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Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly 
carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for 
this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric 
images can be used to add anatomical information. It is useful to know the position of the catheter 
electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during 
atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso 
catheter can be used for road map motion correction. 
Methods: In this paper, the authors present a novel unified computational framework for image-based 
catheter detection and tracking without any user interaction. The proposed framework includes fast 
blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking 
methods were designed based on the customized catheter models input from the detection method. 
Three real-time detection and tracking methods are derived from the computational framework to 
detect or track the three most common types of catheters in EP procedures: the ablation catheter, the 
CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method 
to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected 
and tracked simultaneously in real-time. 
Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences 
taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 ± 0.29, 0.92 
± 0.61, and 0.63 ± 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved 
for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, ac-
curacies were increased to 0.45 ± 0.28, 0.64 ± 0.37, and 0.53 ± 0.38 mm and success rates increased 
to 100%, 99.2%, and 96.5% for the CS, ablation, and lasso catheters, respectively. Subjective clinical 
evaluation by three experienced electrophysiologists showed that the detection and tracking results 
were clinically acceptable. 
Conclusions: The proposed detection and tracking methods are automatic and can detect and track 
CS, ablation, and lasso catheters simultaneously and in real-time. The accuracy of the proposed meth-
ods is sub-mm and the methods are robust toward low-dose x-ray fluoroscopic images, which are 
mainly used during EP procedures to maintain low radiation dose. © 2013 Author(s). All article con-
tent, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported 
License. [http://dx.doi.org/10.1118/1.4808114] 
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I. INTRODUCTION 

X-ray fluoroscopically-guided cardiac electrophysiology 
(EP) interventions are routinely carried out for diagnosis and 
treatment of cardiac arrhythmias. X-ray images have poor 
soft tissue contrast and, for this reason, overlay of static three-
dimensional (3D) roadmaps can be used to add anatomical 
information. The roadmaps can be derived from prepro-
cedural computed tomography (CT) images,1–3 magnetic 
resonance images (MRI),4 or C-arm CT and rotational x-ray 
angiography (RXA) images.5–7 Further combining the pre-
procedural image with electro-anatomical mapping systems 
can provide detailed anatomical information. Anatomical 
information from live 3D echo can also be combined with 
x-ray fluoroscopy for navigational purposes.8, 9 A review of  
these image fusion techniques can be found in Ref. 10. Many  
different types of catheters are used during EP procedures, 
each having specific configurations of radio-opaque markers 
or electrodes [see Fig. 1(b)]. These electrodes are used for the 
measurement of electrical signals within the heart and also 
for the delivery of radio frequency energy during ablation 
treatments.11 Accurate and robust localization of catheters 
in the x-ray images can provide enhanced functionality 
during procedures for guidance and also for postprocedural 
analysis. 

One of the important clinical applications for the localiza-
tion of catheters is to correct for respiratory motion. Currently, 
a major limitation of 3D road mapping technologies is that 
the overlay image remains static and does not move with the 
patients respiratory motion. In some cases, respiratory mo-
tion can cause a two-dimensional (2D) registration error of 
over 14 mm.12 Respiratory motion correction can be achieved 
by using the motion of lasso13, 14 or coronary sinus (CS) 
(Refs. 15–17) catheter, when the lasso or CS catheter remain 
fixed with respect to the cardiac anatomy and only move with 
the respiratory and cardiac motions. Another important appli-
cation of catheter localization is to record the position of the 
ablation catheter tip and map it onto the 3D roadmap during 
ablation therapies.18 

The 3D catheter path can be reconstructed from two x-ray 
views using the methods in Refs. 19 and 20. Alternatively, the 
3D position of the ablation catheter tip can be automatically 
calculated by using synchronously acquired biplane images 
from a biplane x-ray system. However, a biplane system is 
less common than a monoplane system due to its much higher 
cost, and involves increased radiation exposure for both the 
patient and the clinician.13 In order to generate biplane x-ray 
images from a monoplane x-ray system, motion gating meth-
ods can be used to match a pair of images with similar res-
piratory and cardiac phases from two image sequences that 
are sequentially acquired from different angles. One method 
for automatic image-based motion gating is to calculate the 
cumulated phase shift in the spectral domain from x-ray flu-
oroscopic image sequences.21 This method is based on detec-
tion of the energy change in the images. As the method uses 
the overall motion of moving objects, the cardiac and respi-
ratory cycle motions detected by this method could be erro-
neous when the clinician manipulates the catheters or injects 

contrast agent. Therefore, a motion gating method based on 
catheter motion detection would be potentially more accurate 
and robust. 

All of these applications require fast, accurate, and robust 
image-based catheter detection methods. However, to design 
such methods and use them during EP procedures is a chal-
lenging task. The speed of the detection method should be 
real-time (at least 10 fps). The region of interest should cover 
the whole x-ray fluoroscopic image since the catheters can be 
moved very quickly and large, sudden respiratory motion can 
also cause large, sudden movement of the catheters. There-
fore, catheter detection and tracking methods on the whole x-
ray image should be used instead of using small regions of in-
terest. Finally, the detection methods have to be robust enough 
to be used routinely during clinical procedures. A technique 
for tracking the ablation catheter in x-ray images was first pro-
posed by Franken et al.22 The computational cost was rela-
tively high and implementation on a graphical processing unit 
(GPU) was suggested. Weide et al.23 developed a more ef-
ficient method for tracking intravascular devices in interven-
tional MR images based on tracking paramagnetic markers. 
The computation for a single image by their method took 
0.3 s. Schenderlein et al.24 proposed a catheter tracking 
method using snakes (active contour models). 

