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Abstract 

We consider a problem from biological network analysis of determining regions in a parameter 
space over which there are multiple steady states for positive real values of variables and pa-
rameters. We describe multiple approaches to address the problem using tools from Symbolic 
Computation. We describe how progress was made to achieve semi-algebraic descriptions of the 
multistationarity regions of parameter space, and compare symbolic and numerical methods. 

The biological networks studied are models of the mitogen-activated protein kinases (MAPK) 
network which has already consumed considerable effort using special insights into its structure 
of corresponding models. Our main example is a model with 11 equations in 11 variables and 19 
parameters, 3 of which are of interest for symbolic treatment. The model also imposes positivity 
conditions on all variables and parameters. 

We apply combinations of symbolic computation methods designed for mixed equality / 
inequality systems, specifically virtual substitution, lazy real triangularization and cylindrical 
algebraic decomposition, as well as a simplification technique adapted from Gaussian elimina-
tion and graph theory. We are able to determine multistationarity of our main example over 
a 2-dimensional parameter space. We also study a second MAPK model and a symbolic grid 
sampling technique which can locate such regions in 3-dimensional parameter space. 
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Networks, Signaling Pathways, MAPK 
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1. Introduction 

In this work we describe the application of combinations of symbolic computation methods 
in various computer algebra systems to a key problem from computational biology. The work 
serves to demonstrate how recent advances in such algorithms, and crucially their effective com-

Errami), gerdt@jinr.ru (Vladimir Gerdt), dmitry.grigoryev@univ-lille.fr (Dima Grigoriev), 
cthoyt@gmail.com (Charles Hoyt), marek.kosta@savba.sk (Marek Košta), 
ovidiu.radulescu@umontpellier.fr (Ovidiu Radulescu), thomas@thomas-sturm.de (Thomas Sturm), 
weber@cs.uni-bonn.de (Andreas Weber) 

bination, allows for their application on problem instances previously thought beyond reach. In 
this introduction we start by describing the biological networks that are our topic of study, and 
highlight previous relevant work. We then outline the remainder of the paper and clarify the 
relationship of this article to prior work. 

1.1. Multistationarity 

The mathematical modelling of intra-cellular biological processes has been using nonlinear 
ordinary differential equations since the early ages of mathematical biophysics in the 1940s and 
50s (Rashevsky, 1960). A standard modelling choice for cellular circuitry is to use chemical 
reactions with mass action law kinetics, leading to polynomial differential equations. Rational 
functions kinetics, for instance the Michaelis-Menten kinetics, can generally be decomposed into 
several mass action steps. 

An important property of biological systems is their multistationarity by which we mean 
their having multiple stable steady states. It is instrumental to cellular memory and cell dif-
ferentiation during development or regeneration of multicellular organisms and is also used by 
micro-organisms in survival strategies. 

It is thus important to determine the parameter values for which a biochemical model is 
multistationary. As demonstrated in the next section, with mass action reactions, testing for 
multiple steady states boils down to counting real positive solutions of algebraic systems and so 
is suitable for study with Symbolic Computation and Computer Algebra Systems. 

The models studied in this paper concern intracellular signaling pathways. These pathways 
transmit information about the cell environment by inducing cascades of protein modifications 
(phosphorylation) all the way from the plasma membrane via the cytosol to genes in the cell 
nucleus. Multistationarity of signaling usually occurs as a result of activation of upstream sig-
naling proteins by downstream components (Bhalla and Iyengar, 1999). A different mechanism 
for producing multistationarity in signaling pathways was proposed by Markevich et al. (2004). 
In this mechanism the cause of multistationarity are multiple phosphorylation/ dephosphoryla-
tion cycles that share enzymes. A simple, two steps phosphorylation/dephosphorylation cycle 
is capable of ultrasensitivity, a form of all or nothing response with no multiple steady states 
(the Goldbeter–Koshland mechanism). In multiple phosphorylation/dephosphorylation cycles, 
enzyme sharing provides competitive interactions and positive feedback that ultimately leads to 
multistationarity (Markevich et al., 2004; Legewie et al., 2007). 

1.2. Bistability 

Multistationarity has important consequences on the capacity of signaling pathways to pro-
cess biological signals, even in its elementary form of two stable steady states. This is known 
as bistability and is present in our case study problems. Bistable switches can act as memory 
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circuits storing the information needed for later stages of processing (Weng et al., 1999). The re-
sponse of bistable signaling pathways shows hysteresis, namely dynamic and static lags between 
input and output. Because of hysteresis one can have, at the same time, a sharp binary response 
and protection against chatter noise. 

1.3. Prior Symbolic Work 

Our study is complementary to works applying numerical methods to ordinary differential 
equations models used for biology applications. Gross et al. (2016a) used polynomial homo-
topy continuation methods for global parameter estimation of mass action models. Bifurcations 
and multistationarity of signaling cascades was studied with numerical methods based on the 
Jacobian matrix by Zumsande and Gross (2010). 

Algorithmically the task will be to count the positive real solutions of a parameterised sys-
tem of polynomial or rational systems, making symbolic methods a possible tool. Due to the 
high computational complexity of this task (Grigoriev and Vorobjov, 1988) considerable work 
has been done to use specific properties of networks and to investigate the potential of multista-
tionarity of a biological network out of the network structure. 

This only determines whether or not there exist rate constants allowing multiple steady states, 
instead of coming up with a semi-algebraic description of the range of parameters yielding this 
property. These approaches can be traced back to the origins of Feinberg’s Chemical Reaction 
Network Theory (CRNT) whose main result is that networks of deficiency 0 have a unique posi-
tive steady state for all rate constants (Feinberg, 1987; Craciun et al., 2009). We refer to Conradi 
et al. (2008); Millán and Turjanski (2015); Johnston (2014), and Conradi et al. (2017) for the use 
of CRNT and other graph theoretic methods to determine potential existence of multiple positive 
steady states, with Joshi and Shiu (2015) giving a survey. 

Given a bistable mechanism it is also important to compute the bistability domains in pa-
rameter space: the parameter values for which there is more than one stable steady state. The 
size of bistability domains gives the spread of the hysteresis and quantifies the robustness of the 
switches. The work of Wang and Xia (2005) is relevant here: they used symbolic tools, including 
cylindrical algebraic decomposition as we do, to determine the number of steady states and their 
stability for several systems. They reported results up to a 5-dimensional system using specified 
parameter values, but their method is extensible to parametric questions. Higher-dimensional 
systems were studied using sign conditions on the coefficients of the characteristic polynomial 
of the Jacobian. In some cases these guarantee uniqueness of the steady state (Conradi and 
Mincheva, 2014). 

1.4. Outline and New Contributions 

In Section 2 we outline the particular biological model and symbolic problem that we aim to 
solve: BioModel 26 of the MAPK network, which can be found as Model 26 in the BioModels 
Database of (Li et al., 2010). 

In Sections 3 and 4 we describe two independent symbolic attempts to solve the problem. The 
first in Section 3 is able to identify symbolically the multistationarity regions of a 1-dimensional 
parameter space with a combination of Virtual Substitution and Cylindrical Algebraic Decom-
position in the Redlog package for Reduce. The second in Section 4 goes on to give full semi-
algebraic solution formulae with a combination of Real Triangularization and Cylindrical Alge-
braic Decomposition using the Regular Chains Library for Maple. The solutions were obtained 
in different computer algebra systems using different fundamental algorithms, but all from the 
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family of methods for real quantifier elimination. We move on in Section 5 to describe a new pre-
processing method for the problems inspired by graph theory and Gaussian elimination. Then 
in Section 6 we describe how a combination of ideas from all three preceding sections can be 
combined to provide solutions over a 2-dimensional parameter space. 

In Section 7 we discuss testing the stability of fixed points. Then in Section 8 we consider 
an alternative larger model from the MAPK network (Model 28 in the BioModels Database of 
(Li et al., 2010)). In Section 9 we compare the models and detour to describe a symbolic grid 
sampling approach to this problem, including a comparison of this to a leading numerical solver. 
We consider how further progress could be achieved in Section 10, identifying a conjecture 
for determining where multistationarity for MAPK may occur without the costly calculations 
described. Finally we summarise and give final thoughts in Section 11. 

This journal article follows conference papers at ISSAC 2017 (Bradford et al., 2017) and 
CASC 2017 (England et al., 2017). The present article reproduces this material clarifying, cor-
recting and extending in places. In particular, Sections 3 and 4 were largely described in the 
ISSAC 2017 paper and Sections 5 and 9 in the CASC 2017 paper. The most notable new contri-
butions are in Section 6, where we describe for the first time semi-algebraic solutions with two 
free parameters; and in Section 10, where we identify a promising conjecture for investigation. 

2. Problem Outline 

x means the time 

(1) 

2.1. MAPK Bio-Model 26 

The model of the MAPK cascade we investigate can be found in the BioModels Database (Li 
et al., 2010) as Model 261 . This is the first version of the models proposed by Markevich et al. 
(2004) corresponding to the so-called distributive ordered phosphorylation / dephosphorylation 
mechanism. Hereafter we will refer to it as Model 26. 

It is given by the following set of differential equations. We have renamed the species names 
to x1,  . . . ,  x11 and the rate constants to k1,  . . . ,  k16 to facilitate reading. As usual ˙
derivative of x. 

ẋ1 = k2 x6 + k15 x11 − k1 x1 x4 − k16 x1 x5 

ẋ2 = k3 x6 + k5 x7 + k10 x9 + k13 x10 − x2 x5(k11 + k12) − k4 x2 x4 

ẋ3 = k6 x7 + k8 x8 − k7 x3 x5 

ẋ4 = x6(k2 + k3) + x7(k5 + k6) − k1 x1 x4 − k4 x2 x4 

ẋ5 = k8 x8 + k10 x9 + k13 x10 + k15 x11− 

x2 x5(k11 + k12) − k7 x3 x5 − k16 x1 x5 

ẋ6 = k1 x1 x4 − x6(k2 + k3) 
ẋ7 = k4 x2 x4 − x7(k5 + k6) 
ẋ8 = k7 x3 x5 − x8(k8 + k9) 
ẋ9 = k9 x8 − k10 x9 + k11 x2 x5 

˙x10 = k12 x2 x5 − x10(k13 + k14) 
˙x11 = k14 x10 − k15 x11 + k16 x1 x5. 

