the Tropical Rainfall Measuring Mission 146 

(TRMM) Multi-satellite Precipitation Analysis (TMPA) data product 3B43 version 7 was used 147 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.1/summary?keywords=GLDAS
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(https://pmm.nasa.gov/data-access/downloads/trmm). This product was spanning the period from 148 

1998 to 2016 on a monthly scale, with a spatial coverage of 50°S-50°N and a 0.25×0.25° 149 

horizontal resolution. Based on the improved algorithm of Mu et al. (2011) for the MODerate 150 

Resolution Imaging Spectroradiometer (MODIS), ET for this study was the MOD 16A2 product 151 

between 2000 and 2014, with a 0.5×0.5°horizontal resolution, from the NASA EOSDIS Land 152 

Processes DAAC website (https://lpdaac.usgs.gov/products/mod16a2v006/) (Running et al., 153 

2017). For spatial consistency between variables, the TRMM precipitation and MOD ET products 154 

were smoothed to a spatial resolution of 1×1° to be the same as the GRACE grid. 155 

In addition, previous studies showed that the TRMM product is highly biased and bias 156 

correction methods are needed for getting more reliable results (e.g., Biabanaki et al., 2013; Li et 157 

al., 2010; Shukla et al., 2019). In this study, the quantile mapping method  (Shukla et al., 2019) 158 

based on cumulative distribution function (CDF) was used to correct the bias of the TRMM 159 

product by using the observed monthly precipitation from multiple stations in south China 160 

(precipitation stations were shown in Figure S1). In south China, the TRMM precipitation 161 

matched well with the observation, with a high correlation of 0.950 (Figure S2a), indicating the 162 

TRMM bias in south China was very small. For the comparison of the precipitation CDF derived 163 

from observation and TRMM, the TRMM precipitation was very slightly smaller than the 164 

observation for a given CDF value (Figure S2b), indicating there was a very small negative bias of 165 

TRMM in south China. After the correction, the correlation between TRMM and observation was 166 

raised to 0.954, and the CDF curves of TRMM and observation overlapped, displaying the 167 

improvement of the TRMM precipitation. The precipitations in all grids were corrected by using 168 

this quantile mapping method, and the TRMM precipitation in the following text refers to the 169 

corrected precipitation.  170 

2.3 Moisture flux 171 

For looking at regional water movement, the moisture flux and its divergence, were calculated 172 

by multiplying wind ( including zonal (u) and meridional (v) wind components, and vertical 173 

velocity) to the specific humidity extracted from the ERA-Interim reanalysis dataset 174 

(https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/), provided by the European 175 

Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011). The latest dataset was 176 

https://pmm.nasa.gov/data-access/downloads/trmm
https://lpdaac.usgs.gov/products/mod16a2v006/
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
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covering the period between 1979 and 2018, with a 0.7×0.7° horizontal resolution.   177 

2.4 Monsoon and ENSO Indices 178 

For linking the climate factors to water dynamic over the East China, three Asian monsoon and 179 

ENSO indices were used in this study. Three Asian monsoon indices, including Indian Monsoon 180 

(IM), East Asian Monsoon (EAM) and Western North Pacific Monsoon (WNPM), were 181 

calculated based on the definition of Wang et al. (2001) and Zhu et al. (2005). According to Wang 182 

et al. (2001), the IM index was calculated based on the difference of the 850-hPa zonal winds 183 

between a southern region (5°-15°N, 40°-80°E) and a northern region (20°-30°N, 70°-90°E), 184 

while the WNPM index was derived from the 850-hPa zonal wind difference between a southern 185 

region (5°-15°N, 100°-130°E) and a northern region (20°-30°N, 110°-140°E). In addition, the 186 

EAM index was calculated by the differences between 850-hPa and 200-hPa zonal winds (Zhu et 187 

al., 2005). The wind dataset was provided by the ECMWF. 188 

Different ENSO indices were proposed to quantify the strength of ENSO events, e.g. Southern 189 

Oscillation Index (SOI) (Allan et al., 1991) and Nino 3.4 SST index (Rayner et al., 2003). In this 190 

study, the Nino 3.4 SST anomaly index (freely available from the National Climatic Data Center 191 

[NCDC] of the National Centers for Environmental Information [NCEI] website, at 192 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/) was used. 193 

3. Methodology 194 

3.1 Principal component analysis  195 

The principal component analysis (PCA) has been widely used to extract modes of 196 

spatiotemporal variability in hydrological and climate sciences (e.g., Awange et al., 2014; 197 

Biabanaki et al., 2013; Rieser et al., 2010). In particular, the PCA was applied to decompose the 198 

spatiotemporal TWS data sets into modes of empirical orthogonal functions (EOFs) and principal 199 

components (PCs) corresponding to the spatial and temporal variations, respectively. The TWS 200 

data sets derived from GRACE can be denoted as        , with                . The   201 

column vectors of the matrix   represent spatial grid TWS values at interested area for a particular 202 

month, while the   raw vectors are temporal TWS variation at a particular grid locations. 203 

