

Cylindrical Algebraic
Decomposition with Equational

Constraints

England, M., Bradford, R. & Davenport, J. H.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

England, M, Bradford, R & Davenport, JH 2020, 'Cylindrical Algebraic Decomposition
with Equational Constraints', Journal of Symbolic Computation, vol. 100, pp. 38-71.
https://dx.doi.org/10.1016/j.jsc.2019.07.017

DOI 10.1016/j.jsc.2019.07.019
ISSN 0747-7171

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
Journal of Symbolic Computation. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version
was subsequently published in Journal of Symbolic Computation, 100, (2020)
DOI: 10.1016/j.jsc.2019.07.019

© 2020, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/10.1016/j.jsc.2019.07.017
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cylindrical Algebraic Decomposition
with Equational Constraints

Matthew Englanda, Russell Bradfordb, James H. Davenportb

aFaculty of Engineering, Environment and Computing, Coventry University, UK
bFaculty of Science, University of Bath, UK

Abstract

Cylindrical Algebraic Decomposition (CAD) has long been one of the most
important algorithms within Symbolic Computation, as a tool to perform
quantifier elimination in first order logic over the reals. More recently it
is finding prominence in the Satisfiability Checking community as a tool to
identify satisfying solutions of problems in nonlinear real arithmetic.

The original algorithm produces decompositions according to the signs
of polynomials, when what is usually required is a decomposition according
to the truth of a formula containing those polynomials. One approach to
achieve that coarser (but hopefully cheaper) decomposition is to reduce the
polynomials identified in the CAD to reflect a logical structure which reduces
the solution space dimension: the presence of Equational Constraints (ECs).

This paper may act as a tutorial for the use of CAD with ECs: we describe
all necessary background and the current state of the art. In particular, we
present recent work on how McCallum’s theory of reduced projection may be
leveraged to make further savings in the lifting phase: both to the polynomi-
als we lift with and the cells lifted over. We give a new complexity analysis
to demonstrate that the double exponent in the worst case complexity bound
for CAD reduces in line with the number of ECs. We show that the reduction
can apply to both the number of polynomials produced and their degree.

Keywords: cylindrical algebraic decomposition, non linear real arithmetic

Email addresses: Matthew.England@coventry.ac.uk (M. England),
R.J.Bradford@bath.ac.uk (R. Bradford), J.H.Davenport@bath.ac.uk
(J.H. Davenport)

Preprint submitted to Elsevier

mailto:J.H.Davenport@bath.ac.uk
mailto:R.J.Bradford@bath.ac.uk
mailto:Matthew.England@coventry.ac.uk

1. Introduction

1.1. Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) splits Rn into cells to
maintain an invariance structure relative to an input. Traditionally, the cells
are produced to be sign-invariant for a set of input polynomials: meaning
that throughout each cell, each of those polynomials has a constant sign. The
first CAD algorithm was introduced by Collins (1975) to perform Quantifier
Elimination (QE) over real closed fields. We describe the necessary details
and terminology for CAD in Section 2.1. The invariance property of a CAD
means that problems for non-linear polynomial systems such as QE are re-
duced to testing a finite number of sample points; with the nature of the cells
produced allowing for the easy generation of solution descriptions.

However, the use of CAD is often limited by the complexity of computing
one. CAD is known to have worst case complexity doubly exponential in the
number of variables (Davenport and Heintz, 1988; Brown and Davenport,
2007). Broadly speaking (see Theorem 5 for a precise result) if the input has
m polynomials of degree at most d then CAD complexity could be in the
order of (2dm)2

O(n)
. For some problems there exist algorithms with better

complexity (see the textbook by Basu et al. (2006) for example), and there
are also many specialised algorithms for restricted inputs; but CAD imple-
mentations remain the only general purpose approach for many problems.

This complexity statement is obtained by considering the necessary size
of the output for certain examples, and so can only be reduced with changes
to the output requirements. Further, unlike some other theoretical results,
this one is clearly felt in practice: when increasing dimensionality one will hit
the “doubly exponential wall” where progress becomes infeasible. However,
extensive investigation into CAD and its sub-algorithms has allowed for the
wall to be “pushed back” to the point of allowing many useful computations.

Applications of CAD include: motion planning (Schwartz and Sharir,
1983), weight minimisation for truss design (Charalampakis and Chatzigian-
nelis, 2018), epidemic modelling (Brown et al., 2006), steady state analysis
of biological networks (Bradford et al., 2017), economic reasoning (Mulligan
et al., 2018a), artificial intelligence to pass exams (Wada et al., 2016), para-
metric optimisation (Fotiou et al., 2005), theorem proving (Paulson, 2012),
derivation of optimal numerical schemes (Erascu and Hong, 2016), reasoning
with multi-valued functions (Davenport et al., 2012), and much more.

2

1.2. CAD and SC2

CAD has long been important within Symbolic Computation with imple-
mentations in multiple computer algebra systems. However, in recent years
CAD has been of interest to the separate community of Satisfiability Check-
ing. There, search based algorithms developed for the Boolean SAT problem,
make use of heuristics and learning (see the textbook by Biere et al. (2009)
for details). Success here led to research on domains other than the Booleans,
and Satisfiability Module Theory (SMT)-Solvers which use SAT algorithms
on the Boolean skeleton of a problem with queries to theory solvers to see if
a satisfying Boolean assignment is valid in the domain (learning new clauses
if not) (Barrett et al., 2009; Kroening and Strichman, 2013).

For the SMT domain of non-linear real arithmetic (NRA), CAD and
more generally computer algebra systems can play the role of such theory
solvers1 . SMT-RAT contains a tailored CAD implementation for use in

´ SMT (Loup et al., 2013; Kremer and Abrahám, 2019), while Z3 contains
an algorithm by Jovanovic and de Moura (2012) which uses CAD theory
without producing actual CADs. The latter inspired new developments in
symbolic computation such as non-uniform CAD by Brown (2015). Further
collaboration is informed by the SC2 project: forging interaction between

´ Symbolic Computation and Satisfiability Checking (Abrahám et al., 2016).
CADs are produced relative to a problem statement expressed in logic

connectives between atoms involving (potentially non-linear) polynomials
with integer coefficients. The original CAD algorithm produces decompo-
sitions according to the signs of these polynomials, essentially ignoring the
logical structure entirely and so producing decompositions fine enough to
solve all problems for all logical formulae formed by those polynomials. A
Satisfiability Checking approach like that of Jovanovic and de Moura (2012)
takes an opposite focus, analysing and extending the logical skeleton of the
formula until a solution is found with the correct algebraic properties. In
order to derive a full solution from a CAD what is truly required is a decom-
position on whose cells the truth of the overall logical formula is constant2 .

´1However, as discussed by Abrahám et al. (2016) a more custom approach is beneficial.
2A sign-invariant decomposition for the polynomials in the formula achieves this, but

with far more cells and computation than required.

3

1.3. Equational constraints

A CAD complexity analysis, such as that in Section 6, does not just
conclude the upper bound (2dm)2

O(n)
: it actually shows that in one dimension

we must isolate the roots of at most M polynomials of degree D, where
d2

O(n) 2O(n)
D = and M = m . The same orders have been found for lower
bounds: for D by Davenport and Heintz (1988) and for M by Brown and
Davenport (2007). The formulae demonstrating this are not straightforward
but the underlying polynomials are surprisingly simple (all bar two linear
with each only involving a bounded number of variables, independent of
n). This demonstrates that the difficulty of CAD resides in the complicated
number of ways simple polynomials can interact. Improvement must come
from reducing the number of interactions we track.

Definition 1. A Quantifier Free Tarski Formula (QFF) is made up of a
finite number of atoms connected by the standard Boolean operators ∧, ∨
and ¬. The atoms are statements about the signs of polynomials with integer
coefficients: f σ 0 where σ ∈ {=, <, >} (and by combination also {≤, ≥, 6=}).

Definition 2. An Equational Constraint (EC) is a polynomial equation logi-
cally implied by a QFF. If it is an atom of the formula it is said to be explicit
and if not then it is implicit.

Example 1. Let f and g be polynomials. (a) The formula f = 0 ∧ g > 0 has
explicit EC f = 0. (b) The formula f = 0 ∨ g = 0 has no explicit EC but it
does have the implicit EC fg = 0. (c) The formulae f2 + g2 ≤ 0 also has no
explicit EC but this one has two implicit ECs f = 0 and g = 0.

Collins (1998) was the first to suggest that CAD could be simplified in
the presence of an EC. He noted that a CAD need only be sign-invariant
for the defining polynomial of an EC, and sign-invariant for any others only
within those cells where the EC polynomial is zero. He sketched an intuitive
approach to produce this by refining the polynomials identified by his CAD
algorithm. This approach was formalised and verified by McCallum (1999b).
A complexity analysis (Bradford et al., 2016, Section 2) showed that making
use of a single EC in this way reduces the double exponent of m in the
complexity bound for CAD by 1. Some natural questions arising are:
• Can savings be made iteratively in the presence of multiple ECs?
• Do those savings further reduce the double exponent?
• Can corresponding savings be made for the double exponent of d?

4

The first question was answered affirmatively by McCallum (2001), although
the extension was not trivial3 . The other questions are answered affirma-
tively by the present paper. Such questions are of growing importance as
CAD finds new application domains with increasing numbers of equations:
e.g. in biology by Bradford et al. (2017) and England et al. (2017); and in
economics by Mulligan et al. (2018a,b). Indeed, many problems that arise in
the Satisfiability Checking context contain far more equalities than inequal-
ities (see the NRA benchmarks in the SMT-LIB (Barrett et al., 2016)).

1.4. Contribution and plan

In Section 2 we define the necessary CAD terminology and revise the
theory for projection, and reduced projection in the presence of an EC, of
McCallum (1998, 1999b, 2001). Then in Section 3 we present recent work on
how to leverage this for savings elsewhere in CAD. In Section 4 we propose
and verify the corresponding algorithm.

We demonstrate the benefit first with a worked example in Section 5
and then a complexity analysis in Section 6. The latter observes the double
exponent in the bound on the number of projection polynomials reducing by
the number of ECs. In Section 7 and 8 we explain how a similar reduction
can be observed for their degree if we assume CAD input is pre-processed
with a Gröbner Basis: a common step in CAD implementations but this is
the first theoretical justification for it. Together these show that CAD is
doubly exponential in number of variables minus number of ECs.

In Section 9 we examine the main caveat: an assumption of primitivity
to the ECs. We demonstrate its presence in the key results of Davenport
and Heintz (1988); Brown and Davenport (2007) proving worst case CAD
complexity, and discuss what might be done. We finish by discussing lessons
for the Satisfiability Checking community who may call CAD within SMT-
solvers in Section 10, and giving a summary in Section 11.

The main contributions in this paper were presented at ISSAC 2015 (Eng-
land et al., 2015) and CASC 2016 (England and Davenport, 2016). These
conference publications addressed the savings in the number of polynomials
and their degrees separately. The present paper unifies the results into a
coherent whole providing a single statement of the state of the art. It also
expands on some details, such as the need for primitivity in Section 9.

3and contained a small mistake as described in Remark 3.

5

We include all necessary background theory, allowing the paper to act as
a tutorial for CAD with ECs, timely given the increased use of CAD outside
of computer algebra systems, as part of satisfiability checkers. We further
expose the results to the wider SC2 by considering implications for CAD in
SMT-solvers in Section 10.

2. Background Material

2.1. CAD computation and terminology

We work under variable ordering x = x1 � . . . � xn. The main variable
of a polynomial or formula (mvar) is the greatest present under the ordering.

Definition 3. A Cylindrical Algebraic Decomposition (CAD) is a decompo-
sition of Rn into connected cells such that:

• each cell is a semi-algebraic set meaning it is defined by a finite sequence
of polynomial equations or inequalities; and

• the cells are arranged cylindrically meaning the projections of any two
cells in the decomposition on any lower dimensional space with respect
to the ordering are either equal of disjoint.

The latter condition means that each CAD cell is defined by a sequence of
conditions: c1(x1), c2(x1, x2), . . . , cn(x1, . . . , xn) where each ci is one of:

` i(x1, . . . , xi−1) <xi (1)

` i(x1, . . . , xi−1) <xi < ui(x1, . . . , xi−1) (2)

xi < ui(x1, . . . , xi−1) (3)

xi = si(x1, . . . , xi−1) (4)

The ` i, ui, si are constants when i = 1 and otherwise most likely an indexed
root expression (a particular root of a polynomial). The former condition
tells us that an equivalent semi-algebraic description can be found.

We describe the computation scheme and terminology that the Collins-
descended CAD algorithms share. Assume a set of input polynomials (pos-
sibly derived from formulae). The first phase of CAD, projection, applies
projection operators repeatedly, each time producing another set of polyno-
mials in one less variable (following the variable ordering). Together these
are the projection polynomials used in the second phase, lifting.

6

First R is decomposed into cells according to the real roots of polynomials
univariate in x1. Each cell is either a point and therefore its own sample,
or an interval inside which we choose a convenient sample (often the dyadic
rational with least denominator). We next decompose R2 by repeating a
process over each cell in R1 . In each case we take the bivariate projection
polynomials in (x1, x2), evaluate them at the sample point of the cell in R1

to give univariate polynomials in x2 whose roots we can count and isolate.
The cells identified in R2 fall into two categories. Sections are defined

according to the vanishing of a polynomial as in (4), and correspond to the
real root of a univariate polynomial. Sectors are usually defined as the regions
between two sections as in (2), corresponding to the intervals between real
roots of a univariate polynomial. The exceptions are the two infinite sections
at either end of the decomposition as in (3) and (1); or if there was no need
to decompose at all there may be a single infinite sector with no restrictions
on x2. In each case the sample point is extended from that of the underlying
cell: for sections to include the algebraic number isolated for the real root
and for sectors to include any convenient number from the interval (certainly
in Q). Together the sections and sectors form a stack over the cell in R1 .

Taking the union of these stacks gives the CAD of R2 . The process may
then be repeated, each time producing a CAD of larger Ri , until a CAD
of Rn is produced. The subspaces Ri decomposed are those implied by the
ordering: (x1)- space, (x1, x2)-space, (x1, x2, x3)-space etc.

Cells are represented at a minimum with a sample point and index. The
latter is a list of integers, with the kth describing variable xk according to the
ordered real roots of the projection polynomials. If the integer is 2i the cell
is a section corresponds to the ith root (counting low to high) and if 2i + 1
it is the adjacent sector4 . The projection operator is chosen so polynomials
are delineable in a cell: the portion of their zero set in the cell consists
of disjoint sections. A set of polynomials are delineable if each is delineable
individually, and the sections of different polynomials are identical or disjoint.
If all projection polynomials are delineable then the input polynomials must
be sign-invariant: have constant sign in each cell of the CAD.

There have been a great many extensions and optimisations of CAD
since its inception, with the survey article by Collins (1998) highlighting
those from the first 20 years. Since then further highlights have included:

4The dimension of a cell is hence easily identified from the index.

