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Abstract—In large network environments multiple intrusion
detection sensors are needed to adequately monitor network
traffic. However, deploying and managing additional sensors
on a large network can be a demanding task, and organisations
have to balance their desire for detecting intrusions throughout
their network with financial and staffing limitations. This
paper investigates how intrusion detection system (IDS) sensors
should best be placed on a network when there are several com-
peting evaluation criteria. This is a computationally difficult
problem and we show how Multi-Objective Genetic Algorithms
provide an excellent means of searching for optimal placements.

I. INTRODUCTION

In large network environments, particularly those with
many network segments and those with multiple Internet
access points, network administrators have generally placed
multiple IDS sensors along the network perimeters, typically
around firewalls, or near the node to be protected, to monitor
network traffic.

There are many reasons for using multiple IDS sensors.
For example, by deploying sensors on various network
segments, we can tune each of them to the traffic that we
typically see on that segment, which means we could iden-
tify and locate suspicious activities more quickly. However,
the detection of intrusions in large volumes of data, in the
absence of semantic hints provided by prior knowledge of
the intrusion type, is fundamentally limited by the low ratio
of malicious events [1]. For example, it is not obvious that
deploying IDS sensors in larger numbers would improve
detection quality – diminishing returns are likely to be
evident early. Neither is it feasible to deploy more and more
sensors given the costs and the manual engagement required
to monitor for potential intrusions.

Furthermore, determining where to place a set of sensors
to create cost effective intrusion detection is a difficult
task. There may be several evaluation criteria for place-
ments, seeking to maximise various desirable properties (e.g.
various attack detection rates), whilst seeking to reduce
undesirable properties (such as false alarm rates as well as
purchase, management, and communications costs). Subtle
tradeoffs may need to be made between the properties;
different placements may have complementary strengths and

weaknesses, with neither placement being uniformly better
than the other.

However, engineering regularly deals with such difficult
multi-criteria optimisation problems and has developed a
powerful suite of technical tools to facilitate the search for
high performing solutions. In this paper we show how a
multi-objective genetic algorithm (MOGA) can be harnessed
to address the sensor placement problem.

The optimal placement of sensors depends on what we
wish to achieve. A placement may be optimal for the
detection of one type of attack, but not for a second type of
attack. We may seek a placement that gives good chances
of detecting each of several types of attack; this may yield
a different optimal placement. To determine the “optimal”
placement we need a means to evaluate a particular place-
ment. In some cases, this may be carried out with respect
to statically assigned information (e.g. location of firewalls
and servers). In others, we may need to simulate attacks and
measure the effectiveness of the placement. Thus the specific
evaluation mechanism may differ but the overall technique
remains the same: find a placement P that optimises some
evaluation function f(P ), or a set of evaluation functions
f1(P ), . . . , fn(P ). Such a situation is a suitable target for
the application of heuristic optimisation.

The Genetic Algorithm (GA) [2] is a heuristic optimi-
sation technique based loosely on natural selection and has
been applied successfully in the past to a diverse set of prob-
lems. Its general idea is that populations evolve according to
rules that will in general support the emergence of ever fitter
individuals (that is, ones with higher evaluation value). As
with other search methods, GA can be used in conjunction
with Multi-Objective Optimisation (MOO) techniques [3].
MOO aims to find solutions that satisfy more than one
objective, so that a solution’s ability to solve a problem is
assessed by a set of objective functions f1, . . . , fn. MOO
methods return a set of solutions in a single run, and
each solution achieves a different balance between multiple
objectives. In this paper, we experiment with GA and MOO
to evolve optimal sensor placements. These experiments
serve as proof of concept and to demonstrate the validity and
potential of the proposed approach. Researchers have used
Genetic Programming (GP) and Grammatical Evolutioin to



determine IDS detection rules [4], but our experiments here
report the first use of heuristic optimisation techniques to
evolve optimal IDS sensor placements.

II. RELATED WORK

Noel and Jajodia [5] propose to use attack graph analysis
to find out optimal placement of IDS sensors. Attack graphs
represent a series of possible paths taken by potential in-
truders to attack a given asset. Such graphs are constructed
in a topological fashion taking into account both vulnerable
services that allow nodes to be exploited and used as launch
pads, and protective measures deployed to restrict connec-
tivity. The purpose is to enumerate all paths leading to given
assets and where optimal placement is devised to monitor
all paths using minimal number of sensors. This is seen as
a set cover problem: each node allows for monitoring of
certain graph edges and the challenge is to find a minimum
set of routers that cover all edges in the graph; a greedy
algorithm is then used to compute optimal placement. The
use of attack graphs provides an efficient mapping of net-
work vulnerabilities in the network. A vulnerability-driven
approach to deploying sensors overlooks factors such as
traffic load however. As a result the placement is optimised
such that the more paths that go through a node the more
likely it is chosen for placement.

