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Abstract 

Today’s industry is highly automated and offers an opportunity to log a variety of data 

for different aspects of the manufacturing process. Research suggests that mining those 

data can streamline those processes. During the literature review, it became appar-
ent that much research for quality, logistics and chemical process improvements had 

been done but to the author’s knowledge, none of this research addressed improvement 
suggestions for assembly and joining lines based on already available sensor signals. 

The project was split up into the three steps data collection, preprocessing and anal-
ysis. The proposed framework requires logging of all of the equipment’s sensor data 

(i.e. proximity switches, lights sensors), which is not a function offered for industrial 
equipment. Therefore a nomenclature based algorithm was developed to parse the un-
derlying PLC (programmable logic controller) program to extract the data points of 
interest automatically. These data points then are directly converted into OPC (Open 

Platform Communications) setup parameters which enable immediate logging. 
First the individual events within the log needed to be clustered into cases using 

novel heuristic algorithms. Evaluation of the resulting cases yielded that the data was 

flawed. Research suggests that such data can either be repaired, ignored or analysed 

with fault-tolerant algorithms like the heuristic miner. Since repair and fault-tolerant 
algorithms bear the risk of additional uncertainty, the deletion of incomplete or flawed 

cases was chosen. Identification of the faulty cases was addressed by enhancing the data 

with expert-based engineering features and tags for a fraction of the cases. Machine 

Learning then was applied to determine the completeness of the remaining cases. 
Next expert knowledge was encoded into heuristic algorithms which can pinpoint 

several process problems within the data. Above described framework was tested with 

real-life data originating from an automotive body shop and the potential for cycle time 

improvements of up to 19% was discovered. It was also found that one of the shortcom-
ings of the suggested framework is that the analysis is based on presumed dependencies 

between the different events. The Process Mining domain suggests algorithms that 
enable the discovery of the real dependencies by analysing corresponding event logs. 
Experiments with above algorithms yielded unsatisfactory results which triggered the 

development of an improved, for industrial assembly and joining equipment suitable 

Process Discovery algorithm. This algorithm, contrary to the established algorithms, 
can discover highly accurate models with a minimum number of cases. Based on this 

finding, rules were formulated to detect the questionable dependencies within a case. 
Finally, a new process called ‘Interactive Trace Induction’ was introduced and tested 

to enable capturing the crucial cases needed to discover such highly accurate models. 
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1 
Overview 

1.1 Introduction 

In the realm of manufacturing planning and control the term ’hidden factory’, accord-
ing to George (George 2002), describes processes that ’consume resources and produce 

nothing of value to the customer’. A more detailed description was provided by Naka-
jima (Nakajima 1989). He defines hidden factories in terms of breakdown losses, setup 

and adjustment loses, idling and minor stoppage loses, reduced speed loses, start-up 

loses as well as quality defects and rework. 
The first and most obvious category is breakdown losses. Breakdowns have a major 

impact on production throughput since they are happening most often at the most 
inopportune time. Once they occur, the maintenance team needs to be notified, which 

then comes onsite to assess the problem and develop an action plan. Then spare parts 

might be needed which may or may not be onsite. Finally, the repair takes place. 
The number of maintenance personnel and the size of the spare part stock are also a 

balancing act between effectiveness and cost. Preventive maintenance schemes are often 

put into place to replace equipment parts based on a predefined schedule. This practice 

helps to reduce the breakdown losses but at the same time increases the maintenance 

cost because parts, that might not be at the end of their life cycle, might get replaced. 
In recent years the trend shifted toward predictive maintenance. Data collected from 
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the machine is analysed with machine learning algorithms to allow maintenance to shift 
the time of part replacement closer to its expected point of failure. 

The next category is setup and adjustment losses. Modern production equipment 
requires many adjustments to be made to achieve the best possible balance between 

product quality and production speed. Some examples are the setting of temperature, 
air pressure, airflow and drive acceleration/deceleration ramps. Often the equipment 
manufacturer’s only goal is to fulfil the agreed-upon specification which still leaves lots 

of room for improvement. Typically long-term observation by a person, knowledgeable 

of the process is required to reach the best possible performance. 
Another cost-driving factor is idling and minor stoppage losses. Due to the fixed cost 

of production facilities, times of no production can be considered waste. The stoppages 

can be deliberately scheduled, or they can be the result of imbalanced manufacturing 

lines or in the worst case of inadequate process control. Experiments show that some of 
these losses are difficult to spot because they might be only fractions of a second adding 

up because they are reoccurring millions of times within the equipment’s life span. In 

addition to expert knowledge, this issue also requires the use of monitoring equipment. 
Another factor is reduced speed losses. These losses can be caused by human interven-

tion, by ageing equipment or due to shared resources. These, often gradual performance 

reductions are not easily noticed unless a constant, automated observation of the sensor 
feedback is in place. 

An additional issue are start-up losses. Ideally, the manufacturing facility would 

want to be able to turn on new production equipment and run at a 100% production 

rate right from the start. Due to the complexity of automated manufacturing lines, 
often it is not possible to fully validate everything before shipment to the customer. 
Sometimes the equipment even might get built from the ground up on the customer’s 

shop floor. This type of implementation means that the production lines will undergo 

a gradual start-up ramp where problems are addressed as they are experienced. De-
pending on the equipment’s complexity, this time frame might stretch up to several 
months. Equipment manufacturers try to reduce the impact of this phase through 

modularisation and simulation of the machines before installation. 
Quality defects and rework can also become a major cost-driving factor due to the 

additional time required to rectify the issues found. In some instances, the product 
might have to go through the production line again, slowing down production. Online 

quality monitoring helps to spot problems as early as possible and thus contain their 
impact. 

Exploration of the hidden factory promises great opportunities for manufacturing 

2 



companies and modern data mining approaches appear to offer all the tools necessary 

to do so successfully. While approaching such a project, it has to be considered ahead 

of time that many continuous improvement initiatives fail. McLean et al. (McLean 

and Antony 2014) summarise the reasons under the following headlines: motives and 

expectations, organisational culture and environment, management leadership, imple-
mentation approach, training, project management and employee involvement levels. 
Their research shows that more than 60% of improvement projects are considered a 

failure. These findings led to the conclusion that such an undertaking might be in vain 

unless there is a common understanding between all the stakeholders regarding the 

expected outcome, time and cost involved. 
When attempting a literature review concerning ’data mining in manufacturing’ hun-

dreds of papers can be found. They can be split up into several categories. Searching 

for the terms ’data mining for industrial processes’ results in many works concerning 

biological and chemical processes. An example would be Charaniya et al. (Charaniya 

et al. 2010), who proposed the application of machine learning techniques for the eval-
uation of bio processes. Another issue often considered in the domain of industrial 
processes is the manufacturing quality. Since many processes are already monitored 

with the help of analogue sensors the next logical step is to record the values obtained 

and to apply data mining algorithms to discover patterns which allow conclusions re-
garding the quality of the part being manufactured. An example can be seen in the 

work of Gertosio et al. (Gertosio and Dussauchoy 2004) who propose such a scheme for 
the quality assessment and tuning of truck diesel engines. Application of their method-
ology resulted in a 27% reduction of the processing time within this production step. 
Quality also can be monitored and kept at a steady level through equipment diagnos-
tics. Hou et al. (Hou, W. L. Liu, and Lin 2003) proposed a back-propagation neural 
network to monitor manufacturing processes. They proclaim that a causal relationship 

can be found between manufacturing parameters and product quality. 
Machine learning and data mining strategies are sometimes also recommended for 

cycle time improvements. Chien et al. (Chien et al. 2005; F et al. 2007) describe 

the potential for cycle time prediction in semiconductor manufacturing. They mention 

that this type of manufacturing needs to be highly flexible and that the efficiency of 
the production line strongly depends on the product being manufactured as well as 

the equipment being utilised. They, therefore, recommend the clustering of similar 
manufacturing steps and the comparison of their efficiency to conclude possible process 

improvements for the currently evaluated process. Park et al. (J. Park, D. Lee, and 

Bae 2014) use a similar approach to evaluate the efficiency for block building within 

the shipbuilding industry. Blocks are modules which are later combined to form the 
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ship. The tasks performed while creating such a block are often similar and thus can 

be compared. The clustering into similar production steps and the identification of 
discrepancies can be achieved through machine learning algorithms. 

The vast amount of research projects within the manufacturing realm triggered some 

researchers to perform a comprehensive literature review to derive applicable categories. 
At the same time, they are also highlighting potential areas which have not received 

the necessary attention yet. The categories defined by (Harding, Shahbaz, and Kusiak 

2006; K. Wang et al. 2007; Choudhary, Harding, and Tiwari 2009; Groeger et al. 2012) 
are: 

• Quality Control • Manufacturing systems 

• Job shop scheduling • Maintenance 

• Fault diagnostics • Defect analysis 

• Manufacturing processes • Yield improvement 

The research for this thesis falls into the category ’yield improvement’. As described 

before many previous works within this classification gain knowledge from the compar-
ison of similar processes rather than utilising a priori knowledge to identify and rectify 

the shortcomings based on the data obtained. The data used for this research is an-
other topic of discussion. Process improvements are often based on the cycle time of 
sub-tasks and the sequence in which they are executed. This thesis argues that the 

observations used so far are too coarse to allow for a proper process evaluation espe-
cially in conjunction with mechanical assembly equipment. Due to the complexity of 
the individual stations, further investigations typically are performed by production 

engineers manually through onsite observations and the development of improvements 

suggestions based on their domain knowledge. 
It is perceivable, as Pethig et al. (Pethig et al. 2012) recommend, that the sensors 

of an existing automation system are logged. Other than a possible methodology on 

how to achieve such logging, no works have been found that exploit such data to derive 

improvement suggestions. These sensors are not considered for fault detection and 

predictive maintenance purposes either. Instead, many researchers suggest, for example, 
Lee et al. (J. Lee, Lapira, et al. 2013), that additional sensors, such as vibration and 

pressure sensors should be installed to obtain the data needed. The reason behind that 
can be seen in the fact, that the existing sensors only yield binary status signals while the 

proposed sensors provide analogue values which are more suitable for data exploration. 
A closer look reveals, that even the binary signals, when combined appropriately provide 

varying values suitable for data mining. Such values could be the time elapsing between 
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initiating an action and its completion or the sequence of the events. These are the 

values that build the basis of the research described within this thesis. 
When evaluating why industrial data are not more often explored with the help of 

data mining techniques, Wang et al. (K. Wang et al. 2007) compiled the following list 
of reasons which seems to confirm onsite observations: 

• The majority of researchers in the manufacturing domain area are not familiar 
with data mining (DM) algorithms and tools. 

• The majority of theoretical DM researchers are not familiar with the complex 

manufacturing domain area. 
• The few researchers who are skilled in both DM algorithms and manufacturing 

domain area are not able to access, often proprietary and sensitive, manufacturing 

enterprise data. 
• It is difficult to evaluate the effectiveness and benefits while DM is implemented 

in manufacturing 

• Industrial data are typically noisy, highly correlated, and very often, they are 

randomly missing due to various reasons such as faulty sensors and computer 
communication errors. 

• Long time scales and high expense are involved in introducing these new tech-
niques. 

Proprietary access to the data, be it because of the bus systems and protocols in 

use or because of the sensitivity of the production data itself is also one of the main 

stumbling blocks mentioned by Pething et al. (Pethig et al. 2012). Baier et al. (Baier 
et al. 2015) add that many data obtained from legacy systems can not be customised. 
Thus it becomes ’a tedious task to reconstruct a mapping from cryptic names in a 

database to the activities in a process model’. Wuest et al. (Wuest et al. 2016) also 

confirm these observations. 
All the above reasons are summed up by Windmann et al. (Windmann et al. 2015) 

stating: ’The high complexity of manufacturing processes and the continuously growing 

amount of data lead to excessive demands on the users concerning process monitoring, 
data analysis and fault detection.’ 

Attempting a manufacturing data mining project should be done in a structured 

matter. According to Fayyad et al. (Fayyad, Piatetsky-Shapiro, and Smyth 1996), 
the first workshop concerning Knowledge Discovery in Databases (KDD) took place in 

1989. One of the goals of this workshop was to define the necessary steps for a successful 
data mining project. These steps were summed up by Fayyad et al. as follows: 
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• Understanding the manufacturing domain 

• Collecting the targeted data 

• Data cleaning, preprocessing and transformation 

• Data integration: multiple data sources 

• Choosing the functions of data mining (clustering, classification, prediction, as-
sociation, regression, summarising) 

• Choosing the appropriate data mining algorithm 

• Data mining 

• Interpretation and visualisation of the results 

• Implementation of discovered knowledge 

In 2004 Gertosio et al. (Gertosio and Dussauchoy 2004) added to this list the ’eco-
nomic evaluation’ since it has a great impact on the decision whether to put the proposed 

concept into production or not. Later on, Choudhary et al. (Choudhary, Harding, and 

Tiwari 2009) also proposed the addition of ’knowledge storage and reuse’ when applying 

the concept to manufacturing systems. 
In their paper regarding knowledge discovery and analysis in manufacturing (KDAM) 

Polczynski et al. (Polczynski and Kochanski 2010) defined the goals of data mining 

projects within the manufacturing domain as follows: 

• Detection of root causes of deteriorating product quality 

• Identification of critical and optimal manufacturing process parameters 

• Prediction of the effects of manufacturing process changes 

• Identification of root causes and prediction of equipment breakdowns 

Considering its name, Process Mining seems to be another alternative when attempt-
ing to gain knowledge from industrial manufacturing processes. Originally formulated 

to aid software development, Process Mining was transferred to business processes by 

van der Aalst (W. V. D. Aalst 2016b) who applied the concept to discover business 

process models from an event log. 
There are several basic terms used in conjunction with said event logs. To record 

events, there must be defined activities. An activity in the manufacturing realm 

could, for example, be the loading of a work piece into a machine. Associated events 

for such activity would be the initiation of the loading process and its completion. 
These events are recorded within an event log often together with a timestamp. The 

manufacturing process does not only consist of the loading activity. It also, on a high 

abstraction level, includes processing and unloading activities. The events associated 

with these activities, when considering an individual part being manufactured, are 
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considered to be a case for which ideally a case ID is recorded together with the 

events for easier identification. An event log, is made up of several events. The order of 
the events within a case is called a trace. For the simple example with three activities, 
it is likely that the trace for all cases recorded will be equal. If more detailed activities 

are logged, there are different reasons, which will be explored in the course of this work, 
that different traces will manifest themselves. 

Process Mining uses different algorithms to preprocess such event logs and to extract 
knowledge from the different traces found. Besides the aforementioned process model 
discovery, this also includes conformance checking and process enhancements. To most 
industrial engineers, the research domain of Process Mining is unknown. It only came to 

the author’s attention while searching for approaches that would allow for the clustering 

of events within a log into related cases. Although the techniques proposed to cluster 
unstructured event logs into cases did not prove to apply to industrial event logs the 

concept of Process Discovery as such remained promising for the analysis of industrial 
processes. 

This research proposes the collection of detailed event logs, from automated produc-
tion equipment to address four of the six big losses which are ’setup and adjustment 
losses’, ’idling and minor stoppage losses’, ’reduced speed losses’ as well as ’start-up’ 
loses. 

The observation during this research was that neither the equipment manufacturers 

nor the end-users are fully aware of the impact caused by either external factors or the 

intertwining of the different internal processes. This unawareness is the reason why 

many machines are not utilised to their full potential. Although today’s manufacturing 

operations are highly automated little data is collected to gauge the performance of 
such equipment. Therefore this research had to encompass multiple research steps to 

gather and analyse data. 
Figure 1.1.1 shows the initial data collection effort, within the body shop that was 

made available for this research, highlighted in green and marked with the number 1. 
The data collection was limited to preselected fault messages and a few event triggers 

that allow determining the station’s cycle time as well as the starved or blocked status. 
The proposed collection of detailed event logs from automated production equipment 

is marked in the graphic in yellow and the number 2. This directly relates to section 

3.1. During preprocessing these event logs then need to be grouped into cases and 

evaluated for completeness. This task is step number 3 within the industry 4.0 vision. 
The corresponding methodologies can be found in section 3.2. In the final step 4, the 

data is analysed to discover the big losses described previously. Proposals for such an 
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Figure 1.1.1: Industry 4.0 Vision 

approach are described in sections 3.3 to 3.5. The system needs to create work orders 

for the maintenance personnel to allow for rectification of the issues found and the work 

completion feedback needs to be checked based on new data collected. This part of the 

process can be handled by existing IT systems and is therefore not considered within 

this research. It can be assumed that a similar workflow would be desirable for any 

manufacturing operation and not only for an automotive body shop. 
The attempt to create a fully automated system from the data collection through 

knowledge discovery and the presentation of improvement suggestion goes against the 

warnings of Holzinger et al. (Holzinger 2013) who argue that an approach diminishing 

the end-users control and comprehension will lead to modelling artefacts. 

1.2 Research Question 

How can Heuristic Algorithms, Process Discovery and Machine Learning be applied to 

industrial equipment logs to improve the efficiency of the assembly and joining pro-
cesses? 

1.3 Motivation 

This research has been motivated by the ongoing struggle of the manufacturing industry 

to improve production processes and to reduce equipment downtime. It is hypothesised 

that the recording and analysis of readily available equipment data, such as actuator 
initiation and the corresponding proximity sensor feedback, will yield insight that can 

help achieve above goals. 
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1.4 Contributions 

• A new novel algorithm to derive tags (PLC addresses) of interest with nomencla-
ture based parsing of the PLC software without a priori knowledge. 

• New methodologies to discover faults within an industrial equipment log together 
with a description of potential root causes and recommendations on how to rectify 

them. 
• Multiple innovative algorithms that allow for the clustering of the event log into 

cases without a priori knowledge along with a new algorithm to filter noise while 

determining mean cycle times. 
• The formulation of five novel rules to create additional engineered features for 

industrial equipment logs that allow for the creation of a machine learning model 
to determine the completeness of the cases within the log. 

• A novel framework consisting of eight definitions that aid the discovery of short-
comings that typically can be found within the sequence of automated equipment 
accompanied by methodologies that allow for their automated annotation within 

sequence charts. 
• The development of an improved Process Discovery method to model automated 

manufacturing processes based on sparse industrial logs. 
• A novel methodology to interactively induce traces, through signal delays, that 

enable the discovery of a highly accurate process model by revealing the true 

dependencies. 

1.5 Scope 

The scope of this research is focused on automated, PLC controlled assembly and 

joining equipment used for industrial manufacturing processes. Although the presented 

research is centred around individual manufacturing stations the principals are scalable 

to suite manufacturing cells or the whole manufacturing process. 

1.6 Aim 

The aim of this thesis is to investigate new novel approaches to automatically capture, 
preprocess and analyse low level manufacturing equipment data and identify areas to 

improve the efficiency of the assembly and joining processes. 
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1.7 Objectives 

• Develop a framework that, based on the PLC code, can extract the data points 

of interest which are then used for automated OPC setup and data logging. 
• Formulate algorithms that can be used to cluster the events stored within the log 

into cases that describe one cycle of the monitored equipment. 
• Develop criteria that can be used to evaluate the quality of the log. 
• Utilise machine learning to determine the completeness of above obtained cases. 
• Encode expert knowledge into heuristic algorithms that autonomously can gen-

erate diagrams pointing out improvement potential within the current process. 

1.8 Outline Of Thesis 

The project, in its final stage, consists of the five sub-projects data collection, pre-
processing, knowledge-based discovery, process model discovery and interactive trace 

induction. Therefore, each of the following chapters has sections relating to these five 

sub-projects. 
Chapter 2 represents a comprehensive literature review to the above topics, high-

lighting the fact that this research is addressing gaps identified for each of them. This 

review is followed by chapter 3, which gives a more in-depth overview of the technolo-
gies and concepts available to achieve the objectives outlined previously. Additionally, 
the corresponding, novel methodologies are introduced and detailed. In chapter 4 these 

methodologies are put to the test by applying them to equipment within an automotive 

manufacturing body shop and worst case artificial logs. The results of these case studies 

are discussed in chapter 5. The work is rounded up by the conclusion and an outlook 

of future works in chapter 6. 
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2 
Related Works 

The related works chapter has been structured to simplify access to the works that 
relate to the different components of the proposed framework. Section 2.1 reviews re-
search pertaining to data collection for PLC-based equipment. Potential preprocessing 

methodologies for the obtained log are then discussed in section 2.2. Topics related to 

knowledge-based discovery are reviewed in section 2.3 prior to Process Model Mining 

approaches being addressed in section 2.4. Finally, research papers that justify the 

research into interactive trace induction are cited in section 2.5. 

2.1 Data Collection 

At the 2011 Hannover trade fair the concept ’Industry 4.0’, an initiative of the Ger-
man Federal Ministry of Education and Research and the German Federal Ministry of 
Economic Affairs and Energy, was introduced. The term is meant to mark the fourth 

industrial revolution after mechanisation, mass production and high-level automation. 
Today Industry 4.0 is a buzz word mostly used in Germany to describe industrial digi-
tisation efforts to improve product quality as well as manufacturing efficiency. In their 
article Kagermann et al. (Kagermann, Lukas, and Wahlster 2011) referred to cyber 
physical systems (CPS), a term commonly used in the rest of the world to describe 

this industrial revolution. This literature review explains the different concepts and 
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technologies which can be found in CPS. It also mentions the predating concepts of 
supervisory control and data acquisition (SCADA) and manufacturing execution sys-
tems (MES) while showing the need for data acquisition from industrial manufacturing 

equipment to fuel these developments. Unfortunately, none of the papers reviewed 

provides any methodologies that allow for automatic, low-level equipment data point 
selection and event data collection. 

Collection of industrial data has been practised well before the announcement of the 

Industry 4.0 initiative. IEC 62264 describes the automation pyramid, as shown in fig-
ure 2.1.1. On the base of the pyramid, the sensors and actuators of the manufacturing 

equipment can be found. These devices are connected through a field bus system with 

a programmable logic controller. This controller is responsible for managing the ma-
chines sequential cycle as well as alarm processing and communication to peers and 

the upper-level systems. Although the pyramid shows SCADA, MES and enterprise 

resource planning (ERP) stacked on top of each other different researchers suggest that 
today’s structure is more intertwined than that. Waschull et al. (Waschull, Wortmann, 
and Bokhorst 2018) point out that the role of MES is changing. Up to recently low-
level data acquisition was mostly the domain of SCADA systems which are responsible 

for status monitoring, displaying information on human-machine interfaces (HMIs), 
human-machine interaction and controlling of system-wide parameters like energy con-
sumption. According to Waschull et al. there is no longer a clear separation between 

ERP & MES although ERP has nothing to do with data collection from the shop floor. 
Therefore they suggest an adjusted automation pyramid where ERP and MES share 

the top level. 
Low-level data acquisition is unnecessarily complicated due to the significant number 

of proprietary field bus systems in use. Therefore Ungurean et al. (Ungurean, N. C. 
Gaitan, and V. G. Gaitan 2014a) propose a SCADA system with different middle-ware 

technologies which can easily be adapted to new field bus systems. The adaptability 

is achieved through a newly defined interface that allows the different middle-ware 

technologies to exchange data based on a publish/subscribe paradigm. The attributes of 
the data exchanged are an individual ID, the data point value and its type, a timestamp 

for the time at which the status was recorded and an error code. Abbas et al. (Abbas 

and Mohamed 2015) wanted to lay the groundwork for an OPC based SCADA system 

through the internet. Their extensive literature review showed that none of the reviewed 

methodologies allowed for real-time communication. This led to the conclusion that 
more research is needed in that area. Vrignat et al. (Vrigant et al. 2018) proposed a 

framework on how different SCADA applications could be realised. They created an 

example application using a Cogent DataHub which acts as a gateway and data logger 

12 



while allowing for secure remote access. The applications derived are an Excel-based 

viewer and an email client. For direct data access, Matlab with the OPC- toolbox was 

used. Although the systems proved to be viable, it still required manual selection of 
the data points of interest. 

Actuators & Sensors 

PLC 

SCADA 

MES 

ERP 

Figure 2.1.1: Automation Pyramid (IEC 62264) 

The term cyber physical system can apply to any product or service distributed over 
a physical and a digital layer. Monostori et al. (Monostori et al. 2016) stated: ’Cyber 
physical systems (CPS) are systems of collaborating computational entities which are 

in intensive connection with the surrounding physical world and its on-going processes, 
providing and using, at the same time, data-accessing and data-processing services 

available on the Internet.’ Lee et al. (J. Lee, Bagheri, and Kao 2015) explain that 
CPSs are based on the 5C structure. The first ’C’ stands for smart connection. It 
is expected that all modules of a CPS describe their interface, which allows for auto-
mated integration into the systems communication network to enable data acquisition. 
During the data-to-info conversion, the acquired data is analysed using data mining 

methodologies and the knowledge gained is made available within a digital hub; hence, 
the term cyber. So far, the process is very similar to the process known from SCADA 

systems where the knowledge gained is made available for human review. From this 

point on, the CPS differs from a SCADA system. It offers an automated cognition 

layer instead, which consists of algorithms that recognise problems and potential for 
improvements. Ideally, this information then is fed back to the physical equipment for 
adjustment of its configuration. Lee et al. demonstrate in their paper how such a 

system could be used to predict the health of equipment by monitoring system variables 

as well as additional vibration sensors. To gain knowledge from the data obtained, they 

created machine learning models for clustering. 
According to Rosen et al. (Rosen et al. 2015), the goal of CPS is to develop au-

tonomous machines which are capable to react fast to unforeseen events. This goal can 
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only be achieved with realistic models and a link to the real machine, which allows 

obtaining its current state. Rosen et al. point out that within a CPS, simulation is not 
only needed during the design phase but also production. Abnormal equipment status 

data can be fed into the simulation model to either predict a future breakdown or to 

offer alternative processes that enable continuous production of high-quality products. 
The autonomy of the production process is achieved through the use of RFID (radio-
frequency identification) technology to store data that needs to be accessed constantly 

and contact memory to store required manufacturing steps and recipes for the product. 
Although the use of models to predict breakdowns seems to be a viable option, the 

research done for this thesis shows that the models either do not exist at all or they 

are to corse and incomplete to be of any benefit. Schlechtendahl et al. (Schlechtendahl 
et al. 2015) see OPC as an enabler for cyber physical systems. Unfortunately, OPC is 

not capable of automatic server discovery which leads Schlechtendahl et al. to suggest 
a CPPS (cyber physical production system) information server. Such server provides 

information on the different communication channels available similar to a DNS (do-
main name server) known from the internet. Also, Schleipen et al. (Schleipen et al. 
2016) see in OPC a good foundation for cyber physical systems. They emphasise that 
CPS must be aware of and communicate with their partners. This stipulation requires 

them to possess a self-description and the capability to configure, optimise and heal 
themselves. As proof of the concept, different OPC use cases are presented. 

Zhang et al. (Y. Zhang, G. Zhang, et al. 2015) criticise a ’lack of timely, accurate 

and consistent information’ from the enterprise to the shop floor and machine level, 
which makes it difficult to make decisions. They see the solution in the internet of 
manufacturing things (IoMT) where all manufacturing things interact with each other. 
It is their perception that self-identification of the equipment, as well as the product 
identification through RFID, is a basic necessity to achieve this goal. 

