
PetriLLD Tutorial
Brusey, J.

Published version deposited in CURVE March 2012

Original citation & hyperlink:
Brusey, J. (2006) PetriLLD Tutorial. http://petrilld.sourceforge.net/tutorial.pdf

Additional note: The software can be downloaded from http://petrilld.sourceforge.net/

Copyright © 2005,2006 James Brusey Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover-Texts, and no Back-Cover Texts. A copy of the license is available
at http://www.gnu.org/licenses/fdl.html

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

http://petrilld.sourceforge.net/tutorial.pdf
http://www.gnu.org/licenses/fdl.html
http://curve.coventry.ac.uk/open

PetriLLD Tutorial

James Brusey

PetriLLD Tutorial

by James Brusey

Second Edition

Copyright © 2005, 2006 James Brusey

PetriLLD is a graphical development environment that allows the user to construct

and test control programs for discrete event systems. The graphical language is

a simple form of Petri net with some notational changes that allow it to express

sensory input. Once the Petri net is designed and tested, it can be output in a

number of different forms, including PLC (programmable logic controller) ladder

logic diagrams, and various high-level languages including Java and Visual Basic.

The main features of this tool are the ability to rapidly construct sophisticated con-

trol systems that include a large amount of distributed and concurrent behaviour;

the ability to compile to both general purpose computer and PLC forms; and the

ability to separate the description of the behaviour from the implementation in-

stance.

This tutorial is intended to guide the user through their first use of the tool. It

has been written with version 1.1 (build 20060917) in mind, so if you have an

earlier version, you might like to start by going through the installation section and

installing the latest version.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

Free Documentation License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the

license is available at http://www.gnu.org/licenses/fdl.html

Linux is a registered trademark of Linus Torvalds.

Java is a trademark of Sun Microsystems Inc.

Microsoft Windows is a registered trademark of Microsoft Corp.

Table of Contents

Introduction .. v

1. Installing PetriLLD .. 1

Installing on Microsoft Windows®..1

Step 1: Ensure that Java 5 is installed...................................1

Step 2: Install Java if necessary ...1

Step 3: Download PetriLLD ..1

Step 4: Install PetriLLD..1

Installing on Apple Mac OS/X™ ..2

Step 1: Ensure that Java 5 is installed...................................2

Step 2: Install Java if necessary ...2

Step 3: Download PetriLLD ..2

Step 4: Install PetriLLD..2

Installing the platform independent version...................................2

Step 1: Ensure that Java 5 is installed...................................2

Step 2: Install Java if necessary ...3

Step 3: Download PetriLLD ..3

Step 4: Execute PetriLLD ...3

Compiling from source ..3

2. Overview ... 5

Entities ...5

Tasks ..5

3. Tutorial ... 7

Getting started ..7

Create a new project ..7

Creating a net..7

Designing a net..7

Different place types ..8

A simple example ..9

Testing behaviour ..10

Creating instances ..10

Compiling the project ..11

Downloading your code..12

Toggle button example ..13

Drill-press example ...14

Adding an instance ..16

Introducing project simulation ...16

Verification using a model ..18

Using high-level language compilers ..19

Compiling to Visual Basic ..20

Advanced topics ..22

Creating modular nets ...22

Coordination design patterns...22

Printing and exporting Petri nets..26

iii

A. Reference .. 27

Elementary Net rules...27

Place types ..27

Compiler plug-in example..28

Toolbar ...32

Further reading ... 34

iv

Introduction

PetriLLD is a simple graphical tool that can be used to design PLC pro-

grams by building a Petri net that represents the desired behaviour. A

screen image is shown in Figure 1.

HelpWindowEditProjectFile

PetriLLD

Projects

machining

assembly

siemens−test

test

packing

machining

drill−press

drillPress

1

$drillPress

drillPress.pn−class

t 2

startState

clampSolenoid

upHeadMotor

downHeadMotor

spindleMotor

limSw1

drillPress_1.pn−inst...

Place Address
limSw1 0 .4
spindleMotor 1 .1
upHeadMotor 1 .3
startCycle 0 .3
downHeadMotor 1 .2
limSw2 0 .5
clampSolenoid 1 .4

Step

Figure 1. PetriLLD in action

PetriLLD is built upon the Petri net formalism. Specifically, it uses a mod-

ified form of a basic sort of net that only allows one token in a place. If you

are not familiar with Petri nets, don’t worry! Many students have found in

the past that just playing around with them and using the simulate tool

within PetriLLD is enough to get used to the idea. For a more in-depth

treatment, there are also a number of useful resources at the Petri Net

World1 web page. When looking at these resources, keep in mind that nets

in PetriLLD include input and output connections to an external environ-

ment, which is not usual in ordinary Petri nets. Many of the fundamental

ideas, however, are the same.

Petri nets are an excellent model for expressing concurrent behaviour.

For this reason, they are useful for modelling the behaviour of discrete

event systems such as those in manufacturing plants where there may be

many operations occurring simultaneously. PetriLLD was developed with

v

Introduction

automatic control systems like those used in manufacturing plants in

mind. Nonetheless the tool is intended to be general and may be used for

other applications where one needs to express simply some combination

of concurrent and sequential behaviour.

PetriLLD was originally devised to produce ladder-logic diagrams for Pro-

grammable Logic Controllers (PLCs). The ladder logic diagram language

is a graphical language that is analogous to a series of wired connections

and switches. In fact, the graphical language is implemented as a se-

ries of boolean logical assignment statements. By executing or scanning

the statements over and over again, the PLC behaves just as if it really

contained the wiring and switches shown in the language.

Just like ladder-logic diagrams, PetriLLD turns the Petri net into boolean

statements. When loaded into the PLC, it produces the same behaviour as

the Petri net, however now it will be affected by actual sensors connected

to the PLC and it will turn on and off the PLC’s actuators.

In the following tutorial, we will see how this tool can be used to develop

control logic. The first step is to obtain a copy of the program and get it

installed on the computer that you are using. The installation procedure

is described in the next section.

Notes

1. http://www.informatik.uni-hamburg.de/TGI/PetriNets

vi

Chapter 1. Installing PetriLLD

The PetriLLD tool can be run on just about any environment that sup-

ports Java™. The only prerequisite is that the Java 5 Runtime Edition

must be installed.