More recently, Brost et al.13, 14 developed a model-based 
lasso catheter tracking algorithm and achieved a maximum 
frame rate of 3 fps in a biplane x-ray system (10 fps in a mono-
plane x-ray system). However, the tracking method required 
manual initialization. Wu et al.25 proposed a learning based 
approach to temporally track and detect catheter electrodes in 
fluoroscopy sequences. This approach achieved 0.50 mm me-
dian error and 0.76 mm mean error for CS catheter tracking 
and 97.8% of evaluated data had errors less than 2.00 mm. 
A tracking speed of 5 fps was achieved on most data. Yatziv 
et al.26 presented a catheter detection method based on cas-
cade classifiers. Although their method achieved 10 fps and 
a 3.97% detection failure rate, it only detected the catheter 
tip electrode and could fail when a thicker lasso catheter was 
present. 

We have previously developed a detection method for ten-
electrode CS catheters based on blob detection.15–17 This 
method was limited to one type of catheter, was not robust 
to occluded electrodes and required the catheter tip to be in 
view. In this paper, we extend our basic detection method with 
novel contributions that include (1) a unified framework that 
can be adapted to detect any of the three most common types 
of EP catheter (CS, ablation and lasso); (2) a method to track 
these catheters based on custom templates derived from the 
detection, which provides robust tracking even when some 
electrodes are overlapped with other radiographically dense 
objects or are outside the field of view; and (3) real-time fully-
automated operation with simultaneous discrimination of all 
three catheter types. The developed methods were validated 
using a large cohort of clinical data using quantitative error 
metrics and also subjective evaluation by experienced clini-
cians for clinical utility. 

In Secs. II–IV, the proposed catheter detection and track-
ing algorithms are presented in Sec. II. The evaluation of both 
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FIG. 1. (a) Gaussian derivative masks. (b) Example of the result of the blob detection method in a low dose X-ray image. The crosses are the positions of 
electrode-like blobs. 

methods is given in Sec. III. Finally, a conclusion and brief 
discussion is given in Sec. IV. 

II. METHODS 

Cardiac EP catheters comprise a smooth and flexible tube 
with several metal electrodes in the tip region and are de-
signed to be highly visible in normal or low dose x-ray fluoro-
scopic images. The common features of catheters are a larger 
metal electrode at the tip of the catheter and several equal-size 
metal electrodes proximal to this. On the other hand, differ-
ent types of EP catheter have different unique features, which 
can be used to discriminate them from each other. Our novel 
generalized computational framework for catheter detection 
and tracking includes fast blob detection, shape-constrained 
searching, model-based detection, and template-based track-
ing as described in Secs. II.A–II.D. 

II.A. Blob detection 

Electrode-like objects were detected using a fast blob de-
tector based on the determinant of the Hessian matrix,27, 28 

which is defined as 
2detH(L(x, y; t0)) = LxxLyy − L , (1) xy

where L(x, y; t) = I(x, y) ∗ g(x, y; t) is the scale-space repre-
sentation of the image I(x, y) with the scale factor t and g(x, 
y; t) is a Gaussian filter. In practice, the determinant is calcu-
lated directly via Lxx, Lyy and Lxy using directional Gaussian 
derivative filters applied to the original image, e.g., Lxx = I(x, 
y) ∗ gxx, where � �21 x −(x 2+y 2)/2t0gxx(x, y; t0) = −  1 − e . (2)

2πt2 t00 

Figure 1(a) shows the precomputed Gaussian derivative 
masks. 

Blobs are detected as regional maxima of the determinant 
of the Hessian matrix and the strength of the blob is defined 
as 

Blob = t0 detH(L(x, y; t0)). (3) 

From Eq. (3), it is known that the strength of the blob 
is dependent on the scale factor and the choice of scale 
factor determines the size of electrode that is detected. A 
method is required that simultaneously detects the differ-
ently sized electrodes on the CS, ablation and lasso catheters. 
As the size of the lasso catheter electrodes is very similar 
to the size of the CS catheter electrodes, four fixed scale fac-
tors are used to detect the tip and proximal electrodes on the 
three types of catheter. The scale factor is t0 = σ 2 (σ is the 
standard deviation of the Gaussian function) as the border of 
the blob is likely to occur at the maximum slope of the Gaus-
sian function. Figure 1(b) demonstrates the result of blob de-
tection in a low-dose x-ray image. The value of the blob size 
s (s = σ ) was set to 8 pixels for the CS catheter tip elec-
trode and 4 pixels for the smaller electrodes. For the abla-
tion catheter, s was set to 16 or 6 pixels for the tip electrode 
and the smaller electrodes, respectively. The pixel sizes of 
the electrodes were calculated from their physical size (mm) 
and the conversion took account of the magnification fac-
tor of the x-ray system. The magnification factor was esti-
mated using M = DdetDpat, where Ddet is the distance from the 
x-ray source to the detector and Dpat is the distance from the 
source to the patient. The conversion factor from mm to im-
age pixels was then MRdet where Rdet is the constant pixel size 
on the detector. 

In addition, the first and second eigenvectors of the 
Hessian matrix were computed based on the region covered 
by the blobs. The first eigenvector corresponds to the orienta-
tion of blobs and the second eigenvector is the vector perpen-
dicular to the first eigenvector. 

