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An Evaluation of Enhanced Geotextile Layer in Permeable Pavement to 

Improve Stormwater Infiltration and Attenuation 

 

 

ABSTRACT 

This paper reports on an evaluation of the properties of a novel structure known as OASIS® which 
was designed at Coventry University as an enhancement of the commercially available geotextiles 
when incorporated in the Permeable Pavement System. The impact on the hydraulic behaviour of a 
PPS was analyzed through the study of infiltration rate, throughout the PPS and time required to reach 
the steady-state stage behaviour of the water within the PPS, under extreme rainfall intensities of 100 
mm/hr, 200 mm/hr and 400 mm/hr, corresponding to a 100-year return period rainfall over duration of 
15 minutes in different parts of the world. The result indicated that the novel structure provides an 
extra benefit when incorporated in PPS, delaying peak flow of a rainfall event by retaining and storing 
great volumes of water within its structure. These additional benefits are especially important under 
extreme rainfall events. 
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INTRODUCTION 

Sustainable Drainage Systems (SuDS) are designed to achieve three important elements of 
stormwater management such as quantity - by controlling runoff at source point and implementing 
stormwater techniques to reduce flooding problems. Quality - by reducing pollutants within runoff 
introducing a treatment train and amenity- based on biodiversity issues, social equity, environmental 
protection and prudent use of natural resources (Woods-Ballard et al. 2007).  

Permeable or Pervious pavements systems (PPS) are an important part of SuDS techniques that are 
most used in parking lots and pedestrian walkways as a sustainable and effective replacement for 
impervious surfaces (Newman et al. 2004; Collins et al. 2006) due to their high infiltration capacity 
(Sañudo-Fontaneda et al. 2013). The ability of PPS to control drainage at source, treat pollutants in 
stormwater and provide added benefits which include: water harvesting (Nnadi, 2009), renewable 
energy (Coupe and Nnadi 2007) and mitigation of thermally enriched stormwater (Wardynski et al. 
2012), makes them an important approach to sustainability. PPS’s efficiency as a tool for source 
control is due to its capability to infiltrate stormwater into hard surfaces and gradually attenuate it into 
the soil or a drainage outlet (Newman et al. 2003). The PPS have been shown by previous studies to 
be capable of removing most stormwater pollutants especially hydrocarbons through filtration, sorption 
and biodegradation (Coupe 2004; Brattebo and Booth 2004; Newman et al. 2006; Gomez-Ullate et al. 
2010). 

Historically, the design of urban drainage systems have been driven at different time periods by 
different objectives and influenced by climate, topography, geology, engineering and construction 
capabilities, scientific knowledge, societal values, religious beliefs, etc (Burian and Edwards 2002). It 
has been established that the design of the PPS affects its performance as a sustainable drainage 
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system (Pratt et al. 2002). The design of PPS with a geotextile installed below the laying course 
supporting concrete block pavers is probably the most popular one in the UK (Newman et al. 2011) 
and often consists of the natural stone aggregates base layer which serves both as a load bearing 
layer and a water storage reservoir. Sometimes the base layer is separated from sub-base by 
geotextile material (Pratt 1995, Brattebo and Booth 2004). Numerous studies have shown that the 
geotextile material is an important component of the PPS design which is effective in stormwater 
pollutant retention (e.g. by filtering out heavy metals and adsorbing hydrocarbons) and serves as the 
site for biodegradation process within the system (Pratt, 1995; Bond, 1999; Coupe 2004; Culleton et 
al. 2005; Newman et al. 2006; Nnadi 2009; Gomez-Ullate et al. 2010) and hence must be incorporated 
in the design in order not to compromise the efficiency of the system. 

Although characteristics and role of most commercially available geotextiles that are readily applicable 
in the PPS are well recognized, the impact of these materials on hydraulic performance of the systems 
is not well understood despite evidence that this might have significant impact on their water treatment 
and storage functions (Nnadi 2009). In characterising a novel geotextile material in 2009, Nnadi (2009) 
observed that the if the PPS are to be used efficiently for water recycling without compromising on 
filtration and attenuation properties, the availability of a geotextile structure which has the capability to  
sustain or enhance the hydraulic properties of the system is essential. 

