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Multiplicative logarithmic corrections to scaling are frequently encountered in the critical behavior of
certain statistical-mechanical systems. Here, a Lee-Yang zero approach is used to systematically analyze
the exponents of such logarithms and to propose scaling relations between them. These proposed relations
are then confronted with a variety of results from the literature.
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Conventional leading scaling behavior at a second-order
phase transition is described by power laws in the reduced
temperature t and field h. With h � 0, the correlation
length, specific heat, and susceptibility behave as �1�t� �
jtj��, C1�t� � jtj��, and �1�t� � jtj��, while the magne-
tization in the broken phase has m1�t� � jtj�. Here the
subscript indicates the extent of the system. At t � 0 the
magnetization scales as m1�h� � h1=� while the anoma-
lous dimension � characterizes the correlation function at
criticality. In the 1960s, it was shown that these six critical
exponents are related via four scaling relations (see, e.g.,
Ref. [1] and references therein), which are now firmly
established and fundamentally important in the theory of
critical phenomena. With d representing the dimensional-
ity of the system, the scaling relations are

�d � 2� �; (1)

2�� � � 2� �; (2)

���� 1� � �; (3)

��2� �� � �: (4)

In the conventional scaling scenario, (2) and (3) can, in
fact, be deduced from the Widom scaling hypothesis that
the Helmholtz free energy is a homogeneous function [2].
Widom scaling and the remaining two laws can, in turn, be
derived from the Kadanoff block-spin construction [3] and
ultimately from Wilson’s renormalization group (RG) [4].
The relation (1) can also be derived from the hyperscaling
hypothesis, namely, that the free energy behaves near
criticality as the inverse correlation volume: f1�t� �
��d1 �t�. Twice differentiating this relation recovers (1).

The scaling relations, (2) and (3), were both rederived
using an alternative route by Abe [5] and Suzuki [6]
exploiting the fact that the even and odd scaling fields
can be linked by Lee-Yang zeros [7]. The locus of these
zeros in the magnetic-field plane is controlled by the
temperature. In the t > 0 (disordered) phase this locus
terminates at the Yang-Lee edge [7], the distance of which
from the critical point is denoted by rYL�t�. At a conven-
tional second-order phase transition rYL�t� � t� for t > 0,
06=96(11)=115701(4)$23.00 11570
and the gap exponent � is related to the other exponents
through [5,6]

� �
��
�� 1

� �� � �� �: (5)

Logarithmic corrections are characteristic of a number
of marginal scenarios (see, e.g., Ref. [8] and references
therein). Hyperscaling fails at and above the upper critical
dimension dc and, while (1) holds there, it too fails above
dc, where mean-field behavior (which is independent of d)
prevails. At dc itself, multiplicative logarithmic corrections
to scaling are manifest. Such corrections are found in
marginal d < dc situations too [8,9]. The q-state Potts
model in d � 2 dimensions possesses a first-order transi-
tion for q > 4 and a second-order one when q < 4. The
q � 4 case is also characterized by a transition of second
order, albeit with multiplicative logarithmic corrections to
scaling. Also in two dimensions, the Ising model with
uncorrelated, quenched random-site or random-bond dis-
order offers another example of such corrections at a
demarcation point. According to the Harris criterion [10],
when the critical exponent � of the specific heat for a pure
system is positive, random quenched disorder is relevant
(and exponents may change as disorder is added). If � is
negative in the pure system, the critical behavior is not
expected to be altered by such disorder. In the marginal
case where � � 0, no Harris prediction can be made, and
logarithmic corrections to the pure scaling behavior may
ensue. These are some examples of the rich and disparate
variety of systems displaying such phenomena and which
have been hitherto studied individually. Given the ubiqui-
tous role that these logarithms play in such marginal cases,
it is reasonable to ask if scaling relations for their expo-
nents exist in analogy to (1)–(5) above.

