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Abstract 

Heavy-duty CNC machines are important equipment in manufacturing large-scale and high-end 

products. During the machining processes, a significant amount of heat is generated to bring working 

temperatures rising, which leads to deformation of machine elements and further machining inaccuracy. In 

recent years, data-driven approaches for predicting thermal errors have been actively developed to 

adaptively compensate the errors on the fly to improve machining accuracy. However, it is challenging to 

adopting the approaches to support heavy-duty CNC machines due to their low efficiency in processing 

large-volume thermal data. To tackle the issue, this paper presents a new system for thermal error prediction 

on heavy-duty CNC machines enabled by a Long Short-Term Memory (LSTM) networks and a fog-cloud 

architecture. Innovative characteristics of the system include the following aspects: (1) data-based 

modelling is augmented with physics-based modelling to optimise the number/locations of thermal sensors 

deployed onto machine elements and minimise excessive data to facilitate computation; (2) a LSTM 

networks with a data pre-processor is developed for modelling thermal errors more effectively in terms of 

prediction accuracy and computational efficiency; (3) A fog-cloud architecture is designed to optimise the 

volume of transferred data and overcome low latency of the system. The system was validated using an 

industrial heavy-duty CNC machine. Practical case studies show that the system reduced the volume of 

transmitted data for 52.63% and improved the machining accuracy for 46.53%, in comparison with the 

processes without using the designed system. 
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1. Introduction 

Heavy-duty CNC machines are highly demanded in some important applications for manufacturing 

large-scale and high-end products, such as steam turbines, large nuclear pumps, marine propellers, and 

large aircraft wings (Huang et al., 2015). For machining processes conducted on heavy-duty CNC machines, 

precision is an essential technical requirement. It is paramount to develop effective error prediction 

modelling and then compensation technologies to minimise machining errors. The thermal error is a 

principal one accounting for about 40% – 70% of the total machining errors (Bryan, 1990). It is caused by 

heat and temperature rising during machining processes, leading to deformation of machine elements and 

further machining inaccuracy (Blaser et al., 2017). There are mainly two types of heat sources generating 

thermal errors: (1) internal sources - heat is generated from cutting, friction and moving processes of 

machine elements; (2) external sources - heat is related to surrounding environmental temperature 

variations. To improve machining accuracy for heavy-duty CNC machines, it is prominent to develop an 

effective model for thermal error prediction, which can represent relationships between heat sources and 

the impact on thermal errors. Based on the model, an appropriate compensation strategy can be further 

developed to enhance the overall machining accuracy. 

In the past, physics-based modelling has been actively investigated to predict thermal errors for CNC 

machine systems (Huang and Hoshi, 2001; Li et al., 2015). In the modelling process, physical mechanisms 

of machining elements are established. Finite Element Method (FEM), Finite Difference Method (FDM), 

or Finite Difference Element Method (FDEM), is then applied to establish thermal deformation fields of 

machine elements. However, due to the large-scale structures and dynamic operation environments of 

heavy-duty CNC machines, it is challenging to developing accurate physical mechanisms for analysing and 

predicting thermal errors preciously. In recent years, data-based modelling has been actively explored as 

an increasingly popular solution for thermal error prediction. By leveraging the latest deep learning 

technologies, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

thermal error related features can be mined from a large volume of thermal data collected from machine 

elements through deployed sensors. In comparison with physics-based modelling, data-based modelling is 



more flexible and accurate in supporting the machining processes conducted through heavy-duty CNC 

machines. 

However, data-based modelling could be severely hindered by the less efficient processes of collecting 

and handling large-volume thermal data. To mitigate the challenge, this paper presents an improved data-

driven system for thermal error prediction on heavy-duty CNC machines. Innovative characteristics of the 

research are given below: 

• A large number of thermal sensors is required to install into the large-scale structure of a heavy-duty 

machine in order to collect sufficient data for accurate thermal modelling. Nevertheless, sensors could 

be excessively deployed to generate redundant data if without an appropriate installation guidance 

provided. To optimise the number of deployed sensors and minimise excessive data, this research is 

innovative in integrating physics-based modelling to facilitate data-based modelling. That is, FEA is 

conducted based on the structure of a heavy-duty CNC machine and its heat sources. The results of FEA, 

which show the heat distributions over the entire structure of the heavy-duty machine, provide sensible 

instructions to minimise unnecessary sensors and data; 

• Meanwhile, it is essential to design a more effective deep learning algorithm for predicting thermal 

errors on machines. The LSTM networks, which is an improved RNNs, is robust for time-series data 

processing and relatively insensitive to unknown gap lengths in the data. Based on the characteristic, in 

this research, a LSTM networks is designed to build the relationship between key heat sources and the 

thermal deformation fields of machine elements for thermal error prediction. This LSTM design is 

justified by benchmarking with different LSTM designs and other intelligent algorithms. Furthermore, 

to reduce data collinearity and computational workloads to better support the LSTM, an improved Grey 

Relational Analysis (iGRA) is developed to pre-process thermal data; 

• A cloud architecture with associated computational resources on a cloud server is a popular solution to 

support data-based modelling. However, the efficiency of communicating monitored data could be 

seriously affected by the limited bandwidth and high latency of the industrial Internet. In this research, 

a fog-cloud architecture based on the “divide-and-conquer” strategy is designed to tackle the issue. In 

the new architecture, iGRA-based data pre-processing and LSTM-based prediction modelling are 



conducted locally on a fog layer to expedite decision making. FEA and LSTM training, which are 

computationally intensive activities, are processed on a cloud layer to leverage its computational 

resources. Quantitative analyses are conducted to showcase the advantage of the fog-cloud design for 

thermal error prediction of heavy-duty machines. 

In this paper, the developed system was validated using a heavy-duty CNC machine namely ZK5540, 

which was made by the Wuhan Heavy Duty Machine Tool Group Corporation. Industrial case studies 

demonstrated that, by adopting the system, the volume of transmitted data was minimised by 52.63% and 

the thermal errors were reduced by 46.53%, in comparison with processes without using the developed 

system. Based on the case studies and benchmarking analyses, the benefit of adopting the system in terms 

of data processing efficiency and machining accuracy improvement is clearly exhibited. 

The rest of the paper is organised as follows: In Section 2, related works are reviewed. In Section 3, 

research methodologies and system design are discussed. In Section 4, system deployment and case studies 

are presented. In Section 5, conclusions are drawn and future research directions are outlined. 

