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1 Abstract 
This research paper explores the impact of cognitive load on drivers’ 

physiological state and driving performance during an automated driving to manual 

control transition scenario, using a driving simulator. Whilst driving in the automated 

mode, cognitive load was manipulated using the “N-Back” task, which participants 

engaged with via a visual display.  Results suggest that non-optimal levels of workload 

during the automated driving conditions impair driving performance, especially lateral 

control of the vehicle, and the magnitude of this impairment varied with increasing 

cognitive load. In addition to these findings, the present paper introduces a novel 

method for determining stabilisation times of both driver state and driving 

performance indicators following a transition of vehicle control. Using this method we 

demonstrate that mean and standard deviation of lane position impairments were 

found to take longer to stabilise following transition to manual driving following a 

higher level of cognitive load during the automated driving period, taking up to 22 

seconds for driving performance to normalise after take-over. In addition, heart rate 

parameters take between 20 and 30 seconds to stabilise following a planned take-over 

request. Finally, this paper demonstrates how the magnitude of cognitive load can be 

estimated in context of automated driving using physiological measures, captured by 

consumer electronic devices. We discuss the impact our findings have on the design 

of SAE Level 3 systems. Relevant suggestions are provided to the research community 

and automakers working on future implementation of vehicles capable of conditional 

automation. 

1.1 Keywords 

Automotive Engineering, Autonomous Driving, Biometrics, Human Factors, 

Physiology, Vehicle Safety 
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2 Introduction 
The ongoing and advancing development of adaptive driver assistance systems 

will likely result in implementation of full vehicle automation. Existing forecasts are that 

both conditional (i.e., Level 3 in SAE taxonomy, or being able to self-drive in certain 

situations with the human driver a fall back for regaining control) and fully 

autonomous passenger vehicles will become an integral part of transportation 

networks in various counties by 2035 (Worstall, 2015). Moreover, Burghardt, Weig and 

Choi (2017) are even more optimistic regarding forecasts for automated vehicle 

uptake, predicting that approximately 35% of newly sold vehicles will be capable of 

conditional automation, and 15% of vehicles will be embedded with high automation 

enabling technology (i.e., Level 4 in SAE taxonomy; SAE International, 2015) by 2030. 

It should be noted that as of now, vehicles capable of SAE Level 4 automation do not 

exist outside of advanced research concepts (Campbell et al., 2018). However, the pace 

at which these vehicles become introduced to the market depends on the multitude 

of factors including the rate of technological advancement, costs, public trust and 

acceptance of self-driving vehicles, as well as the ability of automakers and the 

research community to address safety-related concerns (Burghardt, Weig and Choi, 

2017). Safety is often deemed as one of the most important concerns, since public 

perception of ‘self-driving vehicles’ can be negatively affected by occasional failures of 

automated vehicle systems. Rare catastrophic events, such as the fatal accident 

involving Uber self-driving test vehicle, for example, have a powerful effect on people’s 

perceived level of risk of autonomous driving technology (Sage, Bellon and Carey, 

2018). It was previously indicated that acceptance of vehicle automation can be linked 

to assurance regarding the safety of the technology (Khastgir et al., 2018; Lee et al., 

2020). Automakers recognize that they must direct their resources towards ensuring 

high degree of safety of automated vehicles through rigorous testing before these 

vehicles reach the market. 

The focus of the present paper is on aspects of safety during semi-autonomous 

vehicle control, which can emerge in vehicles capable of SAE Level 3 automation. In 

such vehicles, a driver may occasionally be required to ‘take-over’ the control of the 

vehicle, often in a short period of time (SAE International, 2015). Since conditionally 

automated vehicles do not require drivers to monitor the situation during the self-

driving mode, a driver might be engaged in variety of secondary tasks prior to taking 

over manual control. For example, a driver may be working, watching a movie, reading, 

or engage in any other cognitively demanding task. Indeed, previous research found 

that approximately 45% of US drivers and 32% of UK drivers are willing to engage in 

cognitively demanding tasks of this kind whilst in a self-driving vehicle (Schoettle and 

Sivak, 2014). Cunningham and Regan (2017) argued that drivers are likely to exploit 

the attentional resources freed up by the automation in order to engage in variety of 

secondary tasks unrelated to the driving situation. However, this poses a potential risk 

in situation when a driver is required to take control over the vehicle. According to 

National Highway Traffic Safety Administration (NHTSA) a driver could become so 



 3 

immersed in a secondary task that information prompting them to switch to manual 

control of the vehicle could result in a substantial time delay or, in the worst case 

scenario, complete failure to engage in manual driving (Campbell et al., 2018). 

Alternatively, in the cases when a secondary task is not present, drivers might become 

subject to passive fatigue or sleepiness due to monotonous nature of automated 

driving over extended period of time (Saxby et al., 2013). Hence, the lack of cognitive 

control during driving could cause impairments in driving performance and promote 

performance-related human errors and ultimately lead to a traffic-related car accident. 

Both very low and very high levels of arousal are associated with poor performance in 

difficult tasks (Wickens and Hollands, 2000). Even in situations where a driver does take 

over manual control of the vehicle, the arousal state at the time of engaging with the 

secondary task could impact drivers’ ability to adequately perform the primary task of 

driving, particularly after an extensive period of automated driving. 

There is no doubt that transition from automated to manual control is not a trivial 

task. Vogelpohl et al. (2018) argued that drivers might require additional time and 

assistance in order to reach a level of situational awareness necessary to resume 

manual driving. Interestingly, Merat et al. (2014) suggested it could take approximately 

40 seconds for drivers to resume an adequate and stable lateral control of driving 

when they switch from autonomous to manual driving. In the scope of their paper, the 

signal stabilisation refers to a phenomenon where a driving performance signal enters 

a visual plateau following a period of significant oscillation. Similarly, Pampel et al. 

(2018) have found a diminishing difference in mean speed, measured using 5-second 

time bins, after approximately 20 seconds of vehicle control take-over and standard 

deviation of lane position did not stabilise for the first 10 seconds during a non-

distractive short take-over driving scenario. Furthermore, in a study of take-over 

performance during highly automated driving scenarios, Clark et al. (2017) found that 

younger drivers tend to respond faster to the take-over requests when distractive 

secondary tasks are present during autonomous driving mode. The gap this present 

paper addresses is by introducing a novel statistical method for determining this 

stabilisation time. 

It is likely that drivers’ ability to take-over control and immediately perform the 

primary task of driving may in fact be impacted by their state cognitive and emotional 

state i.e., a level of arousal and stress caused by differences in workload. Drivers who 

are occupied by a highly demanding secondary task may be distracted (Horberry et 

al., 2006; Schaap et al., 2013) and, equally, those with low level of workload may 

become more  fatigued (Philip et al., 2005; Matthews et al., 2011; Saxby et al., 2013).  

For instance, passive fatigue causes reduction of task engagement, focus, and slower 

responses to the emergency events (Saxby et al., 2013). Moreover, fatigue was found 

to be associated with impairment of drivers’ performance, in both longitudinal and 

lateral control (Matthews and Desmond, 2002; Gastaldi, Rossi and Gecchele, 2014). 

This was demonstrated in both simulator and real world conditions (Philip et al., 2005). 

Similarly, an increase in workload was previously found to be associated with decrease 

in driving performance (Paxion, Galy and Berthelon, 2014). Of importance to the 
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present paper is the time course over which a driver can return to the level of optimal 

psychological state, following a heightened level of arousal and/or cognitive load. 

