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with Equational Constraints 
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Abstract 

Cylindrical Algebraic Decomposition (CAD) has long been one of the most 
important algorithms within Symbolic Computation, as a tool to perform 
quantifier elimination in first order logic over the reals. More recently it 
is finding prominence in the Satisfiability Checking community as a tool to 
identify satisfying solutions of problems in nonlinear real arithmetic. 

The original algorithm produces decompositions according to the signs 
of polynomials, when what is usually required is a decomposition according 
to the truth of a formula containing those polynomials. One approach to 
achieve that coarser (but hopefully cheaper) decomposition is to reduce the 
polynomials identified in the CAD to reflect a logical structure which reduces 
the solution space dimension: the presence of Equational Constraints (ECs). 

This paper may act as a tutorial for the use of CAD with ECs: we describe 
all necessary background and the current state of the art. In particular, we 
present recent work on how McCallum’s theory of reduced projection may be 
leveraged to make further savings in the lifting phase: both to the polynomi-
als we lift with and the cells lifted over. We give a new complexity analysis 
to demonstrate that the double exponent in the worst case complexity bound 
for CAD reduces in line with the number of ECs. We show that the reduction 
can apply to both the number of polynomials produced and their degree. 
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1. Introduction 

1.1. Cylindrical algebraic decomposition 

A Cylindrical Algebraic Decomposition (CAD) splits Rn into cells to 
maintain an invariance structure relative to an input. Traditionally, the cells 
are produced to be sign-invariant for a set of input polynomials: meaning 
that throughout each cell, each of those polynomials has a constant sign. The 
first CAD algorithm was introduced by Collins (1975) to perform Quantifier 
Elimination (QE) over real closed fields. We describe the necessary details 
and terminology for CAD in Section 2.1. The invariance property of a CAD 
means that problems for non-linear polynomial systems such as QE are re-
duced to testing a finite number of sample points; with the nature of the cells 
produced allowing for the easy generation of solution descriptions. 

However, the use of CAD is often limited by the complexity of computing 
one. CAD is known to have worst case complexity doubly exponential in the 
number of variables (Davenport and Heintz, 1988; Brown and Davenport, 
2007). Broadly speaking (see Theorem 5 for a precise result) if the input has 
m polynomials of degree at most d then CAD complexity could be in the 
order of (2dm)2

O(n) 
. For some problems there exist algorithms with better 

complexity (see the textbook by Basu et al. (2006) for example), and there 
are also many specialised algorithms for restricted inputs; but CAD imple-
mentations remain the only general purpose approach for many problems. 

This complexity statement is obtained by considering the necessary size 
of the output for certain examples, and so can only be reduced with changes 
to the output requirements. Further, unlike some other theoretical results, 
this one is clearly felt in practice: when increasing dimensionality one will hit 
the “doubly exponential wall” where progress becomes infeasible. However, 
extensive investigation into CAD and its sub-algorithms has allowed for the 
wall to be “pushed back” to the point of allowing many useful computations. 

Applications of CAD include: motion planning (Schwartz and Sharir, 
1983), weight minimisation for truss design (Charalampakis and Chatzigian-
nelis, 2018), epidemic modelling (Brown et al., 2006), steady state analysis 
of biological networks (Bradford et al., 2017), economic reasoning (Mulligan 
et al., 2018a), artificial intelligence to pass exams (Wada et al., 2016), para-
metric optimisation (Fotiou et al., 2005), theorem proving (Paulson, 2012), 
derivation of optimal numerical schemes (Erascu and Hong, 2016), reasoning 
with multi-valued functions (Davenport et al., 2012), and much more. 
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1.2. CAD and SC2 

CAD has long been important within Symbolic Computation with imple-
mentations in multiple computer algebra systems. However, in recent years 
CAD has been of interest to the separate community of Satisfiability Check-
ing. There, search based algorithms developed for the Boolean SAT problem, 
make use of heuristics and learning (see the textbook by Biere et al. (2009) 
for details). Success here led to research on domains other than the Booleans, 
and Satisfiability Module Theory (SMT)-Solvers which use SAT algorithms 
on the Boolean skeleton of a problem with queries to theory solvers to see if 
a satisfying Boolean assignment is valid in the domain (learning new clauses 
if not) (Barrett et al., 2009; Kroening and Strichman, 2013). 

For the SMT domain of non-linear real arithmetic (NRA), CAD and 
more generally computer algebra systems can play the role of such theory 
solvers1 . SMT-RAT contains a tailored CAD implementation for use in 

´ SMT (Loup et al., 2013; Kremer and Abrahám, 2019), while Z3 contains 
an algorithm by Jovanovic and de Moura (2012) which uses CAD theory 
without producing actual CADs. The latter inspired new developments in 
symbolic computation such as non-uniform CAD by Brown (2015). Further 
collaboration is informed by the SC2 project: forging interaction between 

´ Symbolic Computation and Satisfiability Checking ( Abrahám et al., 2016). 
CADs are produced relative to a problem statement expressed in logic 

connectives between atoms involving (potentially non-linear) polynomials 
with integer coefficients. The original CAD algorithm produces decompo-
sitions according to the signs of these polynomials, essentially ignoring the 
logical structure entirely and so producing decompositions fine enough to 
solve all problems for all logical formulae formed by those polynomials. A 
Satisfiability Checking approach like that of Jovanovic and de Moura (2012) 
takes an opposite focus, analysing and extending the logical skeleton of the 
formula until a solution is found with the correct algebraic properties. In 
order to derive a full solution from a CAD what is truly required is a decom-
position on whose cells the truth of the overall logical formula is constant2 . 

´1However, as discussed by Abrahám et al. (2016) a more custom approach is beneficial. 
2A sign-invariant decomposition for the polynomials in the formula achieves this, but 

with far more cells and computation than required. 
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1.3. Equational constraints 

A CAD complexity analysis, such as that in Section 6, does not just 
conclude the upper bound (2dm)2

O(n) 
: it actually shows that in one dimension 

we must isolate the roots of at most M polynomials of degree D, where 
d2

O(n) 2O(n)
D = and M = m . The same orders have been found for lower 
bounds: for D by Davenport and Heintz (1988) and for M by Brown and 
Davenport (2007). The formulae demonstrating this are not straightforward 
but the underlying polynomials are surprisingly simple (all bar two linear 
with each only involving a bounded number of variables, independent of 
n). This demonstrates that the difficulty of CAD resides in the complicated 
number of ways simple polynomials can interact. Improvement must come 
from reducing the number of interactions we track. 

Definition 1. A Quantifier Free Tarski Formula (QFF) is made up of a 
finite number of atoms connected by the standard Boolean operators ∧, ∨ 
and ¬. The atoms are statements about the signs of polynomials with integer 
coefficients: f σ 0 where σ ∈ {=, <, >} (and by combination also {≤, ≥, 6=}). 

Definition 2. An Equational Constraint (EC) is a polynomial equation logi-
cally implied by a QFF. If it is an atom of the formula it is said to be explicit 
and if not then it is implicit. 

Example 1. Let f and g be polynomials. (a) The formula f = 0 ∧ g > 0 has 
explicit EC f = 0. (b) The formula f = 0 ∨ g = 0 has no explicit EC but it 
does have the implicit EC fg = 0. (c) The formulae f2 + g2 ≤ 0 also has no 
explicit EC but this one has two implicit ECs f = 0 and g = 0. 

Collins (1998) was the first to suggest that CAD could be simplified in 
the presence of an EC. He noted that a CAD need only be sign-invariant 
for the defining polynomial of an EC, and sign-invariant for any others only 
within those cells where the EC polynomial is zero. He sketched an intuitive 
approach to produce this by refining the polynomials identified by his CAD 
algorithm. This approach was formalised and verified by McCallum (1999b). 
A complexity analysis (Bradford et al., 2016, Section 2) showed that making 
use of a single EC in this way reduces the double exponent of m in the 
complexity bound for CAD by 1. Some natural questions arising are: 
• Can savings be made iteratively in the presence of multiple ECs? 
• Do those savings further reduce the double exponent? 
• Can corresponding savings be made for the double exponent of d? 
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The first question was answered affirmatively by McCallum (2001), although 
the extension was not trivial3 . The other questions are answered affirma-
tively by the present paper. Such questions are of growing importance as 
CAD finds new application domains with increasing numbers of equations: 
e.g. in biology by Bradford et al. (2017) and England et al. (2017); and in 
economics by Mulligan et al. (2018a,b). Indeed, many problems that arise in 
the Satisfiability Checking context contain far more equalities than inequal-
ities (see the NRA benchmarks in the SMT-LIB (Barrett et al., 2016)). 

1.4. Contribution and plan 

In Section 2 we define the necessary CAD terminology and revise the 
theory for projection, and reduced projection in the presence of an EC, of 
McCallum (1998, 1999b, 2001). Then in Section 3 we present recent work on 
how to leverage this for savings elsewhere in CAD. In Section 4 we propose 
and verify the corresponding algorithm. 

We demonstrate the benefit first with a worked example in Section 5 
and then a complexity analysis in Section 6. The latter observes the double 
exponent in the bound on the number of projection polynomials reducing by 
the number of ECs. In Section 7 and 8 we explain how a similar reduction 
can be observed for their degree if we assume CAD input is pre-processed 
with a Gröbner Basis: a common step in CAD implementations but this is 
the first theoretical justification for it. Together these show that CAD is 
doubly exponential in number of variables minus number of ECs. 

In Section 9 we examine the main caveat: an assumption of primitivity 
to the ECs. We demonstrate its presence in the key results of Davenport 
and Heintz (1988); Brown and Davenport (2007) proving worst case CAD 
complexity, and discuss what might be done. We finish by discussing lessons 
for the Satisfiability Checking community who may call CAD within SMT-
solvers in Section 10, and giving a summary in Section 11. 

The main contributions in this paper were presented at ISSAC 2015 (Eng-
land et al., 2015) and CASC 2016 (England and Davenport, 2016). These 
conference publications addressed the savings in the number of polynomials 
and their degrees separately. The present paper unifies the results into a 
coherent whole providing a single statement of the state of the art. It also 
expands on some details, such as the need for primitivity in Section 9. 

3and contained a small mistake as described in Remark 3. 
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We include all necessary background theory, allowing the paper to act as 
a tutorial for CAD with ECs, timely given the increased use of CAD outside 
of computer algebra systems, as part of satisfiability checkers. We further 
expose the results to the wider SC2 by considering implications for CAD in 
SMT-solvers in Section 10. 

2. Background Material 

2.1. CAD computation and terminology 

We work under variable ordering x = x1 � . . . � xn. The main variable 
of a polynomial or formula (mvar) is the greatest present under the ordering. 

Definition 3. A Cylindrical Algebraic Decomposition (CAD) is a decompo-
sition of Rn into connected cells such that: 

• each cell is a semi-algebraic set meaning it is defined by a finite sequence 
of polynomial equations or inequalities; and 

• the cells are arranged cylindrically meaning the projections of any two 
cells in the decomposition on any lower dimensional space with respect 
to the ordering are either equal of disjoint. 

The latter condition means that each CAD cell is defined by a sequence of 
conditions: c1(x1), c2(x1, x2), . . . , cn(x1, . . . , xn) where each ci is one of: 

` i(x1, . . . , xi−1) <xi (1) 

` i(x1, . . . , xi−1) <xi < ui(x1, . . . , xi−1) (2) 

xi < ui(x1, . . . , xi−1) (3) 

xi = si(x1, . . . , xi−1) (4) 

The ` i, ui, si are constants when i = 1 and otherwise most likely an indexed 
root expression (a particular root of a polynomial). The former condition 
tells us that an equivalent semi-algebraic description can be found. 

We describe the computation scheme and terminology that the Collins-
descended CAD algorithms share. Assume a set of input polynomials (pos-
sibly derived from formulae). The first phase of CAD, projection, applies 
projection operators repeatedly, each time producing another set of polyno-
mials in one less variable (following the variable ordering). Together these 
are the projection polynomials used in the second phase, lifting. 
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First R is decomposed into cells according to the real roots of polynomials 
univariate in x1. Each cell is either a point and therefore its own sample, 
or an interval inside which we choose a convenient sample (often the dyadic 
rational with least denominator). We next decompose R2 by repeating a 
process over each cell in R1 . In each case we take the bivariate projection 
polynomials in (x1, x2), evaluate them at the sample point of the cell in R1 

to give univariate polynomials in x2 whose roots we can count and isolate. 
The cells identified in R2 fall into two categories. Sections are defined 

according to the vanishing of a polynomial as in (4), and correspond to the 
real root of a univariate polynomial. Sectors are usually defined as the regions 
between two sections as in (2), corresponding to the intervals between real 
roots of a univariate polynomial. The exceptions are the two infinite sections 
at either end of the decomposition as in (3) and (1); or if there was no need 
to decompose at all there may be a single infinite sector with no restrictions 
on x2. In each case the sample point is extended from that of the underlying 
cell: for sections to include the algebraic number isolated for the real root 
and for sectors to include any convenient number from the interval (certainly 
in Q). Together the sections and sectors form a stack over the cell in R1 . 

