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Abstract

This dissertation reported an experimental answer to the long-standing question of how

three-dimensionality appears in wall-bounded magnetohydrodynamic flows and presented

also an experimental study on the transition to turbulence in a confined, mostly quasi

two-dimensional flow. Accordingly, it was shown the analysis of a vortex array with

susceptibility to three-dimensionality, enclosed in a cubic container and a mostly, quasi

two-dimensional vortex pair confined by the walls of a shallow, cylindrical container.

Both containers were hermetically filled by a liquid metal fluid and subject to a constant,

homogeneous magnetic field. The flow forcing was made by injecting constant electric

current from one wall that intersects magnetic field lines (Hartmann wall). Flow charac-

teristics and the presence of three-dimensionality were monitored by measuring electric

potentials on either Hartmann walls that confined the liquid metal.

A form of three-dimensionality termed as weak appeared through differential rotation

along the axis of individual vortices, while a strong form manifested itself in vortices

that do not extend from one to the other Hartmann wall. In the cubic container, this

resulted into an array of novel, spectacular flow structures that were both steady and

strongly three-dimensional, and, yielded to a frequency-selective breakdown of quasi two-

dimensionality in chaotic and turbulent flow regimes.

The mostly quasi two-dimensional flow in the shallow, cylindrical container was shown

to undergo a sequence of supercritical bifurcations to turbulence triggered by boundary

layer separations from the circular wall. For very high forcing, the flow reached a tur-

bulent regime where the dissipation increased drastically. This was related to a possible

transition from a laminar to a turbulent Hartmann layer.

II



Acknowledgments

I’m grateful to my research supervisor Dr. Alban Pothérat for the excellent guidance and
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General introduction

When a strong magnetic field is applied to an electrically conducting fluid, inertia in-

duced variations of physical quantities are damped along it by the Lorentz force so that

the flow tends to two-dimensionality ([64]). In such magnetohydrodynamic (MHD) flows

the fluid moves only in the plane orthogonal to the magnetic field, except in thin Hart-

mann boundary layers. Those shape along walls that are transverse to the magnetic

field lines (Hartmann walls) and confine the fluid, thus letting the flow assume a quasi

two-dimensional state. The ”two-dimensionalisation” effect in MHD problems and its

consequences on wall-bounded MHD flows as well as the question how and when these

flows are affected by inertia induced three-dimensionality is of primary importance in a

great varity of fundamental and practical applications:

Fundamentally, this is relevant to other flows with tendency to two-dimensionality, such

as rotating or stratisfied flows like they appear in rather large scales in geophysics and

astrophysics. Tornados for example, are such large scale, almost column-like air rotations

in the atmosphere. Although very devastating, they are spectacluar and interesting flow

structures too. Their appearence triggered by stratifying of cold and dry air above warm

and moist air is a complex process where the propagation of inertial waves along the

tornado’s rotation favours two-dimensionality.

In practical situations like in coolant blankets (or heat exchangers) of fusion reactors

the above fundamental physics of MHD bears critical consequences too. The coolant,

typically liquid lithium, is used to evacuate the heat generated by the nuclear fusion.

A strong, toroidal magnetic field used to confine the electrically conducting deuterium-

tritium plasma also penetrates the blankets so that the coolant flow intrinsically tends to

two-dimensionality. However, to enhance the heat transport and therefore the efficiency

of the energy production process, three-dimensional flows in the coolant are preferable to

two-dimensional ones so that substantial knowledge about these flows is required when

designing effective coolant channels.

Fundamental MHD effects are also important in industrial processes like contineous steel

casting where they help to improve the qualtity of the final good (steel slabs). The steel

solidification starts in so-called moulds where the application of strong magnetic fields is

essential to damp and control the flow of hot, liquid steel precisily. By contrast, at the

process level where steel slabs are solidified from outside, but still liquid inside, magnetic

fields are used to stirr the remaining liquid steel and to favour its homogeneous mixing

before its solidification.

Studying fundamental MHD effects in flows at the laboratory scale therefore helps both

to understand natural large scale phenomena like tornados and to improve MHD appli-

1



cations in practical situations. In such laboratory scale configurations is the feedback

reaction of the flow onto the imposed magnetic field neglected so that the related non-

dimensional magnetic Reynolds number Rm is smaller than unity (Sec. 1.1). In the frame

of this dissertation we designed and performed two important MHD experiments at the

fundamental level to address the above key issuses. To be more precisly, we study the

transition to turbulence induced by boundary layer separation in quasi two-dimensional

flows in a small scale experiment, and, point out the mechanismus that govern the ap-

pearence of three-dimensionality in wall-bounded MHD flows in both steady and unsteady

flow regimes in a large scale experiment. It should however be stressed that the small

scale experiment has not been designed to discover interesting physical effects a priori,

but to test the elements of the bigger experiment.

To this day, the mechanisms that favour two-dimensionality in MHD flows are fairly

well understood. Most studies of the breakdown of two-dimensionality however have

focused either on strictly two-dimensional vortices [74, 71], or on single vortices or vor-

tex pairs [65, 28]. The mechanisms that ignite three-dimensionality in more complex,

wall-bounded flows, where boundary layers that develop along the walls preclude strict

two-dimensionality, pose an open question. To answer this question we perform the large

scale experiment on the appearance of three-dimensionality. The related initial objectives

and the work plan of this dissertation have been scheduled accordingly:

• Design and test of an purpose-built experiment to study the appearence of three-

dimensionality in MHD flows in the presence of walls

A MHD experiment in the spirit of [62]’s experiment on quasi two-dimensional

turbulence is to design and to built from scratch using sophistacted manufacturing

techniques. The flow forcing is to arrange by injecting DC electric current into

liquid metal, trough a square array of electrodes embedded in one Hartmann wall

[62]. Electric potential is to measure locally on two identical sets of electric po-

tential probes positioned on either Hartmann walls that confine the liquid metal.

Major components of the experimental set-up have to be tested carefully in pre-

experiments, to obtain a high precision flow measurement and flow forcing system

and to select appropriate materials. Furthermore, the experiment should be made

of modular elements, firstly to reduce development costs and time and secondly, to

put experimenter in the position to modify it easily.

• Performance of laboratory experiments

Flows in steady and unsteady regimes are to be generated by varying the inten-

sity and the geometry of the flow forcing as well as the strength of the imposed

2



magnetic field. Related flow states are to monitor by recording time-series of elec-

tric potentials measuered at either Hartmann walls.

• Signal processing

Quasi two-dimensional and three-dimensional flow states are to identify in steady

and unsteady flow regimes by comparing sets of electric potentials obtained at op-

posite Hartmann walls. When and under which form three-dimensionality appears

in related flows is to determine, and to quantify in the space of non-dimenional

parameters by calculating correlations between pairs of recorded electric potentials

obtained along the same magnetic field line.

The design of this large scale experiment was purposely choosen such that it follows

that of [62] in which a quasi two-dimensional flow was produced by applying a constant

homogeneous magnetic field across a square, shallow container made of electrically in-

sulating walls and filled with liquid metal. Unlike [62]’s earlier experiment though, our

liquid metal container is made not shallow, but cubic to favour the appearance of iner-

tia induced three-dimensionality. In other words it means firstly that, when imposing

strong magnetic fields, it is possible to reproduce some elementary properties of the quasi

two-dimensional flow that [62] observed in his shallow experiment. And secondly, when

imposed magnetic fields are moderate, it allow us to examine the actual limit of quasi

two-dimensionality when three-dimensional inertial effects become more important.

