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1 What is the reason for the sharp 

decrement in flexural strength 

of PVAPMC in Figure 3? 

The reason for the sharp drop of flexural strength of mix 

PAVPMC1.5%-35 shown in Fig.3 is due to the fact that it 

exhibited lower flexural toughness than the other mixes. 

The mix contained 1.5% 35mm-length steel fibre by 

volume. The flexural performance of the same mix under 

3PB shown in Fig.4 also exhibited the same tendency. 

The article has been amended accordingly (p:5, below 

Figure 3) 

2 In Table 8, how can we use the 

fibre bridging law in site 

applications? 

The fibre bridging law can serve as an index to evaluate 

the fibre efficiency for the selection of ingredients during 

the mix design process in practical (site) applications.  

For example, mixes SBRPMC1.5%-35 and SBRPMC1.5%-

50, in Table 8, are the same (have identical proportions 

of ingredients), only the former incorporates shorter 

fibres than the latter. It is apparent from Figure 6 (b) that 

SBRPMC1.5%-50 is more efficient than SBRPMC1.5%-35 

because the fibres of mix -50 provide higher tensile 

strength than those of -35, for the same crack opening 

displacement. In this case, the fibre bridging law 

specified in Table 8, can be used to predict the flexural 

performance of beams made of the three different 

mixes.  

This has been mentioned in the article (p:15, just above 

the Concluding Remarks) 
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Flexural Strengths and Fibre Efficiency of Steel-Fibre-Reinforced, Roller-1 

Compacted, Polymer Modified Concrete. 2 
 3 

John N Karadelis*, Yougui Lin 4 
Department of Civil Engineering Architecture and Building, Faculty of Engineering and Computing, Coventry University, 5 

Coventry, W. Midlands, CV1 5FB, UK 6 
 7 
Abstract: A new material suitable for the structural repair of concrete pavements has been developed at 8 

Coventry University exhibiting high flexural, shear and bond strengths and high resistance to reflection cracking, 9 

demonstrating also unique placeability and compactability properties.  10 

This article deals with the standard equivalent flexural strengths evaluated using the identical fibre bridging 11 

concept and the size effect. Correlation of flexural strengths for beams of different sizes was achieved and the 12 

efficiency of fibre in the mix was scrutinised. It was concluded that the efficiency was much higher in the new 13 

steel-fibre reinforced, roller compacted, polymer modified concrete (SFR-RC-PMC) mix than in conventional 14 

concrete. The high efficiency revealed by the fibre bridging law is mainly attributed to a lower water to cement 15 

ratio. It was also found that the fibre aspect ratio influences significantly the flexural performance of the new 16 

material. The very high flexural strength extracted from the SFR-RC-PMC, compared to conventional steel-fibre 17 

reinforced concrete is very favourable to worn concrete pavement rehabilitation.  18 

Keywords: steel fibre-reinforced, roller-compacted, polymer-modified, concrete, fibre 19 

efficiency. 20 

 21 

1. Introduction .  22 

 23 

Part of the ‘Green Overlays’ research lead by the authors for the last four years involved the 24 

development of special concrete mixes used as overlay material, fully bonded on worn 25 

concrete pavements. This material exhibits high flexural, shear and bond strengths and high 26 

resistance to reflection cracking. It also demonstrates unique placeability and compactability 27 

properties, hence it can be placed on the damaged surface by an asphalt paver and compacted 28 

by a vibrating roller [1]. The mixes were named steel-fibre-reinforced, roller-compacted, 29 

polymer modified concrete (SFR-RC-PMC). The steel fibre in the mix retards and contains 30 

reflective cracking, the polymers enhance its strength and achieve good bond with the old 31 
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concrete and the roller compaction ensures quick construction. These types of mixes were 32 

different from conventional roller-compacted concrete (RCC). Specifically, the optimal water 33 

content of the former determined by the modified-light (M-L) compaction method proposed 34 

by the authors [1] was usually around 17kg higher than the latter, designed by the modified 35 

Vebe method [2 - 3] for 1m3 of concrete, for the same mix proportion [1]. 36 

Flexural strengths of conventional steel fibre reinforced concrete (SFRC) have been 37 

investigated since the 1980s [4 - 11]. A vast amount of literature deals with flexural strength, 38 

residual flexural strength, toughness, toughness indexes, crack development and propagation, 39 

fibre bridging law, fracture energy, and so on. Neocleous at el. [12 - 13] investigated the 40 

flexural performance of steel fibre-reinforced RCC for pavements, while the steel fibres were 41 

recovered from used tyres, whereas the mix was conventional RCC. Kagaya et al. [14] 42 

investigated the mix design method for steel fibre reinforced RCC pavements by employing 43 

the modified Proctor compaction method. 44 

It is seen that the mechanical properties of SFR-RC-PMCs have not been investigated to date. 45 

In addition, steel fibres in these types of mixes may exhibit a different behaviour to those in 46 

conventional SFRCs, due to the fact that the former contains much less cement paste than the 47 

conventional concrete, and roller compaction may result in deformation of steel fibres. 48 