The PCA decomposes the matrix X  to obtain corresponding EOFs and PCs, denoted as: 204 

                                                                        (2) 205 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/
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where Z is a     matrix, derived through an eigenvalue decomposition of the matrix    , and 206 

the columns of Z represent the EOFs of the original TWS. Once the EOFs have been obtained, the 207 

time coefficient matrix A can also be obtained through the equation (2). The column vectors of 208 

matrix A represent the corresponding temporal PCs. The first few largest EOFs/PCs are 209 

commonly selected, as it reduces the number of variables, while grasping the main characteristics 210 

and simplifying the relationship between variables. Note that unlike other PCA studies (Awange 211 

et al., 2011; Ramillien et al., 2014), no detrend procedures were applied to the original variable X 212 

(i.e., TWS). Additionally, although the rotation procedure has been widely applied to the EOFs, to 213 

help better interpreting the results in some studies (Hannachi et al., 2006; Vuille et al., 2000; 214 

White et al., 1991), its drawbacks should not be neglected. These drawbacks include non-uniform 215 

rotation criterion and the loss of information from the EOFs (Jolliffe, 1989). To avoid such a loss 216 

of underlying information of TWS EOFs, no rotation procedures were applied in this study. In 217 

addition, the sensitivity of the PCA results will be checked by looking at the residual parts after 218 

extracting the principal components to investigate how the main components of the TWS are 219 

affected by the residual components of PCA. 220 

3.2 Extraction of different time-scale of variability 221 

Except for the PCA method, the additive model was also applied to decompose the TWS time 222 

series into trend, seasonal and residual signals. It can be shown as  223 

               

and 224 

          

                

where   represents the TWS, and   ,   ,    are corresponding trend, seasonal and residual part 225 

of  , respectively; b and c are trend term and intercept term. A,  , and   represent amplitude of 226 

seasonal variation, frequency and phase. In this study, seasonal variation (here only considering 227 

the annual and semiannual signals) and linear trend of the TWS were obtained by applying a 228 

nonlinear regression in each grid of the study area. 229 

3.3 Non-stationary relationship between TWS and climate variability 230 

The wavelet transform coherence (WTC) here was proposed by Torrence and Webster (1999), 231 
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and it was modified and improved by different researchers (Grinsted et al., 2004; Lachaux et al., 232 

2002).  Based on (Grinsted et al., 2004), the continuous wavelet transform (CWT) of two time 233 

series X and Y of length N with uniform time step    are denoted as   
     and   

    :  234 

  
      

  

 
 

    

 

            
  

 
                                    (4) 235 

where n and s are the time index and wavelet scale, respectively. The    is generally chosen as 236 

the Morlet wavelet, defined as: 237 

                       

where    and   represent the dimensionless frequency and time, respectively. In order to keep a 238 

good tradeoff between frequency and time, the parameter    was chosen to be 6 (Müller et al., 239 

2004). 240 

Following Grinsted et al. (2004), the WTC of two time series can be calculated as:  241 

  
       

         
       

 

         
     

 
           

     
 
 
                                     (5) 242 

where   
      is the cross-wavelet spectrum, defined as: 243 

  
        

      
      

where   indicates the complex conjugate.    denotes a smoothing operator in both time and 244 

frequency scale. The significance level of WTC is calculated based on the Monte Carlo methods. 245 

The phase difference of WTC can be written as: 246 

                  
                                                   (6) 247 

In addition, the partial WTC is used to calculate the WTC results of two variables after 248 

removing their common dependent factor (Mihanović et al., 2009). Assuming the common 249 

dependent factor denoted as Z, the partial WTC between X and Y (removing the Z effect) can be 250 

defined as  251 

   
         

   
         

         
         

     
              

        
     

where the   
      ,   

       and   
       are the WTC between X and Y, Y and Z, and X and 252 

Z, respectively. 253 

4. Results 254 
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4.1. Spatiotemporal characteristics of the TWS  255 

Representing 70% of the total TWS variance, two main spatial features of TWS (hereafter 256 

called TWS EOF 1 and TWS EOF 2) were extracted using the PCA. Both TWS EOF 1 and EOF 2 257 

(58% and 12% of the TWS variance respectively) showed prominent hot spots (Figure 1a-b). The 258 

spatial characteristics of seasonal variation and linear temporal trend of TWS during 2003 and 259 

2015 were consistent with the TWS EOF 1 and EOF 2, respectively (Figure 1c-d). To quantify the 260 

similarity between TWS EOF1 (EOF 2) and TWS seasonal variation (linear temporal trend), 261 

spatial correlations were estimated: TWS EOF 1 and seasonal variation were significantly 262 

correlated at 0.84 (p << 0.05), and TWS EOF 2 had a high correlation of 0.95 (p<<0.05) with the 263 

linear temporal trend. The results indicated that the TWS EOF 1 and EOF 2 represent the seasonal 264 

variation and temporal trend respectively. 265 

According to Figure 1, for the TWS seasonal variation (i.e., TWS EOF 1), the strongest annual 266 

variation of the TWS was in the Indochinese Peninsula, where existing large annual and inter-267 

annual water variation in response to the Southeast Asian monsoon (Yamamoto et al., 2007). Over 268 