The dissertation is organised in four chapters and corresponding subsequent sections.

In the first part of Chapter 1 we recall the basics of MHD equations and important MHD

results like the effect of the Lorentz force or the properties of the Hartmann layer. The

second part of this chapter is devoted to fundamentals of hydrodynamic (non-MHD) and

MHD turbulence to review some of their major characteristics. The principle of the flow

forcing and the electric potential measurements is presented in Chapter 2. In this chaper

we describe too the contruction elements and the design of our small and large scale ex-

periment. It should however be stressed that this part of the dissertation, though most

time consuming, is descriped rather briefly, in favour of the presentation of our novel

experimental findings discussed in chapter 3 and chapter 4, also published in [28] and

[29] respectively. We conclude the manuscript by reviewing and summarising the main

objectives and results of this dissertation.

Lastly we would like to mention some financial aspects related to the development of

both experiments. Experimental costs often increase with experimental precision and re-

liablity, but are of course limited by a certain financial budget. In order not to exceed the

budget limit, but still to obtain excellent experimental data, it was in some cases necessary

3



to perform intensive negotiations with companies that supplied us with equipment like

the high-precision amplifier system (Sec. 2.2.1). This last remark may not be of scientific

interest, though important in our opinion as it gives small inside in the complexity of

work that we faced when building our experiments.
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1. Introduction

1.1. Basic equations

This section is dedicated to the basics of Magnetohydrodynamics (MHD) and provides

the reader with the fundamental equations, characteristic time scales and dimensionless

groups. MHD combines both the field of electrodynamics and the field of fluid mechan-

ics in the sense that the Maxwell’s equations that govern electromagnetic quantities are

applied to a moving liquid conductor with electric conductivity σ.

1.1.1. Equations of electromagnetism

Electric conductors used in our experiments are liquid metals with electric conductivity

σ of the order of 106 S/m. Values of σ of this order imply that displacement currents are

negligible which simplifies the classical Maxwell’s equations. Those are:

Gauss’ law: Free and bound charges in the space generate the electric field E.

∇ · E =
ρe
ǫ0
. (1.1)

where ρe is the electric charge density and ǫ0 permittivity of free space.

Gauss’ law for magnetism: Magnetic fields B are solenoidal and magnetic monopoles

do not exist.

∇ ·B = 0. (1.2)

The Faraday ’s law of induction: The electric field E is generated in a conductor either

due to a time varying magnetic field B(t) or due to the conductor’s motion across the

field B.

∇× E = −∂B

∂t
. (1.3)
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The Ampére’s law: The magnetic field B is induced when the electric current with current

density J flows within the conductor.

∇×B = µ0J. (1.4)

where µ0 = 4π · 10−7V s/(Am) is a constant and denotes the permeability of free space.

In addition to the Maxwell equations there are the following important equations:

Charge or electric current conservation: This relation is found when applying ∇ · () to

either side of (1.4) and balances the flux of current density which goes into and out of a

conductor element.

∇ · J = 0. (1.5)

Ohm’s law: The electric current density in the conductor results from the electric field

E = −∇Φ and the motion of the conductor inside the magnetic field B (∇Φ is the gradient

of the electric potential φ).

J = σ(−∇Φ + u×B). (1.6)

where σ is the electric conductivity.

The Lorentz F force: This force acts on the conductor when it is subject to the magnetic

field B and the electric current density J flows inside.

F = J×B. (1.7)

In liquid metal MHD, the Lorentz force is the most important force acting on electric

charges as the electrostatic force or Coulomb force which is related to the electric field E

is negligible (see e.g. [12]).

When taking the curl of Ohm’s law (1.6) and combining it with Ampére’s law (1.4)

and Faraday ’s law (1.3) it yields to the advection-diffusion or induction equation for the

magnetic field B. This equation expresses the relation between the velocity u of the

moving electric conductor and B as follows:

∂B

∂t
= ∇× (u×B) + λ∇2B. (1.8)
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λ = (µ0σ)
−1 is the magnetic diffusivity. When using dimensional analysis one finds that

the first and the second term of (1.8) are of order of BUL−1 = Bτ−1
a and BλL−2 =

Bτ−1
d respectively. τa and τd are characteristic time scales for the effect of magnetic field

advection and diffusion respectively for a conductor that moves with a typical velocity U

over a typical distance L. Whether the effect of magnetic field diffusion or advection is

dominant can be estimated by the ratio τa/τd which is known as the magnetic Reynold ’s

number:

Rm = µ0σUL. (1.9)

Rm can be also obtained when writing (1.8) in dimensionless form using the scalings

u∗ = uU−1, ∇∗ = ∇L, t∗ = t(U/L) and B∗ = BB−1. It yields:

∂B∗

∂t∗
= ∇∗ × (u∗ ×B∗) +

1

Rm
∇∗2B∗. (1.10)

The significance of Rm becomes even more apparent when considering the induced mag-

netic field bi that Ampére’s law (1.4) relates to the current density J (note that we use

here the specific notation bi instead of the rather general notation B as in (1.4)):

∇× bi = µ0J. (1.11)

Assuming that J was induced inside a moving electric conductor that crosses a constant,

externally imposed magnetic field B0 it is of the order of ⋍ σUB0 (1.6). Using this and

applying dimensional analysis to (1.11) it yields:

bi
L

⋍ µ0σUB0 → bi
B0

⋍ µ0σUL = Rm. (1.12)

where bi is a typical value of the induced field bi. The above relations show that Rm may

also be interpreted as the ratio between the strength of the induced magnetic field bi and

the externally imposed, constant magnetic field B0.

In liquid metal MHD one usually studies problems where Rm << 1 which implies that

B0 >> bi. Using the vector identity ∇×(u×B) = (B·∇)u−(u·∇)B and B = B0+bi for

the total magnetic field that penetrates the electric conductor (1.10) can be approximated

by:

∂b∗
i

∂t∗
= (B∗

0 · ∇∗)u∗ +
1

Rm
∇∗2b∗

i . (1.13)

This indicates that in the limit of Rm << 1, the induced field bi diffuses inside the

conductor almost instantaneously which justifies the assumption ∂tbi ⋍ 0, referred to as
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[56]’s quasi-static approximation. Thus, we have:

(B∗
0 · ∇∗)u∗ = − 1

Rm
∇∗2b∗

i . (1.14)

The magnetic Reynold ’s number can also have values Rm > 1 in liquid metal MHD. Given

that the permeability µ0 is of order ∽ 10−6N/A−2 and the conductivity σ for a typical

liquid metal is of order ∽ 106(Ωm)−1 , Rm > 1 when UL > 1m2/s. In this context, the

authors of ([58]) demonstrate a nice experimental work on a rapidly rotating spherical

Couette flow where several types of magneto-inertial waves have been identified.