1www.ebi.ac.uk/biomodels-main/BIOMD0000000026 

4 



Later, we will use (1) to refer to (1) with all the left hand sides replaced by 0 in order to find fixed 
points of the system. The BioModels Database gives us meaningful values for the rate constants: 

k1 = 0.02, k2 = 1, k3 = 0.01, k4 = 0.032, 
k5 = 1, k6 = 15, k7 = 0.045, k8 = 1, 
k9 = 0.092, k10 = 1, k11 = 0.01, k12 = 0.01, 

k13 = 1, k14 = 0.5, k15 = 0.086, k16 = 0.0011. (2) 

Some of these values are accurately measured and some are well-educated guesses. For the 
purpose of our study we assume they are all suitable. 

We may add three linear conservation constraints to this system, which in turn introduce three 
further constant parameters k17, k18, k19: 

x5 + x8 + x9 + x10 + x11 = k17 

x4 + x6 + x7 = k18 

x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = k19. (3) 

Computations to produce these, for example in MathWorks SimBiology, use the left-null space 
of the stoichiometric matrix under positivity conditions. For details see for example Schuster and 
Höfer (1991). 

The constants k17, k18, and k19 represent total initial concentrations of cell substances, and 
meaningful values are harder to obtain than for (2). The following are some realistic value 
estimates, used by Markevich et al. (2004): 

k17 = 100, k18 = 50, k19 ∈ [200, 500]. (4) 

These should be considered significantly less reliable than those in (2). Indeed, the long-term 
goal of our research is to treat all three of these together parametrically, although in the present 
work we produce results only with 0 − 2 of these parameters free. 

Our computational biology problem is to identify regions in (k17, k18, k19) parameter space 
over which the system formed by the unions of constraints in (1) and (3) under estimates (2) 
exhibits multistationarity. 

The system has several special structure properties, e.g. it is a so called MESSI system 
(Millán and Dickenstein, 2018). However, in the following we will not directly use this structure 
property. The non-linearities occurring in the system are at most quadratic. As by introducing 
new variables the general polynomial case can be reduced to such a case and from a dynamical 
systems perspective point of view already quadratic systems are capable to generate all kinds 
of structurally stable dynamics including chaos (Vakulenko et al., 2015) this property is not 
restrictive. 

2.2. Real Algebraic Problem 

To identify fixed points we formulate a real algebraic problem by first replacing the left hand 
sides of all equations in (1) with 0, which as noted above we denote (1). This, together with the 
equations in (3), yields an algebraic system with polynomials in 

F ⊂ Z[k1, . . . , k19][x1, . . . , x11]. 
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However, ideal theory is not sufficient, as we are concerned only with real valued solutions. 
Further, we have the additional inequality restrictions that all entities in our model are strictly 
positive. This yields an additional system 

P = {k1, . . . , k19, x1, . . . , x11} ⊂ Z[k1, . . . , k19][x1, . . . , x11] 

establishing a side condition on the solutions of F that all variables xi and parameters ki of P be 
positive. In terms of first-order logic our specification of F and P yields a quantifier-free Tarski 
formula, � � 

ϕ = f = 0 ∧ v > 0. (5) 
f ∈F v∈P 

The estimations for the rate constants in (2) formally establish a substitution rule 

σ = [0.02/k1, . . . , 0.0011/k16] 

in postfix notation, which can be applied to F, P, or  ϕ. Applying this to ϕ; converting the 
floats from (2) into rational numbers; and multiplying over common denominators, gives us the 
quantifier-free Tarski formula ψ below. 

ψ = −200x1 x4 − 11x1 x5 + 860x11 + 10000x6 

∧ −16x2 x4 − 10x2 x5 + 500x10 + 5x6 + 500x7 + 500x9 = 0 

= 0 

2.3. Suitable Symbolic Technology 

= 0 

∧ −9x3 x5 + 3000x7 + 200x8 = 0 

∧ −10x1 x4 − 16x2 x4 + 505x6 + 8000x7 = 0 

∧ −11x1 x5 − 200x2 x5 − 450x3 x5 + 10000(x8 + x9 + x10) + 860x11 

∧ 2x1 x4 − 101x6 = 0 

∧ 4x2 x4 − 2000x7 = 0 

∧ 45x3 x5 − 1092x8 = 0 

∧ 5x2 x5 + 46x8 − 500x9 = 0 

∧ x2 x5 − 150x10 = 0 

∧ 11x1 x5 + 5000x10 − 860x11 = 0 

∧ −k17 + x10 + x11 + x5 + x8 + x9 = 0 

∧ −k18 + x4 + x6 + x7 = 0 

∧ −k19 + x1 + x10 + x11 + x2 + x3 + x6 + x7 + x8 + x9 = 0 

∧ x1 > 0 ∧ x2 > 0 ∧ x3 > 0 ∧ x4 > 0 ∧ x5 > 0 

∧ x6 > 0 ∧ x7 > 0 ∧ x8 > 0 ∧ x9 > 0 ∧ x10 > 0 ∧ x11 > 0 

∧ k17 > 0 ∧ k18 > 0 ∧ k19 > 0. (6) 

Our problem in real algebra is to obtain a semi-algebraic description of those regions in the 
(k17, k18, k19) parameter-space where there are multiple solutions of (6). The multistationarity 
problem also requires us to know about the stability of these solutions, as discussed in Section 7. 

This real algebraic problem is amenable to technology developed for real quantifier elimi-
nation. Note that the number of indeterminates (variables and parameters) is high compared to 
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those usually tackled by such technology. However, the degrees involved are low, with every 
monomial at most degree 2, which helps make it tractable. 

As we will not include a priori information about the stability of the fixed points, we must 
not only consider the existence of (at least) two stable fixed points but also unstable fixed points. 
Hence we simply investigate where in parameter space there exist multiple different roots x ∈ 
(0,∞)11 of F. 

In theory, any Real Quantifier Elimination (QE) technology can directly handle the paramet-
ric existence of steady states, taking as input  x1 . . . x11ϕ and producing as output a quantifier 
free formula in the parameters describing where solutions exists. However, this is not sufficient 
to solve our problem as we are not only interested in the existence but also in the number of 
solutions. We can use a specific QE tool to do this: Cylindrical Algebraic Decomposition. 

2.3.1. Cylindrical algebraic decomposition and its terminology 
Cylindrical Algebraic Decomposition (CAD) was first proposed by Collins in the 1970s. This 

original algorithm2 took as input a set of polynomials in Z[x1, . . . , xN ], producing as output a set 
of cells which together give a decomposition of Rn which is sign-invariant, meaning each input 
polynomial has constant sign over each cell. The sign-invariance means that the polynomials 
may be studied over an an infinite domain by querying a finite number of sample points: one per 
cell. 

The cells are all semi-algebraic, meaning they can be described by a polynomial system, 
and they are arranged cylindrically, meaning their projections with respect to a stated variable 
ordering are either equal or disjoint. The cylindricity means the semi-algebraic descriptions 
are triangular and the cells form cylinders over another (induced) CAD of Rn−1 given by the 
projection of the n-dimensional cells. All cells are either sections, defined by a polynomial 
vanishing; or a sector, defined as the space between two sections, or possibly extending infinitely. 

Collins’ algorithm proceeded with a system of: projection, which identified key polynomials 
in fewer variables; and lifting, where the induced CADs are incrementally constructed via sub-
stitution of sample points and univariate root isolation. The act of projection must be defined so 
that working at a sample point may be concluded representative for the entire cell. 

There has been numerous extensions and improvements to CAD since Collins’ original 
method. The collection edited by Caviness and Johnson (1998) is a key resource; in particular 
the survey paper within by Collins (1998). A more recent survey was given in the Introduction 
section of the work by Bradford et al. (2016). A key choice for CAD is the variable ordering 
which defines the cylindricity property and controls the order steps are taken by the algorithm. 
For use in quantifier elimination CAD must project variables in the order they are quantified. 
Our problem (6) is not quantified but our desire to understand the problem over parameter space 
means that we must project variables before parameters. However, besides this the choice is free 
for us. We define the main variable of a polynomial / constraint to be the highest one present 
(first to be projected) in the ordering. 

The worst-case time complexity of CAD is doubly exponential. Traditionally, this is dou-
bly exponential in the number of indeterminates, which would include our symbolically treated 
parameters. However recent progress on CAD in the presence of equational constraints (see for 
example the work of England et al. (2015)), of which there are many in (6), allows us to con-
clude it is actually doubly-exponential in the number of variables minus the number of equational 

2see for example the work of Arnon et al. (1984). 
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constraints at different levels of the projection (England and Davenport, 2016). Despite this, the 
number of variables present in (6) is too large for contemporary CAD implementations to tackle 
alone. 

2.3.2. Combing with other symbolic tools 
We are able to make progress by combining CAD with additional symbolic methods. Two 

independent investigations were undertaken. The first, described in Section 3, uses the Redlog 
package in Reduce and combines CAD with virtual substitution. The second, described in Sec-
tion 4, uses the Regular Chains Library in Maple and combines CAD with real triangularization. 
In both cases we have combined the corresponding methods by hand, but automation is clearly 
possible. 

3. Using Real Quantifier Elimination Technology in Redlog 

In this section we are going to combine Virtual Substitution (VS) with CAD. The former 
smoothly eliminates the majority of the quantifiers while the latter allows us to count numbers 
of solutions via decomposition of the remaining low-dimensional spaces. That combination of 
methods requires the solution of several QE runs with each problem and some combinatorial 
arguments. Throughout this section we are performing computations using the Redlog Pack-
age (Dolzmann and Sturm, 1997a) for Reduce revision r3606. Timings are reported for a 2.4 
GHz Intel Core i7 with 3 GB RAM or cores on a compute server with similar speed and memory 
limitations. 

