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Abstract 15 
 16 
 17 
Many tonnes of compost are generated per year due to door step composting of both garden and 18 

kitchen waste. Whilst there are commercial outlets for the finer grade of compost (<10mm) in 19 

plant nurseries, there is little demand for the coarser material (>25mm). This paper reports part 20 

of a WRAP-sponsored (Waste Resources Action Programme) study which investigated the 21 

potential for green (GC) and mixed green and food (MC) composts to be incorporated into 22 

Sustainable Drainage (SUDS) devices such as swales, and replace the topsoil (TS) onto which 23 

turf is laid or grass seed distributed. However, it is not known whether compost can replace TS 24 

in terms of pollutant remediation, both the trapping of polluted particulates and in dealing with 25 

hydrocarbons such as oil, but also from a biofilm development and activity perspective. Using 26 

laboratory based experiments utilising leaching columns and an investigation of microbiological 27 

development in the composts studied, it was found that many of the differences in performance 28 

between MC and GC were insignificant, whilst both composts performed better in terms of 29 

pollutant retention than TS. Mixed compost in particular could be used in devices where there 30 

may be oil spillages, such as the lorry park of a Motorway Service Area due to its efficiency in 31 

degrading oil. Samples of GC and MC were found to contain many of the bacteria and fungi 32 

necessary for an active and efficient biofilm which would be an argument in their favour for 33 

replacement of TS and incorporation in swales.  34 

 35 
Key words: Green compost (GC); Mixed compost (MC); topsoil (TS); Sustainable Drainage 36 
(SUDS); swale; biofilm; leachate. 37 
 38 

39 
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1. Introduction 40 
 41 

Of the thirty million tonnes of household rubbish generated in the UK every year, half is 42 

recyclable. The Landfill Directive requires significant reductions in the amount of waste sent to 43 

landfill, and attempts have been made to divert waste using commercial composting. Compost 44 

produced in the UK from segregated waste in 2008/09 was “significantly” (Association for 45 

Organics Recycling, 2010) increased from the 2007/08 total of 2.7 million tonnes to 46 

approximately 2.85 million tonnes, plus a further 105,000 tonnes of digestate product. Much of 47 

this compost (47%) was spread on farmland, but some, ironically, was landfilled (WRAP, 48 

2007). Consequently, there is increasing interest in commercial outlets for composted material. 49 

The finer particle sizes (~<10 mm) have found an outlet as “peatless” garden compost, but the 50 

coarser sizes (>25 mm) have limited commercial potential. This paper details part of a WRAP-51 

funded (Waste Resources Action Programme) project which was carried out in order to 52 

determine the potential of coarser grades of green (GC) and mixed green and food composts 53 

(MC) to replace top soil (TS) in vegetated Sustainable Drainage (SUDS) devices such as a 54 

swale (cf Charlesworth et al., 2003a).  55 

Many studies of the use of compost in pollutant remediation do so by investigating manures and 56 

combined wastes such as Municipal Solid Waste (MSW) which are themselves polluted with 57 

contaminants such as heavy metals (e.g. Pinamonti et al., 1997; Businelli et al., 2009; Farrell 58 

and Jones, 2009; Paradelo et al., 2011). Segregated wastes used in the present study must have 59 

conformed to PAS100 guidelines (BSI, 2011) and thus are not contaminated at the outset. Their 60 

physicochemical characterisation in the course of the overall project confirmed their adherence 61 

to these guidelines and also compared favourably with published background (Macklin, 1992), 62 

CLEA SGVs (Defra and EA, 2002) and ICRCL Soil Class A values (ICRCL, 1987).  63 

As described by Farrell and Jones (2009), the production of compost is an aerobic process 64 

facilitated by a variety of microorganisms whereby heat is produced either outside in windrows 65 

for the production of GC, or in digestion vessels anaerobically. The latter process is used in the 66 
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production of MC since it contains food waste, a potential source of microbial pollution, and 67 

anaerobic digestion at specified temperatures for specified times eliminates these. 68 

