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It is well known that the imposition of a constraint can transform the properties of critical systems. Early work
on this phemomenon by Essam and Garelick, Fisher, and others, focused on the effects of constraints on the
leading critical exponents describing phase transitions. Recent work extended these considerations to critical
amplitudes and to exponents governing logarithmic corrections in certain marginal scenarios. Here these old
and new results are gathered and summarised. The involutory nature of transformations between the critical
parameters describing ideal and constrained systems are also discussed, paying particular attention to matters
relating to universality.
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1. Introduction

The study of thermodynamic systems subject to constraints has a long history. In 1966, Syozi and
Miyazima produced a diluted version of the Ising model and observed that annealed non-magnetic im-
purities affect the critical behaviour of the model [1]. In particular, the usual infinite critical peak in the
specific heat is replaced by a finite cusp. In 1967, Essam and Garelick quantified the nature of this change
as [2,3]

a
axy=———. 1.1)
l-a
Here, a represents the specific heat critical exponent for the ideal (non-diluted) system and ay is its
counterpart for the diluted system. If § and y similarly represent the magnetisation and susceptibility

exponents, Essam and Garelick further showed that these transform to [2} 3]

B Y
ﬁx— , YX_I—(X' (1.2)
In 1968, Fisher produced a general theory for critical systems under constraint and the general process
linking the ideal critical exponents to those for the constrained system became known as Fisher renor-
malisation [4]. Because of their continued academic importance and relevance to real systems, phase
transitions in constrained systems remained a focus of study [5H9]. In recent years the transformation
has been extended to deal with other aspects of critical phenomena [10} [11].

Due to their experimental accessibility, amplitude terms are important for the description of criti-
cal phenomena. Unsurprisingly, these also change when a constraint is imposed. Perhaps surprisingly,
however, the precise nature of this transformation has only recently been studied [11]]. Furthermore, in
certain marginal circmstances, multiplicative logarithmic corrections also enter the scaling description
at continuous phase transitions. Examples include those at the upper critical dimension of spin systems
and those at the border to regimes where the transition becomes first-order. The exponents of such loga-
rithmic corrections also transform when the system is subjected to a constraint [11].
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To give a compact description of all these various aspects (leading critical exponents, logarithmic
corrections and amplitudes), we express the scaling behaviour of an ideal system as follows.

C(t,00 = A.lt|™%n|s|%, 1.3)
mt,00 = Bl for <o, (1.4)
x(t,0) = Tult| e, 1.5)
m©,h) = Dhs|In|e®, (1.6)
E6,0) = Nilt™|Injz)”. (%)

Here, ¢ and h refer to the reduced temperature and magnetic field, respectively. The correlation length
in the absence an external field is ¢(#,0). The subscripts + and — refer to amplitudes for ¢ > 0 and ¢ <0,
respectively. In principle, we could employ subscripts for the critical exponents and their logarithmic
counterparts corresponding to those used for the amplitudes, but we suppress these here for simplicity
and because the exponents generally coincide on either side of the transition. Note that equation for
the specific heat corresponds to an internal energy of the leading form

A )
e(t,0) = +—=|¢|*~%|1In|z]|%. (1.8)
l-a

Finally, and for completeness, we mention that the leading form for the critical correlation function is as
follows:

G(t:O,h:O;x):x—llnxlﬁ. (1.9)

In what follows, we give a comprehensive overview of the effects of the presence of a constraint on
the critical exponents (including those of the logarithmic corrections, when present) and the amplitudes.
The critical exponents are universal quantities while the amplitudes are not. However, certain combi-
nations of amplitudes are universal. We show that the renormalisation process (Fisher renormalisation)
which transforms the universal critical paramenters is involutary in the sense that applying it twice re-
sults in the identity transformation. However, quantities which are not universal do not transform as
involutions. We also show that the various scaling relations between the critical parameters (exponents
and amplitudes) also hold for the transformed quantities.