Rosen et al. (Rosen et al. 2015) describe in their paper that the NASA used to create 

physical duplicates for all of their mission-critical equipment which was considered to 

be a ’twin’. This twin would remain on earth during their missions, and it would be 

used to develop solutions for problems experienced in space. Based on technological 
advances the NASA shifted to a ’digital twin’ to replace the physical twin starting in 

2010. Qi et al. (Qi and Tao 2018) state that a digital twin ’serves as a bridge between 

the physical world and the cyber world’. They describe the digital twin as a system 

that provides insight that can be used for design, manufacturing planning, manufac-
turing and maintenance rather than a model. A comparison between big data and a 

digital twin for the analysis of structured, semi-structured and unstructured data is 

presented. Big data is perceived as being capable of discovering trends rather than 
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dealing with real-time data. The paper concludes that this difference makes the two 

methodologies complementary to each other. This thesis argues that a digital twin is 

a building block of CPS rather than a system in its own. Grieves et al. (Grieves and 

Vickers 2017) confirm this view by defining a digital twin as a digital copy of real-
world equipment. They explain that initially, the digital representation was limited to 

computer-aided designs which only required a static model. Today’s advanced models 

allow for dynamic simulation of complex systems that not always operate flawlessly and 

sometimes produce flawed products or fail without warning. According to Grieves et 
al. system behaviour can be divided into four categories: The first two are predicted 

desirable (PD) and predicted undesirable (PU) which both have been traditionally con-
sidered during the design phase. Unpredicted desirable (UD) system behaviour comes 

as a pleasant surprise. It is the unpredicted undesirable (UU) events that often caused 

catastrophic breakdowns in the past. The reason for not addressing these shortcom-
ings earlier is that system testing was done by experienced engineers who intentionally 

avoided known, problematic situations to prevent costly damage. Thus irrational be-
haviour was not considered during testing. Simulation with a digital twin eliminates 

this risk and allows for the discovery of potentially costly flaws. Grieves et al. also point 
out the difficulties in creating a realistic digital twin because often information is not 
shared between the different departments involved with the design, build and operation 

of the equipment. Available computing power is listed as an additional limiting factor. 
Boschert et al. (Boschert and Rosen 2016) put even more emphasis on the importance 

of simulation during the operation phase. They mention that models with different 
granularity might be needed depending on their purpose. The importance of an ever-
evolving model that incorporates data of the products whole life cycle from design 

to disposal is stressed. Uhlemann et al. (Uhlemann et al. 2017) describe that these 

data consist of a non-volatile component, including data obtained during the design 

phase, and a volatile part that needs to be obtained in near real-time during operation 

of the product. The paper points out the fact that many small and medium-sized 

enterprises (SME) lack competence concerning matters of Industry 4.0. It is suggested 

that this problem can only be overcome through the development of learning factories 

which at the time the paper was written did not incorporate the digital twin concept 
yet. To enable data collection of automated and non-automated production processes, 
the usage of locating, such as indoor GPS and image processing systems is proposed. 
Finally, artificial intelligence could be used to gain insight and to derive optimisation 

concepts. In a second study, Uhlemann et al. (ibid.) found that few companies collect 
data and only a fraction of those end up implementing the knowledge gained. As one 

of the reasons, they mention that optimisation is not a core competence of simulation 
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and that more research in that field is required. 
Modern field bus systems, like IO-Link as described by Heynicke et al. (Heynicke 

et al. 2017), allow for very detailed status information to be retrieved directly from 

the sensor through a network connection. The data available are not limited to binary 

on/off indicators but also include parameters for temperature, sensing range and sensor 
maintenance requirements. Creating a log of all the data available promises to provide 

the foundation for predictive maintenance systems. Unfortunately, as Hoffmann et al. 
(Hoffmann et al. 2016) also point out, the majority of automation systems, installed 

within manufacturing facilities today, are not based on such technology creating the 

need for alternative data logging approaches. Felser et al. (Fesler and Sauter 2002) show 

that the development of field buses started in the early seventies and experienced a boom 

during the eighties. Since there was a lack of standards, many companies attempted to 

make their own developments standard. At first, this was a problem on a national scale 

but soon is escalated into a continental and finally a global issue. Unfortunately only 

the best-marketed systems survived leaving some of the better-suited systems in their 
wake. Because no suitable compromise could be found 18 wired field bus technologies 

and several wireless solutions were included in the standard, according to Wilamowski et 
al. (Wilamovski and Irwin 2016). The successful operation of any production process 

depends on a well-designed and reliable communication system. Wilamowski et al. 
postulate that ’the users do not need to know about the internal design of a node; 
they only have to know about the functions that a node offers’. Sauter et al. (Sauter 
2010) sum the field bus development up into three evolutionary steps: field bus systems, 
industrial Ethernet and industrial wireless networks. 

Defining for field bus networks is their relatively small packet size and the requirement 
for real-time capability. Contrary to office networks, the life expectancy of an industrial 
network is 10+ years. That fact makes the backward compatibility of new network 

technologies an essential requirement which leads to a steady progression rather than 

big leaps. 
Hoffmann et al. (Hoffmann et al. 2016) see the need to allow upper-level systems 

access to field-level data. Such attempts are often hampered because many of the 

field-level communications are proprietary. As a solution, OPC is offered, which allows 

mashing of data from different sources. According to Schwarz et al. (Schwarz and 

Boercsoek 2007) the first OPC- standard was released in 1996, but it has not been very 

highly regarded by academia. Within OPC, the first version called OPC-DA (data 

access) was based on the Windows framework as described by Veryha et al. (Veryha 

2005) and should be differentiated from its successor OPC-UA (unified architecture), 
as explained by Reboredo et al. (Reboredo and Keinert 2013) as well as Schleipen et 
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al. (Schleipen 2008). Hoffmann et al. (Hoffmann et al. 2016) add that there are often 

problems with the firewalls because of the Windows-based OPC-DA design. This issue 

has been overcome with OPC-UA. To allow for the inclusion of a legacy OPC-DA based 

system into an OPC-UA system, Hoffmann et al. present a wrapper framework. 
An in-depth data acquisition setup is proposed by Haubeck et al. (Haubeck et al. 

2014) that allows for monitoring of PLC in- and outputs through OPC-UA. They 

conclude: ’To obtain an additional value of the data, the signals must be enriched with 

semantics to become automatically interpretable.’ Gonzalez et al. (Gonzalez et al. 2017) 
also suggest using OPC for the integration of sensors. Their setup is geared towards 

R&D (research and development) and education rather than industrial applications. 
It uses hardware in the loop to control a simulated plant. Oksanen et al. (Oksanen, 
Piirainen, and Seilonen 2015), on the other hand, provide a framework for accessing 

OPC based data of mobile systems through the internet. 
Mizuya et al. (Mizuya, Okuda, and Nagao 2017) recommend using OPC for con-

trol applications only. Monitoring should be done with a lighter weight protocol like 

MQTT (Message Queuing Telemetry Transport). They demonstrate their hypothesis 

by developing a custom gateway that includes an OPC client as well as an MQTT pub-
lisher to connect to a selective compliance articulated robot arm (SCARA) that only 

provides a USB (universal serial bus) interface. They fail to prove the benefits of such a 

setup. Huang et al. (Huang et al. 2017) see the need for a service-oriented architecture 

(SOA) to be used in industry and consider OPC as a integrate part of it. They point 
out that the standard function block descriptions in use do not support real-time data 

monitoring and therefore recommend an extension to achieve this. 
Pethig et al. (Pethig et al. 2012) consider the data collection through OPC as rather 

old-fashioned. They propose instead the use of purpose built data loggers that listen 

to the network traffic to extract the information required. The main benefits of such a 

solution are the independence from the proprietary systems, that can be found within 

the different automation components, and the synchronisation accuracy of less than 

10ms. Although Pethig et al. proclaim that their system can work with any field 

bus system, the solution proposed is limited to Ethernet-based protocols. Another 
drawback is that the status information is hidden somewhere in the logged protocol. 
This limitation means that an ontology is needed that allows decoding this protocol 
and extracting the desired data. The paper does not go into detail about how complex 

such a task would be. 
Based on the literature review it can be concluded that OPC, due to the vast number 

of application communication modules available for the different proprietary field bus 
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networks, it is the most suitable out of the box solution currently available. It can be 

used for monitoring and control of industrial machinery. 
IoT (internet of things) and IoMT are the vision of self-aware devices that can, 

without manual configuration or programming, seamlessly be added to or removed 

from networks. According to Houyou et al. (Houyou et al. 2012) this allows for rapid 

integration of a large number of devices because the modules can just be plugged 

together similarly to the plug and play concept known from computers. Breivold et 
al. (Breivold and Sandström 2015) point out that IoT for industrial automation has 

so far not been very well researched. They perceive that there are many open general, 
automation specific and industry-specific challenges. Through their literature review, 
they attempt to offer potential solutions for those issues. Ungurean et al. (Ungurean, 
N. C. Gaitan, and V. G. Gaitan 2014b) see OPC also as an enabling technology for the 

IoT concept. The resulting perception is that IoT should be considered as a technology 

applicable to the CPMS (cyber physical manufacturing system) concept. 
It is the authors believe that an automated data point selection for equipment moni-

toring can only be achieved by parsing the program controlling the system. Falcione et 
al. (Falcione and Krogh 1993) proposed an algorithm to convert Siemens ladder logic 

to a sequential function chart (SFC) for comprehension and discovery of the design 

intent. They introduced the concept of simultaneity and dependency graphs but failed 

to explain the algorithms behind it. Such an explanation would have been beneficial 
for this thesis because these are the dimensions needed to create a meaningful process 

model. The SFC resulting from Falcione et al. research still lacks some detail, and it 
remains unclear if it really is correct. Anand et al. (Anand 2009) proposed using the 

more powerful context-free grammar instead of regular expressions (Regex) when trying 

to extract the design intent from a PLC program. They define a grammar that allows 

for the conversion of the L5K, a textual representation of a RSLogix 5000 program, into 

a format that can be parsed. Within this format, internal coil relays are replaced with 

their corresponding physical outputs. This process is taken to a detail which makes 

the non-graphical result very hard to understand. A potential shortcoming of the ap-
proach might be that typically the sequence controlling part of a PLC program only 

constitutes a fraction of the whole program. It remains unclear how this part could be 

filtered out of the code. In his book, Levine (Levine 2009) describes Flex & Bison, a 

Unix text processing tool, which is mainly used to develop compilers. Flex, which is 

the scanner generator, divides the input into meaningful chunks by associating rules 

with Regex. The Regex matching is done in parallel, which makes matching thousands 

of expressions as fast as matching a single one. Bison, which is the parser generator, 
uses context-free grammar to determine the relation of the tokens and to create a parse 
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tree. Zhang et al. (Y. Zhang, Lu, and B. Yang 2017) recognised that this approach 

might be suitable for ’checking the correctness of safety-critical systems and improving 

the efficiency of software developers’. In their paper, they show the proposed Regex 

and context-free grammar but do not present the resulting parse tree. They also leave 

open how that tree can aid software checking. 
Feldmann et al. (Feldmann and Colombo 1999) discuss in their paper ’feature-based 

monitoring using the information contained in the process interface and the logic control 
structure’ without going into details of how to extract the features from the logic control 
structure and how to access the data within the controller. Also, (J. Lee, Bagheri, and 

Kao 2015; Palluat, Racoceanu, and Zerhouni 2006; Phaithoonbuathong et al. 2010; 
Ouelhadj, Hanachi, and Bouzouia 2000) propose in their papers systems for monitoring 

PLC-based production system. Their focus is mostly on real-time fault detection based 

on specialised frameworks and algorithms. Fleischmann et al. (Fleischmann et al. 
2016) explain that decentralised condition monitoring is standard, but they believe 

that centralised monitoring is needed for model creation. Nicola et al. (Nicola et 
al. 2017) demonstrate the data collection through OPC using Labview and MySQL, 
an open-source relational database management system, as an experimental proof of 
concept. Their aim is the evaluation of the system response profile. 

A more detailed approach is offered by Wan et al. (Wan et al. 2017), who suggest that 
’manufacturing big data can be divided into three types: device data, product data, 
and command data’. They reason that a combination of equipment data and alarm 

messages can be used for breakdown prediction. Similarly to this thesis, a framework, 
where knowledge gained is fed back to maintenance, is recommended. As middle-ware 

OPC, according to Wan et al. is a natural choice. In their experiment they focus, con-
trary to this research project, on industrial wireless data transmission without going 

into detail on what data should be monitored how. The experiment is used to estimate 

the remaining lifetime of a machine tool and shows that the prediction is closer to the 

real-life expectancy than an average estimate. Theorin et al. (Theorin et al. 2017) also 

see OPC as a universal solution to access devices over a network. They are introducing 

the Line Information System Architecture (LISA) which aggregates events based on ID, 
timestamp and attributes. A key feature of LISA is that it correlates start and stop 

events which are needed for model creation. It is perceived that such events are fired 

once per sequence, which is, as this research shows, not necessarily true. 
Similarly to Wan et al., Nemeth et al. (Nemeth and Peterkova 2018) also recommend 

the use of an open-source OPC server in combination with a MySQL database. The 

recording of alarm messages for the correlation with sensor values is suggested. Their 
data collector is custom written in C#. The experiment introduced only seems to 
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analyse the number of different errors that occurred. Common to all above-reviewed 

papers is that a domain expert manually chooses the data points to be monitored 

through a software interface. 
The above literature review shows that there are many different approaches to collect 

and analyse industrial equipment data. It also points out that OPC as middleware is 

the best choice to access field-level data because it eliminates the issues caused by the 

different field bus systems. The review also cites some researchers that parse PLC code 

with the help of regular expressions or similar methods to extract the information they 

require. Finally, the use of a relational database seems to emerge as a favourable solution 

to store data obtained from a PLC through OPC. Although all these components have 

previously been applied, there is no evidence for any research bringing these technologies 

together to automatically extract the data points of interest from a PLC program, set 
up the corresponding OPC connections and store the events in a SQL database. This 

work aims to fill this gap by proposing an ‘Automated, Nomenclature Based Data Point 
Selection For Industrial Event Log Generation’. 

2.2 Log Preprocessing 

Once the data has been obtained the next logical step is preprocessing. During this step 

related data is grouped together, its quality assessed and its flaws potentially repaired. 
Van der Aalst et al. (W. V. D. Aalst, Adriansyah, et al. 2011), who dominantly 

established the domain of business model discovery, defined the event log, needed for 
Process Discovery, as a sequential record of events. Each event refers to an activity, 
which is related to a particular case. Also, the records can include information about 
the resource, a timestamp for the event and additional data elements. Van der Aalst 
continues by emphasising that the quality of the event log is directly related to the 

quality of the Process Discovery result. Because of this relationship, the event log 

should have the highest priority. 
Data evaluation, cleansing and repair, has been a priority of data analysts very early 

on. There have been many works that address different problems typically experienced 

when analyzing data like the ones presented by Rahm et al. (Rahm and Do 2000) 
and Raman et al. (Raman and Hellerstein 2001). Kim et al. (W. Kim et al. 2003) 
were among the first to compile the possible problems pointed out in different previous 

papers, together with their proposed solutions, into a single ’Taxonomy of Dirty Data’. 
This taxonomy provided the data analysts, for the first time, with a comprehensive 

’checklist’. 
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Almost a decade later, Gschwandtner et al. (Gschwandtner et al. 2012) extended 

this work into ’A Taxonomy of Dirty Time-Oriented Data’. This paper named more 

potential problems collected from different previous papers, thus providing an more 

comprehensive checklist. They, contrary to Kim et al. neglected to describe possible 

solutions to those issues. 
With the advance of Process Mining, more and more researchers attempted to adapt 

the general data mining problem awareness to the Process Mining domain. In their 
papers, Yang et al. (H. Yang, Hofstede, et al. 2010), Hee et al. (Hee, Z. Liu, and 

Sidorova 2011) and Yang et al. (H. Yang, Wen, and J. Wang 2012) focused on the 

completeness of an event log. A log is deemed complete if the number of traces in the 

log covers all the possible traces within the process model that generated the events. 
Rogge-Solti et al. (Rogge-Solti et al. 2013) were first to provide research into the 

incompleteness of event logs and how to remedy the issues discussed using stochastic and 

machine learning approaches. They are mainly focusing on compensating for missing 

events and timestamps by determining the best matching path through a given process 

model and filling in the voids accordingly. 
Bose et al. (Bose, Mans, and W. M. P. Van Der Aalst 2013) followed the example 

set by Kim et al. and Gschwandtner et al. and compiled a comprehensive checklist 
of issues that can potentially be experienced when dealing with event logs for Process 

Mining. The outcome of their research was compressed into a 9 x 4 matrix with a total 
of 27 different problems to consider. Just like Gschwandtner et al. they also focused 

only on pointing out the issues without providing solutions for them. 
Verhulst (Verhulst 2016) summed up all the potential quality issues once again and 

added an example and a possible implementation approach. Many of those approaches 

then also were implemented as plugins for the ProM Process Mining tool. Verhulst 
sums his work up by stating: ’But there is no ’always-working-solution’-method to 

ensure data quality. This means that no specific method that works for all cases exist.’ 
Instead of focusing on potential log problems, Kherbouche et al. (Kherbouche, Laga, 

and Masse 2017) defined several metrics in the following categories: 

• Structural complexity measurements 

• Behavioral complexity measurements 

• Precision measurements 

• Availability measurements 

Based on those metrics, they designed a ProM plugin, which will evaluate a given 

log using predefined thresholds and outputting not only the numeric results but also 
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recommending a suitable Process Discovery approach. The authors fail to disclose 

how the thresholds were defined and how the mining algorithm recommendation is 

derived. Also, contrary to Verhulst, they do not offer any suggestions on preprocessing 

approaches to improve the log quality metrics. 
Suriadi et al. (Suriadi et al. 2017) argue that there ’exists temporal constraints 

among events, both from a case perspective and a resource perspective’. They conclude 

that the traditional approaches for data evaluation and cleansing, described previously, 
do not necessarily hold because of these constraints. This view is contradicted by their 
use of the Bose et al. (Bose, Mans, and W. M. P. Van Der Aalst 2013) issue matrix for 
their research work. Based on the assumption that many of the log issues are systematic 

errors Suriadi et al. propose the definition of generic patterns, which make it easier to 

identify the problems. They then go on to present possible solutions to remedy those 

problems without actually offering a possible technical approach. 
A fundamental requirement, for Process Discovery, is that the events can be asso-

ciated with cases. This association often is not part of the event log. As mentioned 

previously, in production equipment event logs, there is a meagre number of traces. 
If these are known, it is trivial to correlate events into cases. Essentially a trace is a 

pattern which could be discovered using algorithms originating in the sequence mining 

domain. Such algorithms often are used in bioinformatics when deciphering molecules 

or for discovering typical customer purchasing habits. 
As Fournier-Viger et al. (Fournier-Viger et al. 2017) describe in their paper, mining 

for patterns within sequences has been of interest for decades. Therefore hundreds of 
papers have been written in this area. It is not intended to present another review of 
these papers thus only a few of them are mentioned to show the long history as well as 

the approaches believed to be most applicable to the problem at hand. Dietterich et 
al. (Dietterich and Michalski 1983) presented early on an inductive learning approach 

named SPARC/E (Sequential PAttern ReCognition / Eleusis). Its task was to discover 
rules that describe sequences and thus can predict their continuation. The paper is very 

self-critical by stating that this approach can only be seen as a first step and that there 

are many possibilities for improvement. The main downfall for the intended application 

is that this is a heuristic approach which prunes data deemed irrelevant. This method 

can lead to flawed results. 
Contrary to that, Agrawal et al. (Agrawal and Srikant 1995) use what could be 

called a reasoning approach. They introduce the AprioriAll, AprioriSome and Dynam-
icSome algorithms. All of them reason that ’if a small pattern does not exist, there 

can not be a bigger pattern that includes such small pattern’. The goal behind this 

22 



method is to reduce the processing time of the algorithms compared to a brute force 

approach. Srikant et al. (Srikant and Agrawal 1996) improved upon those algorithms 

by introducing GSP (Generalized Sequential Pattern algorithm), which showed much 

better performance than the previous three proposals. Zaki (Zaki 2001) developed the 

SPADE (Sequential PAttern Discovery using Equivalent Class) algorithm which gen-
erates possible subsequences and then checks if they can be found within the data set. 
Again, if a small sequence cannot be found all possible combinations that would in-
clude this small sequence are also excluded. The advantage of all those proposals for 
this application is that if the number of sequences to be discovered is finite, the results 

will be optimum. 
Burattin et al. (Burattin and Vigo 2011) preclude that the case ID must have been 

unintentionally recorded as an attribute together with the events. They propose differ-
ent filters to determine the most likely case ID candidates. The selection can be made 

either automatically by determining which of the attributes has been observed most 
often or through expert users who possess the required domain knowledge to exclude 

less promising attributes. 
Walicki et al. (Walicki and Ferreira 2011) dissect the log into patterns without repeat-

ing symbols which are then arranged to form a case-based event log. The solution with 

a minimal set of patterns is selected, as it can provide a more compact representation 

of the generating process. 
To address the problem of missing case identifiers Pourmirza et al. (Pourmirza, 

Dijkman, and Grefen 2015) introduced the correlation miner. It consists of three rules 

that allow for a probabilistic determination of an event’s case-association. First, the 

orchestration graph rule is shown, which assumes that the number of occurrences of a 

specific event is equal to the number of cases recorded. Unfortunately for production 

equipment event logs this assumption not always holds as some motions may occur 
more than once during a cycle for a specific part. The authors later on also clarify, 
that in order for their algorithm to work, all loops need to be removed from the event 
log, which is impracticable. Next the concept of the ’Precede/Succeed matrix’ and 

the ’Duration matrix’ is introduced. In both matrices, probabilities are assigned and 

compared to a chosen threshold. Based on these values, an event’s case association 

then is determined. 
Bayomie et al. (Bayomie, Helal, et al. 2016) reason that a causal behavioural profile 

can be generated from an original process model. Time heuristics are applied to this 

profile to create a decision tree with the nodes representing events. Each node is 

annotated with a probability of it belonging to its parent note. The nodes with the 
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highest-ranking probabilities form a labelled event log. This original approach was 

extended to become applicable to cyclic process events Bayomie et al. (Bayomie, Awad, 
and Ezat 2019). Finally, the experiments were repeated with less perfect a priori process 

models while still achieving an accuracy of 90% by Bayomie et al. (Bayomie, Ciccio, 
and Rosa 2019). The proposed methodology is very similar to the approach described 

by Helal et al. (Helal, Awad, and Bastawissi 2015) although they used slightly different 
heuristics. 

Andaloussi et al. (Andaloussi, Burattin, and Weber 2018) also assume that the case 

ID is one of the attributes or a combination of attributes logged together with the 

events. Their approach is to choose one of the attributes to become the case ID before 

performing the process model discovery. The resulting model is then evaluated using 

the metrics fitness, precision, generalisation and simplicity together with the case ID. 
This procedure then allows for the best performing model to be chosen. 

Djedovic et al. (Djedovic et al. 2019) propose that events, belonging to the same 

case, poss similarities. They recommend the creation of a similarity matrix based on 

an F-score across all recorded attributes. After determining the first event within the 

case, each event is followed by the next, most similar event. 
Yang et al. (H. Yang, B. V. Dongen, et al. 2012) recognise that the quality of the 

Process Discovery result strongly relates to the degree of completeness of the event log. 
They, remind the reader that the completeness of an event log depends on the type 

of information expected. A Possible measure for completeness is the number of traces 

observed in the log versus the possible traces and how well the discovered model covers 

the behaviour observed. Based on that, an estimator can be used to determine how 

much of the potential behaviour is captured by the event log. 
Ayo et al. (Ayo, Folorunso, and Ibharalu 2017) argue that ’the fitness of the repro-

duced model is a function of the event log completeness’. To detect and fix cases of 
incompleteness, they recommend the use of Bayesian Scoring Functions in conjunction 

with causal matrices before applying genetic mining algorithms. They conclude that 
this approach can discover complete models where the established algorithms failed. 

Another approach to reduce the complexity of the discovered model and to improve 

Process Discovery results is the clustering of similar cases or traces. Song et al. (Song, 
Günther, and W. M. P. Van Der Aalst 2008) propose trace clustering, based on 

a distance calculated for any two cases, to divide the log into homogeneous subsets 

that are mined independently. This methodology is meant to improve the mining 

results, especially for highly flexible processes. A similar approach is recommended by 

Accorsi et al. (Accorsi and Stocker 2011). They, calculate the similarity on the distance 
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between pairs of activities. Ceravolo et al. (Ceravolo et al. 2017) confirm in their work 

that ’clustering is considered one of the most relevant preprocessing tasks as grouping 

similar event logs can radically reduce the complexity of the discovered models’. Their 
clustering approach computes the probability distribution of the observed activities in 

specific positions with the help of statistical inference. 
Although many researchers in the area of Process Discovery, like van der Aalst 

(W. V. D. Aalst 2016a) and Yang et al. (H. Yang, Hofstede, et al. 2010), agree that 
a flawless event log is the best starting point for process model discovery, very little 

literature about the subject of repairing event logs was found. It appears that there is 

more focus on repairing the discovered model instead, as described by Fahland et al. 
(Fahland and W. M. P Van Der Aalst 2015) and Polyvyanyy et al. (Polyvyanyy et al. 
2017). The works that were reviewed concentrate mostly on identifying the need for 
repair rather than the repair process itself. There seem to be two mainstream directions 

within the papers reviewed. Some researchers like, van Hee et al. (Hee, Z. Liu, and 

Sidorova 2011) and Yang et al. (H. Yang, Wen, and J. Wang 2012), take a statistics-
based approach to determine where within the log repair is required. Rogge-Solti et al. 
(Rogge-Solti et al. 2013), Wange et al. (J. Wang et al. 2015) and Bertoli et al. (Bertoli 
et al. 2013) seem to favour a model-based approach, where a model is generated first 
and based on flaws found within the model conclusions on the faults within the log are 

drawn. 
Luengo et al. (Luengo, Garcia, and Herrera 2012) suggest that the problems most 

often found in logs are missing values. As the simplest solution to deal with missing 

values, they propose discarding the sample that contains them. This practice will not 
be critical as long as only a small percentage of the available samples exhibits missing 

values. They summarise that ’in most cases, a data set’s attributes are not independent 
of each other. Thus, through the identification of relationships among attributes, MVs 

(missing values) can be determined.’ This process is referred to as imputation. Luengo 

et al. categorise the available imputation approaches into rule learning algorithms, 
approximate models and lazy learners. Within their work, they evaluated ’twenty-
three classification methods and fourteen different imputation approaches to missing 

values treatment’. 
Ly et al. (L et al. 2012) also seem to favour discarding flawed samples. Their 

approach of cleaning the logs, based on domain specific constraints, is termed semantic 

log purging. Ly et al. reason ’that the quality of a mined process is high when an 

assessment concludes that: (i) Infrequent traces are correctly included in the result. 
(ii) Parallel branches are correctly identified. Logs, stemming from processes which 

include late modelling yield meaningful results (a small set of branches). (iii) Ad-hoc 

25 



changed instances stemming from manual repair are not incorporated in the process 

model.’ This approach does not discriminate infrequent traces which is intended to 

improve the mining quality. Dealing with parallel execution is deemed to be one of the 

most challenging tasks for mining algorithms. It is therefore recommended to use the 

constraints to separate the branches to mine them individually. 
Waljee et al. (Waljee et al. 2013) also examined the performance of existing imputa-

tion methods by randomly removing data from a previously complete data set. They 

were mainly focusing on the four methods MissForest, mean imputation, nearest neigh-
bour imputation and multivariate imputation by chained equations (MICE). Although 

the ’MissForest had the least imputation errors for both continuous and categorical 
variables at each frequency of missingness’ they warned that any repair approach could 

introduce systematic errors and thus impact the mining result. 
Moritz et al. (Moritz and Bartz-Beielstein 2017) explain that most time series im-

putation algorithms rely on the correlations that can be found between the event at-
tributes. Univariate time series only possess one attribute which makes such an ap-
proach impossible. Instead, Moritz et al. proclaim that time dependencies need to 

be explored. To address missing values, they recommend the use of the ’imputeTS’ 
package within the R environment. 

Che et al. (Che et al. 2018) acknowledge that a variety of statistical solutions have 

previously been introduced that allow for the imputation of missing values in a time 

series. With their work, they want to point out that new developments in the field of 
Recurrent Neural Networks (RNNs) have led to methodologies that achieve state-of-the-
art results in many applications with time series or sequential data. Contrary to using 

artificial intelligence for the log repair Dixit et al. (Dixit et al. 2018) favour the use of 
domain knowledge and expert involvement. Their algorithm uses ’relevant indicators 

to detect ordering related problems in an event log to pinpoint those activities that 
might be incorrectly ordered’. These potential issues are presented to the user who 

can, based on domain knowledge, make required modifications directly in the log. The 

algorithm re-evaluates the changes and presents them to the user with the option to 

keep or discard them. 
Martin et al. (Martin et al. 2019) also favour the analysts’ involvement in the log 

cleaning and repair effort. They claim that for most Process Discovery algorithms ’the 

order of activities is essential, and the exact timestamp values are of secondary impor-
tance’. Therefore they are proposing a mixture of data-based and discovery-based data 

quality assessment which leads to the recommendation of different data cleaning heuris-
tics for the user. Experiments showed that after several iterations between assessment 
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and cleaning a quality log suitable for Process Discovery is obtained. 
Fortuin et al. (Fortuin, Raetsch, and Mandt 2019) propose the use of deep variational 

autoencoders (VAEs) and Gaussian Process (GP) to map the missing data time series 

into a latent space without missingness. The dimensional reduction allows for the 

correlation of their features and thus enables the reconstruction of the missing values. 
For meaningful process data mining, it is also paramount that the events belonging 

together are clustered into cases. The literature offers several solutions to achieve such 

case clustering. The problem with industrial processes is that a significant number of 
traces recorded stems from different part types being manufactured after each other, 
which requires different setup and reset motions to ready the machine. Such complexity 

is not considered in the existing approaches. 
It is a common understanding that the log quality is key to successful data mining. 

Within the above related works, many approaches to gauge the quality of the log ob-
tained can be found. The quality matrices provided range from data analytics projects 

in general to Process Mining projects specifically. Process Mining is intended to be used 

for business processes and the application of the defined quality criteria to industrial 
processes has not been considered yet. 

The quality criteria can be used to determine the flaws within a given log. These 

findings then trigger the question of what to do with the incomplete data. Within the 

Process Mining domain, it seems to be mainstream to counteract these problems by 

implementing a certain degree of fault tolerance into the mining algorithms. Alter-
natively, some researchers propose different repair techniques to eliminate the issues 

found. Both approaches bear the potential to introduce additional faults in the data. 
This consideration leads to the final option of not considering flawed cases while min-
ing the log. Data classification is one of the specialities of supervised machine learning. 
However, the literature review did not reveal any research where machine learning tech-
niques were used to classify the quality of logged cases. This thesis addresses this gap 

by proposing engineered features that, in conjunction with tags, enable the creation of 
a machine learning model that can be used for classification. 