Rolando [6] introduces a formal logic-based approach to
describe networks, and automatically analyse them to gen-
erate signatures for attack traffic and determine placement
of sensors to detect such signatures. Their notation to model
networks is simple yet expressive to specify network nodes
and interconnecting links in relevant detail. While there are
advantages to using a formal model, such an approach may
not be scalable. The formal notation allows for a more
coarse-grained specification but it is not clear whether the
resulting sensor configurations are even likely to be feasible
for real environments. Moreover, the notation does not allow
for modelling any system-level characteristics.

III. EXPERIMENTAL SETUP AND EVALUATION

A. Network Simulation

We use Network Simulator NS2 [7] to simulate our
experimental network as shown in Figure 1. The whole
network consists of 180 nodes, where node 0 represents the
outside world, nodes 1 to 19 are the routers interconnecting
various parts of the network, nodes 20 to 39 are servers
offering valuable services to users and therefore critical
assets that need to be protected, and nodes 40 to 180 are
ordinary clients some of which may be compromised by
intruders to attack critical assets. The network is organised
as such that the servers are distributed over six subnets and
the clients are distributed over seven separate subnets.

We simulate real intrusive behaviour to analyse how such
behaviours could be efficiently detected by the proposed
approach. The intrusive behaviour we simulated is to do with
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Figure 1. Simulated Network

probing and information gathering, the purpose of which
is to assess a potential target’s weaknesses and vulnerabili-
ties [8]. For example, an intruder may strive to detect active
hosts and networks that are reachable and the services they
are running that could be successfully exploited. Detecting
and preventing such probes therefore is important both to
inhibit exposure of information and prevent attacks that
follow.

We simulate a probe attack scenario where various servers
are probed from the outside (through node 0) and inside
from clients, hence the simulation consists of both external
and internal attacks. An intruder may subvert a node in any
of the client subnets to probe any of the servers. Intruders
(picked randomly) from each of the client subnets, that are
client nodes 45, 78, 95, 111, 133, 157 and 178, probe server
nodes 20 to 38. In addition, node 45 also attempts a probe
on neighbours 46 and 47. A total number of of 154 instances
of probe attack are injected.

Note the simulation of attacks so far in our experiments
is simple for the purposes of demonstration. Simulation of
more subtle intrusive behaviours and research of how such
behaviours could be effectively and efficiently detected by
our approach are currently under investigation.

In order to investigate how the false alarms may influence
sensor placement strategy, we simulate not only a number
of attacks but also background network traffic. The back-
ground network traffic is generated randomly by NS2 traffic
source generator cbrgen. In the experiment, we assume that
traditional IDS metrics such as false positive rate and false
negative rate are already known. This hypothesis stands as
all IDS evaluation work so far is trace-driven [9], suggesting
when evaluating IDSs, we use a data set where we know the
ground truth, i.e., what data are attacks and what data are
normal. Thus we can easily find out the metrics such as false
positive rate and false negative rate. If the testing data set is



a very representative sample of the operation environment,
we can use the metrics in the testing data to approximate
the real world situation. In our experimental framework we
assume all sensors are identical and configured to exhibit
a detection rate of 95% and a false positive rate of 0.1%.
These figures are in accordance with the features claimed
by most IDS products.

We characterise expected monitoring costs for the net-
work. Such costs are dependant on the load of the traffic at
a specific location in the network: the busier the location,
the higher the levels of activity monitored (including false
alarms), and therefore bigger the effort. We restrict the
costs to a range of values 1 to 10 to express relative
monitoring costs for different locations on a network. In
the experiments, we characterise expected monitoring costs
to reflect an operational network in the real world: routers 1
– 19 serving at the heart of the network are assigned a cost
relatively much higher.

Router nodes 1 and 2 are assigned a cost of 8, as they
serve to link the entire network with the outside world, and
also interconnect internal traffic between routers 3, 4 and 5.
Router nodes 3, 4, 5 and 9, further down the hierarchy, are
all assigned a cost of 7. The rest of the cost assignments
broadly follow from this. Nodes 8 and 10 are assigned a
cost of 6. Nodes 6, 11 and 15 are assigned a cost of 5 to
indicate they link more servers and hence are busier. We
assign a flat cost of 4 for all the other subnet router nodes.
All server nodes are assigned a cost of 3 and client nodes a
cost of 1.