3.1. Virtual Substitution 

Substitution methods for quantifier elimination date back to an article from Weispfenning 
(1988), which treated the special case with only linear occurrences of the quantified variables. 
Originally motivated by the proof of tight complexity bounds for the real decision problem, that 
approach turned out to be applicable to practical problems, especially with many parameters. 
Consequently, the method was systematically generalized by Weispfenning and his students to 
arbitrary but bounded degrees (Weispfenning, 1997, 1994; Košta, 2016). 

Quantifier elimination proceeds from the inside to the outside of a prenex quantifier block. An 
innermost existential quantifier is eliminated by equivalently replacing it with a finite disjunction: 

VS( xnϕ) := 
� 

t∈E 

ϕ[t//xn], 

where E is a finite elimination set containing abstract test points t = (γ, z). The terms z are de-
rived from symbolic representations of formal zeros of parametric univariate polynomials from 
Z[x1, . . . , xn−1][xn] occurring in ϕ with possibly adding infinitesimals ±ε. They are guarded by 
quantifier-free formulas γ(x1, . . . , xn−1) that guarantee the existence of the zeros in terms of the 
parameters. Recall that regular term substitution maps terms to terms, which naturally general-
izes to corresponding maps on quantifier-free formulas. Virtual substitution [t//xn], in contrast, 
maps atomic formulas to quantifier-free formulas. This allows to express the substitution of 
the terms z without using any non-standard symbols. Furthermore, virtual substitution adds the 
guarding conditions γ in a suitable way. For examples and surveys of the virtual substitution 
method see the work of Sturm (2017, 2018). 
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3.2. Parameter Free Computations 
We start by considering the case where all parameters in (5) are substituted for their estimates 

in (2) and (4) (interpreted as rational numbers): 

ϕ500 = ϕσ[100/k17, 50/k18, 500/k19]. 

The closed formula ϕ̄500 =  x1 . . . x11ϕ500 states the existence of a suitable real solution. In a 
first step, we solve for i ∈ {1, . . . , 11} the following eleven QE problems using VS: 

(i)ϕ = VS( x1 . . . xi−1 xi+1 . . . x11ϕ500).500 

(i)Each ϕ is a univariate quantifier-free formula describing all possible real choices for xi for500 
which there exist real choices for all other variables such that ϕ500 holds. CAD can easily de-
compose the corresponding one-dimensional spaces. It happens that for each xi there are exactly 

(i)three zero-dimensional cells ai, bi, ci ∈ R where ϕ500 
algebraic numbers, i.e., as the unique root of a univariate defining polynomials with integer co-
efficients within an isolating interval. By combinatorial arguments it is not hard to see that the 
following holds for the set S 500 of real solutions of ϕ500: 

11 � 
3 ≤ |S 500| and S 500 ⊆ . 

Notice that at this point we have proven the existence of multiple fixed points of the system for 
k19 = 500. We can furthermore compute S 500 by plugging the 311 candidates from the Cartesian 
product into ϕ500. A straightforward approach requires arithmetic with real algebraic numbers 
followed by the determination of the signs of the results, which is quite inefficient in practice. 

holds. We extract all ai, bi, and ci as real 

i=1 

{ai, bi, ci}

However, it turns out that interval arithmetic starting with refinements of the isolating intervals of 
the real algebraic numbers excludes 311 − 3 of the candidate solutions. Even the three remaining 
candidates then require no further checking with algebraic numbers since we already know that 
|S 500| ≥  3. The overall CPU time is 71.3 seconds for 11 runs of VS plus 11 runs of CAD, 
followed by 16 hours for checking candidates. Our checking procedure is a file-based prototype 
starting a Reduce process for every single of the 311 candidates; there is considerable room for 
optimization. 

For k19 = 200 instead of 500 all eleven univariate CAD computations yield unique solutions 
which can be straightforwardly combined to one unique solution for the corresponding ϕ200. The 
overall CPU time here is 66.4 seconds for 11 runs of VS plus 11 runs of CAD. Machine float 
approximations of all our solutions are given in Table 1. 

3.3. Parametric Analysis for k19 

We next consider the case where k19 is left as a free parameter: 

ϕk19 = ϕσ[100/k17, 50/k18]. (7) 

Again, we solve for i ∈ {1, . . . , 11} eleven QE problems using VS: 

ϕ(i
k

) 
19 
= VS( x1 . . . xi−1 xi+1 . . . x11ϕk19 ). 

(i)This time each ϕ
k19 

is a bivariate quantifier-free formula in k19 and the corresponding xi. Hence 
(i)we must now construct a two-dimensional CAD for each ϕ
k19

. The projection order is important: 
9 



(200) for k19 
(500) (500) (500)Table 1: The unique solution x = 200 and the three solutions x , x , x for k19 = 500. Note that 1 2 3 

we have actually computed real algebraic numbers, which are pairs of univariate polynomials and isolated intervals. For 
convenience we are giving machine float approximations here, which can be made arbitrarily precise. 

(200) (500) (500) (500)
x x x x1 2 3 

x1 90.6512 17.6392 122.034 323.761 
x2 2.67311 6.97675 14.6721 9.49621 
x3 10.4996 367.57 234.974 37.1013 
x4 17.8545 36.6772 14.5102 6.72938 
x5 35.9695 5.50874 7.16952 13.6295 
x6 32.0501 12.811 35.064 43.1428 
x7 0.0954536 0.511775 0.42579 0.127807 
x8 15.5631 83.4416 69.4223 20.8381 
x9 2.39331 8.06095 7.43877 3.21139 
x10 0.641001 0.25622 0.70128 0.862856 
x11 45.4331 2.73253 15.2681 61.4581 

we first project xi, then the CAD base phase decomposes the k19-axis, followed by an extension 
phase that decomposes the xi-space over the k19-cells obtained in the base phase. This is feasible 
if we make one limitation: not to extend over zero-dimensional k19-cells. In other words, we 
accept finitely many blind spots in parameter space, which we can explicitly read off from the 
CAD so that in the end we know exactly what we are missing. 

Figure 1 shows our CAD tree for ϕ(2) 
k19 

. The first layer from the root shows the decomposition 
of the k19-axis. The five zero-dimensional (rectangular) cells are the previously mentioned blind 
spots, among which the smallest one is not relevant, as it has negative value of k19. Those zero-
dimensional cells also establish the limits of the full dimensional (oval) cells in between. The 
cylinders over those one-dimensional k19-cells each contain either one or three zero-dimensional 
x2-cells where ϕ(2) 

k19 
holds. We have deleted from the tree all x2-cells where ϕ(2) 

k19 
does not hold. 

We make two observations, important for a qualitative analysis of our system: 

(i) For all positive choices of k19, extending to infinity, there is at least one positive solution 
for x2. 

(ii) There is a break point around k19 = 409.253 where the system changes from having a 
unique solution to exactly three solutions. 

Recall that for all floating point numbers given here as approximations we in fact know exact real 
algebraic numbers. For instance, the exact break point is the only real zero in the open interval 
(409, 410) of an irreducible defining polynomial 

10 � 

i=0 

cik
i 
19 with integer coefficients ci as in Appendix A. (8) 

Figure 2 depicts all eleven CAD trees for ψ(1) 
k19 

,  . . . ,  ψ(11) 
k19 

. They are quite similar to the one just 
discussed. Even the break point from one to three solutions for xi is identical for all i ∈ {1, . . . , 11}
so that we can generalize our observations from earlier: 

10 



11 

Figure 1: The pruned CAD tree for x2. Ellipses and rectangles are full-dimensional and zero-dimensional cells, respectively. We have removed cells where k19 is negative or 
where the input formula is false. 
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(i) For all positive choices of k19, extending to infinity, there is at least one positive solution 
for (x1, . . . , x11). 

(ii) There is a break point   around k19 = 409.253 where the system changes its qualitative 
behaviour. We have exactly given  as a real algebraic number in Equation (8). For k19 <   
there is exactly one positive solution for (x1, . . . , x11). For k19 >  there are at least 3 and at 
most 311 positive solutions for (x1, . . . , x11). 

The overall computation time for our parametric analysis is 4.3 minutes. It is strongly dom-
inated by 2.8 minutes for the computation of one particular CAD tree, for ϕ(11) 

k19 
. It turns out that 

the suitable projection order with xi eliminated first is computationally considerably harder than 
projecting the other way round. As a preprocessing step we apply CAD-based simplification 
of the ϕ(i) 

k19 
with the opposite, faster, projection order. Here we use QEPCAD-B (v1.69), which 

performs better than Redlog at simple solution formula construction (Brown, 2003). 

4. Using Triangular Decomposition Tools in the Regular Chains Library for Maple 

In this section we are going to apply triangular decomposition methods, including CAD. We 
find that a triangular decomposition can derive solution formulae for many variables in terms of 
a smaller subset for which we must apply CAD to count solutions. Throughout this section we 
are performing computations in Maple 2016, but using an updated version of the Regular Chains 
Library3. Timings are reported for a Windows 7 64 bit Desktop PC with Intel i5. 

4.1. Parametric Analysis for k19 

Regular chains are the triangular decompositions of systems of polynomial equations, where 
triangular means decreasing subsets of variables occurring in each polynomial. Highly efficient 
methods for working in complex space have been developed based on these; see the work of 
Wang (2000) and Aubry et al. (1999) for a survey. 

Recent work by Chen et al. (2013) proposes adaptations of these tools to the real analogue: 
semi-algebraic systems. They describe two algorithms to decompose any real polynomial system 
into finitely many regular semi-algebraic systems. The first, Real Triangularize (RT), does so di-
rectly while the second, Lazy Real Triangularize (LRT), produces the highest (complex) dimen-
sion solution component and unevaluated function calls, which if all evaluated would combine 
to give the full solution. These algorithms are implemented in the Regular Chains Library for 
Maple. 

We will apply LRT on the quantifier-free formula (5) evaluated with the parameter estimates 
for k1,  . . . ,  k18, i.e. the system (7) as studied with Redlog in Section 3.3. 

We need to choose a variable ordering: our analysis requires that k19 be the indeterminate 
considered alone. We place the remaining variables in lexicographical order since the in-built 
heuristics to make the choice could suggest nothing better. The solutions must hence contain 
constraints in k19, constraints in (x1, k19), in (x2, x1, k19) and so on. 

