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Abstract

Error models that can characterize the statistical behafibursty error sequences in digital wireless channels
are important for evaluating and designing error contrdtegies as well as high layer wireless protocols. Gen-
erative models have an immense impact on wireless comntiorisandustry as they can significantly reduce the
computational time of simulating wireless communicatimks. By using a few reference error sequences obtained
from a reference transmission system, adaptive generatogels aim to generate many more error sequences,
corresponding to various conditions of physical chanr@tsnpared with traditional general models, this adaptive
technique can further considerably reduce the computtioad of generating new error sequences as there is
no need to simulate the whole transmission system agairhisnpiper, reference error sequences are obtained
by computer simulations of a long term evolution (LTE) systéAdaptive generative models are developed from
several widely used generative models, namely, the siraglifiritchman model (SFM), the Baum-Welch based
hidden Markov model (BWHMM), and the deterministic processed generative model (DPBGM). We produce
new error sequences according to the developed adaptiezajme models and compare their burst error statistics
for specific channel conditions with those obtained fromerefice error sequences. It is demonstrated that the
well-known burst error statistics of the new error sequseraerived from adaptive generative models can closely
match those of reference error sequences.

Index Terms

Adaptive generative models, error models, burst erroissizd, digital wireless channels, Markov models.

. INTRODUCTION

A digital (time-discrete) channel generally represents hole wireless transmission communication
chain including the transmitter, analog (or physical) et&lnand receiver in the complex baseband. The
input and output of a digital channel are in the digitizedrioBecause of impairments in wireless channels,
errors frequently emerge in digital channels. Moreovemal processing in many stages of the wireless
transmission system may add further errors [1]. It is peexbthat these errors arising from digital wireless
channels with memory are not independent but appear inechistr bursts. Bursty error traces can be
statistically investigated and represented by matheadatitannel models called error models [2]. These
error models can be classified as descriptive [3] and ganergt] models. Descriptive models express
the error statistics of reference error sequences obtalimecktly from experiments. Generative models are
mechanisms that utilize the statistical properties of thwesty error sequences to generate error sequences
having burst error statistics similar to those of refereec®r sequences. Generative models are very
efficient as they decrease the computation burden of reainmulation systems and subsequently they
significantly reduce the simulation time. The main appiaabf error models is to assess the performance
and assist in the design of error control schemes and alsdetfign of high layer wireless communication
protocols [5]-[9]. Error models can characterize erroselom or packet sequences [10], [11].
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In the literature there are five main classes of generativdetso Markov models are the first class
of generative models. They consist of finite [12]-[17] ornite states [4] in a chain. The Gilbert-Elliot
model [12], [13] was the first model in this category with twiates for generating errors and error-free
bits. Many amendments appeared afterwards in order to eeh#performance, but these models still
produce error sequences with burst error statistics tivatrgie from the desirable ones. An increase in the
number of states has achieved better performance [11], [18]. For example, Simplified Fritchman’'s
models (SFMs) [14] replaced the error-free state of the stabe model with a group of error-free states
while keeping the only error state. SFMs had been appliedaioyrsystems with different types of physical
channels [18], [19]. Bipartite models [11] are more advaho®dels, but their complexity is very high
in order to acheive a satisfactory accuracy. The second eakidden Markov Models (HMMs) [20]-
[23], which contain hidden parameters that can be calidréteough observations. The Baum-Welch
(BW) algorithm [24] was mostly used to attune the hidden peat@rs based on available observations.
We call HMMs that use Baum-Welch (BW) algorithm, Baum-Welidsed HMMs (BWHMMs). HMMs
are considerably complicated due to the huge number ofsstatgiired to train the hidden parameters,
which greatly increases the computation speed. The thicdfaarth classes of generative models are
based on stochastic context-free grammars (SCFGs) [25¢lzaak theory [26]-[29], respectively. SCFGs
consist of production rules and symbols; each symbol iggassl a probability that controls its behavior.
These models are limited to error bursts with bell-shapedr etensity distributions. Chaotic generative
models cannot describe the desired error correlation ifomavith high accuracy [26]. The final class
of generative models is the deterministic process basedrgéwve models (DPBGMSs) [30], [31], which
utilize the second order statistics of fading processee. Ward ‘deterministic’ is used because all the
parameters of the deterministic process are held constaiigdthe simulation. DPBGMs have proven
their superiority over other generated models, e.g., SFM. [Bowever, DPBGMs do not construct new
error bursts in the process of generating error sequentst®ald, they retrieve error bursts directly from
the reference error sequences according to their lengths.