How can drivers’ psychological state be assessed whilst driving? Some of the 

existing research has focused on methods of estimating driver psychological state, 

such as fatigue, using various driving performance indices e.g., steering wheel angles 

(Krajewski et al., 2009; He, Li and Fan, 2011). Steering entropy, a measure of steering 

consistency, was also previously linked to driver workload (Nakayama et al., 1999) as 

well as driving performance impairment (Kersloot, Flint and Parkes, 2003). However, 

steering input is absent during the period of conditional automation, and as such, 

cannot be used as an indicator of drivers’ state. Instead, “physiological measures can 

be sensitive to changes in workload before the appearance of clear decrements in driving 

performance”  Mehler et al. (2009, p. 1). Indeed, in our own work the authors found 

that physiological measures e.g., heart rate variability, are sensitive to changes in 

drivers’ cognitive workload (Melnicuk, Birrell, Konstantopoulos, et al., 2016; Melnicuk 

et al., 2017). Consequently, there are clear benefits of objective driver state monitoring 

in various driving scenarios (Melnicuk, Birrell, Crundall, et al., 2016). This means that in 

the context of conditional automation, physiological measures might be best suited 

for assessing driver’s psychological state. 

A vehicle that is able to estimate drivers’ state in real-time, could dynamically 

adapt its driver assistance systems to address any abnormalities in drivers’ state in 

order to ensure safe and effective transition of manual control. For instance, if such a 

vehicle detects presence of high cognitive load, it could keep an adaptive cruise 

control or lane keep assist enabled for extended period of time. Furthermore, full 

control can be gradually transferred to a driver after workload level is stabilised. This 

might help to minimise the possibility of human error occurrence and, as the result, 

ensure efficient and comfortable transition between automated and manual driving. 

This is echoed by Inagaki (2003), who defined concept of adaptive automation, with 

the authors advocating for the control of functions between humans and machines to 

be shifted dynamically, depending on environmental factors, drivers’ workload, and 

performance. Similarly, research by Ulahannan et al., (2020) suggest that using an 

adaptive in-car interface would also support partially automated driving, as system 

experience increased over a five day period, so did the number of glances to an in-

vehicle display which presented the ‘technical competency’ of the automated system. 

Both these adaptive aspects may help to facilitate smoother transitions of vehicle 

control. The goal of the present work is to evaluate feasibility of a physiology-

monitoring system in the context of autonomous to manual transition in conditional 

automation vehicles. 

2.1 Problem identification 

A number of measures for quality assessment of control take-over scenarios have 

been considered in the previous work (Merat et al., 2012, 2014; Zeeb, Buchner and 

Schrauf, 2016; Clark et al., 2017; Pampel et al., 2018; Vogelpohl et al., 2018). For 

instance, driving performance was mainly evaluated using changes in mean speed and 
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standard deviation of lane position. A common method is to also monitor eye glance 

behaviour and reaction times to various on-road events. Occasionally, driver state is 

evaluated using subjective measures. 

In order to further enhance understanding of factors affecting quality of 

automated to manual control take-over events and subsequent period of manual 

driving, it could be beneficial to objectively analyse drivers’ state during these 

scenarios. There is limited evidence informing effect of workload on drivers’ ability to 

effectively take-over manual control of a vehicle after a prolonged period of 

automated driving. It is also essential to understand how workload affects drivers’ 

ability to perform the primary task of driving during the first minute of manual driving. 

Previous findings indicate that some driving performance measures can take 

from 25 to 40 seconds to stabilise from the point of control take-over (Merat et al., 

2014). However, it could be that the adopted method was not optimised for deriving 

stabilisation times. Whilst visually the results suggest a trend for stabilisation of driving 

performance signals, no statistically significant difference was observed for 

stabilisation time using the method adopted by the authors. Hence building on the 

work by Merat et al. (2014), a new method for deriving stabilisation time needs be 

introduced which could yield more sensitive and reproducible results. Reporting this 

new method is one of the key contributions of this current paper. 

It is also unknown whether stabilisation times vary significantly depending on the 

amount of workload drivers are exposed to prior to transition. Moreover, stabilisation 

times of objective driver state indicators i.e., through physiology, have not previously 

been studied in the context of automated driving. The real-time objective driver state 

assessment could help to better understand precisely how long it might take for a 

driver to get back in the loop as well as reach an optimal driving performance. 

2.2 Hypotheses 

To address the knowledge gaps in the literature, the following hypotheses were 

formulated: 

1) The level of cognitive load can be reliably estimated using objective driver state 

indicators (e.g., through physiology) during the automated driving period; 

2) A high level of induced cognitive load will cause significant impairment in driving 

performance after an automated to manual control take-over; 

3) Different levels of induced cognitive load will result in different responses in 

driver state indicators during the automated driving, during the transition of 

control period, and during the manual driving period that follows; 

4) The time it takes for driving performance to stabilise following a control take-

over will be impacted by the cognitive load experienced during the automated 

driving period; 

5) The time it takes for drivers’ state to stabilise following a control take-over will 

be impacted by the amount of cognitive load experienced during the automated 

driving period; 
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3 Methodology 

3.1 Participants 

Forty-two participants were recruited for this study. Participants had to be aged 

21 or over, hold a full category "B" driving license, have normal or correct-to-normal 

vision, and not have any cardiovascular or skin diseases in order to participate. 

Participants were recruited through direct email contact at University of Warwick and 

Jaguar Land Rover UK. Ethical approval to run this study was acquired from Biomedical 

& Scientific Research Ethics Committee (BSREC) at University of Warwick. 

3.2 Study design 

This experiment was conducted in a simulated driving environment and adopted 

a repeated measures design. Within a single driving scenario, we varied the 

environment (i.e., urban and motorway), as well as level of induced workload during 

the automated driving section using three complexity levels of “N-Back” task (see 

Figure 1). 

 

 

Figure 1. Study design diagram. 

3.2.1 Apparatus 

The study was performed in the 3xD simulator for intelligent vehicles at University 

of Warwick (see Figure 2). The high-fidelity driving simulator was used to run complex 

driving scenarios with fixed environmental conditions and simulate transitions of 

automated to manual control, all in a safe and controlled setting. The driving simulator 

removed much of the risk associated with the testing of new technology in the driving 

context including, such as risk of a crash due to high level of workload or distraction 

due to presence of highly intrusive events. To ensure immersiveness, the 3xD simulator 

consists of a full-size vehicle and 360 degrees’ cylindrical screen with high definition 

projection, all enclosed in a soundproof room. The simulator was set to emulate the 

dynamic model of a Range Rover Evoque with an automatic gear box. 
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Figure 2. 3xD simulator for intelligent vehicles at University of Warwick. 

As part of the study, participants were asked to complete a series of driving 

scenarios in the simulator, while their driving performance and physiological responses 

were captured. 

To facilitate collection of physiological data using consumer electronic devices 

(CED), all participants wore a POLAR H10 Heart Monitor (Polar Electro, 2018). 

Furthermore, a Samsung Galaxy S8 Edge smartphone was mounted to the windscreen 

inside the driving simulator vehicle. The smartphone also acted as a hub for the data 

collection and synchronising of all incoming data from the wearable device. 

A custom-built Android toolkit was used to collect, synchronise, and store 

physiological measures from multiple data sources, as per method described in the 

authors’ previous publication (Melnicuk et al., 2017). The toolkit incorporates a 

mixture of driver state metrics captured from a CED-based sensory network (see 

Figure 3). It facilitates collection, storage, synchronisation, and filtering as well as 

calculation of some data derivatives e.g., time-domain HRV indicators. As part of this 

publication the toolkit is released as a citeable, open source application and is 

accessible at https://github.com/vadimmelnicuk/WMGDSM.  

 

https://github.com/vadimmelnicuk/WMGDSM
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Figure 3. DSM toolkit data flow diagram. 

3.2.2 Signals 

The summary of signals and their underlying frequencies is provided in Table 1. 

Furthermore, the raw heart rate was used to calculate time-domain Heart Rate 

Variability (HRV) derivatives following the methods, described in authors’ previous 

publications (Melnicuk, Birrell, Konstantopoulos, et al., 2016; Melnicuk et al., 2017). 