Here three such relations, together with one for the
Yang-Lee edge, are derived through the medium of parti-
tion function zeros and confronted with the literature. From
the outset we mention that the scaling relations proposed
herein do not all apply to the very special circumstance of
the Ising model in two dimensions and its bond-disordered
counterpart. These require special treatment beyond the
1-1 © 2006 The American Physical Society
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general considerations presented here. For a scaling theory
appropriate to the former, see Refs. [8,11] and references
therein. With this in mind, we address the situation with the
following scaling behavior:

�1�t� � jtj��j lnjtjj�̂; (6)

C1�t� � jtj��j lnjtjj�̂; (7)

�1�t� � jtj
��j lnjtjj�̂; (8)

m1�t� � jtj
�j lnjtjj�̂ for t < 0; (9)

rYL�t� � t
�j lnjtjj�̂ for t > 0; (10)

while at t � 0,

m1�h� � jhj
1=�j lnjhjj�̂: (11)

In the thermodynamic limit the free energy may be
written as

f1�t; h� � 2 Re
Z R

rYL�t�
ln�h� h�r; t��g1�r; t�dr; (12)

where R is a cutoff, g1�r; t� is the density of zeros, with
locus h�r; t� � r exp�i	�r; t��. If the Lee-Yang circle theo-
rem holds the locus is given by 	 � 
=2, R � 
 [7].
While the validity of the Lee-Yang circle theorem is not
assumed in what follows (it does not hold for the Potts
model, for example), it is assumed that the small-t critical
behavior is dominated by the zeros closest to the critical
point, and that the locus of these zeros can be approximated
by 	�r; t� � 	, a constant.

The magnetic susceptibility is the second field derivative
of the free energy, and, at h � 0 [substituting r � xrYL�t�]
is

�1�t� � �
2 cos�2	�
rYL�t�

Z R=rYL�t�

1

g1�xrYL; t�

x2 dx: (13)

Expanding (13) about rYL�t�=R � 0 gives

g1�r; t� � �1�t�rYL�t��
�

r
rYL�t�

�
; (14)

up to additive corrections in rYL�t�=R and where � is an
undetermined function of its argument. The ratio rYL�t�=R
is sufficiently small near criticality so that these additive
corrections may be dropped. Similar considerations yield
for the magnetization

m1�t; h� � �1�t�rYL�t��	

�
h

rYL�t�

�
; (15)

in which

�	

�
h

rYL�t�

�
� 2 Re

Z 1
1

��x�

h=rYL�t� � xei	
dx: (16)

Letting h! 0 in (15), and comparing to (9), recovers the
scaling relation (5) and yields
11570
�̂ � �̂� �̂: (17)

Furthermore, fixing the argument of the function �	 in

(15) gives t� h1=�j lnjhjj��̂=� from (10), so that (15) may
be written

m1�t; h� � h
1��=�j lnhj�̂���̂=��	

�
h

rYL�t�

�
: (18)

Now taking t! 0 and comparing with (11) recovers the
known leading behavior for the edge (5), together with the
correction relation �̂ � ���̂� �̂�=��� 1�. The former
recovers (3), while the latter, with (17), gives

�̂��� 1� � ��̂� �̂: (19)

It is convenient at this point to define the cumulative
distribution function of zeros as

G1�r; t� �
Z r

rYL�t�
g1�s; t�ds � �1�t�r

2
YL�t�I

�
r

rYL�t�

�
;

(20)

in which I�y� �
Ry

1 ��z�dz. Integrating (12) by parts then
gives the singular part of the free energy at h � 0, f1�t� �
2
R
R
rYL�t�
�G1�r; t�=r�dr. Again substituting r � xrYL�t�,

differentiating twice with respect to reduced temperature
and comparing the resulting expression for the specific heat
with (7) yields � � 2� �� 2� and �̂ � �̂� 2�̂. From
(3) and (5), the first of these is the scaling law (2). From
(17), the second can be conveniently expressed as another
relation between the correction exponents, namely

�̂ � 2�̂� �̂: (21)

Using these scaling relations, and fixing the ratio r=rYL�t�
in (20) and then taking the t! 0 limit, gives the critical
cumulative distribution function to be

G1�r; 0� � r
�2���=�j lnrj�̂��2����̂=�: (22)