2.3 Knowledge-Based Discovery 

Plant floor systems, as described by Lee (J. Lee 2003), were the first step towards the 

autonomous observation of manufacturing processes. They are logging critical param-
eters of the process which are used to create KPI (key points of interest) charts and to 

highlight potential bottlenecks. Next cyber physical systems started to emerge. Their 
goal, to create a digital clone of the real-life production equipment, which can be used 
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for simulations and deriving predictions, was also documented by Lee (J. Lee, Bagheri, 
and Jin 2016). Jaber et al. (Jaber and Bicker 2014) showed that predictions regarding 

required maintenance could also be obtained by applying machine learning techniques 

to vibration sensor data. The results could help to move the time of preventive mainte-
nance closer to the predicted time of failure, thus realising additional savings. Banerjee 

et al. (Banerjee and Das 2012) propose a similar approach. Instead of using vibration 

sensors, which normally are not an integral part of manufacturing equipment, they are 

utilising the already available sensors for fault detection. 
There also have been several machine learning and artificial intelligence-based pro-

posals to extract knowledge from industrial manufacturing data. Hou et al. (Hou, W. L. 
Liu, and Lin 2003) suggested the use of a propagation neural network to monitor a PLC 

controlled conveyor belt manufacturing system communicating through Ethernet. The 

sensor would measure the process temperatures and make predictions regarding the 

expected product quality. The system is said to be able to reveal the root cause of 
manufacturing quality problems as well as potential countermeasures. 

Ho et al. (Ho et al. 2006) also recommended artificial intelligence as a suitable 

methodology to derive knowledge regarding the product quality. Their intelligent pro-
duction workflow mining system uses ’artificial neural networks and fuzzy logic rea-
soning to form an integrated model’. It consists of three modules for measurement, 
prediction and improvement. An application within a slider manufacturing facility 

proved this to be a viable approach. Weiss et al. (Weiss et al. 2010) compare pat-
terns created with the help of binary regression rules. Deviations relative to the overall 
mean for a particular manufacturing step highlight potential opportunities for yield 

improvement. They applied their framework to a fab shop for wafer production. 
Harding et al. (Harding, Shahbaz, and Kusiak 2006) tried to summarise potential 

applications for data mining within industrial manufacturing. The areas identified were 

production processes, operations, fault detection, maintenance, decision support, and 

product quality improvement. They believe that efforts should be made to develop 

models that allow for the exploration of all process and material data within a factory 

or enterprise. 
Kim et al. (T. T. T. Kim and Werthner 2011) suggest that enriching an event log 

with external data sources could help discover previously hidden knowledge. They are 

proposing ’database-to-ontology mapping techniques to integrate data sources and use 

semantic reasoning techniques for inferring knowledge’. The ontology used is based on 

TOronto Virtual Enterprise (TOVE), ’an integrated ontology for supporting enterprise 

modelling, which contains concepts related to business models’. 
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Yurin et al. (Yurin 2012) use case-based reasoning to address problems experienced 

in a manufacturing process. Previous experience has been captured in ’form of examples 

of solved problems, analogical cases or references’. Group decision-making processes are 

used to retrieve cases that are closest related to the problem at hand. The previously 

tried solutions can then be extracted and applied. 
Lee et al. (J. Lee, Lapira, et al. 2013) cluster manufacturing problems into two cate-

gories. The visible issues include poor cycle time, machine failure and product defects 

while the invisible issues include things like machine degradation and component wear. 
To be able to distinguish between process and machine degradation Lee et al. recom-
mend the correlation of controller and quality inspection data with the data obtained 

from the machines. Correlating could be done within a predictive manufacturing sys-
tem, also recommended by Windmann et al. (Windmann et al. 2015), which manages 

all tasks from data acquisition to visualisation of the mining results. 
Djenouri et al. (Djenouri, Belhadi, and Fournier-Viger 2018) enable different perspec-

tives on the original event log data by applying transformations and frequent item-set 
mining methodologies. Since such an approach spans a high number of patterns with 

potentially useful information, a pruning strategy is applied to derive a small set of 
patterns useful to decision-makers. 

This part of the literature review can be best summed up by quoting Fluxicon, 
founded by some of the leading researchers in the Process Mining domain, stating on 

their website: ‘Process mining is a discipline and only the process mining analyst can 

make these distinctions and derive the right actions from the analysis. To think that 
an AI algorithm can make those decisions for you is an illusion. Don’t believe the 

self-proclaimed “thought leaders” who claim otherwise …’. In short, there have not 
been any attempts to derive improvement suggestions from industrial equipment log 

data automatically. This work aims to overcome this preconception by encoding expert 
knowledge into heuristic algorithms to detect and highlight inefficiencies. 

2.4 Process Model Discovery 

Processes can not only be found in manufacturing but also for business transactions. 
Van der Aalst (W. V. D. Aalst 2016b) started at the beginning of this century the devel-
opment of the research field of Process Mining. The aim is to discover the underlying 

process model of such business transactions based on logged transaction data. Very 

early in the history of Process Mining, there was an attempt by Hu et al. (Hu, Z. Li, 
and A. Wang 2006) to apply Process Discovery techniques to ’flexible manufacturing 

systems’. Their goal was to provide the means to discover the actual equipment process 
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and allow for validation, as well as provide a basis for improvements. To achieve this, 
they expanded upon van der Aalst’s α-algorithm by introducing resources through a 

second matrix. The combination of both then yielded a Petri Net reflecting the manu-
facturing process. Unfortunately, that seems to be the only recorded attempt to utilise 

Process Discovery algorithms until 2014. At that time Son et al. (Son et al. 2014) pre-
sented their paper ’Process Mining For Manufacturing Processes’ in which they utilised 

established Process Discovery approaches to discover a process model for all steps of 
product manufacturing and shipping. The model is not fine grained enough for detailed 

equipment analysis. Yahya (Yahya 2014) considered in his research all of the manufac-
turing steps a product has to go through. He concluded that the process model to be 

created needs to be customised to the analysis’ goal. At the same time, the granular-
ity needs to be chosen accordingly. Yang et al. (H. Yang, M. Park, et al. 2014) also 

utilise high-level event data in their research, but they were trying to gain more insight 
by combining this data with unstructured data like email. Unfortunately, the paper 
remains unclear about what additional value that approach provides. 

Farooqui et al. (Farooqui et al. 2018) chose a more detail-oriented approach. They 

implemented additional code into industrial robots that allowed them to extract a 

program pointer position, as well as new signal state events. This data was their basis 

for generating a log used for model discovery. The purpose of the models was to aid 

decision making and maintenance efforts. Nowaczyk et al. (Nowaczyk et al. 2018) 
take a different approach by looking at groups of peers. They propose a framework 

for unsupervised learning based on several similar systems. The algorithms can detect 
if the behavior of a single unit deviates from the rest and raises a flag. Brzychczy et 
al. (Brzychczy and Trzcionkowska 2018) also researched the use of low-level machine 

data to create logs conforming with Process Discovery requirements. They pointed out 
that often a key obstacle to overcome is case identification. They proposed a domain 

knowledge-based approach to identify the beginning and end of a case. 
In a first attempt to obtain a process model from an industrial equipment log, the 

author applied several established algorithms from business process modelling. Namely 

these were the α-miner (W. V. D. Aalst 2016a), the CSM (Composite State Machine) 
miner (Eck, Sidorova, and W. M. P Van Der Aalst 2016), the heuristic miner (A. 
Weijters, W. M. P. Van Der Aalst, and Medeiros 2006), the fuzzy miner (Bose, 
E. H. M. W. Verbeek, and W. M. P. Van Der Aalst 2011), the inductive miner (S. J. J. 
Leemans, Fahland, and W. M. P Van Der Aalst 2013) all of which are implemented in 

the ProM framework (H. M. W. Verbeek, Buijs, and B. F. V. Dongen 2010) and DISCO 

(Günther and Rozinat 2012), a commercially available Process Mining tool. All of the 

above-mentioned Process Discovery algorithms have in common that they only consider 
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one timestamp per event, which in the author’s opinion, is the main reason why they 

were not able to perform as expected. Wen et al. (Wen et al. 2009) express that by 

stating: ’Existing techniques for Process Mining do not consider event types, i.e., tasks 

are either considered to be atomic or only the completion of a task is considered. Note 

that the start and completion of a task can be considered as two atomic tasks when 

using the classical Process Mining techniques. Unfortunately, such an approach does 

not detect explicit parallelism.’ 
Further research showed that there is a second, often ignored or forgotten ’category’ 

of Process Discovery algorithms that consider the activity life cycle. Wen et al. (ibid.) 
introduced the β-algorithm (to be found in ProM as Tsinghua-α-algorithm) in 2009. It 
overcame some of the limitations of existing algorithms (e.g. short loop in the original 
α-algorithm). They proclaimed that the ’information about the start and completion 

of tasks can be used to detect parallelism explicitly’. At the same time, they point out 
that the creation of a process model requires a profound knowledge of the process in 

question. The benefits of discovering a process model are not only seen in the use of 
Delta analysis but also for a better understanding of the process’s execution in reality. 
The fact that most of the existing Process Discovery algorithms do not consider ’start’ 
and ’complete’ timestamps together is regarded as a shortcoming because it does not 
allow for the detection of parallelism. Within the definitions of the β-algorithm, two 

rules can be found that support the approach of the proposed αLC -algorithm. The first 
is definition 10 which states: ’a is succeeded by b if and only if in at least one event 
trace a is ”directly followed” by b, i.e., there is not another complete task occurrence 

in-between the two task occurrences a(ei,ej) and b(ek,el)’. If tasks intersect, they cannot 
be considered ”directly following”. The intersection is defined in definition 11 as follows: 
’a intersects with b if and only if in at least one event trace an occurrence of a overlaps 

with an occurrence of b’. One of the prerequisites of the β-algorithm is the presence of 
a complete log. 

In 2015, Burattin (Burattin 2015) proposed the Heuristic++ miner which is a back-
ward compatible extension to the Heuristics Miner. It uses a statistical approach for 
process model discovery. Just like Wen et al. before, Burattin points out that ’with-
out the notion of duration, it’s complex to express parallelism’. Parallelism is given if 
two activities overlap or contain each other. ”Direct following” has a slightly different 
definition within this work because the ’termination of the first activity must occur 
before the start of the second and, between the two, no other activity should start’. 
A benefit of the Heuristic++ algorithm is that, because of its backward compatibility, 
it can handle logs with a mixture of activities that are expressed as time intervals or 
instantaneous. 

31 



Another algorithm considering the activity life cycle is the IMLC (Inductive Miner 
- Life Cycle) proposed by Leemans et al. (S. J. J Leemans, Fahland, and W. M. P 

Van Der Aalst 2016). The goal of this algorithm is not only to discover concurrent 
(parallel) but also interleaved activities. Interleaving is given if two activities cannot 
be performed at the same time. 

When creating a process discovery algorithm, the choice of tools to be used is of ut-
most importance. The original α-algorithm, for example, proposes a footprint matrix 

that is used to mark direct, parallel or non-existing dependencies between activities. 
Those findings are then processed in the proposed algorithms. In the industrial automa-
tion domain, a similar matrix is prevalent. It was made popular in 1981 by Steward 

(Steward 1981) under the name of design structure matrix (DSM) and is an exten-
sion to the precedence matrix introduced in the late 1950s. The basis of a DSM is a 

square matrix with equal row and column names. In 2001 Browning (Browning 2001) 
summed up the DSM as a ’simple, compact, and visual representation of a complex 

system that supports innovative solutions to decomposition and integration problems’. 
It is interesting to know that Browning (Browning 2002), in his next work stated: ’A 

process model of what actually flows must be extracted from the existing, implicit way 

work really gets done’. Browning recognises that there are more accessible ways, like 

flowcharts or Gantt charts, to visualise processes but at the same time also points out 
that, because of the added complexity, they often do not represent the full range of 
interaction among the activities. 

In their 2012 book, Eppinger et al. (Eppinger and Browning 2012) also acknowledge 

that DSM most often is used in engineering management because ’the matrix provides 

a highly compact, easily scalable, and intuitively readable representation of a system 

architecture’. Here also the term ’binary DSM’ emerges for a matrix in which ’the 

off-diagonal marks indicate merely the presence or absence of interaction’. 
In this section of the related works, it was shown that there had been several attempts 

to apply Process Discovery techniques to industrial processes. All of the projects re-
viewed were concentrating on higher-level processes while the evaluation of signals from 

existing field-level devices was not considered. Since Process Discovery promises to re-
veal the real dependencies between the events recorded, one of the objectives of this 

research is to close this gap by applying existing Process Discovery algorithms to such 

low-level data collections. The resulting process models are then to be evaluated by 

comparison against the actual models which have been created manually by a subject 
matter expert. 
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2.5 Interactive Trace Induction 

There have been many attempts by Process Mining Practitioners to quantify the quality 

of the discovered models. Van der Aalst (W. M. P Van Der Aalst 2018) sums these 

efforts up by explaining that event logs can only capture example cases which makes 

it difficult to determine the quality of the model relative to the underlying record. 
He proposed a set of four quality measures. The metric recall expresses how well 
the model reflects the behavior found in the log, while precision gauges how good 

the model discourages unrelated actions. The third metric is generalisation, which is 

supposed to make the discovered model also suitable for yet unseen cases, thus trying to 

prevent overfitting. Because in industrial automation, only one sequence of operations 

is expected for a single part style, the author of this thesis argues that overfitting is 

desired as long as all of the meaningful traces have been observed. The final quality 

indicator is the simplicity of the model. Van der Aalst, however, also warns that ’Users 

of existing conformance measures should be aware of seemingly obvious conformance 

propositions that are violated by existing approaches’. 
Leemans et al. (S. J. J. Leemans, Fahland, and W. M. P. Van Der Aalst 2018) also 

see the need for ’strong quality guarantees as long as sufficient information is available’. 
This statement means that the log needs to be nearly complete, which means that most 
of the behaviors possible should be present. Besides the model quality, Leemans et al. 
also focus on the scalability of Process Discovery algorithms. Their proposal enables 

the discovery of models from logs with millions of events from thousands of activities. 
DeWeerdt et al. (Weerdt et al. 2011) take a slightly different approach by evaluating 

the model quality with the help of artificially generated negative events. This aids in 

establishing the precision measure previously mentioned because event logs usually do 

not contain cases that are not allowed. The logic behind creating artificial events is 

that events that have not been seen at a specific position within a case before must be 

unrelated and thus, should not be allowed by the process model. DeWeerdt et al. point 
out that this approach allows for a good comparison of process models that have been 

obtained, based on the same log, by different algorithms. At the same time, they also 

caution that possible overfitting is not detected. Finally, just like Leemans et al., they 

want the reader to understand that ’process discovery algorithms generally include the 

assumption that event logs portray the complete behavior of the underlying process’. 
Before continuing, the use of the terms ’variant’ and ’trace’ needs to be clarified. Lee 

(C. Li, Reichert, and Wombacher 2008) refers in his work to process variants, which he 

describes as the result of sequence changes applied to an original process model. His 

work goes into detail about the difficulties in determining the difference between such 
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process variants and case variants within an event log. It is these case variants that 
Guenther (Günther and Rozinat 2012) refers to when using the term variant. Van der 
Aalst (W. V. D. Aalst 2016a), on the other hand, calls the sequence, found within a 

case, ’trace’. In the course of this thesis, the author uses the term trace when referring 

to case variants or traces. 
The literature review shows that there has been much concern about the quality 

of the discovered process model in the Process Discovery domain. Process Discovery 

postulates that an increased number of recorded cases, and thus hopefully an increased 

number of traces, holds the potential to improve the quality of the Process Discovery 

model. None of the papers reported any attempts to define which traces are needed to 

discover a high accuracy model. This research closes said gap by attempting to define 

rules to pinpoint the needed traces. In addition it offers a methodology that allows for 
the recording of these traces within a few machine cycles. 
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3 
Methodologies 

This chapter is meant as an introduction into the technologies, methodologies and algo-
rithms required for the proposed automated framework. It encompasses all the aspects 

from determining the data points that need be logged to the traces that need to be 

captured to allow for the discovery of a highly accurate industrial process model. A 

description of the methodologies applicable to the proposed data collection is given in 

section 3.1. Criteria to evaluate the quality of the obtained log, together with method-
ologies that allow for the clustering of the individual events into cases and traces are 

introduced in section 3.2. Section 3.3 explains novel rules that can be applied to an 

industrial process Gantt chart to identify potential areas of improvement. Process Dis-
covery concepts are explained in section 3.4 because they promise the discovery of the 

actual dependencies between the different events. Variations to one of those algorithms 

are proposed to reduce the impact of generalisation on the resulting process model. 
The capability of the altered Process Discovery algorithm, to discover complete process 

models from minimalistic logs, finally prompted the development of the ’interactive 

trace induction’ concept described in section 3.5. 
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3.1 Data Collection 

Advances in industrial automation often go with the increased complexity of the man-
ufacturing equipment. Today an automotive manufacturing cell, consisting of several 
work stations, is controlled by a PLC which interfaces with dozens of process-specific 

controllers for robots, welding and sealing systems. Many of these process-specific con-
trollers already have a built-in function, that collects process-related data. This data 

may or may not be accessible to the end-user and is not the subject of this thesis. 
The work stations often have dozens of actuators and sensors. Besides, ever-increasing 

health and safety stipulations require that such equipment is contained, which makes 

the simple observation of the equipment’s sequence difficult or impossible. Lean man-
ufacturing efforts require that equipment status information is made available in a 

central location. To achieve this, many manufacturing facilities have implemented so-
called ’plant floor systems’ that collect a range of status information which then is 

broadcast, through display boards and radios, to the maintenance personal. They col-
lect a predetermined set of alarm messages to display them on maintenance screens and 

also preserve them for statistical analysis. Also, these systems receive triggers for some 

predetermined events, such as the machine being blocked or starved. These signals 

are also predominantly used for statistics and dashboards. The main issue with both 

data streams is that the data has to be made available by the programmer in a defined 

format. Often the data generation is either neglected altogether, is error-prone or even 

subject to intentional manipulation. 
Besides the ’plant floor systems’ described above, there are also software packages 

available, that allow the user to manually select any of the data points for monitoring, 
that are accessible through OPC. This approach is not only time consuming but also 

requires in-depth knowledge of the system to choose the tags suitable for the intended 

analysis. One of the leading providers of such software was invited to implement it 
on a system, unknown to him, with one PLC. The vendor spent roughly 150 hours 

until he was able to start the data collection. Similar results could be expected for any 

equipment that is previously unknown to the data collecting entity since there are no 

global naming conventions or programming standards that could simplify the task. 

3.1.1 Communications Structure 

The communications network within a production facility has different levels (see figure 

3.1.1. The highest level on the shop floor would be the plant floor communication which 

links the different manufacturing cells to a supervisory control and data acquisition 

system. Typically this communication uses Ethernet and can also be accessed by other, 
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authorised computers. The cell level communication usually is within a private Ethernet 
network which can only be externally accessed through bridges. Besides the Ethernet 
connection which mainly interlinks the PLC with the robots and the HMI there also is a 

proprietary field level network that allows the PLC to exchange data with I/O devices. 
For this project, the field bus used is Devicenet. Since all the I/O status information 

is gathered within the PLC, external access can be achieved via OPC. 

Figure 3.1.1: Cell Communications Structure 

3.1.2 The Concept of OPC 

Historically the vendors of automation equipment often developed their own, propri-
etary network architecture. This practice became a roadblock when trying to link 

dissimilar systems together. In the early nineties several controls equipment manu-
facturers established the OPC foundation to lay the groundwork for a standardised 

communication structure which would improve interoperability. Since then, there have 

been several improvements to the standards. The version used in the course of this 

project is OPC-DA because it is the standard provided with the Controllogix con-
trollers used at the test site. The general structure on which the OPC communication 

is based can be seen in figure 3.1.2. 
Within the hierarchy, the target device, shown on the right, still features its pro-

prietary communication structure. It is the task of the OPC server to interpret the 

requests received through the OPC interface and translate them into the devices native 

protocol and vice versa. The standardised OPC protocol is then used for communica-
tion to the OPC client, which essentially is the reversal of the OPC server. It interprets 

and translates the requests of the second proprietary device and makes them available 

to the OPC interface. The OPC client also receives and translates the responses of the 

OPC server. 
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Figure 3.1.2: The OPC Structure 

OPC-DA and its newer version OPC-UA are available for many of today’s controls 

systems. Keeping the potential application of this work to different automation systems 

in mind OPC became the natural choice. The project originates from the need to record 

the sequence of operations of a wholly encapsulated laser welding cell which had cycle 

time problems. The housing around the cell prevented observation by the engineers, 
which made the deployment of a monitoring system necessary. The Rockwell family of 
controllers requires for the use of their programming software an additional communi-
cation software called RSLinx, which also comes with a built-in OLE (Object Linking 

& Embedding) and OPC server. Since OLE is a technology developed by Microsoft, 
it can be linked to the Microsoft Office products. Therefore the first feasibility studies 

were done using Excel spreadsheets. The success of this initial application prompted 

this research for a completely automated framework. Visual Basic was chosen for the 

data acquisition because the plant’s maintenance personal has basic knowledge of it 
and therefore should be able to maintain and enhance the system later on. Advosol, 
an OPC Foundation member, provides a suitable .net OPC library. 
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3.1.3 OPC Setup 

When setting up OPC communication, several choices have to be made: 

RSLinx Topic: To set up the communication to a Rockwell programmable logic con-
troller, which is the main brand of PLCs used at Opel, a topic needs to be defined within 

RSLinx. The topic, therefore, is the name that is associated with the communication. 
First, the communications driver needs to be chosen. For this project, it is Ethernet 
IP. Linking of the driver to the device is accomplished through its IP address. Once 

the connection is established, the topic can be created and settings like the processor 
type and the message pull rate defined. All that is now needed is the entry of a simple 

string following the structure 

=application|topic!’item’ 

into one of the Excel cells to retrieve current status information on the tag selected. 
RSLinx even offers a browser to choose the desired tag and generate the necessary string 

for it. 

OPC Items: An OPC item is the definition of the data point to be monitored within 

the OPC server. Its format for Controllogix data is: 

[TopicName]Program:ProgramName.TagName 

Each item can be set to active or inactive. 

OPC Groups: OPC items can be grouped into OPC groups. Besides providing a 

structure, these groups also enable the joint manipulation of the items settings. These 

settings include the acquisition mode, the data source, the update rate and the dead 

band. 

Push vs Pull: The OPC client can request the status of a given data point which 

then is returned by the OPC server. Since this means that even unchanged status 

information will be relayed, excessive communication can be expected. The OPC server 
can also be set up to raise an event which includes the status information, quality and 

timestamp only for data points that have changed. This approach was chosen since it 
results in less burden on the communication infrastructure. 
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Synchronous vs Asynchronous: This setting only applies if the data are pulled 

from the OPC server. It determines if the client waits for the request to be completed 

(synchronous) or if the client can issue other requests before receiving a response (asyn-
chronous). For this research, it was chosen that the server raises an event upon status 

change. Therefore the synchronous or asynchronous setting is of no concern. 

From Device vs. From Cache: Another option, when pulling data from the OPC 

server, is the source of the data. Usually, the OPC server keeps the data in a cache and 

renews them based on a predefined refresh rate. The OPC client can also define that 
the cache should be ignored and that the data should be read from the device directly 

at the time of the request. This data access is noticeably more time-consuming than 

reading from the cache. For this research, this option can be ignored because the push 

option was previously chosen. 

Deadband: The deadband defines the degree of status change required to trigger a 

change event. Since all changes should be logged the deadband was set to 0 for this 

work. 

3.1.4 Data Collection Procedure 

In the realm of automotive manufacturing equipment, the process is equal to the se-
quence of operation (SOO). Therefore, timestamps are required for every actuator and 

its corresponding sensors within a station. Robots can be working in more than one 

station which can lead to unidentified gaps within a stations sequence. This effect only 

became obvious during the course of this research. Gaps would also be shown if the 

robot performed an automated maintenance task such as tip dressing or sealer system 

purging. The frequency of these interruptions strongly relates to the process being per-
formed. In some instances such maintenance tasks can be necessary after each process 

cycle. This problem can only be avoided if the robots’ working segments are also logged. 
The standard of the equipment used for the case study requires the robot to feed back a 

numeric segment number which identifies in which station the robot is currently work-
ing and what it is doing. A typical sequence of segments would be home position -
pounce - unload station - clear station - load next station - clear next station - return 

to home. This is just a rough example. In reality there are even more segments defined. 
An identifier needs to be recorded together with the events to allow for grouping of the 

events into cases. In a first attempt, recording the parts sequence number was chosen. 
Application of the concept then revealed that sub-assembly parts are not assigned a 

sequence number which hinders the tracking of a part through the production cell. 
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When loading a part into a cell, it is associated with a job data package which defines 

its style and options. The job data also allow for build status information and details 

about the carrier being used. Since carriers are mainly used for major assemblies, the 

field often remains unused. Therefore the collection algorithm was extended to take 

advantage of the OPCs writing capability, and a unique ’tracking number’ was stored 

into that data field to be used for part tracking and case clustering. The job data is only 

transferred to a station once the part has been loaded which leaves motions required 

for station setup, loading and station reset still without a suitable identifier. 
For future predictive analysis, the data needs to be correlated with fault events. That 

could be achieved either by tagging the data manually a posteriori or by logging the 

events (alarms) concurrently. 
Data collection could be achieved with multiple local, decentralised data collectors, 

running on the maintenance work stations, that periodically submit the collection re-
sults to a centralised location. Here the main advantage is that the traffic between 

the data collector and the PLCs stays in the local subnet. The lower data volume also 

allows for a less expensive database version to be used, and at the same time, the error 
rate might decrease. Besides, a single point of failure only impacts the data collection 

for one of the cells rather than the whole body shop. Also, the current version of the 

PLC software is readily available on the maintenance work station so that updates to 

the collection algorithm are possible. 
On the other hand, such an approach requires multiple licenses for the OPC server 

software along with an increased effort to manage and maintain the system. The align-
ment of the data from different sources can become, due to timestamp inaccuracies, 
challenging. 

The second option is a centralised setup, where the collection algorithm, the OPC 

server and the database are located on only one computer. For this scenario, the above 

described advantages and disadvantages can be reversed. Because of manageability, 
the centralised setup was chosen, for the proof of this concept. It is believed that a 

decentralised setup would be more beneficial for a production solution. 
Table 3.1.1 shows how the PLC program aligns with the actual equipment for this 

project. Also, it shows what keywords can be found within the PLC logic’s text file 

and what regular expressions can be used to locate them. 
Successful parsing requires an understanding of the structure to be parsed. A schematic 

representation of the software structure within a ControlLogix controller can be seen 

in figure 3.1.3 

Most noticeable is that the Rockwell PLCs work with two levels of tags. There 

41 



Table 3.1.1: Relationship Between Equipment And Software 

actual equipment software equivalent tags within L5K Regular Expression (Regex) 

cell controller CONTROLLER ^CONTROLLER\s\w+\s\( 

station program PROGRAM ^(\t+|\s+)PROGRAM\s\w+\s\( 

advancing motion (advance) routine ROUTINE ROUTINE S 

returning motion (return) routine ROUTINE ROUTINE S 

action feedback rung .comp(UDT za_Action) (OTL\(|OTE\()[A-Z,a-z,0-9]+\.Comp\) 

sensor contact XIC(...) XIC( 

Controller 

Controller Tags 

Tasks 

Standard Task 1 

Station 1 Program 

Program Tags 

Advance Motion 1 

Advance Motion 2 

Perform Process 

Return Motion 2 

Return Motion 1 

Station 2 Program 

… 

Safety Task 1 

Cell 1 Program 

Program Tags 

… 

Figure 3.1.3: PLC Code Structure 

are controller tags, which can be accessed from every program, and program tags, 
which can only be accessed by the program in which they were defined. Addressing 

the tags through OPC also requires different nomenclatures. The first part of the 

algorithm, therefore, needs to locate the controller tags and store them in an array for 
later referencing. 

Program tags are identified by the name of the program in which they have been 

defined. This fact requires keeping track of the current program name while parsing 

the logic and associating it with the data point of interest, as long as that tag is not a 

controller tag. 
For the body shop observed, the standard defines that every motion is to be pro-

grammed within its own routine. This routine has to be structured according to the 
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motion structure shown in figure 3.1.4. The reason why the complete rung is one of 
the first rungs within the routine is that one can spot the status of the motion directly 

upon opening the routine in the viewer without having to scroll down in the program 

structure. This structure not only simplifies parsing, but it also allows for automatic 

generation of the code during the design phase because it applies to most motions 

encountered for an automation project. 

Action 

Comp (Complete) 

Auto (Automatic) 

Clear 

OutPwr (Output Power) 

Cmd (Command) 

Out (Output) 

Figure 3.1.4: Motion UDT Syntax 

Once the controller tags have been identified, parsing can be done line by line from the 

beginning to the end. Since all the data to be gathered, belong to sequence routines the 

parsing can be improved by skipping all lines that are not located within a section which 

starts with ’ROUTINE S’ (where the ’S’ stands for sequence) and ’END_ROUTINE’. 
Once a program rung that ends with a ’.Comp’ tag is encountered (figures figs. 3.1.5 

and 3.1.6), the tag name is extracted and the extension is replaced with ’.Out’. For 
this project, that is the name of the tag that initiates a motion (see figure 3.1.4). 
The resulting sensor inputs can also be found within the same rung, programmed as 

normally open (XIC) contacts. All the sensor addresses can be obtained by extracting 

all the tags that have been programmed with the XIC instruction (Figure 3.1.7). 