1.1.2. Equations of low-Rm MHD

In our study we are interested in liquid metal flows with velocity field u that satisfy the

incompressibility condition. This yields to the equation for mass conservation:

∇ · u = 0. (1.15)

The motion of a fluid element that progresses through a fluid with density ρ and viscosity

ν is described by the Navier-Stokes equation. When studying MHD problems, the Lorentz

force J×B affects its motion and has to be included in this equation as follows:

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p + ν∇2u +

1

ρ
J×B+

1

ρ
G. (1.16)

where ∇p is the pressure gradient and G is some externally imposed force which drives

the flow. Using dimensional analysis one finds that the first two terms on the right hand

side of (1.16) are of order of U2L−1 = Uτ−1
U , the third term of order of UνL−2 = Uτ−1

ν and

the Lorentz force term of order of UσB2ρ−1 = Uτ−1
j (note that U and L is a typical veloc-

ity and distance respectively and recall that J is of the order of ⋍ σUB according to (1.6)).

The characteristic time τU relates to the effect of inertia that causes the advection of a per-

turbation u′ through an initial steady velocity field U0 within the flow field u = U0 +u′.

On the other hand, by the effect of viscosity, u′ diffuses into the flow field in the time τν .

The relative importance of the two effects is measured by the Reynold ’s number Re that

is found, when taking the ratio τν/τU :

Re =
UL

ν
. (1.17)
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The Lorentz force operates at the joule time τj while competing with inertial forces that

acts at the times scale τU . The ratio τU/τj brings us to another important parameter in

MHD that is referred to as the Stuart number or Interaction parameter N which expresses

as:

N =
σB2L

ρU
. (1.18)

Finally, the ratio τν/τj measures the relative strength of Lorentz to viscous forces as

follows:

Ha2 =
L2B2σ

νρ
= Re N. (1.19)

where Ha is the Hartmann number. Both forces are of the same order of magnitude when

Ha2 ∽ 1. This provides a length scale δ, which is commonly known as a measure of the

Hartmann layer size in liquid metal MHD:

δ =
1

B

√

νρ

σ
=

L

Ha
. (1.20)

Replacing dimensional quantities in (1.16) by their dimensionless counterparts which are

u∗ = uU−1, ∇∗ = ∇L, t∗ = t(U/L), B∗ = BB−1, p∗ = p(ρU2)−1, J∗ = J(σUB)−1, the

Reynolds number Re and the interaction parameter N are recovered in the dimensionless

form of (1.16) as follows:

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇p∗ +

1

Re
∇∗2u∗ + N(J∗ ×B∗). (1.21)

Combining the vector identity ∇(B2/2) = (B ·∇)B+B×∇×B with Ampére’s law (1.4)

splits the Lorentz force in (1.16) into a irrotational and a rotational part as follows:

J×B = (B · ∇)(B/µ0)−∇(B2/2µ0) (1.22)

The irrotational part (second term on the right) can be interpreted as a magnetic pressure.

It adds to the pressure p in (1.16) such that p′ = p + B2/2µ0. In the limit of magnetic

Reynolds number Rm<< 1 and assuming that G = 0 this yields into a further important

representation of the motion equation (1.16):

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p′ + ν∇2u +

1

µ0ρ
(B0 · ∇)bi. (1.23)
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recalling that B0 and bi is the externally imposed and induced magnetic field respectively.

The energy equation in MHD is obtained when taking the scalar product of (1.16) with

u. Given that magnetic energy related to the induced magnetic field bi is negligible when

Rm << 1, it reads:

∂

∂t

(

u2

2

)

= −1

ρ
∇ · (pu)−∇ · [(1

2
u2)u] +∇ · (ΦJ)− 1

ρ

J2

σ
− ν∇u · ∇u. (1.24)

When integrating the above equation over the volume V the first and second term relate

to the rate of transport of energy across the surface that bounds the volume (see [13] for

more details). Both terms vanish if the volume is confined by walls were the velocity is

zero. Likewise disappears the volume integral of ρ∇ · (ΦJ) for electric insulating walls.

This implies for the fall of the global mechanical energy in MHD, E:

dE

dt
=

d

dt

∫

V

ρu2

2
dV = −DJ − ǫ. (1.25)

where DJ =
∫

V
J2

σ
dV and ǫ = 2ρν

∫

V
SijSij dV relate to Joule dissipation and viscous

dissipation respectively.
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1.2. Some important results of liquid metal MHD

In this section we present fundamental findings in liquid metal magnetohydrodynamics

(MHD) which are important to this work. We first explain the effect of the Lorentz

force and then describe more specific MHD problems such as the Hartmann layer or the

”two-dimensional” SM82-model.

1.2.1. Effect of the Lorentz force

The effect of the Lorentz force plays a leading role in liquid metal MHD. It operates over

the joule time τj = ρ(σB2)−1 and affects a fluid flow in damping velocity variations along

the lines of an imposed magnetic field B. This may be clarified in the following where it

is assumed that that viscous and inertial effects are negligible:

N >> 1 and Re >> 1 (1.26)

Fig. 1.1 illustrates schematically two adjacent fluid layers, that move one above each other

with velocity difference δu along the field B and don not feel the effect of walls. In each

B

u+ u

u

a)
F

B

J

F

b)

B
u

u

c)

Figure 1.1.: Effect of the Lorentz force: planar flow a) t = 0, b) t < τj, c) t > τj

layer, the fluid motion induces an electromotive field u ×B proportional to the velocity

(Fig. 1.1a). Accordingly, an horizontal electric potential gradient ∇Φ establishes opposing

u×B. To compensate the variation of ∇Φ along B, an electric current loop J = σu×B

develops and causes the Lorentz forces F = J×B. As illustrated in Fig. 1.1b the Lorentz

force acts either against or in flow direction smoothing out velocity variations δu along

the magnetic field B (Fig. 1.1c).

More complicate flow structures like vortices are affected by the Lorentz force likewise.

Velocity variations along B cause poloidal eddy currents densities J as schematically

shown in Fig. 1.2a for one vortex that spins with the velocity u = (0, Ueθ, 0). Assuming

J is invariant along eθ and electric current loops exists only in the r-z plane, current

conservation (1.5) implies that J can be expressed by means of a scalar stream function

Ψi satisfying a Poisson equation (see [12]):

J = ∇Ψi × eθ, ∇× J = −(∇2Ψi)eθ. (1.27)
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Figure 1.2.: Effect of the Lorentz force on a vortex. a) t = 0, b) t < τj, c) t > τj

with J = (−∂Ψ/∂z, 0, ∂Ψ/∂r) and ∇2Ψ = ∂zJr − ∂rJz. Taking the curl of (1.6) yields to

Ohm’s law in the form:

∇× J = σ∇× (u×B) = σ(B · ∇)u = σBz
∂u

∂z
. (1.28)

This combines with (1.27) into:

−(∇2Ψi)eθ = σB0
∂u

∂z
. (1.29)

and therefore relates the electric current density J to the flow field u. Given thatB = B0ez

and using (1.27) yields for the Lorentz force:

F =
1

ρ
(∇Ψi × eθ)×B =

B0

ρ

∂Ψi

∂z
eθ. (1.30)

which implies that the Lorentz force acts in azimuthal direction. One way to demonstrate

its influence on the vortex evolution is to consider the vortex as a single Fourier mode in

the Fourier-space. This implies that each quantity u,Ψi and F may be expressed as:

u = û ejk·x , Ψi = Ψ̂i e
jk·x , F = F̂ ejk·x (1.31)

where k = (k⊥, 0, k‖) is the wave vector with the component perpendicular to the magnetic

field B, k⊥ and in the direction of B, k‖. Both k⊥ and k‖ are related to the corresponding

vortex length scales l‖ ⋍ 1/k‖ and l⊥ ⋍ 1/k⊥ respectively. Substituting u,Ψ, and F in

equations (1.29) and (1.30) by expressions (1.31) leads to:

−(k2⊥ + k2
‖)Ψ̂ = σB0k‖û and F̂ =

B0

ρ
k‖Ψ̂. (1.32)
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Combining both expressions in (1.32) yields for the rotational part of the Lorentz force

in Fourier-space:

F̂ = −σB2
0

ρ

k2
‖

k2
⊥ + k2

‖

û = − 1

τj
cos2θû, where θ = (k,B). (1.33)

The minus sign clearly shows that the Lorentz force damps the vortex. This damping

effect is felt by wave vectors k‖ as θ = 0 but leaves wave vectors k⊥ unaffected as θ = π/2.

For the physical space this implies that l‖ ⋍ 1/k‖ increases but l⊥ ⋍ 1/k⊥ remains con-

stant. In other words, the vortex elongates along B while its anisotropy increases.

[64] showed further that this phenomena could be interpreted as a pseudo-diffusion of

momentum along the magnetic field lines. Indeed, they showed that the rotational part

of the Lorentz force take the general form (for boundary conditions where the Laplacian

operator is invertible):

F = − 1

τj
∇−2

(

∂2u

∂z2

)

(1.34)

For an anisotropic vortex such that l‖ >> l⊥ the above relation can be approximated:

F ∽ − l2⊥
τj
∂z2u (1.35)

where −l⊥/τj is the corresponding diffusion coefficient. Under the sole action of the

Lorentz force F, the velocity field evolves as:

∂tu ∽ − l2⊥
τj
∂2
zzu. (1.36)

so the vortex elongates according to:

l‖ ∽ l⊥

√

t

τj
(1.37)

Over time scales τj < t < τU with τU = l⊥/U , this process is linear as dominated by the

Lorentz force and the length l⊥ can be assumed constant. However, toward the end of

this linear phase when t becomes of the order of τU , non-linear inertial effects are of the

same order like the Lorentz force. Following [64], this implies that the vortex has reached

its ”final” anisotropic state that satisfies:

l‖
l⊥

∽
k⊥
k‖

⋍ N1/2, with N =
σB2

0 l⊥
ρU

(1.38)
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[67, 68] identified, subsequent to the initially linear phase, a nonlinear phase where a

constant l⊥ is no further valid. Therefore, they define the ”true” interaction parameter

Nt which measures the current ratio F/(u · ∇)u. Assuming ∂z << ∂⊥ this yields to:

σB2
0 l⊥

ρU

(

l⊥
l‖

)2

∽ N

(

l⊥
l‖

)2

= Nt. (1.39)

The ”true” interaction parameter Nt is indeed the relevant parameter that describes the

appearance of three-dimensionality in our large scale experiments (Sec. 4.3). It is built

on a fixed length scale l‖ which corresponds to the distance L = 0.01m between the two

opposed Hartmann walls (4.3). This implies that vortices with length scales l⊥ and l‖ = L

are in a quasi two-dimensional state when the related Nt(l⊥, L) >> 1. The corresponding

time scale for the vortex ”two-dimensionalisation”, τ2D, can be obtained from (1.37) and

reads:

τ2D = τj
L2

l2⊥
=

τU
Nt(l⊥, L)

(1.40)

1.2.2. The Hartman layer

The Hartmann boundary layer is one of the most important elements in magnetohydro-

dynamics (MHD). Its existence along walls that are penetrated by a transverse magnetic

field B (Hartmann walls) has been predicted theoretically and characterised experimen-

tally by the pioneering works of [23] and [24] respectively. In this section, we derive the

main properties of the Hartmann layer and briefly discuss its stability.

Properties of the Hartmann layer

Consider the flow along an electrically insulating Hartmann wall of characteristic length

L and penetrated by the magnetic field B = B0ez (Fig. 1.3). Inside the Hartmann layer,

viscous and Lorentz forces are of the same order of magnitude which gives an estimate

for its size δ according to δ = B−1
0 (νρ/σ)1/2 (1.20 and note that the size of δ has been

experimentally verified by [38]).

Assuming that the flow is steady (∂tu = 0) and laminar, the three-dimensional velocity

field u within the Hartmann layer expresses as:

u(x, y, z) = uc(x, y) f(z). (1.41)
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Figure 1.3.: Schematic illustration of the Hartmann layer. It develops along walls that
are orthogonal to the magnetic field B (Hartmann walls).

where f(z) represents both the two-dimensional flow in the core (outside the Hartmann

layer) with the velocity field uc(x, y) and the velocity variations near the Hartmann wall

inside the Hartmann layer. The set of equations (1.15), (1.16), (1.5) and (1.6) describe

the flow. Assuming U c
⊥ and W as typical velocities at the edge of the Hartmann layer in

transverse and vertical direction respectively and using (1.15) one finds that:

W ⋍
U c
⊥

Ha
, with Ha = B0L

√

σ

ρν
(1.42)

The above relation shows that the vertical velocity component is negligible in the limit of

high Ha. When comparing orders of magnitudes of the z-components of the Navier-Stokes

equation (1.16) using the above relation it yields to:

∂p

∂z
= O

(

max|Ha−2,Re−1|
)

(1.43)

This implies that in the limit of high Ha= LB0

√

σ/(ρν) and Re= U c
⊥L/ν the pressure p

does not vary along the direction of the magnetic field B. Combining Ohm’s law (1.6)

with current conservation (1.5) yields to:

∇ · J = ∂2
zzΦ +∇2

⊥Φ +∇ · (u×B) = 0. (1.44)

where the subscript ()⊥ here and in the following relates to components in the horizontal

plane. The first term in the above relation is of the order of ⋍ Φδ−2 and the remaining

two terms are both of the same order of ⋍ Φ(δHa)−2. This implies that:

∂2
zzΦ = O

(

1

Ha2

)

(1.45)
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Integrating (1.45) across the Hartmann layer along ez yields:

∂zΦ|c − ∂zΦ|w = ∂zΦ = O
(

δ

Ha2

)

= O
(

1

Ha3

)

(1.46)

where ∂zΦ|c and ∂zΦ|w are the potential gradients at the edge of the Hartmann layer and

at the Hartmann wall respectively. Since the latter is insulating it requires that ∂zΦ|w = 0

and implies that the electric potential across the Hartmann layer ∂zΦ does not vary in

the limit of high Ha.

The flow in the Hartmann layer is described by the motion equation (1.16). Assuming

that N >> 1 inertial effects in (1.16) are negligible. Furthermore, because of relations

(1.42), (1.43) and (1.46) one needs to consider only the horizontal components of (1.16).