Consider now a system of finite extent L, and let
hj�L� � rj�L� exp�i	j� be the jth zero there. The finite-
size scaling (FSS) of first zero is expressible as

r1�L�
rYL�t�

� F

�
�L�0�
�1�t�

�
; (23)

in which �L�0� is the correlation length of the finite-size
system at t � 0. On dimensional grounds, we may assume
this quantity takes the generic form

�L�0� � L�lnL�
q̂; (24)

having allowed for multiplicative logarithmic corrections.
Recently, additional insights into the origin of FSS were
given in Ref. [12]. For a finite system, the cumulative
density of zeros is simply the fractional number of zeros
up to a given point, and we write

GL�rj�L�� �
2j� 1

2Ld
: (25)
1-2
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For large enough L, and at t � 0, this must coincide with
the expression (22). In particular, it allows the scaling
behavior of the lowest zero at thermodynamic criticality
to be expressed as

r1�L� � L�d�=�2����lnL��̂���̂=�2���: (26)

Inserting (6), (10), (24), and (26) into (23) recovers (1) and
yields a new scaling relation for logarithmic corrections,
namely

q̂ � �̂�
��̂

2� �
: (27)

Hyperscaling corresponds to q̂ � 0. Relations (19) and
(21) but not (27) can be derived starting with a suitably
modified phenomonological Widom ansatz [13,14].

To summarize thus far, the three standard scaling laws
(1)–(3) have been recovered and three analogous relations
for the logarithmic corrections (19), (21), and (27) pre-
sented. Furthermore, the standard formula (5) for the edge
has been recovered and its logarithmic-correction counter-
part is given in (17). While the standard scaling laws for the
leading critical exponents are well established, it is now
necessary to confront the scaling relations for corrections
with results from the literature, and a variety of models
with logarithmic corrections are examined on a case-by-
case basis.

The leading critical exponents for the 4-state Potts
model in d � 2 dimensions were established in Ref. [15]
as � � 2=3, � � 1=12, � � 7=6, � � 15, and � � 2=3,
and their correction counterparts are [16,17] �̂ � �1, �̂ �
�1=8, �̂ � 3=4, �̂ � �1=15, and �̂ � 1=2. FSS of the
thermodynamic functions are given in Refs. [17,18],
from which q̂ � 0. The standard scaling laws, of course,
hold and one notes that the correction relations (19), (21),
and (27) hold too, while (5) and (17) give � � 5=4 and
�̂ � �7=8 for the edge. This latter prediction remains to
be verified numerically.

The upper critical dimension for O�N� symmetric 	4
d

theories is d � dc � 4, where hyperscaling fails and the
leading critical exponents take on their mean-field values,
� � 0, � � 1=2, � � 1, � � 3, � � 1=2, � � 3=2. The
RG predictions for the corrections are [14,19–21] �̂ �
�4� N�=�N � 8�, �̂ � 3=�N � 8�, �̂��N�2�=�N�8�,
�̂ � 1=3, �̂ � �N � 2�=2�N � 8�, �̂ � �1� N�=�N � 8�,
q̂ � 1=4, and all of the correction relations (17), (19), (21),
and (27) hold.

The universality class of O�N� spin models can be
adjusted by introducing long-range interactions decaying
as x��d��� (x being distance along the lattice), for which
dc � 2�. The critical exponents for the N-component
system were calculated in Ref. [22] and are � � 0, � �
1=2, � � 1, � � 3, � � 1=�, and obey the leading scaling
relations. The Privman-Fisher form for the free energy was
calculated in Ref. [23], from which the RG predictions for
the critical exponents could be verified and the logarithmic
corrections observed. The logarithmic exponents are �̂ �
11570
�4� N�=�N � 8�, �̂ � 3=�N � 8�, �̂ � �N � 2�=�N � 8�,
�̂ � 1=3, �̂ � �N � 2�=��N � 8�. One observes that (19)
and (21) are obeyed, and (27) holds too if q̂ � 1=2�. This
recovers the known value q̂ � 1=4 for O�N�	4

4 theory [19]
when � � 2, and leads to agreement with FSS in the long-
range Ising case in two dimensions when � � 1 [24].
Furthermore, (5) and (17) yield � � 3=2 and �̂ � �1�
N�=�N � 8� for the edge, which are again identical to the
O�N�	4

4 values. The expression (26) then gives that the
first Lee-Yang zero of such a system should scale as
r1�L� � L�3�=2�lnL��1=4. This prediction for the Lee-
Yang zeros of long-range systems remains to be verified.