2. Related Work Review 

2.1 Data-based modelling for thermal error prediction 

According to the survey by Liu et al. (2018) and Li et al. (2019), data-based modelling for thermal error 

prediction has been becoming an increasingly popular approach. There are usually two main steps to build 

a data-based thermal model: (1) to optimise deployment points of sensors, and (2) to develop thermal error 

prediction models. Miao et al. (2015) developed a principal component regression algorithm to remove data 

points with collinearity relationships. Cheng et al. (2015) proposed a grey system theory to analyse the data 

similarity among temperature sensors. Based on the analysis, sensors mostly sensitive to heat were selected. 

Case studies demonstrated the temperature sensors were decreased from 24 to 7 after this analysis. 

Abdulshahed et al. (2015) proposed a method based on grey modelling and fuzzy c-means clustering to 

determine key temperature points on machines. 525 discrete spots were classified into 8 groups for further 

modelling and data minimisation. Liu et al. (2015) designed an optimal selection method of temperature-

sensitive measuring points. In the method, the degree of temperature sensitivity was defined and used to 

select measuring points with high sensitivity to thermal error. The selected points were then classified with 



fuzzy clustering and grey correlation grades, and temperature-sensitive measuring points were selected 

based on the analysis of temperature sensor locations. Results showed that the number of the measuring 

points was reduced from 27 to 5 by using the method. Abdulshahed et al. (2016) utilised grey system models 

and a grey neural network model to predict the thermal error of a gantry-type 5-axis machine tool. The grey 

system models can transform original data to a monotonic series of data, so that the randomness of data can 

be reduced. A particle swarm optimisation algorithm was designed to optimise the parameters of the grey 

neural network model. The method was tested and 85% thermal error reduction after compensation was 

achieved. Ma et al. (2016) developed the genetic algorithm and particle swarm optimisation algorithm to 

optimise the parameters of an artificial neural networks to build up a thermal error prediction model. The 

model was tested to show effectiveness in the aspects of accuracy, convergence performance and robustness. 

Li et al. (2017) devised a clustering method to select the most suitable sensor points for data analysis. Li et 

al. (2019) developed a thermal error prediction model based on a hybrid particle swarm optimisation and 

artificial neural network. Temperature measurement points were clustered by a SOM neural network, and 

an analysis was conducted to explore the correlation between the thermal sensitive points and the thermal 

error. Fujishima et al. (2019) developed a novel thermal displacement compensation method using a deep 

learning algorithm. In the algorithm, reliability of thermal displacement prediction was evaluated and 

compensation weights were adjusted adaptively. Yao et al. (2020) designed an optimal composite model 

(OM) for modelling spindle thermal error prediction. The grey model and the least squares support vector 

machine (LS-SVM) were used to establish the thermal error prediction model. Then, the OM model was 

used to adjust the weighting coefficients of LS-SVM to fine-tune the prediction model based on practical 

thermal error data. The above works are also summarised in Table 1. 

Table 1: A brief summary of some research works of data-based modelling for thermal error prediction. 

Research Functions Intelligent algorithms 

Miao et al. (2015) 
To remove data points with collinearity 

relationship 

Principal component regression 

algorithm 

Cheng et al. (2015) 
To remove data points by analysing data 

similarity among temperature sensors 
Grey system theory 

Abdulshahed et al. (2015) To determine key temperature points 
Grey modelling and fuzzy c-means 

clustering 

Liu et al. (2015) 
To remove data points by analysing data 

similarity among temperature sensors 

Fuzzy clustering and grey 

correlation grade 

Abdulshahed et al. (2016) 
Transform original data to a monotonic 

series of data and predict thermal error 

Grey system models and Grey 

Neural Network Model 



Ma et al. (2016) Thermal error prediction modelling 

Genetic algorithm, particle swarm 

optimisation, artificial neural 

networks 

Li et al. (2017) 
To select the most suitable sensor points for 

data analysis 
Fuzzy clustering 

Li et al. (2019) Thermal error prediction modelling 
Hybrid particle swarm optimisation 

and artificial neural networks 

Fujishima et al. (2019) Thermal displacement compensation A deep learning algorithm 

Yao et al. (2020) Thermal error prediction modelling 

Grey model and the least squares 

support vector machine, composite 

model 

The aforementioned methods for sensor point selection are based on correlation analysis of collected 

data to reduce redundant sensors. On the other hand, for heavy-duty CNC machines, it is challenging to 

deciding initially deployed sensor points to create a suitable initial dataset for further optimisation. Trials 

are usually expensive and therefore a guidance on initially deployed points is required. Nevertheless, 

limited research was conducted in this area. 

2.2 LSTM networks for data-based manufacturing applications 

Owing to the advantage of effectively solving the common problem of “vanishing/exploding gradients” 

in deep learning and revealing patterns for time-series data, the LSTM networks for data-based 

manufacturing applications has been widely researched (Qu et al., 2018; Chen et al., 2020). Zhang et al. 

(2018) designed a LSTM networks for machine remaining life prediction. Li et al. (2018) proposed a 

Quantum weighted LSTM networks to predict degradation trend of rotating machinery. In the research, the 

minimum prediction error using the LSTM networks proved to be 1.54% while other comparative 

algorithms such as RNNs and Support Vector Machine (SVM) were more than 1.90% in prediction error. 

Yang et al. (2019) developed a LSTM networks to detect and isolate faults for electro-mechanical actuators. 

The method achieved accuracy for more than 99% and good robustness, while other algorithm such as SVM 

was 94.4% in accuracy. An et al. (2020) designed data-driven modelling for remaining useful life prediction 

for machining cutters using a convolutional and stacked LSTM networks. The prediction accuracy of the 

proposed method was up to 90% in comparison with 86% accuracy using CNNs. Xia et al. (2020) proposed 

an ensemble framework based on convolutional bi-directional LSTM networks to predict remaining useful 

life of machine tools, and the proposed method was tested with multiple datasets to demonstrate the accurate 

and robust prediction performance of the designed LSTM. The Root Mean Square Error (RMSE) can 



achieve 12.66, and other algorithms such as Deep Neural Networks (DNNs) and CNNs can achieve 19.05 

and 15.50, respectively. Liu and Zhu (2020) developed a two-stage approach for predicting the remaining 

useful life of machine tools utilising a bidirectional LSTM network. The developed method was compared 

with different algorithms, such as Support Vector Machine (SVM) and decision tree, for benchmarking. 

The proposed method achieved 4.18% in the Mean Absolute Percentage Error (MAPE), which was the 

lowest compared to 7.16%, 6.29 and 7.08% achieved by using the decision tree, SVM and boosted tree 

respectively.  