Installation consists of two steps:

1. Install Java (if it’s not installed already).

2. Download and install PetriLLD.

Installing on Microsoft Windows®

Step 1: Ensure that Java 5 is installed

Go to the Start menu and click on Run... and then type cmd followed

by pressing the Enter key. On older versions of Windows, you may need

to type command instead. This will bring up a DOS prompt. Type the

following command to see if you have Java already:

java -version

You should see something like:

java version "1.5.0_06"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_06-b05)

Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode, sharing)

This indicates that you have Java version 1.5.0_06. Other versions are

acceptable as long as they are greater than 1.5.0. If you see an error

message, it probably means that you do not have Java installed.

Step 2: Install Java if necessary

To get Java 5 for Windows, go to java.com1. Note that the Java Runtime

Environment is all that is required. Once Java 5 is installed, continue to

step 3.

Step 3: Download PetriLLD

You can download the latest version of PetriLLD from Sourceforge.net2.

Unless you want source code, the recommended version for Windows is

the one ending “Windows-Installer”. Make sure that this downloads as a

JAR file. It is not necessary to expand out the JAR file.

1

Chapter 1. Installing PetriLLD

Step 4: Install PetriLLD

You should now have a file called "PetriLLD ... Windows-Installer.jar". Ex-

ecuting this file should start the install process. This process is reason-

ably self-explanatory. If you would like to use the automated installation

procedure, refer to the IzPack3 web-page for documentation on how to

use the script file. Note that most users will not need to use this.

Installing on Apple Mac OS/X™

Step 1: Ensure that Java 5 is installed

Start by making sure that you have Java 5 installed. Note that Java 5

may be installed but might not be the default Java. PetriLLD will request

Java 5; it is not necessary to change the default.

Step 2: Install Java if necessary

To get Java 5 for Mac OS/X, go to: www.apple.com4. Once Java is in-

stalled, continue to step 3.

Step 3: Download PetriLLD

You can download the latest version of PetriLLD from Sourceforge.net5.

Unless you want source code, the recommended version for Mac OS/X is

the one ending “MacOSX”. Make sure that this downloads as a DMG file.

Step 4: Install PetriLLD

To install PetriLLD, simply open the disk image (DMG) file and drag the

PetriLLD icon into your Applications folder.

Installing the platform independent version

Step 1: Ensure that Java 5 is installed

Open a shell window and type the following command to see if you have

Java already:

java -version

You should see something like:

java version "1.5.0_06"

2

Chapter 1. Installing PetriLLD

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_06-b05)

Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode, sharing)

This indicates that you have Java version 1.5.0_06. Other versions are

acceptable as long as they are greater than 1.5.0. If you see an error

message, it probably means that you do not have Java installed.

Step 2: Install Java if necessary

To get Java 5 for Linux™, go to java.com6. Note that the Java Runtime

Environment is all that is required. Once Java 5 is installed, continue to

step 3.

Step 3: Download PetriLLD

You can download the latest version of PetriLLD from Sourceforge.net7.

Unless you want source code, the recommended platform-independent

version is the one ending “... -bin.jar”.

Step 4: Execute PetriLLD

The jar file can be executed directly, as follows:

java -jar PetriLLD-1.1-bin.jar

Compiling from source

There are a number of prerequisites for compiling from source. First, you

need Java 5, as above. Second, you need Ant8 to perform the build. Third,

you will need Batik9 to support exporting to SVG. Fourth, Ant-Contrib10

is needed to support the use of conditional statements in the Ant script.

To build the Windows Installer, you will need IzPack11. Specifically, you

need to install the standalone-compiler.jar into Ant’s lib directory. To

build the Mac OS/X disk image, you will need JarBundler12 and the Mac

disk image utility (for which you probably need to be running on a Mac!).

JarBundler also contains a file called something like jarbundler-1.9.jar

that should be moved into Ant’s lib.

Download the PetriLLD file ending in “... -src.jar” and expand it out into

a working directory with commands similar to the following:

mkdir petrilld

cd petrilld

jar xf ../PetriLLD-1.1-src.jar

3

Chapter 1. Installing PetriLLD

You may need to modify build-local.properties to say where things

such as IzPack and Batik are installed. Once this has been done, the

next step is to compile the code:

ant compile

At the time of writing, there are 3 “unchecked” warnings, all of which can

be safely ignored.

There are several other targets:

Summary of Ant build targets

run

Run PetriLLD directly.

compile

Compile to the build directory,

dist

Produce a distributable JAR file.

win

Produce the Windows-Installer JAR file.

macosx

Produce the Mac OS/X disk image.

Notes

1. http://java.com/java/download/index.jsp

2. https://sourceforge.net/project/showfiles.php?group_id=147649

3. http://www.izforge.org/izpack

4. http://www.apple.com/support/downloads/

5. https://sourceforge.net/project/showfiles.php?group_id=147649

6. http://java.com/java/download/index.jsp

7. https://sourceforge.net/project/showfiles.php?group_id=147649

8. http://ant.apache.org

9. http://xml.apache.org/batik/

10. http://ant-contrib.sourceforge.net

11. http://www.izforge.com/izpack

12. http://jarbundler.sourceforge.net

4

Chapter 2. Overview

Before starting to use PetriLLD for the first time, it may be useful to

understand some of the core concepts used. PetriLLD supports several

different entities to allow for a variety of different situations:

• The basic use is to convert a Petri net into low-level ladder logic diagram

code that can be downloaded directly into a PLC and used to control a

manufacturing cell.

• Several different PLCs may need to be coded for, and in each PLC, sev-

eral different, and possibly independent devices may need to be con-

trolled.

• Some of those devices may need exactly the same control programs but

perhaps with some addresses changed.

Entities

When using the tool, the user manipulates three different types of entity:

• A project corresponds to a directory or folder containing all of the code

for a single PLC or computer. Within each project there may be a num-

ber of Petri nets.

• A net is the abstract design of a PLC or computer sub-program, that

does not specify what sensor or actuator addresses are used. Nonethe-

less it does specify which Petri net places correspond to sensors and

actuators. We shall see how this works in the following sections.

Each net may have multiple instances.

• An instance specifies what addresses are used when implementing a

net for a particular device or set of devices.

These entities are arranged in a hierarchy. A project contains some num-

ber of nets, each of which subsequently contains some number of in-

stances. In terms of storing the data onto disc, the project corresponds

to a directory, while data associated with nets and instances are stored

as files within that directory.

Tasks

PetriLLD provides a simple integrated development environment that

supports much of the process of developing robust code. With PetriLLD,

5

Chapter 2. Overview

you can:

• Create a new project. You’ll need one project for every target PLC or

other sort of computer. You can create a new project by right-clicking

on the word Project in the project window and selecting New project.