Table 1. Summary of measures concerning physiological state estimation. 

Measure Polar H10, Frequency 

Heart Beats Per Minute (BPM) 1 Hz 

Inter-beat Intervals (RR)  1 Hz  

 

In addition to physiological responses, the standard set of driving performance 

measures was captured (see Table 2). Some additional driving performance derivatives 

(e.g., lane position and standard deviation of lane position) were later calculated in 

accordance to SAE’s operational definitions of driving performance measures and 

statistics (SAE International, 2013). 

Table 2. Summary of measures concerning driving performance. 

Measure 3xD Simulator HIL, Frequency 

Position x, y, z (m) 100 Hz 

Velocity x, y, z (m/s) 100 Hz 

Angular velocity x, y, z (radians per second) 100 Hz 

Speed (mph) 100 Hz 

Revolutions per minute (RPM). 100 Hz 
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Steering angle (degrees) 100 Hz 

 

To facilitate collection of driving performance, a communication link between the 

smartphone and 3xD simulator was established. The link was built using a Raspberry 

Pi Model 3 hardware unit and some custom-built software written in Python 

programming language. The wired connection between the Pi and 3xD simulator was 

established using Ethernet, whereas Bluetooth Low Energy (BLE) was used for 

communication between Raspberry Pi and the smartphone. This setup allowed to 

request driving performance measures through 3xD’s internal Hardware in the Loop 

(HIL) API in real-time. The setup also allowed to send various commands to the 

simulator e.g., a command from an external device to the simulator to initiate transition 

of vehicle control from automated to manual driving and vice versa. 

3.2.3 Secondary task (N-Back) 

During each automated driving period, participants were engaged in a secondary 

task – a visual prompt-verbal response “N-Back” task. The task allowed to induce 

various levels of visual, auditory, and cognitive load onto participants and measure 

subsequent effect onto their state during the automated to manual control transition 

period and fully manual driving afterwards. The “N-Back” is a good reference task for 

workload and is widely used in the driving context (Mehler, Reimer and Coughlin, 

2012). Although, the task procedure was slightly modified to make it more suitable for 

automated driving context and promote higher attendance to this secondary task. 

Hence, an auditory cued, visual presentation, verbal response form of the “N-Back” 

task was adopted. The single-digit numbers, ranging from zero to nine, were displayed 

on the smartphone’s screen for the duration of 2.25 seconds. The appearance of 

numbers was complemented by an auditory cue (i.e., a short ‘beep’ tone). Each test 

contained ten numbers, displayed in a random order. In total, four tests were 

performed in each scenario with 7 seconds’ delay in-between tests.  

A description of secondary task procedure was provided to each participant. To 

assist explanation, paper format visualisation of the “N-Back” interface was used. For 

the “N-Back 0” task variation participants were asked to verbally recall the number they 

see on the smartphone’s screen i.e., if number “nine” was displayed, participant had to 

verbally recall “nine”. In the “N-Back 1” task variation a number, which was displayed 

prior to a current number, had to be recalled. Subsequently, in the “N-Back 2” task 

variation a number, which was displayed two numbers prior to the current one, had to 

be recalled. 

During the “N-Back” practice session participants experienced all three variations 

of the test, with a chance to practice each variation until were comfortable with it. The 

practice test was displayed to the participants using the smartphone, and the interface 

the same as they would later experience during the actual driving experiment. During 

the driving experiment a study facilitator listened to participants’ verbal recalls of the 

numbers (using the audio feed from an in-vehicle embedded microphone) and noted 

numbers using pen and paper. These responses were later digitised for further analysis. 



 10 

3.2.4 Driving scenario 

In total, six driving activities were completed by each participant, of which three 

were in an Urban driving scenario at three different “N-Back” levels (subsequently 

labelled as U0 (e.g. Urban with “N-Back 0”), U1, and U2) and other three were in 

Motorway environments (labelled as M0, M1, and M2) (see Figure 1). In addition to 

environmental control variable, the “N-Back” difficulty was randomly selected for each 

environment (the complexity of the “N-Back” task is illustrated by the numeric value 

i.e., 0, 1, or 2, after the U or M in the above codes). Therefore, every participant 

experienced all three difficulties of “N-Back” in each road environment in a random 

order. 

The driving activity design template is summarized in Figure 4. Each participant 

was exposed to both urban and motorway environments. Those environments were 

designed to mimic real-world driving conditions and differences in driving task 

complexity. For instance, the urban environment was aiming to replicate complexity 

and demand of real-world urban driving and, therefore, had high traffic density, 30 

mph speed limit, abundance of auditory navigation commands, and large number of 

junctions and roundabouts. The motorway environment, on the other hand, was 

designed as to create low complexity and demand. Thus, no traffic was present, the 

speed limit was set to 70 mph, the auditory navigation commands were absent, and 

driving had to be performed in a straight line while keeping the vehicle in the nearside 

lane. 

 

 

Figure 4. Driving activity design diagram, with the three main driving tasks highlighted (Autonomous, 

Transition and Manual driving) 

As seen in Figure 4, each driving activity consisted of three distinct driving tasks, 

namely Autonomous driving (aka ‘AI’ in this paper), Transition from autonomous to 

manual driving (aka Transition), and a period of Manual driving following take-over 

(aka Manual). Every driving activity began with the vehicle being set to drive 

autonomously for approximately two and a half minutes. The “N-Back” task was 

initiated after 30 seconds. The simulated vehicle continued to drive in the automated 

mode for the next two minutes. During this period, participants were engaged in a 

secondary task i.e., responding to the “N-Back” task. In total, four “N-Back” sets with 

seven seconds’ delay in-between were displayed. After the task sequence, a “transition 

of control” message was displayed for the fixed period of 10 seconds. It informed 
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participants about the need to prepare themselves for an automated to manual 

transition of vehicle control, using a graphical cue of hands on the steering wheel and 

an embedded auditory message. Participants were instructed to wait until the end of 

animated countdown message for full manual vehicle control to be automatically 

released to them. The aim of this study was to evaluate the impact of workload on 

planned handover events, rather than emergency handover events, hence a time of 10 

seconds and interface were decided in collaboration with industrial partners. 

After a take-over, a minute-long period of manual driving followed, as previous 

research demonstrated that stabilisation of drivers’ performance does not exceed 60 

seconds (Merat et al., 2014; Pampel et al., 2018). During the period of manual driving, 

participants were asked to drive their vehicle as they would normally do on a real road. 

They were asked to follow all audio navigation commands, stay behind any vehicle 

driving in front of them, and remain within the posted speed limits. After the manual 

driving section, participants were informed that they may come to a stop. Right after, 

the driving activity was paused, and a study facilitator joined a participant inside the 

driving simulator in order to record drivers’ subjective workload responses. 

3.2.5 Subjective workload using DALI 

At the end of each driving scenario, participants were asked to rate their 

subjective workload level by completing the Driving Activity Load Index (DALI) 

questionnaire (Pauzié, 2008). The questionnaire was supplied in pen-and-paper 

format, where effort of attention, visual demand, auditory demand, temporal demand, 

interference, and situational stress had to be rated in the scale from zero (i.e., very low) 

to twenty (i.e., very high). Participants were required to reflect on their overall 

experience throughout the driving scenario that is, from the time scenario was loaded, 

up until the vehicle reached a full stop. All participants were instructed to account for 

workload they have experienced during the automated mode, transition of control, 

and subsequent driving in the manual mode. 