The above research works have proved that LSTM exhibits good performance in comparison with other 

comparative algorithms especially in processing time-series data. It is therefore worth exploring how to 

design an appropriate LSTM networks to facilitate heavy-duty machine applications. Meanwhile, the data 

collinearity issue for input would degrade the performance of LSTM, thereby inspiring design of a sensible 

strategy to further improve the performance of the LSTM networks for manufacturing applications.  

2.3 Information architecture for data-based modelling 

For data-based modelling to support heavy-duty CNC machines, thermal data are usually collected and 

transmitted to a cloud server for training and applying intelligent algorithms. However, based on the limited 

bandwidth of the industrial Internet in manufacturing companies, data transmission could be severely 

congested due to the heavy data traffic from sensors deployed on machine elements to a cloud server. To 

expedite system efficiency, a fog (From cOre to edGe) computing model has been actively to adopt a 

“divide-and-conquer” strategy in avoiding low latency of data transmission (Hu et al., 2017; Tao et al., 

2018; Bellavista et al., 2019). A fog model consists of gateways with certain computing capacities to 

process monitored data. Only data that are necessary for central processing are transmitted to a cloud server. 

That is, the most computationally intensive jobs are undertaken on cloud while the fog model is responsible 

for local processing. Thus, the overall data transmission and computational performance can be 

significantly enhanced in a fog architecture (Liang et al., 2019; Xu et al., 2020). Wu et al. (2017) proposed 

a fog computing system to achieve process monitoring and prognosis for manufacturing company. The 

system is capable of collecting and processing large-scale data in real time. A machine learning algorithm 

was implemented to predict tool wear through CNC machining operations. Sood and Mahajan (2018) 



proposed a fog system for the healthcare sector to distinguish, detect and prevent mosquito borne diseases 

(MBDs). The system can assimilate, analyse and share medical information among users and healthcare 

service providers. 

For thermal error prediction on heavy-duty machines, there is no reported work yet to leverage the 

research progress of a fog-cloud architecture for improving data transmission and computing efficiency. 

Thus, in this research, investigations will be conducted on how to design an appropriate fog-cloud 

architecture to optimise this application. 

3. Research Methodologies and System Design 

3.1 FEA analysis for optimised deployment of sensors 

In this research, a heavy-duty CNC machine, namely ZK5540, is used as an example to explain and 

verify the developed methodologies. In the machine, thermal sensors and laser displacement sensors are 

installed to collect thermal data and spindle deformation data respectively. The collected data are used to 

train a LSTM networks designed in this research to predict thermal errors for adaptive compensation on the 

fly. The ZK5540 machine, deployed sensors, and data processing system are shown in Fig. 1. 

 
Fig. 1: The heavy-duty CNC machining system and sensor deployment. 

(a) The heavy-duty CNC machine ZK5540 (b) Sensors and machining process 

(c) Sensors and machining process (d) Data processing system 

Thermal 

sensors 

Laser 

displacement 

sensors 



To provide a guidance on how to place thermal sensors more effectively, an FEA model is designed to 

analyse the thermal distribution of the machine. To build up the FEA model, the main internal heat sources 

of the machine are identified as thermal loads. They are primarily from: (1) the current of the stator and 

rotor coils of the spindle motor and the servo motor, (2) the friction of the bearings of the spindle motor 

and the servo motor, and (3) the friction of the guide rails. To calculate heat generated during the machining 

process, these aspects are formulated in detail as follows.  

Heat is generated due to the current in the stator and rotor coils of the spindle motor and servo motor 

(Ward, 2014): 

𝑃𝑒 = 𝐼 ∙ 𝑅2  (1) 

where 𝑃𝑒 is the thermal power due to the current; 𝐼 is the current flowing through the stator and rotor 

coils; R is the resistance of the stator and rotor coils. 

Meanwhile, heat is generated from the friction of the spindle and servo bearings of the spindle motor 

and servo motor (Zhao et al., 2007): 

 𝑃𝑓 = 0.0001047 ∙ 𝑛 ∙ 𝑀  (2) 

where 𝑃𝑓 is the thermal power generated due to the friction of the spindle bearing; n is the rotational 

speed of the spindle; 𝑀 is the total friction torque. 

At the same time, heat is also generated because of the friction on the guide rails (Halliday et al., 2014): 

 𝑃𝑚 = 𝜇𝑓 ∙ 𝑁 ∙ 𝑉  (3) 

where 𝑃𝑚 is the thermal power due to friction on the guide rail; 𝜇𝑓 is the friction coefficient; 𝑁 is the 

normal force; 𝑉 is the velocity of translational travelling. 

Table 1 and Table 2 show important properties and parameters of the ZK5540 machine. To build its 

FEA model, meshing and material properties of the machine are applied. Meanwhile, thermal loads defined 

as above are set. Fig. 2 shows the meshing result of the machine, in which the thermal loads are marked. 

Table 3 includes detailed meshing information. 

Table 1: Properties of the heavy-duty machine. 

Property 
Main 

material 

Working table 

width 

Working table 

length 

Travelling range for 

axis X 

Travelling range for 

axis Y 

Travelling range for 

axis Z 

Value Steel 2000mm 4500mm 5000mm 4000mm 650mm 



Table 2: Important parameters for the heavy-duty machine. 

Property Spindle speed range Spindle motor power Feed rate X axis Feed rate Y axis Feed rate Z axis 

Value 10-6000 r/min 31Kw 0-10,000 mm/min 0-10,000 mm/min 0-5,000  mm/min 

 

Fig. 2: The technical details and meshing of the heavy-duty machine. 

Table 3: Meshing properties of the heavy-duty machine. 

Property 
Tetra 

quantity 

Edge 

quantity 

Face 

quantity 

Min Edge Angle 

(degrees) 

Max Edge Angle 

(degrees) 

Max Aspect 

Ratio 

Value 87329 139752 199783 0 173.98 12.51 

Fig. 3 shows the heat distribution of ZK5540 analysed by FEA, which is used to identify appropriate 

positions to deploy sensors (some deployments based on the FEA result are shown in Fig. 4). According to 

the FEA result and the monitoring areas on the machine, the following observations are made: 

• Temperature primarily increases around the spindle at about 80 °C the highest. The main reason is that 

heat is primarily generated there due to the current and friction of motors. Heat is difficult for dissipation 

due to the limited area for conduction. Therefore, majority of the temperature sensors, i.e., 52 thermal 

sensors, are installed all-round the spindle. 

• Temperature also increases to approximately 35 °C around the columns due to the current and friction 

of motors. The temperature is not as high as the spindle because it has a much greater area for heat 

dissipation. Thus, 32 sensors are installed on columns (16 sensors on each column). 