B. Fitness Measurement

The fitness of a sensor placement is determined by its
ability to satisfy four objectives: the number of sensors,
detection rate, false alarm rate and monitoring cost.

Equation (1) is used to minimise the number of sensors,
and the nSensors represents the number of sensors.

f1(P ) = nSensors (1)

Equation (2) is used to maximise the detection rate of
a sensor placement. The nDetectedAttacks represents the
number of distinct attacks that have been detected; nAttacks
represents the number of all simulated attacks we have
injected in the data set (i.e. 154 probe attacks). Note that
we implement the sensors to detect attacks in a cooperative
manner, which means duplication of alarms is avoided, and
also cooperating sensors are able to detect attacks they may
not detect independently.

f2(P ) =
nDetectedAttacks

nAttacks
(2)

Equation (3) is used to minimise the false alarm rate
of a sensor placement. The nFalseAlarms represents the
number of false alarms that are raised by the sensors. The
nAllAlarms represents the number of all alerts that are
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Figure 2. Sensor Placement Representation

reported by the sensors. It is a sum of the number of detected
attacks (a.k.a. true alarms) and the number of false alarms.
So f3(P ) follows precisely the definition of false alarm rate.

f3(P ) =
nFalseAlarms

nAllAlarms
(3)

Equation (4) is used to minimise the total monitoring cost.
We use TotalCost to express the total monitoring cost of a
set of sensors which are deployed on a network.

f4(P ) = TotalCost (4)

C. Sensor Placement Representation

In our implementation, a feasible sensor placement is
represented by n (i.e. the number of network nodes) bits.
Figure 2 is an example of how to interpret a bit sequence
into a feasible sensor placement. In this example, we are
going to deploy IDS sensors onto a small network of 10
nodes. There are 1023 (i.e. 210 − 1) distinct individuals,
hence 1023 feasible sensor placements in total. Note that the
figure 2 serves as a simple example, our actually experiment
network has 180 nodes.

D. Parameters for the Search

Our implementation makes use of the versatile toolkit
ECJ [10]. The major parameters for the GA search are
as follows: the population size is 1500; the number of
generations is 250; the crossover probability is 0.95 whereas
the mutation probability is 0.05; the selection method is
tournament of size 2.

To carry out multi-objective optimisation, an implemen-
tation of the Strength Pareto Evolutionary Algorithm 2
(SPEA2) algorithm was written as an extension to ECJ,
which followed precisely the original algorithm specified by
Zitzler et al [11]. The algorithm retains an archive of non-
dominated individuals, which are individuals that cannot be
improved upon in terms of all objectives by any other single
individual within the archive. The algorithm attempts to use
the archive to approximate the pareto front, a surface of
non-dominated individual with objective space. We set the
archive size for the multi-objective SPEA2 to 128.

The settings for parameters not listed here are given by
the parameter files simple.params and ec.params supplied
with the ECJ Toolkit. One of our experiment purposes
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is to demonstrate the validity and potential of the multi-
objective approach to functional trade-offs in general, and
so no parameter tuning was attempted.

E. Experiment Results

In the first experiment, we investigate the relations be-
tween the number of sensors and detection quality (in terms
of the pair of detection rate and false alarm rate), and
search for placement given constraints on the number of
sensors available to deploy. We plot our experiment results
in Figure 3, where each point corresponds to a placement’s
properties in the objective space. Note that this is not a
ROC curve. The FA rate counts the fraction of FAs in
the set of alerts generated, which is not equal to the false
positive rate (fraction of non-attack events which raise an
alarm). The results validate our multi-objective optimisation
approach and demonstrate that functional trade-offs are
indeed possible for sensor placement problem.

Figure 3 shows the trend that the more sensors we use,
the more attacks we will be able to detect (higher detection
rates), whilst the more false alarms (higher false alarm rate)
we will have to dismiss. Intuitively, by deploying multiple
sensors on various network segments, we can tune each of
them to the traffic that we typically see on that segment; due
to the increased network visibility, more attacks are detected
as more sensors are deployed. False alarm rate depends in
practice on many factors (e.g. signature quality, volume of
background traffic etc.). In this experiment, because we use
sensors with the same settings, the false alarm rates were
dominated by the volume of background traffic at different
nodes. The more sensors are deployed, the higher volume
of background traffic they will see, hence the higher false
alarm rate.

Note that deploying more sensors may help to reduce
false alarm rate in some situations. For example, both the
placement with 7 sensors deployed on nodes 1, 12, 15, 16,
17, 18, 19 (the red diamond point on top right; also see
Table I) and the placement with 6 sensors deployed on nodes
3, 8, 9, 15, 16, 19 (the blue cross on top right) have a
detection rate of 94.15%. However, the placement with 7
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sensors has a lower false alarm rate of 42.75%. The false
alarm rate of the placement with 6 sensors is 44.49%. This
result means we may get better detection quality with one
more sensor.

