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It is well known that the imposition of a constraint can transform the properties of critical systems. Early work
on this phemomenon by Essam and Garelick, Fisher, and others, focused on the effects of constraints on the
leading critical exponents describing phase transitions. Recent work extended these considerations to critical
amplitudes and to exponents governing logarithmic corrections in certain marginal scenarios. Here these old
and new results are gathered and summarised. The involutory nature of transformations between the critical
parameters describing ideal and constrained systems are also discussed, paying particular attention to matters
relating to universality.
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1. Introduction
The study of thermodynamic systems subject to constraints has a long history. In 1966, Syozi and

Miyazima produced a diluted version of the Ising model and observed that annealed non-magnetic im-

purities affect the critical behaviour of the model [1]. In particular, the usual infinite critical peak in the

specific heat is replaced by a finite cusp. In 1967, Essam and Garelick quantified the nature of this change

as [2, 3]

αX =− α

1−α . (1.1)

Here, α represents the specific heat critical exponent for the ideal (non-diluted) system and αX is its

counterpart for the diluted system. If β and γ similarly represent the magnetisation and susceptibility

exponents, Essam and Garelick further showed that these transform to [2, 3]

βX = β

1−α , γX = γ

1−α . (1.2)

In 1968, Fisher produced a general theory for critical systems under constraint and the general process

linking the ideal critical exponents to those for the constrained system became known as Fisher renor-
malisation [4]. Because of their continued academic importance and relevance to real systems, phase
transitions in constrained systems remained a focus of study [5–9]. In recent years the transformation

has been extended to deal with other aspects of critical phenomena [10, 11].

Due to their experimental accessibility, amplitude terms are important for the description of criti-

cal phenomena. Unsurprisingly, these also change when a constraint is imposed. Perhaps surprisingly,

however, the precise nature of this transformation has only recently been studied [11]. Furthermore, in

certain marginal circmstances, multiplicative logarithmic corrections also enter the scaling description

at continuous phase transitions. Examples include those at the upper critical dimension of spin systems

and those at the border to regimes where the transition becomes first-order. The exponents of such loga-

rithmic corrections also transform when the system is subjected to a constraint [11].
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To give a compact description of all these various aspects (leading critical exponents, logarithmic

corrections and amplitudes), we express the scaling behaviour of an ideal system as follows.

C (t ,0) = A±|t |−α| ln |t ||α̂ , (1.3)

m(t ,0) = B |t |β| ln |t ||β̂ for t < 0, (1.4)

χ(t ,0) = Γ±|t |−γ| ln |t ||γ̂ , (1.5)

m(0,h) = Dh
1
δ | ln |t ||δ̂ , (1.6)

ξ(t ,0) = N±|t |−ν| ln |t ||ν̂ . (1.7)

Here, t and h refer to the reduced temperature and magnetic field, respectively. The correlation length
in the absence an external field is ξ(t ,0). The subscripts + and − refer to amplitudes for t > 0 and t < 0,
respectively. In principle, we could employ subscripts for the critical exponents and their logarithmic

counterparts corresponding to those used for the amplitudes, but we suppress these here for simplicity

and because the exponents generally coincide on either side of the transition. Note that equation (1.3) for

the specific heat corresponds to an internal energy of the leading form

e(t ,0) =± A±
1−α |t |1−α| ln |t ||α̂. (1.8)

Finally, and for completeness, we mention that the leading form for the critical correlation function is as

follows:

G(t = 0,h = 0; x) = Θ

xd−2+η | ln x|η̂ . (1.9)

In what follows, we give a comprehensive overview of the effects of the presence of a constraint on

the critical exponents (including those of the logarithmic corrections, when present) and the amplitudes.

The critical exponents are universal quantities while the amplitudes are not. However, certain combi-

nations of amplitudes are universal. We show that the renormalisation process (Fisher renormalisation)

which transforms the universal critical paramenters is involutary in the sense that applying it twice re-

sults in the identity transformation. However, quantities which are not universal do not transform as

involutions. We also show that the various scaling relations between the critical parameters (exponents

and amplitudes) also hold for the transformed quantities.

In the next section, we summarise the scaling relations for the leading exponents, their logarithmic

counterparts and the universal amplitude combinations. In section 3 we apply the renormalisation pro-

cess and study its effects in section 4. We conclude in section 5.