3.3 Data analysis procedure 

Upon completion of all driving simulator experiments, all the data was 

synchronised and accumulated in a comma separated (.csv) data file. It should be 

noted that driving performance data was down sampled from original 100 Hz to 64 Hz 

to allow it to be synchronised to participants’ physiological responses. A MATLAB 

script was composed to facilitate down-sampling. Furthermore, some raw driving 

performance measures e.g., vehicle position and steering angles, were used to 

calculate the range (or physical distance) between simulator and lead vehicles, lane 

position in reference to the centre of a lane, standard deviation of lane position (SDLP), 

and steering entropy. Those derivatives were calculated in accordance to SAE’s 

operational definitions of driving performance measures and statistics (SAE 

International, 2013). 

Next, a separate MATLAB script was written to facilitate labelling of scenario 

sections, filtering of heart rate signal, captured by Polar H10, and subsequent 
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calculation of HRV metrics. Specifically, the time-domain HRV measures were 

calculated including, Root Mean Square of the Successive Differences (RMSSD) as well 

as percentage of RRs that exceed 50 milliseconds (p50NN) of 10- and 30-seconds’ 

moving windows. Following on previous studies (Melnicuk, Birrell, Konstantopoulos, et 

al., 2016; Melnicuk et al., 2017), algorithms used to derive HRV were produced in 

accordance to standards described by Malik et al. (1996). As part of this publication 

the toolkit is released as a citeable, open source application and is accessible at 

https://github.com/vadimmelnicuk/WMGDSM. 

Two separate data files were also produced that included digitised responses 

from demographics and DALI questionnaires. Once all the data was filtered, 

synchronised, and labelled, it was imported into IBM SPSS version 24 for an exploratory 

analysis. Firstly, descriptive statistics concerning demographics data were derived by 

means of frequency analysis. In addition, mean and standard deviation of participants’ 

age was calculated. Next, “N-Back” responses were analysed i.e., percentages of non-

responses and response errors were derived for each scenario type namely, U0, U1, 

U2, M0, M1, and M2. The median DALI scores were obtained next. Given the non-

parametric nature of the DALI scores, they were further analysed using independent-

samples Kruskal-Wallis test. This allowed to determine whether the overall DALI score 

and any specific DALI subcategories were significantly affected by workload 

differences due to changes in “N-Back” complexity. 

An analysis of physiological responses was performed next. For all measures, 

means and standard deviations were obtained. The measures were also tested for an 

effect of workload differences due to variation of “N-Back” complexity using one-way 

analysis of variance (ANOVA). 

The manual driving section was analysed further in isolation. All the measures 

including physiology and driving performance were binned into one-second intervals 

for the total duration of manual driving i.e., 60 seconds. 

3.3.1 Novel method of signal stabilisation 

Firstly, the data set was reduced so that it only consisted of time series data from 

the point of automated to manual control take-over, that is when the vehicle ceded 

control to the driver following the 10-seconds’ warning period. Next, the signals of 

interest were binned into one-second intervals for the duration of manual driving i.e., 

60 bins for 60 seconds of manual driving. Afterwards, the data file was imported into 

R Studio Version 1.1.383 for further analysis, with a script being produced to perform 

signal stabilisation analysis. 

In summary the stabilisation method looked for a point in time after transition of 

control when the data for each dependant variable (e.g. HRV or lane position etc.) 

stopped changing (significantly) in comparison to the previous data points, and 

reached a stable plateau. This was calculated using normal linear regression, and a 

linear model that best fit the signal data (i.e., the model that yielded the highest R2) 

was deemed to be the time that signal stabilised.  

 

https://github.com/vadimmelnicuk/WMGDSM
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The R script binned all of the data from n+4 onwards into a single average data 

point. Using Figure 5 as an example to help explain the method, we see that for ‘Bin 5’ 

all of the data from 5 to 60 seconds was compressed into a single bin, giving a single 

mean value for all remaining 56 seconds of manual driving. For ‘Bin 6’ data from 6 to 

60 seconds was again compressed into a single mean value. Finally, ‘Bin 59’ was the 

mean data from 59 and 60 seconds combined. It is worth reminding the reader that 

the driver took over manual control of the vehicle at 0 seconds, and the simulation 

stopped 60 seconds after transition of control from autonomous to manual driving. 

As mentioned previously the point of stabilisation was when the fit of the linear 

model was at its peak, namely the highest R2 value. After this point it was deemed that 

the next binned data point wasn’t increasing in a linear manner anymore, but was 

stabilising or reaching a plateau. Using Figure 5 again to illustrate this, we see that the 

black circle marks the point where the linear model shows the best fit to the data, this 

was at Bin 15, or for the first 15 seconds after transition of control. Namely there was 

no improvement in the model fit when 16th seconds of data was added and analysed, 

as after this point the data stops changing in a linear manner, i.e. it flattens off. 

It should be noted that in order to determine if a signal of interest had stabilised 

(using this proposed method or any other) it must display one key characteristics. This 

is that a signal must deviate from, and then return to a baseline of ‘normal’ driving. For 

example a signal that continually rises (for example if the distance to the car in front 

keeps increasing for the remainder of the driving time), is cyclic in nature (if HR keeps 

going up and down), or does not deviate to start off with (if a driver maintains perfect 

speed control following handover), in these situations cannot be considered ‘stable’ at 

any point. 

 

 

Figure 5. Signal stabilisation algorithm binning diagram. 
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4 Results 
In total, 42 participants took part in this driving simulator experiment. However, 

four participants’ data sets were excluded from the analysis: three exclusions due to 

technical reasons and one exclusion due to simulator sickness. Therefore, analysis was 

performed using data sample of 38 participants of mixed age (Mean = 33.50, SD = 

8.37) and gender (see Table 3). 

Table 3. Demographics descriptive statistics (N=38). 

Character  Frequency Percent 

Gender Male 26 68.4 

 Female 12 31.6 

 Other 0 0 

 Prefer not to say 0 0 

Age 21-25 5 13.2 

 26-30 13 34.2 

 31-35 8 21 

 36-40 4 10.5 

 41-45 2 5.3 

 46-50 4 10.5 

 50+ 2 5.3 

Occupation Professional and managerial 26 68.4 

 Clerical and sales 2 5.3 

 Skilled and semi-skilled 1  2.6 

 Student 9 23.7 

 

4.1 N-Back responses 

When it comes to recalling numbers during the “N-Back” task, participants were 

prone to make more recall errors when the task was more difficult (see Figure 6). As 

expected, percentage of no-responses was the highest during the “N-Back 2” task, in 

both urban and motorway environments. In the contrast, “N-Back 0” was less 

challenging for participants, with percentages of errors and no responses were low. 
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Figure 6. “N-Back” task percentage of errors and no responses from the total number of responses. 

4.2 Subjective workload 

Mirroring objective performance on the “N-Back” task, participants reported that 

it was more demanding to recall numbers that were further in the list (see Figure 7). 

The median DALI scores are steadily rising, in both motorway and urban environments 

as the difficulty of the “N-Back” increases. 

 

 

Figure 7. Median DALI overall scores categorised by the environment and difficulty of “N-Back” task. 

Given the non-parametric nature of the DALI scores, they were further analysed 

using independent-samples Kruskal-Wallis test. The test revealed significant statistical 

score difference across scenarios in almost all DALI subcategories as well as the overall 

DALI scores in both urban (H=11.335, p<0.01) and motorway (H=12.122, p<0.01) 

environments. However, it was found that auditory demand scores were insignificant 

in both urban and motorway environments. Also, both visual demand and situational 

stress were scored insignificantly different in the urban environment (see Table 4). 

 

Table 4. Kruskal-Wallis H and significance statistics for DALI scores. * = p<0.05, ** = p<0.01, *** = 

p<0.001, no asterisk = insignificant result. 