Furthermore, the flexural performance of PVA (Polyvinyl Alcohol) modified concrete has 49 

rarely been investigated. Therefore, it is crucial to investigate the flexural performance of 50 

SFR-RC-PMC for overlay pavement design. This article aims to reveal the flexural 51 

performance, especially the equivalent flexural strengths of SFR-RC-PMC for overlay 52 

pavement design and the efficiency of fibres in RCC. 53 

 54 

2. Mix Proportion and Specimen Preparation 55 

 56 
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The ingredient materials used (apart from the 50mm-long fibre) were presented in ref. [1] in 57 

detail. The 50mm-long fibre was the hooked-end type, with an aspect ratio of 80. The test 58 

beams of eight mixes are tabulated in Table 1. Two types of polymers, i.e. SBR (Styrene 59 

Butadiene Rubber) and PVA (Polyvinyl Alcohol) and two types of steel fibre, i.e. 35 mm-60 

long and 50 mm-long were used. Super-plasticizer was added in the PVA modified concrete 61 

to reduce water content and obtain high strength, while the SBR modified concrete did not 62 

incorporate any admixtures. Among a total of eight mixes, five mixes, SBRPMC1%-35, 63 

SBRPMC1.5%-35, SBRPMC2%-35, PVAPMC1.5% and SBRPMC1.5%-50 (final numbers 64 

of mix ID indicate length of fibres), were SFR-RC-PMC, whose water contents were 65 

determined using the M-L compaction method [1]. Mix SBRPMC0%, did not contain fibre 66 

and was used as the matrix of mixes SBRPMC1.5%-35 and SBRPMC1.5%-50. Also, it was 67 

purposely used for the evaluation of the relative toughness of the same mixes. All beams of 68 

the six mixes were fabricated in steel moulds using the vibrating compactor shown in Figure 1, 69 

which was purposely designed for specimen formation. The dimensions of the beams of the 70 

six mixes were 80 (W) x 100 (H) x 500 (L) mm 71 

The mixing procedure can be found in ref. [1]. The mix compaction was carried out in two 72 

layers. Each layer was about 40 - 50 mm thick. The vibrating compaction lasted 30 - 50 73 

seconds per layer for SBRPMC, and 60 - 90 seconds for PVAPMC until mortar formed a ring 74 

around the perimeter of the moulds. The surface of each layer was roughened before 75 

accepting the next layer of material. The specimens were de-moulded in twenty-four hours. 76 

The SBR modified concrete specimens were cured in water for five days whereas the PVA 77 

specimens for seven days, followed by air curing until the test day. The ages of the specimens 78 

for tests were 28 days – 40 days. 79 

The conventional SFRC, i.e. Con.SBRPMC1.5%-35, was intended for comparison with the 80 

mix SBRPMC1.5%-35 to reveal the efficiency of fibres. The former had the same ingredients 81 

and mix proportion as the latter except for the water content. The mix Con.SBRPMC0% acted 82 
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as the matrix of mix Con.SBRPMC1.5%-35. The slump of the mix Con.SBRPMC1.5%-35 83 

was 130 mm. The dimensions of the beams of both mixes were 100 (W) x 100 (H) x 500 (L) 84 

mm, fabricated in steel moulds on the vibrating table. The mixing and curing procedures of 85 

both mixes were the same as for mix SBRPMC1.5%-35. 86 

 87 

Table 1 88 

Proportion of mixes with optimal water content determined by M-L method (Cem.= Cement, Supe.= 89 

Superplasticizer, Ad.water= Added water) 90 

Mix ID Mix proportion Fibre by Wet densi. 

Cem. Aggr. Sand SBR PVA Supe. Ad.water volume (Kg/m
3
) 

SBRPMC1%-35 1 1.266 1.266 0.217 0 0 0.072 1% 2479 

SBRPMC1.5%-35 1 1.266 1.266 0.217 0 0 0.095 1.50% 2482 

SBRPMC2%-35 1 1.266 1.266 0.217 0 0 0.103 2% 2499 

PVAPMC1.5%-35 1 1.266 1.266 0 0.02 0.025 0.228 1.50% 2466 

Con.SBRPMC1.5%-35 1 1.266 1.266 0.217 0 0 0.245 1.50% 

SBRPMC1.5%-50 1 1.266 1.266 0.217 0 0 0.095 1.50% 2482 

Con.SBRPMC0% 1 1.266 1.266 0.217 0 0 0.245 0% 

SBRPMC0% 1 1.266 1.266 0.217 0 0 0.095 0%   

 91 

 92 

(a)   (b) 93 

Figure 1. (a) Vibrating compactor. (b) Steel plate for compaction. 94 

 95 
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The beam dimensions recommended by BS [15] are 150 (W) x 150 (H) x 550 (L) mm. The 96 

beams used in this study were 80 (W) x 100 (H) x 500 (L), recommended by ASTM [16]. The 97 

notches were saw cut to the specified depth by a circular saw one day prior to testing. The 98 

width of the notches was 3.5 - 4 mm, complying with BS [15]. 99 

 100 

3. Flexural Strength of PMC Beams  101 

 102 

3.1 Strength under four-point bending (4PB) and three-point bending (3PB) 103 

 104 

The representative test methods for steel fibre reinforced concrete currently available are the 105 