2. Scaling relations and universal amplitude combinations
The four standard scaling relations are (see, e.g., [12] and references therein)

α+dν = 2, (2.1)

α+2β+γ = 2, (2.2)

(δ−1)β = γ , (2.3)

(2−η)ν = γ , (2.4)

where d represents the dimensionality of the system. The corresponding scaling relations for the loga-
rithmic-correction exponents are as follows:

α̂+d ν̂ = d ϙ̂ , (2.5)

α̂+ γ̂ = 2β̂ , (2.6)

(δ−1)β̂+ γ̂ = δδ̂ , (2.7)

(2−η)ν̂+ η̂ = γ̂ , (2.8)
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where α̂ is augmented by unity in certain special circumstances described in [13]. The exponent ϙ̂

(“koppa-hat”) characterises the leading logarithmic correction to the finite-size scaling of the correlation

length ξL(0,0) ∼ L(lnL)ϙ̂, where L is the finite extent of the system [14]. It is the logarithmic counterpart
of the exponent ϙ, recently introduced to characterise the finite-size correlation length above the upper

critical dimension: ξL(0,0) ∼ Lϙ [14]. The relations (2.1)–(2.4) for the leading exponents are derived in the
Appendix, where it is also shown that they correspond to the following universal ratios [15]:

Rξ = A±N d
± , (2.9)

Rc = A±Γ±
B 2 , (2.10)

Rχ = Γ±Bδ−1

Dδ
, (2.11)

Q = ΘN 2−η
±
Γ±

. (2.12)

For the derivation of the logarithmic scaling relations (2.5)–(2.8), the reader is referred to [13]

In the next section, we examine the effects of constraints on the critical exponents and amplitudes. It

will turn out that the renormalised critical exponents obey the same set of scaling relations as their orig-

inal counterparts and that, when applied to universal quantities, Fisher renormalisation is involutory.

3. Fisher renormalisation
We consider a thermodynamic variable x conjugate to a field u, so that

x(t ,h,u) = ∂ fX (t ,h,u)

∂u
. (3.1)

Here, fX (t ,h,u) represents the free energy of the system under constraint and u represents a quantity
such as the chemical potential with x representing the density of annealed non-magnetic impurities. The
constraint is then expressed in terms of an analytic function as follows:

x(t ,h,u) = X (t ,h,u) . (3.2)

One may further assume that the singular part of the free energy of the constrained system is structured

analogously to its ideal counterpart f , so that

fX (t ,h,u) = f [t∗(t ,h,u),h∗(t ,h,u)] , (3.3)

up to a regular background term and in which t∗ and h∗
are analytic functions [4]. The ideal free energy

f (t ,h) is recovered if u is fixed at u = 0.
We assume that

h∗(t ,h,u) = hJ (t ,h,u) , (3.4)

so that h∗ = 0 when h = 0. Then,

∂h∗(t ,0,u)

∂t
= 0,

∂h∗(t ,0,u)

∂u
= 0, (3.5)

and

∂h∗(t ,h,u)

∂h
=J (t ,h,u)+h

∂J (t ,h,u)

∂h
, (3.6)

so that

∂h∗(t ,0,u)

∂h
=J (t ,0,u) . (3.7)

For simplicity, we also assume h →−h symmetry so that t∗ is a function of h2
. In that case,

∂t∗(t ,h,u)

∂h
∝ h , (3.8)

which vanishes at h = 0.
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3.1. The critical point
To identify the critical point of the constrained system, one first writes the magnetization from equa-

tion (3.3) as follows:

mX (t ,h,u) = ∂ fX (t ,h,u)

∂h
= e(t∗,h∗)

∂t∗

∂h
+m(t∗,h∗)

∂h∗(t ,0,u)

∂h
. (3.9)

From equation (3.8), if the dependency on h is even, the first term on the right hand side of equation (3.9)
vanishes at h = 0. From equation (3.6), then

mX (t ,0,u) = m[t∗(t ,0,u),0]J (t ,0,u) . (3.10)

Now, the critical point of the ideal system is given by the vanishing ofm. Assuming thatJ (t ,0,u) is non-
vanishing, equation (3.10) gives thatmX (t ,0,u) vanishes only whenm[t∗(t ,0,u),0] = 0. This means that
critical point for the constrained system is given by

t∗(t ,0,u) = 0. (3.11)

(The vanishing of J (t ,0,u) would lead to two critical points instead of one for the constrained system.)
The Taylor expansion for the functionJ (t ,h,u) about the critical point is as follows:

J (t ,h,u) = J0 +b1t +·· ·+c1h +·· ·+c1(u −uc)+ . . . , (3.12)

where uc is the critical value of u for the constrained system. The critical point, therefore, has

J (0,0,uc) = J0.