China, the seasonal variation in southern region was relatively larger than other regions (Figure 1a 269 

and c). For the trend signal, there were three main hot spots over China, indicating increasing 270 

trend (yellow spots) and decreasing trend (deeper blue spots) of the TWS (Figure 1b and d). The 271 

two increasing hot spots were in the southern (YARB) and western China (around Qinghai-Tibet 272 

Plateau [QTP]), whereas the decreasing hotspot was in the NCP (Figure 1b and d). Since the 273 

western region was sparsely populated, the demand for water supply and water management 274 

would be less pressured, and the East China was chosen as the interested area, with the latitude 275 

and longitude range between 20-45°N and 105-125°E.  276 

The seasonal and trend characteristics of TWS without the groundwater variations were shown 277 

in the Figure 1e-f (i.e., GLDAS TWS EOF1 and EOF2), explaining around 32% and 23% of the 278 

total variance, respectively. The pattern of GLDAS TWS EOF1 was quite similar with the 279 

GRACE TWS, with the correlation of 0.67 (p << 0.05), and this result reveals that the seasonal 280 

TWS variations were less likely to be affected by groundwater variations. However, the increasing 281 

trend of GLDAS TWS over the YARB and decreasing trend over the NCP were less obvious than 282 

GRACE TWS. Despite the significance, the correlation between GLDAS and GRACE TWS was 283 
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only 0.34 (p << 0.05). The result here indicates that GLDAS have weak information of surface 284 

and subsurface runoff variations, and runoff variations in the GRACE data can be important to the 285 

unbalance water distribution over East China. 286 

For investigating the contributions of other hydrological components to the unbalance water 287 

distribution over the East China, the first- and second-EOFs of precipitation and ET (hereafter 288 

called precipitation EOF 1 and EOF 2, ET EOF 1 and EOF 2) were extracted (Figure S3). 289 

Precipitation EOF 1 showed a pattern of more precipitation over the YARB, explaining around 290 

48% of the total variances in precipitation (Figure S3a). The seasonal variation of ET shown by 291 

the ET EOF 1 had a gradual decrease from south to north China, representing around 88% of the 292 

ET total variances (Figure S3c), which was almost twice as much as in precipitation, suggesting 293 

potential differences in climate drivers of precipitation and ET. The ET was mainly impacted by 294 

temperature and air circulation including wind speed and relative humidity, which mainly changed 295 

seasonally, except for relatively small long-term variations (Gao et al., 2006). However, unlike 296 

ET, the climate drivers of precipitation over the East China involved different monsoons, ENSO 297 

and local climate conditions, leading to less seasonality in precipitation (Chan and Zhou, 2005; 298 

Gao et al., 2017). 299 

For the trend signal of precipitation and ET (i.e., precipitation EOF 2 and ET EOF 2), there was 300 

more precipitation and less ET over the YARB, but less precipitation and more ET over the NCP 301 

(Figure S3b and S3d). The results further demonstrated that the wet southern region was getting 302 

wetter, and the dry northern region was getting drier over the East China. Also, the TWS, 303 

precipitation and ET EOF2 (Figure 1b, S3b and S3d) suggested that there was a dividing line 304 

around 33°N to separate the different trend of hydrological variables, and over the  two sides of 305 

the dividing line, there was an unbalance water distribution with complex underlying mechanisms. 306 

For measuring the consistency of seasonal and trend pattern of precipitation (ET) and TWS 307 

derived from GRACE, the spatial correlations of their EOFs were computing. The spatial patterns 308 

of precipitation and ET were consistent with the TWS. For EOF 1, the correlation of TWS and 309 

precipitation is 0.38 (p << 0.05) and correlation of TWS and ET is 0.45 (p << 0.05). For the EOF 310 

2, they are 0.44 (p << 0.05) and -0.47 (p << 0.05). The results indicated that the precipitation and 311 

ET are related to the spatiotemporal dynamics of the unbalance water distribution pattern over the 312 
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East China. 313 

 314 

Figure 1. (a-b) The TWS EOF 1 and EOF 2 based on the PCA. (c-d) The spatial distribution of the 315 

TWS seasonal variation and temporal trend, respectively. Note that when comparing figures, the 316 

scales of figures in top and bottom are different for readability purpose. 317 

 318 

To explore the variability and underlying drivers of the TWS spatial EOFs, the corresponding 319 

PCs of TWS modes 1 and 2 (hereafter called TWS PC 1 and PC 2) were extracted, and displayed 320 

in Figure 2. The TWS PC 1 showed annual periodicity, which was here shown not to be constant, 321 

with lower intensity between 2009 and 2010, for instance (Figure 2a). This lower intensity of the 322 
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seasonal signal in TWS mode 1 thus appeared consistent with the 2009-2010 drought over the 323 