In the next section, we summarise the scaling relations for the leading exponents, their logarithmic
counterparts and the universal amplitude combinations. In section 3 we apply the renormalisation pro-
cess and study its effects in section[d] We conclude in section[5}

2. Scaling relations and universal amplitude combinations

The four standard scaling relations are (see, e.g., [12] and references therein)

a+dv = 2, 2.1)
a+2f+y = 2, (2.2)
6-1p = v, (2.3)
2-mv = v, (2.4)

where d represents the dimensionality of the system. The corresponding scaling relations for the loga-
rithmic-correction exponents are as follows:

a+dv = dv, (2.5)
a+7 = 2B, (2.6)
G-Dp+7 = &6, 2.7
@-mv+ = 7, 2.8)
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where & is augmented by unity in certain special circumstances described in [13]. The exponent ¢
(“koppa-hat”) characterises the leading logarithmic correction to the finite-size scaling of the correlation
length £7(0,0) ~ L(InL)?, where L is the finite extent of the system [14]. It is the logarithmic counterpart
of the exponent ¢, recently introduced to characterise the finite-size correlation length above the upper
critical dimension: &7(0,0) ~ L® [14]. The relations — for the leading exponents are derived in the
Appendix, where it is also shown that they correspond to the following universal ratios [15]:

Re = A.NY, 2.9)
ATy

R = ==, (2.10)

R B riB(s—l

v = T @2.11)
ON"

Q = £, 2.12)
I,

For the derivation of the logarithmic scaling relations —, the reader is referred to [13]

In the next section, we examine the effects of constraints on the critical exponents and amplitudes. It
will turn out that the renormalised critical exponents obey the same set of scaling relations as their orig-
inal counterparts and that, when applied to universal quantities, Fisher renormalisation is involutory.

3. Fisher renormalisation

We consider a thermodynamic variable x conjugate to a field u, so that
Ofx(t, h,u)
ou

Here, fx(t, h, u) represents the free energy of the system under constraint and u represents a quantity
such as the chemical potential with x representing the density of annealed non-magnetic impurities. The
constraint is then expressed in terms of an analytic function as follows:

x(t,h,u) = (3.1)

x(t,h,u) =X(t,h,u). 3.2)

One may further assume that the singular part of the free energy of the constrained system is structured
analogously to its ideal counterpart f, so that

fX(tyh)u):f[t*(t’h)u)yh*(trh)u)]) (33)

up to a regular background term and in which ¢* and h* are analytic functions [4]. The ideal free energy
f(t, h) is recovered if u is fixed at u = 0.
We assume that
h*(t,h,u)=h ¢ (t,h,u), (3.4

ah t,(),u ah Z’,O,u

’ ’ 3.5
ot ou 3:5)
and oh* (¢, h, u) 3.9, h, )
* t! ’ u ’ ) u
— =gt hu)+ h————, 3.6
on LW oh 5.6
so that N (4.0, 1)
*(t,0,u
_ 6}’1 :j(t)oy u) (37)
For simplicity, we also assume & — —h symmetry so that ¢* is a function of /2. In that case,
ot*(t, h,

which vanishes at &z =0.
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3.1. The critical point

To identify the critical point of the constrained system, one first writes the magnetization from equa-
tion as follows:

Ofx(t,h,u ot* oh*(t,0,u
UxWI W _ e )00 L e, 2000
oh oh oh
From equation (3.8), if the dependency on £ is even, the first term on the right hand side of equation

vanishes at i = 0. From equation (3.6), then

mx(t,h,u) = (3.9

myx(t,0,u) = m[t*(£,0,u),0]_£(t,0,u). (3.10)

Now, the critical point of the ideal system is given by the vanishing of m. Assuming that _#(z,0, u) is non-
vanishing, equation (3.10) gives that mx(t,0, u) vanishes only when m[#*(t,0, u),0] = 0. This means that
critical point for the constrained system is given by

t*(t,0,u) =0. (3.11)

(The vanishing of _#(t,0, u) would lead to two critical points instead of one for the constrained system.)
The Taylor expansion for the function _#(t, h, u) about the critical point is as follows:

Fthu)=Jo+bit+---+cth+---+c(u—u)+..., (3.12)
where u. is the critical value of u for the constrained system. The critical point, therefore, has

j(oyoy uC) :]0'