OASIS® is a novel structure developed at Coventry University which has the potential of being a 
replacement or an additional enhancement of the regular commercially available geotextiles when 
incorporated in the PPS. OASIS phenolic foam is a material that is highly porous and absorbs all water 
that it interacts with up to saturation. Heat compressed random mat geotextiles composed of 
polypropylene fibres with a polyethylene sheath are commonly used in permeable paving. These 
geotextiles are hydrophobic oleophiliic. The structure reported in this paper holds back water to a 
much greater degree than geotextile and residence time of water is extended. The internal structure of 
is such that there is a large internal surface area in addition to the water retention. Geotextiles only 
have a top surface onto which to retain water, trap pollutants and grow a biofilm for bioremediation. 
Furthermore,Its three dimensional structure is capable of storage of a great volume of water inside as 
it is presented in this paper and can also give an extra benefit in the delay of the time needed to reach 
the peak flow in a rainfall event. The Oasis is presented as a structure because in order to maximise 
the water retention and it has an increased depth relative to that of the geotextile  (geotextile is 
approximately 0.5 mm in depth). 

The aim of this study is to investigate the impact of this novel structure on the hydraulic properties of 
the PPS. This is analysed through the study of the infiltration rates, the time needed by water to 
infiltrate throughout the PPS and to reach the steady-state stage behaviour of the water within the 
PPS, under extreme rainfall intensities. Graphs of the infiltration behaviour of PPS are presented in 
this paper, showing an important added hydraulic benefit when using the material. 

 

1 EXPERIMENTAL METHODOLOGY 

1.1 Scheme of the test rigs 

In order to determine water retention and attenuation properties of OASIS® in a model PPS, three 
sets of three replicated PPS test rigs were constructed according to the specifications stated in Nnadi 
(2009) with 100mm paving blocks, 50mm bedding layer and 350mm sub-base. Three of them with a 
13 mm and other three with 20 mm OASIS® structure placed between the sub-base and bedding 
layer, where geotextile materials are normally incorporated in PPS (OASIS® rigs). The other three 
were replicated control test rigs set up without geotextile structure or OASIS® (CONTROL rigs). Also, 
2mm diameter drainage pipe was installed in a hole made at the base of each test model as shown in 
Figure 1. Surface occupied by OASIS® layer within the PPS structure showed in Figure 1 was 
approximately 0.060 m2. 

 

 

 

1.2 Rainfall intensity analysis 

Intensity-Duration-Frequency (IDF) curves of twenty-two cities around the world were analyzed in 
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order to select three rainfall intensities to check the hydraulic behaviour of PPS under extreme rainfall 
conditions, corresponding to a 100-year return period rainfall over duration of 15 minutes. Duration of 
the rainfall was selected based on preliminary tests carried out over CONTROL rigs in which at least 
10 minutes passed to reach the steady-state stage under different rainfall intensities. The selected 
duration provided a good parameter for measurement and comparison between control and rigs with 
OASIS®  studied in terms of attenuation which was measured through the number of rainfall events 
required to reach the steady-state stage. 

It was observed that there are at least three different zones of rainfall intensities as shown in Figure 2. 
These are represented by three dotted lines on 100 mm/hr, 200 mm/hr and 400 mm/hr, respectively 
(Figure 2). Rainfall intensities of many cities around the world fall within each dotted line. For instance, 
rainfall intensities in cities such as London (UK) (Sanderson 2010), Santander (Spain) (Cué Pérez et 
al. 2006), Vancouver (Canada) (Environment Canada 2013), Wellington (New Zealand) (UNESCO 
2008), Los Angeles and San Francisco (USA) (NOAA 2013) can be approximately simulated using 
100 mm/hr. In the case of cities such as Barcelona (Spain) (Casas Castillo 2005), Onitsha (Nigeria) 
(Oyebande 1982), Hanoi (Vietnam) (UNESCO 2008), Nagoya (Japan) (UNESCO 2008), Daegu 
(Korea) (UNESCO 2008), Guatemala City (Guatemala) (INSIVUMEH 2004), Islas Marshall and 
Honolulu (USA) (NOAA 2013) could be represented by a rainfall intensity of 200 mm/hr, while cities 
such as Acapulco (Mexico) reach up to 300 mm/hr (Campos-Aranda 2010). Finally, a rainfall intensity 
of 400 mm/hr could be considered as the top line of rainfall intensity values around the world (e.g. 
Yongchun (China) and Dagupan (Philippines) (UNESCO 2008)), exceptions being Australia whose 
cities such as Brisbane usually exceeds 2,000 mm/hr (UNESCO 2008) of rainfall intensity. 