All the aforementioned traditional generative models f1f31] were developed and studied for error
sequences of one digital channel with fixed parameters aadneh conditions. However, recent applica-
tions need a high number of error patterns or sequencesfferatit digital channels in order to efficiently
evaluate the performance of error control schemes and &igdr protocols. In other words, for appropriate
testing of error control schemes and protocols, many egquances of many digital channels need to be
fed in the testing part in order to get performance resultgagabus channel conditions. Obtaining many
error sequences corresponding to different channel dondite.g., signal-to-noise-ratio (SNR) values, is
very time consuming. Therefore, adaptive generative nsotelt can utilize the available error sequences
in order to attain newly required error sequences for diffiepurposes are highly desirable.

In this paper, we investigate the useful parameters of somelyknown generative models i.e., SFM,
BWHMM, and DPBGM, in order to adjust them for the purpose ofig@ting new error sequences from
at least two reference error sequences obtained from a &g évolution (LTE) system. Two or more
generated error sequences using the reference ones caitizszl uh order to generate many more error
sequences corresponding to several SNRs. Therefore, ihere need to simulate again the wireless
communication system.

We summarize the contributions of this paper as:

1) Adaptive generative models are developed from three kvelivn generative models(SFM, BWHMM,
and DPBGM).

2) The adaptively uncoded generated error sequences are I&d digital channels in order to check
the resulting error rate.

This paper is organized as follows. Section Il defines sommedeelated to binary error sequences and
describes some important burst error statistics as pesgiocer metrics. The novel adaptive procedures for
three widely used generative models, namely SFM, BWHMM, BRBGM, are proposed in Section Il
Section IV illustrates an LTE simulator which is used as acdptve model to derive reference bit
error sequences at certain values of SNR. The burst erristgts are also compared between different



generative models and descriptive models in this sectiorallly, conclusions are drawn in Section V.

II. BURST ERROR STATISTICS

An error sequence of a digital wireless channel can be oy comparing the digital output sequence
with the input error sequence. We will consider the bit esequence here as a sequence of “0”s and
“1"s. That means if the output bit is the same as the inputthén this bit is represented by “0” in the
error sequence. However, if the received output bit is ciffié from the input bit, then this bit is received
incorrectly and is represented by “1” in the error sequence.

We can breakdown the error sequence into smaller parts ir dodstudy its nature and calculate the
burst error statistic. In relation to this approach, a nunmddderms are now defined. 4ap is defined as
a sequence of consecutive zeros between two ones, havinggth lequal to the number of zeros [18],
[32]. An error cluster is a series of errors that occur consecutively. It has a keegual to the number
of ones [14]. Anerror-free burst is defined as an all-zero sequence with a length of at k&g, where
n IS a positive integer [11], [21]. Compared to a gap, an eimee- burst has the minimum length of
and is not necessarily located between two errorsedar burst is a series of ones and zeros restricted
by “1"s at the edges, and separated from neighboring errmtbby error-free bursts [11], [21]. Clearly,
the minimum length of an error burst is one and the number n§ecutive error-free bits within an error
burst is less tham. Hence, the local error density inside an error burst istgrehan1 /7.

In what follows, we list widely used burst error statistidsat are available in the literature for
characterizing bit error sequences:

1) G(m,): the gap distribution (GD), which is defined as the cumutatiistribution function (CDF) of
gap lengthsn,. This statistic gives some indication of the randomnessefdhannel [32].

2) P(0™°|1): the error-free run distribution (EFRD), which is the prbbigy that an error bit is followed
by at leastn, error-free bits [14]. The EFRD can be calculated from the GB).[Clearly, P(0"°|1)
is a monotonically decreasing functionaf, such thatP(0°|1) = 1 and P(0™|1) — 0 asmg — oc.
This statistic is very useful to determine the minimum efree burst lengthy.