Using (1.6) and the fact that the Laplace operator ∇2 in the limit of L >> δ can be

approximated by ∂2
zz, the motion equation simplifies into (recall that ∂tu = 0):

ν∂2
zzu⊥ − σ

ρ
B2

0u⊥ =
1

ρ
∇⊥p+

σ

ρ
∇Φ×B− 1

ρ
G⊥(x, y). (1.47)

The external force G⊥(x, y) could for instance be an horizontally imposed pressure gradi-

ent that drives the flow. All quantities on the right hand side of (1.47) are constant along

ez and can be expressed by just one term D(x, y). This simplifies (1.47) into:

∂2
zzu⊥ − σ

ρν
B2

0u⊥ =
D(x, y)

ν
. (1.48)

Solving (1.48) and using the boundary conditions u⊥(z → ∞) = uc
⊥ and u⊥(z = 0) = 0

one finds that the velocity field u⊥ inside the Hartmann layer varies according to:

u⊥(x, y, z) = uc
⊥(x, y)

(

1− e−
z
δ

)

, with uc
⊥ = −D(x, y)

ρ

σB2
0

(1.49)

Substituting u⊥ by (1.49) in Ohm’s law gives the variation of the horizontal component

of the reduced electric current density inside the Hartmann layer, JHa
⊥ , as:

JHa
⊥ = Jc

⊥ − J⊥ = σuc
⊥ ×B

(

e−
z
δ

)

, with Jc
⊥ = −σ∇Φ + σuc

⊥ ×B. (1.50)

where Jc
⊥ denotes the current density outside the layer in the core flow. The term σuc

⊥×B

in the equation on the left of (1.50) can also be seen as the electric current density Jw
⊥

that is found at the wall were z = 0. When integrating (1.50) along ez between z = 0
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and z → ∞ it yields:

∞
∫

0

JHa
⊥ dz = uc

⊥ × ez(σρν)
−1/2. (1.51)

This reveals one important property of the Hartmann layer: it demonstrates that the

electric current per unit length inside the layer is proportional to the velocity field uc
⊥

just outside the layer as given by [61] (also e.g. [42]). In other words, there is no fluid

flow in the horizontal plane if no current flows inside the Hartmann layer.

Another important property of the Hartmann layer is found when combining (1.44) with

(1.49) and integrating along ez between the limits z = 0 and z = ∞. This yields for the

vertical component of the electric current density in the Hartmann layer, JHa
z :

JHa
z = J c

z − Jw
z = σ

L

Ha
ωc
zB0 + σ

∞
∫

0

(−∇2
⊥Φ + ωc

zB0)dz. (1.52)

where ωc
z = (∇ × uc

⊥)ez is the vorticity just outside the Hartman layer and J c
z and Jw

z

relate to the electric current density in the core of the flow and at the Hartmann wall

(z = 0) respectively (note that Jw
z 6= 0 when electric current is injected at the wall (see

e.g. [62, 63])). Electric current conservation implies that:

∇2
⊥Φ = 2ωc

zB0. (1.53)

and therefore:

JHa
z = σ

L

Ha
ωc
zB0. (1.54)

The above relation shows that JHa
z is directly related to the rotation ωc

z above the Hart-

mann layer. This rotation sets up the electric field ∇Φ that drives in the region z ≤ δ

an electric current radially inward toward the rotation centre which evolves into JHa
z as

required by current conservation. In other words, vorticity above the Hartmann layer

”sucks” electric current density out of the Hartmann layer.

Assuming that the flow just outside the Hartmann layer is two-dimensional one may

define uc
⊥ = ∇Ψ× ez. Taking its curl one find that the scalar stream function Ψ satisfies

a Poisson equation:

∇2
⊥Ψ = −ωc

z. (1.55)
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were ωc
z is the vertical component of the vorticity in the core. When Ψ and Φ satisfy the

same boundary condition, one may combine (1.53) with the above equation and it yields

to the important relation (see e.g. [30]):

Ψ = − Φ

B0

. (1.56)

This relation is of great importance in experimental MHD as it relates the local measured

electric potential to the corresponding value of the stream function.

Stability of the Hartmann layer

The state of the Hartmann layer, laminar or turbulent, is fundamental in many MHD

flows. If laminar it possesses the properties given in Sec. 1.2.2 and exerts a linear damping

on the flow (see Sec. 1.2.3). However, when the Hartmann layer destabilizes into a

turbulent state both the global electric current circulation and the global damping of the

flow are strongly affected. In other words, the flow may change completely in nature and

intensity. To this end, there has been number of work, both theoretical and experimental,

largely summarised in [70]’s up-to-date review. The main finding was that, in the limit of

high Ha, the destabilisation of the Hartmann layer is controlled by the Reynold ’s number

Rh built on the Hartmann layer size δ:

Rh =
Uδ

ν
=

Re

Ha
. (1.57)

Following linear stability analysis, the transition to turbulence in the Hartmann layer oc-

curs at critical values of Rh (e.g.[36]: Rc
h ⋍ 48250 ) that are several orders of magnitude

greater then those observed in earlier experiments on flow laminarisation in duct flows

(150 < Rc
h < 250, e.g [8]). [44]’s weakly nonlinear stability analysis shows that the transi-

tion to turbulence is indeed subcritical and therefore, may explain this huge discrepancy

between theory and experiment.

From the experimental point of view, the results of [45]’s more recent work are prob-

ably the most important ones as their experiment has been especially designed to study

the laminar/turbulent transition inside the Hartmann layer. A fluid layer of mercury

subject to a vertical magnetic field and hermetically enclosed in a cylindrical duct was set

in azimuthal motion by radially injected constant electric current. In the laminar regime,

the fraction of injected energy that is passed onto the flow evolves linearly with Rh, but

suddenly decreases when the Hartmann layer becomes turbulent at the critical Rc
h ⋍ 380.

This was also confirmed numerically by [33].
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Lastly, [46] showed that when the fluid rotates above the boundary layer it influences

the instability threshold. In this case one addresses a combined Boedwadt-Hartmann

layer ([11]) rather than a simple Hartmann layer. The former is less stable as inertial ef-

fects inside the boundary layer become important and can trigger the instability at much

lower values of Rc
h than those found by [45] and [33] for a simple Hartmann layer.

1.2.3. Shallow water liquid metal MHD

Shallow water equations can be used to describe flows where the vertical dimension is

much smaller than the typical horizontal scale and vertical velocities are small. They are

derived by vertically averaging the three-dimensional Navier-Stokes equation to obtain a

two-dimensional model.

Liquid metal MHD flows too can reach a state where vertical velocities are small and the

flow moves only in the horizontal plane orthogonal to the magnetic field, except in thin

Hartmann layers. For such quasi two-dimensional flows one is also tempted to describe the

flow using two-dimensional dynamics. This is precisely what [64]’s SM82-model achieves

and we shall describe it in this section. Furthermore, we explain the mechanism that

drives a vortical flow in an electrically conducting fluid when electric current is injected

at the physical boundaries. Finally, we briefly refer to the [54]’s PSM-model which is a

refinement of the SM82-model and accounts also for weak 3D effects like Ekman pumping.