• Heat could be generated around the slide-ways and beam due to friction. Similarly, the temperature is 

not as high as that of the spindle. 32 and 8 sensors are installed on the slide-ways and beams, respectively. 

 (a) The front view of meshing 

  

𝑃𝑚 for the guide rails 

  

𝑃𝑒 and 𝑃𝑓 for the servo motor 

 

𝑃𝑒 and 𝑃𝑓 for the 

spindle motor 

  

(b) The back view of meshing 

  



• To detect the environment temperature, 4 sensors are installed on the edges of the slide-ways. The 

temperature difference between the environment temperature and temperature on machining 

components, including the spindle, columns, slide-ways and beam, can be calculated. 

 
Fig. 3: The heat distribution analysed by FEA to guide the deployment positions for sensors. 

 
Fig. 4: Illustration of some deployed sensors into the machine. 

3.2     Improved Grey Relational Analysis (iGRA) 

To reduce data collinearity and processing workloads, collected thermal data are expected to be pre-

processed. Grey Relational Analysis (GRA) is a useful approach to identify relationship coefficients among 

sensor nodes in order to remove duplication for data quality improvement (Kuo et al., 2008; Kumar and 
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 52 sensors on spindle 

  

 8 sensors on beam 
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with 16) 

  



Singh, 2020). However, the GRA process might be not adaptive in practical applications considering that 

it is difficult to identify a reference sensor, which refers to a sensor that can reflects the temperature 

distribution with the highest sensitivity. To tackle the issue, an improved GRA, i.e., iGRA, is developed in 

this research. Some critical steps for iGRA are depicted below. 

1. Normalisation: 𝑡𝑖𝑗 represents a temperature measured by sensor node i at time j. All the measured 

temperatures are grouped as a set 𝑇 = {𝑡𝑖𝑗} (𝑖 = 1,2, … , 𝑛 ;  𝑗 = 1,2, … , 𝑚), where n is the maximum sensor 

node index and m is the maximum time index. The temperature 𝑡𝑖𝑗 is normalised to 𝑡𝑖𝑗
′  to facilitate further 

processing. The normalisation process is below: 

𝑡𝑖𝑗
′ =

𝑡𝑖𝑗−𝑀𝑖𝑛(𝑇)

𝑀𝑎𝑥(𝑇)−𝑀𝑖𝑛(𝑇)
   (4) 

where 𝑀𝑎𝑥(𝑇) and 𝑀𝑖𝑛(𝑇) represent the maximum and minimum temperatures in the set T. 

2. Calculation of the grey relational coefficient (including improvements over the GRA algorithm): The 

grey relational coefficient 𝑔(𝑡𝑟𝑗
′ , 𝑡𝑖𝑗

′ ) can determine how close the temperature of a sensor 𝑡𝑖𝑗
′  is to the 

temperature of the reference sensor 𝑡𝑟𝑗
′ . Its computation is below: 

𝑔(𝑡𝑟𝑗
′ , 𝑡𝑖𝑗

′ ) =
∆𝑚𝑖𝑛+𝜇∙∆𝑚𝑎𝑥

∆𝑖𝑗+𝜇∙∆𝑚𝑎𝑥
  (5) 

where ∆𝑖𝑗= |𝑡𝑟𝑗
′ − 𝑡𝑖𝑗

′ | ; ∆𝑚𝑖𝑛= 𝑀𝑖𝑛(∆𝑖𝑗) ; ∆𝑚𝑎𝑥= 𝑀𝑎𝑥(∆𝑖𝑗) ; 𝜇 , which is within 0 and 1, is a 

distinguishing coefficient. 

𝜇 is designed to expand or compress the range of the grey relational coefficient. In this research, to 

improve the performance of grey relational analysis, 𝜇  is set 0.5 by default (Kuo et al., 2008). 

In the GRA algorithm, only one reference sensor is set to be compared with other sensors for their 

temperatures. However, it is laborious to identify which sensor will be appropriate to be such a reference. 

Therefore, robustness is improved in the iGRA algorithm. That is, there will not be just one reference, and 

all the sensor data are selected as references for comparisons. Meanwhile, the following is designed for 

computational minimisation in the iGRA algorithm: 

As aforementioned, instead of setting up a fixed reference sensor, each sensor data is set as a reference 

along with the computation process. All the other data sequences are compared with the standard sequence 

according to the total grey relational grade 𝑔(𝑡𝑟𝑗
′ , 𝑡𝑖𝑗

′ ) based on Equations (5). For example, 𝑡𝑟𝑗
′  is set as a 



standard data sequence and compared with 𝑡𝑖𝑗
′ . The same result will be computed again when 𝑡𝑖𝑗

′  is set as 

the standard data sequence and compared with 𝑡𝑟𝑗
′ . To minimise the redundant computation, the same pair 

of data sequences will only be computed once. Fig. 5 shows an example to illustrate the difference between 

the GRA and iGRA algorithms, in which each curved double arrow connector represents a grey relational 

coefficient between two sensors. 

 
Fig. 5: Example of illustrating the GRA and iGRA algorithms using 6 sensors. 

 Therefore, the total number of grey relational coefficients to be calculated is:  

𝑁 =
𝑛×(𝑛−1)

2
  (6) 

where N is total amount of grey relational coefficients to be calculated; n is the number of sensors. 

 3. Calculation of the total grey relational grade:  The total grey relational grade 𝐺(𝑇𝑟
′, 𝑇𝑖

′) is calculated 

based on 𝑔(𝑡𝑟𝑗
′ , 𝑡𝑖𝑗

′ ) according to the following formula: 

𝐺(𝑇𝑟
′, 𝑇𝑖

′) = ∑ (𝑤𝑗 ∙ 𝑔(𝑡𝑟𝑗
′ , 𝑡𝑖𝑗

′ ) )𝑚
𝑗=1   (7) 

where 𝑤𝑗 is a weight decided by a user; ∑ 𝑤𝑗
𝑛
𝑖=1 = 1. 