3) P(1™<|0): the error cluster distribution (ECD), which is the prob#pithat a correct bit is followed
by m. or more successive bits in error [14]. This statistic dptiishes between the bursty channels
and random channels as well, i.e., bursty channels have domyg clusters (e.g., 15-20), whereas
random channels have short error clusters (e.g., 1-3).

4) Pgp(m.): the error burst distribution (EBD), which is the CDF of erburst lengthsn,. This statistic
helps in designing the error bursts correcting codes [32].

5) Prrp(me): the error-free burst distribution (EFBD), which is the COF error-free burst lengths
me. This statistic, together with the error burst distribatigrovides the basis for determining the
optimum degree of interleaving with respect to a specificecf3®].

6) P(m,n): the block error probability distribution (BEPD), whichtise probability that at least: out
of n bit are in error. This statistic is important for determigithe performance of Hybrid Automatic
Repeat Request (HARQ) protocols [18].

7) p(Ak): the bit error correlation function (BECF), which is the ditional probability that theAkth
bit following a bit in error is also in error. The BECF is alsmportant because it represents the
burstiness of the channel [3], [4].

Burst Error statistics are useful statistical means to detrate the natural structural behavior of error
sequences obtained from wireless channels with memorysdéprently, they could help in the design and
evaluation of error control schemes and higher layer padso@specially those very important burst error
statistics, namely?(m, n) and p(Ak). Furthermore, burst error statistics are metrics to judhgerélative
merits of different generative models by comparing themhwiite descriptive model. We will use some
of these statistics in Section Il to develop the new adapgienerative models and we will illustrate all
of them in Section IV in order to validate our proposed getnganodels.
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[Il. ADAPTIVE GENERATIVE MODELS

Adaptive generative models are very convenient for evadgagrror control schemes and high layer
protocols as they can generate many new error sequencesafréeast two reference error sequences.
This ability has a huge impact in reducing the simulationetiof the original system as well as the
simulation time for evaluating error control schemes. la fbllowing subsections, we propose methods
for producing new error sequences from two reference eequences. The adopted generative models,
namely the SFM, HMM, and DPBGM, are widely known in the litewa and have been applied to many
wireless systems.

A. Adaptive SFM (ASFM)

A SFM consists ofN-states, one error state amd — 1 error-free states. This division is designated
in relation to very important statistics for performanceleation, which are the error cluster distribution
and error free run distribution.

When a SFM is transiting into the error state, it generatés(étror bit). When a transition to an
error-free state occurs, the SFM generates “0” (corregt Wihile the SFM is circulating within an error-
free state, “0”s are generated until a transition to therestate occurs. In this case, the SFM generates
“1”s again. Transitions between the error-free states ifrlsl &re forbidden. The reason for having many
states generating “0”s is to generate different lengthsapisg All the transitions take place according to
assigned probabilities. The probability transition mafor an N-state SFM is [14]

Py 0 0 0 Pin
0 P22 0 0 P2N
T = o 0 . 0 : 1)
0 0 0 Pn-oinv-1 Pnoan
PNl PN2 PNNfl PNN

where P;; is the the probability of transiting from Stateto State; (i, 7 = 1,..., N). Note that states
1,....,N — 1 are error-free states, whil& is the error state. As the transitions between error-fragest
are not allowed?,; = 0 for 7,5 = 1,..., N — 1 and: # j. The probabilitiesP;; can be determined from
the EFRD of the reference error sequence, which is writtefi4ls
N-1 P
Pom™[1) =Y L pmo > 0. 2
( ‘ ) ZZI -Pz i mo ( )

The EFRD can also be approximated by the weighted sumv ef 1 exponentials given by [14]

P(0™[1) & Aye®™ 4 - Ay_qe™¥-1m0, 3)

The parametersi,; anda,, (M = 1,2,---, N — 1) can be found by using an optimization method
or curve fitting technique to match (3) with the EFRD obtairfeain the reference error sequence.
Consequently, the values &f; in (1) are obtained by the following [14]

PMM = eaM, (4)

Py = Ay X Py, (5)

Pyn =1— Py, (6)
N-1

Pyy=1-Y_ Pyu. (7)
M=1

In order to generate a new error sequence, which we callbd adaptive error sequence, from reference
error sequences, we have to consider the most importarttdmes statistic in SFM, which is the EFRD.