Applying LRT this way produces one solution component and 6 unevaluated function calls 
in around 15 seconds. 

3www.regularchains.org 



(1) (11) (1)Figure 2: All CAD trees for ψ ,  . . . ,  ψ . In the second but last row on the left hand side there is the tree for ψ ,
k19 k19 k19 

which is displayed in detail in Figure 1. Note that in the digital version of this article readers can zoom into these trees to 
see the details (as are visible in the printed version of Figure 1). 
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4.1.1. The main solution component from LRT 
In the evaluated component: for each of x2,  . . . ,  x11 there is a single equation which has this 

as the main variable. Further, these are all linear in their main variable meaning they can be 
easily rearranged into the solution formulae given below. 

1 1 92 2 = − x (10k19 − 10x1 − 37x3 + 10x4 − 2100)x2 − xx11 2 + 360 600 200 
1 

+ (−27x1 + 27x4 + 27k19 − 4650)x3 − x1 + x4 + k19 − 50 (9)
600 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
(16) 
(17) 

(18) 

x10 = 
1 

150 
x2(x2 + x3 − x4 − k19 + x1 + 150) 

x9 = 
1 

18200 
(69x3 + 182x2)(x2 + x3 − x4 − k19 + x1 + 150) 

x8 = 
15 

364 
(x2 + x3 − x4 − k19 + x1 + 150)x3 

x7 = 50 − 
2 

101 
x4 x1 − x4 

x6 = 
2 

101 
x4 x1 

x5 = x2 + x3 − x4 − k19 + x1 + 150 

x4 = 2525000/(101x2 + 1000x1 + 50500) 
x3 = n3/d3 where 

n3 = −101x2 − (−101k19 + 1101x1 + 65650)x2 − (1000x3 2 2 
1 

+ (−1000k19 + 200500)x1 − 50500k19 + 5050000)x2 + 150000x1) 

d3 = 101x2 + (1000x1 + 50500)x2 
2 

x2 = n2/d2 where 

n2 = 30625833064790009548991419920x5 
1 

+ (−43795148662369306906962603840k19 

+ 37749979225487731805273686504663200)x4 
1 

+ (14871210647782462053693235920k2 
19 

− 16963336293692750919154910690672400k19 

+ 6815925407229297763234036009365120000)x3 
1 

+ (1538325448222983229930530049200k2 
19 

− 862702164104208291031357996000020000k19 

+ 279241219028720368578809336249748000000)x2 
1 

+ (29370341694954648101085099000000k2 
19 

− 12995812279808313524592161760000000k19 

+ 3705960282117523242886769213700000000000)x1 

− 126235874510278395777369000000000000k19 

d2 = 232763663752113237974029404420089x5 
1 
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+ (−332853615301041845577671639990228k19 

4+ 88646303215205075376308147029677220)x1 

+ (113024761399450186949390623074789k2 
19 

− 80843908028331498139954527761762740k19 

3+ 11682465068391769796632986929072776500)x1 

+ (11455232309649034305597048791479020k2 
19 

− 5547251026060433566640620528023877000k19 

2+ 619147207587597001268026254404647600000)x1 

(19) 

(23) 

+ (290245997063001550130198026458525000k2 
19 

− 141348286758352762323489548674398500000k19 

+ 14547288529581382252587071541494600000000)x1 

− 1247498501818579946626756931775000000000(k19 − 100) 

Note that these solution formula: are guaranteed valid for all positive k19 excluding three isolated 
points which are provided as part of the output from LRT and described below; are triangular, 
with each xk is expressed in variables {xi, i < k}; and are provided for all but variable x1. 

The output of LRT also requires that x1 be both positive and satisfy: 

f (x1, k19) = 
6 � 

i=0 

di x = 0i 
1 

where the coefficients di are univariate polynomials in k19 of maximum degree 2 as given in 
Appendix B. Hence there are at most six solutions for x1, with the exact number depending on 
whether solutions of (19) are real and positive. 

There are four constraints on free parameter k19 as given below, one of which is the non-
vanishing of the polynomial in Appendix Appendix A whose root defined the break point found 
by Redlog in Section 3.3. Note that the coefficients break over lines within the final constraint. 

k19 > 0 (20) 
∧ polynomial in (8) � 0 (21) 

∧ 23197989433419579994929k2 
19 − 89407400615452409453098800k19 

− 4822419303419166525491149190000 � 0 (22) 

∧ 505465566622475867655547880786544637953790406059982726185509k4 
19 

− 1272578045696439189317856051518387368422217896986836692050 

5134120k3 
19 + 117551033091520524183124321323141751700303731556 

2884193657451445400k2 
19 − 281867359883676159811192082978541193 

600292804324596911878337972560000k19 − 42434363570215587465 

668423701563932185051066892741207931879307200000000 � 0 

Evaluating the real roots of the polynomials appearing in the above allows us to conclude that 
this solution component is valid for all positive values of k19 excluding three points. As with 
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Redlog, Maple can represent these as exact algebraic numbers but for brevity we give float ap-
proximations: 

409.253, 16473.337, and 25084.536. (24) 

Software Remark 1. In the authors’ ISSAC 2017 paper (Bradford et al., 2017) the description 
of the evaluated solution component ended here. However, following the publication of that 
paper a bug was uncovered by one of the authors in the simplifier of the Regular Chains Library 
when working with a different MAPK model to the one considered presently. For that example 
the simplifier was incorrectly discarding certain positivity conditions. The bug was reported to 
the Regular Chains developers, and the current version of the simplifier4 now excludes all such 
simplifications. So presently, the output from LRT includes also the positivity conditions 

x2 > 0, x3 > 0, . . . , x11 > 0. 

Some of these can clearly be removed. For example, if we know x1 > 0 and x2 > 0 then (16) 
implies x4 > 0 and this coupled with (14) implies x6 > 0. However, it is not trivial to imply all 
such inequalities, and so any proposed solution in (k19, x1) should be checked to see if it implies 
a positive solution in all the remaining variables before being accepted. This is indeed the case 
for all solutions described in the ISSAC 2017 paper, and below. 

4.1.2. The unevaluated function calls from LRT 
The main solution component described in Section 4.1.1 is not the entire solution to the 

system. LRT produced also six unevaluated function calls which if evaluated and combined with 
the main component would give the full solution. LRT guarantees that the complex dimension 
of the solution components from these unevaluated calls is smaller that the main component. In 
fact, three of the six unevaluated calls define empty solution sets, with evaluating to discover this 
instantaneous. 

With regards to the other three: we can infer from the arguments to these function calls 
that each defines the solution at one of the three points in (24) that were excluded from the 
main component. I.e. each of these three calls has as an argument the negation of one of the 
univariate inequations for k19 from (21)−(23). Actually evaluating these solution components is 
not possible in reasonable time. Thus, as with Redlog in Section 3, we proceed accepting a small 
number of blind spots. 

The output of LRT has quickly given us the structure of the solution space valid at all but 
three isolated values of k19. However, it does not identify where the number of real solutions 
change. Note that although the break point identified in Section 3 has been rediscovered in (24), 
there is not yet any information gathered by Maple from which we can infer its significance. 
We also note that there seems to be no significance for our application of the other two isolated 
points in (24). 

4.1.3. Counting solutions with CAD 
To finish the analysis we need to decompose (x1, k19)-space according to the real roots of 

f (x1, k19); and also x1 and k19 since the constraints x1 > 0 and k19 > 0 were specified sepa-
rately in the output. CAD is ideally suited for this task. We apply the Regular Chains based 
implementation in Maple first described by Chen et al. (2009). A CAD for f (x1, k19), with the 

4http://www.arcnl.org/cchen/software.html 
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5See the Research Data Statement at the end of the paper to access them. 
17 

ordering chosen so that the k19-axis is the one decomposed, divides the plane into 135 cells in a 
few seconds. This CAD decomposes the k19 axis into 11 cells, i.e. identifying five points, which 
approximate to: 

−379.993, −87.776, 0, 409.253, and 25084.536. 

We give these as floats for brevity but exact algebraic numbers are available5 . 
On the cell where 0 < k19 < 409.253, the cylinder above in the (x1, k19)-plane is divided into 

11 cells: three of which cover x1 > 0 (two 2d sectors and a 1d section). We see that f (x1, k19) 
is zero on the section but not the sectors. This can be inferred by testing a sample point of the 
section (the invariance properties of the CAD mean that the signs of the input at this point are 
representative for the whole cell. In fact, with the CAD implementation we use the cells comes 
with a semi-algebraic description which for this section is the statement that f (x1, k19) = 0 (along 
with the bounds on k19). 

We can perform a similar analysis on the two cells for 409.253 < k19 < 25084.536 and 
25084.536 < k19 < ∞. In each case the cylinders above are divided into 15 cells, seven of which 
cover x1 > 0, with the three sections satisfying f (x1, k19) = 0. 

So we can conclude that: (a) if 0 < k19 < 409.253 then f (x1, k19) has a single positive 
real solution; and (b) if k19 ∈ (409.253, ∞) \ {25084.536} then f (x1, k19) has three positive real 
solutions. We cannot conclude with certainty what happens at the points 409.253 and 25084.536. 

At the end of this analysis we have rediscovered the break point identified in Section 3 where 
the system moves from a single positive real solution to three. We also have explicit solutions 
valid for all except three isolated k19 values. To obtain an actual numerical solution we need only: 
select the k19 value of interest (call it k̂19); perform univariate root isolation on f (x1, k̂19), noting 
we know in advance how many to expect based on k̂19; then for each x1 solution substitute recur-
sively into equations (9)−(18), starting with (18) and working up, substituting the new variable 
solution from each formula into the next. The solutions in Table 1 may be easily rediscovered 
this way, for example. 

We note that, as discussed in Software Remark 1, we have ensured that for each cell all the 
positive solutions in x1 provided by the sample point do indeed lead to positive solutions for all 
other variables via the back substitution process. 

