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Abstract 

Copper diffusion in germanium is fundamentally and technologically important as it 

has a very low activation energy and influences the precipitation and gettering of 

copper respectively. These constitute the understanding of copper’s diffusion 

properties in germanium over a range of temperatures and pressures important.  In the 

present study we use the cBΩ model in which the defect Gibbs energy is proportional 

to the isothermal bulk modulus (B) and the mean volume per atom (Ω).  The elastic 

and expansivity data is used in the description of the cBΩ model to derive the copper 

interstitial diffusion coefficient in germanium in the temperature range 827 K to 1176 

K.  The calculated results are discussed in view of the available experimental data. 
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1. Introduction 

 Germanium (Ge) rivals silicon (Si) as it has superior carrier mobilities, low 

dopant activation temperatures and smaller band-gap [1-5].  In the early days of the 

semiconductor industry Ge was abandoned because of its poor quality native oxide 

[1].  Recently, the introduction of high-k gate dielectric materials has eliminated the 

requirement of a good quality native oxide in advanced nanoelectronic devices 

regenerating the interest on alternative materials such as Ge [6-8].    

In Ge metals such as copper (Cu) have been used to increase the rate of 

crystallization and produce large grain crystals via the process of metal induced lateral 

crystallisation (MILC) [9]. Self-diffusion and most diffusion processes in Ge are 

governed by vacancies [10-16], whereas in Si self-interstitials also impact the defect 

processes [17,18].  Considering n-type dopant (P, As, and Sb) diffusion the most 

recent experimental and theoretical results are in agreement that it is vacancy-

mediated [13,16].  From the p-type dopants indium diffuses with a vacancy-

mechanism, whereas boron diffusion is interstitial but very slow [5,15].  Metal 

diffusion including Cu diffusion is an exception where interstitial-related mechanisms 

can be important [19-21].  In particular copper interstitials (Cui) can diffuse via direct 

interstitial or dissociative mechanisms and these are faster than vacancy-mediated 

mechanisms [19-21].   

Interconnecting the defect Gibbs energy gi (i = defect formation f, self 

diffusion activation act, or migration m) and bulk properties in solids has led to 

different models including the model by Zener [22] and the model by Varotsos and 

Alexopoulos [23-30].  In the model by Varotsos and Alexopoulos [23-29] (refered 

thereafter as the cBΩ model) it was proposed that gi is proportional to the isothermal 

bulk modulus B and the mean volume per atom Ω.  The cBΩ model was employed to 
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study the point defect processes in numerous materials [31-41], but it has not been 

systematically used to describe to investigate the diffusion processes in group IV 

semiconductors.   

 In the present study we describe using the cBΩ model the Cu intersitial 

diffusion coefficients in Ge using the isothermal bulk modulus and the mean volume 

per atom.   

 

2. Methodology 

 For a monoatomic crystal with a single diffusion mechanism diffusion 

process can be described by the activation Gibbs energy (gact), which is the sum of 

the Gibbs formation  (gf) and the Gibbs migration  (gm).  The activation entropy 

 sact  and the activation enthalpy  hact are defined via [31, 34]: 

 sact = −dgact

dT
� 𝑃                                                              (1) 

 hact = gact + Tsact                                                         (2) 

The diffusion coefficient D is defined by: 

   𝐷 = 𝑓𝑎02𝜈𝑒
−𝑔

𝑎𝑎𝑎

𝑘𝐵𝑇                                                              (3) 

Where  𝑓  is the diffusion correlation factor depending on the diffusion mechanism 

and the structure, 𝑎0 is the lattice constant, 𝜈 is the attempt frequency and 𝑘𝐵 is 

Boltzmann’s constant. 

In the cBΩ model the defect Gibbs energy gi is related to the bulk properties of the 

material via the relation [23-29]: 

gi = ciBΩP                                                                      (4) 

Therefore, by Eqs. (3) and (4): 

  𝐷 = 𝑓𝑎02𝜈𝑒
−𝑐

𝑎𝑎𝑎𝐵Ω
𝑘𝐵𝑇                                                         (5) 
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This means that if there is an experimentally determined diffusivity D1 value at T1 

the 𝑐𝑎𝑎𝑎 can be calculated assuming that the pre-exponential factor fa02ν can be 

determined.  The calculation of the pre-exponential factor involves computing the 

diffusion correlation factor (which is dependent upon the diffusion mechanism and 

the crystal structure) and the attempt frequency. The attempt frequency is commonly 

approximated by the Debye frequency, which can lead to the introduction of 

errors. Thereafter, using 𝑐𝑎𝑎𝑎 the diffusivity Di at any temperature Ti can be 

calculated using Eq. 5 provided that the elastic data and expansivity are known for 

Ti. Importantly,   𝑐𝑎𝑎𝑎 is to a first approximation a temperature and pressure 

independent constant [31, 34]. Finally, in the framework of the cBΩ model 

anharmonic effects can be described by the temperature decrease in B and by the 

thermal expansivity. 