C01 Closed C01 Open C02 Closed C02 Open Opposite Out Complete 

C01.PX2 C01.PX1 C02.PX2 C02.PX1 Open.Out Close.Comp 

Figure 3.1.5: Ladder Example Motion Complete Rung 

XIC C01.PX2 XIO C01.PX1 XIC C02.PX2 XIO C02.PX1 XIO Open.Out OTE Close.Comp 

Figure 3.1.6: L5K Example Motion Complete Rung 

If no such apparent relation between actuator and sensors is to be found within the 

PLC code, it would also be imaginable to discover the relations a posteriori with the 

help of some tag-name-based reasoning algorithms. Alternatively, the software could 

’learn’ the relation through a ’teach in’ process, where the machine is manually cycled 

through its sequence step by step. 
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Cylinder 

PX1 (Home Position) 

PX2 (Work Position) 

Figure 3.1.7: Cylinder UDT Syntax 

The current robot segment number also can be found within a defined controller tag 

(e.g. RA400R01.SegNum). While parsing the program, all that needs to be extracted, 
are the names of the robots associated with that station (e.g. RA400R01). 

For this project, the actual alarm messages are included within the software as rung 

comments, with an alarm-number, which represents the last three digits of the actual 
alarm. The leading one or two digits of the alarm are a program related offset. To 

decode an occurring alarm, the alarm messages need to be extracted as well as the 

offsets associated with the program currently being parsed. 
To summarise, there are three basic requirements for nomenclature based data point 

selection. The most important is a standardised tag naming or data type structure of the 

outputs initiating the actuators (e.g. Clamps1Close.Out; za_Action). The same applies 

to the naming and data type structure of the sensors (e.g. C01.PX1; zp_Cylinder). 
Ideally, there is also an identifiable rung that sums up the sensors associated with the 

actuators to allow deriving the connection between the inputs and outputs. 

3.1.5 Database Structure 

The database structure established is shown if figure 3.1.8. It is set up to mirror 
the automated production equipment. As previously explained an automotive body 

shop consists of different zones in which the different sections of the car’s body are 

manufactured. Therefore the first table holds the names of the zones being observed. 
A zone itself consists of many cells which are controlled by a PLC. The PLCs table 

is related to the zones table and stores information about the location of its offline 

program, its version and the processor name. Cells consist of stations and robots. 
Their tables include, besides the relationship to the PLC, fields for their names as 

well as temporary storage areas for the current style, option and sequence number. 
Within a station, many motions can be found. These motions are defined by their 
relation to the station, a ’start tag’ (an output initiating the actuator) and an ’end 

tag’ (a sensor that indicates motion completion). This table is the foundation for the 

actual event log which is stored as raw records with a timestamp, style, option and 

sequence number information. A station can be in manual or automatic mode. This 

state is additionally captured in the cycle log table. More detailed information about 
the robots whereabouts, like the current segment number and the interference zone 
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occupied, are stored in the robot log table. The details about the styles and options, 
which are referenced in the previous tables, are stored separately. Since it seems possible 

to use the data obtained for fault prediction, it was decided to extract all the alarms 

encountered while parsing the PLC file. The alarms are stored in the alarms table, 
represented by an alarm-number and a string definition. The alarm events themselves 

are logged in the alarm log. Many of the previously detailed tables also have a field 

called ’outdated’. Its purpose is to enable or disable records depending on which of the 

PLCs was chosen for monitoring. This solution helps to prevent double entries in the 

tables if monitoring is switched off and on again. 

3.2 Log Preprocessing 

Process Mining, as proposed by Cook et al. (Cook and Wolf 1995), as well as Agrawall 
(Agrawal, Gunopulos, and Leymann 1998), was meant to support the development and 

maintenance of software projects. Van der Aalst (W. V. D. Aalst, T. Weijters, and 

Maruster 2004) extended its usage to the discovery of models for business processes 

while developing it into a research field. The methodology behind Process Discovery 

is to use an event log and apply a discovery algorithm to it to derive a model in a 

well-established notation for the area of its application. Depending on its notation the 

model can be used to replay simulations, using the event log, to identify bottlenecks as 

well as for making predictions on the remaining time to complete a case. If the model 
is based on enough cases, it also might be suitable to create recommendations on the 

best actions to take, to complete a case as soon as possible. 
It appears that this approach might be suitable for industrial production processes, 

which yield detailed event process logs. Contrary to business processes, industrial 
equipment only has a finite number of traces, which all can potentially be discovered 

with a minimal amount of log data. This feature in turn means that generalisation is 

not desired for such models, which can only be accomplished using near ’perfect logs’ 
when applying Process Discovery techniques. The equipment logs often do not have the 

degree of completeness required to derive an accurate process model, which may lead to 

the discovery of causalities which do not reflect reality. Therefore evaluation and repair 
of the log are of the utmost importance. This observation is shared by many of the 

researchers in this field (Rogge-Solti et al. 2013; Bose, Mans, and W. M. P. Van Der 
Aalst 2013; Verhulst 2016; Suriadi et al. 2017). 
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Figure 3.1.8: Database Structure 

3.2.1 Definitions 

Since most technical data scientists are not familiar with the Process Discovery 

paradigm, first a brief overview of some of the most important terms is given. Con-
sidering the production equipment event log shown in figure 3.2.1 the following terms 

need to be explained according to van der Aalst (W. V. D. Aalst 2016b): 
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Figure 3.2.1: Example Production Equipment Event Log 

serialNum startTag endTag startTime endTime style 

65524 Clamp1.Close C01.PX2 2017-10-05 08:28:12 217-10-05 08:28:14 1 

65524 Clamp2.Close C02.PX2 2017-10-05 08:28:14 2017-10-05 08:28:16 1 

70013 Clamp1.Close C01.PX2 2017-10-05 08:29:37 2017-10-05 08:29:39 2 

Event Log 

An event log is a log of activities, recorded together with a timestamp and some addi-
tional attributes. For industrial production equipment, an event log will hold records 

of all the motions occurring within the machine, including, but not limited to, robot 
activities. 

Activity 

In a production equipment event log, any motion occurring is considered to be an 

activity. In the example figure 3.2.1 that refers to the column ’start tag’ which is the 

signal that triggers the motion. 

Case 

The term case refers to a business case which could be, for example, all the tasks relating 

to an order with a specific purchase order number. For an equipment event log a case 

refers to one manufacturing cycle which starts with the machine being ready to accept 
the next part style followed by the machine being loaded. Once the parts are present 
in the station the process cycle starts which concludes with the unload event. Finally, 
depending on the station, there also might be a reset event which moves equipment 
back into position to receive the next part. Process Discovery requires that all the 

before mentioned activities are associated with a numerical case ID. 

Case Attributes 

Case attributes apply to the whole case. For this research the style and option infor-
mation of the part would be considered the case attributes. The option was dropped 

for this research as including the options would lead to more differentiation, but the 

approach for cleansing and preprocessing the data would remain the same. 
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Trace 

Some papers use trace and case interchangeably, while others use trace and variant as 

synonyms for each other. A trace, as referred to in this thesis, is a generic pattern 

of events following each other which can be used to classify a case found in an event 
log. In the context of a production event log, a trace depends on few internal and 

external factors. Therefore this equipment only has a few traces, although there might 
be thousands of cases. 

Event 

An event is a row within the event log, consisting of activities, which are associated 

with cases. The example figure 3.2.1 consists, therefore of three events. 

3.2.2 Reference Quality Matrix 

According to Bose et al. (Bose, Mans, and W. M. P. Van Der Aalst 2013) when 

evaluating event logs, besides event granularity, voluminous data, case heterogeneity, 
process flexibility and concept drifts, the data quality issues shown in figure 3.2.2 need 

to be considered. 

Figure 3.2.2: Quality Matrix Proposed By Bose Et Al. 
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Since equipment logs are not resource bound, resources have been omitted. The 

proposed framework also does not record event attributes, which also makes them not 
applicable. The position of the events is not essential either, as it can be determined 

by the sequence of the timestamps. The activity names are automatically generated 

while parsing the PLC program. Since the PLC program is in production, it can be 

assumed that the tags retrieved are correct and therefore, do not have to be evaluated. 
Applying these restrictions leads to the compressed matrix shown in figure 3.2.3. 
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Figure 3.2.3: Data Quality Issues In Production Equipment Event Logs 
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In the remainder of this section, all the issues that potentially are applicable will be 

discussed. 

3.2.3 Missing Cases 

Cause And Impact 

The equipment event logs are created with the help of a system external to the manu-
facturing equipment. The equipment is monitored using OPC-DA. Upon a tag change 

event, a timestamp is written, along with the activity and case identifier, into a SQL 

database. Multiple scenarios can cause the loss of cases: 

• loss of network connection 

• failing monitoring system 

• failing database connection 

• equipment switched to manual mode 

Since the proposed methodology is not intended to analyse real-time events or to 

replay the cases, missing cases can be compensated by increasing the sample size used 

for process model discovery. No other interventions are required. 

Detection 

Within an automotive body shop, there are two types of manufacturing processes. One 

is the sub-assembly manufacturing, where the individual parts of the car body, like the 

fenders, are manufactured. Typically those parts cannot be associated with the car 
to which they will be mounted, at the time of their manufacture. Therefore a unique 

number is assigned to the part at the beginning of the manufacturing line for tracking 
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purposes. Since that number includes a sequential component, a missing case could be 

detected based on a deviation within the sequence. 
The second process is the assembly of the car body from the sub-assemblies. At this 

point, the VIN (vehicle identification number) will be assigned to the car. A missing case 

only could be identified when comparing the event log with the production manifest. 
Therefor 

∀ V IN /∈ production schedule (3.1) 

could be considered missing cases. 

3.2.4 Missing Events 

Cause And impact 

Missing events can be caused by the same issues described for missing cases in 3.2.3. 
Missing events can cause several problems. Since not all the events in the raw log file 

have a case identifier, the remaining events, necessary for production, could either be 

associated with another case or they could wrongly be declared as a different trace. If 
the issue of missing events is not addressed during preprocessing, it also could cause 

the mining algorithm to discover wrong activity dependencies. 

Detection 

Missing events can be detected during the process of correlating them into cases. A 

case consists of setup/reset, load/unload and process events. All events depend on the 

style of the part being manufactured. The setup/reset event additionally depends on 

the previous and next part style. A comparison of cases, therefore, can be made if 
these factors are taken into consideration. Logs of the same trace will include the same 

station events t. Therefore missing events are defined as: 

∀ t(trace) ∈/ t(case) (3.2) 

Methodology 

The simplest approach is to count the number of events and just delete the cases, which 

don’t have the required number of events. Therefore no events t are missing if: 

∑ ∑ 
t(trace) = t(case) (3.3) 
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Besides the number of events, a 1:1 comparison of all events could be an indicator to 

which case to delete. Then 

∀t(trace) = ∀t(case) (3.4) 

would hold. 
Alternatively, the missing event also could be replaced by a copy from a previous case 

since it can be assumed, that within a short time frame only negligible or no differences 

in the motion of the monitored components will be seen. With tx being a certain event 
this assumption is expressed by: 

tx(case) ≈ tx(case−n) (3.5) 

Copying the missing data will help to preserve the remaining data and allow for a 

continuous simulation within the discovered process model if desired. 

3.2.5 Missing Relationships 

Cause And impact 

As previously described, cases are associated with the parts being manufactured. Ev-
ery production equipment also has setup events and reset activities that are happening 

when there is no part being processed. These events will be recorded without a clear 
relationship indicator. One of the necessary stipulations when applying Process Discov-
ery to an event log is that the events need to be case-based. This requirement means 

that all the events belonging together need to be marked with a unique identifier. This 

case ID enables process model discovery and the replay of the cases on that model. 

Detection 

The evaluation of the equipment log showed that there were many events which were 

missing the intended case attribute ’VIN’. Since the case ID needs to be a unique 

number and there is no additional benefit in utilising the VIN it was decided to assume 

for all events that no case identifier is present and that a new, unique number has to 

be assigned. 

Methodology 

A machine sequence can be split up into five sections, as indicated by the curly brackets 

on the bottom of figure 3.2.4. 
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return dump 2 
advance dump 1 

skid load part 
close C01 (V1) 
close C02 (V1) 
close C03 (V2) 
init robot R01 
init robot R02 
R02 weld/repo 
robot R01 weld 
open C03 (V2) 
robot R02 weld 
open C01 (V1) 
open C02 (V1) 

return pin 1 
skid unload part 

advance pin 1 
part present 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

setup load part present / process unload reset 

Figure 3.2.4: Gantt Chart Of Example Machine Sequence 

The one signal, that is common to all manufacturing cells, is the part being present 
in the tooling. Therefore the data acquisition was extended to include the part present 
signals, although they are, for the sequence itself, of no interest. The Opel global 
controls standard defines two tags for that purpose: ’no parts present’ and ’all parts 

present’. If just a single part is loaded into the station, the two signals are just opposites 

of each other. With multiple parts the ’no parts present’ signal will change its state, 
once the first part is loaded. The ’all parts present’ signal will not change its state 

before all parts are loaded. It has been found that the ’no parts present’ signal often is 

not used when working with a single part. Therefore both signals need to be observed 

and mashed into a single indicator that shows if any part or no part is present in the 

station. This indicator needs to be ’1’ if the ’no parts present’ signal changes state 

from ’1’ to ’0’ or the ’all parts present’ changes from ’0’ to ’1’. It needs to be reset to 

’0’ if the ’no parts present’ signal changes state from ’0’ to ’1’ or the ’all parts present’ 
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changes from ’1’ to ’0’. The process section of the sequence starts with a part being 

present in the station and ends one event prior to the unload step. The unload event 
is the last step for which the presence of a part has been recorded. This leads to the 

following theorems: 

Theorem 1 All events recorded while a part is present, with the exception of the unload 

step, will be considered a process step. 

Loading steps and unload steps can be defined as follows: 

Theorem 2 The event recorded just prior to the part being present within the station 

must then be the first loading step while the last step with a part being present must be 

considered the unload step. 

If the part unload-position differs from the loading-position, the station finally needs 

to have reset events to ready it for the next part being loaded. These events might 
be style related which leads to the following definition: 

Theorem 3 An event is an station reset event if it occurs always following a certain 

style x followed by any style. 

Alternatively the following definition would hold as well: 

Theorem 4 Reset events are all events that occur between the unload step of a part 
with the style x and the load event of the following part with the identical style x. 

While transitioning from one style to another station setup events might be required 

to ready the station for the new part style being loaded. Setup events can be defined 

as follows: 

Theorem 5 Setup events are events that are recorded after the final reset event of style 

x and prior to the load event of style y. 

3.2.6 Missing Case Attributes 

Cause And impact 

For this research, the case attributes are recorded every time a motion is logged that 
can be directly related to the part being manufactured. This fact means that all the 

events that can not directly be associated with a part are missing the case attributes. 
These attributes are essential to this work as specific manufacturing sequences could 

also be the cause for delays. 
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Detection 

NULL values in any of the attribute columns can identify missing case attributes. 

Methodology 

Since every part related motion is recorded together with the associated case attributes, 
missing case attributes can be copied to the remaining events once their case association 

has been discovered. 

3.2.7 Missing Timestamps 

Cause And Impact 

Missing timestamps could be caused by the same issues described in 3.2.3. The intended 

Process Discovery approach is based on timestamps. Each event has two timestamps. 
The first timestamp marks the time a motion was triggered and the second one the time 

the unit reached its end position. If the first timestamp is missing, the position of the 

event within the cases sequence can no longer be determined. The second timestamp 

missing will prevent determining activity dependencies as a dependency only can be 

assumed if activity ’b’ starts after activity ’a’ has been completed. 

Detection 

Missing timestamps can be identified by determining which motion has only one times-
tamp and therefore is missing either the ’start’ or ’end time’ stamp. 

Methodology 

The missing start timestamp τs(t) or complete timestamp τc(t) can be calculated based 

on the mean duration λτ(t) of the event t: 

τs(t) ≈ τc(t) − λτ (t) (3.6) 

and 

τc(t) ≈ τs(t) + λτ(t) (3.7) 

Alternatively, the incomplete event could just be deleted and treated like a missing 

event, as shown in 3.2.4. 
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3.2.8 Incorrect Cases 

Cause And impact 

Bose et al. (Bose, Mans, and W. M. P. Van Der Aalst 2013) describe incorrectness 

as the entity, relation, or value provided in a log being incorrect. In the context of 
cases, this could only be the wrong data format or a wrong case number. Bose et 
al. describe the most common cause for such problems being manual entry by humans. 
This problem also would lead to the discovery of activity connections, within the process 

model, which do not exist in reality. 
The formatting issue, for this approach, is eliminated through format definitions 

within the database. The database, therefore, would reject entries in the wrong format. 
Also, the case numbers are generated automatically by the preprocessing algorithm. As 

long as it is ensured that duplicate case identifiers are not possible, this quality issue 

should not be a concern when evaluating automatically generated equipment event logs. 

Detection 

A wrong entry could only be identified by either finding duplicate events, associated to 

the same case, or by detecting a case identifier (caseID) which is not used in any of the 

other event t of the case: 

for n = 1, 2, 3 . . . \{x}; caseIDtx(case) ̸ (3.8)= caseIDtn(case) 

3.2.9 Incorrect Events 

Cause And impact 

As mentioned previously, incorrectness can mainly be attributed to manual data entry. 
Such failures would lead to the discovery of invalid activity connections within the 

process model. 
Algorithms were designed that parse the proven PLC programs controlling the equip-

ment’s activities. All the events are automatically correlated to the controls tags found 

in that program. Also, the logbook is automatically generated based on those tags. 
Therefore the possibility of incorrect events, due to the data recording process, can be 

neglected. 
The experiments showed that the following two scenarios lead to duplicated entries. 

It is standard, that the end positions of some motions are coded into the logic triggering 

another motion to prevent collisions. If this programming is done wrong, this can lead 
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to intermittent interruption of the motion. The event then has to be triggered again 

to come to completion. The second reason is based on mechanical failure. A motion 

is initiated and reaches its end position. Therefore the event is completed. At the end 

position, the unit bounces back again and leaves the end position. The PLC controller 
then needs to re-trigger the motion once again. 

Detection 

An incorrect event could only be detected if it is an unique event or if the event tx 

within a case is duplicated: 

for n = 1, 2, 3 . . . \{x}; tx(case) = tn(case) (3.9) 

Methodology 

For Process Discovery, the existence of such duplicated events would not cause a prob-
lem. It would lead to the discovery of another trace, and the reviewer would be able to 

discover the issue. It was decided to note and remove such duplicates because it allows 

the creation of an issue list for the maintenance personal at an early stage during the 

data analysis and at the same time prevents wrong traces from being discovered. 

3.2.10 Incorrect Relationships 

Cause And impact 

As explained earlier, the raw event log is missing many of the relationships, and those 

relationships need to be defined during preprocessing (see 3.2.5). Incorrect relationships 

can only be attributed to this preprocessing step since it relates the events to the cases. 
This problem will lead to the discovery of process models, which do not reflect reality. 

Detection 

For each style there typically is only one event path. Therefore the discovery of a second 

model for any given style would be suspicious. This research shows that programming 

errors, within the controls system, can lead to such an instance. If this problem is 

random, it can be detected as an outlier. If it is systematic, it could only be discovered 

by the expert reviewing the generated process model. 
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Methodology 

Since incorrect relationships are mostly the result of preprocessing, they can only be 

avoided through careful testing of the preprocessing steps and expert evaluation of the 

resulting model, which should lead to the revision of the corresponding algorithms. 

3.2.11 Incorrect Case Attributes 

Cause And impact 

The case attributes help to discover the repetitive traces. Incorrect case attributes will 
lead to the discovery of a trace, which does not exist in the process. Faulty production 

data could be the only cause for incorrectness within the case attributes. 

Detection 

Incorrect case attributes can only be discovered if there is a variation within the events 

of a case with an identical identifier by simple comparison. For example if the style of 
one event tx deviates from the remaining events within the same case: 

for n = 1, 2, 3 . . . \{x}; styletx(case) ̸ (3.10)= styletn(case) 

Methodology 

If there is a variation of attributes, for events with the same case identifier, then the 

faulty attributes can be replaced by the attributes shown for the majority of the events 

with that case identifier. The proposed algorithm already corrects this problem while 

clustering the cases in 3.2.5. 

3.2.12 Incorrect Timestamps 

Cause And impact 

There are multiple possible causes for incorrect timestamps. The events could be logged 

on different devices, not time-synchronised, before being merged or there is a manual 
intervention into the manufacturing process, causing untypical delays. Also, signal 
processing and logging consume some time. For example, the OPC server evaluates 

the tag status every 50ms. Once a change is detected, the logging algorithm needs to 

process that change, which adds another 20ms of uncertainty. Signals triggered twice 

can also be a cause for incorrect timestamps. If the ’start tag’ is triggered twice, two 

records will be added to the database. Once the corresponding ’end tag’ is triggered, 
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one of the records will be completed, leaving the ’end time’ for the other record open. 
If at a later time, the ’end tag’ should be triggered twice, this void will be filled by a 

wrong timestamp. 

Detection 

The proposed framework also records the system status to detect manual intervention. 
Therefore any event logged, while the machine is not in automatic mode, should be 

treated as suspicious. Processing time, during manual operation, should not be of any 

concern while mining the log. This logic also applies to the remaining data of that 
case. Typically the total cycle time, for a station being evaluated within this research, 
is in the range of 60 seconds. Therefore any event duration ∆τt exceeding 60 seconds 

between ’start time’ and ’end time’ must be incorrect. The same holds on the other 
end of the spectrum. The fastest motions recorded are in the range of 400 milliseconds 

which leads to the conclusion that any motion faster than that is recorded wrongly: 

∆τt > 60 sec ∨ 
(3.11) 

∆τt < 400 ms 

Methodology 

The timestamps are based on the device recording the events. Since all the events of 
one production line are collected by one device, it can be assumed that the timestamps 

are consistent, which is key for the mining process. Truly incorrect timestamps only 

come into play, when data from different recording devices are merged, as correlation 

will become more difficult. In such a case, all the devices should be connected to an 

enterprise time server to avoid the problem. If that is not possible, markers within the 

different event logs need to be found that allows for synchronisation of the logs. 
If a manual intervention was discovered for any event within a case, the whole case 

could be dropped, or the suspect timestamps could be replaced with approximations 

based on previous cycles. Besides, all the remaining timestamps of the same case would 

have to be adjusted accordingly. 
Uncertainty, due to signal processing times, can not be avoided but needs to be taken 

into consideration when deriving Process Mining results from the data. Some of the 

motions recorded happen within 4/10th of a second. A deviation of a 10th of a second, 
which here is equal to 25%, could easily be interpreted as speed reduction due to wear. 
This deviation is not always constant. Therefore the mechanical evaluation of a device 
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needs to be done on a median over several timestamps rather than just based on a 

single measurement. 
Timestamps that cause duration outliers, as described above, could be removed and 

the record treated like any event with missing timestamp described in 3.2.7. 

3.2.13 Imprecise Relationships 

Cause And Impact 

Bose et al. (Bose, Mans, and W. M. P. Van Der Aalst 2013) define impreciseness as 

data being too coarse, thus missing the needed precision. Imprecise relationships would 

make the association of the events to cases difficult or impossible causing the Process 

Discovery algorithms to discover models that are not true to reality. For the equipment 
event logs, there are only three possibilities. A case identifier can be present, missing 

or wrong. There is no other granularity which would allow for imprecision. Since the 

proposed framework assumes that all relationships are missing (see 3.2.5) imprecise 

relationships are of no concern for this work. 

3.2.14 Imprecise Case Attributes 

Cause And impact 

What holds for imprecise relationships also applies to imprecise case attributes for such 

event logs (see 3.2.13). Therefore impreciseness of case attributes is not a concern 

either. 

3.2.15 Imprecise Timestamps 

Cause And impact 

The precision of the timestamps is solely based on the logging algorithm and the 

database settings. Exporting data from a data table into a different format, for ex-
ample ’.csv’, can also cause a loss of precision. Manipulation of the data within Python 

causes a loss of precision when the data is written back to the SQL Server as fractions 

of seconds are dropped. Since some of the motions, recorded in an equipment event log, 
might be as fast as 0.4 seconds, the timestamp needs to be recorded down to at least a 

10th of a second. 

Detection 

Imprecision of the timestamp can be detected by evaluating the timestamp values. 
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Methodology 

Once the precision of a timestamp is lost, there is nothing that can be done to recover 
it again. Therefore it needs to be made sure that the logging algorithm writes the data 

with the desired precision into the database and that the database is set up to store the 

values with the desired precision. Also, when creating preprocessing or transformation 

algorithms, it needs to specifically made sure that there is no implication to the precision 

of the values. In the case of Python, this means, that timestamps should be written 

back to the database as strings rather than date/time values. 

3.2.16 Irrelevant Cases 

Cause And impact 

A case only becomes irrelevant if some of the data are missing or incorrect. The 

methodology for dealing with such problems has been described above. 

3.2.17 Irrelevant Events 

Cause And impact 

In a production equipment event log, some events are value-added, e.g. the welding 

cycle of a robot and some events that are non-value added, like the maintenance cycle of 
a robot. The value-added events are of interest to determine the time needed to bring a 

case to completion. The non-value added cases need to be considered because they are 

potentially causing delays in the manufacturing process. Initiating them at a different 
time within the process may yield substantial improvements. This fact leads the author 
to believe that there are not any irrelevant events within a production equipment log. 

3.2.18 Adjusted Quality Matrix 

Based on the above findings the applicable data quality issues, for production equipment 
event logs, can be summarised as shown in figure 3.2.5 

3.2.19 Correlating Event Data 

Every event consists of an output, that initiates a motion and a feedback signal, that 
acknowledges that the motion was completed. The previously described data collec-
tion algorithm records each of the two signals separately. Therefore a view had to be 

written, within the SQL Server, that brings the two signals and their corresponding 
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Figure 3.2.5: Data Quality Issues To Be Addressed 
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timestamps together into a single record, which equals an event needed for Process Dis-
covery. The relation between the output triggering the activity and the sensor input is 

captured in the table that was originally created by the PLC code parsing algorithm 

3.1.4. Correlating can be achieved by finding a combination of these two signals with 

the least time difference that does not exceed the stations standard cycle time of 60 

seconds. 

3.2.20 Purging Not Needed Data 

Removal Of Part Present Events 

The part present switches are not part of the sequence and were only added to group 

the motions to cases. After this grouping is completed this information can be removed. 

Removal Of Events With ’End Time’ Equaling NULL 

As described in section 3.2.7 it is not the aim of this research to simulate all the cycles of 
a station. Since model discovery doesn’t require seamless records, events with missing 

timestamps should be removed. Presented research shows that such events mainly stem 

from interrupted data acquisition attempts. 

Removal Of Cases With Station In Manual Mode 

If a station is in manual mode, all units can be moved by the operator any way desired. 
Therefore the recorded sequence has no guarantee to resemble the automatic sequence. 
Also the motion’s duration will not represent the duration recorded during automatic 

cycle. Therefore deleting such cases is the best option, with the final goal of Process 
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Discovery in mind. 

Combining Of ’Double Triggers’ 

As described more detailed in 3.3.4 double triggers are caused by programming mistakes. 
The best way to handle them is to combine the earliest found ’start time’ within the 

case with the corresponding latest ’complete time’. The remaining timestamps for that 
activity and case then can be deleted. Since these issues cause excessive mechanical 
wear and increased cycle times, maintenance needs to be made aware of them. Therefore 

the data is logged into a table prior to removal. 

Combining Of ’Bouncing’ Motions 

As described in detail in 3.3.5 bouncing motions are caused by mechanical problems and 

do not represent the typical sequence of the station. Just as described for the double 

triggers above their earliest ’start time’ and latest ’complete time’ can be combined into 

a single event while erasing the remainder of the data related to that activity. Since 

maintenance needs to be aware of those issues also they are stored in a separate table 

prior to deletion. 

3.2.21 Trace Identification 

Using Checksum As Equality Measure 

To evaluate the sequences it is paramount to have a simple way to identify if sequences 

are identical. All the events in the available log are marked with a motion ID, which 

stands for the combination of initiating ’start tag’ and resulting ’end tag’. A sequence 

consists of multiple such motions. If those motion IDs are sorted by start timestamps 

and compiled into a comma delimited string, a checksum algorithm can be used to 

create a ’fingerprint’ of each of the sequences. If the checksum of two cases is equal, 
it can be assumed that the sequences match. According to Wolper et al. (Wolper and 

Leroy 1993) the probability for collision pc for a hash is 

2kpc ≈ 1 − e − n 2 

(3.12) 

Where n is the number of entries and k the number of bits used for encoding. Based 

on a example of 50 events (entries) in a sequence this results in a probability for CRC32 

of: 

− 50
2 

232pc ≈ 1 − e ≈ 5.8 ∗ 10−7 (3.13) 

62 



This is sufficiently low to make CRC32 suitable for the intended purpose. 

Determining The Number Of Occurrences 

To be able to compare the sequences the events are grouped by the case identifier. At 
the same time the CRC32 over the motion IDs is calculated. The result then is grouped 

by the CRC32 values to get the number of occurrences. It is assumed that the sequence, 
that occurs most often, is complete. Complete, in reference to cases and traces, refers 

to all events of the process being captured in the log. 

Determining The Mean Cycle Time 

While grouping by the CRC32 values it is also desirable to get the mean cycle time for 
each of the groups. Plotting the cycle times for one of the most occurring sequences 

yields a distribution like figure 3.2.6: 

Figure 3.2.6: Sample Cycle Time Distribution 

The figure 3.2.6 shows that there are multiple peaks within the distribution. Of those 

peaks the one for the shortest cycle time, the most occurring one and the one with the 

longest cycle time are of most interest. In a first approach the two unsupervised machine 

learning algorithms DBScan and mean-shift were applied to calculate the mean cycle 

time. Both algorithms do not provide a parameter to limit the bandwidth of the search. 