Microorganisms are therefore an essential part of the production of compost, being involved in 69 

the breakdown of the primary source material and will therefore be present in the finished 70 

product. 71 

As part of the SUDS triangle (Charlesworth et al., 2003a; Charlesworth, 2010), devices such as 72 

swales place equal emphasis on reducing water quantity, enhancing biodiversity and amenity, 73 

and also improving water quality. There are distinct advantages to the use of coarse grades of 74 

substrate for water quality improvement purposes since hydraulic conductivity is increased and 75 

bulk density decreased allowing easy ingress of stormwater; the open spaces within the compost 76 

also allow for increased oxygen levels which encourages increased diversity in the microbial 77 

population (Park et al., 2011). Swales are vegetated devices; the plants trap pollutants in their 78 

stems and leaves and also take them up systemically, therefore improving water quality. 79 

Stormwater infiltration into the soil improves water quality by trapping particulate associated 80 

pollutants in the soil interstices but also by treatment in the biofilm which is found naturally 81 

within the soil (Burmølle et al., 2007). Biofilms are organized microbial systems including 82 

bacteria, fungi, protists and animals which develop in association with surfaces (Newman et al., 83 

2006). They are complex and dynamic systems (Battin et al., 2007) and as they grow and 84 

reproduce they can biodegrade pollutants such as oil (White et al., 1995). Their rate of activity 85 

can be measured indirectly by analysing carbon dioxide evolution (Coupe et. al, 2006).  86 

The construction of swales (essentially grassed ditches) and filter strips (grassed slopes) usually 87 

requires careful excavation and the importation of TS before grass seeds are broadcast or turf is 88 

laid. Compost could be used in place of the TS, but its pollution mitigation abilities in a swale 89 

environment are unknown. Whilst there are studies of the use of compost filled “socks” in the 90 

treatment of stormwater (e.g. USCC, 2008; Faucette et al., 2009; Faucette et al., 2008; USEPA, 91 

nd), these have mostly utilised smaller grades (< 25mm) of compost. These studies have shown 92 
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high metal and hydrocarbon removal efficiencies since materials such as compost contain high 93 

concentrations of humus which aid in the degradation and trapping of typical urban pollutants 94 

(Faucette et al., 2008). If compost is to be used in a SUDS system, to either wholly or partially 95 

replace TS, it must perform at least as well in terms of its pollution remediation properties.  96 

The aims of the part of the overall WRAP project reported here were therefore: 97 

1. To assess the pollution remediation potential of coarse grade (>25 mm) green (GC) and 98 

mixed compost (MC) in laboratory experiments by applying pollutants to leaching 99 

columns of the compost and TS as a comparison, to assess their relative performance in 100 

remediating contamination. 101 

2.  To assess the potential for biofilm development in composts, specifically in supporting 102 

those microbes identified in the literature which trap and biodegrade pollutants such as 103 

heavy metals and hydrocarbons, by investigating the microbiology of the compost in a 104 

swale-like environment using small-scale models. 105 

2. Materials and methods 106 

 107 

Whilst it is accepted that small-scale laboratory experiments are an approximation of the 108 

functioning of the systems under study, nonetheless, simulations using model rigs are frequently 109 

used to study specific aspects of their performance (e.g. Fernández-Barrera et al., 2010a and b; 110 

Rodriguez-Hernandez et al., 2010). Thus, two approaches were taken to address the aims 111 

outlined above: the first assessed the ability of the composts and also TS to deal with pollutants 112 

applied in amounts commonly found in urban environments by measuring contaminants in the 113 

effluent from leaching columns. The second approach utilised microbiological techniques in 114 

order to count and identify known bacterial and fungal hydrocarbon degraders harvested from 115 

model rigs (More et al., 2010) in both composts and in TS and also to assess the activity of the 116 

biofilm using carbon dioxide (CO2) production (cf. Coupe et al., 2006).  117 

 118 
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2.1 Leaching of pollutants through compost columns. 119 