4. Sensor selection: The above 𝐺(𝑇𝑟
′, 𝑇𝑖

′) is used to calculate the similarity between sensor nodes 𝑇𝑟
′ and 

𝑇𝑖
′. The higher 𝐺(𝑇𝑟

′, 𝑇𝑖
′), the closer 𝑇𝑟

′ and 𝑇𝑖
′. If 𝐺(𝑇𝑟

′, 𝑇𝑖
′) is within a pre-defined threshold 𝜃, 𝑇𝑖

′ can be 
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(a) Example of the GRA algorithm with 6 sensors.   
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(b) Example of the iGRA algorithm with 6 sensors.   



removed for minimising data volume and improving the training accuracy of the LSTM networks. That is, 

the threshold is decided when the following fitness achieves the highest value: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 (𝑤1 ∙ 𝑁𝑑𝑎𝑡𝑎 + 𝑤2 ∙ 𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)  (8) 

where 𝑁𝑑𝑎𝑡𝑎 is the normalised saved data volume; 𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the normalised training accuracy of the 

LSTM networks; 𝑤1  and 𝑤2  are the weights for the two objectives (𝑤1 + 𝑤2 = 1); the normalisation 

process follows the same principle as Equation (4). 

It is assumed that the number of sensor nodes is reduced from n to 𝑛′ after this selection operation. The 

rest of data are grouped into a set  𝑇𝑗′
′ = {𝑡𝑖𝑗′

′ } (𝑖 = 1,2, … , 𝑛; 𝑗′ = 1,2, … , 𝑚′ ), which are further used for 

training and applying the LSTM networks for thermal error prediction. 

3.3     LSTM design for thermal error prediction 

Thermal data, which are pre-processed by iGRA, are fed into the designed LSTM networks to predict 

thermal errors. As the base for a LSTM networks, RNNs is a deep learning neural networks with a specially 

designed topology, through which the connections among data points within arrays can be built by hidden 

states. Information from previous data points generates impact on the following prediction, so that the 

prediction can be improved compared with traditional neural networks (Zhao et al., 2018; Vlachas et al., 

2020). Owing to the capability of learning ‘context’ within data arrays, RNNs has been widely used in time-

series data prediction, such as stock market forecasting, language modelling, machine degradation 

prediction, etc. Fig. 6 shows a typical structure of RNNs. To predict thermal errors by a RNNs, the vector 

in the hidden layer ℎ𝑡 and output vector 𝐸𝑡 (thermal error at time 𝑡) can be calculated by the following 

equations (Cinar et al., 2018; Vlachas et al., 2020): 

ℎ𝑡 = 𝜎(𝑊ℎ ∙ 𝑇′′ + 𝑈ℎ ∙ ℎ𝑡−1 + 𝑏ℎ)  (9) 

𝐸𝑡 = 𝜎(𝑊𝐸 ∙ ℎ𝑡 + 𝑏𝐸)  (10) 

where 𝜎 is a sigmoid activation function; 𝑡 is the time step; 𝑇′′ is an input vector at time 𝑡; ℎ𝑡−1 and ℎ𝑡 

are hidden layer vectors at times t-1 and t, respectively; 𝑊ℎ and 𝑈ℎ are weight matrices for 𝑇′′ and ℎ𝑡−1, 

respectively; 𝑏ℎ is a bias matrix; 𝐸𝑡 is an output vector; 𝑊𝐸 and 𝑏𝐸 are weight and bias vectors, respectively, 

to calculate 𝐸𝑡. 



 
Fig. 6: The general structure of a RNNs. 

However, since the hidden state can be extremely small or high with long steps of multiplication, 

prediction results of the RNNs are usually crippled by a vanishing or exploding gradients problem (Qu et 

al., 2018; Mohanty et al., 2020). To avoid extreme values through the multiplication process, a gating 

mechanism is required to control which information to be kept (i.e., memorising) and which information to 

be removed (i.e., forgetting). A LSTM networks is therefore developed to improve the RNNs design. In a 

LSTM networks, there are three gates, i.e., input gate, forget gate and output gate, to determine how much 

information can be fed forward to the next cell (Wu et al., 2018; Ellis and Chinde, 2020). A typical LSTM 

networks is shown in Fig. 7. 

 
Fig. 7: The structure of a LSTM networks. 
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In the forget gate 𝑓𝑡, some information is removed by using a sigmoid activation function: 

𝑓𝑡 = 𝜎(𝑊𝐺𝑇𝑓 ∙ 𝐺𝑇𝑡 + 𝑊ℎ𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓)  (11) 

where 𝜎 is a sigmoid activation function; 𝑡 is the time step; ℎ𝑡−1 is the short-term memory; 𝑊𝐺𝑇𝑓 and 

𝑊ℎ𝑓 are the weight matrices for 𝐺𝑇𝑡 and ℎ𝑡−1, respectively; 𝑏𝑓 is the bias in the forget gate. 

In the input gate 𝑖𝑡, the information to input is selected by utilising sigmoid and tanh: 

𝑖𝑡 = 𝜎(𝑊𝐺𝑇𝑡 ∙ 𝐺𝑇𝑡 + 𝑊ℎ𝑡 ∙ ℎ𝑡−1 + 𝑏𝑡)  (12) 

𝐶ሚ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐺𝑇𝑐 ∙ 𝐺𝑇𝑡 + 𝑊ℎ𝑐 ∙ ℎ𝑡−1 + 𝑏𝑐)  (13) 

where 𝑡𝑎𝑛 is the tanh; 𝑊𝐺𝑇𝑡, 𝑊ℎ𝑡, 𝑊𝐺𝑇𝑐 and 𝑊ℎ𝑐 are the weight matrices; 𝑏𝑡 and 𝑏𝑐 are the bias; 𝐶ሚ𝑡 is 

the output of the standard recurrent layer without the LSTM. 

Based on 𝐶𝑡−1, 𝐶ሚ𝑡, 𝑓𝑡 and 𝑖𝑡, the long-term memory 𝐶𝑡 can be calculated: 

𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 ⊕ 𝑖𝑡 ⊗ 𝐶ሚ𝑡  (14) 

where ⊗ and ⊕ are element-wise multiplication and addition, respectively. 

In the output gate O𝑡, the short-term memory ℎ𝑡 can be calculated below: 

𝑂𝑡 = 𝜎(𝑊𝐺𝑇𝑜 ∙ 𝐺𝑇𝑡 + 𝑊ℎ𝑜 ∙ ℎ𝑡−1 + 𝑏𝑜)  (15) 

ℎ𝑡 = 𝑂𝑡 ⊗ 𝑡𝑎𝑛ℎ (𝐶𝑡)  (16) 

𝐸𝑡 = ℎ𝑡  (17) 

where 𝑊𝐺𝑇𝑜 and 𝑊ℎ𝑜 are weight matrices; 𝑏𝑜 is the bias; 𝐸𝑡 is the predicted thermal deformation at time 

index t. 