Taking the union of these stacks gives the CAD of R2 . The process may 
then be repeated, each time producing a CAD of larger Ri , until a CAD 
of Rn is produced. The subspaces Ri decomposed are those implied by the 
ordering: (x1)- space, (x1, x2)-space, (x1, x2, x3)-space etc. 

Cells are represented at a minimum with a sample point and index. The 
latter is a list of integers, with the kth describing variable xk according to the 
ordered real roots of the projection polynomials. If the integer is 2i the cell 
is a section corresponds to the ith root (counting low to high) and if 2i + 1 
it is the adjacent sector4 . The projection operator is chosen so polynomials 
are delineable in a cell: the portion of their zero set in the cell consists 
of disjoint sections. A set of polynomials are delineable if each is delineable 
individually, and the sections of different polynomials are identical or disjoint. 
If all projection polynomials are delineable then the input polynomials must 
be sign-invariant: have constant sign in each cell of the CAD. 

There have been a great many extensions and optimisations of CAD 
since its inception, with the survey article by Collins (1998) highlighting 
those from the first 20 years. Since then further highlights have included: 

4The dimension of a cell is hence easily identified from the index. 
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symbolic-numeric lifting schemes (Strzeboński, 2006; Iwane et al., 2009); lo-
cal projection approaches (Brown, 2013; Strzeboński, 2016); comprehensive 
Gröbner basis approaches (Fukasaku et al., 2015) and decompositions via 
complex space (Chen et al., 2009; Bradford et al., 2014). 

2.2. Projection operators 

A key improvement to CAD has been in the projection operator to reduce 
the number of projection polynomials computed (Hong, 1990; McCallum, 
1998, 1999b, 2001; Brown, 2001; Bradford et al., 2013a; Han et al., 2014; 
Bradford et al., 2016). 

The minimal complete projection operator (for sign-invariant CAD) pro-
posed is that of Lazard (1994), however the proof of its correctness was shown 
to be flawed by McCallum and Hong (2016). Shortly before this article went 
to press a corrected proof was published by McCallum et al. (2019) (requiring 
changes elsewhere in the CAD lifting phase). The theory in the present pa-
per uses the family of projection operators by McCallum (1998, 1999b, 2001) 
but, in due course they may be improved by extending Lazard’s family into 
the EC theory. We note that the relative savings from the ECs laid out in 
the present paper would still be maintained if recast into Lazard projection. 

Throughout, let cont, prim, disc, ldcf and coeff denote the content, prim-
itive part, discriminant, leading coefficient, and set of all coefficients of poly-
nomials respectively (in each case taken with respect to a given mvar). When 
applied to a set of polynomials we interpret these as applying the operation 
to each polynomial in the set. e.g. 

cont(A) = {cont(f) | f ∈ A} , 
coeff(A) = ∪f ∈A coeff(A). 

We let res denote the resultant of a pair of polynomials, and for a set 

res(A) = {res(fi, fj ) | fi ∈ A, fj ∈ A, fi 6= fj} . 

Recall that a set B ⊂ Z[x] is an irreducible basis if the elements of B are 
of positive degree in the mvar, irreducible and pairwise relatively prime. 
Throughout this section suppose B is an irreducible basis for a set of poly-
nomials, and further that every element of B has mvar xn and that F ⊆ B. 
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We may now define the projection operators introduced respectively by 
McCallum (1998, 1999b, 2001): 

P (B) := res(B) ∪ disc(B) ∪ coeff(B), (5) 

PF (B) := P (F ) ∪ {res(f, g) | f ∈ F, g ∈ B \ F }, (6) 

PF 
∗ (B) := PF (B) ∪ disc(B \ F ) ∪ coeff(B \ F ). (7) 

In the general case with A a set of polynomials and E ⊆ A we proceed with 
projection by: letting B and F be irreducible bases of the primitive parts 
of A and E respectively; applying the operators as defined above; and then 
taking the union of the output with cont(A). 

Remark 1. We see that (6) is contained in (5) and will usually be smaller. 
It excludes discriminants and coefficients of B \ F which are then reinstated 
by (7). It also excludes those resultants which involve two polynomials from 
B \ F , an exclusion that is maintained by (7). Thus we have (6) ⊆ (7) ⊆ (5). 

Remark 2. The full set of coefficients of a polynomial is usually unneces-
sary for CAD (Brown, 2001). We require knowledge of when the polynomial’s 
degree drops, and thus the vanishing of the leading coefficient is of most im-
portance. But in the case that it did vanish then the next coefficient becomes 
leading and thus must also be studied. To guarantee correctness in all cases 
the full set is taken but most implementations will safely optimise this. E.g. 
if the leading coefficient is constant then it can never vanish and no further 
coefficients need to considered. 

Remark 3. Operator (7) is different to the PF 
∗ (B) of McCallum (2001), 

which excluded the coefficients of B \ F . The 2001 definition was a mistake, 
pointed out to us by the anonymous referee of this paper and confirmed in a 
private communication with McCallum. However, it is not necessary for us 
to prove a corrected version of the theorems from that paper because, as was 
noted by McCallum (2001) (just after Theorem 2.1) if we allow the additional 
coefficients then we can assume degree invariance and thus use the existing 
theorems of McCallum (1998) to validate PF 

∗ (B). 

2.3. Sign invariant CAD Projection 
The theorems below use the idea of order-invariance, meaning each poly-

nomial has constant order of vanishing within each cell, which of course 
implies sign-invariance. We say that a polynomial with mvar xk is nullified 
over a cell in Rk−1 if it vanishes identically throughout. 
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Theorem 1 (McCallum (1998), Thm. 1). Let S be a connected submanifold 
of Rn−1 in which each element of P (B) is order-invariant. Then on S, each 
element of B is either nullified or analytic delineable5 . Further, the sections 
of elements of B that are not nullified are either identical or pairwise disjoint, 
and each element of B is order-invariant on such sections. 

Suppose we apply P repeatedly to generate projection polynomials. Re-
peated use of Theorem 1 concludes that a CAD produced by lifting with 
respect to these projection polynomials is order-invariant so long as no pro-
jection polynomial with mvar xk is nullified over a cell in the CAD of Rk−1 . 
This condition is known as well-orientedness. It is common for problems to 
be well oriented and the condition can be easily checked for during lifting6 . 
In the case that a problem is not well-oriented we cannot conclude sign-
invariance (at least over the cell in which nullification occurred). There are 
some cases where we can rescue the computation (see the report by Brown 
(2005)) but in some cases the only option will be to use an alternative com-
plete projection operator, such as that of Hong (1990). We note that the 
Lazard operator, recently validated by McCallum et al. (2019), removes the 
well-orientedness condition for sign-invariant CAD7 . 

2.4. CAD projection for a formula with a single EC 
A second theorem allows us to understand how PE (A) is validated. 

Theorem 2 (McCallum (1999b), Thm. 2.2). Let f and g be integral poly-
nomials with mvar xn and r(x1, . . . , xn−1) be their resultant. Suppose r = 06 . 
Let S be a connected subset of Rn−1 on which f is delineable and r order-
invariant. Then g is sign-invariant in every section of f over S. 

Suppose A was derived from a formula with EC defined by E = {f}, 
and that we apply PE (A) once and then P repeatedly to generate projection 
polynomials. Assuming the input is well-oriented, we can use Theorem 1 to 
conclude the CAD of Rn−1 order invariant for PE (A). The CAD of Rn is then 
sign-invariant for E using Theorem 1 and sign-invariant for A in the sections 
of E using Theorem 2. Hence the CAD is truth-invariant for the formula. 

5A variant on delineability defined by McCallum (1998). 
6Recall that to lift over a cell we first substitute the cell sample point into the polyno-

mials with main variable one higher: so at this stage we check if any vanish entirely. 
7Instead a modified lifting stage checks for nullification and adapts such polynomials 

to recover the lost information. 
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2.5. CAD projection with multiple ECs 
We now consider the case of multiple ECs. We could of course apply the 

previous technology by designating one EC for special use and treating the 
rest as any other constraint (heuristics can help with the choice (Bradford 
et al., 2013b)). But this does not gain any further advantage from the addi-
tional ECs, which should be reducing the dimension of our solution space. It 
is important to note that we cannot simply add multiple EC defining poly-
nomials into E and use PE(A). That would result in a CAD truth-invariant 
for the disjunction of the ECs, not the conjunction implied by multiple ECs. 

Let us first assume that we have two ECs: one whose mvar is that of 
the system, xn, and another whose mvar is xn−1. Consider applying first 
the operator PE (A) where E defines the first EC and then PE0 (A

0) where 
A0 = PE (A) and E 0 ⊆ A0 contains the second EC. Unfortunately, Theorem 2 
does not validate this approach. While it could be applied once for the CAD 
of Rn−1 it cannot then validate the CAD of Rn because the first application of 
the theorem provided sign-invariance while the second requires the stronger 
condition of order invariance. The approach is acceptable if n = 3 (since in 
two variables the conditions are equivalent for squarefree bases). 

Example 2. We consider the formula φ = f1 = 0 ∧ f2 = 0 ∧ g ≥ 0 with the 
following polynomials: 

2 2 2 2f1 = x + y + z, f2 = x − y + z, g = x + y + z 2 − 1. 

The polynomials are graphed in Figure 1 where g is the sphere, f1 the upper 
surface and f2 the lower. We see that f1 and f2 only meet when y = 0 and 
this projection is on the right of Figure 1. It shows that the solution requires √ 
|x| ≥ 2/2 and z = −x. How could this be ascertained using CAD? 

With variable ordering z � y � x a sign-invariant CAD for (f1, f2, g) 
has 1487 cells using the Qepcad-B program by Brown (2003). We could 
then test a sample point of each cell to identify the ones where φ is true. 
It is preferable to use the presence of ECs. Declaring an EC to Qepcad 
will ensure it uses the algorithm by McCallum (1999b) based on a single use 
of PE (A) followed by P . Either choice results in 289 cells. In particular, 
the solution set is described using 8 cells: all have y = 0, z = −x but the √ 
x-coordinate unnecessarily splits cells at 1

2 (1 ± 6). This is identified due to 
the projection polynomial d = discy(resz(fi, g)). 

For problems with n > 3 it is still possible to make use of multiple 
ECs. However, we must include the extra information necessary to provide 
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Figure 1: The polynomials from Example 2. 

order-invariance of the non-EC polynomials in the sections of ECs. The 
following theorem explains that discriminants are required to maintain order 
invariance, along with degree invariance (and hence coefficients). 

Theorem 3 (McCallum (1998), Thm. 2). Let f be a polynomial with main 
variable xn with positive degree and d = disc(f) which we suppose to be 
non-zero. Let S be a connected submanifold of Rn−1 on which f is degree 
invariant, and does not vanish identically, and in which d is order invariant. 
Then f is analytic delineable on S and is order-invariant in each section of 
f over S. 

Theorem 3 was used originally as a tool to prove Theorem 1: it gives us 
the order invariance of polynomials and individual delineability (adding the 
resultants then extends this to delineability of the set). We can use it again 
now to show that the strengthening of (6) with the added discriminants and 
coefficients to form (7) allows for the order invariance conclusion needed for 
continued application and validation of the operator. 

Suppose we have a formula with two ECs, one with mvar xn and the 
other with mvar xn−1. We may now use a reduced operator twice. We first 
calculate A0 = PE(A) where E contains the defining polynomial of the first 
EC, and then PE

∗ 
0 (A0) where E 0 contains the defining polynomial of the other. 