 120 

One litre plastic drinks bottles were thoroughly washed in de-ionised water, had their bases 121 

removed and were attached to a grid. Tubing and taps were attached and the small rigs filled 122 

with composts or TS. Topsoil was used as a continuous reference point during the experiments. 123 

Simulated rainfall using mains water was flushed through the rigs three times before pollutant 124 

addition was begun to clear any contaminants already present in the leaching columns as well as 125 

to wet the material to encourage biofilm development.  126 

 127 

The pollutants used were clean lubricating oil (Castrol GTX) which was applied at a rate of 128 

25ml m-2 fortnightly and Coventry Street dust (CSD) which was applied at a rate of 21g m-2 129 

fortnightly. These rates were used as they represent the equivalent of a month’s worth of 130 

loading in a typical urban environment (Wilson et al., 2003). The pollutants were chosen as they 131 

have been used in previous studies of urban pollutants (e.g. Charlesworth et al., 2003b; 132 

Charlesworth and Lees, 1999) so their properties are well known. The CSD was sieved and 133 

homogenised using a ball mill prior to use (see Charlesworth et al., 2003b for further details). 134 

The rigs were rained on fortnightly at an intensity of 15mm/hr (applied the day after pollutant 135 

addition) for 52 minutes (13mm), a UK recurrence interval of 2 years approximately (Andersen 136 

et al., 1999). The effluent was collected from each test rig and subsequently analysed using ICP-137 

AES for Cd, Zn, Pb, Cu and Ni. These metals are typically found in the urban environment and 138 

are associated with urbanisation and industrialisation (Charlesworth et al., 2003b).  139 

 140 

Determination of oil and grease in the effluents from the oiled leaching columns was carried out 141 

by infra red spectroscopy using a Horiba OCMA 310 oil analyzer (Horiba Co. Ltd, Japan). 142 

There were 4 replicates of each treatment for each of the composts and the topsoil, making 36 143 

rigs in total. Standard use of spikes and reference material for quality control was carried out 144 

during the analysis. Results from the leaching column experiments were analysed statistically in 145 
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SPSS using 2-way ANOVA on the cumulative values with post hoc LSD tests to separate 146 

relative performance of different media and added contaminants.  147 

 148 

2.2 Microbiobiology 149 

 150 

Pure cultures of bacteria (using saline and nutrient agar) and fungi (using saline and Rose-151 

Bengal Chloramphenicol agar) were grown from samples taken from the composts and topsoil 152 

and used for both enumeration and identification purposes. The method of sampling was that 153 

detailed in Singleton, 2004, whereby 1g of sample was shaken in saline and the original solution 154 

serially diluted 5 times, 0.1ml of each dilution was then spread onto a nutrient agar plate and 155 

inclubated at 25oC for 48 hours. Aseptic technique was followed throughout. In order to identify 156 

the bacteria, their morphology, motility, reaction to Gram stain, ability to form endospores, and 157 

ability to produce catalase (an enzyme produced by most aerobic bacteria which decomposes 158 

hydrogen peroxide produced during aerobic metabolism) were observed and noted (Singleton, 159 

2004). Biochemical tests were carried out to distinguish between bacteria of different genera 160 

and species, based on metabolic differences. These tests included the oxidase test, nitrate 161 

reduction test, oxidation-fermentation test (Hugh and Leifson test), arginine test and gelatin 162 

liquefaction (Singleton 2004; HAS, 2010). Individual fungal colonies were examined under a 163 

lens and light microscope (magnification up to x1000) to identify vegetative parts and spores. 164 

Spores were examined after incubating the nutrient plates for 5 days. Small test rigs containing 165 

3 litres of compost were also set up (see Fig 1) and the rate of evolution of CO2 monitored in 166 

order to assess the activity of the biofilm which developed. Gas evolution in the light, in the 167 

dark, under dry and saturated conditions over a 9 week period was monitored to simulate 168 

conditions which might occur in a swale. The rigs were sealed using thin plastic food wrap and 169 

gas samples were extracted once a week with a 1ml syringe. Measurement of CO2 evolution 170 

was undertaken using infra red gas analysis (IRGA: ADC-225-MK3, UK) (Coupe et al., 2006). 171 