In this research, the designed LSTM networks has one layer. Its performance is benchmarked with 

different LSTM layers and the relevant results will be shown in Section 4.3. Table 4 shows the input and 

output data of the designed LSTM networks. The normalised temperature data 𝑁𝑇1, 𝑁𝑇2 … , 𝑁𝑇𝑛, which are 

grouped into 𝐺𝑇𝑡, are fed into the LSTM networks as input. The output is the thermal error 𝐸𝑡. 

Table 4: Input and output of the LSTM networks. 

Input vector (𝑮𝑻𝒕) Output vector (𝐸𝑡) 

Point 1 in normalised temperature data 𝑁𝑇1 Thermal error data on the X axis 𝐸𝑡_𝑋 

Point 2 in normalised temperature data 𝑁𝑇2 Thermal error data on the Y axis 𝐸𝑡_𝑌 

… … Thermal error data on the Z axis 𝐸𝑡_𝑍 

Point n’ in normalised temperature data 𝑁𝑇𝑛′  

 



The LSTM networks will be trained and needs to be re-trained (calibration) after a period using historical 

data. Mean Square Error (MSE), which calculation is based on the difference between predicted thermal 

errors and practically measured thermal errors, is defined below: 

𝑀𝑆𝐸 =
√(𝐸𝑡_𝑋

−𝑃𝑡_𝑋)2+(𝐸𝑡𝑌
−𝑃𝑡_𝑌)2+(𝐸𝑡𝑍

−𝑃𝑡_𝑍)2

3
  (18) 

where 𝑃𝑡_𝑋 , 𝑃𝑡_𝑌  and 𝑃𝑡_𝑍  are the practically measured thermal errors; 𝐸𝑡_𝑋 , 𝐸𝑡_𝑌  and  𝐸𝑡_𝑍  are the 

predicted thermal errors. 

The LSTM networks will be re-trained by using an improved gradient descent optimiser (we improved 

the gradient descent optimiser in Step 4 with a decaying learning rate to improve the convergence speed). 

The optimisation process is explained as follows: 

1. Define the weight 𝑊𝐿𝑆𝑇𝑀 and bias 𝑏𝐿𝑆𝑇𝑀 of the LSTM networks; initialise the 𝑊𝐿𝑆𝑇𝑀 and 𝑏𝐿𝑆𝑇𝑀 with 

random values; 

2. Define the maximum epoch time T; 

3. Optimise the value of 𝑊𝐿𝑆𝑇𝑀, 𝑏𝐿𝑆𝑇𝑀 by minimising the loss function with gradient descent: 

 𝑊𝐿𝑆𝑇𝑀
𝑡+1 = 𝑊𝐿𝑆𝑇𝑀

𝑡 − 𝜀 ∙ (
𝜕(𝑀𝑆𝐸)

𝜕(𝑊𝐿𝑆𝑇𝑀)
)  (19) 

𝑏𝐿𝑆𝑇𝑀
𝑡+1 = 𝑏𝐿𝑆𝑇𝑀

𝑡 − 𝜀 ∙ (
𝜕(𝑀𝑆𝐸)

𝜕(𝑏𝐿𝑆𝑇𝑀)
)  (20) 

where 𝑡 is the current epoch time; 𝜀 is the learning rate; 𝜕 is the gradient descent. Traditionally, the 

learning rate is a constant value. 

4. To improve the optimisation process, the learning rate 𝜀 can be designed to decay over training epochs 

to approach optimal parameters: 

𝜀 = 𝜀0/(1 + 𝑘 ∙ 𝑡)  (21) 

where 𝑘 is the hyper-parameter. 

5. Repeat the above Steps 3 and 4 until reaching the maximum epoch time. 

3.4 Fog-cloud architecture design 

A cloud structure has been widely used to process computationally intensive tasks benefiting from its 

centralised storages and strong computational capacities on the cloud server side. However, the 

performance of the cloud solution could be severely compromised by the limited communication bandwidth 



of the industrial Internet in manufacturing companies. Furthermore, data security in cloud is also a key 

concern for industrial users (Liang et al., 2019). To address the issues, a fog-cloud architecture, which 

consists of a terminal layer, a fog layer and a cloud layer, is deployed to support the thermal error prediction 

system. The architecture is illustrated in Fig. 8. Some details are explained below: 

• Terminal layer: The terminal layer is integrated with the physical heavy-duty machine. In the layer, 

sensors are mounted on the machine (the details are explained in Sections 3.1 and 4.1). The machine 

undergoes machining processes, and thermal sensors and laser displacement sensors are installed on the 

machine to continuously collect data. The optimal placement of thermal sensors will be finally guided 

by the result of FEA, which shows heat distributions of the machine over the entire machining process. 

The data are transmitted to the fog layer through an Internet router for further processing. 

• Fog layer: Cost-effective edge devices are deployed on the fog layer to provide certain computational 

capability for local processing on the transmitted data. Local processors include a pre-processor iGRA 

and a trained LSTM networks. Based on the correlation among thermal data, similar data are removed 

by iGRA to minimise data collinearity and optimise the overall computing efficiency. The trained LSTM 

networks is used for thermal error prediction. Considering dynamics in thermal changes throughout 

machining processes, after a period of system service, a pre-defined threshold, the LSTM networks will 

be re-trained on the cloud layer based on updated time-series sensor data. 

• Cloud layer: The cloud layer hosts a cloud server providing intensive computational power and storage 

spaces, so that all the processing that requires high computational resources and data storage will be 

done on the cloud layer. FEA is processed on the cloud layer to identify the heat distribution over the 

entire structure of CNC machine. The results will be sent back to the terminal layer to provide an 

instruction to optimise thermal sensor deployment. The LSTM networks are re-trained on the cloud layer 

when necessary. A system coordinator, which connects the fog layer and the cloud layer, triggers the 

training process of the LSTM networks with an embedded improved gradient descent optimiser. 



 
Fig. 8: The fog-cloud architecture enabled thermal error prediction and compensation. 