II.B. Shape constrained searching 

First, the 50 highest strength blobs are selected from the 
blob detection method and they are sorted by strength from 
strongest to weakest. The blob strength is correlated with the 
blob size, s, since from Eq. (3), we know that the strength 
of the blob is dependent on the scale factor t. Therefore, the 
larger catheter electrodes are likely to have stronger blobs. 
The number 50 was empirically determined and relates to 
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FIG. 2. (a) Illustrations of the rotation of the C-arm at left/right anterior oblique 30◦, viewed from a patients foot end. (b) The definition of folding angle β. 

the number of blob-like structures typically detected in x-ray 
data, the majority of which correspond to the electrodes of 
catheters. Of the three catheters used in a typical EP proce-
dure, a CS catheter has 4–10 electrodes, an ablation catheter 
has 4 electrodes and a lasso catheter has 10–20 electrodes. 
Therefore 50 is a reasonable number. Following blob detec-
tion, a shape constrained search algorithm is used to identify 
which combination of blobs represents an EP catheter. 

II.B.1. Smooth curve based search algorithm 

For detecting a flexible catheter, e.g., a CS catheter or de-
fibrillation catheter, a smooth curve based search algorithm 
is used. The search algorithm starts with the first 10 of the 
50 strongest blobs from the blob detection algorithm and uses 
them as candidates for the catheter tip electrode. Since there 
are typically three catheters used in an EP procedure, the tip 
electrodes for all catheters are likely to be included in the first 
ten strongest blobs. 

From the position of each candidate tip electrode, the 
smooth curve based search algorithm finds the nearest blob 
which satisfies two conditions. First is the maximum elec-
trode gap (5 mm, or 20 pixels in a 512 × 512 pixel image). 

This is twice the length of the maximum distance between 
two neighboring catheter electrodes, which also takes account 
of variations from different catheter manufacturers. The sec-
ond condition is the folding angle β, which should be larger 
than 90◦, as catheters in human vessels are likely to be in a 
smooth curve shape when the catheter is projected onto the 
2D x-ray image within the range of normal clinical C-arm 
angles. The EP procedures usually use C-arm angles from 
LAO 30 to RAO 30 [illustrated in Fig. 2(a)]. The folding an-
gle measures how sharply a curved catheter has turned and is 
illustrated in Fig. 2(b). As the folding angle β must be larger −→ −→
than 90◦, this can be translated into A · B < 0. Using these 
two conditions, the search algorithm is likely to find blobs 
along a smoothly curved path. It will stop when all electrodes 
are found or no more blobs are within the range of maximum 
electrode gap. 

II.B.2. Line based search algorithm 

The line based search algorithm assumes that the catheter 
is very rigid in the region of the electrodes. The ablation 
catheter is a good example as the region of the catheter tip 
and its other three electrodes is very rigid [see Fig. 3(a)] and 

FIG. 3. (a) Ablation catheter. The rigid area is within the circle. (b) The definition of the turning angle. 
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cannot make a turning angle of more than 30◦. The turning 
angle θ is defined as the angle between the direction vector of 
the last two electrodes, V1, and the orientation vector of the 
catheter tip electrode, V2 [see Fig. 3(b)]. As the catheter tip 
electrode is a large and solid metal electrode, it is again ex-
pected to be one of the first ten strongest blobs. From the ten 
candidates, the line based search algorithm searches for the 
other electrodes along the direction and the opposite direction 
of the blob orientation vector which is the first eigenvector of 
the Hessian matrix. The reason for searching in two directions 
is because of the symmetry of the catheter tip, which means 
that the orientation vector calculated from the blob detection 
is not always from the distal end to the proximal end of the 
catheter. Two constraints are applied to the search: the maxi-
mum gap between electrodes and the turning angle θ . The  θ 
condition can be written as 

→−→ −
V1 · V2 cos θ = > cos α, (4)−→ −→ 
V1 V2 

where α is the maximum turning angle for the ablation 
catheter, in this case 30◦ . 

For the ablation catheter, there is some variation in the 
maximum electrode gap from several manufacturers. We 
chose the maximum (5 mm) among them with a cutoff thresh-
old of twice that value (10 mm or 40 pixels based on a 
pixel to mm ratio of 0.25). The search algorithm iteratively 
searches for blobs which satisfy these two constraints until 
the maximum number of blobs is reached. This may be more 
than the maximum number of electrodes (four for the abla-
tion catheter), as other electrode-like objects could also be 
detected. 

II.B.3. Ellipse based search algorithm 

The ellipse based search algorithm is used to detect circu-
lar or elliptical shaped catheters, such as the lasso catheter. 
Similar to the first two methods, the search algorithm starts 
with the first ten strongest blobs. As all circular or ellipti-
cal shaped catheters are deformed from smooth line catheters 
[see Fig. 4(a)], the nearby second electrode is expected to be 
found along the orientation direction of the catheter tip elec-
trode, computed as the first eigenvector of the Hessian matrix. 
Therefore the second electrode is found using a line based 
search algorithm in this direction. 

FIG. 4. (a) The circular lasso catheter is formed from a smooth line catheter. − −−−−→ →
(b) The definition of reference centripetal direction vector C 0 = BI−2B1−−−−−−→ × BI−2BI−1. B0 is the position of the catheter tip which is excluded from 
the calculation because it is sometimes located outside the ellipse or circle. 
B is the position of a candidate blob. 