The SM82-model [64]

The SM82 model was developed by [64] and is based on averaging the full three-

dimensional motion equation along the magnetic field lines. It results in a ”two-dimensional

model” which delivers quantitatively good predictions for MHD flows where:

N >> 1 and Ha >> 1 (1.58)

Under these conditions, the effect of the Lorentz force J×B is to instantaneously damp

velocity variations along the field direction B = B0ez (Sec. 1.2.1), except inside thin

Hartmann layers where the effect of viscosity is of the same order as the Lorentz force

(Sec. 1.2.2).

To recover [64]’s model one may consider the quasi two-dimensional flow in Fig. 1.4

were an incompressible, electrically conducting fluid layer of thickness a is subject to a

transverse uniform magnetic field B and bound by a Hartmann wall on either side. The
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flow of electrically 
conducting fluid

Figure 1.4.: Schematic illustration of a quasi two-dimensional flow. The term ”quasi two-
dimensional” reflects the flow’s invariance everywhere across the fluid layer
along the magnetic field B, except in thin Hartmann layers that develop
along Hartmann walls. Quasi two-dimensional flows can be described by the
SM82-model ([64]). ū⊥ is the velocity field spatially averaged along B, u′

⊥

denotes its spatial fluctuations and ucore is the velocity field in the core flow
outside the Hartmann layers.

flow with the velocity field u = (u⊥, wez) where w is small when Ha is described by the

set of MHD equations (1.15), (1.16), (1.5) and (1.6). One may further define ḡ as the

z-average of each quantity g as follows:

ḡ(x, y) =
1

a

a
∫

0

g(x, y, z)dz

which implies that:

g(x, y, z) = ḡ(x, y) + g′(x, y, z).

where g′ denotes the spatial fluctuation of g from its z-averaged quantity ḡ. The integral

of (1.15) along ez between the two walls expresses as:

∇⊥ ·
a
∫

0

u⊥dz +
[

w
]a

0
= 0 (1.59)

where the subscript ()⊥ stands for components orthogonal to the magnetic field B. The

non-slip boundary condition requires the velocity to be zero at the walls so it follows from
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the above equation that the averaged velocity field ū⊥ is incompressible:

∇⊥ · ū⊥ = 0. (1.60)

This further implies that ū⊥ can be expressed by means of a scalar stream function Ψ:

ū⊥ = ∇Ψ× ez. (1.61)

The integration of (1.16) along the field B yields for the non-linear terms to:

a
∫

0

(ū⊥ + u′
⊥) · ∇⊥(ū⊥ + u′

⊥) = a(ū⊥ · ∇⊥ū⊥) + a(u′
⊥ · ∇⊥u′

⊥). (1.62)

For high values of Ha, the first and second term on the right hand side of the above equa-

tion are of order of ∽
‖ucore

⊥
‖2

L
and ∽

‖ucore
⊥

‖2

Ha2L
respectively, so the latter can be considered

as negligible. The integral of the z-component of the viscous term in (1.16) provides in-

formation about the back reaction of the Hartmann layer onto the flow. Inside this layer,

the combined effect of viscosity and Lorenz force imposes a friction that linearly brakes

the flow according to:

ν

a
∫

0

∂2
zzu⊥dz = ν∂zu⊥|a − ν∂zu⊥|0 = −nν

Ha

a
ū⊥ +O

(

1

Ha

)

. (1.63)

In the present case, the fluid layer is bounded by a Hartmann layer on either side so

n = 2 (n = 1 if the layer has one free surface). The integrals of the other terms in

(1.16) are found readily and one can give the final z-averaged motion equation for the

two-dimensional velocity field ū⊥(x, y, t) as follows:

∂tū⊥ + ū⊥ · ∇⊥ū⊥ +
1

ρ
∇p̄ = ν∇2

⊥ū⊥ − ū⊥

τH
+

1

ρ
J̄⊥ ×B+

1

ρ
Ḡ. (1.64)

with:

τH =
a2

2ν

1

Ha
=

a

2B0

√

ρ

σν
. (1.65)

where τH is referred to as the Hartmann friction time. One way to generate a fluid motion

is to inject electric current density at the boundaries (e.g. [62, 63, 45]). This yields to the

Lorentz force Ḡ = J̄⊥ ×B driving the fluid. It is then customary to replace the Lorentz

force term in (1.64) by a velocity field u0 defined as ([55]):

1

ρ
B0J̄⊥ × ez =

uo

τH
(1.66)
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Implementing (1.66) into (1.64) yields:

∂tū⊥ + ū⊥ · ∇⊥ū⊥ +
1

ρ
∇p̄ = ν∇2

⊥ū⊥ +
(u0 − ū⊥)

τH
(1.67)

where u0/τH is the driving term that arises from current injection and−nū⊥/τH represents

the linear friction that the Hartmann layer/layers exert on the flow. With the scalings

u∗ = uU−1, ∇∗ = ∇L, t∗ = t(U/L) and p∗ = p(ρU2)−1 the SM82 model in dimensionless

form is obtained and reads:

∂∗
t ū

∗
⊥ + ū∗

⊥ · ∇∗
⊥ū

∗
⊥ +∇∗p̄∗ =

1

Re
∇∗2

⊥ ū∗
⊥ +

1

Rh

(u∗
0 − ū∗

⊥). (1.68)

with

Rh =
Re

Ha
=

τH
τU

. (1.69)

Rh is called the Hartmann friction parameter and is equivalent to the Reynold ’s number

based on the Ha-layer size δ. For high Ha, Rh and not Re is the governing parameter that

controls the flow dynamics. In other words, Hartmann friction and not viscous friction is

the main cause of energy dissipation in the quasi-two dimensional (q2D) flow, even though

they are of comparable importance in the vicinity of the walls parallel to the magnetic

field.

Electrically driven flows

MHD flows experimentally studied in this work are generated by injecting constant electric

current density Jw locally through point electrodes that are embedded in the Hartmann

wall. Following [64], this imprints a vortical motion above each electrode with the velocity

field u0 = uθeθ that is, with respect to (1.66), related to the z-averaged electric current

density J̄⊥ = Jrer as follows:

aJ̄⊥ = −(u0 × ez)
√
σνρ. (1.70)

A typical radial profile of the azimuthal velocity uθ(r) for a steady vortex is illustrated

in Fig. 1.5. It results from the balance between electromagnetic forcing, Hartmann layer

friction and lateral viscous friction.

uθ increases in the vortex core in the region (0 < r < r0 ⋍ Ha−1/2) where a viscous
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Ha-wall
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Jw
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Figure 1.5.: Typical velocity profile uθ(r) of an isolated, electrically driven vortex (see for
instance [63, 54]).

shear layer of typical thickness Ha−1/2 occurs due to the electrical nonuniformity at the

boundary wall ([26]). An estimation of the shear layer size δs is found when comparing

the orders of magnitude of the two terms on the right hand side of (1.67):

‖ν∇2
⊥ū⊥‖

‖ū⊥/τH‖
⋍

νUδ−2
s

νUHa/a2
→ δs ⋍

a√
Ha

. (1.71)

Outside the shear layer (in the region r > r0), electric current conservation requires that

the current density J̄⊥ ∽ 1/r. It follows from (1.70) that uθ also declines with 1/r as

illustrated in Fig. 1.5.