YARB (Tang et al., 2014). For the TWS PC 2, there was a prominent linear increase, indicating 324 

that the unbalance water distribution shown by the TWS EOF 2 was getting more pronounced year 325 

after year since 2003 (Figure 2a). This was therefore consistent with both the increasing rate over 326 

the YARB and the decreasing rate over the NCP (Figure 2b), which were both accelerating from 327 

2003 to 2015, hence putting more pressure on the China’s water management. 328 

 329 

Figure 2. (a) The TWS PC 1 and 2. (b-c) TWS time series over the YARB and the NCP, 330 

respectively. Colored values represent the trend rates during period of 2003-2007 (blue), 2007-331 

2011 (red) and 2011-2015 (green), as estimated through linear regression. 332 

 333 
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For illustrating the increasing and decreasing trends, the TWS time series over the YARB and 334 

the NCP regions were extracted (Figure 2). For the whole time series, TWS kept increasing over 335 

the YARB, and decreasing over the NCP from January 2003 to December 2015. To explore the 336 

TWS changing rate over time, break-point detection algorithm (Muggeo, 2003) was applied, and 337 

two break-points, which may be linked to ENSO events, are identified over the YARB region in 338 

2007 and 2011 (Figure S4a). A strong La Nina and moderate La Nina event were indeed reported 339 

in 2007 and 2011, respectively (Figure S5), which could lead to abrupt changes in precipitation 340 

and temperature (Chen et al., 2016; Fang et al., 2017; Nicholls et al., 1996), and thus TWS. 341 

Therefore, the whole period was divided into three parts: from January 2003 to February 2007 342 

(hereafter called Period 1), from March 2007 to February 2011 (hereafter called Period 2) and 343 

from March 2011 to December 2015 (hereafter called Period 3). The increasing rates of TWS over 344 

the YARB in three periods were 0.37 cm.yr
-1

., 0.99 cm.yr
-1

 and 1.43 cm.yr
-1

, whereas the TWS 345 

over the NCP was decreasing with a rate of 0.32 cm.yr
-1

, 0.6 cm.yr
-1

 and 1.14 cm.yr
-1

 in the Period 346 

1, 2 and 3, respectively (Figure 2b-c). This result was consistent with the finding derived from the 347 

temporal TWS PC 2, revealing that the YARB wetting and the NCP drying were becoming more 348 

and more pronounced during 2003 and 2015. In addition, there are also two break-points of TWS 349 

over the NCP in 2007 and 2014 (Figure S4b). Although the break-points of TWS in the YARB 350 

and NCP were slightly different, they provided the same results in term of water situation over the 351 

East China.  352 

Given this severe situation of the water redistribution over the East China, it is of primary 353 

important to explore its underlying drivers, which can be useful to predict the season ahead water 354 

situation in the future, so that seasonal water management policies can be developed. 355 

4.2 The underlying climate drivers of TWS spatial patterns 356 

Atmospheric circulation over the East China has direct impacts on water distribution pattern 357 

through precipitation and evaporation (Liu et al., 2017; Xu et al., 2015), and the upward and 358 

downward motions related to regional convergence and divergence associated with wetter or drier 359 

conditions, respectively (Li, 1999; Zhang et al., 2017; Zhou and Yu, 2005). To explore the impact 360 

of atmospheric circulation over the East China, meridional cross-sections of wind circulations, 361 

moisture flux and divergence averaged over the region between 105
o
 and 120

o
E in summer (JJA) 362 
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and winter (DJF) were displayed in the Figure 3. For the wind circulation, there was an upward 363 

convergence between 25 and 33
o
N (i.e., the YARB) in summer, and a downward divergence 364 

between 33 and 43
o
N ( i.e., the NCP) in winter (Figure 3). The Hadley-type circulation could also 365 

be observed, transporting energy from the Equator to around 33-degree latitude (Figure 3b), which 366 

was consistent with the dividing line of the unbalance water distribution (Figure 1d). The 367 

ascending branch of the Hadley-type circulation moved from the Equator in winter to around 25-368 

degree north latitude in summer (Figure 3), creating excessive precipitation over the region of 25-369 

33°N, and this could partially explain the wetting trend over the YARB. The moisture flux 370 

circulation showed similar pattern with the wind circulation below 500 hPa and there was no 371 

moisture in the upper-troposphere (Figure 3). For the moisture flux divergence, there was a 372 

convergence and divergence between 20° and 30°N below 820 hPa in summer and winter 373 

respectively (Figure 3), producing more (less) precipitation in summer (winter) over the YARB. 374 

 375 

Figure 3. (a-b) The meridional cross-section of wind, moisture flux and divergence 376 

over the region (105
o
-120

o
E) in summer and winter. Note that the black and red arrow 377 

are the wind and moisture flux respectively, and the shaded area represents the 378 

moisture flux divergence. The corresponding administrative boundary of the region 379 