3.2. The relation between t∗ and t

The constraint (3.2) determines the relation between t∗ and t . Equation (3.1) firstly gives

x(t ,h,u) = ∂ f (t∗,h∗)

∂t∗
∂t∗

∂u
+ ∂ fX (t∗,h∗)

∂h∗
∂h∗

∂u
. (3.13)

At h = 0, the second term on the right vanishes after equation (3.5). Therefore,

x(t ,0,u) = e(t∗,0)
∂t∗(t ,0,u)

∂u
. (3.14)

This will give a non-trivial relationship between t∗ and t . Expanding t∗(t ,0,u), one has

t∗(t ,0,u) = a1(u −uc)+ . . . , (3.15)

where uc and the coefficients of the expansion are non-universal. Therefore,

x(t ,0,u) = a1e(t∗,0)+ . . . , (3.16)

which, from equation (1.8), is as follows:

x(t ,0,u) =±a1
A±

1−α |t∗|1−α| ln |t∗||α̂+ . . . . (3.17)

On the other hand, Taylor expansion of the constraining function gives

X (t ,0,u) = X (0,0,uc)+d1(u −uc)+d2t + . . . (3.18)

= X (0,0,uc)+ d1

a1
t∗+d2t + . . . , (3.19)

from (3.15). Comparison with equation (3.16) leads to the vanishing of X (0,0,uc) and

±a1
A±

1−α |t∗|1−α| ln |t∗||α̂ = d1

a1
t∗+d2t + . . . . (3.20)
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If α< 0, t∗ ∼ t and the renormalisation is trivial. In the case where α> 0, however, t renormalises to t∗
in a non-trivial manner. To describe this, define

a =
[

d2(1−α)

a1

] 1
1−α

. (3.21)

Then, the central result is that the constraint renormalises the reduced temperature from t to t∗, whereby

|t∗| = a

( |t |
A±

) 1
1−α | ln |t ||− α̂

1−α . (3.22)

3.3. Scaling for the constrained system
Equations (3.3), (3.5) and (3.22) deliver the leading internal energy and specific heat for the con-

strained system as follows:

eX (t ,0,u) = ∂ fX (t ,0,u)

∂t
= e(t∗,0)

∂t∗(t ,0,u)

∂t
=± a2−α

(1−α)2 A
−1

1−α
± |t | 1

1−α | ln |t ||− α̂
1−α , (3.23)

and

CX (t ,0,u) = ∂eX (t ,0,u)

∂t
= a2−α

(1−α)3 A
−1

1−α
± |t | α

1−α | ln |t ||− α̂
1−α , (3.24)

respectively. We identify the latter as follows:

CX (t ,0) = AX ±|t |−αX | ln |t ||α̂X , (3.25)

where

αX =− α

1−α , α̂X =− α̂

1−α , AX ± = a
1+ 1

1−αX (1−αX )3 AαX −1
± . (3.26)

The last relationship is non-universal since, besides A±, a is a non-universal constant.
The magnetization for the constrained system is given by equations (1.4), (3.10) and (3.12) as

mX (t ,0,u) = J0B |t∗|β| ln |t∗||β̂ for t < 0. In terms of t , we write

mX (t ,0) = BX |t |βX | ln |t ||β̂X for t < 0, (3.27)

and identify

βX = β

1−α , β̂X = β̂− βα̂

1−α , BX = J0aβ
B

AβX−
. (3.28)

Differentiating equation (3.9) with respect to h, delivers the susceptibility for the constrained sys-
tem and, using equation (3.8) at h = 0, together with equations (3.6) and (3.7), we obtain χX (t ,0,u) =
J 2

0χ(t∗,0) = ΓX ±|t |−γX | ln |t∗||γ̂X , or

χX (t ,0) = ΓX ±|t |−γX | ln |t ||γ̂X , (3.29)

where

γX = γ

1−α , γ̂X = γ̂+ γα̂

1−α , ΓX ± = J 2
0 a−γAγX

± Γ± . (3.30)

If δ> 1, the critical isotherm t = 0 has the leading magnetization in the field given by equations (3.6),

(3.8) and (3.9) asmX (0,h,u) = J0Dh
1
δ | lnh|δ̂. We identify

mX (0,h) = DX hδX | lnh|δ̂X , (3.31)

with

δX = δ , δ̂X = δ̂ , DX = J
1+ 1

δ
0 D. (3.32)

The critical exponents are, therefore, unchanged but the amplitude undergoes a transformation.
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The correlation length renormalises in a similar way to the susceptibility since

ξX (t ) = ξ(t∗) = N±|t∗|−ν| ln |t∗||−ν̂.