According to (1.61) one may now define the scalar Ψ0 as a stream function for u0 such

that u0 = ∇Ψ0 × ez. This combined with (1.70) expresses J̄⊥ as a gradient of Ψ0 that,

using the z-averaged current conservation ∇⊥ · J̄⊥ = −Jw/a, satisfies a Poisson equation:

aJ̄⊥ = ∇Ψ0
√
σνρ , ∇2Ψ0

√
σνρ = −Jw. (1.72)

Integrating the above Poisson equation across the vortex core yields:

− I

2πr
=

∂Ψ0

∂r

√
σνρ. (1.73)

The above relation is equivalent to the radial component of J̄ in (1.72) and can be com-

bined with (1.70). This yields to an expression for the forced velocity uθ in the region

r ≥ r0 depending on the injected current I and the distance r as follows:

uθ(I, r) =
I

2πr

1√
σρν

=
Γ0

r
. (1.74)
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Γ0 = I/(2π
√
σρν) is the total circulation induced by the current injection at a single

electrode and reflects the intensity of the forcing. Like the velocity u0 = uθeθ, it is pro-

portional to the injected electric current I, but does not depend on the strength of the

magnetic field B = B0ez. The Lorentz force however, which is responsible for both the

establishment of two-dimensionality in the core flow and this forcing, does depend on B.

In strictly quasi two dimensional flows, its strength B0 determines only the amount of

flow dissipation due to Hartmann friction in the Hartmann layer at time scale τH (1.66).

All electric current flows now inside this very thin boundary layers and is proportional to

the velocity in the core flow, independent of the magnetic field (1.51).

The flow, induced by electric current injection through point electrodes is however never

strictly quasi two-dimensional. This is because of the vortex core just above the electrode

where viscous effects balance the Lorentz force and three-dimensionality is intrinsically

present (Fig. 1.5). It implies that the velocity just outside the vortex core, where r & r0,

is equivalent to u0 according to (1.74), but can not reach the higher values of u0 in regions

where r < r0. Since the thickness of the vortex core scales with Ha−1/2 (1.71) the forcing

depends on the strength of the magnetic field B0, at least in the sense that it determines

the velocity u0 at the edge of the vortex core. In other words, the velocity u0 outside

the vortex core where the flow is strictly quasi two-dimensional does not depend on B0.

Experimentally this has been shown by [63] where a steady isolated vortex was produced

in a shallow, horizontal layer of mercury subject to uniform vertical magnetic field.

Lastly it should be noted that when applied magnetic fields are moderate, the flow outside

the vortex core (r & r0 in Fig. 1.5) may not be strictly quasi two-dimensional anymore but

three-dimensional because of three-dimensional inertial effects. In this case, the velocity

u0 is not reached in this region either and the forcing depends too on the coordintate

along the direction of the magnetic field.

The velocity profile of uθ, as schematically illustrated in Fig. 1.5, can be obtained by

solving the z-averaged motion equation (1.67). [54] has shown that the resulting profile

does not significantly differ from the three-dimensional solution for large Ha given by [26]

and adapted to the present case by [63].

The PSM model [54]

The SM82 model delivers accurate results in the limit of high values of Ha and N to

a precision of order of max(Ha−1/2, N−1/2). Even the error because of assimilating the

intrinsically three-dimensional lateral boundary layers of size aHa−1/2 to two-dimensional

ones remains smaller than 10% as demonstrated by [54]. When however the interaction

parameter N becomes moderate [64]’s approach appreciably fails as inertia in the core
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flow and in the Hartmann layer are stronger and 3D effects appear. For instance, strong

fluid rotation above the Hartmann layer triggers a fluid recirculation that is known as

Ekman pumping (Fig. 1.6). More precisely, the rotation with typical velocity U⊥ sets up

B

Hartmann 

wall

Hartmann 

layer

Uz Ekman

pumping

U

a

L

Figure 1.6.: Effect of Ekman pumping. Ekman pumping is induced by fluid rotation above
the Hartmann layer when inertial effects in this layer become important.

a radial pressure gradient that is balanced by centrifugal forces outside the Hartmann

layer. But the velocity and therefore the centrifugal forces drops inside the boundary

layer because of viscosity. This implies that the pressure gradient dominates here and

imprints a radial fluid motion of order of ∽ U⊥/N ([43]). In the vicinity of the vortex

axis, mass conservation pushes the fluid upwards with typical velocity Uz:

Uz ⋍
U⊥a

HaNL⊥

see e.g. [43]

This fluid gets released at the lateral edges of the vortex and plunges back into the bound-

ary layer as illustrated in (Fig. 1.6) (e.g [28]).

To account for such three-dimensional effects [54] proposes a refinement of the SM82

model which is referred to as the PSM model. It expresses in dimensional form:

∇⊥ · ū⊥ = 0,

∂tū⊥ + ū⊥ · ∇⊥ū⊥ +
1

ρ
∇p̄ = ν∇2

⊥ū⊥ − nū⊥

τH
+

nατH

Ha2

(

7

36
Dū⊥

+
1

8
∂t

)

ū⊥ · ∇ū⊥ (1.75)

where α = 1 + n/Ha and the linear operator Dū⊥
is defined as:

Dū⊥
: F 7−→ Dū⊥

F = (ū⊥ · ∇⊥)F+ (F · ∇⊥) ū⊥.
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From these equations [54] obtained an expression for the velocity uz along the magnetic

field lines just at the edge of the Hartmann layer which reads in dimensionless form as

follows:

uz = −5

6

λ

HaN
∇⊥ · [(ū⊥ · ∇⊥)ū⊥]∇⊥ · ū⊥ = 0,

(1.76)

λ is the ratio between length scales parallel and perpendicular to the magnetic field.

When interpreting our experimental results in Sec. 3.2 we benefit from [28]’s numerical

outcomes obtained from simulations of the quasi two-dimensional vortex pair enclosed in

the shallow cylindrical container using the PSM-model.
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1.3. Turbulence

Understanding of turbulence is one of the greatest challenges offered by modern physics.

Although we are here more interested in magnetohydrodynamic (MHD) turbulence where

the effect of the Lorentz force modifies the turbulent behaviour under the condition that

the magnetic Reynolds Rm number is small, we review in this section some major prop-

erties of both hydrodynamic turbulence (non-MHD) and MHD turbulence.

1.3.1. Hydrodynamic turbulence

3D turbulence

Turbulent flows consist of vortex structures, or modes, of different length scales l and

corresponding wavenumbers k ⋍ 1/l as well as characteristic velocities Ul. For the case of

3D isotropic, spatially homogeneous turbulence, energy is injected at the largest turbulent

structures (small k) and passed on cascade-like along the inertial range to the smallest

scales (high k) where it is eventually dissipated due to the effect of viscosity. In this

context, Kolmogorov ’s ([31]) theory relies on the assumption that the spectral Power

Density E(k) = de/dk ∽ U2
l l/2 (where e =

∞
∫

0

E(k)dk is the kinetic energy of the flow

per unit volume) depends on the wavenumber k and the average dissipation per unit of

volume ǫ = ν‖∇u‖2 ∽ ν(Ul/l)
2 only, so that:

E(k) = Ckǫ
αkβ. (1.77)

where Ck is a universal constant (Kolmogorov constant) which is approximately 1.5.