63 



Since the distribution approximates a normal distribution, fitting a normal distribution 

curve, which does not allow for limiting the bandwidth either, was tested. The final 
solution is the algorithm 1. Within this code a window is moved along the time axis and 

the mean is calculated for all the members within the window as long as the number of 
members is at the maximum and exceeds a given threshold. 

Result: An array that includes all means with more the minimum cluster 
members within the window size 

input parameters: data, windowSize, slidingDistance, minClusterMembers; 
set cluster center to minimum duration; 
while cluster center less then maximum duration do 

group the data within the window; 
if member count exceeds minClusterMembers then 

calculate the mean; 
store mean and member count in array; 

end 
move the cluster center by slidingDistance; 

end 
return clusters array; 

Algorithm 1: Sliding Window Means Sub Routine 

3.2.22 Feature Creation Through Expert Knowledge 

The only features associated with the grouped traces at this point are the number of 
events within the trace and the number of occurrences for the same trace. This is not 
enough information to reliably classify the traces as being complete. 

Most Occurring Trace 

The data of identical cycles, that are observed most often, are assumed be complete. 

Least Occurring Traces 

Identical cycles, that have been observed less than five times, are not of interest. This 

helps to eliminate randomly incomplete cases from being evaluated as valid cycles. 
The threshold was chosen based on observations and is purposely not expressed as a 

percentage since some styles are very low runners and therefore a percentage still would 

potentially allow random ’one of’ cycles to be considered. 
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Station In Bypass Mode 

In some finishing stations, where typically no additional parts are added to the assembly, 
a part could just pass through. This might happen if the part was designated as scrap. 
In such an instance the only events recorded will be the motions through which the 

part enters and leaves the station. The section, within the sequence, prior to a part 
being present and the last event for which the part still is present must be the load and 

unload events. These two motion groups can be extracted and their motion IDs hashed 

with CRC32. If the checksum of a sample matches this checksum the sample can be 

classified as valid sequence. 

Opposing Motion Present Fraction 

Most motions, within a sequence, have two opposing events. For example a clamp 

closes at the beginning of a cycle and opens towards the end of a cycle. If any motion 

doesn’t have an opposing match there is a good chance that one of the events has 

not been recorded. There are also situations where this doesn’t hold. For example 

for cylinders that change position based on the part style being manufactured. Based 

on this knowledge this indicator is not binary but instead needs to be expressed as a 

fraction. 

Robot Initiate Followed By Process 

This feature describes the fact that whenever a robot gets initiated within a sequence 

it must be followed by a process. The same holds the other way around. If there is a 

robotic process it must be preceded by an initiate event unless the robot has a different 
station number. It therefore can be concluded that, if this feature is not true, the case 

must be incomplete. 

Load / Unload Events Present 

As explained in 3.2.5 every case must have load and unload events. If these, previously 

identified events are not present it is certain that the cycle is incomplete. 

3.2.23 Machine Learning To Identify Valid Traces 

To automatically determine which traces are complete and which are incomplete, differ-
ent machine learning algorithms can be applied after engineering the additional features. 
The application of the different algorithms is explained more in detail in section 4.2.2. 
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3.3 Knowledge-Based Discovery 

This research aims to devise an automated framework that will, based on the code of the 

programmable logic controller (PLC), monitor the desired production equipment and 

generate a Gantt chart of its actual sequence while highlighting areas of improvement. 
For the issue identification the following eight rules were defined. 

3.3.1 Excessive Manual Cycles 

During production, the equipment typically is in automatic mode unless a problem 

occurs that requires manual intervention. The machines within an automotive body 

shop often are specified to provide an uptime of 80+%. If excessive manual cycles are 

recorded daily, it can be concluded that there is a systematical problem which needs to 

be addressed. 

3.3.2 Identical Units 

Several pneumatic cylinders are often connected to a single solenoid valve. The grouped 

cylinders typically have the same bore and stroke and therefore should require the same 

time to advance and return. Setup can impact the synchronous movement of the units. 
The impact can be spotted in the event log. An example is shown in figure 3.3.1, where 

cylinders C01 and C02 are attached to the same valve, but their closing time is different. 
This improvement potential is marked in red and labelled with (a). With ∆τt being 

the duration of a station event, ∆τt ′ being the duration of an equivalent event triggered 

by the same solenoid and λτt the mean duration of an identical reference event, setup 

problems are present if 

∆τt ̸ ∨ ∆τt = λτt (3.14)= ∆τt ′ ̸

3.3.3 Opposing Motions 

If a motion in one direction takes longer than into the opposing direction, another setup 

problem is present. A nomenclature based algorithm can identify which activities are 

opposing motions. The open events for C01 and C02 in figure 3.3.1 take longer than 

their corresponding closing events. Therefore the potential improvement is labelled 

with (e). Let ∆τt be the duration of station event t and ∆τt the duration of the events 

opposing motion t then the setup is correct if: 

∆τt = ∆τt (3.15) 
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3.3.4 Double Triggers 

Programming errors may lead to an equipment motion being started, interrupted and 

restarted again. Such behaviour causes increased cycle time and is responsible for ex-
cessive mechanical wear. In the log this manifests as two records for the same motion 

with different start time stamps and identical complete stamps or with one of the com-
plete timestamps missing. Since events can happen twice within a case, the detection 

algorithm has to consider that the opposing motion did not happen in between these 

two events. If the start timestamp of a station event t is defined as τs(tn), the complete 

event as τc(tn) and the opposing motion of that event as tn then a double trigger is 

present if 

τs(tn) < τs(tn+x) < τc(tn) ∧ tn = tn+x (3.16) 

as long as 

= (3.17)tn+1 . . . tn+(x−1) ̸ tn 

3.3.5 Bouncing Motions 

The term ’bouncing motion’ was coined for a motion that reaches its end position but, 
due to the mechanical setup, bounces back so that it needs to be triggered once again 

to arrive at the stop position. In the event log, this can be identified by an event 
with start and complete timestamps followed shortly after by again the same event 
with start and complete timestamps without the opposing motion being recorded in 

between. Double triggers and bouncing motions manifest themselves in figure 3.3.1 

similar to the opposing motion rule mentioned previously (figure 3.3.1 (c)). Only the 

underlying data allows the discovery of the actual root cause of the flaw highlighted 

within the Gantt chart. Based on above definitions a bouncing motion can be detected 

if 

τs(tn) ̸ τc ) = ∅= ∅ ∧ (tn ̸ (3.18) 

is followed by an identical event tn+x = tn with 

) = ∅ ∧ ̸τs(tn+x ̸ τc(tn+x) = ∅ (3.19) 

as long as 

= (3.20)tn+1 . . . tn+(x−1) ̸ tn 
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3.3.6 Gaps 

In the automotive body shop domain, there should be no period within a sequence, 
where there is no motion occurring. Considering that for this experiment, a variance of 
∼100ms within the timestamps was found, it can be concluded that any gap >200ms 

marks an area of possible improvement. Gaps can be caused either by programming 

errors or by external circumstances which are not recorded. A typical example of a gap 

is marked with the letter (d) within figure 3.3.1. Gaps can be detected by splitting up 

all events (t) in a cases Gantt chart into 200ms bins defined by n. A gap is present in 

a normalised Gantt chart starting at 0 if 

tn+199∑ms 

for n = 0ms, 200ms, 400ms . . . ; ∀t(x) = 0 (3.21) 
xn 

3.3.7 Station Blocked 

A particular case of the above described external circumstances is the station being 

blocked. A blockage is caused by the next station not being ready to receive the 

completed part. In that case, the event data will show a gap before the unload event. 
A blocked condition has been highlighted within figure 3.3.1 with the letter (f). Let 
τs(tu) be the start time of the unload event and τc(tu−1) the complete time of preceding 

event then a blocked condition exists if 

τs(tu) − τc(tu−1) > 200ms (3.22) 

3.3.8 Special Event - Robot Initiation 

The duration of the robot initiation event was found to be varying substantially. During 

this time-frame, the robot receives its program number and a start signal which triggers 

it to move to a pounce position. Typically this routine takes a maximum of two seconds. 
This value allows for the assumption that a robot initiation lasting more than two 

seconds is suspicious. Such a situation is shown in figure 3.3.1 with the letter (b). With 

∆τinit being the duration of a robot initiation event a reason for suspicion is present if 

∆τinit > 2sec. (3.23) 
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return dump 2 
advance dump 1 

skid load part 
close C01 (V1) 
close C02 (V1) 
close C03 (V2) 
init robot R01 
init robot R02 
R02 weld/repo 
robot R01 weld 
open C03 (V2) 
robot R02 weld 
open C01 (V1) 
open C02 (V1) 

return pin 1 
skid unload part 

advance pin 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

a 

b 

c d e 

f 

Figure 3.3.1: Gantt Chart Of Example Machine Sequence (20% Improvement Possible) 

3.4 Process Model Discovery 

Real world logs have shown that the actual process of industrial equipment does not 
always mirror the design intent. Therefore, the models developed during the design 

phase cannot be used to derive additional value. Contributing factors are late changes 

in design, leading to changes within the process. These changes need to be provided 

to manufacturing as quickly as possible to limit the impact on timing and cost. This 

rush reflects on the quality of the associated documentation. Often also mechanical 
interferences and cycle time issues are found during the integration phase, as described 

by Koehler et al. (Koehler and Jing 2018), which are addressed through, mostly un-
documented, sequence changes by the integration engineers. 

Besides the apparent compliance checking of the actual sequence against the design 

intent, there are several potential use cases for a process model. Replaying the equip-
ment log, within the process model, can highlight unintended delays and bottlenecks. 
At the same time, an accurate model allows the prediction of idle times within a pro-
duction cell. This idle time can then be used for automated maintenance tasks like 
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robot brake checks, weld tip dressing or sealer nozzle purging, without impacting the 

throughput of the cell. It is also imaginable that the model could be applied to operator 
guidance by identifying the next task to be executed to achieve maximum performance. 
Finally, the model can be used for diagnostics. Highlighting the completed edges allows 

maintenance to pinpoint what steps did not complete on time. 

3.4.1 Reasons For Traces 

While exploring an actual automotive equipment log, using the Process Mining software 

DISCO, a surprisingly high number of recorded traces were discovered. Before using 

these traces for process model discovery, the reason for their manifestation had to be 

understood. The author’s research led to the following three contributors: 

1. Log Issues: As mentioned in the introduction, there have been many works 

discussing reasons for incomplete logs. Since the model discovery does not require 

consecutive cases within the log, the simplest approach to deal with flawed logs is 

to remove the problematic events. Evaluating the remaining cases with the help 

of machine learning allows for the use of complete cases for the model discovery. 
2. Style Dependencies: The research also showed that there is a high probability 

that the sequence of a production station will vary based on the part style be-
ing manufactured. Such variations are called ’process variants’ in the referenced 

works. Bolt et al. (Bolt, W. M. P. Van Der Aalst, and Leoni 2017) recommend 

splitting the log into sub-logs ’to reduce the variability and complexity’. This 

leads to the conclusion that a simple and correct model can only be discovered 

for one style at a time. 
3. Partially Asynchronous Concurrent Processes: In the software, domain 

concurrency is given if two processes are executed in parallel within two different 
threads. When carrying this concept over to industrial automation, it can be seen 

that many concurrent processes have a common predecessor, and after their exe-
cution lead to a single succeeding process step. Their execution is asynchronous. 
There are multiple reasons how this can lead to different traces being recorded. 
Malfunctions or utility fluctuations can cause extended activity life cycles (e.g., a 

robot weld gun getting stuck to the part). The log typically spans a single man-
ufacturing station. Sometimes the robots are utilised in multiple stations, which 

might cause the robot not to always be available at the same time. Automated 

maintenance tasks, like weld tip dressing, can also cause unrecorded delays. 

It is mainly the third category of reasons that contributes to traces that can aid the 

model discovery. It, therefore, is concluded that the traces originating from the first 
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two factors need to be eliminated before attempting model discovery. 

3.4.2 Assumptions 

Within the Process Mining community it is generally assumed that the discovery of 
a complete process model is more likely if it is based on a log with complete cases. 
Therefore, only complete cases will be used for model discovery. Further, it can be 

assumed that within a complete case, every ’complete’ timestamp is the predecessor of 
another activity’s ’start’ timestamp. 

Typically, a case starts with only one activity e.g., the part being loaded and ends 

with a single activity, which often is the part being unloaded. 
Very rarely, it is found within automated equipment sequences that the same activity 

occurs twice within one cycle. In such a case, it would be necessary to differentiate the 

two occurrences with the help of an index in the design structure matrix to avoid 

confusion. Within a parsing algorithm, this would require some additional counters. It 
was concluded that this does not require any further investigation. A similar approach 

has been described by Li et al. (J. Li, D. Liu, and B. Yang 2007) who temporarily 

renamed duplicate task names until the process model discovery is completed. 
One of the shortcomings of the α-algorithm is that it cannot discover short loops. 

These are instances where an activity is the predecessor of itself, which corresponds 

to the diagonal within the design structure matrix. It is assumed that such behavior 
is not typical to automated production equipment and it is not considered within this 

research. 

3.4.3 Dependency Definitions 

For industrial automation process model discovery, the author proposes an extension 

to the rules established for the α-algorithm by Van der Aalst (W. V. D. Aalst 2016b). 
In the below definitions ’a >L b’ should be read as ’a is directly followed by b’ while 

’b ≯L a’ means ’b is not directly followed by a’. ’a →L b’ expresses the causal relationship 

between a and b. Contrary ’a#Lb’ shows that there is no relation between a and b. 
Finally, ’a ∥L b’ denotes that a and b have been observed in parallel. 

Original α-algorithm definitions: Let L be an event log over A ; i.e. L ∈ B(A ∗). Let 
a, b ∈ A . 

1. a >L b if and only if there is a trace σ = ⟨t1, t2, t3, ..., tn⟩ and i ∈ {1, ..., n − 1}
such that σ ∈ L and ti = a and ti+1 = b; 
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2. a →L b if and only if a >L b and b ≯L a; 
3. a#Lb if and only if a ≯L b and b ≯L a; 
4. a ∥L b if and only if a >L b and b >L a; 

Proposed αLC -algorithm definitions: Let L be an event log over A ; i.e. L ∈ B(A ∗) 

Let sub-log l ∈ L be limited to one-part style and one case per trace. Let a, b, c ∈ A , 
ts a start event and tc a complete event. 

1. a >l b if and only if there is a trace σ = ⟨t1, t2, t3, ..., tn⟩ and i ∈ {1, ..., n − 1}
where the timestamp (τ(ti) < τ (ti+1) or τ(ti) = τ(ti+1) as long as not (ti = tc 

and ti+1 = ts) and k ∈ {i + 1, ..., n} such that σ ∈ l and ti = ac and tk = bs and 

there is no j such that i < j < k and tj = cc; 
2. a →l b if and only if ac >l bs and bs ≯l ac; 
3. a#lb if and only if ac ≯l bs and bc ≯l as; 
4. a ∥l b if and only if ac >l bs and bs >l ac; 

Although αLC -definition #3 & #4 holds, they are of no importance for the proposed 

algorithm. Gantt charts are best suited to explain the two other definitions more in 

detail. According to Sommer (Sommer 2012) they are typically used in the automation 

domain to visualise the sequence of operation for a machine. The columns represent 
time increments while bars, displayed in the rows, stand for the duration of an activity 

where the beginning of the bar marks its ’start’ time and the end the ’complete’ time. 
For completeness, it needs to be mentioned that Gantt charts often also include links 

to express the dependencies between the different activities. It is precisely those de-
pendencies that Process Discovery aims to discover. Therefore, the Gantt charts shown 

within this thesis are drawn without the links: αLC -definition # 1 stipulates that a >l b 

if the timestamp τs(b) ≥ τc(a). Also, there cannot be a complete-timestamp of another 
activity in between unless τs(b) is the first start-timestamp following τc(a). Figure 3.4.1 

shows that the activities b and c, contrary to activity d, fulfill these requirements con-
cerning activity a. If activity c, is recorded a little earlier, as shown in figure 3.4.2, then 

the αLC -definition #1 leads to the conclusion that a, c >l b, d. 
αLC -definition #2 excludes a dependency found according to the αLC -definition #1 

if any case is observed where the timestamp τc(a) > τs(b). Possible such scenarios are 

shown in figure 3.4.3 in red for activity a in relation to activity b. 

3.4.4 dependencies matrices 

As described in the related works, dependencies matrices are a tool often used in the 

Process Mining domain. They consist of a square matrix with equal column and row 
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

a a 
b b 
c c 
d d 

Figure 3.4.1: Dependency Example 1 Figure 3.4.2: Dependency Example 2 

1 2 3 4 5 6 7 8 9 

a 
b 
a 
a 
a 
a 
a 

Figure 3.4.3: Criteria To Exclude Dependencies 

names. For this research, the column/row names are the names of the activities within 

a case sorted by their start timestamps. An example can be seen in figure 3.4.4. Here 

the rows are related to the start timestamp while the columns represent the complete 

timestamp. The diagonal of this matrix represent instances where an activity depends 

on itself. These cases are referred to as short loops in the Process Mining domain and do 

not exist for industrial assembly processes. A ’1’ marks a discovered dependency while 

a ’0’ marks a not existing dependency. The lower triangle of the matrix is used to mark 

situations where a start timestamp, according to the definitions of section 3.4.3 directly 

follows the complete timestamp of its previous activity (ac >L bs). The upper triangle 

is not used because the proposed algorithm considers life cycle information which can 

not be represented in a single dependencies matrix. The opposing dependencies matrix, 
representing complete timestamps (rows) following start timestamps (columns) (as >L 

bc), uses the upper triangle only. Inverting and transposing the opposing matrix onto 

the initial matrix using a logical ‘AND’ function creates the final matrix from which a 

flowchart can be constructed. 
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Figure 3.4.4: Sample Dependencies Matrix 
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load part (1) 0 0 0 0 0 0 0 0 0 0 0 
close clamps 1 (2) 1 0 0 0 0 0 0 0 0 0 0 
close clamps 3 (4) 1 0 0 0 0 0 0 0 0 0 0 
initiate R01 (5) 1 1 1 0 0 1 0 1 0 0 0 
initiate R02 (6) 1 1 1 1 0 0 1 0 0 0 0 
R01 weld / clear (7) 0 1 1 1 1 0 0 1 1 1 0 
R02 weld / reposition (8) 0 1 1 1 1 1 0 0 0 0 0 
open clamps 3 (9) 0 0 0 1 0 1 1 0 0 0 0 
R02 weld / clear (10) 0 0 0 1 0 1 0 1 0 0 0 
open clamps 1 (11) 0 0 0 0 0 1 0 0 1 0 0 
unload part (13) 0 0 0 0 0 0 0 0 0 1 0 

3.4.5 Simplified Flowchart 

Flowcharts often are the tool of choice in the industrial automation domain. Although 

they can contain logical splits and joins as well as decisions, the flowcharts used for this 

research consist of activities and dependencies only. Because the models are discovered 

for each style individually, there should be only one, ever repeating sequence of oper-
ations. Based on this assumption, it can be defined that multiple dependencies shown 

for an activity must be an ‘AND’ joint or split. An example of such a flow chart can 

be seen in figure 3.4.5. 

3.5 Interactive Trace Induction 

One of the main concerns in the Process Discovery domain is the quality of the discov-
ered model. The metrics required to express confidence in these approximations are not 
satisfactory. In his 2002 paper, Browning (Browning 2002) makes an important obser-
vation by stating: ’Some people confuse the real process (how work is really done) with 

the process model or description, which is only an abstract representation of the real 
process. . . . Thus, a prerequisite to process improvement (changing the real process) is 

increasing the adequacy and accuracy of the process model’. 

3.5.1 Traces and Their Usage 

Traces found in business processes are primarily caused by either faulty/incomplete logs 

or human intervention. Traces in industrial automation processes, on the other hand, 
are also caused by different part styles and parallel processes. Since these concurrent 
processes are often independent of each other, it has to be expected that the position 

of their activities within a log will vary. Also, the duration of the activities can vary, 
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load part

close clamps 1 close clamps 3initiate R01 initiate R02

R01 weld / clear R02 weld / reposition

open clamps 1

open clamps 3

unload part

R02 weld / clear

Figure 3.4.5: Sample Flow Chart 

which mostly is caused by fault conditions. For example, a clamp might close slower, 
because of weld slack collecting on it, which in turn will lead to the depending activities 

to show up later within the log. 
A casual observer typically concludes that the sequence of activities within a case 

clearly describes the process. This observation is a misconception. Figure 3.5.1 shows 

an example log representing the sequence of activities for a single part style. Applying 

the αLC -algorithm to one case only will yield the flowchart shown in figure 3.5.2, which 

differs from the complete model shown in figure 3.5.3. The reason for these discrepancies 

is the lack of dependencies which lets the onlooker infer that the start of a new activity 

depends on all of the recently completed activities. This confusion is best seen in the 

associated Gantt chart figure 3.5.4. 
The discovery of dependencies is only possible with the help of additional traces being 

recorded. Figure 3.5.5, for example, is a case of an equipment where activity a, b →l c 

and activity d →l e. Looking at this one case only will lead to the conclusion that 
activity a, d >l e and b, e >l c. Only when the second case (shown in figure 3.5.6) is 

considered it will become apparent that a →l c and that a#le. Therefore traces aid the 

model discovery by breaking up falsely perceived links and revealing previously unseen 

dependencies. 
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Figure 3.5.1: Log Example Style 1 

caseID style motionID startTime completeTime 
1 1 1 00:00:00 00:00:04 
1 1 2 00:00:04 00:00:05 
1 1 4 00:00:04 00:00:05 
1 1 5 00:00:04 00:00:05 
1 1 7 00:00:04 00:00:05 
1 1 6 00:00:05 00:00:10 
1 1 8 00:00:05 00:00:12 
1 1 9 00:00:13 00:00:14 
1 1 10 00:00:14 00:00:18 
1 1 11 00:00:18 00:00:19 
1 1 13 00:00:19 00:00:23 

load part

close clamps 1 close clamps 3initiate R01 initiate R02

R01 weld / clear R02 weld / reposition

open clamps 3

R02 weld / clear

open clamps 1

unload part

Figure 3.5.2: The One Trace Model 

3.5.2 Required Traces 

During previous experiments, it was found that the αLC -algorithm is capable of dis-
covering a highly accurate process model from a log comprised of just three, purposely 

selected cases. This led to the following question: ’Can an algorithm determine which 

minimum traces need to be present to allow for a highly accurate model discovery?’ 
Taking the Gantt chart figure 3.5.4 as an example, the potential causes of confusion, 
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load part

close clamps 1 close clamps 3initiate R01 initiate R02

R01 weld / clear R02 weld / reposition

open clamps 1

open clamps 3

unload part

R02 weld / clear

Figure 3.5.3: The Complete One Style Model 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

load part (1) 
close clamps 1 (2) 
close clamps 3 (4) 

initiate R01 (5) 
initiate R02 (6) 

R01 weld/clear (7) 
R02 weld/repo (8) 
open clamps 3 (9) 

R02 weld/clear (10) 
open clamps 1 (11) 

unload part (13) 

Figure 3.5.4: Random Case 

due to the lack of links, can be pinpointed. The ’start’ and ’complete’ events of ac-
tivities 2, 4, 5 and 6 are identical. Also, the ’start’ events of activities 7 and 8 follow 

directly after that. Therefore, it is not possible to determine which activities depend 

on each other. This confusion can only be solved if one of the four previously men-
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1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 9 10 11a 
ab 
bd 
d e e 

c c 

Figure 3.5.5: Example Case 1 Figure 3.5.6: Example Case 2 

tioned activities completes later than the other three. Only then it will become clear 
which other activities depend on it. All dependencies, therefore, will be known if such 

a scenario has been observed for all four activities. The same reasoning can be applied 

to activities 7 and 8 since they are executed in parallel. The following theorems have 

been developed to limit the traces to be recorded to a minimum: 

Theorem 6 Contrary to business processes the edge in a flowchart representing an 

industrial automation process can be considered instantaneous, which means that an 

activity starts immediately after the last preceding activity has been completed. If there 

is only a single preceding activity the dependency can be considered as correct and does 
not need further checking. 

Theorem 7 If activity ‘b’ directly follows activity ‘a’ (a >l b) and activity ‘c’ directly 

follows activity ‘b’ (b >l c) then there is no explicit dependency between activity ‘a’ and 

‘c’ (a#lc). This also holds for longer dependency chains. 

Theorem 8 Finally definition two of the αLC -algorithm (see section 3.4.3) holds which 

states that bs can not depend on ac if ac has been observed later than bs as well. 

The dependencies matrices introduced in chapter 3.4.4 also can be helpful to deter-
mine which minimum traces are required to discover a highly accurate process model. 
Parsing the random case, depicted in figure 3.5.4 will yield the dependencies matrix 

shown in figure 3.5.7. In this initial matrix all direct following dependencies are marked 

by an ’X’ because none of the above definitions have been applied and therefore the 

dependencies have not been confirmed. 
Applying theorem 6 allows the values of the cells highlighted in green in figure 3.5.8 

to be changed to ‘1’ because there is only one preceding activity. According to theorem 
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Figure 3.5.7: Initial Depend. Matrix Figure 3.5.8: Depend. Matrix 1st Iteration 
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close clamps 1 (2) X 
close clamps 3 (4) X 
initiate R01 (5) X 
initiate R02 (6) X 
R01 weld / clear (7) X X X X 
R02 weld / reposition (8) X X X X 
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R02 weld / clear (10) X 
open clamps 1 (11) X 
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load part (1) 
close clamps 1 (2) 1 
close clamps 3 (4) 1 0 
initiate R01 (5) 1 0 0 
initiate R02 (6) 1 0 0 0 
R01 weld / clear (7) 0 X X X X 
R02 weld / reposition (8) 0 X X X X 0 
open clamps 3 (9) 0 1 
R02 weld / clear (10) 0 0 1 
open clamps 1 (11) 0 0 0 1 
unload part (13) 0 0 0 0 1 

7 all the values of the red shaded cells can be set to ’0’ since they would be part of 
chained dependencies. Finally, based on theorem 8 the cells marked in blue can be set 
to ’0’ as well because parallel activities can not depend on each other. 

Above example shows that the evaluation of a single trace already lead to the dis-
covery of 50% of the existing or non-existing dependencies. The cells still marked with 

an ’X’ and the blank cells are yet to be evaluated. Now it is possible to repeat this 

process by interactively adding, purposely chosen traces that can explain the remaining 

dependencies. The presence or absence of these traces within the log allows for a better 
judgement regarding the quality of the resulting process model. 

3.5.3 Interactive Trace Induction 

In section 3.5.2, the criteria for a minimum set of traces needed for a highly accurate 

model discovery, have been laid out. Fortunately, the automation domain offers the 

opportunity to influence the process. This thesis, therefore, proposes the concept of 
’interactive trace induction’. In many of today’s PLC programs, physical sensor inputs 

are mapped to meaningful tags. Instead of hoping for weld slack, that slows down 

the clamp, to build up an additional condition can be added to that mapping, which 

allows the sensor tag to be delayed (see figure 3.5.9). Initiating that delay, manually or 
through OPC, will result in a new trace being recorded. 

The rules as stated in section 3.5.2, first can be used to determine which of the 

activities are suspect. Once identified, the corresponding sensor tags can be delayed 

one by one, until all unrelated activities are evaluated. This process needs to be repeated 

for every style. The outcome is a event log of all traces, which are required to describe 

the process. 
If the inclusion of this additional tag becomes standard, there will be no extra time re-

quired for its implementation into new production equipment. Modifying legacy equip-
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Figure 3.5.9: Required Logic Modification 

ment will require only little effort, as long as its control logic adheres to some tag 

standardisation. 
The main advantage of ’interactive trace induction’, is that the process of model 

discovery no longer depends on chance. Instead, the required traces are induced on 

demand. Since this can be done at a convenient time, it has minimum impact on 

production. At the same time, external processes impacting the cases recorded, can be 

kept to a minimum, thus increasing the quality of the log. Because ’interactive trace 

induction’ can discover the desired model with a minimum of traces, the time for data 

logging can be reduced from weeks, or even months to just a few hours. Besides, the 

processing time for such a minimalistic log decreases dramatically. 