Once we know the new EFRD from the surrounding reference E-R2 can then follow the normal
procedure of generating error sequences.

The procedure is simply to firstly obtain two EFRDs correspog to two different SNRs from two
reference error sequences. Subsequently, from the ottBiRBDs, we produce many new EFRDs suitable
for generating many error sequences corresponding tousa8dRs. Suppose we have two reference error
sequences with two different SNRs in dB, ed.,andY’, then their EFRDs at the two levels of SNR
are (Px(0™|1) and Py (0™°|1)). In order to find the newP,(0™°|1), which is the EFRD of the new and
required error sequence, we apply (see Fig. 1)

PZ(0™|1) = [PR(0™[1) x PY(0™|1)] (8)
where Py and Py are weighted by
_ |SNRz — SNRy )
" |SNRx — SNRy
and
SNR; — SNRx
— 1
b ’SNRX — SNRy |’ (10)

respectively, Here| P| is the floor function ofP. After obtainingP,(0™°|1), we can simply fit it with (3)
in order to find the optimized parametefs, anda;, and consequently the transition matfix Finally,
the required new error sequence is ready for generation.

B. Adaptive Baum-Welch based HMM (ABWHMM)

HMMs [21], [23] employ the idea of Markov models, but use twochastic processes. One stochastic
process is not observable but can only be estimated by thex stbchastic process which produces a
sequence of observations. The authors of [21] implement KHMMing Baum-Welch (BW) algorithm
[20], [24]. The procedure of [21] is explained as follows.eT&rror bursts of the reference error sequence
are extracted and numbered. Each error burst is then dividedblocks of L bits length. Each block
is represented by the number of error bits it contains. Famgte, whenl = 4, the error burst
110011110001 has 3 blocks. Hence, that error burst is represented by 3sdigi241. In this way,
the error bursts are converted into a compact format and they form a matrix, NEL, such that
NEL = {NEL,NELy,--- ,NELm}', wherem is the number of error bursts in the reference error
sequence. The largest numberNtE L;(i = 1, ...,m) is called the peak number of errors (PNE), e.g., 4 in
the previous example. The next step is to classify the emostd into/N disjoint classes (submodels or
bursty states) according td/N—1)+1 < PNE < (N, where( is a positive integer number. Afterwards,
the compacted blocks of each state shall be used to traiehifthrkov submodels using BW algorithm
[24]. Each submodel contains one class of error bursts. BWIdMave the following parameters:

1) S ={s1,s9,...,sn}: the set of states of the model, whekeis the number of states.

2) V ={vy,vs,...,up}: the set of observable values, whédpas the cardinality of the observable values.

3) A = [a;]: the state transition probabilities matrix, whetg is the probability of transition from
states; to Sj

4) B = [b;]: the observations probabilities matrix, whéerg is the probability of emitting),, from state

Si.
5) 1']1 = [m;]: the initial state probability.

To build the BWHMM submodels, the parametéy¥s D, and the seh = {A, B, IT} must be specified.
The value of N can be decided according to the guidelines in [21]. Giventafebservation sequences
representing the compacted error buggt= {O},0%,--- 0} }, k=1, ---, K (K is the number of
error bursts in each class), the BW algorithm is utilized taximize the probability® = Hszl P()\|OF).



6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, N®, SEPTEMBER 2014

Once the optimized transition probabilities are found aartor bursts can be generated from the
submodels. To complete the generation of new error seqagtive error-free bursts concatenation to
the hidden Markov submodels should be executed. The aeerdursts are represented by one state only.
The transitions from the error-free state to the other stgenerate error bursts with variable structures
according to the submodel. However, the transitions froenltrst states to the error-free state generate
error-free bursts with different lengths. Both error-fim@rsts and error bursts are combined at the end.