 

 

1.3 Rainfall simulation 

A Portable Laboratory Rainmaker (PLR) was designed, constructed and calibrated for this study 
(Figure 3) to simulate high rainfall intensities between 50 mm/hr and 450 mm/hr, based on previous 
experience of Fernandez-Barrera et al. (2008) at University of Cantabria. The PLR demonstrated 
correct performance, simulating high rainfall intensities for storm duration below 30 minutes, especially 
with storm duration between 1 minute and 15 minutes which are the most common for extreme rainfall 
events. 

However, a significant loss about 20% in the rainfall intensity simulated in the tests with the PLR was 
observed when the rainfall event last more than 30 minutes, which was the case of some tests 
undertaken with the OASIS® rigs. To correct this negative effect, PLR was replaced in this study by 
using other methodology consistent in simulating the rainfall intensities adding a specific volume of 
water every minute, distributing it over the entire surface of the PPS rig using a graduated container: 
75 ml/minute, 150 ml/minute and 300 ml/minute were added to the rigs simulating the PLR 
performance, corresponding with rainfall intensities of 100, 200 and 400 mm/hr, respectively. Another 
graduated container was used to measure water outflow during the test through the drainage pipe 
installed in the base of the test rigs. 

Tests had different durations in OASIS® rigs, which depended on the initial infiltration time, 
corresponding with the moment in which the water outflow through the drainage pipe started; time to 
reach the steady-state stage, corresponding with the moment in which the water outflow through the 
drainage pipe is constant; and the final infiltration time, corresponding with the moment in which the 
water outflow per minute is near zero. 24 hours after of each test, a measure of the total water 
infiltrated is measured in order to obtain total water storage by OASIS®. So, tests were divided into 
two different stages. Firstly, the time needed to reach the moment in which the water started to outflow 
through the drainage pipe. Secondly, time needed to reach the steady-state stage. The addition of 
these two stages gives the total duration of the rainfall event during the test and then, the number of 
consecutive rainfall events of 15 minutes simulated during the tests. 

As explained in Section 2.2., rainfall events of 15 minutes were simulated in every CONTROL rig with 
different intensities. This time period was considered as being enough to analyze the infiltration 
behaviour in this type of PPS structure and allow for the comparison with OASIS® tests. 

The analysis of the results is divided into two parts: (1) analysis and discussion of the infiltration 
behaviour of the three sets of PPS studied in this investigation with the aim to compare both 
behaviours (with and without OASIS®), and secondly (2), results of detailed investigation of the 



   

4 

performance of OASIS® was provided since it is a novel product in order to give a complete 
description about the way in which it works within a PPS under extreme rainfall conditions. 

 

2 RESULTS AND DISCUSSION 

2.1 Infiltration behaviour of PPS and comparison 

Three rainfall events were simulated during 15 minutes at 100, 200 and 400 mm/hr intensity over three 
exactly replicates of CONTROL rigs, obtaining the following infiltration behaviour as showed in Figure 
4 (a). Infiltration started almost instantaneously through the CONTROL structure (Table 1), showed no 
extra retention property as it can be seen in Figure 4 (a). It was observed in these experiments that 
water needs 10 minutes from the beginning of the rainfall event to reach the steady-state stage in its 
infiltration behaviour within this type of PPS structure (Figure 1), independent on the intensity of the 
rainfall. Some authors such as Davies et al. (2002), Rodriguez-Hernandez et al. (2012) and Sañudo-
Fontaneda et al. (2013) suggested 10 minutes as the time needed to reach steady-state stage, but 
there has not been any experimental demonstration of it. 

In the case of the PPS models with 1.3 cm and 2.0 cm OASIS® layer, the infiltration behaviour 
followed the way presented below in Figure 4 (b) and (c), respectively. Duration of the tests carried out 
with different thickness of OASIS® layer and different rainfall intensities are presented below in Table 
1. Results obtained showed high levels of peak flow attenuation, with absorption of water by OASIS® 
of 100%, 50% and 20% corresponding with 100, 200 and 400 mm/hr intensities, respectively, with 
1.3cm thickness, and 100%, 75% and 38% with 2.0 cm. 