  

3. Results and discussion 

 The control of self-, dopant and impurity diffusion is very important during 

device fabrication. The diffusion of Cu in Ge impacts the electronic properties and 

influences other diffusion related phenomena including the precipitation and gettering 

of Cu [21].  The control and understanding of these processes are of technological 

importance to control the contamination levels of electronic devices during processing 

[21]. 

In previous work it was determined that Cu interstitial diffusion in Ge can be 

described via the Arrhenius relation [21]: 

𝐷𝑒𝑒𝑒𝐶𝐶 = 3.2𝑒−
0.18
𝑘𝐵𝑇  ∙ 10−7𝑚2𝑠−1                                         (6) 

In the present study, the expansivity data was taken from Kagaya et al. [42] and 

the isothermal bulk modulus data from Krishnan et al. [43].  These values [42-45] are 
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reported in Table 1 alongside the experimental Cu interstitial diffusion coefficients 

derived from Eq. 6.  Typically, the method of the single experimental measurement 

can be employed to calculate the value of  𝑐𝑎𝑎𝑎 in the cBΩ model but will depend 

upon the experimental error in the B, Ω parameters and the diffusivity value.  

Furthermore, there will be errors in the pre-exponential factor especially for 

materials were diffusion mechanisms are complicated.  For these reasons here we 

employ the “mean value” method to calculate  𝑐𝑎𝑎𝑎 [36, 39, 46, 47].   

In the “mean value” method the linear behavior of 𝑙𝑙𝐷𝑒𝑒𝑒𝐶𝐶  with respect to 𝐵Ω
𝑘𝐵𝑇

 

testifies the validity of the cBΩ model with the slope being  𝑐𝑎𝑎𝑎 as it can be seen 

from Eq. 5.  As it can be observed from Figure 1 there is a linear relation, which can 

be described by: 

𝐷𝑐𝑐𝑐𝐶𝐶 = 2.41𝑒−
0.0158𝐵Ω
𝑘𝐵𝑇  ∙ 10−5𝑚2𝑠−1                                      (7) 

Figure 2 is the Arrhenius plot for Cu interstitial diffusion coefficients in Ge 

determined by experiment [21] and calculated by the cBΩ model. Both this figure 

and Table 1 show that the cBΩ model is in excellent agreement with the 

experimental [21] Cu intersitial diffusion coefficients in Ge.  Therefore, the cBΩ 

model describes Cu interstitial diffusion in Ge.  Future studies will explore whether 

the cBΩ model can be employed to study other metals diffusing in Ge.  

   

4. Conclusions 

 In the present study we employed the cBΩ model to describe metal diffusion 

in germanium.  There is excellent agreement between the calculated and experimental 

diffusion coefficients of Cu interstitial diffusion in Ge in the temperature range 

considered.  This extremely low activation energy diffusion process is a paradigm for 

related studies of metal diffusion in semiconductors and the present approach may be 
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extended to these systems.  Additionally, the cBΩ model can provide information 

concerning the formation, migration and defect volumes in these systems over a range 

of temperatures and pressures. 
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Table 1. Characteristic calculated and experimental [21] Cu diffusion coefficients in 

Ge alongside the elastic and expansivity data [42-45] used in the cBΩ model. 

T 

(K) 

B 

(1011Nm-2) 

Ω 

(10-29m3) 

𝐷𝑒𝑒𝑒𝐶𝐶   

(10-6m2s-1) 

𝐷𝑐𝑐Ω𝐶𝐶
 

(10-6m2s-1) 

𝐷𝑐𝑐Ω𝐶𝐶 − 𝐷𝑒𝑒𝑒𝐶𝐶

𝐷𝑒𝑒𝑒𝐶𝐶  

(%) 

827 0.709 2.289 2.56 2.56 0 

877 0.703 2.292 2.96 2.96 0 

925 0.697 2.294 3.35 3.33 -1 

975 0.690 2.298 3.76 3.75 0 

1026 0.684 2.300 4.18 4.17 0 

1074 0.678 2.303 4.58 4.57 0 

1126 0.671 2.306 5.01 5.01 0 

1176 0.665 2.309 5.42 5.41 0 
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FIG. 1. The Cu diffusion coefficients in Ge with respect to  𝐵Ω
𝑘𝐵𝑇

 . 
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FIG. 2 The Arrhenius plot for Cu diffusion in Ge obtained by experiment [21] and 

calculated by the cBΩ model.   
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