To collect and compute some basic geometric information 
about the shape of the catheter, the next three electrodes are 
detected using only the nearest blob with the maximum gap 
constraint. After these electrodes are successfully detected, 
the centripetal direction vector can be computed, which tells 
the search algorithm whether the rest of the electrodes are in a 
clockwise or anti-clockwise direction. As shown in Fig. 4(b),−→
the reference centripetal direction vector C0 is computed us-
ing the positions of existing blobs 

−→ −−−−→ −−−−−−→ 
C0 = BI−2B1 × BI−2BI−1, (5) 

where × is the cross product operator and I is the index of the 
blob. The current centripetal direction vector is 

− −−−−−−→ −−−−→ → 
CI = BI−1BI−2 × BI−1BI , (6) 

where B is the position of a candidate blob. To test whether I−→ − − −→ → → 
C0 and CI are in the same direction, a dot product C0 · CI−→ −→
is used, with C0 · CI > 0 indicating the same direction. The 
search algorithm iteratively searches for blobs which satisfy 
the maximum gap and centripetal direction constraints until 
the number of electrodes on the catheter (20 in this case) is 
reached. Finally, the search algorithm searches in the opposite 
direction of the tip orientation vector by repeating all previous 
steps, then sorts all blobs in the clockwise or anti-clockwise 
direction. 

II.C. Model based detection 

After a list of catheter-like objects is found by one of the 
search algorithms, a cost function is used to estimate the like-
lihood of catheter-like objects. A generalized cost function 
was designed not only to discriminate the catheter from other 
radiographically dense objects, such as pacing leads and ster-
nal wire loops, but also to recognize a catheter in a particular 
shape. It is defined as 

Cost = w0 ∗ (1 − Blob0) �N−1 

+ w1 ∗ i= 1 |Blobi − Blob|
N − 1 �N−2 | cos βi − cos β|+ w2 ∗ i= 1 

N − 2 

ChordLen + w3 ∗ 
CurveLen 

−(N−NE)2 

+ w4 ∗ (1.0 − e NE2 ) 

(7)+ w5 ∗ SNCC, 

where wi (i = 0,  . . . ,  5)  are  weights  that  vary  depending 
on the catheter type. Blobi is the strength of the blob and 
Blob0 is blob strength for the catheter tip. Blob is the mean 
blob strength of catheter electrodes excluding Blob0. β is the 
folding angle and cos β is the mean of cosines of all fold-
ing angles. ChordLen is the Euclidean distance between the 
last blob and Blob0. CurveLen is the length of catheter (ap-
proximated by the line segments only). N is the number of 
blobs in the catheter-like object. NE is the expected number of 
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TABLE I. Weights of cost function for catheter detection. 

Catheter Training data size w0 w1 w2 w3 w4 w5 

CS 
Ablation 
Lasso (normal) 
Lasso (line) 

100 
100 
100 

10 

0.2 
0.4 
0.3 
0.3 

0.5 
0.1 
0.2 
0 

0.4 
0.4 
0 
0.5 

0.1 
0 
0.4 
0 

0.4 
0.3 
0.2 
0.4 

0 
0.6 
0 
0 

electrodes on the catheter. These could differ if closely spaced 
electrodes are detected as a single blob. Blobi is normalized 
to a range of 0–1.0 over the 50 candidate blobs, so that if all 
weights are set to 1.0, all five parts of the equation have the 
same range from 0 to 1.0. 

The first part of Eq. (7) penalizes a small tip electrode, 
as it should be one of the biggest blobs in the x-ray im-
age. The second part is minimized when all electrodes (ex-
cluding the tip electrode) are equal size. The third part con-
cerns the folding angle and penalizes sharp bends in the 
catheter. The fourth part is used to discriminate between open-
curve shaped catheters and closed-curve shaped catheters. 
If ChordLen/CurveLen is applied to circular or elliptical 
shaped catheters (e.g., lasso catheter), it will generate a 
value near to zero. The fifth part is related to the number 
of electrodes on the catheter and it will reach zero when 
N = NE. Finally, SNCC is a normalized template matching 
score and it calculates the normalized cross correlation be-
tween candidate catheter tip blob and a tip electrode tem-
plate. This is used to detect different shapes of catheter tip 
electrodes. 

For each type of catheter, certain parts of Eq. (7) are un-
necessary, as detailed in Secs. II.C.1–II.C.4, and the weights 
are directly set to zero. Determining the best values for the 
remaining weights is an optimization problem and is solved 
separately for each catheter type using a brute-force approach 
of searching over all possible combinations of weights in the 
range 0.1–1.0 (step size 0.1) on a random set of training x-
ray images. Since each training image may contain more than 
one catheter-like object, the lowest score is taken from each 
image at each combination of weights, and the optimized 
weights are those that give the minimum sum of these low-
est scores. Table I gives the weights used for each type of 
catheter. 

II.C.1. CS catheter detection 

The CS catheter is an EP catheter inserted into the main 
branch of the coronary sinus tree. The most commonly used 
CS catheters are the ten-electrode or decapolar catheters. 
Once it is placed within the CS, the shape of the CS catheter 
is determined by the geometric shape of the CS main branch, 
which is a smoothly curving blood vessel. Therefore, the 
shape of the catheter is an open-end smooth curve and the 
smooth curve based search algorithm is used. w5 was set to 
zero as the shape of the CS catheter tip electrode is similar to 
that of the lasso catheter. 

