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Keywords: lithium-ion electrochemical cell, model ordemmodels (ECM), which offer simplicity in structure and short
reduction, system identification, state-dependent pameomputation times due to their relatively high energy dgnsi
model, piecewise model and good cyclability [1, 2, 3, 4]. While they tend to agree
well with test data under near-equilibrium conditions, $oss-
tained high-power conditions as is often the case in HEViappl
Abstract cation, battery dynamics drift far from equilibrium, remihe
the ECM model insufficient for prediction of battery perfor-
The battery management system of a hybrid electric vehictence. To account for the non-linear dynamics observed in
requires a computationally simple yet accurate model of thattery operation, an extension to a simple ECM structuse ha
battery. In this paper a reduced order battery model is devieéen developed [5], where hysteresis is modelled as a cample
oped using a stochastic top-down approach. Firstly a pseuflinction to account for the relaxation effect between charg
2D, multi-particle electrochemical model, considered asrm and discharge cycles. In addition a filter was added to incor-
rogate for the real system, is used to obtain the obsenadtioporate unaccounted dynamics for minimal mismatch to thle rea
data. Then the model structure is inferred directly from theystem. Whilst gaining in accuracy, the extended ECM model
data. The dependencies between the states and the modealsagained in complexity. In contrast to simple ECMs which
rameters are analysed, which results iba order piecewise lack the predictive qualities of Li-ion electrochemicaffdi
state dependent parameter model which can describe the mior dynamics, fundamental electrochemical models, as pre
linear relationship between the current, the voltage aedthte sented in [6, 7], mathematically describe the internaltedec
of charge of the battery. chemical process. These models are accurately able tdlkescr
battery dynamics over a wide range of operating conditions
. and can be used as surrogates to the real system. However,
1 Introduction based on coupled partial differential equations, theseatsod
tend to be computationally intensive and are thus inappropr
The recent drive in advancement of hybrid electric vehiclege for on board BMS implementation. The requirement for
(HEVs) and battery electric vehicles (BEVs) as alternativeodel based state algorithms to take diffusion dynamias int
modes of transport to traditional internal combustion eagiaccount has led to the development of several reduced order
(ICE) vehicles has further accelerated the need for imprawodels based on the fundamental electrochemical model [8].
ing battery technology. Current Li-ion batteries offergmttal For computational efficiency, these models are derived unde
benefits as alternative energy storage devices. They are s@mious assumptions of quasi-linear behaviour to decotiygle
sitive to extreme temperatures and excessive transieds.logartial differential equations. Di Domenico et al. propd#ee
If not controlled, these can lead to thermal runaway (resuétlectrode averaged model (EAM) [9] where the solid concen-
ing in instability in the internal chemistry) and accelediag- tration distribution along the electrode is neglected aled-e
ing. Battery packs therefore need a battery managemeatsystrolyte concentration is considered to be constant. Theahod
(BMS) which monitors the state of the battery taking into asvas found to accurately predict output voltage when contpare
count temperature, terminal voltage and load current tdyapjpo experimental data. However, due to non-linearity in paa
specific charging or discharging strategies for optimiseero ter dependence, difficulty in online parameter estimatsaitbd
ation. For efficient management, the BMS requires an aceurgteater prediction error. In comparison, Smith et al. defigin
battery model to estimate internal states of the batterchvhiimpedance model [10] under assumptions of linear model be-
are not measurable but essential to control degradatioh-mdgaviour and decoupling reaction current from electrolyda-c
anisms. These are state of charge (SOC), which indicates thetration. This impedance model is further reduced to low
available energy, state of power (SOP), which specifies magider single-input-multiple-output (SIMO) state varialohod-
mum available charge/discharge rate and state of healtHSCels (SVM). The SVM presented poor SOC estimation but ac-
which gives information on power and capacity fade. Mosurately predicted output voltage. Errors in both modeés ar
BMS designs thus far have been based on equivalent ciratl@arly attributed to the loss in dynamics due to assumgption



for linearisation. From the models discussed it can be d&#n tistry and inner structure. Parameter values for the coupled
the reduced order models have been derived based on a bottoraland electrochemical models are chosen for a graphite an-
up approach where the models are described by determinisiiie/LiCoO2 cathode as in [12], Geometrical parameters and
mathematical equations based on well known scientific lawsopen circuit voltage curves were chosen to describe a 4.8Ah
As an alternative, in this paper a reduced order battery h‘nsdeKOkam pouch _ceII. _The system of equations is solyed ltera-
presented as a stochastic, dynamic model using atop-down%yely by a Finite D|f_ference Method,_ prqgrammed in MAT-
. LAB and embedded into MATLABs Simulink SimPower Sys-
proach. The methodology termed data-based mechanistic mogd  oolbox
elling [11] follows an inductive approach, whereby the mlode '
structure is not pre-specified but rather inferred direfrthym
the observational data. Once matching accuracy is achieved
the model is interpreted from a physical perspective [11]. A
pseudo-2D, multi-particle electrochemical model, coasd 3
as a surrogate for the real system, is used to obtain the-obser
vational data. Using system identification techniquesatest
dependent reduced order model is obtained. The followiog se
tions describe the electrochemical model as well as thesproThis paper focuses of the impact of the SOC and the sign of
dure for obtaining a reduced order model. At this stage in thige current on the dynamics of the cell. As a result a piece-
study, the reduced order battery model only defines the cirrewise state-dependent parameter (SDP) single-input-tnpeo
voltage relationship having the ability to estimate SOCe Thmodel is devised, whose input is the currét) drawn from or
methodology described herein serves as a framework for fgtpplied to the cell, whilst the cell voltagé(t) and the SOC
ther work to include higher fidelity for accurate predictioh are outputs of the model.
the essential states for a wide operation range, as welleas