In order to generate many new error sequences from two refererror sequences, we should find out
the most important feature of the BWHMM. It is tt¢ EL matrix. In fact, error models aim to identify
the error events and distribution in error bursts. This ognized by theNEL matrix. FromNEL we
can know the number of errors in each block for each errortbiiferefore, from knowing twaNEL
matrices, i.e.NELy and NELy corresponding to two different SNRs of two reference eremuences
X andY’, we can obtain a neeWEL matrix, e.g. NELz of SNR corresponding to the new error sequence
7. The SNR ofZ is between the other two SNRs &f andY” error sequences. From the n@EL matrix
we can then generate the new required error sequence witimueed for a reference error sequence for
the wanted SNR. Once tl¥§ELyz matrix is calculated, the set of steps described before nstoact the
submodels are applicable in the process toward generdtengetjuired error sequence.

In order to find theNELz we firstly need to sort each row in bolRELx and NEL+ in descending
manner so that the PNE is the leading element. Secondly,cive should be sorted so that the PNE
column is in descending order as well. TNELyz can then simply be found by

NELz = |a - NELx + 3 - NELy |. (11)

The values ofa and 5 can be calculated from (9) and (10), respectively. Aftedsarwe apply the
classification rule, training procedure, and finally the@enation method to generate the required error
sequence. However, to apply the concatenation, we needgiract the error-free state. Generating new
error-free bursts is discussed in the next subsection i(BeldtC).

The BWHMMSs utilize the Baum-Welch algorithm because it ibust and always converges. However,
the convergence point is not guaranteed to be a global mawinilence, its final parameters may not
necessarily be the optimal ones. Another drawback is tr@atBWHMMs consist of a large number of
states, which increases the complexity of the model.

C. Adaptive DPBGM (ADPBGM)

The idea of the DPBGM is derived from the second order stedistf fading processes [31]. Specifically,
some statistics of bursty errors can be approximated framsttond order statistics of fading envelope
processes. Accordingly, fading processes can be used &rajererror sequences. Deterministic fading
processes are based on the rule of sum of sinusoids [33].

To build a DPBGM, an underlying reference transmissionesyss replaced by a properly parameterized
and sampled deterministic process followed by a threshetdatior and two parallel mappers. Mappers
can fit the obtained length distributions of the error anarefree bursts to the desired statistics of the
descriptive models.

The complex deterministic process can be represented By [31

C(t) = |pa(t) + jpa(t)] (12)
where

N;
fi(t) = Z CinCOS(2mfint +0;), i=1,2. (13)

n=1

Here N; is the number of sinusoids;, are gainsg,, are phases for the realizations of the random
generators, and; ,, are the discrete frequencies. Some second order stat$tice sampled deterministic



process, such as the level crossing rate (LCR), the averag¢i@h of fades (ADF), the average duration
of the inter-fades (AIDF), can be described using the vedtefr (N1, No, i, 00, fimaz, La), Wherery, is

_ Tih i — _Nep(4Rp)
the thresholdgy = ST is the square root of the mean powergft), fia: NIRRT is
2
. 4‘70[‘3XP(%)_1] . . .
the maximum Doppler frequency, afd, ~ m\/—l + /1 + 10¢s/3 is the sampling interval.

The value ofR 3 is the ratio of the mean value of error burst lengths to themvedue of error-free burst
lengths. The parametey§zz and7; are the total number of error bursts and the total transonissine

of the communications system, respectively. The quantitis the maximum measurement error of the
LCR.

When the simulation is run, the deterministic process ganea way that it crosses the threshold with
positive and negative slopes. When the level of the detestigrprocess is above that threshold (inter-
fade intervals) an error-free burst is generated. On theraogn when the deterministic level is below
the threshold (fading intervals) an error burst is generaite lengths of the error-free bursts and error
bursts equal the number of samples counted in inter-facidgading intervals, respectively. Subsequently,
error burst and error-free burst generators are productidr fhat, mapping [31] is employed to adjust
the generated error and error-free bursts lengths to thiobee @riginal error sequence. Subsequently, we
collate an error burst recoB,... and error-free burst recoFB,... as vectors. Finally, error sequences
can be obtained by combining the consecutively generated bursts with error-free bursts.