As it can be seen in Figure 4 (b) and (c), the infiltration through the 1.3 cm OASIS® layer started near 
14 minutes, 8 minutes and 3 minutes, while it lasted 20 minutes, 11 minutes and 6 minutes in the case 
of 2.0cm OASIS® layer, under rainfall intensities of 100 mm/hr, 200 mm/hr and 400 mm/hr, 
respectively. This means that the 1.3 cm OASIS® layer is capable of absorbing at least one entire 
rainfall event of 100 mm/hr, as it can be seen in Table 1. 

Also, time to reach the OASIS® saturation point (steady-state stage) from the beginning of the 
infiltration seems to be independent from the thickness of the OASIS® layer, considering values 
showed in Figure 4 (14 minutes, 17 minutes and 19 minutes corresponding with 100, 200 and 400 
mm/hr, respectively). It could depend more on the rainfall intensity, but more tests are necessary with 
more thicknesses and rainfall intensities to demonstrate this point. 

 

2.2 OASIS® Performance Zones 

OASIS® showed at least three different performance zones regarding with its infiltration behaviour as 
it can be seen in Figure 5. Firstly, there is an absorption zone (A) in which OASIS® works as an 
absorption body, absorbing all water from the rainfall event till the initial infiltration time detailed in 
Figure 4 and Table 1. Secondly, it can be shown that there is an intermediate absorption and 
infiltration zone (B), in which OASIS® was locally saturated of water. This fact allows the beginning of 
the infiltration, but OASIS® continued absorbing water from the rainfall event until the complete 
saturation of the OASIS® layer. The moment in which the steady-state stage starts marks the 
beginning of the third zone (zone C) called infiltration zone because OASIS® was infiltrating all the 
water from the rainfall through itself and working like the CONTROL models (Figure 4). 

The volume of water store in the OASIS® PPS structure was measured through the difference 
between the water used in the test to simulate the rainfall event and the water which flowed out 
through the drainage pipe in the bottom part of the test rig, taking the last measure of infiltrated water 
24 hours after the simulation of the rainfall event (Table 2). The amount of water absorbed by 
CONTROL rigs was also measured through the same method. In this case, the value was constant, 
independently on the rainfall intensity and its value was 0.3 L. Therefore, this value must be 
subtracting from the values obtained in Table 2 for total water storage in OASIS® to reach the real 
water storage capacity of the OASIS®. 

Based on previous argumentation, values of water storage in OASIS® layer showed in Table 2 and 
the OASIS® surface (0.060m2) used in the test rigs, the total water storage capacity of this new 
product was obtained, taking into account the influence of the rest of the PPS layers presented in 
structure showed in Figure 1. For instance, water storage capacity of 1.3 cm OASIS® layer is 19.07 
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L/m2 (17.17 L/m2 in zone A), while for 2.0 cm OASIS® layer is 32.75 L/m2 (27.17 L/m2 in zone A). 
Therefore, the percentage of water stored in OASIS® layer in zone A (absorption) is 90.0% in the case 
of 1.3 cm of thickness, while 83.0% was obtained in the case of 2.0 cm of thickness. Taking into 
account the influence of all layers within the OASIS® PPS structure, the percentage of water absorbed 
before the beginning of the infiltration was 71.5%, being independent on the thickness of the OASIS®. 
However, it was observed as shown in Table 2 that an increase of 0.7cm in the thickness of the 
OASIS® layer can produce an increase of 37% in the OASIS® total storage capacity. Finally, Figure 5 
can be used as a brief guide by technicians to understand how the OASIS® works in the PPS during 
storm events. 

 

3 CONCLUSIONS 

1. Water infiltrates almost instantaneously through PPS without geotextile or OASIS®, showing zero 
extra benefits as regards delay of the peak flow. In this case, water flowing through the PPS needs 10 
minutes to reach the steady-state stage, independent of the intensity of the rainfall event. 

2. OASIS® layer in PPS provided high levels of peak flow attenuation, absorbing 100%, 50% and 20% 
of 15 minutes of 100, 200 and 400 mm/hr, respectively, with 1.3cm thickness, and 100%, 75% and 
38% with 2.0 cm. 

3. Total storage capacity of OASIS® was 19.07 L/m2 with 1.3cm thickness and 32.75 L/m2 with 2.0 cm 
thickness. 

An increase of almost 1cm in the OASIS® layer thickness produced an increase of 37% in the water 
volume which can be stored the system. 

4. OASIS® provided an extra benefit in comparison with usual PPS, delaying peak flow of a rainfall 
event by retaining and storing water within its structure, being especially relevant under extreme 
rainfalls. 
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