Note that there is an alternative, which is to select Project in the left

hand window and select the Project > New project menu item.

• Design a net to represent the desired behaviour. This means first cre-

ating the net and then creating places, transitions and arcs. You may

need to change some of the places to be “input” or “output” places so

that they can interface with the external environment. This process is

discussed in more detail in Chapter 3.

• Test the design under simulation. The simulation tool allows the user

to watch how the tokens move from place to place by single-stepping.

This allows design faults to be discovered prior to executing on the

hardware.

• Connect a net to a set of inputs and outputs by defining an instance.

• Compile a set of nets and instances to produce an executable form.

Note that various compiler “plug-ins” are provided to allow the design

to be compiled to a variety of PLC and computer languages.

6

Chapter 3. Tutorial

This chapter provides a tutorial introduction to using the PetriLLD tool.

Getting started

The first stage, if you haven’t already done so, is to install the software.

More information on installation is given in Chapter 1.

Once you have installed it, start the tool. With the program running, you

should see a window with a toolbar along the top and the main area split

into left and right panes. Note that the divider between the two panes can

be dragged to the left or right using the mouse. The pane on the left hand

side is the project pane. This shows any projects that you have open. The

right hand side is the editor pane. Nets and instances are shown in this

pane when they are being edited.

Create a new project

With PetriLLD running, the first step is to create a new project. Right-click

on Projects to get the context menu for projects and select New project. It

is also possible to do the same thing by selecting Project > New project.

Note that if the menu item is greyed out, this means that you need to

select Projects first.

In the dialog box that comes up, enter:

tutorial

for the project name. A base folder will already have been selected. If it

is not appropriate, you can change it by clicking browse. Note that the

base folder must exist and a folder called tutorial will be created inside

it. Click Finish to create the project.

Creating a net

You should now see tutorial in the list of projects in the left hand pane.

Create a new net called my-first-net by right clicking on tutorial and

selecting New net. When this has been done successfully, you will see

my-first-net as a sub-element of tutorial.

Designing a net

Open my-first-net. You can do this by either double clicking on

my-first-net in the project pane or by right-clicking on it and selecting

Open. When it is open, you’ll see a new (blank) window in the editor

pane.

7

Chapter 3. Tutorial

You can now create some places and transitions. To do this, select the

Place or Transition tool from the toolbar. (The layout of the toolbar

is explained in detail in the Section called Toolbar in Appendix A.) Then

simply click on some part of the my-first-net window to put a place or

transition there.

Note: If you run out of room, you can either make the window larger or use

the Select tool to drag elements off the edge of the screen. In general, you

should try and keep your nets simple and able to fit on one screen. Where more

complex behaviour is required, split the functionality between different nets (see

the Section called Creating modular nets).

Once you have both transitions and places in your net, you can join them

with arcs using the Draw arc tool. To use this tool, first select it from the

toolbar, and then click and drag from a place to a transition, or from a

transition to a place.

Note: The semantics of Petri nets do not allow arcs from places to places or from

transitions to transitions.

Deleting arcs can be performed in one of two ways. You can either delete

either the place or transition that the arc connects to, or you can delete

just the arc. To delete a place or transition, select it with the select tool

and press the delete key. Note that multiple nodes can be selected and

then deleted at once. Alternatively, right-click on the place or transition

and select the Delete option.

To delete an arc without deleting a node that it connects to, use the

Delete arc tool. To use this tool, first select the tool from the toolbar and

then click and drag from the source node to the target node. Note that

clicking and dragging in the reverse direction will have no effect (unless

there happens to also be an arc from the target to the source).

PetriLLD does not allow the path of the arc to be altered. It is not possible

to select arcs or manipulate them. Although this may seem somewhat

limiting in terms of improving the look of the Petri net, the current ap-

proach seems to have the benefit of simplicity. If the arcs become too

messy, consider splitting your net into two or more modules.

Different place types

You can alter the characteristics of a place or transition by right clicking

on it and selecting Toggle input or Toggle external. Places can be turned

into input places (represented by a triangle) or external places (repre-

sented by a squares). See the Section called Place types in Appendix A for

8

Chapter 3. Tutorial

more information about the different sort of places and what they can be

used for.

A simple example

Here is a simple example that incorporates some of the features discussed

in the previous section. The aim is to draw the net in Figure 3-1. Feel free

to skip to the Section called Testing behaviour if you have already drawn

the net.

Figure 3-1. A simple net involving a switch and a lamp.

This net produces a simple behaviour. When the switch is turned on, the

lamp turns on. When the switch turns off, the lamp turns off.

To produce the above net, first create a new net called switch_lamp and

open it. Create two places by clicking on the place tool, and then click-

ing twice on the switch_lamp window. Create two transitions in a similar

fashion. You may want to refer to the diagram to work out whereabouts

to put the transitions relative to the places. Don’t worry if you don’t get it

right as you can move them later.

When the places and transitions are initially created, they receive default

names. You can rename them by right-clicking on them and selecting

Rename. Rename one of the places to Switch and the other to Lamp. Leave

the transitions with the default names.

Now connect the places and transitions with arcs as shown in the dia-

gram. Start by selecting the Draw arc tool. Note that the direction of the

arc is important. For example, to make an arc from Switch to t2 move the

cursor over Switch, press down the left mouse button, drag the cursor to

t2, and then release the button. As you drag the mouse, you’ll see a red

line indicating where the arc will be created.

Once you have completed the arcs, all that is required is to set the place

types for the switch and lamp. This is done by right clicking on Switch

and selecting Toggle input. Similarly, right-click on Lamp and select the

Toggle external menu item.

9

Chapter 3. Tutorial

Note: Square nodes are “external” and not “output” because they can also

be used to receive messages from other nets or even other computers. See

the Section called Shared memory coordination pattern for further information

At this point, you may notice that the arcs for one of the transitions seem

to have a convoluted shape. This is due to the arcs curving so that they

come in to the top of the transition and leave from the bottom. It is pos-

sible to adjust this behaviour by right-clicking on one of the transitions

and selecting Flip transition.

Testing behaviour

Once you are happy with the net, you can test its behaviour by clicking

on the Step button. If there are no transitions that can fire, you will see

no change in the state of the net. To allow one of the transitions to fire,

right-click on Switch and select Toggle mark. You will then see a mark

(or token) appear in the Switch place. Pressing Step will then cause the

lamp to turn on. Note that since Switch is an input, it will not change its

state until you manually adjust it with the Toggle mark option.