ability to predict aging and degradation.

Identification process

‘Wle first step in the identification process is to develop aket
linear single input single output (SISO) models, each ofolhi
can describe either the current to the SOC or the currengto th
voltage relationship. Each model from the bank should refer
to a different value of the SOC. Furthermore, different séts
models are developed for the charge mode (positive current)
and the discharge mode (negative current). In order to mbtai
The HFM is a pseudo 2-D coupled thermal electrochemicglich a bank of linear models, the HFM has been used to gener-
model, where the fundamental governing equations are baséelthe voltagd/(¢) and the SOC responses to a given current
on the work of Smith and Wang [12]. The performance adfiput signall(¢). The inputl(¢) used for the identification
the cell under load is characterised by the solution of f@ur p process is a staircase signal with the maximal magnitude of
tial differential equations describing the time evolutioiithe 4.5 A. A staircase signal has been selected due to its bread fr
lithium concentration profile in the electrode and elegtiml quency spectrum which allows one for an accurate data-based
phases, due to diffusion and charge transfer reactiongrtine identification. Due to the fact that the internal temperatofr
constraint of charge conservation. The reaction curreméitle the battery changes as the current is drawn from or supplied
is described via the Butler-Volmer equation. to a battery, the duration time of a single experiment is lim-
A lumped unsteady state heat transfer model is coupledgo tt|ed' (f a.smgle experiment was carried out for reIa‘uka_g
) o ime, the internal temperature of the cell would changeifiign
electrochemical description [13]. The three sources ot hea ) .

. ] X . : cantly throughout the experiment causing the HFM to move to
considered are: electronic ohmic heat from internal cdnta . : X )

: . . ifferent operating range.) During each experiment theiinp
resistances, heat from the reaction current and overpai®nt _. . :

- ) . o . - Usignal consists of three steps each of duration between 15 to
and ionic ohmic heat from the motion of lithium/lithium-isn . :
through the solid and electrolyte phase. As heat generdtion 35 seconds. The experiment has been conducted for different

. values of the initial values of the SOC. This set of experitaen

to entro_py cha_mges n the structure of the elec.t rodgs dumng has been repeated twice: firstly for the positive currenaigh
tercalation/deintercalation was shown to be significamtigpa . . . . e
) . - . ing), then for a negative current (discharging). The sifreai
ularly at low discharge rates, its contribution at the higads ’ ; . : )
2 . C refined instrumental variable method for continuous time sy
typical in automotive applications was neglected [12]. rEhe . e .
. . . . : em identification (SRIVC), see [14], has been used to derive
is heat transfer with an ambient sink through convectiore T . ! . : .
. the bank of linear SISO models which describe relationships
lumped value of the cell temperature affects, in turn, a nermb_.
. . . ither betweerf (¢) and V'(t) or betweenl(¢) and the SOC.
of parameters in the electrochemical model, according ¢o t ) ;
Arrhenius law dependence ub§equently, the relationships betwe_en the parametelne_of
' obtained models, the SOC, and the sign of the current input
This model inherently accounts for the dependence of the lmave been examined. This lead to the overall piecewise SDP
ternal impedance of the cell on temperature, instantanloads model described in Subsection 3.3. The process of devajopin
current, and load history, making it ideal for the task atchanthe current to the SOC and the current to the voltage models is
However, it does rely on detailed knowledge of the cell cherdescribed in Subsections 3.1 and 3.2, respectively.

2 Pseudo 2-D electrochemical lithium-ion cell
model



3.1 Currentto SOC model where the termoc is the SOC expressed as number between

and1 and
It has been observed that a type one third order linear model _ Le ifI(t) >0 ©6)
with two zeros Iy ifI(t)<o0
b115% + bays + bsy The optimal values of matricds. andI'; have been found us-
Gioc(s) = $3 + a1152 + ag s 1) ing the Nedler-Mead simplex method and are given by:

provides a sufficient trade-off between the model accurady a 0179 1.108 —1.090 —0.009

its complexity for all data sets. The temmlenotes the Laplace T, — 0.256 —0.348  0.049  0.398 (7a)
variable, whilsta,1, as1, bi1, bo1, andbs1 are model param- 0271 0.369 —0.315 —0.063

eters. Subsequently, model parameters obtained for eliffer 0.004 -0.001 —0.004  0.007

data sets using SRIVC have been analysed; however, no vis-

ible relationship between the SOC, the signi¢f) and the
parameters has been observed. Thus, it is concluded that thel’; =
relationship between the curref{t) and the SOC can be mod-

elled by a linear model given by Equation (1). The parame-

ters of the transfer function (1) differ for different datets

due to the unmodelled nonlinearities and noise resultiamfr

the use of the HFM solver. The average values of the idendi3 Overall piecewise SDP model

fied parameters do not provide an optimal solution. Theegfor

the Nedler-Mead simplex method (implemented in the built-By combining the two models described in Subsections 3.1 and
Matlabfminsearch routine) has been used to find an optimal s& 2, the following two-input-single-output state-spadecp-