7

symbolic-numeric lifting schemes (Strzeboński, 2006; Iwane et al., 2009); lo-
cal projection approaches (Brown, 2013; Strzeboński, 2016); comprehensive
Gröbner basis approaches (Fukasaku et al., 2015) and decompositions via
complex space (Chen et al., 2009; Bradford et al., 2014).

2.2. Projection operators

A key improvement to CAD has been in the projection operator to reduce
the number of projection polynomials computed (Hong, 1990; McCallum,
1998, 1999b, 2001; Brown, 2001; Bradford et al., 2013a; Han et al., 2014;
Bradford et al., 2016).

The minimal complete projection operator (for sign-invariant CAD) pro-
posed is that of Lazard (1994), however the proof of its correctness was shown
to be flawed by McCallum and Hong (2016). Shortly before this article went
to press a corrected proof was published by McCallum et al. (2019) (requiring
changes elsewhere in the CAD lifting phase). The theory in the present pa-
per uses the family of projection operators by McCallum (1998, 1999b, 2001)
but, in due course they may be improved by extending Lazard’s family into
the EC theory. We note that the relative savings from the ECs laid out in
the present paper would still be maintained if recast into Lazard projection.

Throughout, let cont, prim, disc, ldcf and coeff denote the content, prim-
itive part, discriminant, leading coefficient, and set of all coefficients of poly-
nomials respectively (in each case taken with respect to a given mvar). When
applied to a set of polynomials we interpret these as applying the operation
to each polynomial in the set. e.g.

cont(A) = {cont(f) | f ∈ A} ,
coeff(A) = ∪f ∈A coeff(A).

We let res denote the resultant of a pair of polynomials, and for a set

res(A) = {res(fi, fj) | fi ∈ A, fj ∈ A, fi 6= fj} .

Recall that a set B ⊂ Z[x] is an irreducible basis if the elements of B are
of positive degree in the mvar, irreducible and pairwise relatively prime.
Throughout this section suppose B is an irreducible basis for a set of poly-
nomials, and further that every element of B has mvar xn and that F ⊆ B.

8

We may now define the projection operators introduced respectively by
McCallum (1998, 1999b, 2001):

P (B) := res(B) ∪ disc(B) ∪ coeff(B), (5)

PF (B) := P (F) ∪ {res(f, g) | f ∈ F, g ∈ B \ F }, (6)

PF
∗ (B) := PF (B) ∪ disc(B \ F) ∪ coeff(B \ F). (7)

In the general case with A a set of polynomials and E ⊆ A we proceed with
projection by: letting B and F be irreducible bases of the primitive parts
of A and E respectively; applying the operators as defined above; and then
taking the union of the output with cont(A).

Remark 1. We see that (6) is contained in (5) and will usually be smaller.
It excludes discriminants and coefficients of B \ F which are then reinstated
by (7). It also excludes those resultants which involve two polynomials from
B \ F , an exclusion that is maintained by (7). Thus we have (6) ⊆ (7) ⊆ (5).

Remark 2. The full set of coefficients of a polynomial is usually unneces-
sary for CAD (Brown, 2001). We require knowledge of when the polynomial’s
degree drops, and thus the vanishing of the leading coefficient is of most im-
portance. But in the case that it did vanish then the next coefficient becomes
leading and thus must also be studied. To guarantee correctness in all cases
the full set is taken but most implementations will safely optimise this. E.g.
if the leading coefficient is constant then it can never vanish and no further
coefficients need to considered.

Remark 3. Operator (7) is different to the PF
∗ (B) of McCallum (2001),

which excluded the coefficients of B \ F . The 2001 definition was a mistake,
pointed out to us by the anonymous referee of this paper and confirmed in a
private communication with McCallum. However, it is not necessary for us
to prove a corrected version of the theorems from that paper because, as was
noted by McCallum (2001) (just after Theorem 2.1) if we allow the additional
coefficients then we can assume degree invariance and thus use the existing
theorems of McCallum (1998) to validate PF

∗ (B).

2.3. Sign invariant CAD Projection
The theorems below use the idea of order-invariance, meaning each poly-

nomial has constant order of vanishing within each cell, which of course
implies sign-invariance. We say that a polynomial with mvar xk is nullified
over a cell in Rk−1 if it vanishes identically throughout.

9

Theorem 1 (McCallum (1998), Thm. 1). Let S be a connected submanifold
of Rn−1 in which each element of P (B) is order-invariant. Then on S, each
element of B is either nullified or analytic delineable5 . Further, the sections
of elements of B that are not nullified are either identical or pairwise disjoint,
and each element of B is order-invariant on such sections.

Suppose we apply P repeatedly to generate projection polynomials. Re-
peated use of Theorem 1 concludes that a CAD produced by lifting with
respect to these projection polynomials is order-invariant so long as no pro-
jection polynomial with mvar xk is nullified over a cell in the CAD of Rk−1 .
This condition is known as well-orientedness. It is common for problems to
be well oriented and the condition can be easily checked for during lifting6 .
In the case that a problem is not well-oriented we cannot conclude sign-
invariance (at least over the cell in which nullification occurred). There are
some cases where we can rescue the computation (see the report by Brown
(2005)) but in some cases the only option will be to use an alternative com-
plete projection operator, such as that of Hong (1990). We note that the
Lazard operator, recently validated by McCallum et al. (2019), removes the
well-orientedness condition for sign-invariant CAD7 .

2.4. CAD projection for a formula with a single EC
A second theorem allows us to understand how PE (A) is validated.

Theorem 2 (McCallum (1999b), Thm. 2.2). Let f and g be integral poly-
nomials with mvar xn and r(x1, . . . , xn−1) be their resultant. Suppose r = 06 .
Let S be a connected subset of Rn−1 on which f is delineable and r order-
invariant. Then g is sign-invariant in every section of f over S.

Suppose A was derived from a formula with EC defined by E = {f},
and that we apply PE (A) once and then P repeatedly to generate projection
polynomials. Assuming the input is well-oriented, we can use Theorem 1 to
conclude the CAD of Rn−1 order invariant for PE (A). The CAD of Rn is then
sign-invariant for E using Theorem 1 and sign-invariant for A in the sections
of E using Theorem 2. Hence the CAD is truth-invariant for the formula.

5A variant on delineability defined by McCallum (1998).
6Recall that to lift over a cell we first substitute the cell sample point into the polyno-

mials with main variable one higher: so at this stage we check if any vanish entirely.
7Instead a modified lifting stage checks for nullification and adapts such polynomials

to recover the lost information.

10

2.5. CAD projection with multiple ECs
We now consider the case of multiple ECs. We could of course apply the

previous technology by designating one EC for special use and treating the
rest as any other constraint (heuristics can help with the choice (Bradford
et al., 2013b)). But this does not gain any further advantage from the addi-
tional ECs, which should be reducing the dimension of our solution space. It
is important to note that we cannot simply add multiple EC defining poly-
nomials into E and use PE(A). That would result in a CAD truth-invariant
for the disjunction of the ECs, not the conjunction implied by multiple ECs.

Let us first assume that we have two ECs: one whose mvar is that of
the system, xn, and another whose mvar is xn−1. Consider applying first
the operator PE (A) where E defines the first EC and then PE0 (A

0) where
A0 = PE (A) and E 0 ⊆ A0 contains the second EC. Unfortunately, Theorem 2
does not validate this approach. While it could be applied once for the CAD
of Rn−1 it cannot then validate the CAD of Rn because the first application of
the theorem provided sign-invariance while the second requires the stronger
condition of order invariance. The approach is acceptable if n = 3 (since in
two variables the conditions are equivalent for squarefree bases).

Example 2. We consider the formula φ = f1 = 0 ∧ f2 = 0 ∧ g ≥ 0 with the
following polynomials:

2 2 2 2f1 = x + y + z, f2 = x − y + z, g = x + y + z 2 − 1.

The polynomials are graphed in Figure 1 where g is the sphere, f1 the upper
surface and f2 the lower. We see that f1 and f2 only meet when y = 0 and
this projection is on the right of Figure 1. It shows that the solution requires √
|x| ≥ 2/2 and z = −x. How could this be ascertained using CAD?

With variable ordering z � y � x a sign-invariant CAD for (f1, f2, g)
has 1487 cells using the Qepcad-B program by Brown (2003). We could
then test a sample point of each cell to identify the ones where φ is true.
It is preferable to use the presence of ECs. Declaring an EC to Qepcad
will ensure it uses the algorithm by McCallum (1999b) based on a single use
of PE (A) followed by P . Either choice results in 289 cells. In particular,
the solution set is described using 8 cells: all have y = 0, z = −x but the √
x-coordinate unnecessarily splits cells at 1

2 (1 ± 6). This is identified due to
the projection polynomial d = discy(resz(fi, g)).

For problems with n > 3 it is still possible to make use of multiple
ECs. However, we must include the extra information necessary to provide

11

Figure 1: The polynomials from Example 2.

order-invariance of the non-EC polynomials in the sections of ECs. The
following theorem explains that discriminants are required to maintain order
invariance, along with degree invariance (and hence coefficients).

Theorem 3 (McCallum (1998), Thm. 2). Let f be a polynomial with main
variable xn with positive degree and d = disc(f) which we suppose to be
non-zero. Let S be a connected submanifold of Rn−1 on which f is degree
invariant, and does not vanish identically, and in which d is order invariant.
Then f is analytic delineable on S and is order-invariant in each section of
f over S.

Theorem 3 was used originally as a tool to prove Theorem 1: it gives us
the order invariance of polynomials and individual delineability (adding the
resultants then extends this to delineability of the set). We can use it again
now to show that the strengthening of (6) with the added discriminants and
coefficients to form (7) allows for the order invariance conclusion needed for
continued application and validation of the operator.

Suppose we have a formula with two ECs, one with mvar xn and the
other with mvar xn−1. We may now use a reduced operator twice. We first
calculate A0 = PE(A) where E contains the defining polynomial of the first
EC, and then PE

∗
0 (A0) where E 0 contains the defining polynomial of the other.

Subsequent projections simply use P . When lifting we use: first Theorem 1

12

to verify the CAD of Rn−2 as order-invariant for PE
∗
0 (A0); then Theorem 1 to

verify the CAD of Rn−1 delineable and order-invariant for E 0, and Theorem
3 to verify it order-invariant and delineable for the individual polynomials of
A0 in the sections of E 0; and finally Theorem 1 and 2 to verify the CAD of
Rn order-invariant for E and sign-invariant for A in those cells that are both
sections of E and E 0 .

2.6. EC propagation

We can now maximise savings in projection when we have ECs in different
main variables. Further, if we have two ECs with the same mvar we can
usually derive another with a lower mvar by taking the resultant of the two
defining polynomials. McCallum (2001) defined this as EC propagation. The
process requires the two original ECs to be independent, i.e. the satisfaction
of one does not imply the satisfaction of the other.

Given additional ECs one can perform multiple rounds of propagation to
obtain implicit ECs in a sequence of different main variables. Actually in
this case there will be more ECs than we are able to use. For example, given
(independent) ECs fi(x, y, z) = 0 for i = 1, 2, 3 in variables z � y � x then
a further three implicit ECs can be found with main variable y and another
three with main variable x:

r1 = resz(f1, f2), r2 = resz(f1, f3), r3 = resz(f2, f3),

R1 = resy(r1, r2), R2 = resy(r1, r3), R3 = resy(r2, r3).

Of course, the latter three will not be independent (the vanishing of one
should imply the vanishing of another) but even then there may still be
questions of efficiency over which to use. While Bradford et al. (2013b)h
have developed heuristics to help with the choice of which EC to use, there
is likely room for improvement8 .

Example 3. Consider again the example problem from Example 2. We can
propagate the two ECs f1 = 0 and f2 = 0 to find implicit EC r1 = 0 as
defined above. The resultant of the two defining polynomials is −2y2 so we
may simplify the EC to y = 0.

8One possibility is the use of machine learning classifiers to make such choices. This
is a growing topic within mathematical software, with a recent survey given by England
(2018). It has been applied to CAD by Huang et al. (2014, 2016).

13

If we declare both ECs in z to Qepcad then it will perform the propa-
gation for us and use reduced projection twice. It will actually apply PE (A)
twice (allowed since n = 3) to produce a CAD with 133 cells. The solution
set is now described using only 4 cells (the minimum possible). Note that d
(see Example 2) was no longer produced as a projection polynomial.

3. Reductions in the Lifting Stage

The first main contribution of the present paper is to realise that the
theorems from the previous section allow for significant savings in the lifting
phase (beyond those achieved from reduced projection). To implement these
we must discard two embedded principles of CAD:

• That the projection polynomials are a fixed set.

• That the invariance structure of the final CAD can be expressed in
terms of sign-invariance of polynomials.

The first was also abandoned by Chen et al. (2009); Bradford et al. (2014);
Jovanovic and de Moura (2012); Brown (2015), while the second by Brown
and McCallum (2005); McCallum and Brown (2009).

3.1. Minimising the number of polynomials used for lifting

Consider Theorem 2: it allows us to conclude that g is sign-invariant in the
sections of f produced over a CAD of Rn−1 order-invariant for P{f}({f, g}).
Therefore, it is sufficient to perform the final lift with respect to f only (de-
compose cylinders according to the roots of f but not g). The decomposition
imposes sign-invariance for f while Theorem 2 guarantees it for g in the cells
where it matters (where those signs could change the truth of the formula).

Example 4. We return to Example 2. Recall that designating either EC and
using the algorithm by McCallum (1999b) produced a CAD with 289 cells. If
we follow this approach but lift only with respect to the designated EC at the
final step (implemented in the Maple package by England et al. (2014b)) we
obtain a CAD with 141 cells: less than half the output.

This improved lifting follows from the theorems of McCallum (1999b),
but was only noticed 15 years later during the generalisation of that work

14

to the case of multiple formulae by Bradford et al. (2013a, 2016). Exper-
iments there demonstrated its importance, particularly for problems with
many constraints: see Section 8.3 of (Bradford et al., 2016).

When we apply a reduced operator at two levels then we can make such
reductions at both the corresponding lifts.

Example 5. We return to the problem from Example 2. Set A = {f1, f2, g}
and E = {f1}. The first projection to eliminate z finds

PE (A) = {y, y 4 + 2xy 2 + 2x 2 + y 2 − 1}.

These are the resultants of f1 with f2 and g (after the first is simplified as
discussed in Example 3). The discriminant of f1 was a constant and so could
be discarded, as was its leading coefficient (meaning no further coefficients
were required as explained in Remark 2). Set A0 = PE (A) and E 0 = y
(since y defines an EC for the problem as discussed in Example 3). We have
PE0 (A

0) = {R} where

R = resy(y, y 4 + 2xy 2 + 2x 2 + y 2 − 1) = 2x 2 − 1.

The other possible entries (the discriminants and coefficients from E 0) are
all constants. We hence build a 5 cell CAD of the real line with respect to
the two real roots of R. We then lift above each cell with respect to y only,
in each case splitting the cylinder into three cells about y = 0, to give a CAD
of R2 with 15 cells.

Finally, we lift over each of these 15 cells with respect to f1 to give 45 cells
of R3 . This compares to 133 from Qepcad, which used reduced projection
but then lifted with all projection polynomials. No polynomials were nullified,
so using Theorems 1 and 2, the output is concluded truth-invariant for φ.