3.6 Summary 

In the course of this chapter a methodology was introduced that allows for the auto-
mated discovery and logging of manufacturing equipment status data (see section 3.1). 
Since the data obtained can be flawed, rules were established in section 3.2 to gauge the 

log quality and to potentially correct the identified faults. Clustering the events into 

cases proved to be the main requirement for any data analysis activity. The clustering 

was achieved by splitting the events into five categories which then were combined into 

cases. It has been hypothesized that the completeness of those cases can be evaluated by 

applying additional engineering features combined with machine learning algorithms. 
The pre-processed event logs are the foundation of the knowledge-based improve-

ment discovery algorithms described in section 3.3. These algorithms aim to identify 

previously unknown irregularities that slow down the manufacturing process. Business 

process mining has a similar aim and it therefore was reasoned that it could be ap-
plicable for manufacturing processes as well. This paper introduces in section 3.4 the 

αLC -algorithm which enables the discovery of a highly accurate process model based 

on the previously captured production equipment event log. The work with the αLC -
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algorithm triggered the question if it is possible to determine which cases had to be 

observed to discover a highly accurate process model. This thought finally led to the 

development of the iterative trace induction described in section 3.5. This algorithm 

represents a reversal of the discovery process by making assumptions regarding the 

process at first and then validating each of those assumptions by delaying potentially 

related activities. 
In the following chapter the above described framework is put to the test utilising 

an extensive data set obtained from an automotive body shop and some artificial data 

sets used to simulate behaviour that was not observed within the real life data. 
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4 
Case Study And Experiments 

The majority of experiments were done with data from an automotive body shop at the 

Opel manufacturing plant in Eisenach/Germany. At the time of the study this plant 
manufactured, the now obsolete, Opel Adam at a rate of approximately 600 - 1000 units 

a day. The output range strongly depended on the number of production shifts. 
Often a body shop is divided into several areas. Typically zones for the manufacturing 

of the underbody, the body sides, the roof and the hang-on parts (doors, hood …) can be 

found. The underbody, the body sides and the roof are brought together in geometric 

fixtures, so-called framing stations, where they are tagged together. This process is 

followed by the re-spot stations where the remaining weld spots are placed on the body 

of the car. Finally, the hang-on parts are attached to the car body on the fitting line. 
The slowest station dictates the output of the body shop since all these manufacturing 

stations are interconnected. 
At the Eisenach plant manufacturing engineering had identified four re-spot stations 

as the bottleneck with the help of the existing plant floor systems. A systematic review 

of theses stations, however, did not lead to any improvement suggestions. For that 
reason, it was decided that for this project, the data of all the Rockwell based cells 

within this body shop should be collected but the focus of the analysis should be on 

said four stations. 
One of the stipulations for the project was to use, wherever possible, existing tech-
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nology and infrastructure. This restriction would keep the budget to a minimum and 

eliminate the need for additional training of the onsite personnel. 
As previously mentioned, the project was split up into five sub-projects. Therefore 

the remainder of this chapter is structured as follows: Section 4.1 explains the details 

of the automated data collection followed by the preprocessing of the recorded data in 

section 4.2. Section 4.3 shows the application of the previously introduced heuristics 

to generate Gantt charts that are marked up with improvement suggestions. Section 

4.4 documents the application of Process Discovery algorithms since the previously 

obtained charts are based on perceived dependencies between the events rather than the 

real dependencies. The methodology chapter 3.5 introduced the concept of ’interactive 

trace induction’ which allows for the recording of the traces needed for a proper model 
discovery. The matching experimental results are presented in Section 4.5. 

4.1 Data Collection 

The methodology described in chapter 3.1 was implemented using VB.net and the 

Advosol OPC DA .NET framework. It has been installed on a single workstation 

PC, along with an OEM version of RSLinx, as OPC server and a developers version 

of SQL Server. The chosen OPC settings have been previously explained in chapter 
3.1.3. At the time of the experiment, 193 stations, controlled by 27 Rockwell PLCs, 
were monitored, while logging ∼1.000.000 events a day. The monitoring architecture is 

shown in figure 4.1.1. 

Figure 4.1.1: Monitoring Architecture 

It consists of a PC on which a SQL Developer Server is installed together with 

the developed collection algorithms which also act as an OPC client (1). This OPC 

client communicates with RSLinx, which represents the OPC server. Depending on the 

license used RSLinx can either be installed on the same computer on which the OPC 
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client resides, or it could be on a remote computer allowing access to multiple clients. 
Through the OPC client, OPC groups with the items to be monitored are defined and 

submitted to the server (2). Within the OPC server, 27 topics linking to 27 PLCs have 

been configured to enable communication. The OPC server monitors the requested 

items (3) and upon detecting a change raises an event within the OPC client. This 

event leads to its tag being stored within the SQL database together with its current 
state and a timestamp. 

One of the main concerns, within IT, was the increased network load due to the 

data collection efforts. The system was implemented in a plant which has a 100 Mbit/s 

Ethernet system for the production floor level. It was found that communication to the 

PLCs increased by 3.8%; from 371.164 packets/s to 385.171 packets/s. Since this was 

a minor increase of overall network traffic, the work was cleared to proceed by the IT 

department. 
The controls group, on the other hand, was concerned that the constant monitoring 

of the PLC through OPC would put an additional burden on the overhead time slice. 
Therefore some code was created that could measure the overhead time slice within 

the PLC, and it was found that, although the monitoring caused an relative increase 

of 3.89%, from 7.7% to 8%, it was still well within the preset boundaries of maximum 

10%. 
Additional code was implemented within the PLC program that measured 200 cycle 

times of a particular motion in parallel to the OPC data acquisition to evaluate it the 

external monitoring would introduce any errors. The result is shown in figure 4.1.2 and 

can be summed up by stating that the OPC measurements were within ±1.5% of the 

measurements obtained directly within the PLC. What can not be seen in the figure 

is that the timeline of the OPC curve is shifted by an average of 100ms to the right. 
These errors were deemed acceptable for this research. 

The data for these experiments were collected over a two day period. The data logging 

resulted in approximately 330,000 events being recorded for the four said stations. A 

more in detail evaluation of these records is given in the following chapter. 

4.2 Log Preprocessing 

Before going into the preprocessing details it needs to be mentioned that the sequences 

of operation, for the four chosen stations, were unknown to the author of this thesis. 
This underlines that the proposed methodologies are not customised to this problem but 
instead are applicable to assembly and joining processes in general. A typical sequence 

for such a station is shown in figure 4.2.1: 
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Figure 4.1.2: OPC vs. PLC Cycle Values 

4.2.1 Quality Evaluation 

The methodologies to evaluate the different quality criteria introduced in sections 3.2.2 

- 3.2.18 were encoded with Python and applied to the data obtained from the Eisenach 

body shop. The results have been combined in table 4.2.1. It has to be noted that 
the rows marked in gray do no impact the logs quality as these faults can be corrected 

during pre-processing. 
When calculating the correctness of the recorded events, missing relationships were 

not considered, because they can be correctly discovered with the algorithm proposed in 

section 3.2.5. The incorrect events and incorrect relationships were also not included in 

the calculation because they are caused by additional events due to programming and 

mechanical errors, which can be removed. The counts shown for incorrect timestamps 

are based on the station in manual mode for which the whole case was removed. Let 
tm be the missing events in % and τm the missing time stamps in percent then the 

correctness c can be expressed as: 

c = 100% − (tm + τm) (4.1) 

The missing timestamps could also be estimated using various imputation methods. 
It, however, is presumed that imputation introduces an error within the data as well. 

The table 4.2.1 shows the highest error rate was recorded for station 2. The error of 
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Table 4.2.1: Evaluation Summary 

description 
station 1 station 2 station 3 station 4 

count % count % count % count % 

events 
recorded 

59724 100 89682 100 104064 100 76004 100 

correctness of 
records 

99.22% 96.42% 99.61% 99% 

missing / 
unclear 
events 

222 0.37 774 0.86 371 0.36 589 0.77 

missing 
relationship 

1198 2 2424 2.7 1224 1.18 1229 1.62 

missing 
timestamps 

242 0.41 2438 2.72 35 0.03 176 0.23 

incorrect 
events 

88 0.15 1137 1.27 203 0.2 2046 2.69 

incorrect 
relationships 

216 0.36 21 0.02 0 0 61 0.08 

incorrect 
timestamps 

127 0.21 315 0.35 251 0.24 165 0.22 

imprecise 
timestamps 

0 0 0 0 0 0 0 0 

irrelevant 
events 

0 0 0 0 0 0 0 0 

cleaned cases 
obtained 

1157 1181 1185 1184 
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return dump 2 
advance dump 1 

skid load part 
close C01 (V1) 
close C02 (V1) 
close C03 (V2) 
init robot R01 
init robot R02 
R02 weld/repo 
robot R01 weld 
open C03 (V2) 
robot R02 weld 
open C01 (V1) 
open C02 (V1) 

return pin 1 
skid unload part 

advance pin 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

Figure 4.2.1: Gantt Chart Of Example Machine Sequence 

less than 4% could be considered marginal, and because the model discovery does not 
require a seamless log, it was decided to delete all events with missing or unclear events 

as well as missing timestamps as discussed in section 3.2.20. 

4.2.2 Case Clustering 

Missing relationships, as explained in section 3.2.5, need to be resolved because the 

analysis described later on require that the events are clustered into cases which each 

represent one individual machine cycle. As previously mentioned the process activities 

can be identified based on a part being present in the station. Algorithm 2 offers a 

methodology that allows to encode this concept in Python: 
In the next step, the load and unload events are identified. Load events are events 

that have been initiated together just previous to the first event with a part being 

present. The unload event, according to the definitions from section 3.2.5, is the last 
event for which the presence of a part has been recorded. Remaining are the transition 

events. To differentiate between reset and setup events, fields are added that capture 

the previous and next style. A query then is used to determine whether the event 
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Result: All steps belonging together are identified with a unique sequence 
number (seqNum) 

set seqNum = number of part present signals; 
loop through events from the bottom up; 
while not first recorded event do 

if part present signal then 
store reverse of signal as part present (PP); 
if PP then 

reset paste mode; 
set copy mode; 

else 
set paste first step mode; 

end 
else 

if paste mode then 
if PP then 

paste style & seqNum; 
else 

if paste first step mode then 
paste style & seqNum; 
memorise first step tag; 
reset paste first step mode; 

end 
if tag = first step tag then 

paste style & seqNum; 
else 

reset paste mode; 
end 

end 
end 
if copy mode then 

copy style & seqNum; 
decrement seqNum; 
set paste mode; 
reset copy mode; 

end 
if neither copy nor paste mode then 

set style & seqNum to ’0’; 
end 

end 
end 

Algorithm 2: Process Cycle Identification 
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always follows a style x independent of the next part style y. If that is the case, the 

event can be considered a reset event. Once all reset events have been identified, it 
can be concluded that the remaining transition events must be set up events needed 

to prepare the station for the next part style. This assumption can be confirmed by 

double checking that the setup events are recorded the majority of the time for a given 

previous/next style combination. 
The clustering of the data, associated with the four body shop stations, resulted in 

the discovery of 4640 cases. These cases were grouped together into 175 traces using a 

CRC32 algorithms described in section 3.2.21. 

Feature Engineering 

Instead of log repair this thesis applies machine learning techniques to identify flawed 

traces. Manual expert evaluation of the identified traces yielded that there is too little 

information available to make a judgement if the trace is complete or not. Therefore, 
additional columns for engineered features were added to the traces by applying the 

rules defined in section 3.2.22. 

Tagging The Data 

Supervised machine learning specifies that a portion of the data is tagged. This re-
quirement lead to the tagging of 10% randomly selected traces for each of the stations. 
During that process, it was essential to go thoroughly through every cycle to determine 

its completeness. This effort proved to be more cumbersome then expected because, 
based on the available features, it was not apparent if a case was complete or not. Ex-
perts had to cross-reference the PLC code to determine if all events had been captured 

correctly. This also explains, why simple reasoning algorithms could not be used in-
stead of machine learning. As a result of this review, a column ’isPlossible’ was added 

to the grouped traces. 

Choice Of Validation Method 

The two validation methods considered where split, train and test and stratified cross 

validation. First the split, train and test validation was implemented but it was found 

that this technique reduced the already small set of tagged data even further resulting in 

an under-performing model. The analysis was repeated using stratified cross validation. 
This has the benefit that the training set, through the iterations, sees all the tagged 

data which in turn leads to a better model. 
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Choice Of Tuning Method 

Most machine learning algorithms have a set of parameters which allow for fine tuning. 
As described by Mueller et al. (Müller and Guido 2016), finding the correct parameters 

is an iterative process. Mueller recommends utilising the grid search and cross validation 

implemented in scikit-learn over explicitly looping through all the possible parameters 

and doing a cross validation for each combination. During the experiments it was found 

that the second approach yields better results than the scikit-learn implementation. 
Therefore this approach was used for fine tuning in conjunction with stratified cross 

validation. 

Machine Learning Algorithms Applied 

Because of the engineered features a decision tree seemed to be the best choice to start 
with. Since, according to Mueller et. al (ibid.), a random forest typically outperforms a 

single tree, a random forest classifier was applied to the data for comparison purposes. 
Other classification algorithms provided by sci-kit learn and applied to the problem 

are: Gradient boosting classifier, k-nearest neighbors classifier, support vector classifier, 
logistic regression and Gaussian naive Bayes. 

Summarising the experiment it can be said that all classifier algorithms performed 

reasonably well on the data set (see table 4.2.2). The decision tree not only showed 

one of the best accuracies with 99% but also one of the smallest tolerances with +/-1% 

considering a 95% probability. The confusion matrix (figure 4.2.2) also shows, that 
the distribution between the two classifications is almost equal, which is desirable for 
machine learning. When adjusting the hyper parameters focus was placed on avoiding 

false positives, which would lead to false discoveries during Process Discovery. Since a 

decision tree is the simplest approach, which also is human readable (figure 4.2.3), it 
was chosen as the processing model. 

4.3 Knowledge-Based Discovery 

For evaluation purposes, reasoning based algorithms for all of the above criteria (section 

3.3) were implemented using Python and applied to event logs of the four real-life 

framing re-spot stations. 

4.3.1 Excessive Manual Cycles 

The station status has been recorded together with the events. Within Python, the 

number of cycles, interrupted through manual mode, can be counted by grouping the 
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Figure 4.2.2: The Confusion Matrix 

Table 4.2.2: Accuracy Of Classifier Models 

accuracy 
without hyper 

parameter 
tuning 

accuracy with 
hyper parameter 

tuning 

gradient 
boosting 
classifier 

94% +/- 8% 99% +/- 1% 

random forest 
classifier 93% +/- 8% 99% +/- 1% 

decision tree 93% +/- 8% 99% +/- 1% 
gaussian naive 

bayes 
87% +/- 5% 87% +/- 5% 

support vector 
classifier 91% +/- 8% 95% +/- 3% 

logistic 
regression 

91% +/- 12% 95% +/- 2% 

k-nearest 
neighbors 

90% +/- 7% 99% +/- 2% 

case summaries based on the mode. This count can be expressed as a percentage to 

be evaluated based on a predetermined threshold. This evaluation is done during the 

preprocessing phase and does not result in a mark-up within the Gantt chart. Instead 

the number of manual cycles in comparison to the total number of cycles is provided 

to the maintenance group to act upon if required. 
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Figure 4.2.3: The Decision Tree 

4.3.2 Identical Units 

It can be assumed that units sharing the same pneumatic manifold are sized identically. 
This fact allows the assumption that the cycle time for advancing and returning those 

units should be identical. Within the proof of concept, the duration for every motion 

has previously been calculated. By grouping the motions based on their start-tag, the 

minimum duration can be determined and used as a reference for the remaining units. 
This methodology was implemented as described in the following algorithm 3. 
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Result: minimum cycle time for identical units 

input parameters: sequence matrix; 
add column duration calculating endTime - startTime; 
group sequence by startTag appending the minimum duration; 
rename duration column to minDuration; 
merge minDuration with sequence matrix based on startTag; 

Algorithm 3: Minimum Duration Of Identical Units 

4.3.3 Opposing Motions 

Within the log used for the experiments, opposing motions can be detected based on 

their unit naming. The units name can be extracted from the end tag and added in a 

separate column to the log. Now for each of the unit names the minimum cycle time 

can be determined. If the opposite motion exceeds this minimum, it can be marked up 

accordingly within the Gantt chart. The algorithm can be summed up as shown below 

in algorithm 4. 

Result: minimum cycle time for opposing motions 

input parameters: sequence matrix; 
add column extracting unit name from motionLabel; 
add column duration calculating endTime - startTime; 
group sequence by unit name appending the minimum duration; 
rename duration column to minMotionDuration; 
merge minMotionDuration with sequence matrix based on startTag; 

Algorithm 4: Minimum Duration Of Opposing Motions 

4.3.4 Double Triggers 

Double triggers can be identified if the same activity with an identical end timestamp 

exists twice in the log. This can be checked within Python with the help of the ’dupli-
cate’ function evaluating the ’motionID’ and the ’endTime’. Double triggers could also 

be detected if two events are found of which the one with the earlier start timestamp 

is missing the complete time stamp. 

4.3.5 Bouncing Motions 

As described for the opposing motions, it is possible to identify the advance and re-
turn motion of a unit based on the naming. A bouncing motion can be identified if 
two activities for the same motion have been recorded within the same machine cycle 
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without the opposing motion being present in between. A possible approach is parsing 

through a case and writing every activity, with the exception of robot related activities, 
into a temporary matrix. Only if the opposing motion is found, the record is removed 

from that matrix. If the motion already is present while attempting to write it into the 

temporary matrix, it must be an indicator for a bouncing motion. The implementation 

has been done according to the following pseudo-code shown in algorithm 5. 

Result: matrix of bouncing motions 

input parameters: sequence and temp matrix; 
while not last activity in sequence do 

extract the unit and action name from the startTag; 
if activity not robot related then 

if unit not in temp matrix then 
add activity to temp matrix; 

end 
if unit in temp matrix and this is opposing activity then 

remove unit from temp matrix; 
end 
if unit and same activity are in temp matrix then 

add unit to list of bouncing motions; 
end 

end 
end 

Algorithm 5: Identifying Bouncing Motions 

4.3.6 Gaps 

Gaps describe times where there is no motion occurring within a station. An expert 
reviewer can spot them by reviewing the Gantt chart. For automation purposes, the 

bars within the Gantt chart can be split up into 0.2s columns. The first column that 
does not intersect with any of the bars marks the beginning of a gap. This gap ends 

with the next column, that is intersected. For the evaluation, the area is marked with a 

red rectangle and annotated with the duration of the gap. The logic was implemented 

according to algorithm 6: 

4.3.7 Station Blocked 

As previously described the station being blocked is a special case of a gap. Therefore 

the same methodologies, as described for the gap detection above, apply. The difference 

is that this gap is detected just prior to the unload event. 
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Result: list of gaps 

input parameters: matrices with bar start and end times; 
while not last value in start matrix do 

create values between start and end time with 0.1s increments; 
append list to checkpoints list; 

end 
bin the checkpoints into 0.1s bins using histogram function; 
while not end of bin do 

if if bin empty and no gap start found yet then 
record gap start; 

end 
if if bin empty and gap start found yet then 

record gap end; 
end 

end 

Algorithm 6: Gap Detection 

4.3.8 Special Event - Robot Initiation 

The robot initiation typically takes 1 to 2 seconds. If the actual duration, shown in 

the Gantt chart exceeds those limits, the activity can be marked up accordingly. Be-
cause of this simplicity, the methodology was not implemented within the experimental 
evaluation. 

The issues automatically discovered for the four stations are summed up in table 

4.3.1. 

Table 4.3.1: Evaluation Results For Four Body Shop Re-spot Stations 

station 1 station 2 station 3 station 4 

number of cycles recorded 1157 1181 1185 1184 
excessive manual cycles < 0.5% < 0.5% < 0.5% < 0.5% 

time differences for identical units 0 sec. 0.2 sec. 0.2 sec. 0 sec. 
time differences for opposing motions 1 sec. 2.3 sec. 1.2 sec. 1.9 sec. 
double triggers events (# of times) 7 (88) 13 (1033) 9 (203) 11 (2045) 

bouncing motions events (# of times) 0 2 (104) 0 0 
gaps 0.8 sec. 6.4 sec. 10.7 sec. 0.4 sec. 

station blocked 0.3 sec. 5.5 sec. 0.4 sec. 0.2 sec. 
difference typical to fastest trace 0 sec. 0 sec. 0 sec. 10 sec. 
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4.4 Process Model Discovery 

4.4.1 Model Discovery 

For the evaluation of the existing Process Discovery algorithms, as well as the proposed 

αLC -algorithm, an event log was constructed artificially because the logs obtained from 

the four ’respot’ stations did not include all the possible pitfalls often found within 

manufacturing stations. This became apparent when, unexpectedly, a perfect model 
was discovered from the real life log with a earlier version of the αLC -algorithm. An 

artificial log also allows for better control over the number of traces contained within 

the derived record and also enables comparison of the discovered model to the model 
underlying the generated log. The model used incorporated three different styles of 
parts to be manufactured. For style 1, the clamps 1 are used; for style 2, the clamps 

2 are actuated instead, while in style 3 both clamps are being utilised. An example of 
the log data is shown in figs. 4.4.1 to 4.4.3 with the above-described differences marked 

in yellow. The traces for these sequences were generated by randomly varying the life 

cycle of the different events. In total 10000 cases for all three styles were generated 

using an Excel spreadsheet and randomising formulas. The underlying model for style 

1 is shown in figure 4.4.4 as a reference. 

load part

close clamps 1 close clamps 3initiate R01 initiate R02

R01 weld / clear R02 weld / reposition

open clamps 1

open clamps 3

unload part

R02 weld / clear

Figure 4.4.4: The One Style Model - High Trace Count 
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Figure 4.4.1: Log Example Style 1 

caseID style motionID startTime completeTime 
4 1 1 00:01:38 00:01:42 
4 1 2 00:01:42 00:01:44 
4 1 4 00:01:42 00:01:44 
4 1 5 00:01:44 00:01:45 
4 1 7 00:01:45 00:01:50 
4 1 6 00:01:49 00:01:54 
4 1 8 00:01:54 00:02:01 
4 1 9 00:02:01 00:02:03 
4 1 10 00:02:03 00:02:08 
4 1 11 00:02:08 00:02:09 
4 1 13 00:02:09 00:02:13 

Figure 4.4.2: Log Example Style 2 

caseID style motionID startTime completeTime 
2 2 1 00:00:30 00:00:34 
2 2 3 00:00:34 00:00:35 
2 2 4 00:00:34 00:00:37 
2 2 5 00:00:35 00:00:36 
2 2 7 00:00:36 00:00:42 
2 2 6 00:00:37 00:00:45 
2 2 8 00:00:45 00:00:52 
2 2 9 00:00:52 00:00:54 
2 2 10 00:00:54 00:00:58 
2 2 12 00:00:58 00:01:00 
2 2 13 00:01:00 00:01:04 

Figure 4.4.3: Log Example Style 3 

caseID style motionID startTime completeTime 
1 3 1 00:00:00 00:00:04 
1 3 2 00:00:04 00:00:05 
1 3 3 00:00:04 00:00:05 
1 3 4 00:00:04 00:00:07 
1 3 6 00:00:06 00:00:12 
1 3 5 00:00:07 00:00:16 
1 3 8 00:00:12 00:00:19 
1 3 7 00:00:16 00:00:22 
1 3 9 00:00:19 00:00:20 
1 3 10 00:00:20 00:00:24 
1 3 11 00:00:24 00:00:26 
1 3 12 00:00:24 00:00:26 
1 3 13 00:00:26 00:00:30 

Starting with a life-cycle-based log, the αLC -algorithms discovery process is executed 

in the following steps: 

1. Cluster log into cases: (see paragraph 3.2.5). This step was not necessary for the 

artificial log because the generated cases already had a reliable case identifier. 
2. Use decision tree learner to filter out incomplete cases: (see paragraph 4.2.2). The 

artificial log did not contain any flaws since it was created for model discovery, 
and not the evaluation of the classifier algorithms. Therefore, this processing step 

did not have to be applied. 
3. Filter log for one-part style only: (see paragraph 3.4.1) 
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4. Create a design structure matrix layout: This is achieved by sorting the 

events within the log for one style by the start timestamp. The same order is 

applied for row and column headers. 
5. Split log into ’start’ and ’complete’ events: The log samples figs. 4.4.1 

to 4.4.3 show only one entry per activity which includes a ’start’ and a ’complete’ 
timestamp. To discover, if a ’complete’ timestamp is before another activities’ 
’start’ timestamp, it is more efficient to split the record into two events; one for 
the ’start’ timestamp, and one for the ’complete’ timestamp. The process involves 

duplicating the log, removing the ’complete’ timestamp column from the original, 
and the ’start’ timestamp column from the duplicate. Merging the two records, 
while adding a type column that indicates if the event is a ’start’ or ’complete’ 
event, will yield the desired result. 

6. Sort log by timestamp, event type, and motion ID: According to the 

definition 3.4.3, an activity follows another even if its ’start’ timestamp is equal 
to the previous events ’complete’ timestamp (τc(a) = τs(b)). Sorting the log by 

the above added event type will put the ’complete’ events in front of the ’start’ 
events to aid this discovery. 

7. Use hashing techniques to determine traces within sub-log: (see para-
graph 3.2.21) 

8. Create sub-log l ∈ L with just one representative case for each trace 

and style: Since the proposed αLC -algorithm is based on the traces available, 
the author proposes a reduction of the log to one representative example per trace 

and style only. For the sample, this means that instead of 74,074 events for style 

1, only 8,140 events need to be evaluated. This approach has also previously been 

described by Schimm (Shimm 2004). 
9. Parse sub-log l for the opposing relation bstart >l acomplete into the binary 

−DSM 
←D: Adhering to the definitions of 3.4.3, the algorithm shown in listing 4.1 

was used to parse the sub-log into the 
←D− matrix figure 4.4.5. For better visibility, 

the marks found have been highlighted in red. 
− ←−

10. Transpose and invert 
← D′⊺: The result can be seen in the matrix D to create 

figure 4.4.6 in which the red markings, highlighting the opposing dependencies 

found, persist. 
→11. Parse sub-log l into the binary DSM 
−D: The markings within this matrix 

are placed according to the αLC -definition #1 using the algorithm shown in listing 

4.2. The result of this operation can be seen in matrix figure 4.4.7. The marks 

found have been accentuated in light green. 
−→ ←−

12. Combine the two matrices following DR = D ∧ D′⊺: This yields the result 
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design structure matrix DR as shown in figure 4.4.8 for the high trace count log, 
figure 4.4.9 for the low trace count log and figure 4.4.10 for the complete high 

trace count log that has not been reduced to one style only. Here, the dark green 

markings represent the resulting, direct following dependencies. 
13. Graphic representation: The lower triangle of the DSM DR now shows all 

the causal relations satisfying the αLC -definition #2. Since the log for one-part 
style only exhibits possible AND connections, a simple flowchart can easily be 

created from DR by converting the row headers into nodes and creating edges 

between those nodes for all the marks within DR. The result for the matrices 

figs. 4.4.1 to 4.4.3 is shown in figs. 4.4.11 to 4.4.13. Note: the red edge shown 

in figure 4.4.12 represents a causality that was discovered but does not exist in 

reality. For the model, across all styles, in figure 4.4.13, needs to be explained 

that all the dependencies shown are correct but the model lacks the OR and 

XOR connections that allow for differentiation between the different styles. These 

connections could be discovered by extracting the model for each style and then 

mashing them afterwards. The author, however, can not think of any use cases 

for such a unnecessarily complex model within the industrial automation domain. 

Listing 4.1: Parse sLog Into oDSM 

for index , row in sLog . i t e r r o w s ( ) : 
i f sLog . l o c [ index ] [ ’ type ’ ] == ’ s t a r t ’ : 
column = sLog . l o c [ index ] [ ’ motionID ’ ] 
case = sLog . l o c [ index ] [ ’ caseID ’ ] 
po in t e r = index 
while sLog . l o c [ po in t e r ] [ ’ caseID ’ ] == case and 

po in t e r < ( len ( sLog ) −1): 
po in t e r += 1 
i f sLog . l o c [ po in t e r ] [ ’ type ’ ] == ’ complete ’ : 
row = sLog . l o c [ po in t e r ] [ ’ motionID ’ ] 
C4_Ref22 . l o c [ row , column ] = True 

The whole αLC -Process has been summed up in figure 4.4.14 below to offer a better 
overview. 

4.4.2 Comparison With Process Discovery Algorithms 

Testing of the established Process Discovery algorithms vs. the newly proposed αLC -
algorithm was done using the artificial logs as described previously, one with a low and 

the second with a high number of traces. As previously stated, one of the goals of this 

research was to discover a highly accurate process model using a framework that can 

be used by tradesmen who possess basic process knowledge but have no understanding 
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Figure 4.4.5: Opposing Dependencies Ma- Figure 4.4.6: Opposing Dependencies Ma-
trix - High Trace Count trix Transformed - High Trace Count 
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Figure 4.4.7: Dependencies Matrix - High Figure 4.4.8: αLC Result: One Style - High 
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Figure 4.4.9: αLC Result: One Style - Low Figure 4.4.10: αLC Result: All Styles - High 
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Listing 4.2: Parse sLog Into DSM 

for index , row in sLog . i t e r r o w s ( ) : 
i f sLog . l o c [ index ] [ ’ type ’ ] == ’ complete ’ : 
column = sLog . l o c [ index ] [ ’ motionID ’ ] 
case = sLog . l o c [ index ] [ ’ caseID ’ ] 
po in t e r = index 
found = 0 
while ( ( sLog . l o c [ po in t e r ] [ ’ type ’ ] == ’ s t a r t ’ ) or 

( found == 0) ) and po in t e r < ( len ( sLog) −1) and 
sLog . l o c [ po in t e r ] [ ’ caseID ’ ] == case : 

po in t e r += 1 
i f sLog . l o c [ po in t e r ] [ ’ type ’ ] == ’ s t a r t ’ : 
found = 1 
row = sLog . l o c [ po in t e r ] [ ’ motionID ’ ] 
DSM. l o c [ row , column ] = True 

of parameter tuning. Therefore, all the algorithms were tested using their default 
parameters. Typically, automated production equipment, when considering one-part 
style only, has one fixed sequence. This sequence hereafter, will be referred to as 

’complete sequence’. In table 4.4.1, the column ’wrong node’ refers to a node that is 

present in the discovered model but is not part of the complete model. A missing node 

on the other side is a node that is present in the complete model but is not present in 

the discovered model. The same holds for edges. Missing edges are edges that have not 
been found, where wrong edges are edges that are shown in the discovered model but 
do not exist in the complete model. 