(105
o
-130

o
E, 0

o
-50

o
N) is added to the bottom of the wind profile. The green shaded 380 
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area is China, and the blue and red shaded area represent the YARB and YERB 381 

boundary, respectively.  382 

 383 

   In addition, to explore the temporal variation of TWS distribution affected by the atmospheric 384 

circulation over the East China at different temporal scales, the wind intensity was extracted over 385 

this region. The WTC analysis between TWS PC 1 and the wind intensity suggested that wind 386 

intensity mainly contributed to the annual and semiannual (hereafter called intra-annual) signals of 387 

the TWS PC 1 with time lags of ~6 months and ~4.5 months, respectively (Figure 4a). The WTC 388 

analysis between TWS PC 1 and three monsoon indices revealed that IM and WNPM contributed 389 

significantly to TWS PC 1 at both intra-annual and inter-annual (i.e., 2-4 years) scale during the 390 

whole period, with a time lag of ~2 months (Figure 4b-c), whereas the EAM affected the intra-391 

annual TWS signals significantly during the whole period with a time lag of ~2 months, but only 392 

contributed the inter-annual signals after 2010 (Figure 4d). 393 

Apart from the atmospheric circulation and monsoons, ENSO also played an important role in 394 

the water redistribution over the East China, but at longer time scale than atmospheric circulation 395 

and Asian monsoons. Based on the WTC, there was a significant relationship between TWS PC 1 396 

and ENSO at 2-4 year time scale with a time lag ~4 months (Figure 4e). Due to the short period of 397 

the TWS, the relationship was significant only between 2006 and 2012; and this limitation could 398 

only be overcome when the TWS time series get longer. To disentangle the influence of Asian 399 

monsoons and ENSO on TWS PC 1, the partial WTC were used (Ng and Chan, 2012; Figure 5). 400 

The results showed that ENSO had non-significant impact on TWS PC 1 when removing the 401 

Asian monsoons effect, indicating that the ENSO indirectly affected TWS variability through the 402 

Asian monsoons (Figure 5a-c). Similarly, the significant relationships between Asian monsoons 403 

and TWS at inter-annual scale were weakened after removing the ENSO effect (Figure 5d-f). 404 
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 405 

Figure 4. The WTC analysis of the TWS PC 1 and the wind intensity (a) over the East China, 406 

Asian monsoons (b, c and d) and ENSO (e). The thick black contour represents the 5% 407 

significance level against the red noise. The thin black line is the boundary of the cone of 408 

influence (COI), that is, the edge effects caused by zero-padding effect. The phase lag is denoted 409 

by the arrow directions (right (left) is 0 (180) degree phase lag; up (down) is 270 (90) degree 410 

phase lag). 411 
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 412 

Figure 5. (a-c) Partial WCT of TWS PC 1 and ENSO removing the Asian monsoons effect; (e-f) 413 

partial WCT of TWS PC 1 and Asian monsoons removing the ENSO effect. The cross-hatching 414 

represents regions inside the COI and the thick contour means the 95% significance level. 415 
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 416 

To avoid the interaction between different scaled signals, a multilevel wavelet analysis was 417 

performed using the Daubechies wavelet to separate the TWS PC 1 into two components based on 418 

the above WTC results, i.e. intra-annual and inter-annual signals. For the Daubechies’s orthogonal 419 

wavelets, after testing different levels, the level 5 (db5) was used in this study, as it provides a 420 

good approximation in time and scale domain (Percival and Walden, 2000). The intra-annual and 421 

inter-annual signals have then been derived from the detail and approximation parts of the db5 422 

wavelet, respectively, which were then used to examine the relationship with different climate 423 

factors via cross-correlation in different time scales. The intra-annual signals of TWS PC 1 and 424 

the wind intensity had negative relationship with a correlation coefficient of -0.49 (p<<0.05) and 425 

with a time lag shorter than a month (Figure 6a).  426 

For Asian monsoons, there were time lags at the intra-annual scale (Figure S6a-c), and the 427 

impacts of IM, WNPM and EAM on TWS lagged by 2 months, 1 month and 2 months, 428 

respectively, which were consistent with the WTC results (Figure 4b-d). Significant correlations 429 

between intra-annual TWS PC 1 and Asian monsoons were obtained after correcting the time lag: 430 

0.94 for IM (p << 0.05), 0.87 for WNPM (p << 0.05), 0.88 for EAM (p << 0.05; Figure 6b-d). The 431 

different time lag of different monsoons might be attributed to their characteristics. IM is 432 

associated with the north-south thermal contrast between heated Asian land and cool Indian 433 

Ocean, while the EAM is related to the east-west thermal contrast between the Asian land and 434 

Pacific Ocean (Li and Hsu, 2018). The IM and EAM, induced by land-ocean contrast, are typical 435 

continental monsoons, while WNPM associated with the hemispheric asymmetric SST gradients 436 

is a kind of oceanic monsoon (Li and Hsu, 2018). The impacts of continental monsoons, IM and 437 