II.C.2. Ablation catheter detection 

The line based search algorithm was used for the ablation 
catheter, as it is very rigid in the region of the electrodes. In 
addition to the straight-line feature, the ablation catheter has a 
large and solid catheter tip electrode which casts a dark, solid, 
and thin ellipse-like blob in the x-ray images [see Fig. 5(a)]. 
A simple black template based on the estimated size was cre-
ated in different orientations. The template is symmetric and 
orientations from 0◦ to 180◦ with a step of 1◦ were generated 
[see Fig. 5(b)]. Given a candidate tip blob, the template in the 
closest orientation with the first eigenvector of the tip blob 
is used. This template is translated along the first and second 
eigenvectors to find the optimal position by using a normal-
ized cross correlation (NCC) algorithm. 

As the template is symmetric and the catheter tip blob in 
the x-ray image is likely symmetric along the tip head and 
tip foot direction [see Fig. 5(c)], the first eigenvector and 
template matching cannot reliably distinguish the tip head 
where the ablation of heart muscle tissue takes place. Instead, 
this is determined from the direction of the remaining elec-
trodes found in the two-direction line search. Part 3 of Eq. (7), �N−2 | cos βi −cos β|
w2 ∗ i=1 

N−2 , is replaced by w2 ∗ (1 − cos θ ). The 
turning angle θ [defined in Fig. 3(b)] is more robust than cal-
culating the deviation of two folding angles. w3 is set to zero, 
as the line shaped catheter is definitely an open-end curve 
(ChordLen/CurveLen is near the constant value of 1.0). 

II.C.3. Lasso catheter detection 

The physical shape of the lasso catheter is a closed circular 
curve [see Fig. 4(a)]. When it is perspectively projected onto 

FIG. 5. (a) X-ray image of ablation catheter tip. (b) Ablation catheter tip templates in different orientations. (c) The definitions of the tip head and tip foot. 
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a 2D imaging plane by the x-ray system, the projected shape 
becomes a circle or an ellipse. The ellipse based search algo-
rithm is therefore used to find the lasso catheter. In this case, 
w2 is set to zero as folding angles are not reliable and there 
are always two sharp turns for elliptical objects. w5 is also set 
to zero as the shape of the CS catheter tip electrode is similar 
to that of the lasso catheter. 

Under some particular view orientations, the ellipse can 
collapse to a line segment. A line shaped lasso catheter can 
be found using the bidirectional line based search algorithm 
with a modified cost function similar to the ablation catheter �N−2 | cos βi −cos β|cost function. Part 3 of Eq. (7), w2 ∗ i=1 

N−2 , is again  
replaced by w2 ∗ (1 − cos θ ), where the angle θ is defined in 
this case as the angle between the orientation vector and the 
line vector determined by least-squares fitting. In the current 
implementation, the switch between elliptical shape detection 
and line shape detection is manual. 

II.C.4. Simultaneous detection 

In some clinical applications, the ablation catheter, lasso 
catheter, and CS catheter are required to be detected simul-
taneously as the ablation catheter detection can localize the 
3D position of the catheter tip and the lasso catheter or CS 
catheter can be used for motion correction or motion gating. 
Therefore, a framework of detecting these three catheters si-
multaneously was developed. 

Figure 6 presents the flow chart for this framework. The 
preprocessing steps are to estimate the magnification factor of 
the x-ray system then generate the tip templates for the abla-

tion catheter. This is followed by blob detection and eigenvec-
tor calculation. From the blob data, the CS catheter is detected 
first. The ablation and finally the lasso catheter are then de-
tected using the remaining blobs and their eigenvectors. The 
order of catheter detection is determined by the robustness of 
detecting each catheter. The CS catheter detection is most ro-
bust, as this catheter comprises a long smooth curve with no 
self-occlusion. The ablation catheter is then easily detected 
by its distinctive tip electrode, leaving the lasso catheter to be 
detected from a reduced number of candidate blobs. 

II.D. Template-based tracking 

If the x-ray view does not change, catheter tracking meth-
ods can be used to increase the robustness of the catheter 
detection method. Tracking methods are initialised using the 
basic detection algorithm described in Sec. II.C. This detec-
tion is used to create a customized 2D catheter model com-
prising a connected graph which gives information about the 
initial shape and orientation of the catheter. In subsequent 
frames, the tracking methods use the same blob detection 
method and a modified catheter detection method that uses 
the customized model. Incorporating the customized model 
may allow successful tracking in cases where some catheter 
electrodes are overlapped with other radiographically dense 
objects or are outside the field of view. The current imple-
mentation requires manual detection of failed tracking, at 
which point the operator can restart with the basic detection 
algorithm. 

FIG. 6. The flow chart of simultaneous catheter detection. The detection method starts with blob detection and eigenvector calculation. The CS catheter is 
detected first using the result of blob detection only. The ablation and lasso catheters are then detected using the results of blob detection and eigenvector 
calculation. 
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FIG. 7. The definition of Dtol and  . 