ASTM [16] and BS [15] methods. The intact beams of the three mixes, SBRPMC1.5%-35, 106 

PVAPMC1.5%-35 and Con.SBRPMC1.5%-35, were tested using four point bending (4PB) 107 

arrangements. The loading configuration and experimental setups are shown in Figure 2 (a) & 108 

(b). The test procedure complied with ASTM [16]. Two LVDTs measuring net deflection 109 

were mounted on both sides of the frame. A hydraulic servo-closed loop test facility with a 110 

maximum load capacity of 150 KN was used. The loading rate was controlled by a LVDT 111 

placed at mid-span. The representative mid-span deflection was the average of the two LVDT 112 

readings. The rate of increase of net deflection was 0.0017 mm/s until the LVDT reading 113 

reached 0.5 mm; after the 0.5 mm were reached the rate was increased to 0.0033 mm/s. This 114 

is within the range specified by ASTM [16]. The load and vertical displacements were 115 

continuously recorded at a frequency of 5Hz. The maximum flexural strength, fp, and the 116 

residual flexural strengths, fR,0.5 and fR,2 were calculated using eqn.(1) in accordance with 117 

ASTM [16]: 118 

 119 

�� � �����
�	
               (1) 120 
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 121 

Where: j= P (for peak), or j= R,0.5, or j= R,2.  122 

In this case, R denotes residual flexural strength. Pp, is the maximum load. Pp,0.5 is the load 123 

corresponding to mid-span deflection equal to 0.5 mm. Pp,2, is the load corresponding to mid-124 

span deflection equal to 2 mm.  fp, is the maximum flexural strength. fR,0.5 and fR,2 are strengths 125 

corresponding to mid-span deflections of 0.5 and 2 mm respectively. B and h are the breadth 126 

and depth of the beam.  127 

 128 

The relationships of flexural strength vs. mid-span deflection for the three mixes are presented 129 

in Figure 3. The mid-span deflection was recorded and averaged by two LVDT readings. The 130 

laboratory tests showed that all the SBRPMC1.5%-35 and PVAPMC1.5%-35 beams failed 131 

with multiple cracking under the 4PB test. However, for concrete used as an overlay on worn 132 

concrete pavements, a single reflective crack will initiate from the location of an underlying 133 

existing crack of the worn pavement. Therefore, the 3PB test arrangement was chosen as 134 

more suitable for concrete overlays.  135 

 136 
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137 

(a)  138 

139 

(c)  140 

Figure 2. (a) Un-notched beam under 4PB. (b) 141 

 142 

(c) Notched beam under 3PB. (d) Close view of 143 

144 

Figure 3. Flexural strengths of 145 

146 

The reason for the sharp drop of the flexural strength of mix P147 

Figure 3 is due to the fact that it exhibited lower flexural toughness tha148 

The flexural performance of the same mix under 149 

the same tendency. The mix contained 1.5%150 
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(b) Experimental setup of 4PB test. 

lose view of clip gauge and LVDTs mounted on the beam under 3PB

 

lexural strengths of un-notched beams for three different mixes under 4PB. 

 

The reason for the sharp drop of the flexural strength of mix PVAPMC1.5%-35 shown in 

3 is due to the fact that it exhibited lower flexural toughness than the other two 

The flexural performance of the same mix under a 3PB test, shown in Figure 4, shows also 

The mix contained 1.5%-35mm length steel fibre by volume. 

0.5 1 1.5 2

Mid-span Deflection (mm)
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PB. 

35 shown in 

 mixes. 
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The three-point bending (3PB) test, recommended by BS [15], was employed to measure the 151 

flexural performance. The experimental setup is shown in Figure 2, (c) & (d). Six mixes 152 

shown in Figure 4 were tested under 3PB complying with the BS [15]. The beams measured 153 

80 (W) x 100 (H) x 500 (L) mm, spanning 400 mm with a mid-span notch of 20 mm depth. 154 

They were loaded at mid-span. It should be pointed out that the dimensions of the beams used 155 

in this study were different from those proposed by BS [15], which are 150 (W) x 150 (H) x 156 

550 (L) mm, with span of 500 mm, centrally loaded and notched to the depth of 25 mm.  157 

The loading machine was the same as the one used in the 4PB test. One LVDT was fixed on 158 

the frame for measuring mid-span (point-load) deflection. The other, for measuring notch tip 159 

opening displacement (CTOD), was secured on the beam surface, while the clip gauge was 160 

mounted on the underside to measure the crack mouth opening displacement (CMOD) and 161 

control the loading rate. Test data were automatically recorded by a computer at the frequency 162 

of 5 Hz. The loading rate procedure, controlled by CMOD, was as follows: 0.0001 mm/s until 163 