4.2. Repeating for Other Choices 
We have repeated the approach described in Section 4.1 for different choices of free parameter 

and different choices of fixed parameter values. For example: 

• With k17 set to 95 instead of 100 we find that the break point between 1 and 3 real positive 
solutions moves to k19 = 369.917. With k17 set to 105 it moves to k19 = 450.077. 

• Allowing k17 to be free and fixing k19 = 200 we find that there is only ever one positive 
real solution. 

• Allowing k17 to be free and fixing k19 = 500 we find the number of positive real solutions 
moving from 1 to 3 to 1 breaking at k17 = 85.988 and k17 = 110.869. 

• Similarly, allowing k18 to be free and fixing k19 = 200 we find there is only ever one 
positive real solution; but fixing k19 = 500 instead we find 3 real solutions between k18 = 
44.434 and 58.329 and 1 otherwise. 



This hints that there is a shape approximating a paraboloid within (k17, k18, k19)-space within 
which bistability may occur; with bistability available for any k17 and k18 value but bounded 
from below in the k19 coordinate. 

We note that these conclusions are, as with the one described in detail, valid at all but a 
handful of isolated values of the free parameter. 

8. 

Parametric Gaussian elimination can increase the degrees of variables in the parametric co-
efficient, in particular destroying their linearity and suitability to be used for further reductions. 

5. A Graph Theory Guided Parametric Gaussian Elimination Preprocessing Method 

As described above, the complexity of polynomial systems obtained with steady-state ap-
proximations of biological models is comparatively high for the application of symbolic meth-
ods, particularly in reference to the dimension (number of indeterminates). The two studies 
described in Sections 3 and 4 both used tools to effectively reduce the problem dimension before 
applying the costly CAD method. 

More generally, it is highly relevant for the the success of general polynomial systems meth-
ods if we can first identify and exploit particular structural properties of the input. Here, the 
MAPK models have remarkably low total degrees with many linear monomials after some sub-
stitutions for rate constants. For example, the final equation of (1) suggests a simple polynomial 
expression for x11 in terms of the remaining variables of the system. This promoted the idea of 
pre-processing MAPK input with essentially Gaussian elimination: in the sense of solving single 
suitable equations with respect to some variable and substituting the corresponding solution into 
the system. 

5.1. Parametric Gaussian Elimination 

Generalizing this idea to situations where linear variables have parametric coefficients in the 
other variables requires, in general, a parametric variant of Gaussian elimination, which replaces 
the input system with a finite case distinction with respect to the vanishing of certain coefficients 
and one reduced system for each case. Further, for our problem the positivity conditions establish 
a further apparent obstacle, because we are formally not dealing with a parametric system of 
linear equations but with a parametric linear programming problem. 

The theory of real quantifier elimination by virtual substitution tells us that it is sufficient 
for the inequality constraints to play a passive role in the sense that their polynomials do not 
contribute to the elimination set E discussed in Section 3.1. This key idea occurred first for the 
linear case in Theorem 3.11 of the work by Loos and Weispfenning (1993); while the current 
state-of-the-art is described in the thesis of Košta (2016). The crucial observation is that our en-
tire formula is (and remains during the considered elimination) a single Gauss Prime Constituent 
in the sense of (Košta, 2016, Section 3.1.1). Further, for the considered MAPK model, it turns
out that those positivity assumptions on the variables are actually strong enough to guarantee 
the non-vanishing of all relevant coefficients, so case-distinctions are never necessary! We do 
not claim such an approach will always be so lucky, but it may be this result generalises for the 
MAPK hierarchy. It was the case also for the second larger MAPK model we describe in Section 

5.2. An Optimal Strategy 
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Figure 3: The graph for (1) is loosely connected. Its minimum vertex cover {x4, x5} is small. All other variables form a 
maximum independent set, which can be eliminated with linear methods. 

For example, solving the last equation of (1) and substituting into the first equation would destroy 
any linearity present in that first equation. 

The natural question is whether there is an optimal strategy to Gauss-eliminate a maximal 
number of variables? This has been answered positively only recently by Grigoriev et al. (2015): 
draw a graph, where vertices are variables and edges indicate multiplication between variables 
within some monomial. Then one can Gauss-eliminate a maximum independent set, which is the 
complement of a minimum vertex cover. Figure 3 shows that graph for (1), where {x4, x5} is a 
minimal vertex cover, and all other variables can be linearly eliminated. 

Recall that minimum vertex cover is one of 21 classical NP-complete problems described by 
Karp (1972). However, our instances considered here and instances to be expected from other 
biological models are so small that the use of existing approximation algorithms (Grandoni et al., 
2008) appears unnecessary. We have used real quantifier elimination, which did not consume 
measurable CPU time; alternatively one could use integer linear programming or SAT-solving. 

It is a most remarkable fact that a significant number of biological models in the databases 
have that property of loosely connected variables. This phenomenon resembles the well-known 
community structure of propositional satisfiability problems, which has been identified as one of 
the key structural reasons for the impressive success of state-of-the-art CDCL-based SAT solvers 
by Girvan and Newman (2002). 

5.3. Reduced System for Model 26 

We conclude this section with the reduced system computed with an implementation of this 
pre-processing in Redlog (Dolzmann and Sturm, 1997a). From (6) we obtain 

ψ = x5 > 0 ∧ x4 > 0 ∧ k19 > 0 ∧ k18 > 0 ∧ k17 > 0 

∧ 1062444k18 x
2 
4 x5 + 23478000k18 x

2 
4 + 1153450k18 x4 x

2 
5 + 2967000k18 x4 x5 

+ 638825k18 x
3 
5 + 49944500k18 x

2 
5 − 5934k19 x

2 
4 x5 − 989000k19 x4 x

2 
5 

− 1062444x3 
4 x5 − 23478000x3 

4 − 1153450x2 
4 x

2 
5 − 2967000x2 

4 x5 

− 638825x4 x
3 
5 − 49944500x4 x

2 
5 = 0 

∧ 1062444k17 x
2 
4 x5 + 23478000k17 x

2 
4 + 1153450k17 x4 x

2 
5 + 2967000k17 x4 x5 

+ 638825k17 x
3 
5 + 49944500k17 x

2 
5 − 1056510k19 x

2 
4 x5 − 164450k19 x4 x

2 
5 

− 638825k19 x
3 
5 − 1062444x2 

4 x
2 
5 − 23478000x2 

4 x5 − 1153450x4 x
3 
5 

2 4 3− 2967000x4 x5 − 638825x5 − 49944500x = 0. (25)5 
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We now have a system of just two equalities in 5 indeterminates together with positivity con-
ditions on those indeterminates. Notice that no complicated positivity constraints come into 
existence from this method. All corresponding substitution results are entailed by the other con-
straints, which is implicitly discovered by using the standard simplifier of Dolzmann and Sturm 
(1997b) during preprocessing. 

Note that, with ψ defined in (6), we have a formal equivalence here, from the theory of 
quantifier elimination via virtual substitution: 

 x1 x2 . . . x11 ψ =  x4 x5 ψ. 

So if we can determine the region of parameter space where solutions to ψ exist we are guaran-
teed to also find solutions to ψ there. However, our problem concerns not just the existence of 
solutions but the number, and so on the surface this may seems inadequate. However, because 
the only technology used in this reduction is linear substitution we can also conclude that the 
number of solutions found for ψ will lead to the same number of solution of ψ. 

Hence it is sufficient to study ψ. This pre-processing allows us to derive solutions with two 
free-parameters in the next section. We also give some indication of the performance improve-
ments of various methods offered by the pre-processing later in Section 9. 

6. Combined Approach for a Solution over 2-parameter space 

In this section we describe a new derivation of a solution to the real algebraic problem with 
two free parameters, produced after the publication of the authors’ ISSAC 2017 and CASC 2017 
conference papers (Bradford et al., 2017; England et al., 2017). The progress is made by com-
bining ideas from all three of the preceding sections. We describe in detail below but broadly 
we: start with the reduced system from the pre-processing of Section 5 with two free-parameters; 
apply the LRT method of Section 4 to reduce the problem by an indeterminate; build part of a 
CAD, an idea used in Section 3, sufficient to identify the regions of parameter space of interest. 
Timings are reported for the same hardware and software as Section 4. 

6.1. Applying LRT and Preparing for CAD 

We start with the reduced system (25) derived in Section 5 above. We set k18 to 50 and 
leave k17 and k19 free. Hence we seek the regions of the (k17, k19)-plane where there exist mul-
tiple solutions. We first run the LRT algorithm introduced in Section 4, with variable ordering 
(x4, x5, k17, k19). We needed the parameters to come after the variables so we work over the pa-
rameter space, but within the pairs the orders could have been reversed. In around 5 seconds 
LRT outputs one solution component and 4 unevaluated function calls. 

The evaluated component consists of the four positivity conditions from the input and the 
two equations, which may be seen in Appendix C where they are labelled (C.1) and (C.2). Of 
course these equations are triangular: (C.1) involves {x4, x5, k17, k19} while (C.2) does not depend 
on x4. Note that (C.1) is linear in x4 and so we can easily rearrange to give a solution formula 
for x4 in terms of (x5, k17, k19). (C.2) is of degree 6 in x5 but of course not all its solutions need 
be real and positive. If we can determine where (C.2) has multiple positive real solutions then all 
that remains is to back substitute and to get real solutions for the other variables and check these 
are also positive. We will determine this using CAD. 

Before that, we examine the 4 unevaluated functions calls from LRT: two instantly evaluate 
to empty solution sets while the other two cannot be evaluated in reasonable time. We infer 
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from the arguments to the calls that these define solutions on the graphs of two polynomials in 
(k17, k19)-space: 

p1 = 
�5 

i=0 e1,i k
i 
17, (26) 

p2 = 
�14 

i=0 e2,i k
i 
17 (27) 

where the e1,i and e2,i are univariate polynomials in k19. The polynomials are too large to repro-
duce here6 . The smaller one is (26): degree 4 in k19, total degree 5, 20 terms when expanded 
with average coefficient length of 51 digits. The larger (26) has degree 10 in k19, total degree 14, 
110 terms when expanded with average coefficient length of 79 digits7 . 