The IRGA was calibrated with 3% ppm CO2 at a standard volume of 0.2ml. 172 
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3. Results 173 

 174 

3.1.  Leaching tests 175 

 176 

Table 1 shows the total and dissolved concentrations of metals in CSD and composts as well as 177 

dissolved metal concentrations in the oil and mains water used as artificial rain prior to the start 178 

of the leaching tests. The results of total digestion of the composts were found to be well within 179 

PAS100 (2011) guidance concentrations. The TS, however, had relatively high concentrations 180 

of Pb, which is not explainable at this time. In comparison with dissolved elements in the 181 

compost, the unused oil had relatively high Zn and Cd concentrations. Zinc in particular is an 182 

anti-wear additive in motor oil, so its high concentrations were not surprising. The artificial rain 183 

water had levels of Ni and Pb above WHO (2008) potable water levels (see Table 1). The 184 

polluting potential of the additives is therefore clear. 185 

 186 

Cadmium, Ni and Zn are not reported in detail here since Cd was consistently below the limits 187 

of detection and the average concentration for Ni was 0.01 mg l-1 for the duration of the 188 

experiment. There was very little difference in the levels of Zn in the effluent once the 189 

pollutants were added and all concentrations were well below WHO (2008) guidelines for 190 

potable water. Figs 2A-D therefore show Cu, Pb, oil and grease only. Background 191 

measurements were taken using leaching columns with no pollutant addition throughout the 192 

experiment; these are represented by MC, GC and TS for Cu and Pb (Figs 2A and B). For oil 193 

and grease (Fig 2C), a background measure is represented by the first value on the graph which 194 

is the average of the effluent collected from 3 simulated rainfall events analysed before 195 

pollution addition.  196 

 197 

Fig 2A shows the concentration of Cu in the effluent from the leaching columns and, whilst 198 

concentrations increased for all of the rigs, they did not exceed 0.12 mg l-1 which is well below 199 

the WHO (2008) guideline value of 2 mg l-1. After initially registering a rise in Cu levels in the 200 
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effluent, after addition 7, this appeared to fall to a level of between 0.08 and 0.02 mg l-1. The 201 

lowest concentrations were consistently found in association with GC, the highest with MC. 202 

There would not appear to be any difference between the samples which had oil or street dust 203 

added to them, in fact the highest concentration of Cu was that of MC during weeks 4-7 in 204 

samples where no pollutants were added.  205 

Figure 2B shows that the concentration of  Pb in the effluent after pollutant addition did rise and 206 

for TS and GC, this was slightly above the WHO (2008) guidance concentration. For MC after 207 

pollutant addition, levels of the contaminants were higher, particularly with the addition of oil.  208 

Figure 2C shows the results of oil additions to the substrates and by comparing the amount of 209 

oil applied with that found in the effluent, the concentration of oil and grease in the effluents has 210 

been converted into recovery or degradation percentages (Fig 2D). Both of these sets of data 211 

show that TS performed least well, with MC degrading the most oil and therefore yielding the 212 

least oil and grease in the effluents from the leaching columns.  213 

 214 

3.1.1. Statistical analysis of leaching experiments 215 

 216 

From 2-way ANOVA statistical testing, it was found that the type of medium was very 217 

significant (p<0.001) in explaining differences in the levels of Zn, Cu and Pb in the collected 218 

effluent (Table 2).  In the case of Ni, there was a significant interaction between the type of 219 

medium and pollutant.  Post hoc testing showed that across all pollutants MC resulted in 220 

significantly (p<0.001) higher levels of all metal species in effluent compared to GC and 221 

significantly (p<0.001) higher levels of Zn, Pb and Ni compared to TS.  Overall Cu levels were 222 

not significantly different between MC and TS.  Green compost produced significantly higher 223 

levels of Zn (p<0.001) but significantly (p<0.001) lower levels of Cu compared to TS.  There 224 

was no significant difference in the levels of both Pb and Ni between GC and TS. 225 