We write

ξX (t ,0) = NX ±|t |−νX | ln |t ||−ν̂X , (3.33)

where

νX = ν

1−α , ν̂X = ν̂+ να̂

1−α , NX ± = a−νAνX
± N± . (3.34)

Finally, the correlation function is obtainable by differentiating the free energy with respect to two

local fields h1 = h(x1) and h2 = h(x2). One obtains

GX (t ,h,u; x) = ∂2 fX (t ,h,u)

∂h1∂h2
= J 2

0
∂2 f (t∗,h∗)

∂h∗
1∂h∗

2

= J 2
0G(t∗,h∗, x).

Setting t∗ = t = h∗ = h = 0, deliversGX (0,0,u; x) = J 2
0G(0,0, x). Writing

GX (0,0, x) = ΘX

xd−2+ηX
| ln x|η̂X , (3.35)

we identify

ηX = η , η̂X = η̂ , ΘX = J 2
0Θ. (3.36)

We have observed that neither the in-field magnetisation nor the correlation function exhibit non-

trivial renormalisation of the critical exponents. The former is the case by construction and the latter is

so because it is defined at the critical point. Likewise, the exponents ϙ and ϙ̂ governing finite-size scaling

of the correlaton length do not change under Fisher renormalisation, so that ϙX = ϙ and ϙ̂x = ϙ̂.

4. Properties of renormalised scaling parameters
It is straightforward to verify that if the critical exponents for the ideal system satisfy the scaling re-

lations (2.1)–(2.4), the renormalised exponents for the constrained system do likewise. (This observation

for the Essam-Fisher relation (2.2) was already made in [2].) The same statement applies to the scaling

relations for logarithmic corrections (2.5)–(2.8).

Fisher renormalisation applied to the universal critical exponents is involutory. This means that

renormalisation of renormalised exponents delivers pure values. For example, γX X = γX /(1−αX ) = γ

and γ̂X X = γ̂X +γX α̂X /(1−αX ) = γ̂. However, the same starement does not apply to the amplitudes. For
example, two successive applications of equation (3.30) give ΓX X ± different from Γ± .
Of course, the critical exponents, for which the transformation is involutory, are universal, whereas

the critical amplitudes are not. This observation prompts one to investigate the nature of the universal

combinations (2.9)–(2.12) under Fisher renormalisation. The non-universal terms J0 and a, which char-
acterise the transformations of the individual amplitude terms, drop out of the transformations of the

universal combinations through the scaling relations (2.1)–(2.4). The universal amplitude combinations

transform as follows:

RX c = 1

(1−α)3 Rc , (4.1)

RX χ = Rχ , (4.2)

RX ξ = 1

(1−α)3 Rξ , (4.3)

QX = Q , (4.4)

ZX = Z

U∆X
0

. (4.5)

Two successive applications of these transformations confirm the involutory nature of these universal

combinations.
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5. Conclusions
Fisher renormalization, which generalises an earlier theory of Essam and Garelick is a staple of the

established theory of critical phenomena. The early work by these authors was extended in recent years

to encompass critical amplitudes and the exponents which govern logarithmic corrections to scaling,

when present. Here, a comprehensive treatment of all of these various elements has been given. We also

observe that the involutory nature of the renormalisation process is intrinsically linked to universality.
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A. Appendix: Universal amplitude Combinations
To identify the universal amplitude combinations, we begin with the standard scaling form for the

free energy and correlation length [12, 15]

f (t ,h) = b−d Y (Kt byt t ,Khbyh h) , (A.1)

ξ(t ,h) = bX (Kt byt t ,Khbyh h) . (A.2)

The scaling functions Y and X are universal and all the non-universality is contained in themetric factors
Kt and Kh .