Let us denote the minimum value B,.. asmp; and the maximum value as ;. Subsequently, the
lengthsm, of error bursts satisfyng; < m. < mp,. By analogy, the minimum value and the maximum
value in EFB,.. are denoted asu;, and mp,, respectively, and the lengths. of error-free bursts
satisfymp, < mz; < mp,. For the convenience of developing the ADPBGMs, the follayvguantities
are defined:
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1) Ngp is the total number of error bursts, which equals the numbentries inEB,....
2) Ngrp is the total number of error-free bursts, which equals theler of entries inEFB,....
3) Ngg(me) is the number of error bursts of length. in EB,... Thus,
szimBl NEB(me) = NEB holds.
4) Ngrp(mg) is the number of error-free bursts of length in EFB,.... Similarly,
ZZ?imgl NEFB(mé) = NE'FB holds.

In order to design the ADPBGM, we focus &B,.. and EFB,... since the most important features
of this model are the lengths of error bursts and error-freestb. The first step is to calculate the two
EB,.. and twoEFB,.. for the two different SNRs corresponding ¥ andY generated error sequences,
respectively. Our aim is to calculate thB,.. andEFB,... that are related to the adaptive error sequence
7. Hence, the second step is to find the COBs; and Pgrp for both EB,.. and EFB,... related to
error sequenceX andY. A very important property of’gz and Prrp is that they are monotonically
increasing. This property simplifies finding accurate val@gew curves) between twBgp curves (see
Fig. 2) or between twaPgrp curves. The third step is to finé#zz,, which is related to the adaptive
error sequence, from theg;z, and Pgp,., Which are related t& andY error sequences having different
SNRs, by simply applying

Pgp, = |a- Pgpy + B Pgs, | (14)
where Pgp = /ﬁ S"T=me Npg(x). By analogy

mpi1

Pgrp, = |a- Pprpy + B - Ppray |, (15)

where Pgrp(m:) = > "¢ Ngrp(x). The values ofa and § are obtained from (9) and (10),
respectively. The fourﬁ1 step is to constrigB,.. and EFB,.. from Pgp, and Pgrp,, respectively. In
order to do so, we have to know the total numbers of error 8Wstz, and error-free burstd/zrp, of

the EB,.. andEFB,.. related toZ. The numbetVz, is obtained by interpolating between thé: s,
and NVgp, . Moreover, the numbeN 5, is obtained by interpolating between thé;r5, and Ngrp,
given thatX andY have the same length. Multiplying the obtained numbers with extractedPy,
and Pgrp,, respectively, with some manipulations related to the Cfegus the requiredB, ... and
EFB,.. with m, andm; values equivalent to those of the reference records. Thediélp is to generate
error bursts and error-free bursts according to the lenigtiise obtainedEB,... and EFB,.... Generating
error-free bursts is simple because the lengthEBB,... can easily converted to series of zeros, unlike
error bursts which contain zeros and ones. Generating learsts involves retrieving their structures from
the error bursts ofX andY’, which have the samea:. as in the obtaine®B,... of Z. Finally, the error
bursts and error-free bursts are combined to constructebjgined adaptive generated error sequence
Z. It is worth mentioning that the DPBGM is a recent and prongsclass of error models. It yields
on satisfactory match to the important burst error stagstompared with those of the original error
sequences. Furthermore, the DPBGM parameters can eastligtbemined, its process can effectively
be implemented using the computer, and the statisticalgoties can be varied over a wide range. The
DPBGM has a drawback in the stage of generating error seqagbecause it always needs to retrieve
error bursts from reference error sequences rather thaartstroct them by itself. In contrast, the other
methods, especially those based on Markov models conghrecrror bursts intuitively within the error
sequence generation.

V. SIMULATION RESULTS AND DISCUSSIONS

To validate our proposed adaptive generative models, werfgsd to generate some error sequences
based on their reference error sequences. These refergacsaerjuences are essential to initialize various
parameters for the generative models. We use an LTE systeabtton the required reference error



sequences. The performance criteria are evaluated bylathguthe burst error statistics that are defined
in Section Il. Our model is optimal if the obtained burst erstatistics from the generative models match
the descriptive model, especially the most important stia§ such as the BEPD which is useful for
designing and evaluating some digital components in theless communication chain.