Table 4.4.1 shows that the β-algorithm and Heuristic++ miner yield the same re-
sults as the αLC -algorithm. Although more complicated, this was expected for the 

β-algorithm because of its similarity to the αLC -algorithm. The Heuristic++ miner 
seems to have discovered the correct model by chance only. It is based on thresholds 

and does not discover edges for which the number of occurrences was not above that 
threshold. This shortcoming becomes especially evident when limiting the number of 
traces to eight selected versions that include all information needed for a proper discov-
ery. The β-algorithm and the αLC -algorithm are still able to discover a highly accurate 

model under such circumstances while the Heuristic++ miner no longer can (see figure 

4.4.2). Limiting the traces further to only three traces, which still contain the required 

information, also prevents the β-algorithm from discovering the complete model, while 

the αLC -algorithm still finds the proper dependencies. The IMLC, although it con-
siders the activities life cycle information, did not perform as expected. The problem 

arises because the algorithm is trying to discover interleaved dependencies according 

to Leemans (S. J. J Leemans, Fahland, and W. M. P Van Der Aalst 2016), which 

results in a diagram with lots of edges. For the Fuzzy miner, it needs to be mentioned, 
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close clamps 1 close clamps 3initiate R01 initiate R02

R01 weld / clear R02 weld / reposition

open clamps 1

open clamps 3

unload part

R02 weld / clear

Figure 4.4.11: The One Style Model - High Trace Count 

that the discovered model showed two nodes for each activity because the ’start’ and 

’complete’ timestamps were treated as two separate events. The occasions were counted 

and shown in table 4.4.1 in grey but not added to the total. 

Table 4.4.1: Discovered Model Evaluation (One Style) 

high number of traces low number of traces 
nodes edges sum 

nodes edges sum wrong missing wrong missing wrong missing wrong missing 
α Miner 0 0 0 15 15 0 0 0 15 15 
αLC Miner 0 0 0 0 0 0 0 1 0 1 
β Miner 0 0 0 0 0 0 0 1 0 1 
CSM Miner 0 0 33 4 37 0 0 26 5 31 
DISCO 0 0 5 6 11 0 0 5 6 11 
Fuzzy Miner 11 0 4 6 10 11 0 7 5 12 
Heuristic Miner 0 0 3 3 6 0 0 3 5 8 
Heuristic++ Miner 0 0 0 0 0 0 0 1 0 1 
Inductive Miner 0 0 8 4 12 0 0 3 8 11 
Inductive (LC) Miner 0 0 7 7 14 0 0 30 8 38 

Table 4.4.2: Discovered Model Evaluation (Limited Traces) 

Eight Traces Three Traces 
wrong missing wrong missing sum wrong missing wrong missing sum 

αLC Miner 0 0 0 0 0 0 0 0 0 0 
β Miner 0 0 0 0 0 0 0 7 0 7 
Heuristic++ Miner 0 0 0 1 1 0 0 1 1 2 
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Figure 4.4.12: The One Style Model - Low Trace Count 

4.5 Interactive Trace Induction 

4.5.1 Viability Study 

As a first step, it had to be proven that it is possible to delay the sensor inputs of 
the different motions, as suggested in section 3.5.3. This delay was achieved by im-
plementing the change shown in figure 3.5.9 within a select number of devices in a 

small, standalone robotic cell. At first, the newly created tags were toggled one by 

one manually, and the resulting equipment behavior was recorded. Reviewing the log 

proved that the concept worked as expected. Afterward, the same test was repeated, 
controlling the tags through an OPC connection. Using OPC required that the tags 

are enabled for remote writing, which is the standard setting for the RSLogix controller 
available for the test. The resulting log again, matched expectations. 

4.5.2 Artificial Log 

For the remaining experiments the artificial log introduced in section 4.4 is reused 

because its limitation to just a few important events should aid the understanding by 

the reader. A random case for that artificial log is shown in figure 4.5.1. (Note the 

random case is for a specific style only which does not require clamps 2. Consequently 
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Figure 4.4.13: The All Styles Model - High Trace Count 

the motions 3 and 12 are not shown in below figures.) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
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close clamps 1 (2) 
close clamps 3 (4) 

initiate R01 (5) 
initiate R02 (6) 

R01 weld/clear (7) 
R02 weld/repo (8) 
open clamps 3 (9) 

R02 weld/clear (10) 
open clamps 1 (11) 

unload part (13) 

Figure 4.5.1: Random Case 
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Figure 4.5.2: Initial Depend. Matrix Figure 4.5.3: Depend. Matrix 1st Iteration 
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close clamps 1 (2) 1 
close clamps 3 (4) 1 0 
initiate R01 (5) 1 0 0 
initiate R02 (6) 1 0 0 0 
R01 weld / clear (7) 0 X X X X 
R02 weld / reposition (8) 0 X X X X 
open clamps 3 (9) 0 1 
R02 weld / clear (10) 0 0 1 
open clamps 1 (11) 0 0 0 1 
unload part (13) 0 0 0 0 1 

4.5.3 Interactive Trace Induction 

Interactive trace induction is proposed to solve the dilemma of unknown dependencies. 
As previously described, this is achieved by artificially delaying the ’complete’ events, 
of questionable activities, one at a time. This forces all of the dependent, downstream 

activities to be isolated, and thus, reveal their actual dependencies. Note: The below 

example depicts, for better understanding, only one dependencies matrix for each of 
the traces to be evaluated. All the theorems mentioned refer to the previous chapter 
3.5.2. To discovery the parallel activities according to theorem 8 (marked in blue) with 

a software algorithm it would be necessary to work with a second dependencies matrix 

in which the opposing dependencies are recorded as shown for the αLC algorithm in 

chapter 4.4. 
Gantt chart figure 4.5.1 represents a random case example. It is provided without 

any links because the dependencies between the activities are not yet known. The data 

is parsed into a decision matrix, marking potential dependencies with ’x’, as shown in 

figure 4.5.2. Applying theorem 6 allows the values of the cells highlighted in green in 

figure 4.5.3 to be changed to ’1’ because there is only one preceding activity. According 

to theorem 7 all the values of the red shaded cells can be set to ’0’ since they would be 

part of chained dependencies. Finally, based on theorem 8 the cells marked in blue can 

be set to ’0’ as well because parallel activities can not depend on each other. 
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Figure 4.5.4: Activity 2 Delayed 
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Figure 4.5.5: Activity 4 Delayed 

The unknown dependencies are addressed one by one. The first question is if ’R01 

weld/clear (7)’ depends on ’close clamps 1 (2)’. To determine that activity 2 needs to 

be artificially delayed and the corresponding machine cycle recorded. For the example 

this would result in the trace shown in figure 4.5.4. This Gantt chart clearly shows that 
not only activity 7 but also activity 8 directly follow activity 2 (2 > 7, 8) as postulated 

in theorem 6. These two dependencies are therefore marked with ’1’ (highlighted in 
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Figure 4.5.6: Depend. Matrix 2nd Iteration Figure 4.5.7: Depend. Matrix 3rd Iteration 
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green) within the decision matrix figure 4.5.6. Now since a parallelism between the 

events 7 and 8 has been established theorem 8 allows for the blue marked cell to be set 
to 0. Based on theorem 7 it can also be concluded that the activities 9, 10, 11, 13#2 

(do not depend on 2). Therefore the value ’0’ can be assigned (marked in red). 
Looking at the decision matrix 4.5.6 the next question is if activity 7 depends on 

activity 4. Delaying activity 4 will produce the Gantt chart plotted in figure 4.5.5. It 
shows activity 4 and 7 in parallel which, according to theorem 8 means that there is no 

dependency. Consequently the value of the corresponding cell can be set to ’0’ in figure 

4.5.7 (shown in blue). Activity 8 however directly follows activity 4 and therefore that 
value can be set to ’1’. Based on theorem 7 the activities 9, 10, 11, 13#3 and their cells 

are set to ’0’ as highlighted in red. 
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load part (1) 
close clamps 1 (2) 
close clamps 3 (4) 

initiate R01 (5) 
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R02 weld/repo (8) 
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Figure 4.5.8: Activity 5 Delayed 
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Figure 4.5.10: Depend. Matrix 4th Iteration Figure 4.5.11: Depend. Matrix 5th Iteration 
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unload part (13) 

Figure 4.5.9: Activity 6 Delayed 

Continuing on, the relation between activity 7 and activity 5 is questioned. Delaying 

activity 5 will result in the Gantt chart 4.5.8. Based on theorem 6 it can be concluded 

that a dependency exists between activity 7 and activity 5 as well as between activity 

11 and activity 7 (both marked in green in figure 4.5.10) while the theorems 7 and 8 

exclude the dependencies shown in red and blue. 
Now the dependency between activity 7 and activity 6 needs to be evaluated by 

delaying activity 6 as shown in Gantt chart 4.5.9. As marked in the decision matrix 

4.5.11, theorem 6 determines that there is a relation between the activities 8 and 6 

(marked in green) while the remaining theorems allow for the conclusion that there 

aren’t any dependencies for the cells highlighted in red and blue. 
At this point all dependencies and non-dependencies are clear and no further traces 
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Figure 4.5.12: αLC Result: Interactive Trace Induction Validation 
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initiate R01 (5) 1 0 0 0 0 0 0 0 0 0 0 
initiate R02 (6) 1 0 0 0 0 0 0 0 0 0 0 
R01 weld / clear (7) 0 1 0 1 0 0 0 0 0 0 0 
R02 weld / reposition (8) 0 1 1 0 1 0 0 0 0 0 0 
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R02 weld / clear (10) 0 0 0 0 0 0 0 1 0 0 0 
open clamps 1 (11) 0 0 0 0 0 1 0 0 1 0 0 
unload part (13) 0 0 0 0 0 0 0 0 0 1 0 

are required. As a nice side effect it needs to be mentioned that the final dependencies 

matrix 4.5.11 also equals the result matrix of the αLC algorithm applied to the above 

recorded traces. This in turn means that the desired process model, in form of a flow 

chart, can be generated based on matrix 4.5.11 without any further mining effort. 
To prove this the αLC -algorithm is applied to the four induced cases, generating the 

dependencies matrix shown in figure 4.5.12. 
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Figure 4.4.14: The αLC -Process 
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5 
Discussion 

The purpose of this chapter is to discuss the results from the case studies described in 

chapter 4. To better relate the results and their evaluation, the same structure of the 

sub-chapters previously used was applied. In section 5.1, the findings in conjunction 

with the data collection experiments are reviewed. The preprocessing trials are then 

analysed in section 5.2 before the knowledge-discovery-based findings are summed up 

in section 5.3. Section 5.4 takes a look at possible limitations of the new αLC algorithm. 
The chapter concludes in section 5.5 with the discussion of the advantages of ’interactive 

trace induction’ over discovered Process Models that require quality metrics. 

5.1 Data Collection 

The deployment of this methodology to the 27, unknown PLCs took approximately 

30 minutes (compared to 150hrs for 1 PLC as described previously). From these 30 

minutes, 26 minutes were spent converting the PLC programs to text-based files, which 

had to be done with keyboard macros, since the Rockwell software does not provide a 

command-line instruction to do so. The remaining 4 minutes were needed to parse the 

text files and set up the OPC groups and items for monitoring. 
It also needs to be mentioned that hardware changes within the monitored stations 

will trigger changes within the PLC logic. These changes also need to be reflected in the 
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data collection system. The maintenance work station holds typically the up to date 

PLC programs. During the experiments, logic was added to the data acquisition soft-
ware that would periodically check if the date of the associated .ACD files has changed. 
Upon a detected change, a new L5K file would be created and the system automatically 

updated. The functionality was finally deactivated because it was triggered for every 

change made within the PLC software. Hardware changes are not a common occurrence 

which makes the manual triggering of PLC code re-parsing a viable option. 
The event notification of the OPC server is based on numeric handles. These handles 

have to be provided while setting up the OPC items. Once an event notification arrives, 
it only includes the handle and the status of the event. The logging logic needs to 

correctly map the handle to the PLC tag to add meaning to the event. It seems it 
would have been more effective if the OPC server would provide the name of the tag 

together with its status rather then just the handle because there would not be the 

need to keep a mapping table in memory. During the creation of an OPC item, the 

server returns a so-called server handle. This handle, which is different to the client 
handle, has to be used for write access prompting the need to capture the relationship 

between server handle and the tag also. 
A comparison of the times obtained through OPC with times recorded for the same 

motions within the PLC, unfortunately, showed that there is a slight difference. The 

OPC standard defines that all data exchanged has to be annotated with a timestamp, 
but it does not specify from where the timestamp comes. Some PLCs provide a times-
tamp where in other cases the timestamp is provided by the OPC server. Unfortunately, 
the Controllogix PLCs monitored for this research do not provide a timestamp with the 

data. This shortcoming required the creation of a timestamp within the logging logic 

which does not consider any time delays occurring between the time the event takes 

place and the time the event is reported to the logging logic. 
One such delay is the refresh rate. The OPC standard allows for a refresh rate setting 

of 0, which equals a near-instant event notification. Contrary, the minimum setting that 
could be achieved with the proposed system was 50ms. This value means that the times 

recorded are between 0 and 50ms seconds delayed. On top of that comes a measured 

system latency of 100ms. These inaccuracies could be avoided if the PLC provided the 

event timestamp. 
One of the goals of the data collection was to collect the life cycle information of the 

different motions. The life cycle refers to the time it takes a motion from the point it 
is triggered until it reaches the end position. The events recorded are just individual 
events. This means that the log will contain an entry for the motion being triggered and 
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later on a second event for the motion reaching its end position. A view was written 

within the SQL server that merges the events based on the tag name and the distance 

between them. While applying this view, it was found that there were motions that 
were triggered but never reached the end position. This fact led to the conclusion that 
the recorded log is flawed and therefore requires preprocessing to handle those flaws 

accordingly. 

5.2 Preprocessing 

It was found that the classifier models made some mistakes that could have been avoided 

based on the engineered features. Like stated in 3.2.22, the classification needs to be ’1’ 
if the sample cycle is a bypass cycle. On the other hand, the classification needs to be ’0’ 
if not all load/unload events are present or if there is not a set of robot initiate/process 

events. Post-processing of the classification results thus would be recommended. 
The impact of the flaws found within the activity log depends on the use case for 

the data collected. For the discovery of the workflow of a whole production line, such 

a fine-grained log is not required. Therefore many of the faults experienced might not 
have an impact at all. On a station level, the impact is much bigger. Process Discovery 

works based on the traces found within the log. Since flaws essentially are responsible 

for new traces, it can be concluded that the discovery result will be distorted. Many of 
the established algorithms use statistical approaches to eliminate such impact, which 

could also lead to important traces being discredited, thus leading to wrong discoveries. 
Therefore the author believes that the best starting point for a process model discovery 

is a complete log free of flaws. Incomplete and imprecise cases are best removed from 

the log before model discovery because there is no need for utilising consecutive cases. 
Another use case for the data would be predictive maintenance. The data obtained 

during this research showed that, due to the system used, a variance of 50 milliseconds 

was recorded for the activity life cycle. Putting that value in relation with a clamps 

cycle time of 400 milliseconds this equals a 12.5% error which might not be acceptable. 
The use of the data for predictive purposes also requires the recording over a longer 
period. Only then it can be determined if it still is possible to extract any trending 

information from the data which allow for conclusions on the wear of the equipment. 
Other fault predictions additionally require the logging of the actual fault case because 

otherwise no patterns leading up to it can be detected. This correlation currently is 

not given within the proposed framework although the data has been collected. 
Improvements can only be achieved through changes made to the data collection 

effort. One of the issues using the RSLinx OPC server was that the minimum refresh 
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rate could not be set to less than 50 milliseconds which already introduces uncertainty. 
The second contributing factor was the communication over multiple switches and net-
works. This issue could be overcome through local data collection within the cells local 
network. The collected data then could be periodically uploaded to a central database. 
The final option would be collecting the data right in the PLC. Such data collection 

would require that the data collection intent becomes part of the equipment’s control 
standard. Depending on the size of the expected local data storage, this might come at 
an additional cost due to the PLC controllers comparably small internal storage. 

The most challenging part of this section, if not the whole thesis, was the clustering of 
the activities into cases based on their relation. Initially, it was reasoned that the parts, 
as they are being manufactured, are associated with a unique part identifier. Recording 

that identifier, along with the events, would allow for clustering. The assumption that 
every part is associated with a unique ID proved wrong. Therefore an attempt was 

made to create a unique number for each part on the fly. The problem with both 

approaches is that they do not consider that this data is only available once the part is 

present within the station because that is when the jobs data is transferred. Based on 

the previously shown case this time frame would equal the process phase only, leaving 

the setup, load, unload and reset phase unconsidered. 
Machine learning offers several clustering algorithms. Before developing the method-

ology shown within this work, several months were spent trying to use these algorithms 

for the required case clustering. These attempts failed to yield the expected results. 
One lesson learned was the choice of software tools to use. The first options were R and 

Python, which both were unknown to the author. It soon became clear that Python is 

the more commonly used language within the research community, although R might 
be more powerful. Besides these text-based programming languages, there are also sev-
eral machine learning tools with graphic user interfaces. Tools tried for this research 

were Matlab and Rapid Miner, which require a commercial but for students affordable 

license. On the other end of the spectrum is the open-source KNIME project which, 
based on its functionality, could be compared to Rapid Miner. All three of these op-
tions allow easy access to the required machine learning algorithms, but the projects 

quickly become complicated due to the use of predefined processing blocks. Besides, 
some of the projects created took hours or even days to complete processing. These 

issues finally prompted the use of Python in conjunction with the Jupyter notebook. 
It is understood that Python is an interpreted language and that languages like Java 

and C# offer a far more superior processing power. However, Python comes with all 
the tools needed to create any desired experiment quickly. 
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5.3 Knowledge-Based Discovery 

The examples for automated knowledge discovery shown within this thesis are based 

on a log containing start and complete timestamps for all the units and processes 

within a production station. Besides, the log contains the part present status. It 
is perceivable that, with additional information available, more suggestions can be 

generated automatically. Initiating a robot typically takes one to two seconds. Often 

this event is only triggered once the station is ready for the robot to execute its process. 
The initiation could also happen as soon as the parts style information is available, 
which also could be marked up within the Gantt chart. 

Another cause for delays often is the robots waiting for each other. Robots avoiding 

each other is accomplished with the help of zones for shared areas within the PLC 

logic. Recording these zone requests would show when a robot is actually delayed, and 

improvement suggestions could be given accordingly. 
The original design documentation could also be considered as a source of informa-

tion. Besides the sequence of operations, it also contains the physical specification 

of the cylinders used as well as indicators which point at potential interferences be-
tween the different units. The cylinders bore and stroke information would allow for 
the comparison of identical units since the system air pressure is equal for all units. 
The interference information would allow suggestions regarding the execution of units 

in parallel. Such a proposal currently would have to be subject to an experts review 

because the process itself might demand specific sequencing to ensure the desired qual-
ity. It is imaginable that such critical dependencies are also marked within the design 

documentation. The same holds for the dependency of unit operations on a part being 

present or not present within the station. If this would be marked within the design 

documentation, some unit’s activation could be pulled ahead. 
Previously it was mentioned that, besides the most occurring cycle, the slowest and 

the fastest trace are also of interest because they can give the expert reviewer hints to 

what is possible and what sometimes goes wrong. Robot process duration could also 

be considered. If there is an extreme imbalance rethinking the distribution of process 

tasks between the different robots might lead to improved cycle times. Such decision 

requires an expert reviewer because based on the available data, it remains unknown 

for the mining algorithm, which process can potentially be done by which robot. 
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5.4 Process Model Discovery 

The main limitation of the αLC -algorithm is, as with all Process Discovery algorithms, 
the number of traces available within the log. An increased number of traces often result 
in a better process model because of the increased chance that critical traces have been 

observed. Another potential approach to improve the discovered process model would 

be the inclusion of domain knowledge. For the equipment used in an automotive body 

shop, it might be advantageous to group all events with the same trigger together. For 
example, all cylinders, which are actuated by one valve become one artificial event with 

the shared ’start’ timestamp and the ’complete’ timestamp of the slowest unit within 

the group. This simplification reduces the number of dependencies to the next activity 

and, therefore, increases the likelihood of its discovery. It can also be argued that a 

robot initiation can only be followed by a robot process. A non-robotic dependency 

could be automatically disqualified. For non-metal-forming processes, it is also a given 

that there is no causality between opposing motions. In case of a clamp, this would 

mean that the closing of the clamp cannot directly depend on it being opened in the 

preceding event. 
Many of the traces found in industrial equipment logs, used for this research, were 

caused by the robotic processes. For example, robots were initiated but did not imme-
diately respond because they were still busy on a tip maintenance task, which is not 
part of the regular equipment sequence and, therefore, is not logged. Some robots also 

interact with multiple stations, which causes the robot not to be ready for the station in 

question when needed. Since these activities are assigned to another station, they can-
not be found in the log of the station for which a process model needs to be discovered. 
Enriching the record with this information might lead to better model discovery. 

Depending on the size of the log, processing time can become an issue during process 

model discovery. One of the solutions presented in this work was the use of the traces 

only instead of all the cases. This already dramatically reduces the processing time. An-
other issue during the trials might have been the use of Python which is an interpreted 

language. Choosing a compiled language instead might improve the performance. The 

most time consuming task is parsing the log into the matrices. Comparing the perfor-
mance of the Pythons algorithms with the Process Discovery algorithm within ProM 

or DISCO leads to the conclusion that there must be a more efficient methodology to 

do so which is unknown to the author. 
It could be argued that, given the standardised programming requirements above, 

it would be feasible to discover the equipment’s process model just by parsing the 

controlling PLC program. Such an approach certainly is possible, although the effort 
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required remains unclear. Changing the way the model is discovered would render the 

αLC algorithm obsolete. The remaining tasks still would be required to derive value 

since the model discovery through code parsing would not yield any performance data. 

5.5 Interactive Trace Induction 

It is often presumed that the quality of the discovered model is likely to increase with 

the number of cases recorded for that process. Based on the findings of this thesis, it 
can be concluded that the quality of the discovered model depends on the necessary 

traces being recorded, and a log spanning a more extended period increases the chance 

of doing so. Unfortunately, the reasons for traces within business processes seem to 

differ from industrial automation processes. Therefore, the concept of ’interactive trace 

induction’ might only be partially applicable for the discovery of concurrent processes 

within the business domain. 
When applying ’interactive trace induction’ to real-life processes, one should be aware 

that parallel processes are not the only reason leading to the manifestation of multiple 

traces. Another, often more dominant cause, is that the logs are flawed due to wrongly 

recorded or missing events. Therefore, while executing ’interactive trace induction’, it 
is still necessary to validate the completeness of the log obtained. Such verification 

could be as simple as comparing the number of events recorded for each of the cases. 
Previous research, with real-life logs in chapter 4, showed that the majority of cases 

are indeed flawless. Therefore, it can be concluded that the number of events found in 

the majority of cases is correct. Alternatively, the ’interactive trace induction’ could 

be executed multiple times to ensure that the log is accurate. Deviating cases could be 

discarded. 
This thesis purposely does not gauge the discovery results with the help of any of 

the established quality metrics. The reason is that the αLC -algorithm is not based 

on any statistical methods and also does not strive for generalisation. Therefore, the 

discovered model fits the log data available. Some practitioners might term that as 

over-fitting, but the author argues that within the industrial automation realm, this is 

preferred over generalisation. This view is supported by Schimm (Shimm 2004) who 

states: ’In many cases, the benefit of workflow mining depends on the exactness of 
the mined models’. Also, confidence metrics can be misleading. Looking at example 

figs. 4.5.4, 4.5.5, 4.5.8 and 4.5.9, it can be seen that a highly accurate model also can 

be discovered with just three of the four traces, because the first trace (figure 4.5.4) 
does not lead to any information gain. At a first glance it could be assumed that four 
traces need to be discovered for the artificial example process to obtain all the required 
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information. If the record does not contain the non value-added trace described above, 
confidence would be lowered to 75%, although the discovered model will still be highly 

accurate. 
’Interactive trace induction’ has at least two easily overlooked side effects. When 

delaying the completion of an activity, one inadvertently triggers the watchdog mecha-
nism that should be present in any PLC logic. This behavior can be seen as a positive 

benefit because it enables a simple, automated procedure for testing the PLCs fault 
logic. At the same time, ’interactive trace induction’ might force the equipment into 

a status that will never occur during regular operation. Therefore, its implications 

might not have been considered by the programmer. In a worst-case scenario, this 

could lead to a collision within the machine. It is recommended that the responsible 

control personnel is engaged before executing ’interactive trace induction’ to minimise 

that risk. 

5.6 Related Topics 

When selecting an OPC Server one has to choose between several products available on 

the market. One of the best known is Kepware. This software offers drivers for dozens 

of different OPC devices. Kepwares advantage is that the setup remains the same no 

matter which device it interfaces. It also offers features that allow for logging of the 

obtained data directly into a database. The downfall is that it requires licenses to be 

purchased. 
Rockwell offers for their products the software package RSLinx. Unfortunately, it is 

not as easy to set up as Kepware, and it also does not provide any automated logging 

features. Since the OPC concept is based on translating a proprietary communication 

protocol into the OPC-standard, it can be assumed that the PLC manufacturer knows 

his product best. For this reason and because it was readily available RSLinx was 

chosen as the OPC Server. 
Besides the OPC Server also the choice of database has an impact on the performance 

of the proposed framework. Today there are two main categories of competing database 

system - relational and NoSQL databases. In the traditional, relational database, the 

data is well structured in tables that are connected to each other. Contrary NoSQL 

databases do not rely on such a structure what makes them flexible and easily scalable. 
It is commonly acknowledged that NoSQL databases are best suited for significant 
quantities of data. 

Within the facility, where this project was implemented, the prevailing database is 

Microsoft SQL Server. At first, the free Express version was used. Trials showed that 
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for monitoring a single PLC, this version was sufficient. The database was not able 

to store the data coming from multiple PLCs fast enough and ultimately failed. As a 

remedy, the developer version, which offers much better performance, was used for the 

remainder of the project. 
The acquisition algorithm has to deal with a massive amount of data when monitoring 

multiple PLCs and storing the events raised into the database. This issue can be solved 

using multi threading. For the data collection, one thread is used for every group of 
events raised by the OPC server while another thread is responsible for the storage of 
those data into the database. 

As previously described the data point selection is based on the text-based L5K 

file. The generation of that file is a feature of the Controllogix programming software. 
Unfortunately, the API does not allow for any parameters to convert a native ’.ACD’ 
file into an L5K file. Instead, a keyboard buffer script had to be written that opens a 

’.ACD’ file within the Controllogix software and safes it as .L5K. It was found that this 

procedure varies with version changes of the programming software, which makes this 

approach less reliable. The L5K files may be generated manually as long as they are 

stored in the same folder as the ’.ACD’ file. 
Since a distributed acquisition system would be preferable to increase the log qual-

ity while reducing the network load, efficient ways to update the distributed software 

packages had to be found. The proposed framework includes a table in the database 

which stores the latest acquisition software version and the names of the computers on 

which they are installed. Once the software is started, it first checks if the version is up 

to date and if the computer is authorised to run it. Is the software outdated the new 

version is downloaded from an FTP server, and a new windows task is initiated which 

kills the old software, installs the new software version and restarts it again. 
The user interface of the data acquisition algorithm can be seen in figure 5.6.1. 
The collection software always starts in the background and is represented by an icon 

within the windows toolbar. A right-click on that icon reveals the setup window which 

allows for the systems set up in three steps. At first, the user needs to choose the SQL 

server used for data storage. If that server does not host the required database yet, the 

user will be asked if he wants to have the database created. In the next step, the user 
chooses the folder in which the PLC programs of the PLCs to be monitored are located. 
Finally, he places check marks for the desired PLCs. Clicking on OK will trigger the 

conversions to L5K, parsing into the DB, creation of the OPC groups and items and 

eventually the start of monitoring. 
The framework introduced can be applied to any PLC controlled manufacturing 
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Figure 5.6.1: Simplified User Interface 

equipment as long as two fundamental rules apply. First, the controller software needs 

to be modular to allow a regular expression based algorithm to locate the data points 

of interest. Besides, the naming within the program needs to be standardised to allow 

choosing the correct tags. If these two requirements are fulfilled, only minor modifica-
tions are required to adapt the introduced methodology to PLC systems from different 
manufacturers. 

Pedestal processes are processes that are executed after the robot unloads the station. 
For example spot, nut or stud welding as well as sealing applications. These processes 

are considered to be part of the previous station for the production lines that were 

monitored for this project. This definition results in overlapping cases because the 

previous station gets reloaded as soon as the last part has been unloaded, although 

the last part is still being processed. For such a scenario, the proposed case split into 

setup, load, part present, unload and reset events no longer applies. This problem can 

be overcome by adding an ID to the part data so that the pedestal process can be 

appended to the station process. Alternatively, the pedestal process could become a 

distinct station which would eliminate the problem. 
During data preprocessing, one of the tasks was to cluster the recorded events into 

cases that allow for the discovery of the process models. It needs to be understood 

that this clustering does not allow tracing of the parts through the production line. 
Traceability requires an ID that moves along with the parts. During this research, 
such an ID was available as part of the data stored on an RFID tag. Because the 

RFID only can be read with the part in the station, the setup and the load events were 

always associated with the previous ID causing wrong case associations. If traceability 

is desired, an algorithm needs to be added to correct this flaw. 
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The perception of processes is that there is a defined beginning and end. The author 
argues that all processes are just sub-processes because reduced to its start and end 

timestamp, it can become an event within a higher level process. Automotive body 

shops, for example, consist of zones which encompass multiple cells. Each cell by itself 
consists of multiple stations. This research was based on the motions on the station 

level with a case consisting of dozens of motions. If such a case is reduced to the 

start timestamp of the first motion and the complete timestamp of the last motion, 
then it represents an event on the cell level. If cases on the cell level are reduced to 

their start and complete timestamps, then they become events on the zone level. This 

cycle can only end if a top-level is defined on purpose. Contrary the observations does 

not allow the conclusion that every event represents a sub-process. For example a 

single motion within a detailed event log does not represent a sequence of other events. 
This understanding is essential for the selection of the appropriate data acquisition, 
preprocessing and discovery algorithms. 