3.2. The relation between ¢t* and ¢

The constraint determines the relation between ¢* and ¢. Equation (3.1) firstly gives

Of(1*,h*) 01" 3fx(t*, ") Oh”

x(t,h,u) = 3.13
( ) ot* ou oh* ou ( )
At h =0, the second term on the right vanishes after equation (3.5). Therefore,
. L 0t*(1,0,u)
x(t,0,u)=e(t”,0) ———. (3.14)
ou
This will give a non-trivial relationship between t* and ¢. Expanding ¢*(¢,0, u), one has
t'(,0,uw) =ar(u—ue) +..., (3.15)
where 1. and the coefficients of the expansion are non-universal. Therefore,
x(t,0,u) = aje(t*,0) +..., (3.16)
which, from equation (1.8), is as follows:
Ai 1 1—a * 1A
x(t,O,u)zJ_rall | £7| [In|e™||%+.... 3.17)
-«
On the other hand, Taylor expansion of the constraining function gives
X(,0,u) = X(0,0,u)+di(u—u)+dot+... (3.18)
dl *
= X(0,0,uc)+—t" +dot+..., (3.19)
a
from (3.15). Comparison with equation (3.16) leads to the vanishing of X(0,0, u.) and
A )
+a— | I ) = 2 dot (3.20)
l-a ay
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If a <0, t* ~ t and the renormalisation is trivial. In the case where a > 0, however, ¢ renormalises to ¢*
in a non-trivial manner. To describe this, define

1
1-a

d(1-a)
a)

(3.21)

Then, the central result is that the constraint renormalises the reduced temperature from ¢ to t*, whereby

'] = a(—'t' ) |In|r)|" T (3.22)
- Ai . .
3.3. Scaling for the constrained system

Equations (3.3), and (3.22) deliver the leading internal energy and specific heat for the con-
strained system as follows:

8 fx(t,0,u) at*(t,0,u) R S _a
£,0,u) = ———"— =e(t*,0 =+ Al9|t|7a|In|t]|| e, 3.23
ex(,0,u) 3 e(t”,0)—- 1z lt|=a | In]z]] (3.23)
and )
dex(t,0,u ac% L 4 _a
Cx(t,0,u) = x( ) AL®|t|7a|In| ]| T-a, (3.24)

it (-a?
respectively. We identify the latter as follows:

Cx(t,0) = Ax|t|"®X|In|£]|9% (3.25)

where ~
a N a
ay=——— ax=———

1
— Axs=a""Tox 1-ax)? A1, (3.26)
f— a -

l1-a’
The last relationship is non-universal since, besides A+, a is a non-universal constant.

The magnetization for the constrained system is given by equations (1.4), (3.10) and (3.12) as
mx(t,0,u) = JoB|t*|PIn|#*||P for ¢ < 0. In terms of ¢, we write

mx(t,0) = Bx|t|PX[In|e]|Px  for £ <0, (3.27)
and identify
B .. pa 5 B
_ , _4_  By=JjoaP2 3.28
Px=1—_ Px=b-7—, x =Joa P (3.28)

Differentiating equation with respect to h, delivers the susceptibility for the constrained sys-
tem and, using equation at h = 0, together with equations and (3.7), we obtain yx(,0,u) =
Jox(t*,0) =Tx .| el 7YX In|¢*||7X, or

xx(,0) = T | 217X In 2] 7X, (3.29)

where

Y SN £ 2~y AYX
= =f+——, Txs=J2a YA'T,. 3.30
Yx —a Yx =Y —a x+=Jg i s (3.30)
If 6 > 1, the critical isotherm # = 0 has the leading magnetization in the field given by equations (3.6),

and (3.9) as mx(0, b, u) = JoDh# [In h|°. We identify
mx (0, h) = Dy h?X|In h|x, (3.31)

with )
6x=06, bx=8, Dx=J,"D. (3.32)

The critical exponents are, therefore, unchanged but the amplitude undergoes a transformation.