To check the improvement of machining accuracy of the heavy-duty machine by using the proposed 

system, thermal errors without using the system on the X, Y and Z axes are measured as 𝐸𝑡_𝑤𝑖𝑡ℎ𝑜𝑢𝑡 =

[𝐸𝑡𝑋_𝑤𝑖𝑡ℎ𝑜𝑢𝑡
, 𝐸𝑡𝑌_𝑤𝑖𝑡ℎ𝑜𝑢𝑡

, 𝐸𝑡𝑍_𝑤𝑖𝑡ℎ𝑜𝑢𝑡
 ], and the thermal errors with the proposed system on the X, Y and Z axes 

are measured as 𝐸𝑡_𝑤𝑖𝑡ℎ = [𝐸𝑡𝑋_𝑤𝑖𝑡ℎ
, 𝐸𝑡𝑌_𝑤𝑖𝑡ℎ

, 𝐸𝑡𝑍_𝑤𝑖𝑡ℎ
 ]. The improvement of the machining accuracy of the 

proposed system can be calculated: 

                                          𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
∑ (𝐸𝑡𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑖

−𝐸𝑡_𝑤𝑖𝑡ℎ𝑖
)23

𝑖=1

3
  (22) 

In this research, specifications to implement the fog-cloud architecture are presented in Table 5. The 

method to quantify sensitivity and accuracy are as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑠ℎ𝑖𝑓𝑡

∆𝑇 
  (23) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑡𝑟𝑢𝑒 − 𝑇𝑠𝑒𝑛𝑠𝑜𝑟  (24) 

where ∆𝑇 is the change in temperature, 𝑇𝑡𝑟𝑢𝑒 and 𝑇𝑠𝑒𝑛𝑠𝑜𝑟 are the true temperature and the measured 

temperature by sensor, respectively. Resolution is the smallest change in temperature that the sensor can 

detect. 
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 On the terminal layer, thermal sensors of Fibre Bragg gratings (FBGs) are deployed. The sensors are of 

small size, flexibility, immunity to electro-magnetic interference, etc. (Woyessa et al., 2020), and they also 

have good accuracy (≤0.1°C). On the fog layer, the processor FPGA CycloneII EP2C5T144C8N, is 

deployed. FPGA exhibits good performances in executing the LSTM networks locally as it is of robust 

flexibility, reconfigurability and efficient parallel computing (Ahsan et al., 2012; Karakaya et al., 2018; 

Zairi et al., 2019; Sarić et al., 2020), while it is more cost effective in comparison with those processors 

deployed on the cloud layer. Training on the LSTM networks and FEA computations are computationally 

intensive, so that the LSTM training/re-training tasks and FEA are assigned to the cloud layer to leverage 

its better computational speed and larger memory.  

Table 5: Detailed specifications for deployed sensors and data processing system. 

Terminal layer 
Sensor type 

Sensitivity   

(pm/°C  ) 
Accuracy (°C) Resolution (°C) 

Fiber Bragg grating (FBG) 38.1 ≤0.1 ≤0.05 

Fog layer 

Processor Speed Memory size RAM 

FPGA: Cyclone II 

EP2C5T144C8N 
260 MHz 119808 bit 1.1MB 

Cloud layer 

Communications Processor Memory Storage 

2.4 GHz/5 GHz IEEE 

802.11 
4.2Ghz 32GB 1TB 

4. Case Studies and Experimental Analysis 

4.1 Sensor deployment 

As aforementioned, the heavy-duty machine ZK5540 is used as an example to explain and verify the 

developed methodologies. After the FEA analysis for optimisation, there are 128 thermal sensors installed 

on ZK5540. The positions of the groups of sensors are marked in Fig. 9(a). More details are: 

• 52 sensors are installed on the spindle (as shown in Fig. 9(b)); 

• 32 sensors are installed on the two columns, and each with 16 (as shown in Fig. 9(c)); 

• 32 sensors are installed on the two slide-ways, and each with 16 (as shown in Fig. 9(d)); 

• 8 sensors are installed on the beam (as shown in Fig. 9(e)); 

• 4 sensors are installed around machine tool to measure environmental temperature, and each side 

with one (as shown in Fig. 9(f)). 



 
Fig. 9: Thermal sensor placement. 

Laser displacement sensors are installed on the machining bed to measure the thermal deformation on 

the X, Y and Z directions. 

All the sensor data points are presented in sequences 𝑻 = [∑ 𝑡1,𝑗
𝑚
𝑗=1 , … , ∑ 𝑡128,𝑗

𝑚
𝑗=1 ], where j is the time 

index and m is the maximum time index. Among them, 

• ∑ 𝑡1,𝑗
𝑚
𝑗=1  to ∑ 𝑡52,𝑗

𝑚
𝑗=1  are the sensor data on the spindle,  

• ∑ 𝑡53,𝑗
𝑚
𝑗=1  to ∑ 𝑡84,𝑗

𝑚
𝑗=1  are the sensor data on the columns,  
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• ∑ 𝑡85,𝑗
𝑚
𝑗=1  to ∑ 𝑡116,𝑗

𝑚
𝑗=1  are the sensor data on the slide-ways,  

• ∑ 𝑡117,𝑗
𝑚
𝑗=1  to ∑ 𝑡124,𝑗

𝑚
𝑗=1  are the sensor data on the beam,  

• ∑ 𝑡125,𝑗
𝑚
𝑗=1  to ∑ 𝑡128,𝑗

𝑚
𝑗=1  are the sensor data around the four corners of the machine.  

Experiments were conducted over three months, and 9.28GB temperature data were collected. Each data 

node generates 0.0725GB temperature data over the period.  

The counting sequence of sensors on each area is in the directions from left to right and from upward to 

downward. For example, the presentation of sensor data on the spindle is illustrated in Fig. 10. Fig. 11 

shows that the laser displacement sensors measure the thermal deformation of the spindle during machining. 

The data are collected and transmitted to the fog layer through the Internet router for local processing. Data 

showing temperature and thermal errors on the spindle over time are displayed in Fig. 12. Some 

observations can be made as follows: (i) the thermal errors are sensitive to the temperature changes; (2) the 

changing patterns of temperatures and thermal errors over time are closely correlated; (3) a number of 

temperature sensors is duplicated in deployment as the measured temperatures and changing trends are 

similar, so that it is necessary to reduce the number of sensors by iGRA. The absolute thermal errors shown 

in Fig. 12 are in the range between 0.134mm and 0.009mm.  

 
Fig. 10: Thermal sensor deployment on the spindle. 



 

Fig. 11: Deployment of laser displacement sensors for thermal deformation measurement. 

 
Fig. 12: Temperature data and thermal errors. 

4.2 Analysis on iGRA 

For the collected data from the 128 thermal sensors on the terminal layer, they are sent to the fog layer 

for pre-processing by iGRA. Fig. 13 illustrates the total grey relational grade among 1-12 sensors on the 

spindle according to Equations (4)-(6). Based on statistics, there are 12 pairs, 28 pairs, 53 pairs and 88 pairs 

of sensor data for more than 0.9, 0.8, 0.7 and 0.6 in terms of total grey relational grade, respectively. It is 

paramount to determine the value of an appropriate 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in order to ensure optimal data transmission 

(a) Normalised temperature data (input): example 1 (b) Thermal error data (output): example 1 

(c) Normalised temperature data (input): example 2 (d) Thermal error data (output): example 2 



and the training accuracy of the LSTM networks. In this case, the training accuracy of the LSTM networks 

is set as priory. Therefore, the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 that achieves the highest training accuracy will be selected. 