Subsequent projections simply use P . When lifting we use: first Theorem 1 
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to verify the CAD of Rn−2 as order-invariant for PE
∗ 
0 (A0); then Theorem 1 to 

verify the CAD of Rn−1 delineable and order-invariant for E 0, and Theorem 
3 to verify it order-invariant and delineable for the individual polynomials of 
A0 in the sections of E 0; and finally Theorem 1 and 2 to verify the CAD of 
Rn order-invariant for E and sign-invariant for A in those cells that are both 
sections of E and E 0 . 

2.6. EC propagation 

We can now maximise savings in projection when we have ECs in different 
main variables. Further, if we have two ECs with the same mvar we can 
usually derive another with a lower mvar by taking the resultant of the two 
defining polynomials. McCallum (2001) defined this as EC propagation. The 
process requires the two original ECs to be independent, i.e. the satisfaction 
of one does not imply the satisfaction of the other. 

Given additional ECs one can perform multiple rounds of propagation to 
obtain implicit ECs in a sequence of different main variables. Actually in 
this case there will be more ECs than we are able to use. For example, given 
(independent) ECs fi(x, y, z) = 0 for i = 1, 2, 3 in variables z � y � x then 
a further three implicit ECs can be found with main variable y and another 
three with main variable x: 

r1 = resz(f1, f2), r2 = resz(f1, f3), r3 = resz(f2, f3), 

R1 = resy(r1, r2), R2 = resy(r1, r3), R3 = resy(r2, r3). 

Of course, the latter three will not be independent (the vanishing of one 
should imply the vanishing of another) but even then there may still be 
questions of efficiency over which to use. While Bradford et al. (2013b)h 
have developed heuristics to help with the choice of which EC to use, there 
is likely room for improvement8 . 

Example 3. Consider again the example problem from Example 2. We can 
propagate the two ECs f1 = 0 and f2 = 0 to find implicit EC r1 = 0 as 
defined above. The resultant of the two defining polynomials is −2y2 so we 
may simplify the EC to y = 0. 

8One possibility is the use of machine learning classifiers to make such choices. This 
is a growing topic within mathematical software, with a recent survey given by England 
(2018). It has been applied to CAD by Huang et al. (2014, 2016). 
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If we declare both ECs in z to Qepcad then it will perform the propa-
gation for us and use reduced projection twice. It will actually apply PE (A) 
twice (allowed since n = 3) to produce a CAD with 133 cells. The solution 
set is now described using only 4 cells (the minimum possible). Note that d 
(see Example 2) was no longer produced as a projection polynomial. 

3. Reductions in the Lifting Stage 

The first main contribution of the present paper is to realise that the 
theorems from the previous section allow for significant savings in the lifting 
phase (beyond those achieved from reduced projection). To implement these 
we must discard two embedded principles of CAD: 

• That the projection polynomials are a fixed set. 

• That the invariance structure of the final CAD can be expressed in 
terms of sign-invariance of polynomials. 

The first was also abandoned by Chen et al. (2009); Bradford et al. (2014); 
Jovanovic and de Moura (2012); Brown (2015), while the second by Brown 
and McCallum (2005); McCallum and Brown (2009). 

3.1. Minimising the number of polynomials used for lifting 

Consider Theorem 2: it allows us to conclude that g is sign-invariant in the 
sections of f produced over a CAD of Rn−1 order-invariant for P{f}({f, g}). 
Therefore, it is sufficient to perform the final lift with respect to f only (de-
compose cylinders according to the roots of f but not g). The decomposition 
imposes sign-invariance for f while Theorem 2 guarantees it for g in the cells 
where it matters (where those signs could change the truth of the formula). 

Example 4. We return to Example 2. Recall that designating either EC and 
using the algorithm by McCallum (1999b) produced a CAD with 289 cells. If 
we follow this approach but lift only with respect to the designated EC at the 
final step (implemented in the Maple package by England et al. (2014b)) we 
obtain a CAD with 141 cells: less than half the output. 

This improved lifting follows from the theorems of McCallum (1999b), 
but was only noticed 15 years later during the generalisation of that work 
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to the case of multiple formulae by Bradford et al. (2013a, 2016). Exper-
iments there demonstrated its importance, particularly for problems with 
many constraints: see Section 8.3 of (Bradford et al., 2016). 

When we apply a reduced operator at two levels then we can make such 
reductions at both the corresponding lifts. 

Example 5. We return to the problem from Example 2. Set A = {f1, f2, g}
and E = {f1}. The first projection to eliminate z finds 

PE (A) = {y, y 4 + 2xy 2 + 2x 2 + y 2 − 1}. 

These are the resultants of f1 with f2 and g (after the first is simplified as 
discussed in Example 3). The discriminant of f1 was a constant and so could 
be discarded, as was its leading coefficient (meaning no further coefficients 
were required as explained in Remark 2). Set A0 = PE (A) and E 0 = y 
(since y defines an EC for the problem as discussed in Example 3). We have 
PE0 (A

0) = {R} where 

R = resy(y, y 4 + 2xy 2 + 2x 2 + y 2 − 1) = 2x 2 − 1. 

The other possible entries (the discriminants and coefficients from E 0) are 
all constants. We hence build a 5 cell CAD of the real line with respect to 
the two real roots of R. We then lift above each cell with respect to y only, 
in each case splitting the cylinder into three cells about y = 0, to give a CAD 
of R2 with 15 cells. 

Finally, we lift over each of these 15 cells with respect to f1 to give 45 cells 
of R3 . This compares to 133 from Qepcad, which used reduced projection 
but then lifted with all projection polynomials. No polynomials were nullified, 
so using Theorems 1 and 2, the output is concluded truth-invariant for φ. 

Remark 4. We note that not only is the additional lifting that Qepcad 
performed unnecessary for the problem at hand, it also provides no further 
structure on the output. For example, if we had lifted with respect to f2 at 
the final stage in Example 5 then we would be doing so without the knowledge 
that it is delineable. Hence splitting the cylinder at the sample point offers no 
guarantee that the cells produced are sign-invariant away from that sample 
point. So the extra work does not allow us to conclude that f2 is sign-invariant 
(except on sections of f1 where we could have concluded it already). 
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Remark 5. The improvement outlined above not only decreases output size 
(and computation time) but also the risk of failure9 from non well-oriented 
input: we only need worry about nullification of polynomials we lift with. 

3.2. Minimising the cells for stack generation 

We can achieve more savings by abandoning the aim of producing a CAD 
sign-invariant with respect to any polynomial, instead insisting only on truth-
invariance. We may then lift cells already known to be false trivially to 
cylinders. The idea of avoiding computations over false cells was presented 
by Seidl (2006), and one could argue that it is the basis of the Partial CAD 
for QE problems by Collins and Hong (1991). Our contribution here is to 
explain how such cells can easily be identified in the presence of ECs. We 
demonstrate with our example. 

Example 6. Return to the problem from Examples 2 − 5 and in particular 
the CAD of R2 produced with 15 cells in Example 5. On 5 of these 15 cells 
the polynomial R is zero and on the others it is either positive or negative. 

Now, φ can only be satisfied above the 5 cells, as elsewhere the two explicit 
EC defining polynomials cannot share a root and thus cannot vanish together. 
We can already conclude the truth value for the 10 cells (false) and thus we 
do not need to lift over them, except in the trivial sense of extending them to 
a cylinder in R3 . Lifting over the 5 cells where R = 0 with respect to f1 gives 
15 cells, which when combined with the 10 cylinders gives a CAD of R3 with 
25 cells that is truth-invariant for φ. 

Remark 6. The improvements in this subsection are affecting the concluded 
structure of the output10 . The final 25 cell truth-invariant CAD in Example 
6 is not sign-invariant for f1. The cylinders above the 10 cells in R2 where 
R 6 0 may have f1 varying sign, but since f1 can never equal zero at the = 
same time as f2 in these cells it does not affect the truth of φ. 

Identifying the 5 cells in R2 where R = 0 was trivial since they are simply 
the sections of the second lift: those cells with second entry even in the 
cell index. Similarly, all sections in the third lift are those where f1 is zero, 
however, we cannot conclude that f2 is also zero on these as Theorem 2 

9Although we note that if the recent work of McCallum et al. (2019) can be extended 
to ECs then such worries may be unnecessary altogether. 

10In comparison with Remark 4. 
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only guarantees that f2 is sign-invariant on them. So we must still finish by 
evaluating the polynomials at the sample points, but only for the sections. 

Reducing the number of cells for stack generation clearly decreases output 
size, and since the cells can be identified using only an integer parity check 
computation time decreases (less real root isolation is performed). As de-
scribed in Remark 5 for the improvements in Section 3.1, this also decreases 
the risk of non well-oriented input. 

4. Algorithm 

We present Algorithm 1 (note that it is split into two parts) to build a 
truth-invariant CAD for a formula through the use of ECs. The input is a 
quantifier free formula in x1, . . . , xn (we assume a fixed variable ordering). 
The output is a CAD of Rn which we interpret as a set of cells where each cell 
comes with a cell index and sample point. Each of these is a list of n numbers 
(recall Section 2.1 for how sample points and indices are represented and 
extended). This is the minimum information needed, but implementations 
may choose to store more, such as the formulae for cells. 

The first two steps process the input formula into sets of polynomials: 
An contains all polynomials in the input formula; while the Ek are subsets 
of An which each contain the defining polynomial for a primitive EC of main 
variable xk if one is available, and are empty otherwise. Step 2 is a simple 
extraction but Step 1 is non-trivial: it must identify suitable ECs for use in 
projection, and these may not be explicit in the formula (see Definition 2 and 
Example 1). In practice this will likely require EC propagation (as described 
in Section 2.6); and EC designation (choosing which of a variety of potential 
ECs with the same mvar to identify for reduced projection). We discuss the 
intricacies of this latter step in more detail later. 

Steps 3 − 13 run the projection phase of the algorithm. Each projection 
starts by identifying contents and primitive parts. This is not required for 
Ei: since we assume primitive ECs we have cont(Ei) = ∅, prim(Ei) = Ei and 
the set of factors of Ei contained in Bi for each i. 

When there is no declared EC (Ei is empty) the projection operator (5) 
is used (step 8). Otherwise the operator (7) is used (step 13), unless it is 
the very first or very last projection (step 11) when we use (6). This follows 
the theory detailed in Section 2. In each case the output of the projection is 
combined with the contents to form the next layer of projection polynomials. 
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Algorithm 1: CAD using multiple ECs (part 1 of 2) 
Input : A QFF φ in variables x1, . . . , xn 

Output: Either: D, a truth-invariant CAD of Rn for φ formed from 
a set of cells each defined by an index and a sample point; 
or FAIL, if not well-oriented. 

1 Identify from φ a sequence of sets Ek, k = 1, . . . , n, each either 
empty or containing a single primitive polynomial with mvar xk, 
where each polynomial defines an EC for φ; 

2 Extract the set of defining polynomials An; 
3 for k = n, . . . , 2 do 
4 Set Bk to the finest squarefree basis for prim(Ak); 
5 Set C to cont(Ak); 
6 Set Fk to the finest squarefree basis for Ek; 
7 if Fk is empty then 
8 Set Ak−1 := C ∪ P (Bk); 
9 else 

10 if k = n or k = 2 then 
11 Set Ak−1 := C ∪ PFi (Bi); 
12 else 
13 Set Ak−1 := C ∪ PF

∗ 
i 
(Bi); 

14 If E1 is not empty then set p to be its element; otherwise set p to the 
product of polynomials in A1; 

15 Build a CAD of the real line, D1, according to the real roots of p; 
16 if n = 1 then 
17 return D1; 

Steps 14 − 17 construct a CAD for the real line (returning it for univariate 
input), in what is called the base phase. If there is a declared EC in the 
smallest variable then the real line is decomposed according to its roots; 
otherwise according to the roots of all the univariate projection polynomials. 

Steps 18 − 34 run the lifting phase, incrementally building CADs of Rk 

for k = 2, . . . , n. For each k there are two considerations: 
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Algorithm 1: CAD using multiple ECs (part 2 of 2) 

18 for k = 2, . . . , n do 
19 Initialise Dk to be an empty set; 
20 if Fk is empty then 
21 Set L := Bk; 
22 else 
23 Set L := Fk; 

24 if Ek−1 is empty then 
25 Set Ca := Dk−1 and Cb empty; 
26 else 
27 Set Ca to be cells in Dk−1 whose cell index final entry is even; 
28 Set Cb := Dk−1 \ Ca; 
29 for each cell c ∈ Ca do 
30 if An element of L is nullified over c then 
31 return FAIL; 

32 Generate a stack of cells over c with respect to the 
polynomials in L. Form new sample points and cell indicies 
as extensions of those from c; 

33 for each cell c ∈ Cb do 
34 Extend to a single cell in Rk (cylinder over c) (the extension 

to the index is simply 1 and the extension to the sample 
point can be any number); 

35 return Dn. 