One of the biggest stumbling blocks encountered during this project was the lack of 
willingness to act upon the discovered improvement suggestions. Although this frame-
work allows automating the process of identifying the shortcomings of a production 

line, their rectification still requires human resources, material and time. 
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6 
Conclusion And Future Works 

6.1 Conclusion 

Nowhere is the phrase ’time is money’ more fitting than in the manufacturing industry. 
Because of the high production volume seconds or even fractions of seconds translate 

into millions of Euros gained or wasted within the lifetime of a production line. Within 

the research area of operations management, the term ’hidden factory’ was coined to 

describe the unidentified potential lingering within existing production equipment. At 
the same time, industrial maintenance related studies point out the cost resulting from 

inadequate equipment setup and undetected delays. Contrary to popular belief, often 

neither the manufacturer nor the end-user of the production equipment is fully aware 

of the current production process due to undocumented changes made in the equip-
ment start-up and production phases. These considerations culminated in the research 

question: ’How can Heuristic Algorithms, Process Discovery and Machine Learning 

be applied to industrial equipment logs to improve the efficiency of the assembly and 

joining processes?’ 
Several issues need to be overcome to answer this question. First, there needs to 

be a detailed log that provides enough information so that such conclusions can be 

drawn. Currently, there are mainly fault logs available which might be helpful for 
maintenance predictions as suggested by some researchers. More detailed monitoring 
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often is achieved by adding additional sensors, e.g. vibration sensors, to critical parts of 
the equipment. The resulting data is also mainly used for breakdown predictions. Also, 
throughput data are collected which are so coarse that they only allow pinpointing bot-
tleneck stations but do not support formulating improvement suggestions. Improving 

the throughput of the few bottleneck stations is the key to increasing the output of the 

whole production line. Today it is customary that experts visually observe the equip-
ment in question to provide improvement suggestions based on their experience. Visual 
observation becomes more and more difficult due to the complexity of the machines 

and safety measures which prevent access to the manufacturing processes. 
Literature reviews show that there has been only limited work done to answer the 

aforementioned research question. One of the key hindrances seems to be the accessibil-
ity to appropriate data for researchers with interest in the subject and the data owner’s 

lack of imagination to recognise the potential hidden within their data. Additionally, 
efforts might be hampered by the perception that custom production equipment is not 
suitable for any universally applicable methodology. As previously mentioned, the logs 

typically available are very coarse, prompting the need for more in-depth logging which, 
up to now, requires experts to identify the data points of interest manually. A domain 

that seems to be perfectly suited to identify shortcomings within a manufacturing pro-
cess is Process Mining. It focuses on the discovery of process models from activity logs 

created by business processes. Process Discovery relies on traces found within the log 

to extract the underlying model. Most practitioners expect that the log obtained from 

automated production equipment would not yield such traces because the machine fol-
lows an ever-repeating, predetermined sequence. The Process Mining community also 

restricted their possibilities for a long time by proclaiming that the resulting models do 

not lend themselves to automatic improvement suggestion discovery. 
Above mentioned stumbling blocks could be overcome with the help of the authors 

thirty years of experience within the industrial automation domain and the willingness 

of Opel Automobile GmbH to think outside the box by supporting this research. To 

make this overwhelming project manageable first several stages were defined. Initially, 
an in-depth log needed to be obtained. The focus was to define a framework to allow 

for automated data point selection and logging without a priori knowledge. Next, the 

quality of the obtained log had to be assessed, and data preprocessing and cleaning 

methodologies found to prepare the data for the mining efforts. At that time also the 

potential to rectify any logging issues encountered had to be considered. Again the ex-
pectation on such a system was that it should be highly automated. The resulting data 

then could be graphically represented in the form of a Gantt chart which should give 

insight into potential improvement areas within the system being evaluated. Since de-
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pendencies between the activities within such an initial Gantt chart are only presumed, 
Process Discovery techniques should be applied to determine the true dependencies. 
The expectation was that the discovered dependencies are 100% correct. 

As previously described the data typically available from industrial production equip-
ment is too coarse and therefore does not allow concluding the inner workings of the 

equipment. In the automation domain, it is standard that the workings of a machine 

are described with the help of a Sequence Of Operations (SOO). The SOO lists all the 

units within the equipment together with their expected cycle time and their dependen-
cies. One of the aims of this work was to compare the ’as is’ SOO with the design SOO. 
This goal defined the need to record the sensor signals of all motions. Most automation 

equipment is controlled by Programmable Logic Controllers which are interconnected 

through an Ethernet network. Open Platform Communication is a protocol built into 

many PLCs that allows external access to its data. Signal monitoring can be done 

through an OPC server. Here a topic is defined to establish communication from a 

PC to that PLC. Now OPC items can be defined which symbolise the addresses to be 

logged. Commercial products available for such monitoring require the user to either 
enter those addresses one by one or to choose them from a drop-down menu. Either op-
tion demands that the user has a good understanding of the machines controls concept. 
Besides, such an effort is very time-consuming. 

Analysing the controls concept, it became clear that a PLC offers two potentially 

helpful features. Knowledgeable programmers tend to create a structured program 

because the different languages used are intended to be used modular. Many of the 

equipment’s end users even specify programming standards to ensure the modularity of 
the programs and the addresses used. The second feature is that most PLCs allow ex-
porting the program in a text format which lends itself to being parsed. It is, therefore, 
possible to create a parser that, with the help of regular expressions, scans the PLC 

software and automatically extracts the addresses of the units to be monitored. During 

this research, it was determined that it would also be beneficial to know if a part was 

present within the machine or not which prompted the formulation of an additional 
RegEx to extract their addresses also. 

The final framework uses a relational database to store the addresses extracted from 

the PLC program as well as the events logged. The software created allows the user to 

select the PLC program of the desired equipment, which is then parsed to extract the 

data points of interest. The algorithm then encodes these data points into OPC items 

and monitoring is started. 
Evaluation of the framework was done within an automotive body shop in Eisenach, 
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Germany. At the time this body shop was managed by 27 Rockwell PLCs controlling a 

total of 193 work stations. The software developed was able to parse the logic of all the 

PLCs and set up the necessary communication through OPC within 30 minutes with-
out any additional user intervention. Currently, the system is logging approximately 

1.000.000 events per day. 
Besides the development of the parsing and monitoring framework, this research 

focused on the potential impact of such a fine-grained monitoring effort on the com-
munication infrastructure. Tests showed the impact on the Ethernet network as well 
as the PLC were negligible (see section 4.1). In conjunction with this analysis the pros 

and cons of a centralised vs decentralised monitoring system were considered. Finally, 
the accuracy of the data recorded was evaluated by comparison with parallel records 

from the PLC. It was shown that there was only a variation of up to 1.5%. 
Based on above findings the contribution of this work can be summed up as a new 

novel algorithm to derive tags (PLC addresses) of interested with nomenclature based 

parsing of the PLC software without a priori knowledge. 
Before being able to preprocess and clean the log, an understanding of potential 

quality problems is required. There have been several works on quality issues that can 

be found within data logs. For the domain of Process Mining, these generalised issues 

were adapted to suit the need of process logs. In the course of this work, the elements of 
the said matrix were evaluated one by one to determine their applicability to industrial 
process logs. Because not all issues apply to manufacturing processes the original 4 

x 9 matrix was reduced to a 4 x 5 matrix. For each issue, a detection strategy was 

developed and a recommendation, on how to handle them, were given. 
While evaluating the log, some other issues became apparent. There were records 

which were taken while the equipment was in manual mode. Since the maintenance 

personnel obviously initiated the different units one by one while at the same time 

disobeying the intended SOO, it was determined that such records are likely to distort 
the mining results. Therefore it was decided to ignore data sets obtained during manual 
operation. Additionally, a more obscure phenomenon was found. Numerous events 

were recorded several times consecutively, although, within the equipment observed, 
each unit should be initiated only once. Closer inspection revealed that these were 

motions that were either abruptly interrupted during execution or which bounced back 

once they reached their end positions. Both are cases which will lead to excessive wear 
within the machine prompting the need for immediate action. It is recommended to 

combine these duplicate event records into a single event by using their earliest start 
and latest complete timestamps to eliminate any negative impact on the data-mining 
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efforts. 
The above-described quality criteria were finally applied to equipment logs of four 

bottleneck stations within the Eisenach body shop. The evaluation showed that the 

records obtained were better than 96% complete. 
The key contribution within this part of the work can, therefore, be summed up as 

new methodologies to discover faults within an industrial equipment log together with 

a description of potential root causes and recommendations on how to rectify them. 
Another problem that was found within the log was that the events recorded could 

not be associated to a single machine cycle although it was attempted to record the 

current part number as an additional attribute within the event log. As previously 

hinted, it was determined that such an association could easier be found, if the part 
status within the observed station was known. It was defined that a single machine 

cycle could be subdivided into five sections. First, the station might need to be changed 

over to accept the next part style to be machined. This phase was termed setup phase 

and includes all motions that happen before the part being present. It is followed by 

the loading step, which in turn changes the stations part present status to one. Once 

the part is present, the process cycle is initiated, and upon its completion, the station 

is unloaded, causing the part present status to be reset to zero. In some instances, for 
example, if the processed part is mechanically ejected, there is one final step to ready 

the machine which is appropriately named reset step. 
During this part of the research, the above heuristic rules were converted into several 

algorithms using Python and applied to the Eisenach body shop equipment log. An 

evaluation of this clustering effort yielded 4640 complete cases. The domain of Process 

Mining also uses the term trace which describes the sequence of events found within a 

case. A trace, therefore, can be used to classify cases. Since all the motions recorded 

within the database are labelled with a unique numeric ID, it was reasoned that a trace 

identifier could be generated by using a hashing algorithm over a string of the motion 

IDs ordered by their associated timestamps. The multiple innovative algorithms that 
allow for the clustering of the event log into cases without a priori knowledge along with 

a new algorithm to filter noise while determining mean cycle times, can be considered 

as the main contribution of this research step. 
Within the Process Mining domain, there are different approaches to compensate 

for the shortcomings found within an activity log. Some researchers propose repair 
algorithms while others attempt to reduce the flaws impact through the design of the 

discovery algorithms. Careful evaluation of all the options led to the decision to re-
move inaccurate records within the log, which in turn causes some of the cases to be 
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incomplete. The missing cases prompted the need for a methodology to determine 

case completeness. Machine learning stipulates that it should be possible to manually 

tag some of the cases as being either complete or incomplete. The tagged log then 

could be used to learn a model with the help of different machine learning algorithms 

that could be used to classify the remainder of the cases. Tagging of the cases, just 
based on the unit IDs and the two timestamps, without consulting the underlying PLC 

program proved to be impossible which led to the assumption that the data available 

was also not sufficient for machine learning algorithms. The solution was additionally 

engineered features to be added to the original activity log. Because the correctness 

of the log has been determined to be greater than 96% it was reasoned that any case 

belonging to the most occurring trace must be complete. Based on subject expertise, 
it was defined that a case always must have a part load and unload step. Even if these 

are the only activities recorded the case still could be complete. That will be the case 

if a part bypasses a production step for any reason. Within a complete case, it also can 

be expected that any unit that advances also needs to be returned. If that is not the 

case, it could be a strong indicator that the case is incomplete. The same can be said 

for robots. A robot that is initiated also has to perform a process. If later is missing 

within the log, it can be concluded that the case is incomplete. 
At first, algorithms which automatically append above described engineering features 

to each of the cases within the Eisenach body shop log were developed. Next, manual 
tagging was attempted once again for which the engineering features were helpful. In 

some cases, the classification still was not possible without consulting the PLC code. 
Finally, cross-validation was used to allow different machine learning algorithms to 

learn models based on the tagged data. After tuning the hyper-parameters, some of 
the algorithms yielded a success rate of 99%. Because of its simplicity, the decision 

tree was chosen. It was one of the most successful algorithms while executing the 

task without false positives. The formulation of five novel rules to create additional 
engineered features for industrial equipment logs that allow for the creation of a machine 

learning model to determine the completeness of the cases within the log, can be seen as 

the main contribution of this section. Combined all the methodologies of this research 

stage enable the transformation of incomplete and flawed logs into case-based records 

that align with the requirements of Process Discovery. 
The outcome of the preprocessing step is a case-based log in which all cases have 

been evaluated as complete. After applying the hashing method, previously described, 
each one of the cases can be associated with a trace. There are three traces which are 

of the most interest. First, there is the most occurring/observed trace. It reflects how 

the equipment is behaving most of the time. Often there are two more extreme traces. 
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One that represents the fastest observed trace and on the opposite side, the slowest 
observed trace. These extremes are important because one needs to question why the 

most observed traces are not the fastest observed traces and what can be done to force 

the process to execute that way. The slowest observed traces are often the reason that 
throughput goals are not met although observation by experts seem to attest that the 

station is performing to the design intent. 
In the automation domain, the sequence of operation often is visualised in the form 

of a Gantt chart. If this chart also includes the links between the activities, it offers an 

easy to read representation of the process. Although there are instances where Gantt 
charts can get overly complex, it still is the representation of choice for this work. The 

most often occurring, above determined trace is next transferred onto such a Gantt 
chart which allows an expert to spot potential problems right away. It needs to be 

mentioned that the representation at this point does not include any dependency links 

as they are unknown, based on a single trace. Most people, even the subject matter 
experts, assume that any activity that starts right after another activity has completed 

must be depending on that previous activity. This assumption is tolerable to discover 
improvement suggestions. 

Some obvious observations can be made within that Gantt chart, which also have 

the potential to be handled by a reasoning based algorithm. The speed of a cylinder 
advancing and returning depends on the bore and stroke of the cylinder and the air 
pressure applied. If everything is kept constant, it can be assumed that the opening 

and closing times, reflected in the Gantt chart, should be close to equal. Deviations 

can be caused by wrong adjustments of the flow controls often used in such systems. 
Another reason for the observation of such behaviour is the recording of duplicate 

events. As described within the preprocessing paragraph, it is best to combine these 

multiple events into a single event representing the earliest start and latest complete 

time. The cause for this manifestation within the Gantt chart can only be discovered 

by evaluating the underlying data. Often multiple cylinders are connected to a single 

solenoid valve. In most of the cases, the bore and stroke of these cylinders are identical. 
Therefore, if one cylinder is faster then the others it can be reasoned that improvements 

are possible. Usually, the motions within automated production systems depend on each 

other. Completion of one activity triggers the start of the next, and so on. Any time 

without activity consequently is suspect. Gaps just before the unload step could also 

indicate a ’blocked’ situation caused by the next station not being ready in time to 

accept the completed part. 
Above described definitions were encoded into algorithms which were applied to the 

data of four bottleneck stations within the Eisenach body shop. The automatically 
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generated Gantt charts yielded improvement suggestions, ranging from 2.1 to 12.5 sec-
onds, that were previously overlooked by experts trying to reduce the cycle time of 
those stations. 

The contribution of this section can be summed up as a novel framework consisting 

of eight definitions that aid the discovery of shortcomings that typically can be found 

within the sequence of automated equipment accompanied by methodologies that allow 

for their automated annotation within sequence charts. 
Industrial processes are usually controlled by programmable logic controllers that 

execute a fixed program. Because of that, it was expected that the log would reflect 
an ever-repeating sequence. It was not until the Eisenach body shop log was imported 

into the commercial Process Mining software DISCO that it became apparent that 
there was an unexpected abundance of traces. These traces prompted an in-depth 

analysis of the underlying causes. In the end, three main contributors were identified. 
In a process log, that has not been cleaned, logging issues lead to differences in the 

sequence being recorded. This problem can be counteracted by the preprocessing and 

cleaning methodologies previously described. The second reason for the different traces 

is the style dependency of the equipment. Different units are used for different parts 

being manufactured or even if the same units are used, their sequence might change. 
The log should be sliced by styles being processed, before any mining activity takes 

place, to eliminate this factor. The third category of traces is caused by partially 

asynchronous concurrent processes which refers to multiple, not linked activities being 

executed simultaneously. Depending on different factors, this will cause the sequence in 

the log to change. It is these traces that are needed to discover the true dependencies 

between activities because, in one trace, it might seem that an activity follows another 
where the next trace could contradict that perception. Therefore it can be reasoned that 
a dependency only exists if activity ’b’ always follows activity ’a’ and the opposite is 

never observed. This definition is one of the fundamental rules of Process Discovery and 

explains why the quality of the model discovered increases with the number of traces 

available. The presence of such indicators relies purely on chance which is believed to 

increase with the number of cases recorded. 
The domain of Process Mining was established to discover business process models 

from business activity logs. Based on that, it seemed to be a natural fit for exploring 

industrial processes. In a first attempt, the cleaned and clustered log was analysed with 

several of the established Process Discovery algorithms, but the results did not match 

the expectations. This issue can be contributed to the fact that most of these algo-
rithms are trying to balance the four quality measures fitness, precision, generalisation, 
and simplicity. In the eyes of an automation practitioner, disregarding the activity life 
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cycle during the process model discovery as most algorithms do, is counter-intuitive. 
Both seem to lead to the discovery of undesired dependencies even if the traces provided 

include all information necessary to discover a highly accurate model. This apparent 
gap led to several months of hypothesising and experimenting, which resulted in an 

algorithm that was able to discover a highly accurate model provided the needed traces 

where available. At that point, awareness rose that there was a second, far less pub-
licised category of Business Process Discovery algorithms which did also consider the 

activity life cycle. Applying those to an industrial log lead, in two out of three cases, to 

the desired process model. Analysing why those algorithms performed showed that the 

Heuristic++ Miner is based on statistical principles which make it ignore dependencies 

that are only sparsely present within the log. It, therefore, could be reasoned that it 
discovered the desired model by chance. The β-algorithm, on the other hand, uses a 

clear definition to determine if a dependency exists or not. Additional complexity was 

added to address some other concerns, which are not relevant for automation processes. 
At that point, the focus shifted away from trying to define a new Process Discovery 

algorithm to create an algorithm that satisfies the needs of automated processes while 

remaining understandable. 
The αLC -algorithm is an activity life cycle extension to the well-known α-algorithm. 

Its definitions for directly following activities align with two definitions found for the 

β-algorithm without the added complexity. The αLC -algorithm uses matrix operations 

that can also be understood by users outside the Process Mining community. The 

graphical representation of the discovered model is based on the, in the automation 

domain, more common flow chart instead of a Petri Net often used in Process Discovery. 
Experiments showed that for industrial equipment logs the αLC -algorithm yielded the 

same results as the β-algorithm. Provided with just a few purposely chosen traces, that 
contain all the necessary information, the αLC -algorithm outperformed the β-algorithm. 

The contribution can be summed up as the development of an improved Process Dis-
covery method to model automated manufacturing processes based on sparse industrial 
logs. 

In the section ’Knowledge-Based Improvement Discovery’ it was mentioned that one 

of the shortcomings of the proposed framework so far is that the dependencies are 

unknown. An important step towards discovering those dependencies was made in the 

previous section already. Up to now, there is still no certainty that the discovered 

model will be complete. Numerous researchers tried to address this uncertainty by 

providing means to gauge the quality of the discovered model. Since all these efforts 

determine their ratings based on the relation of the discovered model to the underlying 

log, the metrics can only be considered as the best guess. In the last paragraph, it was 
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also highlighted that one of the αLC -algorithms benefits is that it can discover a highly 

accurate process model from a minimalistic log as long as it contains all the descriptive 

information. This result prompted the question if it would be possible to determine 

which traces must be present within the log to be sure that the discovered log will be 

complete. 
The investigation into this problem started by plotting one of the recorded cases 

into a Gantt chart. Although the observer tends to assume the relations in such a 

chart, it became apparent, upon closer examination, that especially the activities that 
had potentially multiple dependencies were questionable. This suspicion became even 

clearer when using the αLC -algorithm to create a flow chart from just that single case, 
and it led to the statement that all activities preceding a join require additional scrutiny. 
Single dependency on the other side can be considered to be correct. It also became 

clear that most industrial manufacturing processes start with a single activity, which 

often is the part being loaded and end with the part being unloaded in a single activity. 
Next stood the question about what traces needed to be observed for the above-

identified activities to be certain that the presumed relation holds. As previously de-
scribed, Process Discovery defines a direct following relation as an activity ’b’ always 

following an activity ’a’ without ever observing the opposite. This rule allows for the 

definition that if activity ’b’ truly depends on activity ’a’ then this should still be the 

case if the duration of activity ’a’ is extended until all remaining activities reach their 
complete state. Therefore if such extreme traces are recorded for all activities in ques-
tion one can be certain that the process model discovered from such log with the help 

of the αLC -algorithm will be highly accurate. 
At the beginning of this conclusion, it was already explained that most industrial 

processes are controlled by PLCs, which often allow for external access through OPC. 
The concept of ’interactive trace induction’ takes advantage of this capability by adding 

a contact into the PLC code, which allows for the delay of the activity’s completion. 
This modification enables the recording of the extreme traces described above with the 

added benefit that only a few cycles need to be recorded to allow for highly accurate 

Process Model discovery rather than collecting months’ worth of data with the hope 

that the appropriate cases were observed. 
The idea of delaying the activity’s completion through OPC was successfully tried on 

actual production equipment. Further experiments were contacted using the artificial 
sequence previously introduced, and it was shown that the framework allows for a highly 

accurate model discovery. 
The contribution for this final part within this work can be summed up as a novel 
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methodology to interactively induce traces, through signal delays, that enable the dis-
covery of a highly accurate process model by revealing the true dependencies. 

In the course of this thesis, all aspects required to ’derive value from incomplete and 

flawed industrial equipment event logs’ were investigated. Criteria and methodologies 

were provided that enable every step from the data acquisition over preprocessing and 

cleaning to dependency discovery which at the end allows for the automated annotation 

of improvement suggestion within a process’ Gantt chart. It was shown that such a 

framework, applied to real-life industrial processes, can improve the throughput of a 

production line significantly, thus saving big sums over the lifetime of the equipment. 

This research aimed to develop a framework that can automatically set up a monitor-
ing system for an automated production system, clean the data obtained and discover 
a model representing the current state of the machine. The following section points out 
some applications for the obtained models that could be explored in the future. 

6.2 Future Works 

6.2.1 Process Model-Based Case Clustering 

It was shown that the αLC -algorithm, in conjunction with ’interactive trace induction’ is 

capable of discovering a highly accurate process model. Essentially it is circumventing 

the original concept of mass data collection, preprocessing and log repair for model 
discovery. Knowledge-based improvement suggestions still rely on the production data 

to be logged. With the process model known, case clustering now could be achieved 

through alignment and conformance checking algorithms. At the same time also quality 

issues within the log could be detected and the cases checked for completeness. 

6.2.2 Process Model-Based Log Repair 

As previously stated, one of the known downfalls of any log repair effort is that it 
does not consider the dependencies of the activities. Instead, it assumes that a missing 

event is related to the prior and next activity. After discovering the process model, 
the dependencies are known, and there is an opportunity that the repair results might 
improve. Since this will not be of any benefit for this project, this possibility was not 
further investigated. 
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6.2.3 Process Model Based Improvement Suggestions 

This project demonstrated that improvement suggestions could be obtained from and 

marked within a Gantt chart of the equipment’s sequence of operations. Since a Process 

Model is just a different form to represent the same sequence, it should also allow for the 

discovery of the same performance shortcomings. This search requires annotating the 

process model with a duration for nodes and ’waiting times’ for all the edges. Based 

on that information it then will be possible to detect similar and opposing motions 

with different cycle times, excessive fluctuations for the cycle time of a node and gaps 

between nodes. Since the process model shows all the dependencies for each node, it 
might additionally also be possible to exclude non-critical fluctuations if they happen 

in parallel to some other time-intensive events. Highlighting the different areas with 

colours would aid the clarity of the model. 

6.2.4 Commissioning and Start-up 

One of the main goals during start-up and commissioning is to achieve the specified 

cycle time for the system. Lots of time is spent in obtaining the current cycle time as 

well as finding ways to improve it. The proposed framework could monitor the system 

in the background also during this project phase and provide the programmer with 

annotated Gantt charts that highlight improvement opportunities. 

6.2.5 Comparison Design Vs. Event Log Model 

During the design phase of any manufacturing equipment, the engineers determine the 

sequence of the tooling. During start-up of the actual equipment often, it is found that 
this sequence can not perform as stated in the machine’s specification. It is common 

practice that the start-up engineers then tweak the sequence on-site. Unfortunately, 
these last-minute changes often do not make it back to the documentation. Obtaining 

the process model from the actual equipment data will yield the real sequence, which 

then could be used for compliance checking. 

6.2.6 Equipment Documentation 

Once a manufacturing system is fully commissioned the ’as-built’ status has to be 

documented. Often the process will no longer match the designed process because 

it was discovered that the system, as designed, did not meet the quality or cycle time 

requirements. Process Discovery can be used to discover the ’as is’ process model, which 

then could be attached to the documentation. Ideally, the discovered model could be 

transformed into a Gantt chart to conform to standard documentation conventions. 
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6.2.7 Feedback of Real Life Data 

The design process of an automated production system heavily relies on assumptions on 

how much time is needed for specific tasks. Timing annotations within the discovered 

process model could be used to correct these assumptions based on real-life data. Such 

a process will lead to a gradual improvement of the design process. 

6.2.8 Real Time Monitoring 

Diagnostic systems of automated systems are hand-coded, which leads to in-completed 

diagnostics due to faulty or missing logic. An automatically discovered process model 
can be used as the ’master’. Any deviation from that master, be it the activity life cycle 

or the sequence, could be considered a fault and automatically trigger a message to be 

displayed on the human-machine interface. 

6.2.9 Automated Maintenance Task Scheduling 

There are two types of maintenance that take place within manufacturing equipment. 
The first is the maintenance that is performed by the maintenance personnel based 

on faults occurring or based on a predetermined maintenance schedule. The second 

type includes periodic maintenance tasks related to the processes within the stations 

that are automatically triggered by the process controllers. It can be assumed that the 

maintenance personnel, for scheduled maintenance tasks, will choose a time slot that 
does not interfere with the production targets. Contrary, the process controllers count 
the number of processes and whenever a threshold is reached trigger the maintenance 

task without any regard to the impact for production. With the help of the process 

model, it would be possible to determine when there will be a gap coming up in the 

production flow, and the process controllers then could be forced to perform their 
maintenance tasks during that time. 

6.2.10 Process Recommendation System 

Automated manufacturing systems follow a rigidly programmed sequence of operations. 
If there is an interruption of that sequence, due to a mechanical fault or and human 

operator not following the intended process, the cell throughput will suffer. A system 

can be developed, that determines, based on the previously recorded cases, the best 
possible path for continuation of the process. Based on that information, decisions can 

be made to direct the human operator to the next task to be completed or to trigger a 

more beneficial task for the robot to perform in the meantime. 
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6.2.11 Predictive Maintenance 

The cleaned data should also be well suited for predictive maintenance, although it does 

not require a Gantt chart to be created or a process model to be discovered. Instead, a 

long-term observation would be valuable. The proposed data collection algorithm logs 

the fault message associated within a production cell along with the sequential motions. 
Therefore it should be possible to relate faults with behaviour found in the sequential 
log. Literature review suggests that such tagged data could be used to predict future 

failures. It is also believed that the slow degradation of the units with a station will 
lead to more sluggish behaviour. Further research could prove if such relationships exist 
and if they could be used to predict impending failure. Such reasoning might require 

more precise timestamps and more extended term observation. 

6.2.12 Maintenance Assistance 

Another slightly related opportunity would be the development of maintenance assis-
tance software. During this project, it was observed that many equipment faults could 

be overcome by pressing the reset button. Although the right approach would be to 

root cause and eliminate the faults, it might be beneficial to a strained maintenance 

workforce if the monitoring system would ’learn’ how maintenance reacts to specific 

faults. The monitoring could be done through logging fault messages as well as HMI 
and reset button activities. This learned behaviour could eventually be executed by 

the monitoring PC automatically, thus relieving the maintenance workers. 

6.2.13 Duration Assignment 

Typically Process Discovery assigns duration to the edge between two nodes when 

plotting a process model. An edge represents a dependency between activities and the 

duration assigned is the difference between the associated timestamps. Because of the 

use of life cycle information, there no longer is a need to assign a duration to the edge. 
A benefit could only be derived if the edges were assigned a ’wait duration’ which is 

the difference between the time this edge would have allowed for the next event to 

start and the actual start of the event because of other dependencies, breaks or buffers. 
This way, the imbalance within a system could be shown, and improvement potential 
could be detected. Assigning the duration to the node yields another benefit because it 
should be expected that this duration is nearly constant. A cylinder, for example, will 
typically always take the same time to extend or retract. If the value is not constant, 
then this would indicate a potential problem caused by an external factor. For the 

cylinder, such an external factor could be fluctuating air pressure. 
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