II.D.1. CS catheter tracking 

The customized model for the CS catheter comprises the 
orientation vector of the catheter tip and the positions of 
the electrode blobs. The search algorithm assumes that the 
catheter tip electrode (the distal electrode) is not overlapped. 
It again starts with the first ten strongest blobs and uses 
them as the candidates for the catheter tip electrode. The cus-
tomized model is aligned with each candidate for the catheter 
tip electrode and rotated within the image plane to match the 
direction of the catheter tip orientation vector (determined 
from the first eigenvector of the tip electrode and the di-
rection vector between the first two electrodes). From the 
position of the tip electrode, the search algorithm finds all 
blobs which are within the maximum gap distance, Dgap, be-
tween the candidate blob and catheter tip blob. Dgap is the 
maximum gap between any two electrodes in the customized 
model. If the minimum distance from the candidate blobs to 
the catheter tip blob is less than the tolerance distance, Dtol, 
then the candidate blob with the minimum distance will be 
chosen. Otherwise, the electrode is likely overlapped by other 
radiographically dense objects and is undetected. The corre-
sponding electrode in the customized model will then be cho-
sen instead. The tolerance distance, Dtol, is defined as Dtol 

= 2 sin  ( /2)Dgap.  is the maximum deformation angle and 
is related to the local deformation of the CS catheter (see 
Fig. 7). From the observation of all our x-ray images, 
 < 30◦. Therefore, Dtol = 0.518Dgap is chosen. 

The search algorithm will continue searching through the 
candidate blobs until the number of selected blobs is equal to 
the number of electrodes in the customized model or no more 
blobs can be found within Dgap. After the search algorithm ob-
tains one or several candidate catheter objects, the same cost 
function with the same weights as the one used in detection is 
used to select the best CS catheter candidate. 

The tracking method can also deal with partially missing 
data, which is caused by some electrodes occasionally moving 
outside the field of view. This may be caused by significant 
cardiac or respiratory motion, the degree of x-ray magnifica-
tion or the amount of collimation. For missing proximal-end 
electrodes, the number of electrodes compulsory for match-
ing the customized CS catheter model is relaxed. For missing 
distal-end electrodes, the blobs near the boundary of the im-
age are used as the catheter tip blob and the search algorithm 
starts from this. Currently, the choice of which of these meth-
ods to apply must be determined manually. 

II.D.2. Ablation catheter tracking 

For the ablation catheter, the model again comprises the 
orientation vector of the catheter tip and the positions of all 
electrodes. Similar to the CS catheter tracking, the search al-
gorithm first aligns the position and the orientation vector of 
the catheter tip electrode and then matches the other three 
electrodes. 

II.D.3. Lasso catheter tracking 

As opposed to the CS and ablation catheters, the order 
of electrodes in the lasso catheter is not reliable, due to the 
self-overlapping electrodes. Therefore, the search algorithm 
can only match the catheter tip and use the customized shape 
model (ellipse, circle, or line) to match the remaining part 
of the catheter. To generate the customized shape model, the 
least squares fitting algorithm is used to fit an ellipse to the 
electrode positions. This refined shape model is used to con-
strain the search for the candidate blobs by minimizing the 
distance between the blob position and the shape model. 

III. RESULTS 

Clinical x-ray images, 2292, (excluding 310 images used 
for training to determine weights) were used to test the three 
proposed catheter detection and tracking methods. There were 
a total of 105 different clinical fluoroscopy sequences which 
came from 31 atrial fibrillation (AF) ablation clinical cases. 
Typically, the clinical x-ray images contained one CS catheter, 
one ablation catheter, and sometimes one lasso catheter. All 
2292 images were used for testing CS catheter detection and 
tracking, 2014 images for the ablation catheter, and 1677 im-
ages for the lasso catheter. The same 1677 images were used 
to test the simultaneous detection and tracking, as they con-
tained all three catheters. Not all images were used for the 
ablation or lasso catheter, as these were not visible in all the 
x-ray images. 

To measure detection and tracking accuracy, two clinical 
experts manually picked the center position of each electrode 
on all 2292 images. The 2D distance between the manually 
defined positions and the positions detected by the detection 
or tracking method were measured, at the x-ray detector scale. 
Mean and standard deviation errors were calculated for each 
catheter using all available images and considering the nor-
mal and low dose images separately. A failed detection for 
a catheter was defined as one where any of the electrodes 
on that catheter had an error of more than 2 mm. This was 
used to calculate the overall success rate of the detection or 
tracking. Frame rate was determined using a single-threaded 
CPU implementation on an Intel Core 2 Duo 2.0 GHz lap-
top with an nVidia Quadro FX 350M graphics card. Table II 
summarizes detection and tracking results for each catheter in 
terms of error, success rate, and frame rate. Figure 8 shows 
statistics of the error for each electrode separately. Root mean 
square (RMS) deviations were used to measure the interob-
server variability between the two observers. The measure-
ment was the RMS error distances between the points marked 
by the first observer and the second observer. Results show a 
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TABLE II. Results for catheter detection and tracking methods on individual catheters. 

Detection 

Tracking 

Catheter 

Error for all images (mm) 
Error for low dose (mm) 
Success rate (%) 
Frame rate (fps) 
Error for all images (mm) 
Error for low dose (mm) 
Success rate (%) 
Frame rate (fps) 

CS 

0.50 ± 0.29 
0.49 ± 0.27 

99.4 
21 

0.45 ± 0.28 
0.44 ± 0.28 

100 
23 

Ablation 

0.92 ± 0.61 
0.96 ± 0.63 

97.2 
15 

0.64 ± 0.37 
0.67 ± 0.39 

99.2 
17 

Lasso 

0.63 ± 0.45 
0.61 ± 0.43 

88.9 
17 

0.53 ± 0.38 
0.52 ± 0.34 

96.5 
20 

difference of 0.12 mm for normal dose images (940 images) 
and 0.14 mm for low dose images (1352 images). There was 
no significant difference between the two observers. 