Environment Overall Effort of 

attention 

Visual 

demand 

Auditory 

demand 

Temporal 

demand 

Interference Situational 

stress 

Urban 11.335** 11.213** 5.122 2.437 13.485** 7.871* 5.926 
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Motorway 12.122** 17.929*** 6.408* 5.351 7.721* 6.772* 9.854** 

4.3 Heart rate and its variability 

With respect to the Heart Rate (HR) and time-domain Heart Rate Variability (HRV) 

measures, the differences due to the effect of workload were identified across various 

scenario sections and driving environments (e.g. Autonomous (AI), Transition and 

manual driving in Figure 4). 

For instance, heart rate, represented using inter-beat-intervals (RR), was 

significantly different across all scenario sections (One-way ANOVA, F=42.224, 

p<0.001). Some individual statistical differences were also derived by separating data 

into environment types i.e., urban (U) and motorway (M), and scenario sections i.e., 

autonomous (AI), transition, and manual driving. During the autonomous mode heart 

rate was found to be significantly different in urban (F=48.745, p<0.001) and motorway 

(F=46.636, p<0.001) environments. Typically, the heart rate was found to be higher 

during the high workload induction in both urban and motorway environments. 

However, during the transition mode heart rate was found to be insignificantly 

different in both urban and motorway. Finally, during the manual mode heart rate was 

found to be significantly different in both, urban (F=39.330, p<0.001) and motorway 

(F=40.803, p<0.001) environments. The mean RR intervals are presented in Figure 8. 

 

Figure 8. Mean inter-beat-intervals (RR), measured in milliseconds, categorised by various scenario 

sections. Error bars represent standard errors. 

The HRV measures were analysed using one-way ANOVA to identify whether 

statistically significant effect of scenario sections is present. It should be noted that 

transition period was excluded from this analysis, since it only lasted for 10 seconds 

i.e., same as the lowest moving window duration for HRV (see Figure 4). As the result, 

two discrete scenario sections, autonomous and manual, were considered. It was 

found that RMSSD of 10 seconds’ moving window (F=24.363, p<0.001), p50NN of 10 
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seconds’ moving window (F=45.033, p<0.001) are significantly affected by scenario 

sections (see Figure 9). 

 

  

Figure 9. Mean RMSSD (left) and p10NN (right) of 10 seconds’ moving window, measured in 

milliseconds, categorised by various scenario sections. Error bars represent standard errors 

4.4 Driver state stabilisation following a transition of 

control to manual driving 

This section presents results for stabilization time of physiological and driving 

performance that were derived using the new method described previously. 

Firstly, the changes of heart rate, averaged across scenarios and conditions, over 

the period of manual driving were plotted (see Figure 10). Clearly, a concavity is 

present from the point where vehicle control was taken over. Thus, stabilisation times 

of heart rate were derived for the individual scenario types and for combination of all 

scenarios. It was found that it takes 20 seconds for the heart rate to stabilise after 

control of a vehicle was taken over following a period of automated driving (see Figure 

11). 

 

 

 

Figure 10. Cumulative mean heart rate binned 

into one-second periods for the duration of 

manual driving. Error bars represent standard 

errors. 

 

Figure 11. Stabilisation time of cumulative 

mean heart rate. 

Interestingly, it was found that heart rate stabilisation time reduces following an 

increase in secondary task workload during the automated driving period in the 
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motorway environment (see Figure 12 and Figure 13). However, this pattern is not 

found in the urban environment where the highest heart rate stabilisation time was 

found to happen after engaging in “N-Back 1” task variation. 

 

 

Figure 12. Mean heart rate binned into one-

second periods for the duration of manual driving, 

categorised by the environment and difficulty of 

“N-Back” task. 

 

 
U0 U1 U2 M0 M1 M2 

23 s 36 s 15 s 23 s 18 s 16 s 

Figure 13. Estimated mean stabilisation times of 

heart rate, categorised by environment and 

difficulty of “N-Back” task. 

Next, the same method was applied to analyse time-domain HRV measures over 

the period of manual driving. It should be noted that HRV measures of 10 seconds’ 

moving window were used in this analysis. As the result, HRV, which can be attributed 

solely to the manual driving period, begins from 10 seconds’ mark. Hence, when 

extracting HRV stabilisation times, first 10 seconds of HRV data were trimmed for the 

analysis but added back onto the total stabilisation time. 

 

 

 

 

Figure 14. Cumulative mean RMSSD of 10 

seconds’ moving window binned into one-second 

periods for the duration of manual driving. Error 

bars represent standard errors. 

 

Figure 15. Stabilisation time of RMSSD of 10 

seconds’ moving window. 

 

An upward linear trend in both RMSSD and p50NN of 10 seconds’ moving 

window was visually identified (see Figure 14 and Figure 18). Thus, stabilisation times 

for the combination of all scenarios were derived. It was found that it takes 23 seconds 

for the HRV to stabilise after control of a vehicle was taken over following a period of 

automated driving (see Figure 15 and Figure 19). This stabilization time was 
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consistent for both time-domain HRV measures i.e., RMSSD and p50NN. Furthermore, 

stabilisation times for individual scenarios were derived (see Figure 17 and Figure 21). 

 

 

 

Figure 16. Mean RMSSD of 10 seconds’ moving 

window binned into one-second periods for the 

duration of manual driving, categorised by 

environment and difficulty of “N-Back” task. 

 
 

U0 U1 U2 M0 M1 M2 

28 s 29 s 17 s 23 s 19 s 21 s 

Figure 17. Stabilisation time of RMSSD of 10 

seconds’ moving window, categorised by 

environment and difficulty of “N-Back” task. 

 

 

 

 

Figure 18. Cumulative mean p50NN of 10 

seconds’ moving window binned into one-second 

periods for the duration of manual driving. Error 

bars represent standard errors. 

 

Figure 19. Stabilisation time of p50nn of 10 

seconds’ moving window. 

 

 

Figure 20. Mean p50NN of 10 seconds’ moving 

window binned into one-second periods for the 

duration of manual driving, categorised by 

environment and difficulty of “N-Back” task. 

 
 

U0 U1 U2 M0 M1 M2 

34 s - 16 s 23 s 19 s 22 s 

Figure 21. Stabilisation time of p50NN of 10 

seconds’ moving window, categorised by 

environment and difficulty of “N-Back” task. 
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4.5 Driving performance 

The driving performance was also affected by the differences in cognitive load 

elicited by the “N-Back” during autonomous driving. It should be noted that driving 

performance was only analysed in the context of motorway driving. The urban 

environment was excluded from this analysis due to variations in and complexities 

associated with simulated urban driving. These included speed-associated events 

within the scenario leading to take-over location differing dependant on driving speed. 

For these reasons only motorway driving will be discussed. 

The mean speed during manual driving in the motorway environment was found 

to be significantly affected by the variation of workload during the autonomous driving 

(aka AI) sections (F=432.695, p<0.001). After the transition to manual driving speed 

was found to increase following the higher workload in the “AI” period (see Figure 22). 

Although, the mean difference in speed between M0 and M2 did not exceed 0.4 mph, 

the difference was significant. Consequently, the range i.e., distance to an in-front 

vehicle, was also found to be significantly affected by the variation of elicited workload 

during autonomous driving (F=716.170, p<0.001). Contrary to speed, the range after 

transition was found to decrease following an increase of prior workload in the “AI” 

period, with driver following 5 meters closer to the car in front between M0 and M2 

(see Figure 22). 

By visually assessing longitudinal performance metrics i.e., speed and range, it 

became evident that those signals do not stabilise up until the end of manual driving 

section. Thus, no attempts were made to derive stabilisation times for either speed or 

range. 

 

  

Figure 22. Mean speed (left) and range (right), measured in mph and meters respectively, during 

manual driving in the motorway environment, categorised by difficulty of “N-Back” task. Error bars 

represent standard errors. 