CMOD reached 0.2 mm; 0.0033 mm/s until CMOD reached 3 mm; then 0.005 mm/s until 164 

failure of the specimen. The rate of increase CMOD used was much lower than that proposed 165 

in the BS [15], which is 0.00083 mm/s until CMOD= 0.1 mm; after that 0.0033 mm/s. All 166 

tests were accurately controlled; no abrupt failures occurred and suitable load-CMOD, load-167 

CTOD, and load - load point deflection curves were obtained. These results were used to 168 

evaluate the maximum flexural strength, residual flexural strength, equivalent flexural 169 

strength, relative toughness index, and total fracture energy and size effects. 170 

The flexural strengths were evaluated according to BS [15], using eqns. (2) – (4): 171 

 172 

���,�� � ����
��	��


              (2) 173 

��,� � ����
�����


              (3) 174 
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�� � ����
�����


              (4) 175 

Where: �� ,!"  is the limit of proportionality (LOP) in MPa. #� is the load corresponding to LOP 176 

(N). S is the span (mm). B is the breadth (width) of the specimen (mm). h is the depth (height) 177 

of the beam (mm). a0 is the depth of notch (mm). $%& is the distance between the tip of the 178 

notch and the top of the specimen (mm). ��,� is the residual flexural tensile strength. CMOD= j, 179 

j= 0.5, 1.5, 2.5, & 3.5 mm, respectively. Pj is the load corresponding to CMOD= j, (N); fP is the 180 

maximum flexural tensile strength (MPa). PP is the peak load (N).  181 

 182 

The flexural strength-CMOD relationships are plotted in Figure 4. The compressive strengths 183 

of blocks saw-cut from the tested beams are listed in  184 

Table 2, while the interfacial fracture toughness and splitting tensile bond strength of composite 185 

specimens are shown in Table 3. The details for testing interfacial fracture toughness can be 186 

found in ref. [17]. It is seen that:  187 

a. Compared to conventional SFRC, SFR-RC-PMC exhibited very high flexural 188 

strengths, which are desired for worn concrete pavement rehabilitation;  189 

b. Compared to the strengths measured under 4PB for the same mix, the obtained 190 

strengths under 3PB are remarkably higher. 191 

However, the flexural strengths cannot be directly used for overlay pavement design. The 192 

design method for SFRC pavements proposed by Altoubat et al [18], requires the flexural 193 

strengths to be converted into equivalent flexural strengths.  194 

 195 
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 196 

Figure 4. Flexural strengths of six 20mm-notched PMC beams under 3PB 197 

 198 

Table 2 199 

Compressive strengths of blocks saw-cut from tested beams 200 

Mix ID Num. of  Compres. strength (MPa) 

block Average  STDEV 

SBRPMC 1%-35 3 83.91 6.69 

SBRPMC 1.5%-35 4 79.61 1.48 

SBRPMC 2%-35 3 84.76 0.27 

Con. SBRPMC 1.5%-35 8 68.18 2.82 

PVAPMC 1.5%-35 6 105.87 3.78 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 
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Table 3 212 

Mechanical properties of interface of SBRPMC1.5%-35, PVAPMC1.5%-35 and OPCC to OPCC composite 213 

specimens. 214 

Interfacial fracture toughness (J/m
2
) SBRPMC1.5%-35 on-OPCC Roughened interface 52.0 

 Smooth interface 22.6 

Splitting tensile bond strength (MPa) SBRPMC1.5%-35 on-OPCC Roughened interface 2.96 

 Smooth interface 1.8 

PVAPMC1.5%-35 on-OPCC Roughened interface 3.7 

OPCC-on-OPCC Roughened interface 2.68 

 215 

3.2 Size Effect on Flexural Strength 216 

 217 

There are two major approaches to explaining the effect of size on the strength of a material: 218 

the statistical and deterministic approaches. A representative statistical approach is Weibull’s 219 

theory [19], while the classic deterministic approach is by Bazant [20 - 21], based on fracture 220 

mechanics. According to Weibull’s theory [19], a larger specimen has a weaker strength 221 

because it has a higher probability of having larger and more severe flaws or defects in it. 222 

Table 4, Figures 3 & 4 indicate that for the same mix, the measured flexural strength under 223 

4PB is higher than that under 3PB. The reason for this can be explained by Weibull’s theory. 224 

As has been presented earlier, the tested beams in this study were of dimensions 80 (W) x 100 225 

(H) x 400 (S) mm. The beams for 3PB were saw-cut a central notch of 20 mm prior to testing, 226 

while the beams for 4PB were intact. In order to use the equivalent concept (presented later), 227 

proposed by the Japan Society of Civil Engineers (JSCE-SF4) [22], the flexural strength 228 

obtained using 3PB test has to be converted to that by 4PB test.  229 

It is seen from Figure 4 that the flexural strength-CMOD curves for all mixes are basically 230 

parallel to each other except for the mix PVAPMC1.5%-35. This indicates that all mixes have 231 
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the same scale factor for equivalent strength conversion. The conversion factor (β1) can be 232 

taken as the ratio of maximum flexural strength under 3PB to that under 4PB. It is used for 233 

converting the strength of the small volume to the large volume, which can be explained by 234 