With the Switch turned on, Lamp becomes marked and stays marked no

matter how many times the Step button is pressed. If Switch is toggled to

an unmarked state, subsequently pressing Step will cause Lamp to turn

off. Note that in both cases, the firing of a transition does not affect the

state of Switch.

Note: In general, arcs that flow from an input place require that place to be turned

on (marked) for the associated transition to fire. Conversely arcs that flow to an input

place require that the place be turned off (unmarked) for the associated transition to

fire.

As a small exercise, see if you can make the lamp turn on only when the

switch is off (i.e. reverse the polarity).

Creating instances

At any stage after creating the net, one or more instances can be created.

An instance is required to tie input places and external places to input

and output (or shared memory) addresses, respectively. To create a new

instance, right-click on the switch_lamp net and select New instance.

This will prompt for an instance name. Enter

1

as the name.

10

Chapter 3. Tutorial

Note: Instance names are appended to the net name when generating the filename.

Also, for some compiler plug-ins, variable names are generated by concatenating

together the net name, the instance name and the place or transition name. For this

reason, it is usually a good idea to avoid having long net or instance names, as it can

make the generated code difficult to read.

An instance is essentially a mapping of input and external places to ad-

dresses. The format of an address will depend on the compiler and the

target PLC or computer. For example, for an OMRON PLC, address con-

sist of a word address followed by a “.” followed by a bit address. For

example 100.02 refers to the third least significant bit in word 100. (It’s

the third bit, since the least significant bit is bit 0.) Assuming that you

are using an OMRON PLC, enter

0.00

for place Switch and

4.00

for place Lamp.

Compiling the project

Once at least one instance has been created, it is possible to compile the

project.

Note: It is not possible to compile nets or instances independently from a project.

Only projects can be compiled.

To compile a project, right click on the tutorial project in the project

pane and select Compile all.

A dialog box is shown that allows the compiled output format to be

selected. These compiler “plug-ins” are discussed in more detail in

the Section called Compiler plug-in example in Appendix A. Following

this, it is possible to select where to write the compiled output format.

This file can then be loaded into the utility or compiler.

For example, the diagram in Figure 3-2 is the ladder logic that results

from compiling to OMRON CX-Programmer (shown without optimising

unnecessary transitions).

11

Chapter 3. Tutorial

Switch 1 switch lamp Lamp 1 switch lamp t1 1 switch lamp

Lamp 1 switch lamp Switch 1 switch lamp t2 1 switch lamp

Lamp 1 switch lamp t2 1 switch lamp Lamp 1 switch lamp

t1 1 switch lamp

Figure 3-2. Ladder-logic diagram produced by compiling switch_lamp.

With optimisation, the code in Figure 3-2 simplifies to that in Figure 3-3.

PetriLLD’s optimisation algorithm works by first detecting particular

cases where transitions can be eliminated by substituting their update

expression wherever they occur. Unfortunately, there are only a few

cases where this may be performed without causing a large increase

in the complexity of the resulting code (the case shown here being an

example). Therefore, PetriLLD limits the situations where it applies this

optimisation approach.

Switch 1 switch lamp Lamp 1 switch lamp

Figure 3-3. Simplified version of the previous ladder logic.

Downloading your code

The compiled code needs to be downloaded to the PLC for it to take ef-

fect. The exact method varies depending on download software. Note that

PetriLLD doesn’t take care of this part for you—the download is a manual

process.

The process to download to an OMRON CS1 PLC involves opening the file

produced by PetriLLD with OMRON CX-Programmer, or CX-One depend-

ing on which software release you are using. Note that the filename ends

in .cxt, and it is necessary to tell CX-Programmer to look for this type of

file. Once the file has been opened, it is necessary to alter the network

settings to suit the target PLC. Once this has been done, download the

program to the PLC. Note that PetriLLD does not code an I/O table, and it

is thus unnecessary (and unwise) to try to download it. Therefore, ensure

that the download options only have Program ticked.

At this stage, you may discover some bug in your code. Tools such as CX-

Programmer can help you identify the cause of the problem. Remember,

12

Chapter 3. Tutorial

however, that it is not possible to change the ladder logic and then auto-

matically translate that back into a Petri net. Therefore, if you do decide

to change the code, it is recommended that you change the Petri net and

recompile.

Toggle button example

The following is a slightly more complicated example that involves a lamp

that is toggled on and off. That is, when the button is pressed and re-

leased, the lamp turns on if it is currently off, or off if it is currently

on.

Figure 3-4. Toggle button Petri net

Figure 3-4 shows the solution to this problem. The system moves through

four main states, starting in p1, moving through to p4 and then back to

p1 again. To get an idea of how this net works, consider each transition.

Transition a1 occurs when the net is in an initial state, and the button

is depressed. When the button is released (turned off), transition b will

fire. This also turns the lamp on. Transition a2 fires when the button is

pressed again, while c occurs when the button is released.

Note that in Figure 3-4, p1 is initially marked. To set the initial marking

for any net, use Toggle mark to put the net into the desired state, then

select Edit > Set initial marking.

The behaviour of the above net can also be produced with a net with

slightly fewer places (this is left as an exercise to the reader). Note, how-

ever, that it is not possible to bypass the step of looking for the button

turning on (a1 and a2). If those transitions were deleted from the loop, the

system would just flash the lamp on and off (assuming the button was

off or released).

13

Chapter 3. Tutorial

Note: Inputs such as buttons tend to need arcs going both out and in. If you find

yourself designing a net with arcs only coming out of inputs, check to see that this is

not a potential problem.

Drill-press example

So far, the examples looked at bear little resemblance to realistic automa-

tion problems. In the following example, automation for a drill press, as

shown in Figure 3-5, is developed.

Figure 3-5. Schematic of a drill press

The drill press consists of some sensors (limit switches LS1 and LS2),

some momentary push buttons (power on, start cycle, stop), some lights

(power, cycle start), an actuator (fixturing clamp), and some motors (+Z,

-Z, and spindle motors). For the purpose of this example, the control code

will meet a simple set of requirements:

i. The drill head starts in the upper most position, with the upper

limit switch LS1 turned on.

14

Chapter 3. Tutorial

ii. When the start cycle button is pressed, the clamp should activate,

the drill should start moving down and the spindle motor should

turn on.

iii. When the lower limit switch LS2 is reached (and thus turns on) the

downward (-Z) drill head motor should turn off, the upward (+Z)

motor should turn on.

iv. Finally, when the upper limit switch is reached, the clamp should

be released, the spindle motor turned off, and the upward motor

turned off.