• First, whether there is a declared EC with mvar xk. If so we lift only 
with respect to this (step 23) and if not we use all projection polyno-
mials with mvar xk (step 21). See Section 3.1. 

• Second, whether there is a declared EC with mvar xk−1. If so we restrict 
stack generation to those cells where the EC was satisfied. These are 
simply those with the final entry of the cell index Ik−1 even (step 27). 
We lift the other cells trivially to a cylinder in step 34. See Section 3.2. 

Algorithm 1 clearly terminates. We will verify that it produces a truth-
invariant CAD for the formula if the input is well-oriented, as defined below. 
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Definition 4. For k = 2, . . . , n define sets: 

• Lk − the lifting polynomials: defining polynomial of the declared EC 
with mvar xk if it exists; else all projection polynomials with mvar xk. 

• Ck − the lifting cells: those cells in the CAD of Rk−1 in which the 
designated EC with mvar xk−1 vanishes if it exists, and all cells in that 
CAD otherwise. 

The input of Algorithm 1 is well-oriented if for k = 2, . . . , n no element of 
Lk is nullified over an element of Ck. 

Theorem 4. Algorithm 1 satisfies its specification. 

Proof. We must show the CAD is truth-invariant for φ, unless the input is 
not well-oriented when FAIL is returned. 

First consider input with n = 1. The projection phase would not run, 
with the algorithm jumping to the CAD construction in step 14, returning the 
output in step 17. If there was no declared EC then the CAD is sign-invariant 
for all polynomials defining φ and thus every cell is truth invariant for φ. If 
there was a declared EC then the output is sign-invariant for its defining 
polynomial. Cells would either be intervals where the formula must be false; 
or points, where the EC is satisfied, and the formula either identically true 
or false depending on the signs of the other polynomials. 

Next suppose that the input were not well-oriented (Definition 4). For 
a fixed k, the conditional in steps 20 − 23 sets the lifting polynomials Lk 

to L and the conditional in steps 24 − 28 the lifting cells Ck to Ca. Thus 
it is exactly the conditions of Definition 4 which are checked by step 30, 
returning FAIL in step 31 when they are not satisfied. Hence if the lifting 
phase completes then the input is well-oriented. 

From now on we suppose n > 1 and the input is well-oriented. For a 
fixed k with 2 ≤ k ≤ n define admissible cells to be those in the CAD Dk−1 

of Rk−1 produced by Algorithm 1 where all declared ECs with mvar smaller 
than xk are satisfied, or to be all cells in that CAD if there are no such ECs. 
Then let I(k) be the following statement in italics. 

Over admissible cells (in Rk−1) the CAD Dk of Rk produced by Algorithm 
1 is: (a) order-invariant for any EC with mvar xk; (b) order- (sign- if k = n) 
invariant for all projection polynomials with mvar xk on sections of the EC 
over admissible cells, or over all admissible cells if no EC exists. 
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We shall prove that, for all k with 1 ≤ k ≤ n, I(k) is true. We have 
already proved I(1) (the induction base). Now let 1 < k ≤ n and assume 
I(k − 1) as the induction hypothesis. The truth of I(k), which completes the 
induction, is then a consequence of the following remarks: 
• When Ek is empty we use Theorem 1 to assert all projection polynomi-
als with mvar xk are order-invariant in the stacks over admissible cells 
giving (a) and (b). 

• When Ek is not empty and k = 2 we used the projection operator (6). 
Theorem 2 allows us to conclude (b) and that the EC is sign-invariant 
in admissible cells. The stronger property of order-invariance follows 
since the lifting polynomials form a squarefree basis in two variables. 

• When Ek is not empty and k = n we used the projection operator (6). 
Theorem 2 allows us to conclude (b), but also (a) since in the case 
k = n the statement requires only sign-invariance. 

• When Ek is not empty and 2 < k < n we used the projection oper-
ator (7). Theorem 3 explains that the additions (7) makes to (6) are 
sufficient to conclude the statement. 

In each case the assumptions of the theorems are met by the inductive hy-
pothesis exactly over admissible cells, according to whether Ek−1 was empty. 

From the definition of admissible cells, we know that φ is false (and 
thus trivially truth invariant) upon all cells in the CAD of Rn built over 
an inadmissible cell of Rk , k < n. Coupled with the truth of (a) for k = 
1, . . . , n, this implies the CAD of Rn is truth-invariant for the conjunction of 
ECs (although it may not be truth-invariant for any one individually). The 
truth of (b) implies that on those cells where all ECs are satisfied, the other 
polynomials in φ are sign-invariant and thus φ is truth-invariant. 

5. Worked Example 

We consider an example with sufficient variables to show all the features 
of the algorithm but still small enough to discuss in text. Assume variable 
ordering z � y � x � u � v and define 

f1 := x − y + z 2 , f2 := z 2 − u 2 + v 2 − 1, g := x 2 − 1, 

f3 := x + y + z 2 , f4 := z 2 + u 2 − v 2 − 1, h := z. 

We consider the formula 

φ = f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ f4 = 0 ∧ g ≥ 0 ∧ h ≥ 0. 
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The solution can be found manually by decomposing the system into blocks. 
The surfaces f1 and f3 are graphed in (x, y, z)-space on the left of Figure 2. 
They meet only on the plane y = 0 and this projection is shown on the right. 
The surfaces f2 and f4 are graphed in (z, u, v)-space on the left of Figure 3 
and meet only when z = ±1. We consider only z = +1 due to h ≥ 0, with 
this projection plotted on the right. We thus see that the solution set is 

{u = ±v, x = −1, y = 0, z = 1}. 

To ascertain this by Algorithm 1 we must first propagate and designate 
ECs in Step 1. We choose to use f1 first, calculate 

resz(f1, f2) = (v 2 − u 2 + y − x − 1)2 

and assign r1 := v2 − u2 + y − x − 1. So r1 is the defining polynomial for an 
EC with mvar y. Similarly consider � � 

resy r1, resz(f1, f3) = 16(u 2 − v 2 + x + 1)4 ,� � 
resy r1, resz(f1, f4) = 4(u 2 − v 2)2 

and assign r2 := u2 −v2 +x+1, r3 := u2 −v2 . These are defining polynomials 
for ECs with mvar x and u respectively. There is no series of resultants that 
leads to an EC with mvar v (they all result in constants by that stage). We 
hence identify {Ej }nk=1 := {f1}, {r1}, {r2}, {r3}, { } in Step 1. 

The algorithm continues by extracting the defining polynomials 

A5 = {f1, f2, f3, f4, g, h} 

and finds B5 = A5, F5 = E5 (in fact Fi = Ei for all i = 1, . . . , 5). 
We now start the projection phase. There is a declared EC for the first 

projection so we use operator (6) to derive 

A4 := PF5 (B5) = {(x 2 − 1)2 , (−u 2 + v 2 − x + y − 1)2 , 

(u 2 − v 2 − x + y − 1)2 , 4y 2 , x − y}. 

Hence C := {x2 − 1} and 

B4 := {y, y − x, −u 2 + v 2 − x + y − 1, u 2 − v 2 − x + y − 1}. 

For the next projection we must use operator (7), giving 

∗ 2 2A3 := C ∪ P (B4) = {x 2 − 1, u 2 − v + x + 1, u 2 − v , u 2 − v 2 + 1}.F4 
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Figure 2: The polynomials f1 and f3 from Section 5. 

Figure 3: The polynomials f2 and f4 from Section 5. 
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For this example the extra discriminants in (7) all evaluated to constants and 
so could be discarded, while for all polynomials the leading coefficient was 
constant and so could be discarded with no further coefficients considered 
(see Remark 2). Then 

B3 := {x 2 − 1, u 2 − v 2 + x + 1}, C := {u 2 − v 2 , u 2 − v 2 + 1}, 

and the next projection also uses (7) to produce 

2 2 2A2 := {u 2 − v , u 2 − v 2 + 1, u 4 − 2u v + v 4 + 2u 2 − 2v 2}. 

For the final projection there is no EC and so we use operator (5) to find 
A1 := {v2}. The base phase of the algorithm hence produces a 3-cell CAD of 
the real line isolating 0. 

For the first lift we have L = {u2 − v2} and Ca containing all 3 cells. 
Above the two intervals we split into 5 cells by the curves u = ±v, while 
above v = 0 we split into three cells about the origin. From these 13 cells 
of R2 we select the 5 which were sections of u2 − v2 for Ca. These are lifted 
with respect to L = {r2}, and the other 8 are simply extended to cylinders 
in R3 . Together this gives a CAD of R3 with 23 cells. The next two lifts are 
similar, producing first a CAD of R4 with 53 cells and finally a CAD of R5 

with 113 cells. The entire calculation takes less than a second in Maple. 

5.1. Choice in EC designation 

Algorithm 1 could have been initialised with alternative EC designations. 
There were the 4 explicit ECs with mvar z, and by taking repeated resultants 
we discover the following implicit ECs, in sets with decreasing mvar: 

2 2 2 2{y , u 2 − v + x − y + 1, −u + v + x − y + 1, 
2 2 2 u 2 − v + x + y + 1, −u + v + x + y + 1}, 
2 2 2{x + 1, −u + v + x + 1, u 2 − v + x + 1}, 

{u 2 − v 2}. 

There are hence 60 possible permutations of EC designation, but they lead to 
only 3 different output sizes: 113, 103 and 93 cells. Heuristics for other ques-
tions of CAD problem formulation (Dolzmann et al., 2004; Bradford et al., 
2013b; Huang et al., 2014; Wilson et al., 2014) could perhaps be adapted to 
assist here. None of these are the minimal truth invariant CAD for φ as all 
split the CAD of R1 at v = 0 (from the discriminant u2 − v2). 
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5.2. Comparison with previous EC theory 
A sign-invariant CAD of R5 for the 6 input polynomials can be produced 

by Qepcad with 1,118,205 cells. Neither the RegularChains Library in 
Maple (Chen et al., 2009) nor our Maple package (England et al., 2014b) 
could do this in under an hour. 

Our implementation of the algorithm by McCallum (1999b), which uses 
operator (6) once but also performs the final lift with respect to the EC 
only, can produce a CAD with either 3023, 10,935 or 48,299 (twice) cells 
depending on which EC is designated. The Qepcad implementation of that 
algorithm gives 11,961, 30,233, 158,475, or 158,451 cells. Comparing these 
sets of figures we see the dramatic improvements from just a single reduced 
lift. 

Allowing Qepcad to propagate the four ECs (so a similar projection 
phase as Algorithm 1 but then a normal CAD lifting phase) produces a CAD 
with 21,079 cells. By declaring only a subset of the four (which presumably 
changes the designations of implicit ECs) a CAD with 5,633 cells can be 
produced, still much more than using Algorithm 1. 

The RegularChains Library can also make use of multiple ECs11 , as 
detailed by Bradford et al. (2014), a CAD can be produced instantly. There 
are choices with analogies to designation (England et al., 2014a)), but they 
all lead to a 137 cell output. In particular, they all have an induced CAD of 
the real line which splits at v = ±1 as well as v = 0. 

We note that our Maple implementation is unrefined and unoptimised. 
We do not claim it as a leading CAD implementation. The purpose of the 
paper is to illustrate the state of the art in CAD with EC theory, that all CAD 
implementations should adapt to reproduce. The worked example shows the 
clear benefits of the improved lifting techniques, which we next generalise 
with a complexity analysis. 

6. Complexity Analysis of CAD with EC 

We build on recent work by Bradford et al. (2016) to measure the dom-
inant term in bounds on the number of CAD cells produced. Numerous 
studies have shown this to be closely correlated to the computation time 
(Dolzmann et al., 2004; Bradford et al., 2013a, 2014). We assume CAD 
input with m polynomials of maximum degree d in any one of n variables. 

11but only the latest version from www.regularchains.org 
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Definition 5. Consider a set of polynomials pj . The combined degree of 
the set is the maximum degree (taken with respect to each variable) of the Q
product of all the polynomials in the set: maxi(degxi 

( j pj )). 
The set has the (m,d)-property if it may be partitioned into m subsets, 

each with maximum combined degree d. 