EAM, were slower than the oceanic monsoon (i.e., WNPM) by nearly 1 month. In summary, 438 

although time lag existing, the Asian monsoons could be significant contributors to water 439 

redistribution over the East China.  440 

Compared with the wind intensity and Asian monsoons, the ENSO events were more likely to 441 

affect lower frequency variances (i.e., inter-annual scale) of the TWS.  The results showed that the 442 

TWS PC 1 was negatively correlated with the ENSO at inter-annual (2-4 year) time scale (-0.41, p 443 

<< 0.05) with 4 months’ time lag (Figure 5e and Figure S6d). The time lag revealed that SST 444 
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variation in Pacific Ocean takes time to affect the variation of atmospheric circulation, 445 

precipitation and, thus, TWS over the East China.  446 

 447 

Figure 6. The TWS PC 1 against the wind intensity (a) and IM (b), WNPM (c) and EAM (d) on 448 

intra-annual scale and ENSO (e) on inter-annual scale.  449 

 450 

   As mentioned above, the TWS PC 1 can be decomposed into intra-annual and inter-annual 451 

component (i.e., 2-4 year), which can be mainly affected by wind intensity and Asian monsoons, 452 

and ENSO respectively. To further explore the relationships between different climate factors and 453 

seasonal TWS signals on different time scales, Pearson, Kendal, Spearman and Generalized least 454 

square (GLS) correlation were used apart from cross-correlation (Table 2). The four measures 455 
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were used to qualify the robust of correlation results. The Pearson correlation is the most widely 456 

used method, with several assumptions including normal distribution, linearity and 457 

homoscedasticity, whereas the Kendal and Spearman correlations are nonparametric approaches 458 

based on ranks, with less assumptions than the Pearson correlation. The Kendal and Spearman 459 

correlations only assumes that the data should be ordinal, and without any assumptions for 460 

distribution. For the GLS correlation, the autocorrelation effects are adjusted. According to the 461 

Table 2, on the intra-annual scale, Asian monsoons contributed most, especially the IM and 462 

WNPM, whereas ENSO had significant contribution to inter-annual TWS variability. Focusing on 463 

the time lags, it was the largest for tele-connected ENSO events, medium for regional Asian 464 

monsoons and there was no time lag for local wind intensity, indicating that the response time of 465 

TWS to climate variability increased with the increase of spatial scale. Additionally, for the 466 

methods calculating correlations, Pearson correlations performed best, but the results were still 467 

significant when applying stricter correlation methods including Kendal, Spearman and GLS 468 

correlations, which fully proved the validity of our results.  469 

 470 

Table 2. Cross-correlation maxima with corresponding time lag, Pearson, Kendal, Spearman and 471 

GLS correlation (corresponding p-value) between TWS PC 1 and different climatic factors in 472 

intra- and inter-annual scales. Note that the wind intensity and Asian monsoon are correlated with 473 

the intra-annual signals of TWS PC 1, while the ENSO is linked to the inter-annual signals. 474 

 Cross- 

correlation/time 

lag (month) 

Pearson 

correlation 

Kendal 

correlation 

Spearman 

correlation 

GLS correlation 

Wind 

intensity 

-0.49/0 

(p<<0.05) 

-0.49 

(p<<0.05) 

-0.31 

(p<<0.05) 

-0.44 

(p<<0.05) 

-0.11 

(p<<0.05) 

IM 0.94/2 

(p<<0.05) 

0.52 

(p<<0.05) 

0.32 

(p<<0.05) 

0.50 

(p<<0.05) 

0.38 

(p<<0.05) 

WNPM 0.87/1 0.71 0.44 0.65 0.43 
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(p<<0.05) (p<<0.05) (p<<0.05) (p<<0.05) (p<<0.05) 

EAM 0.88/2 

(p<<0.05) 

0.41 

(p<<0.05) 

0.23 

(p<<0.05) 

0.36 

(p<<0.05) 

0.26 

(p<<0.05) 

ENSO -0.41/4 

(p<<0.05) 

-0.31 

(p<<0.05) 

-0.23 

(p<<0.05) 

-0.37 

(p<<0.05) 

-0.31 

(p<<0.05) 

 475 

  For investigating the sensitivity of the GRACE EOF results, the residual part (Figure 7a), 476 

accounting for 30% of the total variance, was added to the seasonal signal (EOF1, Figure 7b) and 477 

trend signal (EOF2, Figure 7c). After adding the residual signal, the seasonal and trend pattern 478 

still matched well with the original seasonal and trend pattern (Figure 1a-b), with a correlation of 479 

0.967 (p << 0.05) and 0.970 (p << 0.05), respectively. This indicated that seasonal and trend 480 

signal were stable, which was not likely to be affected by the residual part. 481 

 482 

Figure 7. (a) The residual part of GRACE TWS EOF analysis. (b-c) the seasonal signal and trend 483 

extracted using EOF analysis, but combined with residual part. 484 
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5. Discussion 485 