The process of translating these requirements into a net can be broken

into several steps:

1. Create places for each input (sensors and buttons) and for each

output (motors and solenoids).

2. Modify the places to match their type (make sensors and buttons

input-only, and actuators external).

3. Create a transition to correspond to each event. For example, you’ll

need a transition for starting the process, one for when the drill

reaches the lower limit switch, and one for when it has returned to

the upper limit switch.

4. Join transitions and places with arcs. Generally, you can view the

input arcs from X, Y, Z, to a transition as saying X and Y and Z must

be true. Nevertheless, keep in mind that, for non-input places, the

transition also draws the tokens from X, Y, and Z.

5. Add any internal state places as necessary.

6. Refine the net to remove any unnecessary items.

Figure 3-6 shows a possible solution to the drill press control problem.

Note that there are arcs only coming out of (say) startCycle. As noted

previously, this may indicate a potential fault in the design. What poten-

tial problem might occur in this case?

15

Chapter 3. Tutorial

Figure 3-6. Petri net controller for the drill press

Adding an instance

Whether you wish to control three drill presses or thirty drill presses, you

can use the same net over and over again. If you need to control differ-

ent devices with different PLCs, then manually copy the .pn-class file to

other project directories. It is expected that future versions of PetriLLD

will support libraries of nets. To allow several different drill-presses to

be controlled by a single PLC, simply create a separate instance for each

one.

The instance contains a mapping between external and input places to

PLC addresses. An example mapping is shown in Table 3-1.

Table 3-1. Drill press instance example

Place Address

clampSolenoid 1.4

downHeadMotor 1.2

limSw1 0.4

limSw2 0.5

spindleMotor 1.1

startCycle 0.3

upHeadMotor 1.3

Adding an instance is required if you want to include the drill press net

in the compiled output, or in the project simulation (see the next section).

Nets without instances are ignored when compiling or using the project

simulator.

16

Chapter 3. Tutorial

Introducing project simulation

Once the net and instance have been created, you may wish to verify that

it works correctly before testing it with real equipment. One way to do this

is to use the Step tool to examine the behaviour. A more sophisticated

simulation tool is provided in the form of a project simulator. You can

access this feature by clicking on the project that you want to simulate

and then selecting Project > Simulate project.

PetriLLD simulate /home/jpb54/work/petri−lld/examples/nets/dri...

ClosePlayStepRestart

$drillPress.1drillPress.1

t 2

t 1

startState

clampSolenoid

upHeadMotor

downHeadMotor

spindleMotor

limSw2

limSw1

startCycle

[$drillPress.1.t5]
[$drillPress.1.t8, drillPress.1.t1]

Log

Figure 3-7. Using the project simulator

The project simulation tool, shown in Figure 3-7 allows simulation of not

just a single net, but a whole project, potentially including many nets and

instances. In some cases, place addresses will be shared between several

instances, and this is identified in the simulator by a red slash through

the place.

Tip: Moving the mouse pointer over any place will reveal the address. If the place is

shared, a list of other places sharing the address will be shown in square brackets.

The log window on the left hand side shows a list of transitions in the

order that they occurred. It is possible for two transitions to occur during

the same scan cycle, and this is shown by having all simultaneously

occurring transitions appear on the same line in the log. Note that the log

is cleared when Restart is pressed.

The project simulator can either be run in single-step mode by clicking

Step, or be run in continuous play mode by clicking Play. While con-

tinuous mode runs, the Play button changes to a Stop button. Pressing

17

Chapter 3. Tutorial

Close closes the simulation window. Note that it is necessary to stop the

simulation before closing the window.

At any time, it is possible to manually change the state of places by click-

ing on them. This toggles their state from marked to unmarked. So that

you know what you’ve done, this is also recorded in the log.

The project simulator supports simulation of time delays on transitions

whereas the single-step simulator available when editing nets does not.

In continuous play mode, the simulator behaves as though the scan cycle

time is around 100 milliseconds.

Verification using a model

The simulator allows basic testing that may help find bugs in control

logic. More sophisticated verification can be performed by developing a

net to model the uncontrolled behaviour of the device being controlled,

and using this to automatically test the control logic.

Note: To support the use of “simulator-only” nets, the compiler excludes any nets

that have a name starting with $. Thus, for a controller net called drill-press, the

associated model net might be called $drill-press.

A good place to start with modelling the behaviour of a device is to create

input places where the controller net has output (external) places and

external places where the controller has inputs. It is a good idea to use a

consistent naming convention to make it easy to ensure that equivalent

places in the model and controller are wired to the same address.

The next step is to model the possible states of the device or system being

controlled. This may or may not correspond to the state of sensors. In

many cases, the state of a device cannot be unambiguously identified by

looking at the state of the sensors associated with it. To model the drill

press described in the Section called Drill-press example, you might start

by modelling the position of the drill head. For example, the drill head can

be considered to be in one of three possible states: fully up, fully down,

or somewhere in between. Fortunately, the two limit switches correspond

to the fully up and fully down states, so it is only necessary to represent

the state of being “in the middle”.

Next, the movement between states must be represented. Each possible

way of going from one state to another must be represented by a tran-

sition. For example, going from middle to up will have a transition that

will also have an arc from the upward motor. The final result for the drill

press should look something like Figure 3-8.

18

Chapter 3. Tutorial

Figure 3-8. A model of the drill press: $drill-press

There are several other aspects about the design of Figure 3-8 that are

worth noting. First, startCycle is turned off immediately by t8. Setting a

time delay for t8 will cause startCycle to stay on for some period.

Note: The use of time delays in the controller is generally a sign of “open-loop” con-

trol. The time factor is used as a proxy for being able to directly sense a change in the

environment. This is sometimes necessary but should be avoided if possible. Using

time delays in the model, on the other hand, is generally less problematic.

Using high-level language compilers

Rather than compile to a PLC language, it is also possible to compile to a

general purpose programming language. Currently compiler plug-ins for

two languages are supported: Visual Basic and Java. The Visual Basic

plug-in is described in detail below, but both are quite similar.