33602-5



N. Izmailian, R. Kenna

The correlation length renormalises in a similar way to the susceptibility since
Ex(8) = (") = Nel£*| VI In 717

We write
Ex(1,0) = Nxo [t [In |t 7", (3.33)

where

v . va
= Vx=V+
1-a’ 1-a’

Finally, the correlation function is obtainable by differentiating the free energy with respect to two
local fields i1 = h(x7) and hy = h(xy). One obtains

vy Nx:=a "A*N,. (3.34)

azfX(tyh) u) — Zazf(t*)h*)
0h10h;, O onion;

Gx(t,h,u;x) = = J5G(t*, h*, x).

Setting t* = r = h* = h =0, delivers Gx(0,0, u; x) = J>G(0,0, x). Writing

Ox -
= — nx
Gx(0,0,x) a2 [Inx|"X, (3.35)
we identify
nx=n, fAx=0, ©Ox=J;6. (3.36)

We have observed that neither the in-field magnetisation nor the correlation function exhibit non-
trivial renormalisation of the critical exponents. The former is the case by construction and the latter is
so because it is defined at the critical point. Likewise, the exponents ¢ and ¢ governing finite-size scaling
of the correlaton length do not change under Fisher renormalisation, so that 9x = ¢ and 9, = 9.

4. Properties of renormalised scaling parameters

It is straightforward to verify that if the critical exponents for the ideal system satisfy the scaling re-
lations (2.T)-(2.4), the renormalised exponents for the constrained system do likewise. (This observation
for the Essam-Fisher relation was already made in [2].) The same statement applies to the scaling
relations for logarithmic corrections (2.5)-(2.8).

Fisher renormalisation applied to the universal critical exponents is involutory. This means that
renormalisation of renormalised exponents delivers pure values. For example, yxx = yx/(1—ax) =y
and Yxx =Yx +Yxa&x/(1 - ax) =7. However, the same starement does not apply to the amplitudes. For
example, two successive applications of equation give I'x x .. different from I'; .

Of course, the critical exponents, for which the transformation is involutory, are universal, whereas
the critical amplitudes are not. This observation prompts one to investigate the nature of the universal
combinations (2.9)-(2.12) under Fisher renormalisation. The non-universal terms Jy and a, which char-
acterise the transformations of the individual amplitude terms, drop out of the transformations of the
universal combinations through the scaling relations (2.1)-(2.4). The universal amplitude combinations
transform as follows:

1

Rx. = ch, (4.1)

Rxy, = Ry, 4.2)
1

Rx: = (1—a)3R‘f’ 4.3)

Qx = Q, (4.4)
Z

Zx = AT (4.5)
UOX

Two successive applications of these transformations confirm the involutory nature of these universal
combinations.
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5. Conclusions

Fisher renormalization, which generalises an earlier theory of Essam and Garelick is a staple of the
established theory of critical phenomena. The early work by these authors was extended in recent years
to encompass critical amplitudes and the exponents which govern logarithmic corrections to scaling,
when present. Here, a comprehensive treatment of all of these various elements has been given. We also
observe that the involutory nature of the renormalisation process is intrinsically linked to universality.
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A. Appendix: Universal amplitude Combinations

To identify the universal amplitude combinations, we begin with the standard scaling form for the
free energy and correlation length [12} [15]

fi,h)y = b Y(Kb't,Kpb'"h), (A1)
&h) = DXt Kyb'"h). (A.2)

The scaling functions Y and X are universal and all the non-universality is contained in the metric factors
K; and Kj,.
Differentiating equation with respect to & delivers the scaling form for the magnetization as
follows:
m(t, h) = b~ g, Y (Kb £, Kb by, (A.3)

where the parenthesized superscript signifies appropriate differentiaton of the scaling function. Setting
h =0 and chosing

_1 1
b=K, " |t| 7 (A4)
gives the spontaneous magnetization m(¢,0) = B(— t)ﬁ, for ¢t <0, in which
d—
=" ana B=kPKY™(1,0). (A.5)
Y

On the other hand, setting ¢ = 0 in equation and choosing

L
b=K, R (A.6)
we obtain (0, h) = Dh'? in which
1 d- 1
=2 and D=k, Y, A7)
6

The susceptibility is obtained by differentiating equation with respect to k. Again setting i =0 and
using equation (A.4), one finds y(#,0) =T'x|¢|”", where
_2yp—d
Vi