For example, {y2 − x, y2 + 1} has combined degree 4 and thus the (1, 4)-
property, but also the (2, 2)-property. 

We will measure complexity by keeping track of the number and degree 
of projection polynomials. Of course, by replacing {f, g} with {fg} we can 
reduce the number at the cost of increasing the degree, but since it is much 
easier to find the roots of {f, g} than {fg}, we do not want to do that. 
The (m, d)-property, introduced in the thesis of McCallum (1985), is in some 
sense the optimal measure of these properties. 

Bradford et al. (2016) proved that if A has the (m, d)-property then � � 
P (A) ∪ cont(A) has the (M, 2d2)-property with M = 1

2 (m + 1)2 . When 
m > 1, we can bound M by m2 (but we need 2m2 to cover m = 1). 

6.1. Complexity of sign-invariant CAD 
If A has the (m, d)-property then so does its squarefree basis. Hence 

applying this result recursively (as in Table 1) measures the growth in (m, d)-
property during projection under operator (5). After the first projection there 
are multiple polynomials and so the tighter bound for M is used. 

Table 1: Projection under operator (5). 

Variables Number Degree 

n m d 
n − 1 22m 2d2 

n − 2 44m 8d4 

. . . 
. . . 

. . . 
n − r 22

r−1 2r 
m 22

r −1d2
r 

. . . 
. . . 

. . . 
1 22

n−2 2n−1 
m 22

n−1−1d2
n−1 

The number of real roots in a set with the (m, d)-property is at most md 
(although in practice many will be in C \ R). The number of cells in the 
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CAD of R1 is thus bounded by twice the product of the final two entries, 
plus 1. Similarly, if we let di and mi be the entries in the Number and Degree 
columns of Table 1 from the row corresponding to i variables, then the total 
number of cells in the CAD of Rn is bounded by 

n n−1Y Yh � � � � i 
22

r−1 2r 
22

r −1d2
r 

[2midi + 1] = (2md + 1) 2 m + 1 . (8) 
i=1 r=1 

Omitting the +1s will leave us with the dominant term of the bound, which 
evaluates to give the following result. 

Theorem 5. The dominant term in the bound on the number of CAD cells 
in Rn produced using (5) is 

2n−122
n−1−1(2d)2

n−1 m . (9) 

6.2. Reduced projection from ECs 

From now on assume ` equational constraints, 0 < ` ≤ min(m, n), all with 
different mvar. For simplicity we assume these variables are xn, . . . , xn−`+1, 
i.e. the first ` projections are the reduced ones. 

Lemma 6. Suppose A is a set with the (m, d)-property and E ⊂ A has the 
(1, d)-property. Then cont(A) ∪ PE

∗ (A) has the (3m, 2d2)-property. 

Proof. Bradford et al. (2016) proved that applying PE (A) ∪ cont(A) gives a � � 
set of polynomials of size at most 

2
1 (3m + 1) with combined degree 2d2 . 

We now have the additional discriminant and coefficients of (7) to take 
care of. Each polynomial in A \ E will generate an additional discriminant 
of degree at most d(d − 1) and (d + 1) additional coefficients of degree at 
most d. Multiplying all these polynomials together gives a single polynomial 
of degree at most 2d2 . There are m − 1 polynomials in A \ E and so in total 
this projection generates � � 

1 
2 (3m + 1) + (m − 1) < 3m 

polynomials of degree 2d2 . 

We apply this recursively in the top part of Table 2, with the bottom 
derived via the process for P , as in Table 1. 
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Table 2: Projection with (7) ` times and then (5). 

Variables Number Degree 

n m d 
n − 1 3m 2d2 

. . . . . . . . . 
n − ` 3 ` m 22 ̀  −1d2 ̀  

22 ̀+1−1d2 ̀+1 
n − (` + 1) 32` m2 

. . . . . . . . . 
32

r ̀  22 ̀+r −1d2 ̀+r 
n − (` + r) m2r 

. . . . . . . . . 
32

(n−1−`)` 2n−1−` 
22

n−1−1d2
n−1 

1 m

Define di and mi as the entries in the Number and Degree columns of 
Table 2 from the row corresponding to i variables. We can bound the number 
of real roots of projection polynomials in i variables by midi. If we lifted with 
respect to all projection polynomials the cell count would be bounded by 

n n−(`+1) nY Y Y 
[2midi + 1] = [2midi + 1] × [2midi + 1] (10) 

i=1 i=1 i=n−` 
` n−Ỳ−1 h � iY� � � � � � � 

22
s−1d2

s 
32

r` 2r 
22 ̀+r −1d2 ̀+r 

= 2 (3s m) + 1 × 2 m + 1 . 
s=0 r=1 

Omitting the +1 from each product allows us to calculate the dominant term 
of the bound explicitly as 

2n−` +`−13 `2
n−` +`(`−3)/2(2d)2

n−1 m . (11) 

6.3. Reduced lifting from ECs 
Now we consider the benefit of improved lifting. Start by considering the 

CAD of Rn−(`+1). There can be no reduced lifting until this point and so 
the cell count bound is given by the second product in (10), which we will 
denote by (†). The lift to Rn−` will involve stack generation over all cells, 
but only with respect to the EC. This can have at most dn−` real roots and 
so the CAD at most (2dn−` + 1) × (†) cells. 
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The next lift, to Rn−`−1, will lift the sections with respect to the EC, and 
the sectors only trivially (to produce the same number of cylinders). Hence 
the cell count bound is 

(2dn−(`−1) + 1)(dn−`)(†) + (dn−` + 1)(†) 

with dominant term 2dn−(`−1)dn−`(†). Subsequent lifts follow the same pat-
tern and so 2dndn−1 . . . dn−(`−1)dn−`(†) is the dominant term in the bound for 
Rn . This evaluates to give the following result. 

Theorem 7. Consider the CAD of Rn produced using Algorithm 1 in the 
presence of ECs in the top ` variables of the ordering. The dominant term 
in the bound on the number of cells is 

` � n−Ỳ−1 h � �iY� 
2r 

22
s−1d2

s 
22

r ̀  22 ̀+r −1d2 ̀+r 
2 2 m 

s=0 r=1 

2n−` −22−` 3 `2
n−` −2` = (2d)2

n−1 m . (12) 

6.4. Summary of complexity analysis 
The bound in Theorem 7 is strictly less than the one in Theorem 5. The 

double exponent of m has decreased by the number of ECs; the result of the 
improved projection in (11). Then improved lifting has reduced the single 
exponents in the bound further still in (12). 

However, even with this maximal use of ECs, CAD is still doubly expo-
nential in the number of variables due to the first term in (12), the one whose 
degree is the degree term. This should not be surprising: the theory of ECs 
is based around reducing the number of polynomials identified in each pro-
jection, but not the number of projections which controls the degree growth. 
Indeed, we can see directly from Tables 1 and 2 that at the end of projection 
we are dealing with univariate polynomials of degree doubly exponential in 
n regardless of whether we used ECs or not. Reduced lifting allows us to 
avoid isolating the real roots of many of these polynomials, but we will al-
ways need to consider at least one (the EC defining polynomial). To control 
degree growth we must show this to be of a lower degree. 

7. Controlling Degree Growth 

7.1. Degree growth through iterated resultant calculations 
The doubly exponential degree comes from the use of iterated resultant 

calculations during projection: the resultant of two degree d polynomials is 
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the determinant of a 2d × 2d matrix whose entries all have degree at most 
d, and thus a polynomial of degree at most 2d2 . This increase in degree 
compounded by (n − 1) projections gives the first term of the bound (9). 
Note that the derivation of ECs themselves via EC propagation (Section 2.6) 
is itself such an iterated resultant calculation. So even though the EC theory 
of the previous sections allows us to avoid constructing or lifting with many 
such polynomials, the ECs themselves encode the degree. 

The purpose of the resultant in CAD construction is to ensure that the 
points in lower dimensional space where polynomials vanish together are 
identified, and thus that the behaviour over a sample point in a lower di-
mensional cell is indicative of the behaviour over the cell as a whole. The 
iterated resultant (and discriminant) calculations involved in CAD have been 
studied previously, for example by McCallum (1999a) and Lazard and Mc-
Callum (2009). We will follow the work of Busé and Mourrain (2009) who 
consider the iterative application of the univariate resultant to multivariate 
polynomials, demonstrating decompositions into irreducible factors involv-
ing the multivariate resultants12 . They show that the approach will identify 
polynomials of higher degree than the true multivariate resultant and thus 
more than required for the purpose of identifying implicit equational con-
straints. For example, given 3 polynomials in 3 variables of degree d the true 
multivariate resultant has degree O(d3) rather than O(d4). 

The key result of Busé and Mourrain (2009) for our purposes follows. 
Note that this considers polynomials of a given total degree. However, the 
CAD complexity analysis discussed above and later is (following previous 
work on the topic) with regards to polynomials of degree at most d in a given 
variable. For clarity we use the Fraktur font when discussing total degree 
and Roman fonts when the maximum degree. 

Corollary 8 (Busé and Mourrain (2009, Cor. 3.4)). Given three polynomials 
fk(x, y, z) of the form X 

(k) α ifk(x, y, z) = aα,i,j x y zj ∈ S[x][y, z], 
|α|+i+j≤dk 

where S is any commutative ring, then the iterated univariate resultant � � 
resy resz(f1, f2), resz(f1, f3) ∈ S[x] 

12They follow the formalisation of Jouanolou (1991) as laid out in (Busé and Mourrain, 
2009, §2). 
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is of total degree at most d21d2d3 in x, and we may express it in multivariate 
resultants (Jouanolou, 1991), denoted Res, as � � 

resy resz(f1, f2), resz(f1, f3) = (−1)d1d2d3 Resy,z(f1, f2, f3)� � (13)× Resy,z,z f1(x, y, z), f2(x, y, z), f3(x, y, z0), δz,z0 (f1)0 . 

Moreover, if the polynomials f1, f2, f3 are sufficiently generic and n > 1, then 
this iterated resultant has exactly total degree d21d2d3 in x and both resultants 
on the right hand side of the above equality are distinct and irreducible. 

Remark 7. Although not stated as part of the result by Busé and Mour-
rain (2009), under these generality assumptions, Resy,z(f1, f2, f3) has total 
degree d1d2d3 and the second resultant on the right hand side of (13) has total 
degree d1(d1 − 1)d2d3 (see (Busé and Mourrain, 2009, Proposition 3.3) and 
(McCallum, 1999a, Theorem 2.6)). 

Busé and Mourrain (2009) interpret this result in the following quote:13 . 

The resultant r12 := resz(f1, f2) defines the projection of the in-
tersection curve between the two surfaces {f1 = 0} and {f2 = 0}. 
Similarly, r13 := resz(f1, f3) defines the projection of the inter-
section curve between the two surfaces {f1 = 0} and {f3 = 0}. 
Then the roots of resy(r12, r13) can be decomposed into two dis-
tinct sets: the set of roots x0 such that there exists y0 and z0 such 
that 

f1(x0, y0, z0) = f2(x0, y0, z0) = f3(x0, y0, z0), 

and the set of roots x1 such that there exist two distinct points 
(x1, y1, z1) and (x1, y1, z1

0 ) such that 

f1(x1, y1, z1) = f2(x1, y1, z1) and f1(x1, y1, z 1
0 ) = f3(x1, y1, z 1

0 ). 

The first set gives rise to the term Resy,z(f1, f2, f3) in the factor-
ization of the iterated resultant resy(res12, res13), and the second 
set of roots corresponds to the second factor. 

If the fi are all ECs then only the first set are of interest to us as the truth 
of the formula of interest needs them all to vanish at once. However, for a 
general CAD construction, the second set of roots may also be necessary as 
they indicate points where the geometry of the sectors changes. 

13The quote contains a correction in the description of the second set of roots (removing 
a dash from y1 in the second distinct point). The mistake was identified by the anonymous 
referees of (England and Davenport, 2016). 
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7.2. How large are these resultants? 

Consider three ECs defined by f1, f2 and f3 of degree at most d in each 
variable separately ; and that we wish to eliminate two variables z = xn and 
y = xn−1. We may näıvely set each di = nd to bound the total degree. 