There are several reasons for compiling to a high-level language. For ex-

ample, you may want to just simulate the behaviour of a PLC. The main

reason for this feature being developed, however, was to provide a mecha-

nism for coding complex logic that connects and interacts with Petri nets

on the PLC. When faced with this type of problem, software developers

usually code a linear interaction where the high-level program asks the

PLC to do something and then waits for the PLC to complete. In order to

perform several such interactions simultaneously, it is necessary to use

multiple threads. This tends to create highly complex programs that are

19

Chapter 3. Tutorial

difficult to debug. An alternative is to formulate the program as a Petri

net, and that is the approach described below.

In the next section, we look at what code is produced. Following that, we

examine how to use it in the context of PLC interaction.

Compiling to Visual Basic

To produce Visual Basic (VB) from your PetriLLD project, click on the

project and select Project > Compile project. Note that only nets with

instances will be compiled. Select Visual Basic Infix as the compilation

format. The VB class name is determined based on the file name that

you choose. So, for example, setting the filename to Foo.vb will produce

a class called Foo.

A natural application for nets in VB is to use them to interact with nets

running on a PLC. To make this happen, it is necessary to add some

additional code to that produced by the VB plug-in in order to couple it

to the PLC. This additional code needs to

i. detect when certain PLC memory locations change and to update

the associated VB object, and,

ii. detect when the net running in VB changes an object and to update

the associated PLC memory location.

Warning

Do not edit the file generated by PetriLLD as any edits will be re-

moved by the next compile. All customisation should be done by

sub-classing BoolVar and / or writing code that occurs before and

after the call to DoStep.

To understand how to do this, it is necessary to examine the generated

VB code in more detail.

The structure of the class produced is as follows.

Public Class DrillPress

Inherits AbstractNet (1)

Private spindleMotor_1_drillPress as BoolVar (2)

...

Public Sub New(ByRef dict as System.Collections.Hashtable) (3)

spindleMotor_1_drillPress = lookup(dict, "1.1") (4)

...

End Sub

Public Function DoStep () as Boolean (5)

...

Figure 3-9. Generated Visual Basic code

20

Chapter 3. Tutorial

(1) The class inherits from AbstractNet, which is found in AbstractNet.vb

in examples/vb folder, distributed with PetriLLD.

(2) The DrillPress class interfaces with the external boolean variables by

updating a BoolVar object. See BoolVar.vb in the examples folder.

(3) When creating a new DrillPress instance, you need to pass in a dic-

tionary in the form of a hash table. This should contain a map-

ping between addresses and BoolVar objects. See the example in the

examples/nets/drill-press folder.

(4) This section of the code can be used to determine which addresses

need to be mapped in the dictionary that you pass to the constructor.

(5) DoStep should be called to perform a single “scan cycle”. If you want

to run the net continuously in the background, use a timer to call

DoStep periodically (perhaps, every 100 milliseconds). Note that if you

are interacting with a PLC, you also need to

i. update any BoolVar objects based on the PLC prior to calling

DoStep

ii. update the PLC memory when any BoolVar objects are changed

after calling DoStep.

DoStep returns True if any transition fired. In this case, the net may

still be live.

Note that there are several additional files that may need to be included

into your Visual Basic project to allow the generated code to compile (and

run!). These are all in the examples/vb folder in the PetriLLD distribution.

Performance considerations

The performance of the PC to PLC interaction can be improved in several

ways:

1. If your PLC supports it, use PLC event monitoring to trigger updates

to BoolVar objects from the PLC. Optimally, the PLC should cause

a VB method to be executed when any one of a small set of memory

areas change. This small set should include all BoolVar objects. As

a further improvement, call DoStep as soon as a BoolVar object is

changed by the PLC.

2. Derive a sub-class of BoolVar that updates the PLC only when a

change occurs. See MonitorVar.vb for an example of how to detect

when the change occurs.

3. Use bit-wise updates and read accesses to the PLC if possible. Note

that if you must update a word of memory at a time, be careful that

this does not potentially overwrite an update being performed by

the PLC.

21

Chapter 3. Tutorial

4. Call DoStep repeatedly (without delay) if it returns True. It may be

necessary to limit the maximum number of repeated calls to ensure

that the user interface remains responsive. Note that it is not usual

for a controller net to be constantly live; if it is, their may be a fault

in its design.

Advanced topics

Creating modular nets

In any large system, modularity is an important tool for reducing com-

plexity. PetriLLD has some basic support for creating modular nets by

allowing them to share addresses. In the future, it is expected to pro-

vide a function block-like editor that allows the user to graphically draw

the connections between nets. For the moment, it is necessary to make

the connections by assigning the same address to places in two different

nets.

There are some general rules that you should follow when connecting

nets together with shared places.

i. If the nets run on different physical computers or PLCs, make

sure that there are only arcs going into any particular (non-input)

shared place in one net and out of that place in the other.

This form can be used for a token passing structure (see

the Section called Shared memory coordination pattern). This rule

does not apply to input places. Note that only two computers

should share any particular (non-input) place.

In the case where two separate nets on different PLCs or computers

need to share a resource, do not directly share the place associated

with the resource. One net or other should own the resource and to

provide an interface allowing the other to request it.

ii. If two or more nets run on the same computer or PLC, PetriLLD

guards against conflicting transitions firing simultaneously and it

is thus possible to have arcs going into and out of a place in all nets

that share the place.

Coordination design patterns

In this section, two patterns for coordination between two separate com-

puters (or PLCs, robots or other devices) are described. The first approach

22

Chapter 3. Tutorial

is simpler but requires shared memory. That is, it requires memory that

can be updated by both computers (or PLCs or whatever). This is referred

to as the shared memory coordination pattern. The second approach is

more complex but can be used where no memory is shared. Instead of

shared memory, it requires an input and an output connection.

Shared memory coordination pattern

The shared memory coordination pattern can be thought of as a token

passing approach. In essence, a token (or place marking) passes from

the client (requester) to the server. The client-side Petri net is shown in

Figure 3-10 while the server-side is shown in Figure 3-11. Note that the

external place Go is mapped to the same address in both the client and

server. Similarly with the Done place. That means that when Go becomes

marked in one net, it also becomes marked in the other.

Figure 3-10. Shared place coordination: client-side

As shown in Figure 3-10 the client initiates the process by passing a

token into Go. The client then waits for Done before continuing. Note that

although it may seem to be the case that p2 could be done away with, this

place provides for the possibility that other nets make use of the same Go

and / or Done signals. This design prevents this net from grabbing a Done

token meant for someone else.

23

Chapter 3. Tutorial

Figure 3-11. Shared place coordination: server-side

As can be seen from the net in Figure 3-11, the server responds to Go by

going into p2. The transition t1 should also have arcs (not shown in this

figure) to start whatever processing is required of the server. Similarly, t2

should receive arcs from this process indicating its termination.