The LTE system [34] consists of a turbo encoder, a burstledeer, a rate matcher, and adaptive
modulation and coding (AMC), a viterbi equalizer, a bursinterleaver, a turbo decoder, as well as a
cyclic redundancy check (CRC) for error detection at theiker side. The utilized propagation channel
can be expressed as NAMEX, where x represents the vehiobel spekm/h. NAME here represents the
name of the underlying channel, e.g., a rural area (RA) oblaran typical urban (TU) channel, or a
pedestrian B (PedB) channel. We use the following chanfA75, TU3, TU50, PedB5, and PedB10.
The data were transmitted as uncoded bits of ledgtk 10° with a transmission rate af, = 3450 kb/s.
Target error sequences were produced at SNRs between 1 dBBowith unit step increment.

By comparing the transmitted error sequence with the redebne, we workout the bit error sequences.
We use the three discussed generative models, namely, tie BWHMM, and DPBGM in order to
generate new error sequences of lengilx 10° bits based on the obtained error sequences from the LTE
system. In this paper, we show only the results of the TU5Gislahaving SNRs of 2, 3, 4, and 5 dB.
In order to examine the adaptivity of our procedure we predac error sequence of 4 dB from those
already generated at 3 dB and 5 dB SNRs (First scenario, &#9. We also produce an error sequence
of 4 dB from error sequences of 2 dB and 5 dB SNRs (Second soeags. 8-11). We compare the
burst error statistics of the former and latter producedresequences with those statistics obtained from
the reference error sequence of the LTE simulator having 8A\&RdB. In terms of parameterization, the
value ofn can be found from Fig. 1 when the curve is tending to turn. Téleesofn is chosen to be 20
for all our shown results.

For SFM, the fitting ofP(0™°|1) is achieved by using five exponentials and therefdfe- 6 holds. In
our experiments, no better performance can be accompligme®FMs with more than six states. After
we fit Eq. (3) withP(0™°|1) of SNRs of 2 dB, 3 dB, and 5 dB, we can obtain the transition icegrfrom
which we can generate new error sequences. Afterwards, plg Bpgs. (9), (10), and (8) to calculate the
adaptiveP(0™|1) having SNR of 4 dB. This means that= 5 = 0.5 for the first scenario and = 1/3
and g = 2/3 for the second scenario. Once we know the adapkye™|1), Egs. (3) and (1) can be
applied to generate the new error sequences.

For BWHMM, we first extract the error bursts from the errorseaces of 3 dB and 5 dB SNRs. Then,
we divide each error burst into blocks with= 20 bits. Then, we can obtain ti¥EL matrices. We apply
Eqg. (11) afterwards to obtain tife EL matrix between the other matrices. A Baum-Welch trainiracpss
will then be applied to the newly obtainedEL matrix after classifying it into a satisfactory number of
states. The number of classes (states), in our example ise7/ndmber of substates is considerably large.
Finally, the generated error burst will be concatenated wlie generated error-free bursts in order to
produce the full required error sequence. The generated-feee burst are obtained through calculating
Eq. (14).

In order to proceed with the DPBGM, we need to find the veclgrwhich is the set of parameters
to generate the error sequences. The valug,of chosen to be 0.01. For the error sequences with
SNRs of 2 dB, 3 dB, and 5 dB, the values.®};p = 428418, 69706, 122474 and Rz = 8.43,5.24,2.09,
in sequence. Consequently,, = (9, 10, 0.09, 0.0425, 34.9 kHz, 8.3%), ¥; = (9, 10, 0.09, 0.0470,
36.8 kHz, 5.43us), and¥; = (9, 10, 0.09, 0.0599, 40.9 kHz, 4.9:8). Once we generate error sequences
for the above SNRs, we can use their error burst lengths andfeee burst lengths. By calculating their
Prp and Pgrp and applying Egs. (13) and (14), the new error burst and -&reerburst lengths for SNR
of 4 dB can be easily obtained. Eventually, the error burets error-free bursts are combined together
to construct the entailed error sequences. The structubétoin error bursts is also retrieved from the
other two surrounding error sequences based on the errst leagths.