 226 
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The type of pollutant added to each treatment was a significant (p<0.05) factor in independently 227 

explaining the differences in the levels of Cu collected in the effluent from the different 228 

treatments (Table 2).  There was a significant interaction between pollutant and medium in the 229 

case of Ni and no significant effects with Zn and Pb.  Post hoc tests demonstrated that across the 230 

different growing media application of oil resulted in significantly higher levels of Cu (p<0.05) 231 

and Ni (p<0.001) in effluent compared to application of dust and significantly higher levels of 232 

Cu (p<0.05) and Ni (p<0.001) compared to topsoil.  There was no significant difference in 233 

levels of metal species between treatments to which dust was applied and those to which no 234 

pollutant addition was made. However, compost is a dynamic system, not only comprised of 235 

physico-chemical components, but biological ones also. The next section therefore gives the 236 

results of the biofilm investigation. 237 

 238 

3.2 Microbiology 239 

 240 

3.1.2. Identification and enumeration of bacterial and fungal species present in composts and 241 

topsoil harvested from model rigs. 242 

 243 

Table 3A shows that MC had the highest number of bacteria and fungi, while TS had the least. 244 

The high numbers for MC can be explained by the mixture of kitchen and garden waste from 245 

which it is made and on which microorganisms live. Whilst lower than MC, the count for GC 246 

was higher than that for topsoil which may be due to the decay of garden waste releasing 247 

nutrients which would support microorganisms. Table 3B shows that both GC and MC had a 248 

reasonable selection of both fungal and bacterial oil degraders, whereas TS only had bacteria 249 

and did not have the fungal degraders which were present in the composts. 250 

3.3.2 Microbiological activity in composts and topsoil under swale-like conditions 251 

Figure 4A shows CO2 measurement as a proxy for microbial activity without addition of water. 252 

The trend for all materials was a gradual decrease in activity, and hence number of microbes, 253 
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over the course of the experiment. Maximum activity for all three substrates was achieved in the 254 

second week. The least microbial activity throughout the whole trial under all conditions was 255 

found in TS, whereas activity overall for MC and GC was not very different. Figure 4B shows 256 

microbial activities in the dark under saturated conditions. Microorganisms in all 3 substrates 257 

exhibited highest activity towards the end of the experiment with concentrations of CO2 258 

levelling out in weeks 7-9. Figure 4C shows microbial activities in the light under saturated 259 

conditions. Activity for GC was similar in the dark and in the light, whereas biofilm 260 

development appeared much more efficient for MC in the light. 261 

 262 

4. Discussion 263 

 264 

Some pollutants were not reported as their concentrations in the effluent, and hence potential 265 

release into the environment, were so low, including Cr, Zn, Ni and Cd. The results for Pb, 266 

however, revealed concentrations which were slightly higher than the guideline for drinking 267 

water given in WHO (2008). However, in an urban environment, these effluents would not be 268 

used for potable purposes, but would be allowed to flow into receiving watercourses. In a study 269 

of the toxicity of Pb to freshwater organisms, Offem and Ayotunde (2008) found that the mean 270 

24-H LC50 for the water flea (Daphnia sp.) was 2.51 ± 0.04 mg l-1 Pb. Levels of Pb in effluent 271 

from the leaching experiments were much lower that this and would therefore be unlikely to 272 

present a hazard to biota such as Daphnia.  273 

Mixed compost appeared to perform least well, while GC and TS were similar in their potential 274 

pollutant remediation ability. Microbiological analysis of the composts revealed that MC had 275 

the highest numbers of bacteria and fungi whilst TS had the least. This is reflected in their 276 

ability to deal with oil as a pollutant in the leaching columns. This experiment was very small 277 