The following approach does better. Let K = S[x1, . . . , xn−2, y, z] and 
L = S[ξ1, . . . , ξN , y, z]. Only a finite number of monomials in x1, . . . , xn−2 

occur as coefficients of the powers of y, z in f1, f2 and f3. Map each such Q
α n−2 αi mj := ξmax αimonomial x = x to f (using a different ξj for each mono-i=1 i j emial14) and let fi ∈ L be the result of applying this map to the monomials 

in fi. Operation e commutes with taking resultants in y and z (but not xi). 
The total degree in the ξj of fei is the same as the maximum degree in all 

the x1, . . . , xn−2 of fi, i.e. bounded by d, and hence the total degree of the efi in all variables is bounded by 3d (d for the ξi, d for y and d for z). If we � � e ( e e ( e eapply (13) to the fi, we see that resy resz f1, f2), resz f1, f3) has a factor e eResy,z(fe1, f2, f3) of total degree (in the ξj ) (3d)3 . Hence, by inverting e, we 
may conclude Resy,z(f1, f2, f3) has maximum degree, in each xi, of (3d)3 . 

The results of Jouanolou (1991) and Busé and Mourrain (2009) apply 
to any number of eliminations. In particular, if we have eliminated not 
2 but ` − 1 variables we will have a polynomial Resxn−`+1...xn (fn−`, . . . , fn) 
of maximum degree ` ` d ` in the remaining variables x1, . . . , xn−` as the last 
implicit EC. Therefore the multivariate resultants we need, Resxn−`+1...xn , only 
have singly-exponential growth, rather than the doubly-exponential growth 
of the iterated resultants: can we compute them? 

7.3. Gröbner basis instead of iterated resultants 

A Gröbner Basis G is a particular generating set of an ideal I (within the 
ring of polynomials over an algebraically closed field) defined with respect 
to a monomial ordering. One definition is that the ideal generated by the 
leading terms of I is generated by the leading terms of G. Gröbner Bases 
(GB) allow properties of the ideal to be deduced such as dimension and 
number of zeros and so are one of the main practical tools for working with 
polynomial systems. Their properties and an algorithm to derive a GB for 
any ideal were introduced in the 1965 PhD thesis of Buchberger (2006) (since 
republished). There has been much research to improve and optimise GB 

14We could economise: if x1x
2
2 7→ ξ21 , then we could map x2

1x
4
2 to ξ41 rather than a new 

ξ42 . Since this is for the analysis and not in implementation, we ignore such possibilities. 
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calculation, with the F5 algorithm of Faugère (2002) perhaps the most used 
approach currently. 

Like CAD the calculation of a GB is necessarily doubly exponential in 
the worst case (Mayr and Meyer, 1982) (with lexicographic monomial order-
ing). Recent work by Mayr and Ritscher (2013) showed that rather than 
being doubly exponential with respect to the number of variables present the 
dependency is in fact on the dimension of the ideal. Despite this bound GB 
computation can often be done very quickly usually to the point of instan-
taneous for any problem tractable by CAD, as demonstrated for example by 
Wilson et al. (2012). 

A reasonably common CAD technique is to precondition systems with 
multiple ECs by replacing the ECs by their GB. I.e. let E = {e1, e2, . . . }
be a set of polynomials; G = {g1, g2, . . . } a GB for E; and B any Boolean 
combination of constraints, fi σi 0, where σi ∈ {<, >, ≤, ≥, =6 , =}) and F = 
{f1, f2, . . . } is another set of polynomials. Then 

Φ := (e1 = 0 ∧ e2 = 0 ∧ . . . ) ∧ B and Ψ := (g1 = 0 ∧ g2 = 0 ∧ . . . ) ∧ B 

are equivalent. A truth-invariant CAD for Ψ is also truth-invariant for Φ. 
If we consider GB preconditioning of CAD in the knowledge of the im-

proved projection schemes for ECs then we see an additional benefit. It 
provides implicit ECs which are not in the main variable of the system re-
moving the need for EC propagation. Since our aim is to produce one EC 
in each of the last ` variables, we need to choose an ordering on monomials 
which is lexicographic with respect to xn � xn−1 � · · · � xn−`+1: it does not 
actually matter (in regards to the theory) how we tie-break after that15 . 

Let us suppose that we have ` ECs f1, . . . , f` (at least one of them, say f1 

must include xn, and similarly we can assume f2 includes xn−1 and so on), 
such that these imply (even over C) that the last ` variables are determined 
(not necessarily uniquely) by the values of x1, . . . , xn−`. Then the vanishing 
of polynomials f1, Resxn (f1, f2), Resxn,xn−1 (f1, f2, f3) etc. are all implied by 
the ECs. Hence either they are in the GB, or they are reduced to 0 by the 
GB, which implies that smaller polynomials are in the GB. Hence our GB will 
contain polynomials (which are ECs) of degree (in each variable separately) 
at most 

d, 4d2 , 27d3 , . . . , ((` + 1)d) `+1 . 

15Research suggests that ‘total degree reverse lexicographic in the rest’ is most efficient. 
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Note that we are not making, and in the light of the work Mayr and Ritscher 
(2013) cannot make, any similar claim about the polynomials in fewer vari-
ables. Also, it is vital that the ECs be in the last variables for our use of 
the work of Jouanolou (1991) and Busé and Mourrain (2009) to work. So 
our results do not directly extend from the case we study, first applying ` 
reduced CAD projections in the presence of ECs before reverting to standard 
projection), to the more general case of having any ` of the projections be 
reduced. 

7.4. Inclusion in Algorithm 1 

There are two routes to include the above suggestion in Algorithm 1. 

1. Directly replace the explicit ECs in φ by those from the GB as suggested 
above. This is a pre-processing of the input to Algorithm 1. The 
identification of ECs in Step 1 involves only a minimal designation 
choice when there are multiple explicit ECs in φ with the same mvar. 

2. Encode this process into a sub-algorithm for Step 1. The GB polyno-
mials become additional options for designated ECs along with those 
from EC propagation and choices are made based on minimal degree or 
some other criteria (Wilson et al., 2012; Huang et al., 2016). However, 
in this case, if GB polynomials are designated they must be added to 
the input set An (a reinterpreting of Step 2 so it extracts both from φ 
and {Ek}n ).k=1

The first approach is the one commonly used in implementations (and the 
one assumed in later discussions). The benefit of the second is that it caps 
any increase in the number of polynomials from the use of GBs. 

It is unlikely that the GB would produce more polynomials in the main 
variable than explicit ECs (since we are starting with a generating set all in 
the main variable and deriving another which would mostly not be) but we 
have yet to rule it out. Of course, the number of polynomials in the input 
can bear little relation to the number generated by projection. But with 
the second approach any increase in the initial m is capped to the number 
of additional designated ECs taken from the GB. The second option may 
become preferable in the event of development of a good (cheap) heuristic. 
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8. Evaluating the Use of GBs for ECs 

8.1. Worked Example 

Let us work with variable ordering z � y � x � w; polynomials 

2 2 2f1 := xy − z 2 − w 2 + 2z, f2 := x + y + z + w + z, 

f3 := −w 2 − y 2 − z 2 + x + z h := z + w; 

and the following QFF for which we seek a truth-invariant CAD. 

φ := f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ h > 0. 

In theory, we could analyse this system with a sign-invariant CAD for the 
four polynomials however none of the CAD implementations in Maple could 
do this within 30 minutes. Instead, let us take advantage of the ECs. There 
are 3 explicit ECs all with mvar z meaning only one can be designated for 
the first projection. We can propagate to find additional implicit ECs: 

r1 = resz(f1, f2) = y 4 + 2xy 3 + (3x 2 − 2w 2 + 2w + 6)y 2 + (2x 3 − 2w 2 x 

+ 2wx − 3x)y + x 4 − 2w 2 x 2 + 2wx 2 + 6x 2 + w 4 − 2w 3 + 4w 2 + 6w, 

r2 = resz(f1, f3) = y 4 + 2xy 3 + (x 2 − 2x + 2)y 2 + (x − 2x 2)y + w 2 + x 2 − 2x 
2 2 2 r3 = resz(f2, f3) = 4y + x 4 + 2x 3 − 2w x 2 + 2wx 2 + 3x 2 − 2w x + 2wx 

− 2x + w 4 − 2w 3 + 3w 2 + 2w; 

all with main variable y. Continuing the propagation with 

R1 := resy(r1, r2), R2 := resy(r1, r3), R3 := resy(r2, r3); 

gives the three polynomials in the Appendix, each degree 16 in x. These are 
different polynomials16 but a numerical plot shows them all to have overlap-
ping real part. All possible resultants to eliminate x evaluate to 0. 

Step 1 could hence produce 3 × 3 × 3 = 27 possible configurations if ECs 
are identified by propagation. Our implementation could build CADs for 
only 6 of these configurations17, when using a time limit of 30 minutes. Of 
the 6 completed there was an average of 423 cells calculated in 113 seconds. 

16most easily verified by comparing the final lines of each. 
17The common factor of these 6 was the designation of r2 for second projection. 
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The optimal configuration gave 227 cells in 36 seconds using a designation 
of f2, r3 and R2. 

Now consider instead taking a GB of {f1, f2, f3}. We use a plex monomial 
ordering on the same variable ordering as the CAD to achieve a basis: 

g1 = 2z + x 2 + x − w 2 + w, 

g2 = 4y 2 + x 4 + 2x 3 + (−2w 2 + 2w + 3)x 2 + (2w 2 + 2w − 2)x 

+ w 4 − 2w 3 + 3w 2 + 2w, 

g3 = 4yx − x 4 − 2x 3 + (2w 2 − 2w − 5)x 2 + (2w 2 − 2w − 4)x 

− w 4 + 2w 3 − w 2 − 4w, 

g4 = (4w 4 − 8w 3 + 4w 2 + 16w)y + x 7 + 4x 6 + (−4w 2 + 4w + 18)x 5 

+ (−12w 2 + 12w + 36)x 4 + (5w 4 − 10w 3 − 31w 2 + 40w + 53)x 3 

+ (10w 4 − 20w 3 − 34w 2 + 52w + 32)x 2 − (2w 6 − 6w 5 − 7w 4 + 32w 3 

− 13w 2 − 44w − 16)x − 2w 6 + 6w 5 − 2w 4 − 14w 3 + 12w 2 + 16w, 

g5 = x 8 + 4x 7 + (−4w 2 + 4w + 18)x 6 + (−12w 2 + 12w + 36)x 5 + (6w 4 

− 12w 3 − 30w 2 + 44w + 53)x 4 + 4(3w 4 − 6w 3 − 8w 2 + 15w + 8)x 3 

+ (−4w 6 + 12w 5 + 6w 4 − 48w 3 + 26w 2 + 64w + 16)x 2 

+ (−4w 6 + 12w 5 − 4w 4 − 28w 3 + 24w 2 + 32w)x 

+ w 8 − 4w 7 + 6w 6 + 4w 5 − 15w 4 + 8w 3 + 16w 2 . 

This is an alternative generating set for the ideal defined by the explicit 
ECs and thus all gi = 0 are ECs for φ. Note that the degrees of the GB 
polynomials (with respect to any one variable) are on average lower (and 
never greater) than those of the (corresponding) iterated resultants. 

Deriving ECs this way removes the choice for EC with mvar z or x but 
there are 3 possibilities for the designation with mvar y. Designating g2 yields 
83 cells while either g3 or g4 result in 55 cells. All 3 configurations took less 
than 20 seconds to compute (with designating g4 the quickest). 

8.2. Effect on the complexity bound 
We now consider how using a GB to produce the designated ECs will 

improve the complexity analysis of Section 6. The number of polynomials 
will be the same as found earlier in Table 2. But we must now track sepa-
rately the degree of the designated EC and the degree of the main projection 
polynomials as they are derived differently. For simplicity we will ignore the 
constant term and focus on the exponents. 
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As described above, the designated ECs will have degrees d, 4d2 , 27d3 , . . . 
as tracked in the middle column of Table 3. For the projection polynomials 
in the top half of the table the reduced projection operator PF (B) will take 
discriminants and coefficients of the EC polynomial; and resultants of them 
with the other projection polynomials. Thus the highest degree polynomial 
produced will have degree that is the sum of the degree of the EC polynomial 
and the highest degree other polynomial. This generates the right column 
of Table 3. We see that the degree exponents here form the so called Lazy 
Caterer’s sequence18 otherwise known as the Central Polygonal Numbers. 
The remaining projections recorded in the bottom half of the table use the 
sign-invariant projection operator and so the degree is squared each time. 

Table 3: Maximum degree of projection polynomials produced for CAD when using pro-
jection operator (7) for the first ` projections and then (5) for the remaining. 