Remark 4. We note that not only is the additional lifting that Qepcad
performed unnecessary for the problem at hand, it also provides no further
structure on the output. For example, if we had lifted with respect to f2 at
the final stage in Example 5 then we would be doing so without the knowledge
that it is delineable. Hence splitting the cylinder at the sample point offers no
guarantee that the cells produced are sign-invariant away from that sample
point. So the extra work does not allow us to conclude that f2 is sign-invariant
(except on sections of f1 where we could have concluded it already).

15

Remark 5. The improvement outlined above not only decreases output size
(and computation time) but also the risk of failure9 from non well-oriented
input: we only need worry about nullification of polynomials we lift with.

3.2. Minimising the cells for stack generation

We can achieve more savings by abandoning the aim of producing a CAD
sign-invariant with respect to any polynomial, instead insisting only on truth-
invariance. We may then lift cells already known to be false trivially to
cylinders. The idea of avoiding computations over false cells was presented
by Seidl (2006), and one could argue that it is the basis of the Partial CAD
for QE problems by Collins and Hong (1991). Our contribution here is to
explain how such cells can easily be identified in the presence of ECs. We
demonstrate with our example.

Example 6. Return to the problem from Examples 2 − 5 and in particular
the CAD of R2 produced with 15 cells in Example 5. On 5 of these 15 cells
the polynomial R is zero and on the others it is either positive or negative.

Now, φ can only be satisfied above the 5 cells, as elsewhere the two explicit
EC defining polynomials cannot share a root and thus cannot vanish together.
We can already conclude the truth value for the 10 cells (false) and thus we
do not need to lift over them, except in the trivial sense of extending them to
a cylinder in R3 . Lifting over the 5 cells where R = 0 with respect to f1 gives
15 cells, which when combined with the 10 cylinders gives a CAD of R3 with
25 cells that is truth-invariant for φ.

Remark 6. The improvements in this subsection are affecting the concluded
structure of the output10 . The final 25 cell truth-invariant CAD in Example
6 is not sign-invariant for f1. The cylinders above the 10 cells in R2 where
R 6 0 may have f1 varying sign, but since f1 can never equal zero at the =
same time as f2 in these cells it does not affect the truth of φ.

Identifying the 5 cells in R2 where R = 0 was trivial since they are simply
the sections of the second lift: those cells with second entry even in the
cell index. Similarly, all sections in the third lift are those where f1 is zero,
however, we cannot conclude that f2 is also zero on these as Theorem 2

9Although we note that if the recent work of McCallum et al. (2019) can be extended
to ECs then such worries may be unnecessary altogether.

10In comparison with Remark 4.

16

only guarantees that f2 is sign-invariant on them. So we must still finish by
evaluating the polynomials at the sample points, but only for the sections.

Reducing the number of cells for stack generation clearly decreases output
size, and since the cells can be identified using only an integer parity check
computation time decreases (less real root isolation is performed). As de-
scribed in Remark 5 for the improvements in Section 3.1, this also decreases
the risk of non well-oriented input.

4. Algorithm

We present Algorithm 1 (note that it is split into two parts) to build a
truth-invariant CAD for a formula through the use of ECs. The input is a
quantifier free formula in x1, . . . , xn (we assume a fixed variable ordering).
The output is a CAD of Rn which we interpret as a set of cells where each cell
comes with a cell index and sample point. Each of these is a list of n numbers
(recall Section 2.1 for how sample points and indices are represented and
extended). This is the minimum information needed, but implementations
may choose to store more, such as the formulae for cells.

The first two steps process the input formula into sets of polynomials:
An contains all polynomials in the input formula; while the Ek are subsets
of An which each contain the defining polynomial for a primitive EC of main
variable xk if one is available, and are empty otherwise. Step 2 is a simple
extraction but Step 1 is non-trivial: it must identify suitable ECs for use in
projection, and these may not be explicit in the formula (see Definition 2 and
Example 1). In practice this will likely require EC propagation (as described
in Section 2.6); and EC designation (choosing which of a variety of potential
ECs with the same mvar to identify for reduced projection). We discuss the
intricacies of this latter step in more detail later.

Steps 3 − 13 run the projection phase of the algorithm. Each projection
starts by identifying contents and primitive parts. This is not required for
Ei: since we assume primitive ECs we have cont(Ei) = ∅, prim(Ei) = Ei and
the set of factors of Ei contained in Bi for each i.

When there is no declared EC (Ei is empty) the projection operator (5)
is used (step 8). Otherwise the operator (7) is used (step 13), unless it is
the very first or very last projection (step 11) when we use (6). This follows
the theory detailed in Section 2. In each case the output of the projection is
combined with the contents to form the next layer of projection polynomials.

17

Algorithm 1: CAD using multiple ECs (part 1 of 2)
Input : A QFF φ in variables x1, . . . , xn

Output: Either: D, a truth-invariant CAD of Rn for φ formed from
a set of cells each defined by an index and a sample point;
or FAIL, if not well-oriented.

1 Identify from φ a sequence of sets Ek, k = 1, . . . , n, each either
empty or containing a single primitive polynomial with mvar xk,
where each polynomial defines an EC for φ;

2 Extract the set of defining polynomials An;
3 for k = n, . . . , 2 do
4 Set Bk to the finest squarefree basis for prim(Ak);
5 Set C to cont(Ak);
6 Set Fk to the finest squarefree basis for Ek;
7 if Fk is empty then
8 Set Ak−1 := C ∪ P (Bk);
9 else

10 if k = n or k = 2 then
11 Set Ak−1 := C ∪ PFi (Bi);
12 else
13 Set Ak−1 := C ∪ PF

∗
i
(Bi);

14 If E1 is not empty then set p to be its element; otherwise set p to the
product of polynomials in A1;

15 Build a CAD of the real line, D1, according to the real roots of p;
16 if n = 1 then
17 return D1;

Steps 14 − 17 construct a CAD for the real line (returning it for univariate
input), in what is called the base phase. If there is a declared EC in the
smallest variable then the real line is decomposed according to its roots;
otherwise according to the roots of all the univariate projection polynomials.

Steps 18 − 34 run the lifting phase, incrementally building CADs of Rk

for k = 2, . . . , n. For each k there are two considerations:

18

Algorithm 1: CAD using multiple ECs (part 2 of 2)

18 for k = 2, . . . , n do
19 Initialise Dk to be an empty set;
20 if Fk is empty then
21 Set L := Bk;
22 else
23 Set L := Fk;

24 if Ek−1 is empty then
25 Set Ca := Dk−1 and Cb empty;
26 else
27 Set Ca to be cells in Dk−1 whose cell index final entry is even;
28 Set Cb := Dk−1 \ Ca;
29 for each cell c ∈ Ca do
30 if An element of L is nullified over c then
31 return FAIL;

32 Generate a stack of cells over c with respect to the
polynomials in L. Form new sample points and cell indicies
as extensions of those from c;

33 for each cell c ∈ Cb do
34 Extend to a single cell in Rk (cylinder over c) (the extension

to the index is simply 1 and the extension to the sample
point can be any number);

35 return Dn.

• First, whether there is a declared EC with mvar xk. If so we lift only
with respect to this (step 23) and if not we use all projection polyno-
mials with mvar xk (step 21). See Section 3.1.

• Second, whether there is a declared EC with mvar xk−1. If so we restrict
stack generation to those cells where the EC was satisfied. These are
simply those with the final entry of the cell index Ik−1 even (step 27).
We lift the other cells trivially to a cylinder in step 34. See Section 3.2.

Algorithm 1 clearly terminates. We will verify that it produces a truth-
invariant CAD for the formula if the input is well-oriented, as defined below.

19

Definition 4. For k = 2, . . . , n define sets:

• Lk − the lifting polynomials: defining polynomial of the declared EC
with mvar xk if it exists; else all projection polynomials with mvar xk.

• Ck − the lifting cells: those cells in the CAD of Rk−1 in which the
designated EC with mvar xk−1 vanishes if it exists, and all cells in that
CAD otherwise.

The input of Algorithm 1 is well-oriented if for k = 2, . . . , n no element of
Lk is nullified over an element of Ck.

Theorem 4. Algorithm 1 satisfies its specification.

Proof. We must show the CAD is truth-invariant for φ, unless the input is
not well-oriented when FAIL is returned.

First consider input with n = 1. The projection phase would not run,
with the algorithm jumping to the CAD construction in step 14, returning the
output in step 17. If there was no declared EC then the CAD is sign-invariant
for all polynomials defining φ and thus every cell is truth invariant for φ. If
there was a declared EC then the output is sign-invariant for its defining
polynomial. Cells would either be intervals where the formula must be false;
or points, where the EC is satisfied, and the formula either identically true
or false depending on the signs of the other polynomials.

Next suppose that the input were not well-oriented (Definition 4). For
a fixed k, the conditional in steps 20 − 23 sets the lifting polynomials Lk

to L and the conditional in steps 24 − 28 the lifting cells Ck to Ca. Thus
it is exactly the conditions of Definition 4 which are checked by step 30,
returning FAIL in step 31 when they are not satisfied. Hence if the lifting
phase completes then the input is well-oriented.

From now on we suppose n > 1 and the input is well-oriented. For a
fixed k with 2 ≤ k ≤ n define admissible cells to be those in the CAD Dk−1

of Rk−1 produced by Algorithm 1 where all declared ECs with mvar smaller
than xk are satisfied, or to be all cells in that CAD if there are no such ECs.
Then let I(k) be the following statement in italics.

Over admissible cells (in Rk−1) the CAD Dk of Rk produced by Algorithm
1 is: (a) order-invariant for any EC with mvar xk; (b) order- (sign- if k = n)
invariant for all projection polynomials with mvar xk on sections of the EC
over admissible cells, or over all admissible cells if no EC exists.

20

We shall prove that, for all k with 1 ≤ k ≤ n, I(k) is true. We have
already proved I(1) (the induction base). Now let 1 < k ≤ n and assume
I(k − 1) as the induction hypothesis. The truth of I(k), which completes the
induction, is then a consequence of the following remarks:
• When Ek is empty we use Theorem 1 to assert all projection polynomi-
als with mvar xk are order-invariant in the stacks over admissible cells
giving (a) and (b).

• When Ek is not empty and k = 2 we used the projection operator (6).
Theorem 2 allows us to conclude (b) and that the EC is sign-invariant
in admissible cells. The stronger property of order-invariance follows
since the lifting polynomials form a squarefree basis in two variables.

• When Ek is not empty and k = n we used the projection operator (6).
Theorem 2 allows us to conclude (b), but also (a) since in the case
k = n the statement requires only sign-invariance.

• When Ek is not empty and 2 < k < n we used the projection oper-
ator (7). Theorem 3 explains that the additions (7) makes to (6) are
sufficient to conclude the statement.

In each case the assumptions of the theorems are met by the inductive hy-
pothesis exactly over admissible cells, according to whether Ek−1 was empty.

From the definition of admissible cells, we know that φ is false (and
thus trivially truth invariant) upon all cells in the CAD of Rn built over
an inadmissible cell of Rk , k < n. Coupled with the truth of (a) for k =
1, . . . , n, this implies the CAD of Rn is truth-invariant for the conjunction of
ECs (although it may not be truth-invariant for any one individually). The
truth of (b) implies that on those cells where all ECs are satisfied, the other
polynomials in φ are sign-invariant and thus φ is truth-invariant.

5. Worked Example

We consider an example with sufficient variables to show all the features
of the algorithm but still small enough to discuss in text. Assume variable
ordering z � y � x � u � v and define

f1 := x − y + z 2 , f2 := z 2 − u 2 + v 2 − 1, g := x 2 − 1,

f3 := x + y + z 2 , f4 := z 2 + u 2 − v 2 − 1, h := z.

We consider the formula

φ = f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ f4 = 0 ∧ g ≥ 0 ∧ h ≥ 0.

21

The solution can be found manually by decomposing the system into blocks.
The surfaces f1 and f3 are graphed in (x, y, z)-space on the left of Figure 2.
They meet only on the plane y = 0 and this projection is shown on the right.
The surfaces f2 and f4 are graphed in (z, u, v)-space on the left of Figure 3
and meet only when z = ±1. We consider only z = +1 due to h ≥ 0, with
this projection plotted on the right. We thus see that the solution set is

{u = ±v, x = −1, y = 0, z = 1}.

To ascertain this by Algorithm 1 we must first propagate and designate
ECs in Step 1. We choose to use f1 first, calculate

resz(f1, f2) = (v 2 − u 2 + y − x − 1)2

and assign r1 := v2 − u2 + y − x − 1. So r1 is the defining polynomial for an
EC with mvar y. Similarly consider � �

resy r1, resz(f1, f3) = 16(u 2 − v 2 + x + 1)4 ,� �
resy r1, resz(f1, f4) = 4(u 2 − v 2)2

and assign r2 := u2 −v2 +x+1, r3 := u2 −v2 . These are defining polynomials
for ECs with mvar x and u respectively. There is no series of resultants that
leads to an EC with mvar v (they all result in constants by that stage). We
hence identify {Ej }nk=1 := {f1}, {r1}, {r2}, {r3}, { } in Step 1.

The algorithm continues by extracting the defining polynomials

A5 = {f1, f2, f3, f4, g, h}

and finds B5 = A5, F5 = E5 (in fact Fi = Ei for all i = 1, . . . , 5).
We now start the projection phase. There is a declared EC for the first

projection so we use operator (6) to derive

A4 := PF5 (B5) = {(x 2 − 1)2 , (−u 2 + v 2 − x + y − 1)2 ,

(u 2 − v 2 − x + y − 1)2 , 4y 2 , x − y}.

Hence C := {x2 − 1} and

B4 := {y, y − x, −u 2 + v 2 − x + y − 1, u 2 − v 2 − x + y − 1}.

For the next projection we must use operator (7), giving

∗ 2 2A3 := C ∪ P (B4) = {x 2 − 1, u 2 − v + x + 1, u 2 − v , u 2 − v 2 + 1}.F4

22

Figure 2: The polynomials f1 and f3 from Section 5.

Figure 3: The polynomials f2 and f4 from Section 5.

23

For this example the extra discriminants in (7) all evaluated to constants and
so could be discarded, while for all polynomials the leading coefficient was
constant and so could be discarded with no further coefficients considered
(see Remark 2). Then

B3 := {x 2 − 1, u 2 − v 2 + x + 1}, C := {u 2 − v 2 , u 2 − v 2 + 1},

and the next projection also uses (7) to produce

2 2 2A2 := {u 2 − v , u 2 − v 2 + 1, u 4 − 2u v + v 4 + 2u 2 − 2v 2}.

For the final projection there is no EC and so we use operator (5) to find
A1 := {v2}. The base phase of the algorithm hence produces a 3-cell CAD of
the real line isolating 0.