The measures of lane position were analysed showing that the mean lane 

position is significantly affected by the variation of workload during autonomous (AI) 

driving (F=340.276, p<0.001). Specifically, it was found to decrease (i.e., driving closer 

to the centre of the lane) following an increase of prior workload in the “AI” period 

(approximately 30 millimetres’ difference between mean lane positions in M0 and M2) 
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(see Figure 23). Similarly, standard deviation of lane position was found to increase 

following an increase of prior workload in the “AI” period i.e., lane position has 

deviated by more than 40 millimetres between M2 and M0 scenarios (see Figure 23). 

 

  

Figure 23. Mean (left) and Std. Deviation (right) of lane position, measured in meters, during manual 

driving in the motorway environment, categorised by difficulty of “N-Back” task. Error bars represent 

standard errors. 

In addition, stabilisation times for mean lane position and standard deviation of 

lane position were derived. However, first 10 seconds were trimmed from the mean 

lane position, and 3 seconds from standard deviation of lane position stabilisation 

calculations in order to remove an effect of initial steering compensations (caused by 

gripping the steering wheel and correction for perceived centre of the lane). It was 

found that the time it takes for lane position and standard deviation of lane position 

to stabilise increases following an increase of prior workload induced by the “N-Back” 

during autonomous driving (see Figure 25 and Figure 27). However, it should be 

noted that the method used to derive stabilisation times for standard deviation of lane 

position could not determine exact stabilisation times for M0 and M1 scenarios. 

Perhaps, this is due to stabilisation appearing in the first five seconds of driving in 

those instances and the initial signal trend could not be established. 

 

 

Figure 24. Mean lane position, measured in 

meters, binned into one-second periods for the 

duration of manual driving in the motorway 

environment, categorised by difficulty of “N-Back” 

task. Error bars represent standard errors. 

 

 
M0 M1 M2 

13 s 17 s 22 s 

Figure 25. Stabilisation times of mean lane 

position, categorised by difficulty of “N-Back” task. 
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Figure 26. Std. deviation of lane position, 

measured in meters, binned into one-second 

periods for the duration of manual driving in the 

motorway environment, categorised by difficulty of 

“N-Back” task. 

 

 
M0 M1 M2 

Under 5 s Under 5 s 10 s 

Figure 27. Stabilisation times of std. deviation of 

lane position, categorised by difficulty of “N-Back” 

task. 
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5 Discussion 
The goal of the present study was to assess the effect of cognitive load on drivers’ 

ability to transition from autonomous to manual driving. To this end, we used a range 

of behavioural and physiological measures, all collected during several simulated 

driving scenarios. We introduce the new stabilization method for identifying a point at 

which physiological markers of cognitive load and driving indices return to baseline 

following driver’s transition. Key results from this paper suggest that non-optimal 

levels of workload during the automated driving conditions impair driving 

performance after the driver takes back control for approximately 20 seconds, 

especially lateral control of the vehicle, and the magnitude of this impairment varied 

with increasing cognitive load. In addition, heart rate parameters take between 20 and 

30 seconds to stabilise following a take-over request. 

 

5.1 Workload induction 

All participants were exposed to the variable level of cognitive load during the 

automated driving section. An induction of workload was accomplished using visual 

prompt-verbal response version of the "N-Back" task (Mehler, Reimer and Coughlin, 

2012). As expected, the percentage of failures to respond and errors was positively 

associated with the “N-Back” difficulty. It should be noted that “N-Back” performance 

in the urban environment deteriorated to a higher extent i.e., 18.6% of false “N-Back 

2” responses in the motorway against 29% in the urban environment. Moreover, 

percentage of no responses during the “N-Back 2” task followed a similar pattern. Thus, 

it can be concluded that urban, being a more complex environment, required 

participants to compensate for an increased demand due to presence of mild traffic, 

curved road layout, and other distractors. 

The level of workload during the automated driving section was the primary 

scenario control. It was tested for a significant effect using DALI, which revealed 

significant statistical difference across scenarios in almost all DALI subcategories as 

well as the overall DALI scores. Therefore, it can be concluded that the chosen study 

design allowed to induce significantly different amount of cognitive load in drivers 

prior to them taking control of the simulator vehicle.  

5.2 Automated driving section 

First, it was found that heart rate (represented using RR inter-beat-intervals and 

captured over the period of two minutes) significantly increases following an increase 

of workload (measured subjectively) in the urban environment. Previously, an increase 

of heart rate was found to be associated with elevated cognitive load (Brookhuis and 

de Waard, 2010). Moreover, this phenomenon is in line with the findings of Mehler et 

al. (2012) and Gable et al. (2015). However, in the motorway environment, a typical 

relationship between heart rate and workload could not be identified. Instead, the 
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higher mean heart rate (hence shorter inter-beat-interval responses) were identified 

during the period of engagement in the “N-Back 1” task in the automated motorway 

section.  

Furthermore, heart rate variability was found to follow a well-established pattern 

in the urban automated driving section i.e., inverse relationship between time-domain 

RMSSD and workload level; it was previously found that increased task complexity 

causes HRV to decrease (Hoover et al., 2012). However, similar to mean heart rate 

response in the motorway section, HRV did not impeccably follow an expected pattern 

in the motorway automated driving section. Despite an overall significant difference 

for the effect of HRV to decrease as complexity increases, p50NN differences were not 

observed between “N-Back” 1 and 2 during motorway driving. This lack of effect of 

increasing workload on HRV during motorway driving, may be as a result of the 

participants experiencing underload, or low levels of cognitive load during this aspect 

of the driving task. With the “N-Back” task in turn actually increasing load to ‘optimal’ 

levels during motorway driving, this in turn may actually have positive implications for 

driver state and hence driving safety. 

It therefore follows that heart rate and time-domain HRV responses, which are 

captured using consumer grade electronic devices, can be used to evaluate and 

quantify the level of workload that drivers are exposed to during the periods of 

automated driving. Therefore, Hypothesis I, which states that a level of cognitive load 

can be reliably estimated using driver state indicators (e.g., HR and HRV) during the 

automated driving period, can be in part supported by these results with the caveat 

that this was consistently observed for comparisons between low (“N-Back” 0) and 

high (“N-Back” 2) levels of induced workload. 

Moreover, it was demonstrated how some of the physiological indicators i.e., 

heart rate and HRV, respond to changes in workload. Thus, the first part of Hypothesis 

III, which states that a varying complexity level of induced cognitive load causes 

significantly different responses in driver state indicators during the automated 

driving, can be also supported.  

5.3 Automated to manual control transition  

It was previously argued that it can be beneficial for vehicles capable of SAE Level 

3 automation (meaning they share the responsibility of driving between the vehicle 

and the driver) to estimate level of drivers’ cognitive load in order to ensure safe and 

comfortable transition of control. However, there is currently limited evidence 

informing the effect of workload on drivers’ ability to effectively take-over manual 

control of a vehicle after a prolonged period of automated driving. 

As part of this study participants had 10 seconds to prepare themselves to take 

over full manual control of the vehicle – the focus of this paper was not unexpected, 

emergency handover events. Physiological responses during this planned handover 

period in both urban and motorway driving were analysed, but it was found that none 

of the heart rate related physiology responses are reactive to potential changes in 

drivers’ state during this short period of transition. Moreover, time-domain HRV 
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cannot be used as an indicator of workload during such a short measurement period, 

because it is derived using at least 10 seconds’ long moving window. However, 

measures such as skin conductance (or sweat rate) and executive function (measured 

using functional near-infrared spectroscopy, fNIRS) have been shown to be sensitive 

to handover events (Perelló March et al., In Press). 