The aim of this study is to figure out the regional water shifting pattern over the East China, and 486 

its corresponding climate drivers on different time scales. The unbalance water distribution 487 

between south part and north part of the East China was found, showing that the YARB was 488 

wetting, while the NCP was drying during 2003 and 2015. Moreover, the regional unbalance 489 

water distribution pattern was found to be significantly linked with the local wind intensity and 490 

Asian monsoons on the intra-annual scale, and the ENSO on the inter-annual scale through the 491 

modulation of Asian monsoons. 492 

5.1. Spatial characteristics of the TWS 493 

The TWS over the East China showed two main spatial characteristics (i.e., TWS EOF 1 and 494 

EOF 2), interpreted as the seasonal and trend variances, respectively (cf. Section 4.1). 495 

Specifically, the TWS EOF 1 revealed that the water resources were characterized by more in the 496 

south and less in the north over the East China (cf. Section 4.1). Even worse was that the wet 497 

region (NCP) became wetter, and dry region (YARB) became drier (cf. Section 4.1). Moreover, 498 

both the increasing and decreasing trend were becoming more pronounced year after year during 499 

2003 and 2015. 500 

Given the above results, the uneven distribution of water resources between south and north 501 

part of the East China is expected to be aggravated. Furthermore, this kind of water shifting will 502 

continue until the end of 21
st
 century according to Fifth Assessment Report of the 503 

Intergovernmental Panel on Climate Change (Pachauri et al., 2014). This water situation will 504 

intensify both floods and droughts, affecting water demand in industry, agriculture, daily life and 505 

ecology over the East China (He et al., 2014). The severe underground water deficit over the NCP 506 

is a kind of response to the droughts induced by the water shifting (Du et al., 2014). Therefore, 507 

new water management policies, such as the south-north water diversion project (for details: 508 

https://nsbd.mwr.gov.cn), should be proposed to solve or mitigate the water problems brought by 509 

the water shifting between the YARB and NCP since the water problems would be getting worse 510 

and worse. 511 

5.2 Underlying climate mechanism of TWS spatial characteristics 512 

The spatial characteristic of the TWS could result from various climate factors, including local 513 

https://nsbd.mwr.gov.cn/
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atmospheric circulation, regional monsoons, and ENSO events, as well as different climate factors 514 

had different contributions to water distribution over the East China at different time scales. 515 

Generally, different scaled seasonal variations in climate factors could lead to the corresponding 516 

TWS variations, and other trend changes would also lead to trend variation of the TWS signals. 517 

For seasonal variability, climate factors and TWS can be divided into intra-annual and inter-518 

annual parts. It was found that atmospheric circulation and Asian monsoons, showed significant 519 

intra-annual cycles, primarily impacting the intra-annual signals of the TWS, while the inter-520 

annual variation was related to ENSO events, via modulations of the Asian monsoons, with 521 

around 4 months-time delay. This delayed response of the TWS to ENSO over the East China was 522 

consistent with other studies, such as Zhang et al. (2015), who found a link between TWS in the 523 

YARB and ENSO with a time lag of around 7-8 months. Different time delay may be attributed to 524 

the different land surface effects including the water recharge process and topography in different 525 

regions, revealing that the response time of TWS over China to ENSO was various in different 526 

regions. 527 

Apart from seasonal variations, climate factors also had trend changes, which could partially 528 

explain the spatial pattern of the TWS trend variability. It was found that the ENSO events have 529 

been strengthened significantly since 1970s (Ding et al., 2009; Wang, 2001). For example, the 530 

1982/1983 and 1997/1998 El Nino event were the two strongest events during 1950 and 2015, and 531 

1990-1994 was the long periods with positive SST anomalies over the Nino 3.4 region (Figure 532 

S5), revealing the intensified trend of the ENSO events, which may lead to modulations in the 533 

Asian monsoons on inter-annual timescales (Li and Hsu, 2018).  534 

Focusing on the teleconnection between ENSO and Asian monsoons, numerical studies have 535 

been proposed for the recent years, including IM (Ashok et al., 2004; Kucharski et al., 2007; 536 

Kumar et al., 1999), WNPM (Chou et al., 2003; Wang and Chan, 2002) and EAM (Wang and Li, 537 

2004; Wang, 2002). Among different Asian monsoons, the relationship between ENSO and IM 538 

has been most widely discussed. The anticorrelations between ENSO and IM have been found by 539 

numerous studies (Kripalani and Kulkarni, 1997; Krishnamurthy and Goswami, 2000; Kucharski 540 

et al., 2007). However, Kumar et al. (1999) suggested that the weakening relationship between IM 541 

and ENSO had broken down due to the shift in the Walker circulation and enhanced land-sea 542 
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gradient. Moreover, other climate events like Indian Ocean dipole (IOD) can also reduce the 543 

impacts of ENSO events on IM (Ashok et al., 2001).  544 

Despite some skepticism about the anti-correlations between ENSO and IM, the weakening 545 

trend of Asian monsoons has been found in many studies (Bollasina et al., 2011; Miao et al., 2017; 546 

Wang, 2001), which have been shown to be related to changes in snow cover (Kripalani et al., 547 