For the first lift we have L = {u2 − v2} and Ca containing all 3 cells.
Above the two intervals we split into 5 cells by the curves u = ±v, while
above v = 0 we split into three cells about the origin. From these 13 cells
of R2 we select the 5 which were sections of u2 − v2 for Ca. These are lifted
with respect to L = {r2}, and the other 8 are simply extended to cylinders
in R3 . Together this gives a CAD of R3 with 23 cells. The next two lifts are
similar, producing first a CAD of R4 with 53 cells and finally a CAD of R5

with 113 cells. The entire calculation takes less than a second in Maple.

5.1. Choice in EC designation

Algorithm 1 could have been initialised with alternative EC designations.
There were the 4 explicit ECs with mvar z, and by taking repeated resultants
we discover the following implicit ECs, in sets with decreasing mvar:

2 2 2 2{y , u 2 − v + x − y + 1, −u + v + x − y + 1,
2 2 2 u 2 − v + x + y + 1, −u + v + x + y + 1},
2 2 2{x + 1, −u + v + x + 1, u 2 − v + x + 1},

{u 2 − v 2}.

There are hence 60 possible permutations of EC designation, but they lead to
only 3 different output sizes: 113, 103 and 93 cells. Heuristics for other ques-
tions of CAD problem formulation (Dolzmann et al., 2004; Bradford et al.,
2013b; Huang et al., 2014; Wilson et al., 2014) could perhaps be adapted to
assist here. None of these are the minimal truth invariant CAD for φ as all
split the CAD of R1 at v = 0 (from the discriminant u2 − v2).

24

5.2. Comparison with previous EC theory
A sign-invariant CAD of R5 for the 6 input polynomials can be produced

by Qepcad with 1,118,205 cells. Neither the RegularChains Library in
Maple (Chen et al., 2009) nor our Maple package (England et al., 2014b)
could do this in under an hour.

Our implementation of the algorithm by McCallum (1999b), which uses
operator (6) once but also performs the final lift with respect to the EC
only, can produce a CAD with either 3023, 10,935 or 48,299 (twice) cells
depending on which EC is designated. The Qepcad implementation of that
algorithm gives 11,961, 30,233, 158,475, or 158,451 cells. Comparing these
sets of figures we see the dramatic improvements from just a single reduced
lift.

Allowing Qepcad to propagate the four ECs (so a similar projection
phase as Algorithm 1 but then a normal CAD lifting phase) produces a CAD
with 21,079 cells. By declaring only a subset of the four (which presumably
changes the designations of implicit ECs) a CAD with 5,633 cells can be
produced, still much more than using Algorithm 1.

The RegularChains Library can also make use of multiple ECs11 , as
detailed by Bradford et al. (2014), a CAD can be produced instantly. There
are choices with analogies to designation (England et al., 2014a)), but they
all lead to a 137 cell output. In particular, they all have an induced CAD of
the real line which splits at v = ±1 as well as v = 0.

We note that our Maple implementation is unrefined and unoptimised.
We do not claim it as a leading CAD implementation. The purpose of the
paper is to illustrate the state of the art in CAD with EC theory, that all CAD
implementations should adapt to reproduce. The worked example shows the
clear benefits of the improved lifting techniques, which we next generalise
with a complexity analysis.

6. Complexity Analysis of CAD with EC

We build on recent work by Bradford et al. (2016) to measure the dom-
inant term in bounds on the number of CAD cells produced. Numerous
studies have shown this to be closely correlated to the computation time
(Dolzmann et al., 2004; Bradford et al., 2013a, 2014). We assume CAD
input with m polynomials of maximum degree d in any one of n variables.

11but only the latest version from www.regularchains.org

25

http:www.regularchains.org

Definition 5. Consider a set of polynomials pj . The combined degree of
the set is the maximum degree (taken with respect to each variable) of the Q
product of all the polynomials in the set: maxi(degxi

(j pj)).
The set has the (m,d)-property if it may be partitioned into m subsets,

each with maximum combined degree d.

For example, {y2 − x, y2 + 1} has combined degree 4 and thus the (1, 4)-
property, but also the (2, 2)-property.

We will measure complexity by keeping track of the number and degree
of projection polynomials. Of course, by replacing {f, g} with {fg} we can
reduce the number at the cost of increasing the degree, but since it is much
easier to find the roots of {f, g} than {fg}, we do not want to do that.
The (m, d)-property, introduced in the thesis of McCallum (1985), is in some
sense the optimal measure of these properties.

Bradford et al. (2016) proved that if A has the (m, d)-property then � �
P (A) ∪ cont(A) has the (M, 2d2)-property with M = 1

2 (m + 1)2 . When
m > 1, we can bound M by m2 (but we need 2m2 to cover m = 1).

6.1. Complexity of sign-invariant CAD
If A has the (m, d)-property then so does its squarefree basis. Hence

applying this result recursively (as in Table 1) measures the growth in (m, d)-
property during projection under operator (5). After the first projection there
are multiple polynomials and so the tighter bound for M is used.

Table 1: Projection under operator (5).

Variables Number Degree

n m d
n − 1 22m 2d2

n − 2 44m 8d4

. . .
. . .

. . .
n − r 22

r−1 2r
m 22

r −1d2
r

. . .
. . .

. . .
1 22

n−2 2n−1
m 22

n−1−1d2
n−1

The number of real roots in a set with the (m, d)-property is at most md
(although in practice many will be in C \ R). The number of cells in the

26

CAD of R1 is thus bounded by twice the product of the final two entries,
plus 1. Similarly, if we let di and mi be the entries in the Number and Degree
columns of Table 1 from the row corresponding to i variables, then the total
number of cells in the CAD of Rn is bounded by

n n−1Y Yh � � � � i
22

r−1 2r
22

r −1d2
r

[2midi + 1] = (2md + 1) 2 m + 1 . (8)
i=1 r=1

Omitting the +1s will leave us with the dominant term of the bound, which
evaluates to give the following result.

Theorem 5. The dominant term in the bound on the number of CAD cells
in Rn produced using (5) is

2n−122
n−1−1(2d)2

n−1 m . (9)

6.2. Reduced projection from ECs

From now on assume ` equational constraints, 0 < ` ≤ min(m, n), all with
different mvar. For simplicity we assume these variables are xn, . . . , xn−`+1,
i.e. the first ` projections are the reduced ones.

Lemma 6. Suppose A is a set with the (m, d)-property and E ⊂ A has the
(1, d)-property. Then cont(A) ∪ PE

∗ (A) has the (3m, 2d2)-property.

Proof. Bradford et al. (2016) proved that applying PE (A) ∪ cont(A) gives a � �
set of polynomials of size at most

2
1 (3m + 1) with combined degree 2d2 .

We now have the additional discriminant and coefficients of (7) to take
care of. Each polynomial in A \ E will generate an additional discriminant
of degree at most d(d − 1) and (d + 1) additional coefficients of degree at
most d. Multiplying all these polynomials together gives a single polynomial
of degree at most 2d2 . There are m − 1 polynomials in A \ E and so in total
this projection generates � �

1
2 (3m + 1) + (m − 1) < 3m

polynomials of degree 2d2 .

We apply this recursively in the top part of Table 2, with the bottom
derived via the process for P , as in Table 1.

27

Table 2: Projection with (7) ` times and then (5).

Variables Number Degree

n m d
n − 1 3m 2d2

.
n − ` 3 ` m 22 ̀ −1d2 ̀

22 ̀+1−1d2 ̀+1
n − (` + 1) 32` m2

.
32

r ̀ 22 ̀+r −1d2 ̀+r
n − (` + r) m2r

.
32

(n−1−`)` 2n−1−`
22

n−1−1d2
n−1

1 m

Define di and mi as the entries in the Number and Degree columns of
Table 2 from the row corresponding to i variables. We can bound the number
of real roots of projection polynomials in i variables by midi. If we lifted with
respect to all projection polynomials the cell count would be bounded by

n n−(`+1) nY Y Y
[2midi + 1] = [2midi + 1] × [2midi + 1] (10)

i=1 i=1 i=n−`
` n−Ỳ−1 h � iY� � � � � � �

22
s−1d2

s
32

r` 2r
22 ̀+r −1d2 ̀+r

= 2 (3s m) + 1 × 2 m + 1 .
s=0 r=1

Omitting the +1 from each product allows us to calculate the dominant term
of the bound explicitly as

2n−` +`−13 `2
n−` +`(`−3)/2(2d)2

n−1 m . (11)

6.3. Reduced lifting from ECs
Now we consider the benefit of improved lifting. Start by considering the

CAD of Rn−(`+1). There can be no reduced lifting until this point and so
the cell count bound is given by the second product in (10), which we will
denote by (†). The lift to Rn−` will involve stack generation over all cells,
but only with respect to the EC. This can have at most dn−` real roots and
so the CAD at most (2dn−` + 1) × (†) cells.

28

The next lift, to Rn−`−1, will lift the sections with respect to the EC, and
the sectors only trivially (to produce the same number of cylinders). Hence
the cell count bound is

(2dn−(`−1) + 1)(dn−`)(†) + (dn−` + 1)(†)

with dominant term 2dn−(`−1)dn−`(†). Subsequent lifts follow the same pat-
tern and so 2dndn−1 . . . dn−(`−1)dn−`(†) is the dominant term in the bound for
Rn . This evaluates to give the following result.

Theorem 7. Consider the CAD of Rn produced using Algorithm 1 in the
presence of ECs in the top ` variables of the ordering. The dominant term
in the bound on the number of cells is

` � n−Ỳ−1 h � �iY�
2r

22
s−1d2

s
22

r ̀ 22 ̀+r −1d2 ̀+r
2 2 m

s=0 r=1

2n−` −22−` 3 `2
n−` −2` = (2d)2

n−1 m . (12)

6.4. Summary of complexity analysis
The bound in Theorem 7 is strictly less than the one in Theorem 5. The

double exponent of m has decreased by the number of ECs; the result of the
improved projection in (11). Then improved lifting has reduced the single
exponents in the bound further still in (12).

However, even with this maximal use of ECs, CAD is still doubly expo-
nential in the number of variables due to the first term in (12), the one whose
degree is the degree term. This should not be surprising: the theory of ECs
is based around reducing the number of polynomials identified in each pro-
jection, but not the number of projections which controls the degree growth.
Indeed, we can see directly from Tables 1 and 2 that at the end of projection
we are dealing with univariate polynomials of degree doubly exponential in
n regardless of whether we used ECs or not. Reduced lifting allows us to
avoid isolating the real roots of many of these polynomials, but we will al-
ways need to consider at least one (the EC defining polynomial). To control
degree growth we must show this to be of a lower degree.

7. Controlling Degree Growth

7.1. Degree growth through iterated resultant calculations
The doubly exponential degree comes from the use of iterated resultant

calculations during projection: the resultant of two degree d polynomials is

29

the determinant of a 2d × 2d matrix whose entries all have degree at most
d, and thus a polynomial of degree at most 2d2 . This increase in degree
compounded by (n − 1) projections gives the first term of the bound (9).
Note that the derivation of ECs themselves via EC propagation (Section 2.6)
is itself such an iterated resultant calculation. So even though the EC theory
of the previous sections allows us to avoid constructing or lifting with many
such polynomials, the ECs themselves encode the degree.

The purpose of the resultant in CAD construction is to ensure that the
points in lower dimensional space where polynomials vanish together are
identified, and thus that the behaviour over a sample point in a lower di-
mensional cell is indicative of the behaviour over the cell as a whole. The
iterated resultant (and discriminant) calculations involved in CAD have been
studied previously, for example by McCallum (1999a) and Lazard and Mc-
Callum (2009). We will follow the work of Busé and Mourrain (2009) who
consider the iterative application of the univariate resultant to multivariate
polynomials, demonstrating decompositions into irreducible factors involv-
ing the multivariate resultants12 . They show that the approach will identify
polynomials of higher degree than the true multivariate resultant and thus
more than required for the purpose of identifying implicit equational con-
straints. For example, given 3 polynomials in 3 variables of degree d the true
multivariate resultant has degree O(d3) rather than O(d4).

The key result of Busé and Mourrain (2009) for our purposes follows.
Note that this considers polynomials of a given total degree. However, the
CAD complexity analysis discussed above and later is (following previous
work on the topic) with regards to polynomials of degree at most d in a given
variable. For clarity we use the Fraktur font when discussing total degree
and Roman fonts when the maximum degree.

Corollary 8 (Busé and Mourrain (2009, Cor. 3.4)). Given three polynomials
fk(x, y, z) of the form X

(k) α ifk(x, y, z) = aα,i,j x y zj ∈ S[x][y, z],
|α|+i+j≤dk

where S is any commutative ring, then the iterated univariate resultant � �
resy resz(f1, f2), resz(f1, f3) ∈ S[x]

12They follow the formalisation of Jouanolou (1991) as laid out in (Busé and Mourrain,
2009, §2).

30

is of total degree at most d21d2d3 in x, and we may express it in multivariate
resultants (Jouanolou, 1991), denoted Res, as � �

resy resz(f1, f2), resz(f1, f3) = (−1)d1d2d3 Resy,z(f1, f2, f3)� � (13)× Resy,z,z f1(x, y, z), f2(x, y, z), f3(x, y, z0), δz,z0 (f1)0 .

Moreover, if the polynomials f1, f2, f3 are sufficiently generic and n > 1, then
this iterated resultant has exactly total degree d21d2d3 in x and both resultants
on the right hand side of the above equality are distinct and irreducible.

Remark 7. Although not stated as part of the result by Busé and Mour-
rain (2009), under these generality assumptions, Resy,z(f1, f2, f3) has total
degree d1d2d3 and the second resultant on the right hand side of (13) has total
degree d1(d1 − 1)d2d3 (see (Busé and Mourrain, 2009, Proposition 3.3) and
(McCallum, 1999a, Theorem 2.6)).

Busé and Mourrain (2009) interpret this result in the following quote:13 .

The resultant r12 := resz(f1, f2) defines the projection of the in-
tersection curve between the two surfaces {f1 = 0} and {f2 = 0}.
Similarly, r13 := resz(f1, f3) defines the projection of the inter-
section curve between the two surfaces {f1 = 0} and {f3 = 0}.
Then the roots of resy(r12, r13) can be decomposed into two dis-
tinct sets: the set of roots x0 such that there exists y0 and z0 such
that

f1(x0, y0, z0) = f2(x0, y0, z0) = f3(x0, y0, z0),

and the set of roots x1 such that there exist two distinct points
(x1, y1, z1) and (x1, y1, z1

0) such that

f1(x1, y1, z1) = f2(x1, y1, z1) and f1(x1, y1, z 1
0) = f3(x1, y1, z 1

0).

The first set gives rise to the term Resy,z(f1, f2, f3) in the factor-
ization of the iterated resultant resy(res12, res13), and the second
set of roots corresponds to the second factor.

If the fi are all ECs then only the first set are of interest to us as the truth
of the formula of interest needs them all to vanish at once. However, for a
general CAD construction, the second set of roots may also be necessary as
they indicate points where the geometry of the sectors changes.

13The quote contains a correction in the description of the second set of roots (removing
a dash from y1 in the second distinct point). The mistake was identified by the anonymous
referees of (England and Davenport, 2016).