Variables 
Maximum Degree 
EC Others 

n d d 
n − 1 4d2 d2 

n − 2 27d3 d4 

n − 3 256d4 d7 

. . . . . . . . . 
n − ` ` ` d `+1 d `(`+1)(1/2)+1 

n − (` + 1) 
n − (` + 2) 
n − (` + 3) 

d `(`+1)+2 

d2`(`+1)+22 

d2
2`(`+1)+23 

. . . 
n − (` + r) 

. . . 
d2

r−1`(`+1)+2r 

. . . 
1 

. . . 
d2

n−`−2`(`+1)+2n−`−1 

Now let us use the the top line of equation (10) derived earlier as the 

18The On-Line Encyclopedia of Integer Sequences (2010), Sequence Number A000124, 
https://oeis.org/A000124 
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bound when using improved EC projection and lifting before applying the 
degrees of the projection polynomials. We can substitute here with the de-
grees from Table 2 as the di. The term with base d may be computed by Q` � �Q � � 

` ` ds+1 n−`−1 d2
r−1`(`+1)+2r 

s=0 r=1 . 

The exponent of d evaluates to 

2(n−`) 1 
2 (`

2 + ` + 2) − 
2
1 (`2 + `) − 2. (14) 

8.2.1. The ignored constants 
Above, we tracked only the degree of the monomial in the bound, and not 

the constants that multiply it. As well as for simplicity, this was because we 
could not find a closed form expression for the product of constants generated. 
However, it is simple to check that the constant factors derived by the GB 
grow exponentially in ` while those from iterated resultants grow doubly 
exponentially. Further, the constant term can be shown to be strictly lower 
for all but the first few projections. Finally, note that in Section 7.1 we saw 
that the multivariate resultant was itself a factor of the iterated resultant. 

8.2.2. Comparison with base m term 
Let us compare the derived exponent (14) with that for the term with 

base m from (12): 2n−` − 2. We see that both show the double exponent of 
the complexity bound reducing by `, the number of ECs used. However, the 
reduction in degree is not quite as clean as the exponential term in the single 
exponent is multiplied by a quadratic in `. This is to be expected as the 
singly exponential dependency on ` in the Number column of Table 1 was 
only in the term with constant base while for Table 2 the term with base d 
is itself single exponential in `. 

8.3. Should one always use GBs? 

In Section 8.1 we showed the significant savings available if one derived 
ECs with GBs and in Section 8.2 we showed this follows through into a 
theoretical lowering of the worse case complexity bound. The latter offers 
the first theoretical justification for what is a widely used CAD optimisation. 

However, experimental studies by Buchberger and Hong (1991); Wilson 
et al. (2012); Huang et al. (2016) have shown that it is not always benefi-
cial to pre-process CAD with GB. The most recent experiment by Huang 
et al. (2016) found that 75% of a data set of 1200 randomly generated CAD 
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problems benefited from GB preconditioning. So it is certainly worth giving 
consideration to how ECs are derived. As noted earlier, the cost of com-
puting the GB itself is usually negligible in comparison to the CAD so it is 
reasonable to first compute the GB and then decide whether or not to use it. 
A simple man-made heuristic was presented by Wilson et al. (2012) to make 
the decision while Huang et al. (2016) described the training of a machine 
learning classifier to decide. 

There is no contradiction here with the complexity analysis above: the 
analysis is for the worst case and large input and makes no claim to the aver-
age complexity or what happens for smaller input. However, we hypothesise 
that repeating those studies using the new multiple EC technology would see 
a reduction in the cases where GB hindered CAD. 

9. Caveats and the Need for Primitivity 

There are a few caveats to the results presented above. First, Algorithm 
1 can fail for non-well oriented input, but as noted earlier, this restriction 
may be lifted if the new theory for Lazard’s projection operator validated 
by McCallum et al. (2019) can be extended to the EC case. Second, the 
complexity analysis (both in Section 6 and 8.2) assumes the designated ECs 
are in strict succession at the start of projection. For the first analysis it was 
only made to simplify the working, but for the second analysis it was crucial. 
However, Algorithm 1 itself does not carry this restriction and savings will 
still clearly be made in this case. 

The only substantial restriction in the paper is that the designated ECs19 

be defined by primitive polynomials in the main variable of the projection. 
The restriction is common in the literature and present in all the underlying 
theory of McCallum (1999b, 2001). 

There are analogies to be made with the well-oriented issue (when a 
projection factor is nullified). Non-primitive projection factors are not a 
problem for general CAD because we can factorize prior to projection (order-
invariance of factors implies order-invariance of the product). We cannot do 
the same for a non-primitive EC though, as the next example shows. Also, 
unlike the well-orientedness issue, the primitivity restriction it is not likely 
to be removed by developing a Lazard family of EC projection operators. 

19whether they be explicit in the formula or calculated via iterated results or GBs. 
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9.1. Possibilities to use non-primitive ECs? 

Example 7. Consider φ := zy = 0 ∧ ϕ. under ordering · · · � z � y � . . . . 
Polynomial zy is not primitive, so Algorithm 1 cannot use the explicit EC. 

We may be tempted to take E = {z} as the primitive part, project with 
operator (6) and include the content y in the first projection. The CAD of 
(y, . . . )-space would be sign-invariant for y and thus the CAD of (z, y, . . . )-
space truth invariant for the EC (over admissible cells). But we can no longer 
say only sections are admissible for the next lift as there may be cells with 
z 6= 0 and y = 0. We must instead lift over all cells of (y, . . . )-space, saying: 
• Over sections of y: z is no longer an EC (as zy = 0 is forced by y = 0), 
so we lift onto all polynomials. 

• Over sectors of y: z is an EC, so we only lift with respect to this. 
In (z, y, . . . )-space, some cells are admissible (either y = 0 or z = 0) and the 
rest are not (zy 6= 0). There are difficulties in forming a general algorithm: 

1. What would happen if the main variable of the content with respect to 
xi were not xi−1? 

2. What if the content with respect to xi were itself not primitive as a 
polynomial in xi−1? 

3. What if there were another equational constraint in xi−1? 

The first two can probably (but we have not implemented this yet) be solved 
by replacing the logic at lines 24– in the algorithm by a dynamic determina-
tion of which cells were admissible. 

Alternatively in that example we might rewrite φ as 

φ := (z = 0 ∧ ϕ) ∨ (y = 0 ∧ ϕ), (15) 

so each clause has its own EC. The theory of truth-table invariant CADs 
(TTICADs) developed by Bradford et al. (2013a, 2016) is designed to deal 
with such input. More generally, given a formula of the form 

(f1 = 0 ∧ g1 > 0) ∨ (f2 = 0 ∧ g2 > 0), (16) 

TTICAD allows for an improvement on the standard EC theory. Since 
f1f2 = 0 is an implicit EC of (16) standard EC theory allows us to avoid 
studying the gi away from where any fi is zero. By utilising a TTICAD from 
(Bradford et al., 2013a) we can also avoid studying the gi away from where 
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the corresponding fi is zero. This approach was extended in (Bradford et al., 
2016) to also consider formulae such as 

(f1 = 0 ∧ g1 > 0) ∨ (f2 > 0 ∧ g2 > 0), (17) 

where there is no single implicit EC. Although (15) looks closer to (16) it is 
actually more like (17) since y is not an EC in the main variable. 

Although there is the possibility of applying TTICAD for this problem 
it would first require its own extension to use beyond the first projection 
(analogous to the present work for standard ECs). 

9.2. Classical non primitivity 

We can see the importance of the primitivity restriction in the classic 
complexity results of Brown and Davenport (2007), Davenport and Heintz 
(1988). Both rest on the following construction. Let Pk(xk, yk) be the state-
ment xk = f(yk) and then define recursively 

Pk−1(xk−1, yk−1) := (18) 

∃zk∀xk∀yk ((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk)) ⇒ Pk(xk, yk).| {z } | {z }
Qk Lk 

This is ∃zk (zk = f(yk−1) ∧ xk−1 = f(zk)), i.e. xk−1 = f(f(yk−1)). Repeated 
nesting of this procedure builds the doubly-exponential growth. So 

Pk−2(xk−2, yk−2) = Qk−1Lk−1 ⇒ (QkLk ⇒ Pk(xk, yk)) , (19) 

gives xk−2 = f(f(f(f(yk−2)))) etc. Rewriting (19) in prenex form gives 

Pk−2(xk−2, yk−2) = Qk−1Qk ¬Lk−1 ∨ ¬Lk ∨ Pk(xk, yk). (20) 

The negation of (20) is therefore 

¬Pk−2(xk−2, yk−2) = Qk−1QkLk−1 ∧ Lk ∧ ¬Pk(xk, yk), (21) 

where the operator interchanges ∀ and ∃. Now, Lk can be rewritten as 

Lk = (yk−1 = yk ∨ yk = zk) ∧ (yk−1 = yk ∨ xk−1 = xk) 

∧ (xk = zk ∨ yk = zk) ∧ (xk = zk ∨ xk−1 = xk) (22) 
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and further 

Lk = (yk−1 − yk)(yk − zk) = 0 ∧ (yk−1 − yk)(xk−1 − xk) = 0 

∧ (xk − zk)(yk − zk) = 0 ∧ (xk − zk)(xk−1 − xk) = 0, (23) 

which shows Lk to be a conjunction of (non primitive) ECs. This is true 
for any Li, hence the propositional part of (21) is a conjunction of eight 
ECs, mostly non primitive, and ¬Pk(xk, yk). Hence by induction we have 
that the whole family of examples ¬Pi may be written as complete conjunc-
tion of (mostly non primitive) ECs. Furthermore there are equalities whose 
main variables are the first variables to be projected if we try to produce 
a quantifier-free form of (21). But that quantifier-free form describes the 
complement of the semi-algebraic varieties in (Brown and Davenport, 2007) 
or (Davenport and Heintz, 1988) (depending which Pk we take) and these 
have doubly-exponential complexity in n. 

So we observe that the classical results proving the doubly exponential 
complexity of CAD are not tackled by our EC technology. 

10. Lessons for SC2 

The SC2 community already appreciates that the logical structure of CAD 
input is important and should be exploited where ever possible. The main 
additional lesson from the present paper is that this exploitation can take 
place not only at the Boolean skeleton level but also in the computer algebra. 

10.1. Reasons for optimism 

There are high barriers to implementing CAD without the support of 
a computer algebra system, however, SMT solvers such as SMT-RAT by 

´ Loup et al. (2013); Kremer and Abrahám (2019) and Z3 by Jovanovic and 
de Moura (2012) show it is possible. Indeed, the developers of SMT-RAT 
are now beginning to expand their CAD module to include a variety of projec-
tion operators (Viehmann et al., 2017) and even EC functionality as described 
by Haehn et al. (2018). 

One particular barrier is the need multivariate factorization algorithms, 
which those developing in a computer algebra system can take for granted but 
represent a significant implementation cost. On this point we highlight to the 
SMT community the availability of CoCoALib which is a free C++ library 
that can perform computer algebra computations without the requirement for 
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the accompanying Computer Algebra System (in this case CoCoA) (Abbott 
and Bigatti, 2014). Further, CoCoA is now actively developing features for 
use in SMT as described by Abbott and Bigatti (2017); Abbott et al. (2018). 

10.2. Incrementality 

A key requirement for the effective use of CAD by SMT-solvers is that 
the CAD technology be incremental: that polynomials can be added and 
removed to the input with the data structures of the CAD edited rather 
than recalculated. Such incremental CAD algorithms are now under devel-

´ opment as part of the SC2 by Kremer and Abrahám (2019); Cowen-Rivers 
and England (2018). 

An additional advantage from incremental CAD would be with regards 
to the issue of well-orientedness. I.e. if a particular operator is found to not 
be well-oriented at the end of a CAD calculation the next step would be to 
revert to a less efficient operator which is a superset of the original. Refining 
an existing decomposition should be cheaper than recomputing from scratch. 
Although on this point, the development of the Lazard projection theory may 
remove the well-orientedness condition all together. 

However, the use of CAD with ECs incrementally requires additional 
development work. First, it introduces additional decisions to be taken such 
as EC designation and whether to pre-processing with GB (not to mention 
whether that can also be done incrementally). Second, this growing number 
of decisions needs to be taken in tandem, prompting exponential growth 
in the number of possibilities that overwhelms existing heuristics. Machine 
learning techniques may be one way forward, as outlined by England (2018). 