For this case, there are 8,128 grey relational grades calculated in total according to Equation (6). To 

determine the best 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for sensor selection, different values of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 were compared in terms 

of removed sensor data nodes, saved transmitted data and final training accuracy according to Equation (8). 

In this application, the final training accuracy is more important, so that 𝑤1 = 0.1 and 𝑤2 = 0.9 according 

to Equation (8). The results are shown in Table 6. The details of training accuracy with the designed LSTM 

networks are shown in Fig. 14, where each dataset is utilised for training for 10 times to ensure the 

robustness of the approach (10 times was the most used times for training in many applications 

(Kalamatianos et al., 2018)). It indicates that when 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.65, the fitness is the highest (0.97). That 

is, the final training accuracy is 93.0% and the volume of 5.00GB can be reduced when data are transmitted 

to the cloud layer. It represents 52.63% saving in total data transmission. It can be clearly observed that the 

threshold can achieve optimum accuracy quickly with robustness.  

 

Fig. 13: The total grey relational grade among 1-12 sensors. 

Table 6: Results of iGRA using various threshold settings. 

Threshold 
Removed 

sensor nodes 

Saved data 

transmission (GB) 

Final training 

accuracy (%) 
Fitness 

0.9 12 0.87 89 0.50 

0.85 16 1.16 84 0.01 

0.8 28 2.03 92 0.82 

0.75 40 2.90 87 0.33 

0.7 53 3.84 91 0.75 

0.65 69 5.00 93 0.97 

0.6 88 6.38 91 0.80 



  
Fig. 14: Training accuracy for different thresholds in the designed LSTM networks. 

4.3 Analysis on training the LSTM networks 

The designed LSTM networks is trained when 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.65. When the model is required to update, 

an improved gradient descent is applied to optimise the LSTM networks. To justify the selection of the 

LSTM design in this research, different algorithms, including RNNs, Artificial Neural Network (ANN), 

CNNs and Support Vector Machine (SVM), were utilised for benchmarking. Fig. 15 and Table 7 show the 

training details.  It shows that both the best and average training accuracy for a 1-layer LSTM networks 

with the improved gradient decent can achieve 93.1% and 88.9%, which are the highest among the 

comparative algorithms. Compared with the 1-layer LSTM networks, a 2-layer LSTM networks is 25.46% 

lower in the average accuracy and a 3-layer LSTM is 2.90% lower in the average accuracy. 

 
Fig. 15: Training accuracy of different algorithms. 

 



Table 7: Benchmarking for different algorithms. 

Algorithms Best accuracy (%) Worst accuracy (%) Average accuracy (%) 

1-layer LSTM with an 

improved gradient descent 
93.1% 85.2% 88.9% 

1-layer LSTM with a 

traditional gradient descent 
85.0% 81.9% 83.9% 

2-layer LSTM 69.4% 67.1% 68.8% 

3-layer LSTM 90.4% 87.6% 89.5% 

RNN 85.3% 83.1% 84.3% 

ANN 77.5% 71.2% 76.7% 

CNN 89.6% 81.0% 84.3% 

SVM 85.9% 82.0% 83.9% 

Experiments were also carried out to select optimal parameters in Equations (19)-(21). Fig. 16 and Table 

8 illustrate the training details. It shows that, when training parameters are ε_0=0.1 and k=0.02, the best 

and average accuracy can achieve 93.1% and 88.9%, which are the highest among the results in different 

parameter settings. It can be seen that when ε_0=0.1 and k=0.01, the best accuracy is the lowest (73.4%). 

The proposed parameter has 19.70% higher best training accuracy than that of the lowest best accuracy. 

Based on the proposed method, they system is deployed in production process, the thermal errors  before 

and after deploying the system (𝐸𝑡_𝑤𝑖𝑡ℎ𝑜𝑢𝑡  and 𝐸𝑡_𝑤𝑖𝑡ℎ) have been measured. According to calculation 

Equation (16), 46.53% improvement in machining accuracy was achieved. 

  

Fig. 16: Training accuracy of different training parameters. 

 

 

 

 



Table 8: Benchmark for different training parameters. 

Parameters  Best accuracy Worst accuracy Average accuracy 

ε_0=0.1, k=0.02 93.1%  85.2%  88.9% 

ε_0=0.1, k=0.01 73.4%  68.5%  72.0%  

ε_0=0.1, k=0.05 84.2%  75.0%  80.7% 

ε_0=0.2, k=0.02 83.8%  69.1%  77.5%  

ε_0=0.3, k=0.02 80.4%  73.4%  78.0%  

ε_0=0.4, k=0.02 85.1%  72.6%  80.0%  

ε_0=0.1, k=0 86.6%  77.8%  83.4%  

5. Conclusions 

To improve the machining precision of heavy-duty CNC machines, an important research topic is how 

to design an effective approach for accurately predicting the deformations of machine elements caused by 

heats generated during machining processes. Approaches of data-based modelling have become 

increasingly adopted but they exhibit low efficiency in processing large-volume thermal data. To tackle the 

issue, this paper presents a new system enabled by a LSTM networks and fog-cloud architecture for thermal 

error prediction of heavy-duty machines. The system has the following characteristics: (1) The system uses 

physics-based modelling to optimise data-based modelling in the aspect of deciding the optimal 

number/locations of deployed thermal sensors and minimised measured data; (2) The LSTM networks is 

integrated with an effective data pre-processor to improve thermal error prediction in terms of prediction 

accuracy and data processing efficiency; (3) The fog-cloud architecture can improve the system efficiency 

of data transmission and system responsiveness to compensate thermal errors on the fly. The developed 

system was validated using an industrial heavy-duty CNC machine. Based on industrial case studies, the 

volume of transmitted data was minimised by 52.63% and the machining accuracy was improved by 

46.53%, in comparison with the processes without using the developed system. It proves that the designed 

system has a great potential in supporting real-world industrial applications.  

In future research, the following aspects will be further investigated to improve the system: 

• Computation resource optimisation between both fog layer and cloud layer will be further researched 

to achieve optimum computation resource distribution among the layers; 



• To enhance the machining error prediction, different data source (e.g., vibration, contact force, etc.) 

could be fused for analysis;  

• This research investigates machining inaccuracy from the aspect of thermal errors. There are more 

factors that influence machining accuracy, such as machining condition, machining shapes, 

schedules, etc. These will be analysed in the future. 
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