We proceed on the understanding that any results are valid everywhere in (k17, k19)-space 
except on these graphs. We may compare this to Sections 3.3 and 4.1 which accepted a finite 
number of isolated blind spots in a one-dimensional parameter space. 

6.2. Solution via an Open CAD 

A CAD sign-invariant for the polynomial defining (C.2) (and x5, k17, k19 to allow for positivity 
checks) would be sufficient. However, the size of the polynomial puts this beyond CAD currently. 
Instead, we proceed as follows: 

Step 1: Calculate the projection set for CAD input consisting of polynomial defining (C.2) and 
polynomial x5 (to allow for positivity check). 

This is a set of 19 polynomials in (k17, k19) the greatest of which has degree 34, and so it is not 
reasonable to print them all here. 

Step 2: Build an Open CAD of (k17, k19)-space for these polynomials, along with polynomials 
k17 and k19 (to allow for positivity checks). 

An Open CAD means the full dimensional cells only. The boundaries may be determined by 
algebraic numbers but because we do not lift over the boundaries there no costly algebraic num-
ber calculations. The idea has been much discussed by McCallum (1993); Strzeboński (2000); 
Wilson et al. (2014), and other names used for it include generic CAD and 1-layered Sub-CAD. 
It was partly applied by the approach in Redlog in Section 3. It is sufficient to solve problems 
which are only in strict inequalities, but of course, that is not the case here. By making this 
restriction we are accepting that our solutions and conclusions are not necessarily valid on cell 
boundaries: a finite number of curve segments in the (k17, k19)-plane. However, we have already 
made such an acceptance, in the use of LRT above. 

We perform the above steps with the ProjectionCAD package of England et al. (2014) in 
Maple8 in 17 seconds. The resulting CAD has 533 cells. 

Step 3: Identify those cells in the upper quadrant of the (k17, k19)-plane. 

6The polynomials may be found online in a machine readable form − see the Research Data Statement at the end of 
the paper. 

7But as described later in Section 10.3 the larger polynomial is the one of interest: the boundary of the multistation-
arity region is actually defined by part of the graph of (27), although there is no reason to conclude that at this stage of 
the analysis. 

8http://computing.coventry.ac.uk/~mengland/ProjectionCAD.html 

21 



We only care about solutions in this upper quadrant. We can easily identify 139 such cells by 
querying sample points (note that no cell can straddle the boundary of the quadrant since the 
CAD produced was also produced sign-invariant for k17 and k19 as polynomials). Since in Step 1 
we ensured that this CAD was built for the projection of the polynomial defining (C.2) we may 
conclude that for this polynomial we can work at a sample point of the cell but draw conclusions 
for the whole cell, as we do next. 

Step 4: Identify the number of positive real roots the polynomial defining (C.2) has over each 
of these cells. 

We do this by substituting for the sample point and applying Maple’s default real root isola-
tion algorithm. We identify 35 of the 139 cells where there are three positive real roots for x5, 
with the other 104 all having one. 

Step 5: Check that these solutions provide a positive solution for x4 via back substitution into 
(C.1). 

We first checked that the 104 cells with one positive real solution for x5 all lead to one positive 
real solution for x4 as expected. We then analyse the 35 cells and each of their three positive real 
solutions for x5 in turn. For 28 of these cells each solution gives a corresponding positive real 
solution for x4. For the other 7 cells, only one of the three solutions does, so these join the other 
104 as representing the parameter space with one solution. 

The semi-algebraic descriptions of these 28 cells provide the exact description of the regions 
in (k17, k19)-space where multistationarity can occur. We use these descriptions to produce the 
4 plots of the multistationarity region in Figures 4 and 5. The 4 images are all produced from 
the data in the 28 cells, but with different plotting regions. In each case, the coloured regions 
represent the cells with multistationarity, with the only purpose of the different colours to show 
the separation of the cells9 . 

The left plot in Figure 4 is for the original range of k19 values considered and has the region 
of multistationarity described by 4 full dimensional CAD cells. The right plot shows that this 
region grows as k19 increases: at this range 9 cells are in view including the 4 from the left plot 
which are at the bottom of the region. 

The left plot of Figure 5 expands the ranges considerably. There are 24 cells in view of the 
range but the original 9 described above are now too small to see. The right plot of Figure 5 
expands the range further to include all 28 cells; with all 24 from the previous image now too 
small to see. In this final image the two cells at the top actually extend infinitely in the k19 

direction while always being bounded on both sides in the k17 direction. 

7. Stability of Fixed Points 

The work described in Section 3−6 was dedicated to identifying where multiple fixed points 
occur. This alone does not prove multistationarity as we must also check the stability properties 
of these fixed points. 

We may use the three linear conservation constraint equations (3) to eliminate x1, x7, and x11 

from system (1) and symbolically compute the Jacobian J̃ of the obtained reduced system. We 

9Because we produced an Open CAD above we cannot formally conclude what happens on these cell boundaries. 
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Figure 4: Visualisations of the Open CAD cells describing the multistationarity region derived in Section 6 for smaller 
values of k17 and k19. 

Figure 5: Visualisations of the Open CAD cells describing the multistationarity region derived in Section 6 for larger 
values of k17 and k19. 
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can then numerically compute the eigenvalues of J̃  for the instances arising from the substitution 
of the parameter values and the different positive fixed points for the variables. 

(200) with k19We have used the float approximations for the unique solution x = 
(500) (500) (200)three solutions x ,  . . . ,  x for k19 = 500 in Table 1. For the single positive fixed point x1 3 

the Jacobian J̃(x(200)) has eigenvalues with negative real part only and hence can be shown to be 
(500)stable. For k19 = 500 one of the three positive fixed points x2 

(500)as J̃(x ) has one eigenvalue with positive real part; the other seven had negative real parts. In 2 
(500) (500)contrast x1 and x3 can be shown to be stable. Hence for k19 = 

bistable. 
A verification of the stability of the fixed points using exact real algebraic numbers by the 

well-known Routh–Hurwitz criterion is possible algorithmically (Hong et al., 1997), but seems 
to be out of range of current methods for this example. Notice that in other studies on multista-
tionarity of signaling pathways, such as those of Conradi et al. (2008) and Gross et al. (2016b), 
the question of stability has also been left to one side. 

8. Another MAPK Model 

We describe a second MAPK model, which we will use alongside the first from Section 2 in 

200 and the 

can be shown to be unstable, 

500 the system is indeed 

the remaining sections, to broaden the conclusions drawn. 

8.1. MAPK Bio-Model 28 

The system with number 28 in the BioModels Database is given by the following set of 
differential equations. This model is the distributive fully random kinetics version of the models 
proposed by Markevich et al. (2004). Hereafter we refer to it as Model 28. Again, we have 
renamed the species to x1, . . . , x16 and the rate constants to k1, . . . , k27 to facilitate reading: 

ẋ1 = k2 x9 + k8 x10 + k21 x15 + k26 x16 

−k1 x1 x5 − k7 x1 x5 − k22 x1 x6 − k27 x1 x6 

ẋ2 = k3 x9 + k5 x7 + k24 x12 − k4 x2 x5 − k23 x2 x6 

ẋ3 = k9 x10 + k11 x8 + k16 x13 + k19 x14 − k10 x3 x5 − k17 x3 x6 − k18 x3 x6 

ẋ4 = k6 x7 + k12 x8 + k14 x11 − k13 x4 x6 

ẋ5 = k2 x9 + k3 x9 + k5 x7 + k6 x7 + k8 x10 + k9 x10 + k11 x8 + k12 x8 − 

k1 x1 x5 − k4 x2 x5 − k7 x1 x5 − k10 x3 x5 

ẋ6 = k14 x11 + k16 x13 + k19 x14 + k21 x15 + k24 x12 + k26 x16 − 

k13 x4 x6 − k17 x3 x6 − k18 x3 x6 − k22 x1 x6 − k23 x2 x6 − k27 x1 x6 

ẋ7 = k4 x2 x5 − k6 x7 − k5 x7 

ẋ8 = k10 x3 x5 − k12 x8 − k11 x8 

ẋ9 = k1 x1 x5 − k3 x9 − k2 x9 

ẋ10 = k7 x1 x5 − k9 x10 − k8 x10 

ẋ11 = k13 x4 x6 − k15 x11 − k14 x11 

ẋ12 = k23 x2 x6 − k25 x12 − k24 x12 

ẋ13 = k15 x11 − k16 x13 + k17 x3 x6 
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ẋ14 = k18 x3 x6 − k20 x14 − k19 x14 

ẋ15 = k20 x14 − k21 x15 + k22 x1 x6 

ẋ16 = k25 x12 − k26 x16 + k27 x1 x6 (28) 

We denote by (28) the system formed by replacing all left hand sides of (28) by 0. 
The estimates of the rate constants given in the BioModels Database are: 

k1 = 0.005, k2 = 1, k3 = 1.08, k4 = 0.025, 
k5 = 1, k6 = 0.007, k7 = 0.05, k8 = 1, 
k9 = 0.008, k10 = 0.005, k11 = 1, k12 = 0.45, 

k13 = 0.045, k14 = 1, k15 = 0.092, k16 = 1, 
k17 = 0.01, k18 = 0.01, k19 = 1, k20 = 0.5, 
k21 = 0.086, k22 = 0.0011, k23 = 0.01, k24 = 1, 
k25 = 0.47, k26 = 0.14, k27 = 0.0018. (29) 

Again, using the left-null space of the stoichiometric matrix under positive conditions as a con-
servation constraint (Famili and Palsson, 2003) we obtain the following three linear conservation 
constraints: 

x6 + x11 + x12 + x13 + x14 + x15 + x16 = k28, 

x5 + x7 + x8 + x9 + x10 = k29, 

x1 + x2 + x3 + x4 + x7 + x8 + x9 + x10 + x11 + 

x12 + x13 + x14 + x15 + x16 = k30, (30) 

where k28, k29, k30 are new constants. Meaningful values for these three are harder to obtain than 
the constants in (2). The following are some realistic value estimates: 

k28 = 100, k29 = 180, k30 = 800. (31) 

Ideally we would treat all three symbolically and identify multistationarity within (k28, k29, k30) 
parameter space. 