Figs. 3—11 depict the performance of adaptive generativdetso The figures also illustrate the dis-
crepancy between different generative models, namely B, BWHMM, and DPBGM. Various burst
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error statistics such as the EBDs, EFBDs, EFRDs, GDs, ECERB, and BCFs are investigated (some
are shown and some are not shown due to the available spag®)3F are related to the generated error
sequence of 4 dB from the neighboring error sequences of S al Those figures omit the comparison
between the DPBGM and ADPBGM since the DPBGM gives approtemasults to the descriptive one
[31], and also for the sake of clarity. Here, as mentionedtagfve use three error sequences with different
SNRs, namely, 3 dB, 4 dB, and 5 dB depicting different digdahnnels. We compare the burst error
statistics of the error sequence obtained by the adaptivergve models with those of an error sequence
having the same SNR but obtained directly from the LTE syst@enerally, the ADPBGM shows the
best fit to the descriptive model which represents a reateste® error sequence. This is clear for all the
burst error statistics except a small mismatch at the endeottirve for ECD and BEPD. The second best
generative model is the ABWHMM. However, the shown bursbestatistics are not comparable with
ADPBGM. The ABWHMM results are slightly worse than those abed using the normal BWHMM
procedure. It is not worth comparing the ASFM with the dgstore model as the mismatch is huge.
However, the ASFM and SFM comparison demonstrates a parfebe burst error statistics.

The ADPBGM and ASFM burst error statistics match those of iRBGM and SFM, respectively,
because their main characteristics, i.e., EBD and EFRDpestively, which are used to design our
procedure, have a certain known form following a monotdijcancreasing or decreasing function.
However, the ABWHMM main characteristic is a matrix from whiit is difficult to derive a new accurate
matrix using the interpolation methods. In general, theptida generative models are very efficient in
terms of accuracy in addition to saving the simulation tinsetfzere is no need to start the generation
process from the beginning each time we need new error segsie@btaining a reference error sequence
with length of 20 million bits takes hours. However, genm@gtan error sequence takes a few minutes,
whereas using adaptive generative models takes a few second

We also examine the ADPBGM by producing error sequences @ fr@m other error sequences of
2 and 5 dB as shown in Figs. 8-11. It is found that, distandiegSNRs that are required to produce the
new error sequence, deteriorates the performance. Figso8ilhlstrates the production of 4dB BEPD by
the ASFM using 2 and 5 dB error sequences. It is apparent ileaASFM is not affected by distancing
the reference SNRs. This is because the required EFRD tonp#iiae the ASFM can be obtained by any
pair of other EFRDs of different SNRs. Fig. 12 shows the coBE®R curves after feeding the generated
error sequences obtained from neighboring error sequesutdsthaty = 5 = 0.5. It is apparent that the
ADPBGM outperforms the other models.

V. CONCLUSIONS

In this paper, we have proposed general methods for exigaetilaptive generative error sequences
without the need of their reference error sequences givaretifiew surrounding reference error sequences
are available. Adaptive generative models are importanalree the designer does not need to refer to
the original system in order to derive new error sequencesnwhe channel conditions are changing.
Therefore, these methods can significantly reduce the ctatipo time when there is a need for huge
number of error sequences for the purpose of evaluating émormance of digital components in
communication links. At least two reference error sequennoedifferent channel conditions should be
sufficient for the method presented in this work.

To validate our proposed method, we have used uncoded LT&Emsy® obtain a few samples of
reference error sequences at various SNRs. It has beematks through simulations that the ADPBGM
can approximately fit the descriptive model. Other adapgeeerative models like the ABWHMM and
ASFM give poor burst error statistics compared to the dpsea model. However, the ABWHMM is
superior to the ASFM in terms of certain burst error statsstin other words, the ABWHMM performance
is closer to the descriptive model than the ASFM one. It i® d&sind that the burst error statistics of
the ASFM match those of the SFM. However, the burst erroissiizg of the ABWHMM do not have a
satisfactory match to those of the BWHMM.
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A drawback of ADPBGM is that it retrieves the error bursts'usture from the neighboring error
sequences. In contrary, the ABWHMM and ASFM can create ther dsursts and error-free bursts
automatically once the required parameters are calculated
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