Three experienced electrophysiologists carried out an eval-
uation of the catheter detection and tracking in terms of po-
tential clinical utility. They were asked to score the results 
of CS, ablation, lasso and simultaneous catheter tracking af-
ter viewing videos of the tracking results in each sequence. 
The videos showed the original x-ray sequence and annotated 
electrode positions on the catheters. Each clinical expert was 
instructed to score videos according to Table III. There were 
58 videos, each showing tracking of CS, ablation, and lasso 

catheters. The average results of the scoring were 4.1 for CS, 
4.2 for ablation, 3.7 for lasso, and 4.0 for simultaneous track-
ing. To determine the interobserver variability, the p-values 
of t-tests were calculated for all pairs of observers and for all 
types of tracking method. The minimum of the p-values was 
0.25, which indicates that there were no significant interob-
server differences. 

For the CS catheter, it is noticeable that electrode no. 2 
has relatively larger errors than the others. This is because the 
second electrode is very close to the catheter tip (the distal 
electrode) and it could be detected together with the catheter 
tip as a single large blob. The detection method was robust 

FIG. 8. 2D detection and tracking errors for individual catheters. (Catheter tip is electrode no. 1). The height of the solid bar is the mean error. The error bar  
shows the standard deviation. The black cross is the maximum error and white cross is the minimum error. Only the first ten electrodes are shown for the lasso 
catheter. (a) CS detection results. (b) CS tracking results. (c) Ablation catheter results. (d) Lasso catheter results. 
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TABLE III. Meaning of score for subjective clinical evaluation. Mini-
mal manual intervention would mean reinitialization of the detection and 
tracking. Significant manual intervention would mean manual identification 
of catheters by mouse click followed by reinitialization of detection and 
tracking. 

Score Meaning 

5 (i) All catheters and electrodes identified correctly; (ii) no 
observable errors 

4 As per (i) above but (ii) a few frames have electrode annotation 
errors that would not affect clinical utility 

3 As per (i) above but (ii) a few frames have electrode annotation 
errors that would compromise clinical utility but manual 
intervention not required 

2 As per (i) above but (ii) a few frames have electrode annotation 
errors that would compromise clinical utility and minimal 
manual intervention required 

1 (i) Electrodes annotated on wrong objects; (ii) significant 
manual intervention required 

0 (i) At least one catheter not annotated; (ii) significant manual 
intervention required 

TABLE IV. Results for simultaneous catheter detection and tracking 
methods. 

Catheter CS Ablation Lasso 

Detection Error (mm) 0.48 ± 0.31 0.81 ± 0.59 0.61 ± 0.44 
Success rate (%) 89.5 
Frame rate (fps) 16 

Tracking Error (mm) 0.42 ± 0.25 0.63 ± 0.38 0.51 ± 0.32 
Success rate (%) 97.8 
Frame rate (fps) 18 

for low dose images and the errors were very similar to those 
for normal dose images. There was failure of detection in 
14 frames of normal dose images because one of the elec-
trodes was occluded by ECG electrodes. The tracking method 
had similar accuracy. Furthermore, the tracking method cor-
rectly tracked all electrodes in the 14 frames of x-ray images 
where the detection method failed. The ablation detection 
and tracking methods achieved similar success rates to the 

FIG. 9. Example of CS catheter detection in a low dose X-ray image. (a) Original low dose X-ray image. (b) CS catheter detection result. The crosses on the 
CS catheter are the positions of CS catheter electrodes. All other crosses are the positions of other catheter electrodes. The size of the circles on the catheter 
represent the strength of the blobs. 

FIG. 10. Example of ablation catheter detection in a normal dose X-ray image. (a) Original X-ray image. (b) Ablation catheter detection result. The crosses on 
the ablation catheter are the positions of ablation catheter electrodes. The white cross is the position of the ablation catheter tip electrode, where the ablation of 
heart muscle tissue takes place. The other crosses are the positions of other objects. The size of the circles represent the strength of the blobs (enhanced online) 
[URL: http://dx.doi.org/10.1118/1.4808114.1]. 
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FIG. 11. Examples of lasso catheter detection in low dose X-ray images. The crosses on the lasso catheter are the positions of blobs on the lasso 
catheter. The other crosses are the positions of other objects. (a) Ellipse shape. (b) Thin ellipse shape. (c) Line shape (enhanced online) [URL: 
http://dx.doi.org/10.1118/1.4808114.2]. 

FIG. 12. Example of simultaneous catheter detection in a low dose 
X-ray image. The crosses on the lasso catheter, the crosses on the abla-
tion catheter and the crosses on the CS catheter are the positions of blobs 
on the lasso catheter, ablation catheter and CS catheter, respectively. The 
other crosses are the positions of other objects (enhanced online) [URL: 
http://dx.doi.org/10.1118/1.4808114.3]. 

FIG. 13. Examples of CS catheter tracking vs. catheter detection. The 
crosses on CS catheter are the catheter electrodes. The other crosses are 
other objects. The left image is the result of catheter detection (arrows show 
failed detection of the last two electrodes) and the right image is the result 
of catheter tracking. Note that the CS catheter in the right image is correctly 
identified. 

FIG. 14. The least squares fitting of an ellipse for the lasso catheter. 