31

7.2. How large are these resultants?

Consider three ECs defined by f1, f2 and f3 of degree at most d in each
variable separately ; and that we wish to eliminate two variables z = xn and
y = xn−1. We may näıvely set each di = nd to bound the total degree.

The following approach does better. Let K = S[x1, . . . , xn−2, y, z] and
L = S[ξ1, . . . , ξN , y, z]. Only a finite number of monomials in x1, . . . , xn−2

occur as coefficients of the powers of y, z in f1, f2 and f3. Map each such Q
α n−2 αi mj := ξmax αimonomial x = x to f (using a different ξj for each mono-i=1 i j emial14) and let fi ∈ L be the result of applying this map to the monomials

in fi. Operation e commutes with taking resultants in y and z (but not xi).
The total degree in the ξj of fei is the same as the maximum degree in all

the x1, . . . , xn−2 of fi, i.e. bounded by d, and hence the total degree of the efi in all variables is bounded by 3d (d for the ξi, d for y and d for z). If we � � e (e e (e eapply (13) to the fi, we see that resy resz f1, f2), resz f1, f3) has a factor e eResy,z(fe1, f2, f3) of total degree (in the ξj) (3d)3 . Hence, by inverting e, we
may conclude Resy,z(f1, f2, f3) has maximum degree, in each xi, of (3d)3 .

The results of Jouanolou (1991) and Busé and Mourrain (2009) apply
to any number of eliminations. In particular, if we have eliminated not
2 but ` − 1 variables we will have a polynomial Resxn−`+1...xn (fn−`, . . . , fn)
of maximum degree ` ` d ` in the remaining variables x1, . . . , xn−` as the last
implicit EC. Therefore the multivariate resultants we need, Resxn−`+1...xn , only
have singly-exponential growth, rather than the doubly-exponential growth
of the iterated resultants: can we compute them?

7.3. Gröbner basis instead of iterated resultants

A Gröbner Basis G is a particular generating set of an ideal I (within the
ring of polynomials over an algebraically closed field) defined with respect
to a monomial ordering. One definition is that the ideal generated by the
leading terms of I is generated by the leading terms of G. Gröbner Bases
(GB) allow properties of the ideal to be deduced such as dimension and
number of zeros and so are one of the main practical tools for working with
polynomial systems. Their properties and an algorithm to derive a GB for
any ideal were introduced in the 1965 PhD thesis of Buchberger (2006) (since
republished). There has been much research to improve and optimise GB

14We could economise: if x1x
2
2 7→ ξ21 , then we could map x2

1x
4
2 to ξ41 rather than a new

ξ42 . Since this is for the analysis and not in implementation, we ignore such possibilities.

32

calculation, with the F5 algorithm of Faugère (2002) perhaps the most used
approach currently.

Like CAD the calculation of a GB is necessarily doubly exponential in
the worst case (Mayr and Meyer, 1982) (with lexicographic monomial order-
ing). Recent work by Mayr and Ritscher (2013) showed that rather than
being doubly exponential with respect to the number of variables present the
dependency is in fact on the dimension of the ideal. Despite this bound GB
computation can often be done very quickly usually to the point of instan-
taneous for any problem tractable by CAD, as demonstrated for example by
Wilson et al. (2012).

A reasonably common CAD technique is to precondition systems with
multiple ECs by replacing the ECs by their GB. I.e. let E = {e1, e2, . . . }
be a set of polynomials; G = {g1, g2, . . . } a GB for E; and B any Boolean
combination of constraints, fi σi 0, where σi ∈ {<, >, ≤, ≥, =6 , =}) and F =
{f1, f2, . . . } is another set of polynomials. Then

Φ := (e1 = 0 ∧ e2 = 0 ∧ . . .) ∧ B and Ψ := (g1 = 0 ∧ g2 = 0 ∧ . . .) ∧ B

are equivalent. A truth-invariant CAD for Ψ is also truth-invariant for Φ.
If we consider GB preconditioning of CAD in the knowledge of the im-

proved projection schemes for ECs then we see an additional benefit. It
provides implicit ECs which are not in the main variable of the system re-
moving the need for EC propagation. Since our aim is to produce one EC
in each of the last ` variables, we need to choose an ordering on monomials
which is lexicographic with respect to xn � xn−1 � · · · � xn−`+1: it does not
actually matter (in regards to the theory) how we tie-break after that15 .

Let us suppose that we have ` ECs f1, . . . , f` (at least one of them, say f1

must include xn, and similarly we can assume f2 includes xn−1 and so on),
such that these imply (even over C) that the last ` variables are determined
(not necessarily uniquely) by the values of x1, . . . , xn−`. Then the vanishing
of polynomials f1, Resxn (f1, f2), Resxn,xn−1 (f1, f2, f3) etc. are all implied by
the ECs. Hence either they are in the GB, or they are reduced to 0 by the
GB, which implies that smaller polynomials are in the GB. Hence our GB will
contain polynomials (which are ECs) of degree (in each variable separately)
at most

d, 4d2 , 27d3 , . . . , ((` + 1)d) `+1 .

15Research suggests that ‘total degree reverse lexicographic in the rest’ is most efficient.

33

Note that we are not making, and in the light of the work Mayr and Ritscher
(2013) cannot make, any similar claim about the polynomials in fewer vari-
ables. Also, it is vital that the ECs be in the last variables for our use of
the work of Jouanolou (1991) and Busé and Mourrain (2009) to work. So
our results do not directly extend from the case we study, first applying `
reduced CAD projections in the presence of ECs before reverting to standard
projection), to the more general case of having any ` of the projections be
reduced.

7.4. Inclusion in Algorithm 1

There are two routes to include the above suggestion in Algorithm 1.

1. Directly replace the explicit ECs in φ by those from the GB as suggested
above. This is a pre-processing of the input to Algorithm 1. The
identification of ECs in Step 1 involves only a minimal designation
choice when there are multiple explicit ECs in φ with the same mvar.

2. Encode this process into a sub-algorithm for Step 1. The GB polyno-
mials become additional options for designated ECs along with those
from EC propagation and choices are made based on minimal degree or
some other criteria (Wilson et al., 2012; Huang et al., 2016). However,
in this case, if GB polynomials are designated they must be added to
the input set An (a reinterpreting of Step 2 so it extracts both from φ
and {Ek}n).k=1

The first approach is the one commonly used in implementations (and the
one assumed in later discussions). The benefit of the second is that it caps
any increase in the number of polynomials from the use of GBs.

It is unlikely that the GB would produce more polynomials in the main
variable than explicit ECs (since we are starting with a generating set all in
the main variable and deriving another which would mostly not be) but we
have yet to rule it out. Of course, the number of polynomials in the input
can bear little relation to the number generated by projection. But with
the second approach any increase in the initial m is capped to the number
of additional designated ECs taken from the GB. The second option may
become preferable in the event of development of a good (cheap) heuristic.

34

8. Evaluating the Use of GBs for ECs

8.1. Worked Example

Let us work with variable ordering z � y � x � w; polynomials

2 2 2f1 := xy − z 2 − w 2 + 2z, f2 := x + y + z + w + z,

f3 := −w 2 − y 2 − z 2 + x + z h := z + w;

and the following QFF for which we seek a truth-invariant CAD.

φ := f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ h > 0.

In theory, we could analyse this system with a sign-invariant CAD for the
four polynomials however none of the CAD implementations in Maple could
do this within 30 minutes. Instead, let us take advantage of the ECs. There
are 3 explicit ECs all with mvar z meaning only one can be designated for
the first projection. We can propagate to find additional implicit ECs:

r1 = resz(f1, f2) = y 4 + 2xy 3 + (3x 2 − 2w 2 + 2w + 6)y 2 + (2x 3 − 2w 2 x

+ 2wx − 3x)y + x 4 − 2w 2 x 2 + 2wx 2 + 6x 2 + w 4 − 2w 3 + 4w 2 + 6w,

r2 = resz(f1, f3) = y 4 + 2xy 3 + (x 2 − 2x + 2)y 2 + (x − 2x 2)y + w 2 + x 2 − 2x
2 2 2 r3 = resz(f2, f3) = 4y + x 4 + 2x 3 − 2w x 2 + 2wx 2 + 3x 2 − 2w x + 2wx

− 2x + w 4 − 2w 3 + 3w 2 + 2w;

all with main variable y. Continuing the propagation with

R1 := resy(r1, r2), R2 := resy(r1, r3), R3 := resy(r2, r3);

gives the three polynomials in the Appendix, each degree 16 in x. These are
different polynomials16 but a numerical plot shows them all to have overlap-
ping real part. All possible resultants to eliminate x evaluate to 0.

Step 1 could hence produce 3 × 3 × 3 = 27 possible configurations if ECs
are identified by propagation. Our implementation could build CADs for
only 6 of these configurations17, when using a time limit of 30 minutes. Of
the 6 completed there was an average of 423 cells calculated in 113 seconds.

16most easily verified by comparing the final lines of each.
17The common factor of these 6 was the designation of r2 for second projection.

35

The optimal configuration gave 227 cells in 36 seconds using a designation
of f2, r3 and R2.

Now consider instead taking a GB of {f1, f2, f3}. We use a plex monomial
ordering on the same variable ordering as the CAD to achieve a basis:

g1 = 2z + x 2 + x − w 2 + w,

g2 = 4y 2 + x 4 + 2x 3 + (−2w 2 + 2w + 3)x 2 + (2w 2 + 2w − 2)x

+ w 4 − 2w 3 + 3w 2 + 2w,

g3 = 4yx − x 4 − 2x 3 + (2w 2 − 2w − 5)x 2 + (2w 2 − 2w − 4)x

− w 4 + 2w 3 − w 2 − 4w,

g4 = (4w 4 − 8w 3 + 4w 2 + 16w)y + x 7 + 4x 6 + (−4w 2 + 4w + 18)x 5

+ (−12w 2 + 12w + 36)x 4 + (5w 4 − 10w 3 − 31w 2 + 40w + 53)x 3

+ (10w 4 − 20w 3 − 34w 2 + 52w + 32)x 2 − (2w 6 − 6w 5 − 7w 4 + 32w 3

− 13w 2 − 44w − 16)x − 2w 6 + 6w 5 − 2w 4 − 14w 3 + 12w 2 + 16w,

g5 = x 8 + 4x 7 + (−4w 2 + 4w + 18)x 6 + (−12w 2 + 12w + 36)x 5 + (6w 4

− 12w 3 − 30w 2 + 44w + 53)x 4 + 4(3w 4 − 6w 3 − 8w 2 + 15w + 8)x 3

+ (−4w 6 + 12w 5 + 6w 4 − 48w 3 + 26w 2 + 64w + 16)x 2

+ (−4w 6 + 12w 5 − 4w 4 − 28w 3 + 24w 2 + 32w)x

+ w 8 − 4w 7 + 6w 6 + 4w 5 − 15w 4 + 8w 3 + 16w 2 .

This is an alternative generating set for the ideal defined by the explicit
ECs and thus all gi = 0 are ECs for φ. Note that the degrees of the GB
polynomials (with respect to any one variable) are on average lower (and
never greater) than those of the (corresponding) iterated resultants.

Deriving ECs this way removes the choice for EC with mvar z or x but
there are 3 possibilities for the designation with mvar y. Designating g2 yields
83 cells while either g3 or g4 result in 55 cells. All 3 configurations took less
than 20 seconds to compute (with designating g4 the quickest).

8.2. Effect on the complexity bound
We now consider how using a GB to produce the designated ECs will

improve the complexity analysis of Section 6. The number of polynomials
will be the same as found earlier in Table 2. But we must now track sepa-
rately the degree of the designated EC and the degree of the main projection
polynomials as they are derived differently. For simplicity we will ignore the
constant term and focus on the exponents.

36

As described above, the designated ECs will have degrees d, 4d2 , 27d3 , . . .
as tracked in the middle column of Table 3. For the projection polynomials
in the top half of the table the reduced projection operator PF (B) will take
discriminants and coefficients of the EC polynomial; and resultants of them
with the other projection polynomials. Thus the highest degree polynomial
produced will have degree that is the sum of the degree of the EC polynomial
and the highest degree other polynomial. This generates the right column
of Table 3. We see that the degree exponents here form the so called Lazy
Caterer’s sequence18 otherwise known as the Central Polygonal Numbers.
The remaining projections recorded in the bottom half of the table use the
sign-invariant projection operator and so the degree is squared each time.

Table 3: Maximum degree of projection polynomials produced for CAD when using pro-
jection operator (7) for the first ` projections and then (5) for the remaining.

Variables
Maximum Degree
EC Others

n d d
n − 1 4d2 d2

n − 2 27d3 d4

n − 3 256d4 d7

.
n − ` ` ` d `+1 d `(`+1)(1/2)+1

n − (` + 1)
n − (` + 2)
n − (` + 3)

d `(`+1)+2

d2`(`+1)+22

d2
2`(`+1)+23

. . .
n − (` + r)

. . .
d2

r−1`(`+1)+2r

. . .
1

. . .
d2

n−`−2`(`+1)+2n−`−1

Now let us use the the top line of equation (10) derived earlier as the

18The On-Line Encyclopedia of Integer Sequences (2010), Sequence Number A000124,
https://oeis.org/A000124

37

https://oeis.org/A000124

bound when using improved EC projection and lifting before applying the
degrees of the projection polynomials. We can substitute here with the de-
grees from Table 2 as the di. The term with base d may be computed by Q` � �Q � �

` ` ds+1 n−`−1 d2
r−1`(`+1)+2r

s=0 r=1 .

The exponent of d evaluates to

2(n−`) 1
2 (`

2 + ` + 2) −
2
1 (`2 + `) − 2. (14)

8.2.1. The ignored constants
Above, we tracked only the degree of the monomial in the bound, and not

the constants that multiply it. As well as for simplicity, this was because we
could not find a closed form expression for the product of constants generated.
However, it is simple to check that the constant factors derived by the GB
grow exponentially in ` while those from iterated resultants grow doubly
exponentially. Further, the constant term can be shown to be strictly lower
for all but the first few projections. Finally, note that in Section 7.1 we saw
that the multivariate resultant was itself a factor of the iterated resultant.

8.2.2. Comparison with base m term
Let us compare the derived exponent (14) with that for the term with

base m from (12): 2n−` − 2. We see that both show the double exponent of
the complexity bound reducing by `, the number of ECs used. However, the
reduction in degree is not quite as clean as the exponential term in the single
exponent is multiplied by a quadratic in `. This is to be expected as the
singly exponential dependency on ` in the Number column of Table 1 was
only in the term with constant base while for Table 2 the term with base d
is itself single exponential in `.

8.3. Should one always use GBs?

In Section 8.1 we showed the significant savings available if one derived
ECs with GBs and in Section 8.2 we showed this follows through into a
theoretical lowering of the worse case complexity bound. The latter offers
the first theoretical justification for what is a widely used CAD optimisation.