For the specific heat, differentiate twice with respect to ¢ and again use equation (A.4) to find
C(t,0) = AL|t]™* with

and T.=K, K;Y"(+1,0). (A.8)

d
a=2-— and A.=K>Y"(+1,0). (A.9)
Vi
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From equations and (A.7), we can express y; and yj, in terms of § and §,

d 1 daé

_a 4 y, =22 A10
Vi Bo+1 and  yp (A.10)

S+1°

Similarly, using equations and we can express K; and K}, in terms of B and D,

18

D ] TB1+5
YW(o,1)

0
D 5+1
] (A11)

Y (0,1)

e [ ]5 .
= an =
"7 YW, o) h

Here, the Y™ are universal while the amplitudes B and D are not.
Finally, expressing « and y in terms of § and § through equations and (A.9), delivers the static
scaling relations and (2.3). Correspondingly, one can express A; and I'y in terms of B and D,

ym (11,0
r, = 1,0 B19po, (A.12)

[Y(h)(l,O)]% [y(h) (0’1)]5

B5+l
As

() )
[Y(’”(l,O)] (H)[Y(h)(o,l)] Y (11,0) (A.13)

Dé
From the first of these, I“J_,B‘s‘l/ D? is a universal combination of universal factors. This is Ry in equa-
tion (2.11). From the second, the ratio A+ D%/B%+*1 is universal. Or, combining with equation <i the
quantity R in equation (2.10) is seen to be universal.

From equations and (A.4), the correlation length is £(#,0) = N.|#|™", where

1 _1
v=— and N;=K, " X(+1,0). (A.14)
Yt

From equation (A.9), the first of these is the hyperscaling relation (2.1). To connect Ny to the other ampli-
tudes, one can exploit the relatonship between the susceptibility and the correlation function,

¢
)(sz(x)xd_ldxz(sz_", (A.15)
0

from which Fisher’s scaling relation follows, along with
r,=0nN>". (A.16)

The combination Q = @Nf"/ I'. of equation li is, therefore, universal. Similarly, the universality of
Rg in equation dcan be explained through the hyperscaling relation f(#,0) = A.|[>~%/2—a)(1-a) ~
§4(t,0) = (N=|2]7%)“.
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KpuTnuHi asBuLa ana cuctem 3 B'a3samm

H. IBMainﬂl-m, P. KeHHJ?

L E€peBaHCbKNA Gi3nYHMIA iHCTUTYT, M. EpeBaH, BipmeHis
2 LleHTp NpMKnagHUX MaTeMaTUYHUX AOCAIAKEeHb, YHiBepcuTeT M. KoBeHTpI, M. KoBeHTpi, AHris

Jobpe BifOMO, L0 HakNajaHHA B'A3e MOXe 3MIHUTW KPUTUYHI BAACTMBOCTI cmctemu. PaHHi pobotu Eccima i
Fapenika, ®iwepa Ta iH., TPUCBSAYEHi LibOMY ABULLY, 30CepeKyBannCs Ha BNANBI B'A3ei Ha roNI0BHI KPUTUYHI
MOKasHUKK, SKi onncytoTe $pas3osi nepexoaun. HepasHa poboTa posLMpuna Ui AOCAIKEHHS Ha BUMAAOK Kpu-
TUYHUX amMAiTy/ | NOKa3HUKIB ANs norapuemiyHMX NonpaBokK AnA AesKUX MeXOBMX CLeHapiiB. TyT ui cTapi
i HOBi pe3ynbTaTy 3ibpaHo i NigcymMoBaHO. TakoX OBroBOPIOETHCSA IHBONIOTVBHA NPUPOAA NepeTBOPeHb MidxK
KPUTUYHUMIN NapameTpamu, ki ONUCYIOTh ifeanbHy CUCTeMy i cucTemy 3 B'a3samu, Npy LIbOMY 0C06/1Ba yBara
NPUAINAETLCA NUTAHHAM, MOB'A3aHNM 3 YHiBEpPCabHICTIO.

KnrouoBi cnoBa: kputuyHi ABuLya, peHopManisayis ®iwepa, yHiBepcaabHiICTb
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