Spin glasses, percolation, the Yang-Lee edge problem
and lattice animals are all related to 	3 field theory. For
each of these dc � 6 except for the lattice animal problem
which has dc � 8 [25]. Ruiz-Lorenzo gave a compact
description of the scaling of the correlation length, suscep-
tibility and specific heat for these models as [26]

� � �1; � � 1; � � 1
2; (28)

�̂�
2�2b�3a�

4b�a
; �̂�

2a
4b�a

; �̂�
5a

6�4b�a�
: (29)

The values of �a; b� are ��4m; 1� 3m� for the
m-component spin glass, ��1;�2� for percolation, and
��1;�1� for Yang-Lee singularities (which in d dimen-
sions is closely related to the lattice animal problem in d�
2 dimensions). The mean-field values of the critical ex-
ponents for spin glasses and percolation were calculated in
Refs. [27,28], respectively, as � � 1, � � 2, and, together
with (28), obey the usual scaling relations (1)–(3). The
correction exponents (29) satisfy the scaling relations (19)
and (21) provided that �̂ � 2�b� a�=�4b� a� and �̂ �
b=�4b� a�. In the percolation case these give �̂ � �̂ �
2=7, values which are in agreement with explicit calcula-
tions [28]. Also, (5) and (17) now yield � � 1 and �̂ �
2�b� 2a�=�4b� a� for these models, while (27) gives
q̂ � 1=6 in each case. Ruiz-Lorenzo’s prediction for this
quantity is q̂ � 1=3 [26] while Ref. [29] contains an im-
plicit assumption that q̂ � 0.

The strong universality hypothesis predicts that the
quenched, disordered Ising model in d � 2 dimensions
has the same leading critical exponents as in the pure
case with logarithmic corrections to scaling [30]. In par-
ticular, Shalaev and later Shankar and Ludwig (SSL) gave
[31] � � 0, � � 1=8, � � 7=4, � � 15, � � 1, �̂ � 0,
�̂ � 7=8, �̂ � 1=2, with the specific heat predicted to be
double-logarithmically divergent [30], and a more recent
RG calculation gave [32] �̂ � �1=16 and �̂ � 0.

Among the SSL values, that for �̂ of the random-
bond version has been the most clearly confirmed [33].
While the majority of published opinion favors the double-
logarithmically divergent specific heat (see Refs. [9,34,35]
and references therein), there have been persistent claims
in the literature that the specific heat, in fact, remains finite
1-3
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at criticality in the site-diluted model [36,37]. Compati-
bility between the proposed scaling relations and the values
�̂ � �1=16, �̂ � 7=8, �̂ � 0, and �̂ � 1=2 is established
if �̂ � �1 in this case. This value indeed leads to a finite
specific heat in the random-site version and would neatly
explain the persistent claims to that effect in the literature
[36,37] while still being consistent with the strong univer-
sality hypothesis. These values are also consistent, via (27),
with SSL’s �̂ � 1=2 provided q̂ � 0, a value actually
claimed on the basis of numerical evidence in Ref. [34]
(see also Ref. [37]). However, any value of �̂ and q̂, differ-
ing by 1=2, cannot be ruled out on the basis of (27).

Finally, the fact that the logarithmic divergence in the
specific heat for the pure Ising model in d � 2 (see
Refs. [8,11]) does not directly fit into the scaling scheme
proposed here is to do with special features of that model,
which are shared by the random-bond version [31,32].
These special features are the vanishing of the specific-
heat exponent � coupled with the property of self-duality
and give rise to an extra logarithmic factor beyond those
discussed herein. The apparent incompatibility in these
special cases with the scaling relations proposed herein is
perhaps a reason why they have gone unnoticed as such
before.
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