It can be concluded that heart rate derived physiological responses are unlikely 

to be useful for assessing quality or success of automated to manual control transition 

periods. Thus, the second part of Hypothesis III, which states that a varying complexity 

level of induced cognitive load causes significantly different responses in driver state 

indicators during the transition of control period, should be rejected. Instead, 

researchers should continue to use reaction times or eye glance behaviour as a 

measure of quality of automated to manual control transition routines that last for 10 

seconds or less. Perhaps, heart rate derived physiological responses can be adopted 

for studying quality of automated to manual control transition that exceed 10 seconds' 

time period. These results cannot comment on the efficacy of heart rate derived 

physiological responses as a measure for emergency, or unexpected handovers, this 

would be for assessment in future research. 

5.4 Manual driving following a take-over of vehicle 

control 

It is also essential to understand how workload may affect drivers’ ability to 

perform the primary task of driving during the first minute. It was hypothesised that 

non-optimal levels of workload may have a significant effect on drivers’ state indicators 

following a control take-over routine (the third part of Hypothesis III). 

Indeed, it was found that mean heart rate significantly differs during the manual 

driving period in both urban and motorway environments. Surprisingly, mean heart 

rate was the lowest following a high complexity “N-Back 2” task. This adds to the 

debate of heart rate relevance in assessing quality of automated to manual control 

transition routines since, sometimes results can be inconclusive. Conversely it could be 

implied that drivers will limit their engagement in high workload secondary tasks in 

order to maintain vehicle monitoring during automated driving. As observed in this 

study with the increase number of false and missed responses to “N-Back 2” in the 

Urban driving scenario. 

HRV was only significantly affected during driving in the urban environment. 

According to HRV, participants have experienced significantly more workload during 

the manual driving after an “N-Back 1” task, compared to estimated workload after 

“N-Back” 0 and 2. This could be attributed to the fact that drivers have likely 

compensated for the lower workload (i.e., “N-Back 0”) and the higher workload (i.e., 

“N-Back 2”) by reducing their cognitive capacity as described by Brookhuis and de 

Waard (2010). 

To further deepen our understanding of drivers’ state during the manual driving 

period, some of the physiological indicators were binned into second-long intervals 
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for the whole duration of manual driving section i.e., 60 seconds. This allowed to 

visualise an extent of signal changes and determine their stabilisation times. Previously, 

attempts were made to determine stabilisation times of driving performance measures 

in the SAE Level 3 control transition scenarios (Merat et al., 2014; Pampel et al., 2018). 

Those studies used 5-second-long bins and used ANOVA to determine whether 

measurement variance get significantly affected by the time factor. Whereas, this study 

adopted a new method which relies on second-long intervals for better precision in 

determining stabilisation times. The method allows to determine exact location of 

signal stabilisation following a prior up or down trend. The point is determined by the 

best linear model fit. 

The mean heart rate responses were analysed first using this new method to 

determine stabilisation. It was found that a distinct raising linear trend is present at the 

beginning of manual driving period. Using the proposed method for deriving 

stabilisation time of a signal, it was found that, on average, it takes 20 seconds for 

heart rate to stabilise after manual control of a vehicle is taken. Moreover, it was found 

that stabilisation time tends to decrease following an increase in workload prior to 

control transition in the motorway environment. However, this does not apply to the 

urban environment, where mean heart rate stabilisation times could be affected by 

complexity and inconsistency associated with urban driving, rather than solely by 

induction of various levels of workload during the automated driving section. 

Importantly, time-domain HRV measures were also found to be affected by 

workload. It took, on average over all six scenarios and workload repeated trial runs, 

23 seconds for HRV to stabilise following transition to manual driving. Moreover, 

stabilisation times during the motorway environment did not differ due to variation of 

prior workload. Similar to heart rate, HRV stabilisation times in the urban scenario are 

likely affected by complexity and inconsistency, rather than solely by induction of 

various levels of workload during the automated driving section. However, a distinct 

pattern can be seen in the HRV signal for the first 5 seconds of manual driving i.e., the 

HRV remains higher after engaging in a low complexity task in both urban and 

motorway driving scenarios. Since HRV was calculated using 10 seconds’ moving 

window, the stabilisation times were derived from 10 seconds onwards, which was in 

fact a point of the lowest HRV in all scenarios. 

Given the discussion points, raised above, the Hypothesis V can be also 

supported. It states that the time it takes for drivers’ state to stabilise following a 

control take-over is impacted by the amount of cognitive load, experienced during the 

automated driving period. 

5.5 Effect on the driving performance 

Next, the driving performance measures in the motorway environment were 

evaluated. Similar to velocity observations made by Mehler et al., (2009), it was found 

that mean speed and range in the motorway environment was found to be significantly 

affected by the variation of prior workload. Although, those differences did not exceed 
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0.3 mph and 3 meters respectively. Therefore, it could be suggested that these 

phenomena are not safety critical. 

When it comes to the mean lane position analysis, it was found that it is 

significantly affected by a variation of prior workload. Specifically, it was found that 

participants tend to drive closer to the “hard shoulder” by approximately 0.03 meters 

after they take-over vehicle control following a task of low demand i.e., “N-Back 0”. 

Similar to differences in the longitudinal metrics, this difference in not a safety critical 

impairment. It is in fact below a typical daytime driving offset of 0.05 meters (Sayer et 

al., 2010). On the other hand, Standard Deviation of Lane Position (SDLP) was found 

to increase due to a significant increase in workload prior to take-over of manual 

control. This impairment could be deemed as detrimental to safety, since all SDLP 

values exceed the typical threshold of normal driving i.e., from 0.2 to 0.3 meters (Green 

et al., 2004). Therefore, it can be concluded that a varying complexity level of induced 

cognitive load causes significant impairment in driving performance after an 

automated to manual control take-over, especially, in the lateral control. Hence, 

Hypothesis II, can be also supported, but only in regard to the lateral control. 

To further deepen our understanding of driving performance during the manual 

driving period, the stabilisation times of some lateral control measures were derived. 

Specifically, it was found that time it takes for lane position and SDLP to stabilise 

increases following an increase of prior workload. However, contrary to findings of 

Merat et al., (2014), which presented a steady raise of SDLP reaching 0.2 meters in the 

first 20 seconds, our findings show SDLP peaking in the first 10 seconds (almost 

reaching 0.8 meters) and stabilise between 0.5 and 0.3 meters thereafter. Furthermore, 

it took even longer for the mean lane position to stabilise depending on the level of 

prior workload, from 13 (“N-Back 0”) to 22 (“N-Back 2”) seconds. Hence, the Hypothesis 

IV, which state that the time it takes for driving performance to stabilise following a 

control take-over will be impacted by the amount of workload, experienced during the 

automated driving period, can be also supported in the context of lateral control, since 

none of the longitudinal control measures have actually stabilised in the first 60 

seconds. 

6 Conclusion 
The aim of this study was to explore an effect of cognitive workload on drivers’ 

state and driving performance during a planned automated to manual control 

transition scenarios. In the past, a small number of studies have attempted to evaluate 

quality of control take-over routines, predominantly, using driver behaviour and 

driving performance indicators e.g., reaction times and lane position. However, there 

is a lack of evidence on how various levels of workload, induced during the automated 

driving period, may affect drivers’ state during the period of control transition and the 

period of manual driving that follows. This knowledge gap is of high importance, given 

the safety critical nature of automated to manual control take-over routines. To 

address this knowledge gap, the study adopted repeated measure design and was 

performed in a highly immersive driving simulator. The results suggest that non-
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optimal levels of workload during the automated driving conditions could impair 

driving performance, especially, the lateral control. Furthermore, it was demonstrated 

that level of workload can impact severity and duration of driving performance 

impairment. For instance, mean and standard deviation of lane position impairments 

were found to last longer following a higher level of workload during over the 

automated driving period. Finally, it was demonstrated how workload level can be 

estimated in context of automated driving using the physiological measures, captured 

by means consumer grade electronic devices. The study also discussed an impact the 

key finding may have on the design of SAE Level 3 systems. Relevant suggestions were 

provided for the research community and automakers that are working on 

implementing future vehicles that are capable of SAE Level 3 automation. 