Differentiating equation (A.1) with respect to h delivers the scaling form for the magnetization as
follows:

m(t ,h) = b−d+yh KhY (h)(Kt byt t ,Khbyh h) , (A.3)

where the parenthesized superscript signifies appropriate differentiaton of the scaling function. Setting

h = 0 and chosing

b = K
− 1

yt
t |t |− 1

yt (A.4)

gives the spontaneous magnetizationm(t ,0) = B(−t )β, for t < 0, in which

β= d − yh

yt
and B = K β

t KhY (h)(1,0) . (A.5)

On the other hand, setting t = 0 in equation (A.3) and choosing

b = K
− 1

yh
h h

− 1
yh , (A.6)

we obtainm(0,h) = Dh1/δ
in which

1

δ
= d − yh

yh
and D = K

1+ 1
δ

h Y (h)(0,1) . (A.7)

The susceptibility is obtained by differentiating equation (A.3) with respect to h. Again setting h = 0 and
using equation (A.4), one finds χ(t ,0) = Γ±|t |−γ, where

γ= 2yh −d

yt
and Γ± = K −γ

t K 2
h Y (hh)(±1,0) . (A.8)

For the specific heat, differentiate (A.1) twice with respect to t and again use equation (A.4) to find
C (t ,0) = A±|t |−α with

α= 2− d

yt
and A± = K 2−α

t Y (t t )(±1,0) . (A.9)
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From equations (A.5) and (A.7), we can express yt and yh in terms of β and δ,

yt = d

β

1

δ+1
and yh = dδ

δ+1
. (A.10)

Similarly, using equations (A.5) and (A.7) we can express Kt and Kh in terms of B and D ,

Kt =
[

B

Y (h)(1,0)

] 1
β

[
D

Y (h)(0,1)

]− 1
β

δ
1+δ

and Kh =
[

D

Y (h)(0,1)

] δ
δ+1

. (A.11)

Here, the Y (h)
are universal while the amplitudes B and D are not.

Finally, expressing α and γ in terms of β and δ through equations (A.8) and (A.9), delivers the static

scaling relations (2.2) and (2.3). Correspondingly, one can express A± and Γ± in terms of B and D ,

Γ± = Y (hh)(±1,0)[
Y (h)(1,0)

] 1
β

[
Y (h)(0,1)

]δ B 1−δDδ , (A.12)

A± =
[

Y (h)(1,0)
]−(δ+1) [

Y (h)(0,1)
]δ

Y (t t )(±1,0)
Bδ+1

Dδ
. (A.13)

From the first of these, Γ±Bδ−1/Dδ
is a universal combination of universal factors. This is Rχ in equa-

tion (2.11). From the second, the ratio A±Dδ/Bδ+1
is universal. Or, combining with equation (A.7), the

quantity Rc in equation (2.10) is seen to be universal.

From equations (A.2) and (A.4), the correlation length is ξ(t ,0) = N±|t |−ν, where

ν= 1

yt
and N± = K

− 1
yt

t X (±1,0). (A.14)

From equation (A.9), the first of these is the hyperscaling relation (2.1). To connect N± to the other ampli-
tudes, one can exploit the relatonship between the susceptibility and the correlation function,

χ=
ξ∫

0

G(x)xd−1dx =Θξ2−η, (A.15)

from which Fisher’s scaling relation (2.4) follows, along with

Γ± =ΘN 2−η
± . (A.16)

The combination Q =ΘN 2−η
± /Γ± of equation (2.12) is, therefore, universal. Similarly, the universality of

Rξ in equation (2.9) can be explained through the hyperscaling relation f (t ,0) = A±|t |2−α/(2−α)(1−α) ∼
ξd (t ,0) = (N±|t |−ν)d

.
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Критичнi явища для систем з в’язями
Н. Iзмаiлян1,2, Р. Кенна2

1 Єреванський фiзичний iнститут, м. Єреван, Вiрменiя
2 Центр прикладних математичних дослiджень, унiверситет м. Ковентрi, м. Ковентрi, Англiя
Добре вiдомо, що накладання в’язей може змiнити критичнi властивостi системи. Раннi роботи Ессiма i
Гарелiка, Фiшера та iн., присвяченi цьому явищу, зосереджувалися на впливi в’язей на головнi критичнi
показники, якi описують фазовi переходи. Недавня робота розширила цi дослiдження на випадок кри-
тичних амплiтуд i показникiв для логарифмiчних поправок для деяких межових сценарiїв. Тут цi старi
i новi результати зiбрано i пiдсумовано. Також обговорюється iнволютивна природа перетворень мiж
критичними параметрами, якi описують iдеальну систему i систему з в’язями, при цьому особлива увага
придiляється питанням, пов’язаним з унiверсальнiстю.
Ключовi слова: критичнi явища, ренормалiзацiя Фiшера, унiверсальнiсть
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