Weibull’s theory [19].  235 

The maximum flexural strengths tested under the 3PB and 4PB are listed in Table 4. The 236 

conversion factor, β1 can be easily obtained by simply comparing the fp in the 4PB to the 3PB, 237 

using eqn. (5). The calculated β1 is listed in Table 4. 238 

 239 

'( � �)			+,-	.��/
�)				+,-	���/           (5) 240 

 241 

In this study [23], the flexural strength affected by the height of beams was experimentally 242 

investigated. For this purpose, the SBRPMC1.5%-35 beams with the dimensions of 80 (W) x 243 

100 (H) x 400 (S) mm and 100 (W) x 150 (H) x 500 (S) mm and with different notch lengths, 244 

were tested under 3PB to investigate the size effect on maximum flexural strengths. The size 245 

effect law proposed by Bazant [21] was employed. The splitting tensile strength taken from 246 

three cylinders with the dimensions Φ100 x 170 mm was 9.88 MPa. Consequently, the size 247 

effect law obtained using regression analysis for maximum flexural strength of mix 248 

SBRPMC1.5%-35 is [23]: 249 

 250 

�& � 0�..�
23��


.4 5(
            (6) 251 

Where: fp is the maximum flexural strength (MPa). hsp is as per Eqns. (3) & (4).  252 

Eqn. (6) will be used to determine the standard equivalent flexural strength later. 253 

 254 

3.3 Equivalent Flexural Strength. 255 
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 256 

Altoubat et al. [18] tested an actual size SFRC slab on an elastic foundation, and related the 257 

load carrying capacity to the equivalent flexural strength proposed by the Japan Society of 258 

Civil Engineers (JSCE-SF4) [22]. He then proposed a simple design method for SFRC 259 

pavements. The equivalent flexural strength, fe,3 proposed by JSCE-SF4 [22] was measured by 260 

conducting a 4PB test. The test beam was 150 (W) x 150 (H) x 450 (S) mm. The equivalent 261 

flexural strength was calculated using the area enveloped by load-central deflection curve, and 262 

is evaluated by eqn. (7). 263 

 264 

�6,� � �.7899
��	
            (7) 265 

 266 

Where: A3mm is the ratio of the area enveloped under the load-midspan deflection curve, from 267 

the origin to the load at deflection equal to 3 mm. S is the span. B and h are the breadth (width) 268 

and height of beam, respectively. 269 

 270 

However, the beams used in this study were centrally notched, had dimensions of 80 (W) x 271 

100 (H) x 400 (S) mm and were tested under the 3PB. In order to use the equivalent flexural 272 

strength concept, which is defined at the specified deflection of 3 mm, it is necessary to 273 

correlate the two different test methods via the relationship between deflection and CMOD. 274 

In the post-peak region of a 3PB test, a hinge forms at the top of the beam, hence the residual 275 

flexural strength is only dependent on the fibre reactions. For different dimensional beams 276 

under bending test, the fibre effect can be regarded as similar if the crack lengths and crack 277 

opening displacements of the two beams are identical. In order to compare the residual 278 

strengths in the post-peak region measured from different geometrical beams, Giaccio et al. 279 
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[24] proposed an approach to determine the deflection limits of small beams to obtain design 280 

parameters of fibre-reinforced concrete. 281 

Consider the two types of beams with different dimensions under 4PB and 3PB shown in 282 

Figure 5. Beam one is the standard un-notched beam with the dimensions S1 and h1 under 4PB, 283 

while beam two is a centrally-notched beam with dimensions S2 and h2 and initial notch a0 284 

under 3PB. In order to obtain identical fibre bridging effect, CMOD1 should be equal to 285 

CTOD2. 286 

 287 

 288 

Figure 5. Correlation of δ1 and δ2 of two beams with different dimensions 289 

 290 

In the post-peak region, the relationships between deflection and the rotation angle and 291 

crack opening is as follows: 292 

 293 

:( � ;(<(/2              (8) 294 

:� � ;�<�/2              (9) 295 

?@AB( � 2$(;(           (10) 296 

?CAB� � 2+$� D E�/;�          (11) 297 

 298 
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From the equations above and the condition of CMOD( � CTOD�, the following equation is 299 

obtained: 300 

 301 

KL
K


� %L+	
5MN/
%
	L

           (12) 302 

 303 

The standard beam for testing equivalent flexural strength is 150 (W) x 150 (H) x 450 (S) mm, 304 

and the specified deflection, :( = 3mm. The beams used in this study were 80 (W) x 100 (H) x 305 

400 (S) mm with an initial notch of 20 mm. Hence, substitution of these dimensions into eqn. 306 