scale and added the equivalent of a month’s oil loading in a typical urban environment every 2 278 

weeks, i.e. double the normal amount, but the composts were still able to degrade between 65% 279 

and 80% of the oil added. If a swale were installed in an area likely to suffer significant oil 280 

http://www.springerlink.com/content/?Author=Benedict+O.+Offem
http://www.springerlink.com/content/?Author=Ezekiel+O.+Ayotunde
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pollution, e.g. a lorry park in a Motorway Service Area, it would seem that MC would be better 281 

able to degrade this excess oil than GC or TS.  282 

Statistical analysis showed that in many cases there was no significant effect of adding 283 

pollutants to each medium on the resulting level of metal concentration in the effluent. It would 284 

therefore appear that the pollutants added to the compost leaching columns have been retained 285 

in some way, and that the composts have behaved as effectively as TS in this regard. This 286 

complexity may simply represent the very low concentrations of the elements tested for, but 287 

may also have been a function of the physicochemical makeup of the substrates. Hence, in terms 288 

of physical properties, it is well known that heavy metals are easily adsorbed to clays, 289 

carbonates and to organic matter. From previous analysis of the composts, it was found that they 290 

were approximately 50% organic matter and between 2 and 5% carbonate. These would provide 291 

binding sites for the metals and may explain why in many cases, there is little difference 292 

between adding pollutants and adding nothing, since the pollutants have been retained in the 293 

substrate by adsorption and are not transported out of the column in the leachate. 294 

Over a period of nine weeks in dry conditions, topsoil produced the least microbial activity as 295 

reflected in low microbial numbers found in identification and enumeration, while GC produced 296 

the highest activity, closely followed by MC. In dry, anaerobic conditions, the decrease in CO2 297 

evolved from all the samples as the weeks advanced showed that the microbes were either dying 298 

off or forming spores to cope with the adverse conditions.  It is likely that the group of 299 

organisms left after nine weeks were mesophilic anaerobes, which could survive without 300 

moisture over that period of time in anaerobic conditions; these organisms were more abundant 301 

in GC than MC or topsoil. This implies that in periods of no rainfall, GC will be best suited for 302 

microbial biodegradation of pollutants such as motor oil. 303 

 304 

In comparing microbial activity in the dark with microbial activity in the light under saturated 305 

aerobic conditions, microbial activity was generally higher in the light than in the dark. At the 306 

end of nine weeks, MC produced 90% more CO2 in the light than in the dark, GC produced 307 
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10% more CO2 in the light than in the dark and topsoil produced 66% more CO2 in the light 308 

than in the dark. Consequently, although MC had the highest initial microbial population, GC 309 

was better able to sustain microbial activity under both dark and light conditions in contrast to 310 

that of MC which performed better in the light than in the dark. It is possible that 311 

photosynthesising algae played a role in the activity taking place in the light, but these were not 312 

monitored for. 313 

 314 

Topsoil had the most bacterial oil degraders followed by MC and lastly GC. However, for fungi, 315 

MC had the highest oil degraders followed by GC. Topsoil contained no fungal oil degraders. 316 

Overall, MC had the highest oil degraders followed by topsoil and lastly GC. It is therefore 317 

expected that oil degradation should occur faster in MC followed by topsoil and then GC. 318 

5. Conclusions. 319 

The coarse grades of compost tested here would appear to have the potential to replace some of 320 

the TS currently used in constructing vegetated SUDS devices such as swales. It provides 321 

pollutant remediation and could therefore be used in other SUDS devices, such as brown roofs 322 

(similar to green roofs, but utilising locally sourced waste material) and porous paving relying 323 

for its structural integrity on plastic crates. Using compost for this purpose provides sustainable 324 

credentials and a market for a material which was once considered a wasted waste. However, 325 

these preliminary experiments have shown that composts have potential but need to be followed 326 

up by field trials in order to ascertain whether their abilities shown under laboratory conditions 327 

can be applied at the larger scale in the field. 328 
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