However, experimental studies by Buchberger and Hong (1991); Wilson
et al. (2012); Huang et al. (2016) have shown that it is not always benefi-
cial to pre-process CAD with GB. The most recent experiment by Huang
et al. (2016) found that 75% of a data set of 1200 randomly generated CAD

38

problems benefited from GB preconditioning. So it is certainly worth giving
consideration to how ECs are derived. As noted earlier, the cost of com-
puting the GB itself is usually negligible in comparison to the CAD so it is
reasonable to first compute the GB and then decide whether or not to use it.
A simple man-made heuristic was presented by Wilson et al. (2012) to make
the decision while Huang et al. (2016) described the training of a machine
learning classifier to decide.

There is no contradiction here with the complexity analysis above: the
analysis is for the worst case and large input and makes no claim to the aver-
age complexity or what happens for smaller input. However, we hypothesise
that repeating those studies using the new multiple EC technology would see
a reduction in the cases where GB hindered CAD.

9. Caveats and the Need for Primitivity

There are a few caveats to the results presented above. First, Algorithm
1 can fail for non-well oriented input, but as noted earlier, this restriction
may be lifted if the new theory for Lazard’s projection operator validated
by McCallum et al. (2019) can be extended to the EC case. Second, the
complexity analysis (both in Section 6 and 8.2) assumes the designated ECs
are in strict succession at the start of projection. For the first analysis it was
only made to simplify the working, but for the second analysis it was crucial.
However, Algorithm 1 itself does not carry this restriction and savings will
still clearly be made in this case.

The only substantial restriction in the paper is that the designated ECs19

be defined by primitive polynomials in the main variable of the projection.
The restriction is common in the literature and present in all the underlying
theory of McCallum (1999b, 2001).

There are analogies to be made with the well-oriented issue (when a
projection factor is nullified). Non-primitive projection factors are not a
problem for general CAD because we can factorize prior to projection (order-
invariance of factors implies order-invariance of the product). We cannot do
the same for a non-primitive EC though, as the next example shows. Also,
unlike the well-orientedness issue, the primitivity restriction it is not likely
to be removed by developing a Lazard family of EC projection operators.

19whether they be explicit in the formula or calculated via iterated results or GBs.

39

9.1. Possibilities to use non-primitive ECs?

Example 7. Consider φ := zy = 0 ∧ ϕ. under ordering · · · � z � y �
Polynomial zy is not primitive, so Algorithm 1 cannot use the explicit EC.

We may be tempted to take E = {z} as the primitive part, project with
operator (6) and include the content y in the first projection. The CAD of
(y, . . .)-space would be sign-invariant for y and thus the CAD of (z, y, . . .)-
space truth invariant for the EC (over admissible cells). But we can no longer
say only sections are admissible for the next lift as there may be cells with
z 6= 0 and y = 0. We must instead lift over all cells of (y, . . .)-space, saying:
• Over sections of y: z is no longer an EC (as zy = 0 is forced by y = 0),
so we lift onto all polynomials.

• Over sectors of y: z is an EC, so we only lift with respect to this.
In (z, y, . . .)-space, some cells are admissible (either y = 0 or z = 0) and the
rest are not (zy 6= 0). There are difficulties in forming a general algorithm:

1. What would happen if the main variable of the content with respect to
xi were not xi−1?

2. What if the content with respect to xi were itself not primitive as a
polynomial in xi−1?

3. What if there were another equational constraint in xi−1?

The first two can probably (but we have not implemented this yet) be solved
by replacing the logic at lines 24– in the algorithm by a dynamic determina-
tion of which cells were admissible.

Alternatively in that example we might rewrite φ as

φ := (z = 0 ∧ ϕ) ∨ (y = 0 ∧ ϕ), (15)

so each clause has its own EC. The theory of truth-table invariant CADs
(TTICADs) developed by Bradford et al. (2013a, 2016) is designed to deal
with such input. More generally, given a formula of the form

(f1 = 0 ∧ g1 > 0) ∨ (f2 = 0 ∧ g2 > 0), (16)

TTICAD allows for an improvement on the standard EC theory. Since
f1f2 = 0 is an implicit EC of (16) standard EC theory allows us to avoid
studying the gi away from where any fi is zero. By utilising a TTICAD from
(Bradford et al., 2013a) we can also avoid studying the gi away from where

40

the corresponding fi is zero. This approach was extended in (Bradford et al.,
2016) to also consider formulae such as

(f1 = 0 ∧ g1 > 0) ∨ (f2 > 0 ∧ g2 > 0), (17)

where there is no single implicit EC. Although (15) looks closer to (16) it is
actually more like (17) since y is not an EC in the main variable.

Although there is the possibility of applying TTICAD for this problem
it would first require its own extension to use beyond the first projection
(analogous to the present work for standard ECs).

9.2. Classical non primitivity

We can see the importance of the primitivity restriction in the classic
complexity results of Brown and Davenport (2007), Davenport and Heintz
(1988). Both rest on the following construction. Let Pk(xk, yk) be the state-
ment xk = f(yk) and then define recursively

Pk−1(xk−1, yk−1) := (18)

∃zk∀xk∀yk ((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk)) ⇒ Pk(xk, yk).| {z } | {z }
Qk Lk

This is ∃zk (zk = f(yk−1) ∧ xk−1 = f(zk)), i.e. xk−1 = f(f(yk−1)). Repeated
nesting of this procedure builds the doubly-exponential growth. So

Pk−2(xk−2, yk−2) = Qk−1Lk−1 ⇒ (QkLk ⇒ Pk(xk, yk)) , (19)

gives xk−2 = f(f(f(f(yk−2)))) etc. Rewriting (19) in prenex form gives

Pk−2(xk−2, yk−2) = Qk−1Qk ¬Lk−1 ∨ ¬Lk ∨ Pk(xk, yk). (20)

The negation of (20) is therefore

¬Pk−2(xk−2, yk−2) = Qk−1QkLk−1 ∧ Lk ∧ ¬Pk(xk, yk), (21)

where the operator interchanges ∀ and ∃. Now, Lk can be rewritten as

Lk = (yk−1 = yk ∨ yk = zk) ∧ (yk−1 = yk ∨ xk−1 = xk)

∧ (xk = zk ∨ yk = zk) ∧ (xk = zk ∨ xk−1 = xk) (22)

41

and further

Lk = (yk−1 − yk)(yk − zk) = 0 ∧ (yk−1 − yk)(xk−1 − xk) = 0

∧ (xk − zk)(yk − zk) = 0 ∧ (xk − zk)(xk−1 − xk) = 0, (23)

which shows Lk to be a conjunction of (non primitive) ECs. This is true
for any Li, hence the propositional part of (21) is a conjunction of eight
ECs, mostly non primitive, and ¬Pk(xk, yk). Hence by induction we have
that the whole family of examples ¬Pi may be written as complete conjunc-
tion of (mostly non primitive) ECs. Furthermore there are equalities whose
main variables are the first variables to be projected if we try to produce
a quantifier-free form of (21). But that quantifier-free form describes the
complement of the semi-algebraic varieties in (Brown and Davenport, 2007)
or (Davenport and Heintz, 1988) (depending which Pk we take) and these
have doubly-exponential complexity in n.

So we observe that the classical results proving the doubly exponential
complexity of CAD are not tackled by our EC technology.

10. Lessons for SC2

The SC2 community already appreciates that the logical structure of CAD
input is important and should be exploited where ever possible. The main
additional lesson from the present paper is that this exploitation can take
place not only at the Boolean skeleton level but also in the computer algebra.

10.1. Reasons for optimism

There are high barriers to implementing CAD without the support of
a computer algebra system, however, SMT solvers such as SMT-RAT by

´ Loup et al. (2013); Kremer and Abrahám (2019) and Z3 by Jovanovic and
de Moura (2012) show it is possible. Indeed, the developers of SMT-RAT
are now beginning to expand their CAD module to include a variety of projec-
tion operators (Viehmann et al., 2017) and even EC functionality as described
by Haehn et al. (2018).

One particular barrier is the need multivariate factorization algorithms,
which those developing in a computer algebra system can take for granted but
represent a significant implementation cost. On this point we highlight to the
SMT community the availability of CoCoALib which is a free C++ library
that can perform computer algebra computations without the requirement for

42

the accompanying Computer Algebra System (in this case CoCoA) (Abbott
and Bigatti, 2014). Further, CoCoA is now actively developing features for
use in SMT as described by Abbott and Bigatti (2017); Abbott et al. (2018).

10.2. Incrementality

A key requirement for the effective use of CAD by SMT-solvers is that
the CAD technology be incremental: that polynomials can be added and
removed to the input with the data structures of the CAD edited rather
than recalculated. Such incremental CAD algorithms are now under devel-

´ opment as part of the SC2 by Kremer and Abrahám (2019); Cowen-Rivers
and England (2018).

An additional advantage from incremental CAD would be with regards
to the issue of well-orientedness. I.e. if a particular operator is found to not
be well-oriented at the end of a CAD calculation the next step would be to
revert to a less efficient operator which is a superset of the original. Refining
an existing decomposition should be cheaper than recomputing from scratch.
Although on this point, the development of the Lazard projection theory may
remove the well-orientedness condition all together.

However, the use of CAD with ECs incrementally requires additional
development work. First, it introduces additional decisions to be taken such
as EC designation and whether to pre-processing with GB (not to mention
whether that can also be done incrementally). Second, this growing number
of decisions needs to be taken in tandem, prompting exponential growth
in the number of possibilities that overwhelms existing heuristics. Machine
learning techniques may be one way forward, as outlined by England (2018).

Finally, existing heuristics that guide the Boolean search may not be
suitable since the use of ECs could prompt what appears as strange behaviour
in the SMT context. For example, removing a constraint that was equational
could actually grow the output CAD since it necessitates the use of a larger
projection operator. Correspondingly, adding an equational constraint could
allow a smaller operator and shrink the output. SMT solver search heuristics
will need to be adapted to handle these possibilities.

43

11. Summary

We have presented much of the state of the art in the theory of CAD with
Equational Constraints. This included how ECs may be leveraged for savings
in the lifting phase as well as projection. We demonstrated the benefits of
the theory with worked examples and complexity analysis. The latter shows
that the worst CAD bound has double exponent that reduced from n by
the number of ECs. Crucially, this is the global double exponent covering
both the number and degree of polynomials, if we allow for Groebner Basis
pre-processing.

The main avenues for future work are an exploration of dealing with non-
primitive ECs; the extension of the Lazard projection operator to a family
of operators for ECs; the development of heuristics for choosing which ECs
to designate; and the development of incremental EC technology. We note
that the current results and any future progress have benefits not only for
Symbolic Computation but the wider SC2 community.

Acknowledgements

This work was originally supported by EPSRC grant EP/J003247/1 and
later by EU H2020-FETOPEN-2016-2017-CSA project SC2 (712689).

We are grateful to all the anonymous referees of this paper, and also
those of our conference papers at ISSAC 2015 (England et al., 2015) and
CASC 2016 (England and Davenport, 2016), for many helpful comments.
We are particularly grateful to the referee who pointed out the mistake in
the literature on operator (7) and Dr McCallum for discussing this with us.

We also thank Prof. Buchberger for reminding JHD that Gröbner bases
were applicable to the problem of degree growth.

44

Appendix A. The Iterated Resultants From Section 8.1

R1 := res(r1, r2, y) = x 16 + 8 x 15 + (−8 w 2 + 8 w + 64)x 14 + (−56 w 2 + 56 w
4+ 288)x 13 + (28 w 4 − 56 w 3 − 332 w 2 + 400 w + 1138)x 12 + (168 w

4− 336 w 3 − 1144 w 2 + 1552 w + 2912)x 11 + (−56 w 6 + 168 w 5 + 648 w
5− 1816 w 3 − 2664 w 2 + 5328 w + 6336)x 10 + (−280 w 6 + 840 w

8+ 1400 w 4 − 5400 w 3 − 2616 w 2 + 11368 w + 7808)x 9 + (70 w
2− 280 w 7 − 500 w 6 + 3080 w 5 − 270 w 4 − 11576 w 3 + 4860 w

4+ 20816 w + 7381)x 8 + (280 w 8 − 1120 w 7 + 80 w 6 + 6080 w 5 − 8480 w
9− 11792 w 3 + 22840 w 2 + 20192 w + 920)x 7 + (−56 w 10 + 280 w

3− 80 w 8 − 2160 w 7 + 4960 w 6 + 3200 w 5 − 22608 w 4 + 2584 w
8+ 40840 w 2 + 16040 w + 2024)x 6 + (−168 w 10 + 840 w 9 − 1520 w

2− 1360 w 7 + 12016 w 6 − 11296 w 5 − 23368 w 4 + 30136 w 3 + 22032 w
8+ 624 w + 736)x 5 + (28 w 12 − 168 w 11 + 396 w 10 + 160 w 9 − 3690 w

2+ 6576 w 7 + 4520 w 6 − 24712 w 5 + 13154 w 4 + 37456 w 3 + 1464 w
9− 1568 w + 5968)x 4 + (56 w 12 − 336 w 11 + 1192 w 10 − 1680 w

3− 2688 w 8 + 12496 w 7 − 13464 w 6 − 16912 w 5 + 37240 w 4 + 13472 w
11− 16384 w 2 + 1984 w + 3072)x 3 + (−8 w 14 + 56 w 13 − 248 w 12 + 520 w

5+ 72 w 10 − 3088 w 9 + 7664 w 8 − 2040 w 7 − 16176 w 6 + 20424 w
14+ 20056 w 4 − 15360 w 3 − 8544 w 2 + 4608 w + 2304)x 2 + (−8 w

7+ 56 w 13 − 296 w 12 + 808 w 11 − 1144 w 10 − 776 w 9 + 6184 w 8 − 7048 w
16− 6944 w 6 + 19696 w 5 + 3872 w 4 − 16832 w 3 − 1152 w 2 + 4608 w)x + w

9− 8 w 15 + 52 w 14 − 184 w 13 + 454 w 12 − 440 w 11 − 772 w 10 + 3352 w
2− 2447 w 8 − 4288 w 7 + 8200 w 6 + 2080 w 5 − 7664 w 4 − 384 w 3 + 2304 w

R2 := res(r1, r3, y) = x 16 + 8 x 15 + (−8 w 2 + 8 w + 28)x 14 + (−56 w 2 + 56 w
4+ 48)x 13 + (28 w 4 − 56 w 3 − 116 w 2 + 160 w − 2)x 12 + (168 w

4− 336 w 3 + 80 w 2 + 184 w − 256)x 11 + (−56 w 6 + 168 w 5 + 108 w
4− 592 w 3 + 852 w 2 − 240 w − 12)x 10 + (−280 w 6 + 840 w 5 − 1120 w
6+ 360 w 3 + 1872 w 2 − 1448 w + 2000)x 9 + (70 w 8 − 280 w 7 + 220 w

8+ 560 w 5 − 2742 w 4 + 3232 w 3 − 1428 w 2 + 224 w + 4537)x 8 + (280 w

− 1120 w 7 + 2720 w 6 − 3280 w 5 − 1280 w 4 + 6016 w 3 − 11696 w 2 + 7496 w
5+ 2552)x 7 + (−56 w 10 + 280 w 9 − 620 w 8 + 480 w 7 + 2488 w 6 − 6880 w