(12) results in: 307 

 308 

:� � 1.67:(            (13) 309 

 310 

Thus, the corresponding deflection limit, :�, determined using eqn. (13) is 5 mm. Hereafter, 311 

the equivalent strength for the deflection limit of 5 mm is denoted as fe,5. The equivalent 312 

flexural strengths fe,5 are listed in Table 4. 313 

 314 

3.4 Standard Equivalent Flexural Strength, fe,3 315 

 316 

However, the equivalent flexural strength, fe,5, cannot be used directly for the design of the 317 

SFRC overlay pavement proposed by Altoubat et al.[18], because specimen sizes affect the 318 

flexural strength significantly. As has been presented earlier, the tested beams in this study 319 

were of dimensions 80 (W) x 100 (H) x 400 (S) mm with a central notch of 20 mm, quite 320 

different from the standard beam for testing equivalent flexural strength proposed by JSCE-321 
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SF4 [22], which is of the dimensions 150 (W) x 150 (H) x 450 (S) mm. Therefore, the fe,5  322 

above needs to be converted by taking the size effect into account. 323 

It is seen from Figure 4 that the flexural strength-CMOD curves for all mixes are basically 324 

parallel to each other except for the mix PVAPMC1.5%-35. This indicates that all mixes have 325 

the same scale factor for equivalent strength conversion. In order to use the SFRC pavement 326 

design method proposed by Altoubat et al. [18], the fe,5 has to be converted twice to obtain the 327 

standard equivalent flexural strength, fe,3. 328 

First, it has to be converted from the 3PB to 4PB. Its conversion factor (β1) has been 329 

determined previously. Second, it has to be converted from a 4PB test with the beam of 100 330 

mm height to a 4PB test with the standard beam of 150 mm height, via the conversion factor 331 

(β2) that can be determined using the size effect equation (6) for mix SBRPMC1.5%-35. 332 

Both conversion factors are attributed to the size effect. Factor β2 is for converting the strength 333 

of the ‘short’ beam to that of the ‘tall’ beam, explained thoroughly by Bazant’s theory [21]. 334 

The second conversion factor, β2, is calculated in the following way: 335 

 336 

'� � �)							+,-	(R�SS5	6,T	�	U6MS/
�)								+,-	(��SS5	6,T	�	U6MS/ � 2LNN


.45(
2LVN


.45(
� 0.813     (14) 337 

' � '( ∙ '�            (15) 338 

The process of calculating the total conversion factor β and the standard equivalent flexural 339 

strength, fe,3, are tabulated in Table 4. It is seen from Table 4 that the mix PVAPMC1.5%-35 340 

developed the lowest standard equivalent flexural strength, although it exhibited very high 341 

maximum flexural strength. The standard equivalent flexural strength, fe,3 can be used for 342 

SFR-RC-PMC overlay pavement design. 343 

 344 

 345 
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 346 

Table 4 347 

Calculation of standard equivalent flexural strength f3,e 348 

Mix ID fe,5 fP  in 3PB fp in 4PB First convers. Second convers.  fe,3 

(MPa) (MPa) (MPa) factor β1 factor β2 (MPa) 

SBRPMC1%-35 8.87 12.24 N/A 0.823 0.813 5.93 

SBRPMC1.5%-35 10.86 15.22 12.53 0.823 0.813 7.27 

SBRPMC2%-35 14.05 17.05 N/A 0.823 0.813 9.4 

Con.SBRPMC1.5%-35 9.13 10.37 9.49 0.915 0.813 6.79 

SBRPMC1.5%-50 14.24 16.76 N/A 0.823 0.813 9.53 

PVAPMC1.5%-35 10.05 16.6 13.2 0.795 0.813 6.49 

 349 

3.5 Verification. 350 

 351 

The experimental results of SBRPMC1.5%-35 beams with different notch lengths and beam 352 

depths, which were previously used for establishing the size effect law, were reanalysed to 353 

verify the method for calculating the equivalent flexural strength, fe,3, which should be 354 

theoretically identical. Two types of beams, i.e. three 80 (W) x 100 (H) x 400 (S) mm with 40 355 

mm-long notch and two 100 (W) x 150 (H) x 500 (S) mm beams with 25 mm-long notch were 356 

analysed. The deflection limit for the former, determined using eqn. (11), was 6.8 mm, while 357 

that of the latter was 4 mm. The equivalent flexural strengths fe,5, fe,6.8 and fe,4 corresponding 358 

to the deflection limits of 5, 6.8 and 4 mm, and their conversion factors are tabulated in Table 359 

5. It is seen that the standard equivalent flexural strengths, fe,3, determined using the method 360 

proposed are approximately identical. This validates the method for calculating the standard 361 

equivalent flexural strength, fe,3, for overlay pavement design. 362 
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 363 

Table 5 364 

Standard equivalent flexural strength determined using experimental results of beams with different notch length 365 

and beam depth (a0=notch length, h=height of beam) 366 

Mix ID a0/h fe,5 /fe,6.8/fe,4  fP  in 3PB fp in 4PB  β1 β2 fe,3 

(mm/mm) (MPa) (MPa) (MPa)    (MPa) 