2003). With the rising temperature, there is more snow melting, increasing soil moisture and 548 

reducing the heating field of the land, and thus leading to the decline of the thermal contrast 549 

between Asian land and Pacific Ocean over the Asian monsoon region, so called the Asian 550 

monsoon weakening (Kumar et al., 1999). The weakening of the summer Asian monsoon caused 551 

that the warm and humid air does not have enough energy to proceed northward (Ding et al., 552 

2008). Meanwhile, the SST increasing over the tropical eastern Pacific strengthens the Hadley-553 

type circulation regionally (Chen et al., 2002), bringing more summer precipitation over the 554 

YARB and causing severer dry condition over the NCP region.  555 

6. Conclusion 556 

This study clearly showed the regional shifting pattern over the East China, and the different 557 

contributions of climate factors to this pattern on different time scales. Based on the PCA method, 558 

the two main spatial characteristics (i.e., TWS EOF 1 and EOF 2) of the TWS over the East China 559 

were extracted, and were perfectly consistent with the seasonal variation and temporal trend 560 

distribution of TWS, respectively. which was different from the findings shown by Kang et al. 561 

(2015). The unbalance water distribution from the EOF 2 was interpreted as a seasonal signal 562 

(Kang et al., 2015), while here the EOF 2 unbalance pattern was demonstrated to be the long-term 563 

variability between 2003 and 2015 based on the high consistency between trend distribution and 564 

EOF 2. 565 

The TWS EOF 1 showed uneven TWS distribution, more in the south and less in the north part 566 

of the East China, while the TWS EOF 2 revealed that increasing trends over the YARB, and a 567 

decreasing trend over the NCP. Moreover, the corresponding TWS PC 1 and PC 2 gave the 568 

temporal variance of these two spatial patterns, showing the periodicity of the seasonal signals and 569 

the acceleration of the trend, respectively. The accelerating trend change was consistent with the 570 

trend analysis of the TWS time series over the YARB and the NCP. The increasing and decreasing 571 
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hot spots were linked to the atmospheric circulation over the East China, in particular the seasonal 572 

movement of the Hadley-type circulation, leading to ascending air favoring the moisture 573 

convergence, and thus wetter conditions over the YARB, while driving subsiding air, divergence 574 

and dry conditions over the NCP.  575 

The unbalance water distributions over the YARB and NCP were consistent with the previous 576 

studies (e.g., Kang et al., 2015; Zhao et al., 2015), but the underlying climate mechanisms of the 577 

unbalance pattern were largely unexplored in the previous studies. In this study, various climatic 578 

factors were used for investigating the underlying climate drivers, and the results showed that they 579 

contributed differently to TWS variability on intra-annual and inter-annual scales. According to 580 

the Table 2, the wind intensity was negatively correlated (-0.49) with the TWS PC 1 on the intra-581 

annual scale. The weakened wind brought less moisture from the south to the north China, and 582 

thus this wind leads to more summer precipitation over the YARB and causes severer dry 583 

condition over the NCP region. Apart from the wind intensity, the Asian monsoons and ENSO had 584 

significantly positive delayed impacts on the intra-annual and inter-annual signals with a 585 

correlation around 0.9 (1-2 month delay) and 0.41 (4 months delay), respectively. For the trend 586 

variation, it could be partly explained by a regional strengthening of the Hadley-type circulation 587 

by the combination of the strengthening of the ENSO events and the weakening of the Asian 588 

monsoons. These kind of climate variabilities can also lead to the water shifting in different 589 

regions. 590 

Our research provided a profound understanding of dynamics between spatiotemporal water 591 

variability over the East China and local atmospheric circulation combined with Asian monsoons 592 

and ENSO on different time scales. This study could therefore be used to improve the 593 

performance of future hydrological-impact studies based on seamless climate prediction over the 594 

East China. Ultimately, these results should be integrated in decision-making process to take 595 

measures in advance for large scaled water problems such as regional droughts. Thus, the method 596 

used for this study can be also applied in other regions with significant water shifting, and it can 597 

help promoting sustainable and resilient regional water future planning in these regions. 598 
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Appendices 876 

 877 

Figure S1. The averaged precipitation during 2003 and 2015 over southeast China. The 878 

magenta asterisks (*) are the precipitation stations. 879 
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 880 

Figure S2. (a) The scatter plot of observed and TRMM precipitation in south China, and (b) 881 

comparison of their Gamma CDFs. (c-d) same as (a-b), but for observation and corrected TRMM. 882 
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 883 

Figure S3. The first and second EOFs of TRMM precipitation (a-b) and ET (c-d). 884 
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 885 

Figure S4. The Break-point analysis for the TWS time series over the YARB (a) and the NCP (b).  886 

 887 

Figure S5. El Nino (red), La Nina (blue) and neutral part (green) from 1950 to 2016. 888 
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 889 

Figure S6. The TWS PC 1 against the Asian monsoons on intra-annual scale (a-c) and ENSO on 890 

inter-annual scale (d) with 1-2 and 4 months lag, respectively. 891 
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