8.2. Preprocessing 

We may apply the preprocessing procedure outlined in Section 5 to (28) and the positivity 
constrains similarly to as described in Section 5 for Model 26. The connection graph is given in 
Figure 6 showing that {x5, x6} as a minimum vertex cover. We obtain the simplified system: 

3796549898085k29 x5 x6 + 71063292573000k29 x
3 3 

5 

+106615407090630k29 x5 x6 + 479383905861000k29 x5 x6 
2 2 2 

+299076127852260k29 x5 x6 + 3505609439955600k29 x5 x
3 2 

6 

+91244417457024k29 x6 + 3557586742819200k29 x
4 3 

6 

−598701732300k30 x5 x6 − 83232870778950k30 x5 x
3 2 2 

6 
3 4−185019487578700k30 x5 x6 − 3796549898085x5 x6 

4 3 2−71063292573000x5 − 106615407090630x5 x6 
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x4 x6 

x1 

x3 x5 

x7 x8 x9 

x10 x11 x12 x13 

x2 x14 x15 x16 

Figure 6: The graph for (28) produced according to the techniques setout in Section 5. Despite being a larger system 
the minimum vertex cover {x5, x6} is still small. All other variables form a maximum independent set, which can be 
eliminated with linear methods. 
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along with positivity constraints x6 > 0, x5 > 0, k30 > 0, k29 > 0, and k28 > 0. 

9. Grid Sampling: Symbolic vs Numeric 

In this section we summarise work that was first presented in CASC 2017 (England et al., 
2017) which compared the use of symbolic and numeric techniques to identify multistationary 
regions via grid sampling. 

9.1. Algorithms and Software 

In this section we will use Symbolic Grid Sampling: so we have results only for a set of 
numerical sample points, but each sample point will undergo a symbolic computation. The 
result will still be an approximate identification of the region, since the sampling will be finite, 
but the results at those sample points will be guaranteed free of numerical errors. The symbolic 
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computations follow exactly the strategy introduced in Section 4 except each sample point will 
set all parameters (rather than leaving one free) meaning a simpler symbolic computation than 
in Section 4 performed multiple times. In particular, with no free parameters the Lazy variant of 
Real Triangularization (LRT) used in Section 4 gives the full solution (no laziness) as we would 
get from Real Triangularization (RT) and so we just use the latter. 

We will compare this symbolic grid sampling with a fully numerical gird sampling approach 
using the homotopy solver Bertini developed by Bates et al. (2013), in its standard configuration 
to compute complex roots. Alternatives to Bertini include PHCpack by Verschelde (2011) and the 
Numerical Algebraic Geometry package for Macaulay2 by Leykin (2011). Reasons for choosing 
Bertini include that it is the most cited homotopy solver for the past 8 years and that it allows 
adaptive and very high-precision arithmetic (whereas PHCpack only allows double-double)10 . 
We parsed the output of Bertini using Python, and determined numerically which of the complex 
roots are real and positive using a threshold of 10−6 for positivity. 

Bertini computations (v1.5.1) were carried out on a Linux 64 bit Desktop PC with Intel i7. 
Maple computations (v2016 with April 2017 Regular Chains) were carried out on a Windows 7 
64 bit Desktop PC with Intel i5. 

Software Remark 2. For the reduced system of Model 28 Bertini (incorrectly) could not find 
any roots, not even complex ones, for any of the parameter settings. The situation did not change 
when going from adaptive precision to a very high fixed precision. However, we have not at-
tempted more sophisticated techniques like providing user homotopies. It seems a bug in Bertini 
has been triggered by this problem instance. It has been reported to the developers. 

9.2. Sample Ranges and Plots 

For Model 26 we will use a sampling range for k19 from 200 to 1000 by 50; for k17 from 80 
to 200 by 10; and for k18 from 5 to 75 by 5.  

For Model 28 we will use a sampling range for k30 from 100 to 1600 by 100; for k28 from 40 
to 160 by 10; and for k29 from 120 to 240 by 10. 

We produce 2d plots in each case with the third parameter fixed to its values indicated in 
(4) and (31). In those plots we will colour sample points according to the number of fixed 
points observed: yellow discs indicate one fixed point and blue boxes three. Diamonds indicate 
numerical errors where zero (red) or two (green) fixed states were identified. 

9.3. Results and Comparison 

The plots produced by the grid sampling are presented in Figures 7−10; and the time taken 
to produce them is summarised in Table 2. 

9.3.1. Comparison of models 
Model 28 forms a larger real algebraic problem than Model 26, 16 variables and equations 

rather than 11, so it unsurprising that it takes longer to perform computations. 
Regarding the symbolic computations: Model 28 requires an actual CAD of a plane to be 

produced for each sample point while Model 26 only real root isolation (decomposition of a line). 

10We note that a recent development for Bertini published after this article was in press could be applicable to this 
problem: Paramotopy by Bates et al. (2018) allows for parallelism and computation reuse, well suited for such grid 
sampling. 
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This was the case regardless of whether the original or reduced system was used as the starting 
point, since the RT preprocessing also reduced the number of variables that needed analysis by 
CAD. We note that even with the reduced system it was still beneficial to pre-process CAD with 
RT: the average time per sample point with pre-processing (and including time taken to pre-
process) was 0.485 seconds while without it was 3.577 seconds. It is not clear if this is because 
of a genuine simplification or because the CAD algorithm from the Regular Chains Library that 
we used it particularly tuned for triangular systems. 

9.3.2. Effects of the pre-processing in Section 5 
Figure 7 and Figure 8 both refer to Model 26. The latter is produced by Maple’s symbolic 

calculations and so guaranteed free of numerical error. The former, Figure 7, represents the 
output of Bertini on the original system. We see that there are numerous numerical errors present: 
the rouge red and green diamonds in Figure 7. We find that when computing with the reduced 

0.905 

system rather than the original system Bertini was able to to avoid all these errors, producing the 
same plots as Maple in Figure 8. 

With Model 28 we see similar numerical errors from Bertini in Figure 9 when compared 
with Maple in Figure 10. However, in the case of Model 28 the reduction led to catastrophic 
effects for Bertini: built-in heuristics quickly (and incorrectly) concluded that there are no zero 
dimensional solutions for the system, and when switching to a positive dimensional run also no 
solutions could be found. 

From the timing data in Table 2 we see that both Bertini and Maple benefited from the reduced 
system: For Model 26 Bertini took a third of the original time while Maple took a tenth of the 
original. For Model 28 the speed-up enjoyed by the symbolic method from the pre-processing 
was even greater: almost 100 fold! 

9.3.3. Symbolic vs Numerical 
As described above, we have observed numerous numerical errors when using Bertini which 

may avoided with the symbolic computations of Maple. However, they can also be avoided (at 
least for Model 26) by using the pre-processing technique described in Section 5. 

However, and surprisingly, for Model 26 the symbolic methods were actually quicker than 
the numerical ones. The symbolic methods used are well known for their doubly exponential 
computational complexity (in the number of variables) so it is not necessary surprising that as 
the system size increases the results of the comparison would change. For Model 28 we have the 
expected outcome of the numerical calculations being quicker. 

Table 2: Timing data (in seconds) of the grid samplings described in Section 9. Numerical is using Bertini and Symbolic 
the Regular Chains Library for Maple. 

Numerical Symbolic 
Model Mean Mean Median StdDev Maximum 
26 – Original 2.4 0.568 0.530 0.107 
26 – Reduced 0.85 0.053 0.047 0.036 0.343 
28 – Original 16.57 42.430 40.529 8.632 84.116 
28 – Reduced ⊥ 0.485 0.468 0.119 0.796 
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Figure 7: Plots illustrating the result of Bertini’s grid sampling on the original version of Model 26. 

Figure 8: Plots illustrating the result of Bertini’s numerical grid sampling on the reduced version of Model 26. These 
are also identical to those plots produced by Maple’s symbolic grid sampling of Model 26 (both original and reduced 
versions). 

29 



Figure 9: Plots illustrating the result of Bertini’s grid sampling on the original version of Model 28. 

Figure 10: Plots illustrating the result of Maple’s symbolic grid sampling on Model 28 (both original and reduced 
versions). 
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We can see some other statistical data for the timings in Maple: the standard deviation for 

with the image in the original paper of Markevich et al. (2004) (Fig. S7). 

the timings is fairly modest but in each row there are large outliers and so the median is always 
a little less than the mean average. 

9.4. Higher Sampling Rates 
Of course, the grid sampling described in this section scales directly with the number of 

sample points, so we can easily produce plots with higher sampling rates such as those shown 
later in Figure 11. 

Figure 11: Higher sampling rate for symbolic grid sampling of Model 26. 

10. Going Further 

The work presented is a substantial step forward but there is a wide range of directions for 
future work. 

10.1. Solution in 3-parameter Space 
The complexity of the fully symbolic approaches puts a complete analysis over this space out 

of reach (for now). However, the grid-sampling method of Section 9 can already be extended into 
3 parameters with relative ease: at a cost linearly proportional to the increased number of sample 
points. This was completed for Model 26, where the multistationarity region is bounded on both 
sides in the k17 and k18 directions but extends infinitely above in k19. For example, with the k19 

range bound at 1000 the region is bounded by extending k17 to 800 and k18 to 600. With a sample 
rate of 20 for k17 and k18 and 50 for k19 we have produced a Maple point plot of 20,400 points in 
18 minutes. Figure 12 shows 2D captures of the 3D plot of the bistable points only. Figure 13 
gives two views of the convex hull of the bistable points in Figure 12. This was produced using 
the convex package11. We note the lens shape seen in the orientation in the left plot is comparable 

11http://www.math.uwo.ca/~mfranz/convex/ 
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Figure 12: 3D Maple Point Plot produced grid sampling on Model 26. 

Figure 13: Convex Hull of the bistable points in Figure 12 for Model 26 
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10.2. Effect of Other Parameters 
Our work has focussed on understanding the behaviour of the system in the 3-parameter space 

(k17, k18, k19) but as described in Section 2 there are many other parameters for which we simply 
took the values from the BioModels Database. While there is confidence in the accuracy of these 
values, an important question for future work is the stability of the approaches we present to 
small perturbations in these values. 