The above design pattern can be reshaped in a number of ways. The key

ideas are (a) to use a shared place (go) to transmit a token and receive

it back using a separate shared place (done), and (b) to keep track of

waiting for the receipt of the token back.

Coordination with a wired connection

When shared memory is not available, it may instead be possible to wire

the input of one device to the output of the other and vice versa. The

following solution makes use of two such wires, one expressing “Go” from

the client to the server and the other expressing “Busy” from the server to

the client. The pattern is expressed in Figure 3-12 and Figure 3-13. The

idea is for one side to set a signal high until it can be sure that the other

side has received that signal. It is important that neither side restarts the

process until both have finished.

Note that, in comparison with the previous pattern, an output place in

one net (such as Go in the client) is connected to an input place in the

other.

24

Chapter 3. Tutorial

Figure 3-12. Wired coordination pattern: client-side

The process starts with the client setting the Go signal. Note that Busy

should not be set high initially. For this reason, this signalling connection

cannot be shared by different nets. When Busy becomes high, the client

responds by removing the token from Go. It stays in Wait until Busy goes

low, thus indicating the end of the process.

Figure 3-13. Wired connection pattern: server-side

The server side of the wired coordination pattern, as shown in

Figure 3-13, is somewhat similar to the client. Transition t1 should have

an outflowing arc (not shown in the figure) that initiates the process

being requested. Similarly, t2 should have an inflowing arc from the

completion of that process. Note that t2 cannot fire until Go has been set

low by the client. This protects against the situation where the client is

much slower than the server and does not get around to updating Go in

25

Chapter 3. Tutorial

time. Without this check, the process may be initiated several times in

the server when the client only intend for a single initiation.

Printing and exporting Petri nets

Once your Petri net has been completed, you may wish to print the net

design, or export it to a graphical format. PetriLLD provides some basic

facilities for performing both these tasks.

To print a net, use File > Print with the net open and selected. It is also

possible to print instances in this way.

To export a net as a graphical image, select the net and then select

Project > Export to SVG. This produces a Scalable Vector Graphic.

If your favourite word processor does not support directly importing SVG

files, try using ImageMagick1 to convert the file into a more suitable form.

For example, with ImageMagick installed

convert -size 200x200 test.svg test.wmf

converts test.svg to Windows Metafile (WMF) format.

Notes

1. www.imagemagick.org

26

Appendix A. Reference

This appendix is a general reference for the PetriLLD tool.

Elementary Net rules

PetriLLD is based on an extension of a mathematical model known as an

“Elementary Net”. There are a number of basic rules that govern when

transitions are enabled, and what happens when they fire. Note that

these rules are slightly adjusted from the standard rules for elementary

nets to allow for the inclusion of input places in the model.

The rules are:

1. An individual transition is enabled if all of its preconditions are

marked and all of its postconditions are unmarked. By precondition,

we mean a place connected to the transition via an arc leading to the

transition. Similarly a postcondition is a place with an arc leading

from the transition.

2. A transition can only fire when it is enabled. When a transition

fires, all of its preconditions, with the exception of any input places,

become unmarked and all of its postconditions, with the exception

of any input places, become marked. Input places are a subset of

the set of places that are never affected by transition firing.

3. A set of enabled transitions can fire simultaneously as long as they

do not share any preconditions or postconditions.

Due to the ordering of evaluation of rungs within a PLC, one transition

takes priority over another transition, if it occurs earlier in the evaluation

sequence. This priority ordering also acts as an arbitrator in the case of

conflict.

Place types

Places can be of one of three types:

Ordinary places

Ordinary places are represented by circles and are not directly af-

fected by external events. Nor do they directly control actuators or

other external outputs. Ordinary places are assigned addresses au-

tomatically and the actual address location may change from compile

to compile. Ordinary places have two states, marked and unmarked.

27

Appendix A. Reference

Input places

Input places are represented by triangles and are typically only con-

nected to inputs. For example, an input place might represent the

state of a binary proximity sensor. When the sensor value is high

(corresponding to a bit value of 1), then the input place is marked.

Input places have the characteristic that they are not affected by the

firing of transitions.

Input places have manually assigned addresses and therefore every

instance of a net must provide an actual address for each input place

in the net.

External places

External places are represented by squares and are typically con-

nected to outputs. They may also represent communication areas

between two nets. If the memory location for the external place is

shared between two different devices, external places can be used to

communicate with external computers.

External places, as with input places, have manually assigned ad-

dresses and each instance must provide the actual address.

Compiler plug-in example

Writing a plug-in to generate other sorts of code is quite easy. A small

example that generates Lisp-like code is shown in Figure A-1.

package uk.ac.cam.eng.pnlld.compile;

import uk.ac.cam.eng.pnlld.*;

/**

* A simple Lisp code generator.

* @author James Brusey

*/

public class MyLispGen extends PeInfixCompiler (1)

{

public PeCompileFilter getFileFilter() { (2)

return new PeCompileFilter() {

public static final String EXT = ".lisp";

private static final String DESC = "Lisp (*.lisp)";

public String getDescription() {

return DESC;

}

public String getExtension() {

return EXT;

}

};

28

Appendix A. Reference

}

private ExprFactory expr_factory = new LSExprFactory(); (3)

class LSTrue extends True {

public LSTrue() {

super();

}

public String print() {

return "T";

}

}

class LSFalse extends False {

public LSFalse() {

super();

}

public String print() {

return "F";

}

}

class LSVar extends Var {

public LSVar(CompNode n) {

super(n);

}

public String print() {

return name();

}

}

class LSLet extends Let {

public LSLet(Var v, Expr e) {

super(v,e);

}

public String print() {

return "(setq " + var.print() + " " + expr.print() + ")";

}

}

class LSAnd extends And {

public LSAnd(Expr a, Expr b)

{

super(a, b);

}

public String print() { (4)

return "(and " + a.print() + " " + b.print() + ")";

}

}

class LSOr extends Or {

public LSOr(Expr a, Expr b) {

super(a, b);

29

Appendix A. Reference

}

public String print() {

return "(or " + a.print() + " " + b.print() + ")";

}

}

class LSNot extends Not {

public LSNot(Expr a) {

super(a);

}

public String print() {

return "(not " + a.print() + ")";

}

}

class LSStartTimer extends StartTimer {

public LSStartTimer(Expr e, int timer, int delay) {

super(e, timer, delay);