7 Funding 
The financial support for this work was provided by Engineering & Physical 

Sciences Research Council (EPSRC) and Jaguar Land Rover (JLR). We would like to 

thanks Dr Lukasz Walasek of University of Warwick for his support with the 

development of the stabilisation methodology, and the blind reviewers whose 

feedback enhanced the clarity and impact of the paper. 

8 References 
Brookhuis, K. A. and de Waard, D. (2010) ‘Monitoring drivers’ mental workload in driving 

simulators using physiological measures’, Accident Analysis and Prevention. Elsevier Ltd, 42(3), pp. 

898–903. doi: 10.1016/j.aap.2009.06.001. 

Burghardt, S., Weig, F. and Choi, S. (2017) Mobility trends: What’s ahead for automotive 

semiconductors, McKinsey & Company. Available at: 

https://www.mckinsey.com/industries/semiconductors/our-insights/mobility-trends-whats-ahead-for-

automotive-semiconductors (Accessed: 1 July 2018). 

Campbell, J. L. et al. (2018) Human factors design principles for level 2 and level 3 automated 

driving concepts (Report No. DOT HS 812 555). Washington, DC: National Highway Traffic Safety 

Administration. 

Clark, H. et al. (2017) ‘Performance in takeover and characteristics of non-driving related tasks 

during highly automated driving in younger and older drivers’, Proceedings of the Human Factors and 

Ergonomics Society, 2017-Octob(September), pp. 37–41. doi: 10.1177/1541931213601504. 

Cunningham, M. and Regan, M. (2017) ‘Driver Distraction and Inattention in the Realm of 

Automated Driving’, IET Intelligent Transport Systems, (December 2017). doi: 10.1049/iet-its.2017.0232. 

Gable, T. M. et al. (2015) ‘Comparing heart rate and pupil size as objective measures of 

workload in the driving context’, in Adjunct Proceedings of the 7th International Conference on 

Automotive User Interfaces and Interactive Vehicular Applications - AutomotiveUI ’15. New York, New 

York, USA: ACM Press, pp. 20–25. doi: 10.1145/2809730.2809745. 

Gastaldi, M., Rossi, R. and Gecchele, G. (2014) ‘Effects of driver task-related fatigue on driving 

performance’, Procedia - Social and Behavioral Sciences. Elsevier B.V., 111, pp. 955–964. doi: 

10.1016/j.sbspro.2014.01.130. 

Green, P. et al. (2004) SAVE-IT Typical Values for Driving Performance of Lane Position : Prepared 

by. 

He, Q., Li, W. and Fan, X. (2011) ‘Estimation of Driver’s Fatigue Based on Steering Wheel Angle’, 

in Engineering Psychology and Cognitive Ergonomics, pp. 145–155. doi: 10.1007/978-3-642-21741-



 29 

8_17. 

Hoover, A. et al. (2012) ‘Real-time detection of workload changes using heart rate variability’, 

Biomedical Signal Processing and Control. Elsevier Ltd, 7(4), pp. 333–341. doi: 

10.1016/j.bspc.2011.07.004. 

Horberry, T. et al. (2006) ‘Driver distraction: The effects of concurrent in-vehicle tasks, road 

environment complexity and age on driving performance’, Accident Analysis and Prevention, 38(1), pp. 

185–191. doi: 10.1016/j.aap.2005.09.007. 

Inagaki, T. (2003) ‘Adaptive Automation: Sharing and Trading of Control’, in Handbook of 

Cognitive Task Design, pp. 147–169. doi: 10.1201/9781410607775. 

Kersloot, T., Flint, A. and Parkes, A. (2003) ‘Steering Entropy as a Measure of Impairment’, 

Presented during the Young Researchers …, 44(0). Available at: http://www.ectri.org/YRS03/Session-

6/Flint.pdf. 

Khastgir, S., Birrell, S., Dhadyalla, G. & Jennings, P. (2018) 'Calibrating trust through knowledge: 

Introducing the concept of informed safety for automation in vehicles', Transportation Research Part 

C: Emerging Technologies. 96, 290-303. 

Krajewski, J. et al. (2009) ‘Steering wheel behavior based estimation of fatigue’, Proceedings of 

the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle 

Design, pp. 118–124. doi: 10.17077/drivingassessment.1311. 

Lee, C. et al. (2020) ‘Consumer Comfort with Vehicle Automation: Changes Over Time’, pp. 412–

418. doi: 10.17077/drivingassessment.1726. 

Malik, M. et al. (1996) ‘Heart rate variability. Standards of measurement, physiological 

interpretation, and clinical use’, European Heart Journal, pp. 354–381. 

Matthews, G. et al. (2011) ‘Driving in States of Fatigue or Stress’, in Handbook of Driving 

Simulation for Engineering, Medicine, and Psychology, pp. 389–394. doi: 10.1201/b10836-30. 

Matthews, G. and Desmond, P. A. (2002) ‘Task-induced fatigue states and simultated driving 

performance’, The Quarterly Journal of Experimental Psychology, 55A(2), pp. 659–686. doi: 

10.1080/0272498014300050. 

Mehler, B. et al. (2009) ‘Impact of Incremental Increases in Cognitive Workload on Physiological 

Arousal and Performance in Young Adult Drivers’, Transportation Research Record: Journal of the 

Transportation Research Board, (2138), pp. 6–12. doi: 10.3141/2138-02. 

Mehler, B., Reimer, B. and Coughlin, J. F. (2012) ‘Sensitivity of physiological measures for 

detecting systematic variations in cognitive demand from a working memory task: An on-road study 

across three age groups’, Human Factors, 54(3), pp. 396–412. doi: 10.1177/0018720812442086. 

Melnicuk, V., Birrell, S., Konstantopoulos, P., et al. (2016) ‘JLR heart: Employing wearable 

technology in non-intrusive driver state monitoring. Preliminary study’, in 2016 IEEE Intelligent Vehicles 

Symposium (IV). IEEE, pp. 55–60. doi: 10.1109/IVS.2016.7535364. 

Melnicuk, V., Birrell, S., Crundall, E., et al. (2016) ‘Towards hybrid driver state monitoring: Review, 

future perspectives and the role of consumer electronics’, in 2016 IEEE Intelligent Vehicles Symposium 

(IV). IEEE, pp. 1392–1397. doi: 10.1109/IVS.2016.7535572. 

Melnicuk, V. et al. (2017) ‘Employing consumer electronic devices in physiological and 

emotional evaluation of common driving activities’, in 2017 IEEE Intelligent Vehicles Symposium (IV). 

Los Angeles: IEEE, pp. 1529–1534. doi: 10.1109/IVS.2017.7995926. 

Merat, N. et al. (2012) ‘Highly automated driving, secondary task performance, and driver state’, 

Human Factors, 54(5), pp. 762–771. doi: 10.1177/0018720812442087. 

Merat, N. et al. (2014) ‘Transition to manual: Driver behaviour when resuming control from a 

highly automated vehicle’, Transportation Research Part F: Traffic Psychology and Behaviour, 27(PB), 

pp. 274–282. doi: 10.1016/j.trf.2014.09.005. 

Nakayama, O. et al. (1999) ‘Development of a steering entropy method for evaluating driver 

workload’, Proceedings of JSAE Annual Congress, (724), pp. 5–8. doi: 10.4271/1999-01-0892. 

Pampel, S. M. et al. (2018) ‘Getting the Driver back into the Loop : The Quality of manual Vehicle 

Control following long and short non-critical Transfer-of-control Requests : TI : NS’, Theoretical Issues 

in Ergonomics Science, (In Press)(April). 



 30 
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