Finally, existing heuristics that guide the Boolean search may not be 
suitable since the use of ECs could prompt what appears as strange behaviour 
in the SMT context. For example, removing a constraint that was equational 
could actually grow the output CAD since it necessitates the use of a larger 
projection operator. Correspondingly, adding an equational constraint could 
allow a smaller operator and shrink the output. SMT solver search heuristics 
will need to be adapted to handle these possibilities. 
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11. Summary 

We have presented much of the state of the art in the theory of CAD with 
Equational Constraints. This included how ECs may be leveraged for savings 
in the lifting phase as well as projection. We demonstrated the benefits of 
the theory with worked examples and complexity analysis. The latter shows 
that the worst CAD bound has double exponent that reduced from n by 
the number of ECs. Crucially, this is the global double exponent covering 
both the number and degree of polynomials, if we allow for Groebner Basis 
pre-processing. 

The main avenues for future work are an exploration of dealing with non-
primitive ECs; the extension of the Lazard projection operator to a family 
of operators for ECs; the development of heuristics for choosing which ECs 
to designate; and the development of incremental EC technology. We note 
that the current results and any future progress have benefits not only for 
Symbolic Computation but the wider SC2 community. 
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Appendix A. The Iterated Resultants From Section 8.1 

R1 := res(r1, r2, y) = x 16 + 8 x 15 + (−8 w 2 + 8 w + 64)x 14 + (−56 w 2 + 56 w 
4+ 288)x 13 + (28 w 4 − 56 w 3 − 332 w 2 + 400 w + 1138)x 12 + (168 w 

4− 336 w 3 − 1144 w 2 + 1552 w + 2912)x 11 + (−56 w 6 + 168 w 5 + 648 w 
5− 1816 w 3 − 2664 w 2 + 5328 w + 6336)x 10 + (−280 w 6 + 840 w 

8+ 1400 w 4 − 5400 w 3 − 2616 w 2 + 11368 w + 7808)x 9 + (70 w 
2− 280 w 7 − 500 w 6 + 3080 w 5 − 270 w 4 − 11576 w 3 + 4860 w 

4+ 20816 w + 7381)x 8 + (280 w 8 − 1120 w 7 + 80 w 6 + 6080 w 5 − 8480 w 
9− 11792 w 3 + 22840 w 2 + 20192 w + 920)x 7 + (−56 w 10 + 280 w 

3− 80 w 8 − 2160 w 7 + 4960 w 6 + 3200 w 5 − 22608 w 4 + 2584 w 
8+ 40840 w 2 + 16040 w + 2024)x 6 + (−168 w 10 + 840 w 9 − 1520 w 

2− 1360 w 7 + 12016 w 6 − 11296 w 5 − 23368 w 4 + 30136 w 3 + 22032 w 
8+ 624 w + 736)x 5 + (28 w 12 − 168 w 11 + 396 w 10 + 160 w 9 − 3690 w 

2+ 6576 w 7 + 4520 w 6 − 24712 w 5 + 13154 w 4 + 37456 w 3 + 1464 w 
9− 1568 w + 5968)x 4 + (56 w 12 − 336 w 11 + 1192 w 10 − 1680 w 

3− 2688 w 8 + 12496 w 7 − 13464 w 6 − 16912 w 5 + 37240 w 4 + 13472 w 
11− 16384 w 2 + 1984 w + 3072)x 3 + (−8 w 14 + 56 w 13 − 248 w 12 + 520 w 

5+ 72 w 10 − 3088 w 9 + 7664 w 8 − 2040 w 7 − 16176 w 6 + 20424 w 
14+ 20056 w 4 − 15360 w 3 − 8544 w 2 + 4608 w + 2304)x 2 + (−8 w 

7+ 56 w 13 − 296 w 12 + 808 w 11 − 1144 w 10 − 776 w 9 + 6184 w 8 − 7048 w 
16− 6944 w 6 + 19696 w 5 + 3872 w 4 − 16832 w 3 − 1152 w 2 + 4608 w)x + w 

9− 8 w 15 + 52 w 14 − 184 w 13 + 454 w 12 − 440 w 11 − 772 w 10 + 3352 w 
2− 2447 w 8 − 4288 w 7 + 8200 w 6 + 2080 w 5 − 7664 w 4 − 384 w 3 + 2304 w 

R2 := res(r1, r3, y) = x 16 + 8 x 15 + (−8 w 2 + 8 w + 28)x 14 + (−56 w 2 + 56 w 
4+ 48)x 13 + (28 w 4 − 56 w 3 − 116 w 2 + 160 w − 2)x 12 + (168 w 

4− 336 w 3 + 80 w 2 + 184 w − 256)x 11 + (−56 w 6 + 168 w 5 + 108 w 
4− 592 w 3 + 852 w 2 − 240 w − 12)x 10 + (−280 w 6 + 840 w 5 − 1120 w 
6+ 360 w 3 + 1872 w 2 − 1448 w + 2000)x 9 + (70 w 8 − 280 w 7 + 220 w 

8+ 560 w 5 − 2742 w 4 + 3232 w 3 − 1428 w 2 + 224 w + 4537)x 8 + (280 w 

− 1120 w 7 + 2720 w 6 − 3280 w 5 − 1280 w 4 + 6016 w 3 − 11696 w 2 + 7496 w 
5+ 2552)x 7 + (−56 w 10 + 280 w 9 − 620 w 8 + 480 w 7 + 2488 w 6 − 6880 w 

10+ 9384 w 4 − 5744 w 3 − 9404 w 2 + 12008 w − 4120)x 6 + (−168 w 
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4+ 840 w 9 − 2960 w 8 + 5840 w 7 − 4832 w 6 − 3088 w 5 + 21104 w 
10− 27128 w 3 + 12552 w 2 + 3888 w − 5888)x 5 + (28 w 12 − 168 w 11 + 612 w 

4− 1280 w 9 + 498 w 8 + 3648 w 7 − 12424 w 6 + 17360 w 5 − 4546 w 
10− 13928 w 3 + 19032 w 2 − 9344 w − 176)x 4 + (56w 12 − 336w 11 + 1552w 

4− 4200 w 9 + 7296 w 8 − 6080 w 7 − 7440 w 6 + 25880 w 5 − 31352 w 
12+ 13472 w 3 + 1856 w 2 − 10304 w + 1536)x 3 + (−8 w 14 + 56 w 13 − 284 w 

6+ 880 w 11 − 1740 w 10 + 1616 w 9 + 2468 w 8 − 10704 w 7 + 15828 w 
13− 8040 w 5 − 1064 w 4 + 9792 w 3 − 3168 w 2 + 2304)x 2 + (−8 w 14 + 56 w 

7− 320 w 12 + 1096 w 11 − 2800 w 10 + 4600 w 9 − 3968 w 8 − 2152 w 
16+ 9592 w 6 − 10832 w 5 + 5312 w 4 + 4672 w 3 − 5760 w 2 + 4608 w)x + w 
9− 8 w 15 + 52 w 14 − 208 w 13 + 646 w 12 − 1376 w 11 + 2012 w 10 − 1136 w 

2− 1295 w 8 + 4328 w 7 − 3992 w 6 + 2368 w 5 + 2320 w 4 − 1920 w 3 + 2304 w 

R3 := res(r3, r3, y) = x 16 + 8 x 15 + (−8 w 2 + 8 w + 44)x 14 + (−56 w 2 + 56 w 
4+ 160)x 13 + (28 w 4 − 56 w 3 − 228 w 2 + 272 w + 430)x 12 + (168 w 
4− 336 w 3 − 592 w 2 + 856 w + 816)x 11 + (−56 w 6 + 168 w 5 + 444 w 

4− 1264 w 3 − 812 w 2 + 1952 w + 1092)x 10 + (−280 w 6 + 840 w 5 + 560 w 
6− 3000 w 3 + 32 w 2 + 3032 w + 736)x 9 + (70 w 8 − 280 w 7 − 340 w 

8+ 2240 w 5 − 902 w 4 − 4208 w 3 + 2716 w 2 + 3120 w − 183)x 8 + (280 w 

− 1120 w 7 + 480 w 6 + 3440 w 5 − 4640 w 4 − 2304 w 3 + 5840 w 2 + 1128 w 
5− 1144)x 7 + (−56 w 10 + 280 w 9 − 60 w 8 − 1760 w 7 + 3128 w 6 + 960 w 

9− 7352 w 4 + 3216 w 3 + 5860 w 2 − 1320 w − 824)x 6 + (−168 w 10 + 840 w 
2− 1280 w 8 − 880 w 7 + 5568 w 6 − 5008 w 5 − 4464 w 4 + 7848 w 3 + 984 w 

8− 2576 w − 64)x 5 + (28 w 12 − 168 w 11 + 276 w 10 + 400 w 9 − 2302 w 

+ 2848 w 7 + 1880 w 6 − 7440 w 5 + 3582 w 4 + 5704 w 3 − 3208 w 2 − 1216 w 
7+ 720)x 4 + (56 w 12 − 336 w 11 + 880 w 10 − 840 w 9 − 1424 w 8 + 4800 w 

3− 3856 w 6 − 3464 w 5 + 6968 w 4 + 32 w 3 − 3392 w 2 + 448 w + 512)x 
8+ (−8 w 14 + 56 w 13 − 172 w 12 + 208 w 11 + 308 w 10 − 1504 w 9 + 1972 w 

+ 432 w 7 − 3788 w 6 + 2920 w 5 + 2552 w 4 − 3136 w 3 − 864 w 2 + 1024 w 
9+ 256)x 2 + (−8 w 14 + 56 w 13 − 208 w 12 + 424 w 11 − 352 w 10 − 520 w 

2+ 1744 w 8 − 1416 w 7 − 1176 w 6 + 2928 w 5 − 384 w 4 − 1984 w 3 + 384 w 
16 − 8 w 10+ 512 w)x + w 15 + 36 w 14 − 96 w 13 + 150 w 12 − 48 w 11 − 308 w 

2+ 672 w 9 − 351 w 8 − 648 w 7 + 1096 w 6 − 880 w 4 + 128 w 3 + 256 w 
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ideals. Journal of Symbolic Computation 49, 78–94. 
URL https://doi.org/10.1016/j.jsc.2011.12.018 

McCallum, S., 1985. An improved projection operation for cylindrical algebraic decompo-
sition. PhD Thesis (Computer Sciences Technical Report 578), University of Wisconsin-
Madison. 

McCallum, S., 1998. An improved projection operation for cylindrical algebraic decom-
position. In: Caviness, B., Johnson, J. (Eds.), Quantifier Elimination and Cylindrical 
Algebraic Decomposition. Texts & Monographs in Symbolic Computation. Springer-
Verlag, pp. 242–268. 
URL https://doi.org/10.1007/978-3-7091-9459-1_12 

McCallum, S., 1999a. Factors of iterated resultants and discriminants. Journal of Symbolic 
Computation 27 (4), 367–385. 
URL https://doi.org/10.1006/jsco.1998.0257 

McCallum, S., 1999b. On projection in CAD-based quantifier elimination with equational 
constraint. In: Proceedings of the 1999 International Symposium on Symbolic and 
Algebraic Computation. ISSAC ’99. ACM, pp. 145–149. 
URL https://doi.org/10.1145/309831.309892 

McCallum, S., 2001. On propagation of equational constraints in CAD-based quantifier 
elimination. In: Proceedings of the 2001 International Symposium on Symbolic and 
Algebraic Computation. ISSAC ’01. ACM, pp. 223–231. 
URL https://doi.org/10.1145/384101.384132 

McCallum, S., Brown, C., 2009. On delineability of varieties in CAD-based quantifier 
elimination with two equational constraints. In: Proceedings of the 2009 International 

52 

https://doi.org/10.1145/384101.384132
https://doi.org/10.1145/309831.309892
https://doi.org/10.1006/jsco.1998.0257
https://doi.org/10.1007/978-3-7091-9459-1_12
https://doi.org/10.1016/j.jsc.2011.12.018
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1007/978-3-642-38574-2_13
https://doi.org/10.1016/j.jsc.2008.05.006
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-3-642-31365-3_27


Symposium on Symbolic and Algebraic Computation. ISSAC ’09. ACM, pp. 71–78. 
URL https://doi.org/10.1145/1576702.1576715 

McCallum, S., Hong, H., 2016. On using Lazard’s projection in CAD construction. Journal 
of Symbolic Computation 72, 65–81. 
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