SBRPMC1.5%-35 20/100 10.86 15.22 12.53 0.823 0.813 7.27 

40/100 13.31 16.85 12.53 0.743 0.813 8.04 

25/150 8.89 11.94 N/A 0.823 1.00 7.32 

 367 

4. Efficiency of Steel Fibre in Roller–Compacted Concrete. 368 

 369 

Compared to conventional SFRCs, the SFR-RC-PMC has more air voids and relatively less 370 

cement paste (Table 6), hence this may lead to:  371 

a. The steel fibres may not be fully bonded by cement paste;  372 

b. The steel fibres may be deformed during specimen formation due to compaction by 373 

the vibrating compactor.  374 

The two factors may consequently lead to poor steel fibre efficiency. In addition, the 375 

efficiency of 50mm-long fibres also need to be quantitatively investigated by comparison with 376 

35mm-long fibres. Steel fibres have been successfully used in conventional concrete to 377 

improve the performance of concrete for several decades. The conventional concrete 378 

containing the same steel fibre type and fibre content, can be a reliable benchmark for the 379 

investigation of the fibre efficiency in SFR-RC-SBRPMC. 380 

Table 6Table 6 shows the main physical parameters of the three mixes SBRPMC1.5%-35, 381 

SBRPMC1.5%-50 and Con.SBRPMC1.5%-35. The mix Con.SBRPMC1.5%-35 was 382 

conventional concrete, its slump of fresh mix was measured to be 130mm. The three mixes 383 



 
Corresponding author: Tel: + 44 24 7765 8992  

E-mail address: john.karadelis@coventry.ac.uk                                      19 
 

contained the same fibre content and the beams were of the same dimensions to avoid any 384 

size effect.  385 

Table 6 6 clearly indicates that the water to cement ratios and cement paste contents of mixes 386 

SBRPMC1.5%-35 and SBRPMC1.5%-50 are much lower than those of the conventional 387 

Con.SBRPMC1.5%-35. Also, the former have higher air content than the latter.  388 

 389 

Table 6 390 

Comparison of physical properties of five mixes 391 

Mix ID Workability of W/C Cem. paste Air  

content (%) fresh mixes by volume (%) 

SBRPMC1.5%-35 Dry, non-slump 0.206 37.94 2.94 

SBRPMC1.5%-50 Dry, non-slump 0.206 37.94 2.94 

Con.SBRPMC1.5%-35 Wet, slump of 130mm 0.355 42.3 1.2 

SBRPMC0% Dry, non-slump 0.206 N/A N/A 

Con.SBRPMC0% Wet, slump > 130mm 0.355 N/A N/A 

Note: the water for determining water to cement ratio and cement paste fraction included also the water 392 

contained in SBR but excluded the water absorbed by the coarse aggregate.  393 

 394 

The beam dimensions and test procedures for the three mixes SBRPMC1.5%-35, 395 

SBRPMC1.5%-50 and Con.SBRPMC1.5%-35 have been presented in Section 2 and Section 396 

3.1. The three mixes were tested under 3PB, and the experimental data have been analysed to 397 

evaluate maximum flexural strength, fp, equivalent flexural strength, fe,3, relative toughness 398 

index, It, defined as the ratio of fracture energy of SFRC to that of unreinforced concrete [27] 399 

and total fracture energy, GF [23]. These mechanical parameters are rearranged to study the 400 

fibre efficiency in the following: 401 



 
Corresponding author: Tel: + 44 24 7765 8992  

E-mail address: john.karadelis@coventry.ac.uk                                      20 
 

The total fracture energy was evaluated using the method recommended by the RILEM code 402 

[25], i.e. it is equal to the work done by the externally applied load divided by the area of 403 

fractured section of the beam. 404 

The beams of mixes SBRPMC0% and Con.SBRPMC0% had midspan saw-cut notches to the 405 

depth of 33 mm made prior to the test. The 3PB test was conducted to measure fracture 406 

energy. The specimen dimensions and test procedure complied with the code of RILEM 407 

Report 5 1991 [26]. However, the much lower than the recommended by the same code 408 

CMOD - control loading rate was 0.0001 mm/s, in an effort to obtain stable load-deflection 409 

curves. The test for each beam lasted about 30 minutes, longer than that recommended by the 410 

RILEM code [26]. It is seen from Table 7 that:  411 

a. The fibre in mix SBRPMC1.5%-35 exhibited much higher efficiency than the mix 412 

Con.SBRPMC1.5%-35, indicating that the efficiency of fibres in these mixes is 413 

much higher than that in conventional concrete.  414 

b. The efficiency of fibres with aspect ratio of 80 in mix SBRPMC1.5%-50 was much 415 

higher than the fibres with aspect ratio of 60 in SBRPMC1.5%-35, indicating the 416 

fibre aspect ratio has remarkable influence on the flexural performance. 417 

 418 

Table 7 419 

Comparison of macro-mechanical properties of three mixes 420 

Mix ID  fp fe,3 GF It 

  (MPa) (MPa) (J/m
2
)   