10+ 9384 w 4 − 5744 w 3 − 9404 w 2 + 12008 w − 4120)x 6 + (−168 w

45

4+ 840 w 9 − 2960 w 8 + 5840 w 7 − 4832 w 6 − 3088 w 5 + 21104 w
10− 27128 w 3 + 12552 w 2 + 3888 w − 5888)x 5 + (28 w 12 − 168 w 11 + 612 w

4− 1280 w 9 + 498 w 8 + 3648 w 7 − 12424 w 6 + 17360 w 5 − 4546 w
10− 13928 w 3 + 19032 w 2 − 9344 w − 176)x 4 + (56w 12 − 336w 11 + 1552w

4− 4200 w 9 + 7296 w 8 − 6080 w 7 − 7440 w 6 + 25880 w 5 − 31352 w
12+ 13472 w 3 + 1856 w 2 − 10304 w + 1536)x 3 + (−8 w 14 + 56 w 13 − 284 w

6+ 880 w 11 − 1740 w 10 + 1616 w 9 + 2468 w 8 − 10704 w 7 + 15828 w
13− 8040 w 5 − 1064 w 4 + 9792 w 3 − 3168 w 2 + 2304)x 2 + (−8 w 14 + 56 w

7− 320 w 12 + 1096 w 11 − 2800 w 10 + 4600 w 9 − 3968 w 8 − 2152 w
16+ 9592 w 6 − 10832 w 5 + 5312 w 4 + 4672 w 3 − 5760 w 2 + 4608 w)x + w
9− 8 w 15 + 52 w 14 − 208 w 13 + 646 w 12 − 1376 w 11 + 2012 w 10 − 1136 w

2− 1295 w 8 + 4328 w 7 − 3992 w 6 + 2368 w 5 + 2320 w 4 − 1920 w 3 + 2304 w

R3 := res(r3, r3, y) = x 16 + 8 x 15 + (−8 w 2 + 8 w + 44)x 14 + (−56 w 2 + 56 w
4+ 160)x 13 + (28 w 4 − 56 w 3 − 228 w 2 + 272 w + 430)x 12 + (168 w
4− 336 w 3 − 592 w 2 + 856 w + 816)x 11 + (−56 w 6 + 168 w 5 + 444 w

4− 1264 w 3 − 812 w 2 + 1952 w + 1092)x 10 + (−280 w 6 + 840 w 5 + 560 w
6− 3000 w 3 + 32 w 2 + 3032 w + 736)x 9 + (70 w 8 − 280 w 7 − 340 w

8+ 2240 w 5 − 902 w 4 − 4208 w 3 + 2716 w 2 + 3120 w − 183)x 8 + (280 w

− 1120 w 7 + 480 w 6 + 3440 w 5 − 4640 w 4 − 2304 w 3 + 5840 w 2 + 1128 w
5− 1144)x 7 + (−56 w 10 + 280 w 9 − 60 w 8 − 1760 w 7 + 3128 w 6 + 960 w

9− 7352 w 4 + 3216 w 3 + 5860 w 2 − 1320 w − 824)x 6 + (−168 w 10 + 840 w
2− 1280 w 8 − 880 w 7 + 5568 w 6 − 5008 w 5 − 4464 w 4 + 7848 w 3 + 984 w

8− 2576 w − 64)x 5 + (28 w 12 − 168 w 11 + 276 w 10 + 400 w 9 − 2302 w

+ 2848 w 7 + 1880 w 6 − 7440 w 5 + 3582 w 4 + 5704 w 3 − 3208 w 2 − 1216 w
7+ 720)x 4 + (56 w 12 − 336 w 11 + 880 w 10 − 840 w 9 − 1424 w 8 + 4800 w

3− 3856 w 6 − 3464 w 5 + 6968 w 4 + 32 w 3 − 3392 w 2 + 448 w + 512)x
8+ (−8 w 14 + 56 w 13 − 172 w 12 + 208 w 11 + 308 w 10 − 1504 w 9 + 1972 w

+ 432 w 7 − 3788 w 6 + 2920 w 5 + 2552 w 4 − 3136 w 3 − 864 w 2 + 1024 w
9+ 256)x 2 + (−8 w 14 + 56 w 13 − 208 w 12 + 424 w 11 − 352 w 10 − 520 w

2+ 1744 w 8 − 1416 w 7 − 1176 w 6 + 2928 w 5 − 384 w 4 − 1984 w 3 + 384 w
16 − 8 w 10+ 512 w)x + w 15 + 36 w 14 − 96 w 13 + 150 w 12 − 48 w 11 − 308 w

2+ 672 w 9 − 351 w 8 − 648 w 7 + 1096 w 6 − 880 w 4 + 128 w 3 + 256 w

46

References

Abbott, J., Bigatti, A., 2014. What is new in CoCoA? In: Hong, H., Yap, C. (Eds.),
Mathematical Software – ICMS 2014. Vol. 8592 of Lecture Notes in Computer Science.
Springer Heidelberg, pp. 352–358.
URL https://doi.org/10.1007/978-3-662-44199-2_55

Abbott, J., Bigatti, A., 2017. New in CoCoA-5.2.0 and CoCoALib-0.99550 for SC-Square.
In: England, M., Ganesh, V. (Eds.), Proceedings of the 2nd International Workshop
on Satisfiability Checking and Symbolic Computation (SC2 2017). No. 1974 in CEUR
Workshop Proceedings.
URL http://ceur-ws.org/Vol-1974/

Abbott, J., Bigatti, A., Palezzato, E., 2018. New in CoCoA-5.2.4 and CoCoALib-0.99570
for SC-Square. In: Bigatti, A., Brain, M. (Eds.), Proceedings of the 3rd Workshop
on Satisfiability Checking and Symbolic Computation (SC2 2018). No. 2189 in CEUR
Workshop Proceedings. pp. 88–94.
URL http://ceur-ws.org/Vol-2189/

´ Abrahám, E., Abbott, J., Becker, B., Bigatti, A., Brain, M., Buchberger, B., Cimatti,
A., Davenport, J., England, M., Fontaine, P., Forrest, S., Griggio, A., Kroening, D.,
Seiler, W., Sturm, T., 2016. SC2: Satisfiability checking meets symbolic computation.
In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (Eds.), Intelli-
gent Computer Mathematics: Proceedings CICM 2016. Vol. 9791 of Lecture Notes in
Computer Science. Springer International Publishing, pp. 28–43.
URL https://doi.org/10.1007/978-3-319-42547-4_3

Barrett, C., Fontaine, P., Tinelli, C., 2016. The Satisfiability Modulo Theories Library
(SMT-LIB). Online Resource. URL http://www.SMT-LIB.org.

Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C., 2009. Satisfiability modulo theories.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (Eds.), Handbook of Satisfiability
(Volume 185 Frontiers in Artificial Intelligence and Applications), Chapter 26. IOS
Press, pp. 825–885.

Basu, S., Pollack, R., Roy, M., 2006. Algorithms in Real Algebraic Geometry. Volume 10
of Algorithms and Computations in Mathematics. Springer-Verlag.

Biere, A., Heule, M., van Maaren, H., Walsh, T., 2009. Handbook of Satisfiability (Volume
185 Frontiers in Artificial Intelligence and Applications). IOS Press.

Bradford, R., Chen, C., Davenport, J., England, M., Moreno Maza, M., Wilson, D.,
2014. Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (Eds.), Computer Algebra in Scientific
Computing. Vol. 8660 of Lecture Notes in Computer Science. Springer International
Publishing, pp. 44–58.
URL http://dx.doi.org/10.1007/978-3-319-10515-4_4

Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grigoriev, D., Hoyt, C.,
Košta, M., Radulescu, O., Sturm, T., Weber, A., 2017. A case study on the parametric
occurrence of multiple steady states. In: Proceedings of the 2017 ACM International

47

http://dx.doi.org/10.1007/978-3-319-10515-4_4
http:http://www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-42547-4_3
http://ceur-ws.org/Vol-2189
http://ceur-ws.org/Vol-1974
https://doi.org/10.1007/978-3-662-44199-2_55

Symposium on Symbolic and Algebraic Computation. ISSAC ’17. ACM, pp. 45–52.
URL https://doi.org/10.1145/3087604.3087622

Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D., 2013a. Cylindrical
algebraic decompositions for boolean combinations. In: Proceedings of the 38th Inter-
national Symposium on Symbolic and Algebraic Computation. ISSAC ’13. ACM, pp.
125–132.
URL http://dx.doi.org/10.1145/2465506.2465516

Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D., 2016. Truth table
invariant cylindrical algebraic decomposition. Journal of Symbolic Computation 76, 1–
35.
URL http://dx.doi.org/10.1016/j.jsc.2015.11.002

Bradford, R., Davenport, J., England, M., Wilson, D., 2013b. Optimising problem for-
mulations for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange,
C., Sojka, P., Windsteiger, W. (Eds.), Intelligent Computer Mathematics. Vol. 7961 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 19–34.
URL http://dx.doi.org/10.1007/978-3-642-39320-4_2

Brown, C., 2001. Improved projection for cylindrical algebraic decomposition. Journal of
Symbolic Computation 32 (5), 447–465.
URL https://doi.org/10.1006/jsco.2001.0463

Brown, C., 2003. QEPCAD B: A program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin 37 (4), 97–108.
URL https://doi.org/10.1145/968708.968710

Brown, C., 2005. The McCallum projection, lifting, and order-invariance. Tech. rep., U.S.
Naval Academy, Computer Science Department.
URL https://www.usna.edu/Users/cs/cstech/tr/reports/2005-02.orig.pdf

Brown, C., 2013. Constructing a single open cell in a cylindrical algebraic decomposition.
In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Com-
putation. ISSAC ’13. ACM, pp. 133–140.
URL https://doi.org/10.1145/2465506.2465952

Brown, C., 2015. Open non-uniform cylindrical algebraic decompositions. In: Proceedings
of the 2015 International Symposium on Symbolic and Algebraic Computation. ISSAC
’15. ACM, pp. 85–92.
URL https://doi.org/10.1145/2755996.2756654

Brown, C., Davenport, J., 2007. The complexity of quantifier elimination and cylindri-
cal algebraic decomposition. In: Proceedings of the 2007 International Symposium on
Symbolic and Algebraic Computation. ISSAC ’07. ACM, pp. 54–60.
URL https://doi.org/10.1145/1277548.1277557

Brown, C., Kahoui, M. E., Novotni, D., Weber, A., 2006. Algorithmic methods for inves-
tigating equilibria in epidemic modeling. Journal of Symbolic Computation 41, 1157–
1173.
URL https://doi.org/10.1016/j.jsc.2005.09.011

Brown, C., McCallum, S., 2005. On using bi-equational constraints in CAD construction.
In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Com-
putation. ISSAC ’05. ACM, pp. 76–83.
URL https://doi.org/10.1145/1073884.1073897

48

https://doi.org/10.1145/1073884.1073897
https://doi.org/10.1016/j.jsc.2005.09.011
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/2465506.2465952
https://www.usna.edu/Users/cs/cstech/tr/reports/2005-02.orig.pdf
https://doi.org/10.1145/968708.968710
https://doi.org/10.1006/jsco.2001.0463
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://dx.doi.org/10.1016/j.jsc.2015.11.002
http://dx.doi.org/10.1145/2465506.2465516
https://doi.org/10.1145/3087604.3087622

Buchberger, B., 2006. Bruno Buchberger’s PhD thesis (1965): An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal
of Symbolic Computation 41 (3-4), 475–511.
URL https://doi.org/10.1016/j.jsc.2005.09.007

Buchberger, B., Hong, H., 1991. Speeding up quantifier elimination by Gröbner bases.
Tech. rep., 91-06. RISC, Johannes Kepler University.
URL http://www3.risc.jku.at/publications/download/risc_1875/
1991-02-08-A.pdf

Busé, L., Mourrain, B., 2009. Explicit factors of some iterated resultants and discriminants.
Mathematics of Computation 78, 345–386.
URL https://doi.org/10.1090/S0025-5718-08-02111-X

Caviness, B., Johnson, J., 1998. Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts & Monographs in Symbolic Computation. Springer-Verlag.

Charalampakis, A., Chatzigiannelis, I., 2018. Analytical solutions for the minimum weight
design of trusses by cylindrical algebraic decomposition. Archive of Applied Mechanics
88 (1), 39–49.
URL https://doi.org/10.1007/s00419-017-1271-8

Chen, C., Moreno Maza, M., Xia, B., Yang, L., 2009. Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings of the 2009 International
Symposium on Symbolic and Algebraic Computation. ISSAC ’09. ACM, pp. 95–102.
URL https://doi.org/10.1145/1576702.1576718

Collins, G., 1975. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proceedings of the 2nd GI Conference on Automata Theory and
Formal Languages. Springer-Verlag (reprinted in the collection Caviness and Johnson
(1998)), pp. 134–183.
URL https://doi.org/10.1007/3-540-07407-4_17

Collins, G., 1998. Quantifier elimination by cylindrical algebraic decomposition – 20 years
of progress. In: Caviness, B., Johnson, J. (Eds.), Quantifier Elimination and Cylindrical
Algebraic Decomposition. Texts & Monographs in Symbolic Computation. Springer-
Verlag, pp. 8–23.
URL https://doi.org/10.1007/978-3-7091-9459-1_2

Collins, G., Hong, H., 1991. Partial cylindrical algebraic decomposition for quantifier elim-
ination. Journal of Symbolic Computation 12, 299–328.