10.3. Conjecture for Semi-algebraic Solutions without CAD 
All our semi-algebraic calculations used CAD as the backend to produce solutions, although 

after considerable simplification of the input. CAD is the most expensive technology employed 
by a significant margin. Its doubly exponential theoretical complexity is felt clearly in practice 
and so will be a barrier to studying larger parameter spaces or models. However, the results of 
Sections 4 and 6 hint that the solution could be available without CAD. 

Recall from Section 4 that with one free-parameter the key break point in parameter space 
between 1 and 3 fixed points was determined by a real root of (8), one of the univariate polyno-
mials whose roots were excluded from the validity of the LRT solution component. Similarly, 
studying the 28 cells where multistationarity could occur identified in Section 6 shows that the 
key region was also identified by the polynomial defining one of the graphs where LRT’s solution 
component was not valid. Figures 14 and 15 give numerical plots of the polynomial (27), the 
former on smaller ranges and the latter on larger. The images on the right focus on the upper 
quadrant of interest and should be compared with Figures 4 and 5 of the exact multistationarity 
region. It is clear that (27) provides the boundary of this region. However, as the images on the 
left show, it is only one segment of the graph of this polynomial that is of interest. 

Of course, this is just an observation. We have yet to derive a proof that this would always be 
identified by LRT. Even if it were there would still be things to clarify: 

• Which polynomial from the several that LRT uses to define excluded regions is the one of 
interest? Recall from Section 4 that as well as (8) LRT identified two further polynomials 
in (22) and (23); while in Section LRT identified not only (27) but also (26). 

• Which portion of the graph forms the boundary? The graph of (27) is a superset of the 
boundary. Even, when restricting our view to the positive quadrant (plot on the right of 
Figure 14) there is a second curve segment that does not have relevance to the application. 

Nevertheless, we have identified a promising conjecture for continued study. At the least it gives 
useful insight on where to look for multistationarity without employing CAD. For example, it 
could direct future application of detailed grid sampling. 

11. Summary and Final Thoughts 

11.1. Summary 
We have considered the problem of identifying regions of multistationarity in models of bi-

ological networks, an important problem with potentially clinical applications. We have investi-
gated a variety of symbolic approaches encompassing multiple algorithms and computer algebra 
systems. We have derived semi-algebraic solution formulae and region descriptions for a classic 
MAPK model; as well as demonstrating the utility of symbolic-numeric grid sampling. We have 
drawn together the work first presented at conferences in 2017 (Bradford et al., 2017; England 
et al., 2017) and extended it to give solutions over a 2-parameter space not previously published 
and a conjecture on where future progress may come from. 
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Figure 14: Numerical plot of the graph of polynomial (27) on smaller ranges. 

Figure 15: Numerical plot of the graph of polynomial (27) on larger ranges. 
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11.2. Final Thoughts 

We hope this work will inspire further study on the application of symbolic tools to biological 
network analysis, from both communities. Indeed, work on developing Mathematica tools for 
such problems has now been undertaken by Lichtblau (2017), inspired by Bradford et al. (2017) 
but based on tools for discriminant varieties not considered there. The study of such real world 
problems is of great benefit not only to the application domains but also to the software devel-
opers: these MAPK studies uncovered bugs in both Regular Chains (see Software Remark 1 in 
Section 4.1) and Bertini (see Software Remark 2 in Section 9.1) which had escaped the numerous 
other tests and applications of those algorithms. 

Key areas of future study include the sensitivity of the analysis to variations in the other 
parameters (Section 10.2) and the conjecture described in Section 10.3. Additional areas to in-
vestigate could include the various degrees of freedom with the algorithms used. For example, we 
have a free choice of variable ordering: Model 26 has 11 variables corresponding to 39 916 800 
possible orderings while Model 28 has 16 variables corresponding to more than 1013 orderings! 
Heuristics that exist to help with this choice, such as those of Dolzmann et al. (2004); Bradford 
et al. (2013), could not discriminate between the orderings on offer, even though the orderings 
do make a difference to the computation. Recent work on using machine learning to make such 
choice by Huang et al. (2014, 2016, 2019) may be applicable. Also, since MAPK problems 
contain many equational constraints an approach as described by England et al. (2015) may be 
applicable for the higher dimensional CADs required to study more parameters. 

Semi-algebraic solutions over 3-parameter space is out of reach at the time of writing. We 
note however that instances like MAPK were until recently thought out of reach of symbolic com-
putation altogether, and while writing the ISSAC 2017 contribution we thought the 2-parameter 
case of Section 6 out of reach. So further progress will surely follow. 
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Appendix A. Defining Polynomial of the Section 3 Break Point 

In Section 3.3 a break point where the system moved from 1 to 3 positive real solutions was 
discovered at around k19 = 409.253. The exact point is an algebraic number defined as the only 
real zero of a polynomial 

�10 
i=0 cik

i with coefficients as below. Note that the coefficients are too 19 
large to fit on a single line: the line breaks between digits should be read as a continuation of the 
single coefficient description rather than anything else. 

c10 = 351590934502740290936895033267017158736060313940693076650 

155371250411 

c9 = −2136990728521576742839975277463955832730339831704260805 

74800781989093156 

c8 = 253748516412205547742596056350534694325821098839650158040 

77119110958034090 

c7 = 129724930183000227070276392678042592512359916180298528803 

30004508564391594000 

c6 = −8468945963692802414226427249726123493448372439778349029 

355636316929687020660000 

c5 = 223109827033740645067030166317266433342144083387584862142 

3683265663846533079600000 

c4 = −37626500890411225829031917319379205201489948552899492596 

5885895511831873444245100000 

c3 = 3926210154879086940705799498532015650096895836139617890818 

0026842806643766783104000000 

c2 = −249262399074302923497435408127029610630960346245151705777 

9877596842448287799337600000000 

c1 = 70978850735887473459176997186175978425873267246760023212940 

616924643171868478080000000000 

c0 = −106287119283898587694807711492389820499043413890149539483 

4749613184670362810368000000000000 

Appendix B. Polynomial f (x1, k19) from Section 4.1.1 

In Section 4 we described the application of LRT to (7). The main solution component 
provided the formulae 9−18 and required that f (x1, k19) = i=0 di x = 0 where the coefficients

�6 i 
1 

di are as given below. 

d6 = 16838105723097694257603469 

d5 = −24078605201553273505077988k19 + 7723967969644977896148686580 

d4 = 8176202638735769127032169k2 
19 − 7723411665463544477701499460k19 

36 



+ 1232154357941338876156606812900 

d3 = 1465408757440589841803452380k2 
19 

− 798169557586805582842481309800k19 

+ 83152655240002767729550477640000 

d2 = 85462524901276846107251669400k2 
19 

− 35266411401427656834572095140000k19 

+ 2556805354853318332197489636000000 

d1 = 1631685649719702672282505500000k2 
19 

− 721989571100461862477342320000000k19 

+ 28843755938318780823218400000000000 

d0 = −7013104139459910876520500000000000k19. 

Appendix C. Evaluated LRT Solution Component from Section 6 

In Section 6.1 we applied LRT to (25) to simplify that reduced system further before applying 
CAD. The evaluated solution component consisted of the positivity conditions x4 > 0, x5 > 
0, k17 > 0, k19 > 0 and the two following equations. 

 4333770827232x5 + (3404343829252k17 − 6863249873129k19 

3− 106111961633240)x5 + (−3738114656484k2 
17 + 7455351062094k17k19 

(C.1) 

5 
5 

+ (1810515745366146214k2 

− 3717236405610k2 
19 + 271801037104280k17 − 114254579857600k19 

− 831673402560000)x2 
5 + (−165689075471040k2 

17 

+ 165225032754600k17k19 + 2667668498040000k17 − 129311541450000k19 

− 2873589810000000)x5 − 1835995095480000k2 
17 

+ 2873589810000000k17 
� 
x4 + 2261223222841x5 

5 + (−2274797538607k17 

+ 2274721722856k19 + 174844014037860)x5 + (13574315766k24 
17 

− 27072815781k17k19 + 13498500015k2 
19 − 176205245392020k17 

− 883400777350k19 + 6648403506290000)x5 + (1361231354160k23 
17 

− 1355303940900k17k19 − 6671855445710000k17 + 6724440511425000k19 

+ 149432011365000000)x5 + (23451939420000k22 
17 

− 149432011365000000k17)x5 = 0 

487656080889027413x5 + (−1352408212353388839k17 
6 

+ 2227511326365959821k19 + 97141513552593345960)x

17 − 4490852292185431392k17k19 

+ 2680336546819285178k2 
19 − 220676803454346691680k17 
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4+ 166893970054477098860k19 + 6819142839866322930800)x5 

+ (−945763613901784788k3 
17k1917 + 2832008529145922346k2 

− 2826726216586490328k17k2 
19 + 940481301342352770k3 

19 

+ 239398211250170709480k2 
17 − 397099010517367066520k17k19 

+ 89401058522195274400k2 
19 − 14716205773190097360400k17 

+ 8313128696476184347000k19 + 308330512782039741800000)x3 
5 

+ (−115862921348417363760k3 
17 + 231195450091661030160k2 

17k19 

− 115332528743243666400k17k2 
19 + 11639096756278536898400k2 

17 

− 8542395106508656744000k17k19 + 523361626689201300000k2 
19 

− 420660564631403190200000k17 + 15948686720945888000000k19 

+ 5159677297706895600000000)x2 
5 + (−3742033822954762468800k3 

17 

+ 3732854354558173572000k2 
17k19 + 148648818114128214000000k2 

17 

− 26235555941563878000000k17k19 − 5484239465944512000000000k17 

+ 5101447069138124250000000k19 + 113365490425291650000000000)x5 

− 36318766264764765600000k3 
17 + 324562168237616400000000k2 

17 

− 113365490425291650000000000k17 = 0 (C.2) 
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Schuster, S., Höfer, T., 1991. Determining all extreme semi-positive conservation relations in chemical reaction systems: 

a test criterion for conservativity. J. Chem. Soc. Faraday T. 87 (16), 2561–2566. 
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