0.305 0931 -1.210  0.168
—0.095 2.022 —-4.188 2.673
0.383 0.071 —0.302 0.123
0.009 —0.023 0.027 —0.009

(7b)

of parameters for Equation (1) which are given by wise SDP model is obtained
a;; =1.28-107" ag = 4.62-107° i(t) = Az(t) + BI(t) (8a)
by =4.84-107° boy = 4.31-107° ) y(t) = Cx(t) + DI(t) (8b)
b31 = 3.46-10"7 where the output of the system is

Note that the SOC calculated using Equations (1) and (2) is y(t) = [ soc(t) V(t) ]T (8c)

expressed as a number betw@ef®% charge) and one (fully

charged cell). The voltageV (t) is expressed in M0~2 in order to improve

the numerical stability of the model. Matricels B, C, andD

are given by
3.2 Current to voltage model
—ail 1 0 0 0
A similar approach has been used to identify the relatignshi e _821 8 (1) 8 8 (8d)
between the current and the voltage, which has been modelled o 0 0 0 —as(soc,m) 1
by a type one second order model with a feedthrough term. Un- 0 0 0 2 0 ’ 0
like the current to the SOC relationship, the parameterbef t
current to the voltage dependency exhibit a strong coroglat b1y
to the SOC and the sign of the current. Thus, the current to boy
the v_oItage relationship is modelled by the following tri@ms B = bs; (8e)
function b12(soc, m) — boa(soc, m)ai2(soc, m)
g boa(soc, m)s® + bia(soc, m)s + bas(s0c, m) 5 baa(soc, m) — boa(soc, m)asgs (soc, m)
(s) = s2 4 ay2(soc,m)s ®) C— [ 100 00 ] D { 0 ] (8
10 0 0 1 0 | boa2(soc, m)
where ) ) )
m = sign(I(t)) (4) and the parameters in the matricésB, C, and D are given

by Equations (2), (5), and (7).
anda;o, b2, andbys are model parameters. The relationshiﬁ )
between the SOC and each parameter is modelled using a tHif§ Nyauist plots of the current to the voltage transfer func
order polynomial. Thus, it can be defined by a matfisuch tions (cell impedances) for different values of the SOC aee p

that sented in Figure 1. Due to the fact that the LOM is piecewise,
a1a 1 i.e. its parameters and the steady state gain differ foemifft
bo2 soc sign of I(¢), the LOM can replicate the voltage hysteresis, see
bis | — I soc? () Figure 2. A sample behaviour of the LOM is presented in
boo soc® Figures 3 and 4, displaying a good fit to the HFM.
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Figure 1. Nyquist plot of current to voltage transfer func-  Figure 3: Sample of SOC response to a current input
tions for different operating regions. Solid line represehe

charging model, whilst dashed line refers to dischargingeno
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Figure 2: Voltage hysteresis modelled by LOM cess and leads to modelling errors. Other possible reason fo

this discrepancy could be the fact the the LOM does not have a
built-in memory/history effect. However, the limited imfoa-

4 Conclusions and future work tion on this effect can be present in the LOM to the extentst ha
been ‘taught’ it by the training data.

In this paper a framework for devising a reduced order modghe future work aims to introduce temperature effects of cel
of a lithium-ion cell is developed. Unlike the methodolog)bencormance as part of the LOM model. Furthermore, the re-

commonly found in the literature, this approach utilisesadagyced order model developed in this paper may not be suffi-
collected from the HFM in order to identify a piecewise SDRjently accurate for high values of current. It has been nlese

model describing the relationship between the current dragat the Li-ion cell dynamic behaviour change as the value of
from or supplied to the cell, its SOC and the terminal voltaggyrent significantly increases (above 8 A). This could beimo
The model developed using this framework is computatignaljeq by, for example, piecewise bilinear model. Otheratfe

simple, which makes it applicable for control, yet suffidign \yhich the authors plan to include into the model are SOH and
accurate to describe the nonlinear behaviour of the system jging.

cluding the voltage hysteresis. The difference betweendtie

age simulation by LOM and HFM could possibly result from

the noise in the training data. The current to the voltage rAcknowledgements

lationship contains an integrator, thus the LOM virtually-d

scribes the dependency between the current and the deeivaiihis work is part of the EPSRC funded FUTURE Vehicles
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