The second experiment is designed to determine the
minimum monitoring cost needed to detect certain amount
of attacks, and the criteria of amount of sensors is omited.
We find that attack detection rate increases as the budget
monitoring cost increases.

Observe that how half of attacks are detected using a
budget of 7, and over two-thirds of attacks are detected
using only a budget of 12, whereas to detect 90% of the
attacks, a total budget of 25 is needed. Beyond this, the entire
budget needs to be 33 to achieve only a marginal gain. It is
safe to conclude that the return in terms of attack detection
is diminished, as shown in Figure 4, as more budget is
sanctioned. Nevertheless, given a reasonable budget, it is
possible to effectively detect a majority of the attacks if the
sensors are optimally placed. Note that we use monitoring
cost to replace the number of sensors as a search criteria,
hence the placements found in the second experiment are
not necessary identical with the placements found in the
first experiment. For example, the placement with one sensor
deployed on node 3 (monitoring cost of 7, detection rate of
50%) is not found in the first experiment.

In practice, we may often have to deal with budget
constrained questions, for example, if we have a budget
of 20, how should we choose IDS and how to deploy and
configure IDS sensors? In the third experiment, we try to
answer this question using the multi-objective optimisation
techniques. We ask our program to search for placements
which have monitoring costs in the range of 16 to 22 (i.e.
from -20% percent to +10% of the original budget of 20).
We plot our experiment results in Figure 5.

Each point on Figure 5 represents a sensor placement, and
the figure on the right of each point is the monitoring cost
of the placement. Observe that we actually have a number
of choices in this range. The red circle, which represents a
placement which has monitoring cost of exact 20, has four
sensors deployed on nodes 1, 12, 17 and 18. It is, however,
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not necessary the best option we could have in this budget
range. For example, we could have higher detection rate
with a lower monitoring cost of 18 or 19. Although we
will have a little higher false alarm rate with these options,
we do save budget and achieve a higher detection rate. On
the other side, if we would like to accept a little bit more
budget, for example a cost of 21, we could get even higher
detection rate of 89%. The third experiment we report here
successfully demonstrate the multi-optimisation technique
can be a very powerful tool to help to find cost-effective
sensor placements.

In the interests of brevity, we list some selected place-
ments options that were determined in the experiments in
Table I. For example, the first sensor placed on node 1 is able
to detect 64.29% of all attacks. This is due to the location
of node 1 (see Figure 1). It provides a strategic advantage,
as it serves to link over half of the network (through nodes
4 and 5) with the other half (through node 3).

IV. CONCLUSIONS AND FURTHER WORK

Means to reason and compare IDS sensor placements
are important to judge the potential ability of such sensors
to make a difference individually or in combination. The
nature of sensor placement problem is such that there are
too many criteria to consider when making a cost-effective
decision, hence a multi-objective optimisation problem. Our
experiments demonstrate the validity and potential of the
multi-objective approach to sensor placement trade-offs and
provide incremental placement options.

The work presented in this paper is a deliberate attempt to
use GA and MOO techniques to assist network administra-
tors to choose IDS sensor placement that effectively satisfies
multiple criteria. The placement strategies generated, al-
though simple, are typical places that network administrators
would likely deploy IDS sensors. The ease with which the
approach generated placements satisfying realistic security
requirements merits further investigation of the technique.
Experimentation and our general knowledge of intrusion
detection systems have allowed us to identify numerous
possible improvements to the approach and tool support.
These are outlined below.

A straightforward extension of this work would be to
incorporate an increased number of security requirements.
Sensor placement is critical to providing effective defence.
Optimal placement for this purpose would seek to minimise
damage caused by intrusions. Placements that seek to max-
imise the number of victims detected could be useful in
identifying locations best for detecting attacks likely to have
more adverse impact. Such placements could be particularly
important to detect and mitigate worm propagation and
network probes (such as ping sweeps).

So far in the experiments we have dealt with network
nodes in equal importance. In practice, some nodes are more
significant to merit monitoring depending on the level of risk
associated with individual nodes. Such level of risk needs
to take into account both the value of assets and services
offered and the likelihood of intrusions targeting them. One
future work we are planning is to assign quantitative infor-
mation (e.g. level of risk) to individual nodes and provide
a model (e.g. the sensor deployment model by Shaikh [12])
to assess the information and incorporate it into the multi-
objective optimisation framework.
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