SBRPMC1.5%-35 15.22 7.27 18580 221 

SBRPMC1.5%-50 16.76 9.53 28300 337 

Con.SBRPMC1.5%-35 10.37 6.79 15650 103 

 421 

5. Mechanism of Fibre Efficiency.  422 
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 423 

Observations on SFRC beam under 3PB test indicated that the crack initiated from the notch 424 

tip, and extended monotonically with load increments. The crack continued to extend but the 425 

applied load begun to fall after the peak load was reached and a hinge formed beneath the top 426 

of the beam. The complete process of failure of SFRC beam in flexure consisted of two stages: 427 

At stage I, prior to hinge formation, the flexural performance mainly depends on the 428 

interaction of matrix and fibres. At stage II, after the hinge formation, the flexural behaviour 429 

depends mainly on the resistance induced by fibre traction. Therefore, it is reasonable to use 430 

the relationship of fibre tensile stress and crack face opening displacement (fibre bridging law) 431 

at stage-II to reveal the reasons why the efficiency of fibre in RCC was much higher than that 432 

in conventional concrete. The fibre bridging at stage-II serves also as the fibre pull-out test. 433 

Table 8 presents the fibre bridging law, for stage-II, for three mixes, established by using 434 

inverse analysis presented in ref. [28] in detail. Figure 6 (b) provides a graphical 435 

representation of the law for the same three mixes.  436 

 437 

Table 8 438 

Fibre bridging law for stage-II under 3BP [Units: σ (MPa), and w (mm)] 439 

Mix ID Fibre bridging law for stage-II under flexure 

SBRPMC1.5%-35 σII(w) =-0.0056w
3
+0.1612w

2
-1.5044w+5.9306                                 

0.958≤w≤12.45 

Con.SBRPMC1.5%-35 σII(w) = 0.0012w
3
 - 0.025w

2
 - 0.0461w + 2.4392                               

0.907≤w≤12.64 

SBRPMC1.5%-50 σII(w)= -0.0012w
3
 + 0.0654w

2
 - 0.9482w + 5.9164                            

1.063≤w≤12.99 

 440 
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  441 

 442 

 (a)       (b) 443 

Figure. 6 (a) Fibre tensile stress after a hinge formation beneath the point load (a0=notch depth).  444 

(b) Plots of fibre bridging laws in polynomial form as listed in Table 8 445 

 446 

It is seen from Figure 6 (b) that both mixes SBRPMC1.5%-35 and Con.SBRPMC1.5%-35 447 

contained the same amount and type of fibre, however the former exhibited higher tensile 448 

strength than the latter, for a given face opening displacement. It is clear that the main 449 

mechanism for the RCC having higher fibre efficiency than conventional concrete is 450 

attributed to a lower water to cement ratio, resulting in higher friction between fibre and 451 

mortar, although the air content of the former was higher than the latter. In addition, the curve 452 

of fibre bridging law of SBRPMC1.5%-50 is above the curve of SBRPMC1.5%-35 at all 453 

crack face opening displacements, implying that the former provided higher fibre traction. 454 

The fibre bridging law can serve as an index to evaluate the fibre efficiency for the selection 455 

of ingredients during the mix design process in practical (site) applications. For example, 456 

mixes SBRPMC1.5%-35 and SBRPMC1.5%-50, in Table 8, are the same (have identical 457 

proportions of ingredients), only the former incorporates shorter fibres than the latter. It is 458 

apparent from Figure 6 (b) that SBRPMC1.5%-50 is more efficient than SBRPMC1.5%-35 459 

because the fibres of mix -50 provide higher tensile strength than those of -35, for the same 460 

crack opening displacement. In this case, the fibre bridging law specified in Table 8, can be 461 

used to predict the flexural performance of beams made of the three different mixes.  462 
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 463 

6. Concluding Remarks. 464 

 465 

1. Compared to conventional steel fibre-reinforced concrete, steel fibre- reinforced roller-466 

compacted polymer modified concrete developed very high flexural strength. This is 467 

very favourable to worn concrete pavement rehabilitation. 468 

2. The standard equivalent flexural strengths evaluated using the method proposed by this 469 

study are listed in Table 4, and can be directly used for overlay pavement design. The 470 

method, using the identical fibre bridging concept and size effect, has been verified 471 

successfully.  472 

3. Mix SBRPMC1.5%-35 is deemed to be optimum for both, strength and workability. 473 

Mix PVAPMC1.5%-35 exhibited higher flexural and bond strength with the old 474 

concrete than mix SBRPMC1.5%-35 but unfortunately low equivalent flexural strength 475 

which is the basis of overlay design and thus is not a suitable mix for worn concrete 476 

pavement rehabilitation. 477 

4. The fibres in SFR-RC-PMC exhibited much higher efficiency than in conventional 478 

SFRC (consolidated by vibrating table). This is mainly attributed to a lower water to 479 

cement ratio. This indicates that these mixes are economically viable.  480 
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