Cowen-Rivers, A., England, M., 2018. Towards incremental cylindrical algebraic decom-
position in Maple. In: Bigatti, A., Brain, M. (Eds.), Proceedings of the 3rd Workshop
on Satisfiability Checking and Symbolic Computation (SC2 2018). No. 2189 in CEUR
Workshop Proceedings. pp. 3–18.
URL http://ceur-ws.org/Vol-2189/

Davenport, J., Bradford, R., England, M., Wilson, D., 2012. Program verification in the
presence of complex numbers, functions with branch cuts etc. In: 14th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing. SYNASC
’12. IEEE, pp. 83–88.
URL http://dx.doi.org/10.1109/SYNASC.2012.68

Davenport, J., Heintz, J., 1988. Real quantifier elimination is doubly exponential. Journal

49

http://dx.doi.org/10.1109/SYNASC.2012.68
http://ceur-ws.org/Vol-2189
https://doi.org/10.1007/978-3-7091-9459-1_2
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1007/s00419-017-1271-8
https://doi.org/10.1090/S0025-5718-08-02111-X
http://www3.risc.jku.at/publications/download/risc_1875
https://doi.org/10.1016/j.jsc.2005.09.007

of Symbolic Computation 5 (1-2), 29–35.
URL https://doi.org/10.1016/S0747-7171(88)80004-X

Dolzmann, A., Seidl, A., Sturm, T., 2004. Efficient projection orders for CAD. In: Pro-
ceedings of the 2004 International Symposium on Symbolic and Algebraic Computation.
ISSAC ’04. ACM, pp. 111–118.
URL https://doi.org/10.1145/1005285.1005303

England, M., 2018. Machine learning for mathematical software. In: Davenport, J.,
Kauers, M., Labahn, G., Urban, J. (Eds.), Mathematical Software – Proc. ICMS 2018.
Vol. 10931 of Lecture Notes in Computer Science. Springer International Publishing,
pp. 165–174.
URL https://doi.org/10.1007/978-3-319-96418-8_20

England, M., Bradford, R., Chen, C., Davenport, J., Moreno Maza, M., Wilson, D., 2014a.
Problem formulation for truth-table invariant cylindrical algebraic decomposition by
incremental triangular decomposition. In: Watt, S., Davenport, J., Sexton, A., Sojka,
P., Urban, J. (Eds.), Intelligent Computer Mathematics. Vol. 8543 of Lecture Notes in
Artificial Intelligence. Springer International, pp. 45–60.
URL http://dx.doi.org/10.1007/978-3-319-08434-3_5

England, M., Bradford, R., Davenport, J., 2015. Improving the use of equational con-
straints in cylindrical algebraic decomposition. In: Proceedings of the 2015 International
Symposium on Symbolic and Algebraic Computation. ISSAC ’15. ACM, pp. 165–172.
URL http://dx.doi.org/10.1145/2755996.2756678

England, M., Davenport, J., 2016. The complexity of cylindrical algebraic decomposition
with respect to polynomial degree. In: Gerdt, V., Koepf, W., Werner, W., Vorozhtsov,
E. (Eds.), Computer Algebra in Scientific Computing: 18th International Workshop,
CASC 2016. Vol. 9890 of Lecture Notes in Computer Science. Springer International
Publishing, pp. 172–192.
URL http://dx.doi.org/10.1007/978-3-319-45641-6_12

England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A., 2017.
Symbolic versus numerical computation and visualization of parameter regions for mul-
tistationarity of biological networks. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov,
E. (Eds.), Computer Algebra in Scientific Computing (CASC). Vol. 10490 of Lecture
Notes in Computer Science. Springer International Publishing, pp. 93–108.
URL https://doi.org/10.1007/978-3-319-66320-3_8

England, M., Wilson, D., Bradford, R., Davenport, J., 2014b. Using the Regular Chains
Library to build cylindrical algebraic decompositions by projecting and lifting. In: Hong,
H., Yap, C. (Eds.), Mathematical Software – ICMS 2014. Vol. 8592 of Lecture Notes in
Computer Science. Springer Heidelberg, pp. 458–465.
URL http://dx.doi.org/10.1007/978-3-662-44199-2_69

Erascu, M., Hong, H., 2016. Real quantifier elimination for the synthesis of optimal nu-
merical algorithms (Case study: Square root computation). Journal of Symbolic Com-
putation 75, 110–126.
URL https://doi.org/10.1016/j.jsc.2015.11.010

Faugère, J., 2002. A new efficient algorithm for computing Gröbner bases without reduc-
tion to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic

50

https://doi.org/10.1016/j.jsc.2015.11.010
http://dx.doi.org/10.1007/978-3-662-44199-2_69
https://doi.org/10.1007/978-3-319-66320-3_8
http://dx.doi.org/10.1007/978-3-319-45641-6_12
http://dx.doi.org/10.1145/2755996.2756678
http://dx.doi.org/10.1007/978-3-319-08434-3_5
https://doi.org/10.1007/978-3-319-96418-8_20
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1016/S0747-7171(88)80004-X

and Algebraic Computation. ISSAC ’02. ACM, pp. 75–83.
URL https://doi.org/10.1145/780506.780516

Fotiou, I., Parrilo, P., Morari, M., 2005. Nonlinear parametric optimization using cylin-
drical algebraic decomposition. In: Decision and Control, 2005 European Control Con-
ference. CDC-ECC ’05. pp. 3735–3740.
URL https://doi.org/10.1109/CDC.2005.1582743

Fukasaku, R., Iwane, H., Sato, Y., 2015. Real quantifier elimination by computation of
comprehensive Gröbner systems. In: Proceedings of the 2015 International Symposium
on Symbolic and Algebraic Computation. ISSAC ’15. ACM, pp. 173–180.
URL https://doi.org/10.1145/2755996.2756646

´ Haehn, R., Kremer, G., Abrahám, E., 2018. Evaluation of equational constraints for CAD
in SMT solving. In: Bigatti, A., Brain, M. (Eds.), Proceedings of the 3rd Workshop
on Satisfiability Checking and Symbolic Computation (SC2 2018). No. 2189 in CEUR
Workshop Proceedings. pp. 19–32.
URL http://ceur-ws.org/Vol-2189/

Han, J., Dai, L., Xia, B., 2014. Constructing fewer open cells by gcd computation in
CAD projection. In: Proceedings of the 39th International Symposium on Symbolic
and Algebraic Computation. ISSAC ’14. ACM, pp. 240–247.
URL https://doi.org/10.1145/2608628.2608676

Hong, H., 1990. An improvement of the projection operator in cylindrical algebraic decom-
position. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ISSAC ’90. ACM, pp. 261–264.
URL https://doi.org/10.1145/96877.96943

Huang, Z., England, M., Davenport, J., Paulson, L., 2016. Using machine learning to
decide when to precondition cylindrical algebraic decomposition with Groebner bases.
In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC ’16). IEEE, pp. 45–52.
URL https://doi.org/10.1109/SYNASC.2016.020

Huang, Z., England, M., Wilson, D., Davenport, J., Paulson, L., Bridge, J., 2014. Applying
machine learning to the problem of choosing a heuristic to select the variable ordering
for cylindrical algebraic decomposition. In: Watt, S., Davenport, J., Sexton, A., Sojka,
P., Urban, J. (Eds.), Intelligent Computer Mathematics. Vol. 8543 of Lecture Notes in
Artificial Intelligence. Springer International, pp. 92–107.
URL http://dx.doi.org/10.1007/978-3-319-08434-3_8

Iwane, H., Yanami, H., Anai, H., Yokoyama, K., 2009. An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In:
Proceedings of the 2009 conference on Symbolic Numeric Computation. SNC ’09. pp.
55–64.
URL https://doi.org/10.1145/1577190.1577203

Jouanolou, J., 1991. Le formalisme du résultant. Advances in Mathematics 90 (2), 117–
263.
URL https://doi.org/10.1016/0001-8708(91)90031-2

Jovanovic, D., de Moura, L., 2012. Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (Eds.), Automated Reasoning: 6th International Joint Conference (IJ-

51

https://doi.org/10.1016/0001-8708(91)90031-2
https://doi.org/10.1145/1577190.1577203
http://dx.doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1145/96877.96943
https://doi.org/10.1145/2608628.2608676
http://ceur-ws.org/Vol-2189
https://doi.org/10.1145/2755996.2756646
https://doi.org/10.1109/CDC.2005.1582743
https://doi.org/10.1145/780506.780516

CAR). Vol. 7364 of Lecture Notes in Computer Science. Springer, pp. 339–354.
URL https://doi.org/10.1007/978-3-642-31365-3_27

´ Kremer, G., Abrahám, E., 2019. Fully incremental CAD. In Press.
Kroening, D., Strichman, O., 2013. Decision Procedures: An Algorithmic Point of View.

Springer, New York.
Lazard, D., 1994. An improved projection for cylindrical algebraic decomposition. In:

Bajaj, C. (Ed.), Algebraic Geometry and its Applications: Collections of Papers from
Abhyankar’s 60th Birthday Conference. Springer Berlin, pp. 467–476.
URL https://doi.org/10.1007/978-1-4612-2628-4_29

Lazard, D., McCallum, S., 2009. Iterated discriminants. Journal of Symbolic Computation
44 (9), 1176–1193.
URL https://doi.org/10.1016/j.jsc.2008.05.006

´ Loup, U., Scheibler, K., Corzilius, F., Abrahám, E., Becker, B., 2013. A symbiosis of
interval constraint propagation and cylindrical algebraic decomposition. In: Bonacina,
M. (Ed.), Automated Deduction (CADE-24). Vol. 7898 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 193–207.
URL https://doi.org/10.1007/978-3-642-38574-2_13

Mayr, E., Meyer, A., 1982. The complexity of the word problems for commutative semi-
groups and polynomial ideals. Advances in Mathematics 46 (3), 305–329.
URL https://doi.org/10.1016/0001-8708(82)90048-2

Mayr, E., Ritscher, S., 2013. Dimension-dependent bounds for Gröbner bases of polynomial
ideals. Journal of Symbolic Computation 49, 78–94.
URL https://doi.org/10.1016/j.jsc.2011.12.018

McCallum, S., 1985. An improved projection operation for cylindrical algebraic decompo-
sition. PhD Thesis (Computer Sciences Technical Report 578), University of Wisconsin-
Madison.

McCallum, S., 1998. An improved projection operation for cylindrical algebraic decom-
position. In: Caviness, B., Johnson, J. (Eds.), Quantifier Elimination and Cylindrical
Algebraic Decomposition. Texts & Monographs in Symbolic Computation. Springer-
Verlag, pp. 242–268.
URL https://doi.org/10.1007/978-3-7091-9459-1_12

McCallum, S., 1999a. Factors of iterated resultants and discriminants. Journal of Symbolic
Computation 27 (4), 367–385.
URL https://doi.org/10.1006/jsco.1998.0257

McCallum, S., 1999b. On projection in CAD-based quantifier elimination with equational
constraint. In: Proceedings of the 1999 International Symposium on Symbolic and
Algebraic Computation. ISSAC ’99. ACM, pp. 145–149.
URL https://doi.org/10.1145/309831.309892

McCallum, S., 2001. On propagation of equational constraints in CAD-based quantifier
elimination. In: Proceedings of the 2001 International Symposium on Symbolic and
Algebraic Computation. ISSAC ’01. ACM, pp. 223–231.
URL https://doi.org/10.1145/384101.384132

McCallum, S., Brown, C., 2009. On delineability of varieties in CAD-based quantifier
elimination with two equational constraints. In: Proceedings of the 2009 International

52

https://doi.org/10.1145/384101.384132
https://doi.org/10.1145/309831.309892
https://doi.org/10.1006/jsco.1998.0257
https://doi.org/10.1007/978-3-7091-9459-1_12
https://doi.org/10.1016/j.jsc.2011.12.018
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1007/978-3-642-38574-2_13
https://doi.org/10.1016/j.jsc.2008.05.006
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-3-642-31365-3_27

Symposium on Symbolic and Algebraic Computation. ISSAC ’09. ACM, pp. 71–78.
URL https://doi.org/10.1145/1576702.1576715

McCallum, S., Hong, H., 2016. On using Lazard’s projection in CAD construction. Journal
of Symbolic Computation 72, 65–81.

McCallum, S., Parusińiski, A., Paunescu, L., 2019. Validity proof of Lazard’s method for
CAD construction. Journal of Symbolic Computation 92, 52–69.
URL https://doi.org/10.1016/j.jsc.2017.12.002

Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z., 2018a. Non-linear real
arithmetic benchmarks derived from automated reasoning in economics. In: Bigatti,
A., Brain, M. (Eds.), Proceedings of the 3rd Workshop on Satisfiability Checking and
Symbolic Computation (SC2 2018). No. 2189 in CEUR Workshop Proceedings. pp. 48–
60.
URL http://ceur-ws.org/Vol-2189/

Mulligan, C., Davenport, J., England, M., 2018b. TheoryGuru: A Mathematica package
to apply quantifier elimination technology to economics. In: Davenport, J., Kauers, M.,
Labahn, G., Urban, J. (Eds.), Mathematical Software – Proc. ICMS 2018. Vol. 10931
of Lecture Notes in Computer Science. Springer International Publishing, pp. 369–378.
URL https://doi.org/10.1007/978-3-319-96418-8_44

Paulson, L., 2012. Metitarski: Past and future. In: Beringer, L., Felty, A. (Eds.), Interac-
tive Theorem Proving. Vol. 7406 of Lecture Notes in Computer Science. Springer, pp.
1–10.
URL https://doi.org/10.1007/978-3-642-32347-8_1

Schwartz, J., Sharir, M., 1983. On the “Piano-Movers” Problem: II. General techniques
for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4,
298–351.
URL https://doi.org/10.1016/0196-8858(83)90014-3

Seidl, A., 2006. Cylindrical decomposition under application-oriented paradigms. Ph.D.
thesis, Universitt Passau, Fakultt fr Informatik und Mathematik.
URL https://opus4.kobv.de/opus4-uni-passau/files/46/Seidl_Andreas.pdf

Strzeboński, A., 2006. Cylindrical algebraic decomposition using validated numerics. Jour-
nal of Symbolic Computation 41 (9), 1021–1038.
URL https://doi.org/10.1016/j.jsc.2006.06.004

Strzeboński, A., 2016. Cylindrical algebraic decomposition using local projections. Journal
of Symbolic Computation 76, 36–64.
URL https://doi.org/10.1016/j.jsc.2015.11.018

´ Viehmann, T., Kremer, G., Abráham, E., 2017. Comparing different projection operators
in the cylindrical algebraic decomposition for smt solving. In: England, M., Ganesh, V.
(Eds.), Proceedings of the 2nd International Workshop on Satisfiability Checking and
Symbolic Computation (SC2 2017). No. 1974 in CEUR Workshop Proceedings.
URL http://ceur-ws.org/Vol-1974/

Wada, Y., Matsuzaki, T., Terui, A., Arai, N., 2016. An automated deduction and its
implementation for solving problem of sequence at university entrance examination.
In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (Eds.), Mathematical Software –
Proceedings of ICMS 2016. Vol. 9725 of Lecture Notes in Computer Science. Springer

53

http://ceur-ws.org/Vol-1974
https://doi.org/10.1016/j.jsc.2015.11.018
https://doi.org/10.1016/j.jsc.2006.06.004
https://opus4.kobv.de/opus4-uni-passau/files/46/Seidl_Andreas.pdf
https://doi.org/10.1016/0196-8858(83)90014-3
https://doi.org/10.1007/978-3-642-32347-8_1
https://doi.org/10.1007/978-3-319-96418-8_44
http://ceur-ws.org/Vol-2189
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1145/1576702.1576715

International Publishing, pp. 82–89.
URL https://doi.org/10.1007/978-3-319-42432-3_11

Wilson, D., Bradford, R., Davenport, J., 2012. Speeding up cylindrical algebraic decompo-
sition by Gröbner bases. In: Jeuring, J., Campbell, J., Carette, J., Reis, G., Sojka, P.,
Wenzel, M., Sorge, V. (Eds.), Intelligent Computer Mathematics. Vol. 7362 of Lecture
Notes in Computer Science. Springer, pp. 280–294.
URL https://doi.org/10.1007/978-3-642-31374-5_19

Wilson, D., England, M., Davenport, J., Bradford, R., 2014. Using the distribution of cells
by dimension in a cylindrical algebraic decomposition. In: 16th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing. SYNASC ’14.
IEEE, pp. 53–60.
URL http://dx.doi.org/10.1109/SYNASC.2014.15

54

http://dx.doi.org/10.1109/SYNASC.2014.15
https://doi.org/10.1007/978-3-642-31374-5_19
https://doi.org/10.1007/978-3-319-42432-3_11

	Cylindrical Algebraic cs
	EBD19