}

public String print() {

return "(time-delay " + a.print() + " " + timer + " " + delay + ")";

}

}

class LSIsComplete extends IsComplete {

public LSIsComplete(int timer) {

super(timer);

}

public String print() {

return "(is-complete " + timer + ")";

}

}

class LSExprFactory extends ExprFactory {

public True makeTrue() {

return new LSTrue();

}

public False makeFalse() {

return new LSFalse();

}

public Let makeLet(Var a, Expr b){

return new LSLet(a, b);

}

public Var makeVar(CompNode n){

return new LSVar(n);

}

public And makeAnd(Expr a, Expr b){

return new LSAnd(a, b);

}

public Not makeNot(Expr b){

return new LSNot(b);

30

Appendix A. Reference

}

public Or makeOr(Expr a, Expr b){

return new LSOr(a, b);

}

public IsComplete makeIsComplete(int timer){

return new LSIsComplete(timer);

}

public StartTimer makeStartTimer(Expr e, int timer, int delay){

return new LSStartTimer(e, timer, delay);

}

}

protected void writeFileHeader(Object [] props,

PeProject project, CompiledNet net)

{

out.println("(defun dostep ()"); (5)

out.println(" (let (");

writeAddressList(net); (6)

out.println(")");

}

protected void writeAddress(String var_name, AbstractAddress address,

boolean is_automatic, boolean is_transition) {

out.println(" (" + var_name + " F)"); (7)

}

protected void writeFileTrailer(Object [] props, CompiledNet net)

{

out.println(")"); (8)

}

protected void writeStatement(Expr e)

{

if (e == null) return;

for (String s : e.print().split("\n"))

out.println(" " + s); (9)

}

protected ExprFactory getExprFactory() {

return expr_factory;

}

public AddressFactory getAddressFactory() {

return StringAddress.getFactory(); (10)

}

public String toString() { return "My Lisp Example (alpha)"; }(11)

}

Figure A-1. Lisp Generator

31

Appendix A. Reference

(1) The class should extend PeInfixCompiler. This generates statements

based on inner classes from PeExpr.

(2) The file filter defines acceptable filename extensions and a descriptive

name for the output file format.

(3) An ExprFactory instance is required that can create instances of the

various PeExpr inner classes.

(4) This is an example of one of the PeExpr inner classes. Here LSAnd

defines how to write a binary “and” as a Lisp expression.

(5) The writeFileHeader method can be used to produce the first part of

the file, possibly including variable declarations.

(6) Variable declarations are produced by calling writeAddressList. This

will call writeAddress for each address entry.

(7) The writeAddress method should define how to write out variable

declarations.

(8) The writeFileTrailer method writes everything after the main

body. It is possible to call writeAddressList here rather than in

writeFileHeader.

(9) The writeStatement method writes out each statement. A statement

usually corresponds to a single rung and generally corresponds to

either a “Let” statement or a “Start timer” instruction.

(10) The address factory is used to define the format of addresses for this

PLC or language.

(11) The string produced here is used when presenting the user with a

list of possible output formats for the compilation process.

To install a new plug-in, edit the code for PeCompileStrategy to add your

compiler to the list of possible ones.

Toolbar

Select

Place

Transition
Delete arc

Draw arc

Simulate

Figure A-2. Toolbar

32

Appendix A. Reference

The toolbar is used when editing Petri nets (i.e. pn-class files). The tools

are:

Select tool

Select and move places or transitions.

Place tool

Create a new place.

Transition tool

Create a new transition.

Draw arc tool

Create arcs between transitions and places (or vice versa). Note that

you need to press and hold down the mouse button when over the

source node and release when over the target node.

Delete arc tool

Delete arcs. This tool is used in the same way as the draw arc tool,

hold down the mouse and drag from the source to target.

Simulate tool

Perform a single simulation step. This affects the status of marks

according to Petri net semantics and can be used to test a net design.

33

Further reading

Thomas Boucher, Computer Automation in Manufacturing, Chapman and

Hall, 1996.

Wolfgang Reisig and Grzegorz Rozenberg, Lectures on Petri Nets I: Basic

Models, Springer Verlag, 1998.

James Brusey and Duncan McFarlane, “Designing Communication Pro-

tocols for Holonic Control Devices using Elementary Nets”, Proc. 2nd

Intl. Conf. on Application of Holonic and Multi-Agent Systems (Holo-

MAS 2005), Springer Verlag, 2005.

James Brusey and Duncan McFarlane, “Non-autonomous elementary net

systems and their application to Programmable Logic Control”, IEEE

Systems, Man, and Cybernetics, Part A, IEEE Press, (to appear).

Rene David and Hassane Alla, Discrete, Continuous and Hybrid Petri Nets,

Springer Verlag, 2004, 3-540-22480-7.

Christos Cassandras and Stéphane Lafortune, Introduction to Discrete

Event Systems, Springer, 1999, 0-7923-8609-4.

34

	tutorial
	GNU
	PetriLLD Tutorial
	Table of Contents
	Introduction
	Chapter 1. Installing PetriLLD
	Installing on Microsoft Windows®
	Step 1: Ensure that Java 5 is installed
	Step 2: Install Java if necessary
	Step 3: Download PetriLLD
	Step 4: Install PetriLLD

	Installing on Apple Mac OS/X
	Step 1: Ensure that Java 5 is installed
	Step 2: Install Java if necessary
	Step 3: Download PetriLLD
	Step 4: Install PetriLLD

	Installing the platform independent version
	Step 1: Ensure that Java 5 is installed
	Step 2: Install Java if necessary
	Step 3: Download PetriLLD
	Step 4: Execute PetriLLD

	Compiling from source
	Summary of Ant build targets

	Chapter 2. Overview
	Entities
	Tasks

	Chapter 3. Tutorial
	Getting started
	Create a new project
	Creating a net
	Designing a net
	Different place types

	A simple example
	Testing behaviour

	Creating instances
	Compiling the project
	Downloading your code

	Toggle button example
	Drillpress example
	Adding an instance
	Introducing project simulation
	Verification using a model

	Using highlevel language compilers
	Compiling to Visual Basic
	Performance considerations

	Advanced topics
	Creating modular nets
	Coordination design patterns
	Shared memory coordination pattern
	Coordination with a wired connection

	Printing and exporting Petri nets

	Appendix A. Reference
	Elementary Net rules
	Place types
	Compiler plugin example
	Toolbar

	Further reading