CS methods, but are slightly slower due to the additional com-
putational cost of the NCC algorithm. For the lasso catheter, 
the detection success rate is lower than for the other catheters. 
The majority of these failures are caused by overlapping with 
the ablation catheter, which leads to some of the electrodes 
having higher detection errors. The tracking method avoids 
most of the failures and has a success rate comparable to the 
other catheters. For the simultaneous method, the detection 
and tracking results are given in Table IV. Success was de-
fined as all three types of catheter being detected successfully. 

Figures 9–12 show examples of detection for each type of 
catheter and for simultaneous detection. Figures 13 and 14 are 
examples of tracking. Figure 13 is a case of CS catheter track-
ing where the detection method fails to locate two of the elec-
trodes due to occlusion, but locates the electrodes using the 
tracking method. This demonstrates the value of the tracking 
algorithm for tracking catheters that are partially occluded or 
out of view. Figure 14 demonstrates lasso catheter tracking 
using a parametric ellipse model. 

IV. DISCUSSION AND CONCLUSIONS 

This paper presents and validates a novel and real-time 
image-based catheter detection framework for EP procedures. 
The proposed detection and tracking methods are automatic, 
but currently require user interaction to detect failures and 
restart the detection in these cases. The methods can de-
tect CS, ablation, and lasso catheters simultaneously and in 
real-time. The accuracy of the proposed methods is sub-mm 
and the methods are robust towards low-dose x-ray fluoro-
scopic images, which are mainly used during EP procedures 
to maintain low radiation dose. The developed catheter detec-
tion algorithms were able to automatically recognize catheter-
like objects to a high degree of robustness. Customized shape 
models were extracted from the detection methods and these 
shape models were used as input for tracking algorithms that 
improved the robustness further. The use of the customized 
shape models was important to reduce failed detections when 
catheter electrodes were overlapped by other structures or 
when catheter electrodes were partially outside the field of 
view. 

Higher errors in ablation catheter detection or tracking are 
caused by detection or tracking the wrong object which is far 
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away from the real ablation catheter. The templates of the ab-
lation catheter tip electrodes were created assuming that the 
tip electrode was laying flat on the x-ray image plane. How-
ever, because we also take account of the blob size (tip size 
on the image) and the shape of catheter (straight line), the 
tracking/detection algorithm was generally robust towards the 
situation when the tip head was positioned to face the user. 
The higher failure rate and lower errors (compared with the 
ablation catheter) of the lasso catheter are caused by over-
lapping with the ablation catheter. In the overlapping cases, 
some of the electrodes on the ablation catheter were detected 
as the electrodes on the lasso catheter. Although the success 
rate of detection and tracking are high (from 89% to 100%), 
some failure cases may happen during clinical procedures and 
these currently need manual intervention to detect the failure 
and restart the detection. The results of the clinical evalua-
tion study demonstrate that such manual intervention would 
be uncommon. 

Previously published methods have reported an accuracy 
of 0.76 mm mean error and 97.8% success rate for CS catheter 
detection25 and a detection failure rate of 3.97% for multiple 
catheters.26 In comparison our tracking method is more accu-
rate (0.45 ± 0.28 mm) and more robust (100% success rate) 
for CS catheters, and similarly robust for multiple catheters 
(97.8% success rate with a wider success threshold). Our 
method is also faster than previously reported frame rates, 
achieving a constant speed of 23 fps for CS catheter track-
ing and 18 fps for simultaneous tracking, evaluated on a low 
speed laptop, compared to 5 fps (Ref. 25) and 10 fps.26 The 
limitation of our method compared to these approaches is that 
it assumes a desired or fixed shape for the catheter and might 
not cope with the catheter changing shape or the C-arm being 
positioned at an extreme angle. 

As the proposed methods use blob detection to extract 
the key information from the whole x-ray image, the com-
putational cost of detecting a catheter from the extracted in-
formation is relatively low compared with methods based 
on the vessel-filtering approach.13 The proposed computa-
tional framework is not limited to detect only CS, abla-
tion, and lasso catheters and it could be extended to any 
EP catheters as long as a shape model can be built and 
physical measurements can be obtained. The CS catheter 
detection examples shown in this paper are for detecting 
ten-electrode CS catheters but the method could be ap-
plied to other types of CS catheters such as 4-electrode, 7-
electrode, or 12-electrode measurement catheters. The meth-
ods could also be applied to pacing leads for cardiac resyn-
chronization therapy. A limitation of the techniques is that 
only electrodes are detected and the rest of the catheter is 
not detected or tracked. However, for the majority of EP 
clinical applications, the position of the electrodes is most 
important. 

The very high robustness achieved when using a com-
bination of detection and tracking will be important when 
translating these algorithms into clinically useful tools. There 
is a wide range of potential applications. One important 
application is respiratory motion correction for 3D anatomical 
overlay guided EP interventions.4 As both the CS catheter and 

lasso catheter can be reliably tracked, they can be used to cor-
rect the respiratory motion. Another application is automatic 
image-based ablation point localization.18 

In conclusion, a robust and accurate framework is pre-
sented for the detection of the three most common types of 
EP catheters without user interaction. The framework allows 
detection of individual catheters or a combination of catheters 
with robustness to low dose x-ray images, overlapping struc-
tures, and partially missing catheter structures. The proposed 
approach has potential utility in EP procedures for annotating 
catheter position and correcting for patient motion when used 
in conjunction with anatomical overlays. 
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