The exponents α and β are found when considering the corresponding dimensional units

[E(k)] = m3s−2, [k] = m−1 and [ǫ] = m2s−3. This yields to Kolmogorov ’s five-third law

that reads:

E(k) = Ckǫ
2/3k−5/3 or E(l) = Ckǫ

2/3l5/3. (1.78)

The five-third law implies the large scale vortices (small wavenumbers k) in the energy

spectrum (Fig. 1.10) carry much more kinetic energy in average than small scale vortices

(high wavernumbers k). Furthermore, the energy content of intermediate scales k in the

inertial range is determined by the power law k−5/3.

The influence of viscosity on a vortex is measured by the corresponding Reynold ’s number

ReV that is built on the vortex velocity Ul ∽
√

2E(l)/l ∽ 2C
1/2
K ǫ1/3l1/3 and its length
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scale l. It reads:

ReV = (2Ck)
1/2 ǫ

1/3l4/3

ν
. (1.79)

When ReV = 1, viscosity destroys the vortex in one vortex turn-over time τU = l/Ul.

This provides an approximation for the smallest scales lK and associated velocity UK

(Kolomogorov scales):

lK =

(

ν3

ǫ

)1/4

and UK = (νǫ)1/4. see e.g. [34] (1.80)

lK and UK are related to the corresponding velocity and size of the largest scales, U and

L respectively, by the Reynold ’s number built on the largest scales Re = UL/ν as follows:

L

lK
⋍ Re3/4 and

U

UK

⋍ Re1/4. (1.81)

2D turbulence

2D turbulence is of fundamental interest because of its unique turbulent phenomena that

are amongst others relevant to flows in the atmospheres, oceans and all rapidly rotating

flows with tendency to two-dimensionality.

In the case of continuously forced 2D turbulence with energy injected at wave number ki,

[32] proposes a double cascade in the energy spectrum E(k) in the limit of large Reynolds

numbers Re. For k < ki it has been found that kinetic energy U2/2 is transported in

reversed direction from small (high k) to large length scales (small k) so the observation

was given the convenient name inverse energy cascade. Still, as in the 3D case, E(k)

depends on the wavenumber k as well as the dissipation rate ǫ and dimensional analysis

yields to the same inertial range:

E(k) = C2Dǫ
2/3k−5/3 see e.g. Fig. 1.7 from [35] (1.82)

In the spectral region k > ki, another cascade-like process has been suggested and

relates to the enstrophy ω2/2, which is passed down from large (small k) to small scales

(high k) along the direct enstrophy cascade. The corresponding spectral distribution of

the enstrophy k2E(k) and the energy E(k) is likewise obtained by means of dimensional

analysis and yields:

k2E(k) = C ′η2/3k−1 and E(k) = C ′η2/3k−3 see Fig. 1.7 (1.83)
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Figure 1.7.: Double energy cascade in continuously forced two-dimensional turbulence
[32]. Energy E(k) injected at wavenumber ki is transported from small scales
(high wavenumbers k) to large scales (small wavenumbers k) along an inverse
energy cascade according to E(k) ∽ k−5/3 in the region k < ki. In the region
k > ki enstrophy is passed down from large to small scales along the di-
rect enstrophy cascade which corresponds to the spectral energy distribution
according to E(k) ∽ k−3. Note that the above illustration is taken from [35].

η = ν(∇ω)2 being the dissipation rate of enstrophy (see e.g. [13]).

Experimental evidence for the built up of an inverse energy cascade has been found in

liquid metal experiments ([62] and [17, 18]), in electromagnetically driven flows in stably

stratified layers ([51]) and in flowing soap films ([57]). Amongst those, only [57] clearly

observed the simultaneous existence of inverse energy cascade enstrophy cascade, possibly

because of the high spatial resolution in their experiment.

As in the 3D case, one can find an approximate relation between the smallest and

largest scales. However, in 2D it is based on grounds that the enstrophy is passed down

in a cascade, instead of the energy. Combining the estimate for the vortex velocity,

U(k) ∽
√

E(k)k, with (1.83) it yields for the Reynolds number built on the vortex, ReV :

ReV =
η1/3

νk2
=

η1/3l−2

ν
(1.84)

The smallest vortices get dissipated due to the effect of viscosity during one turnover time.

For these scales it is ReV ⋍ 1. This implies for their approximate size l2DK and velocity

U2D
K :

l2DK =

(

ν

η1/3

)1/2

and U2D
K = (η1/3ν)1/2 (1.85)
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Eventually, one finds for the equivalent of (1.81) in two dimensions (e.g. [13]):

L

l2DK
⋍ Re1/2 and

U2D

U2D
K

⋍ Re1/2 (1.86)

where Re is built on the length scale and velocity of the largest scales, L2D and U2D

respectively.

Apart from such rather heuristic approaches, [14, 48] derive an mathematically exact

lower bound for the smallest length scales l2DK (or highest wave number k2D
K ⋍ 1/l2DK ) in

two-dimensional turbulence expressed in terms of the Grashoff number G as follows:

k2D
K ≤ cG1/3(1 + lnG)1/3 (1.87)

where c is a constant of order 1 and G expresses the ratio between the turbulent forcing

and viscous friction.

1.3.2. Magnetohydrodynamic (MHD) turbulence

3D MHD Turbulence

The effect of the Lorentz force in MHD turbulence influences turbulent flow structures by

promoting their elongation along the magnetic field lines B (Sec. 1.2.1). Depending on

the relative strength of the Lorentz force compared to inertial forces, as measured by the

interaction parameter N , one should distinguish three different cases from here:

a) N >> 1

When N >> 1, inertial effects are small compared to the Lorentz force so the equation

of motion can be linearised. Replacing the Lorentz force term in (1.23) by expression

(1.34) and using Fourier transforms one obtains for the inviscid (Re >> 1) and linearised

motion equation:

∂û

∂t
= −1

ρ
ikp̂′ − 1

τj
(cos2θ)û ,where θ = (k,B) (1.88)

When taking the scalar product of the above equation with k and using mass conservation

in Fourier space, k · û = 0 one finds that the pressure term in (1.88) is zero. This yields

to the exponentially decaying solution for û(k, t) according to:

û(k, t) = û0(k, t) e
−(t/τj) cos2θ. (1.89)
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Figure 1.8.: Sketch of the Joule cone in Fourier space. θ∗(t) is the half angle of the
Joule cone that progressively opens and separates modes dissipated by Joule
dissipation from those that contain mostly the kinetic energy in a turbulent
MHD flow.

The above equation describes the evolution of one Fourier-mode with wave vector k

that makes the angle θ with the magnetic field B. For times t = τj it suggests that

any turbulent mode with the angle θ = 0 experiences the strongest damping or Joule

dissipation, regardless its scale. Later on when t > τj, Fourier-modes for which hold

0 < θ < π/2 also get dissipated and toward the end of the linear regime kinetic energy is

contained in modes that satisfy ([66]):

|cosθ| ≤
(

t

τj

)−1/2

(1.90)

In order to separate modes in a turbulent flow that have already lost part of their energy

because of joule dissipation from those which contain mostly the kinetic energy in the

Fourier-space, [41, 42] introduce the weighted and time dependent angle θ∗(t). θ∗(t)

measures the half angle of the so called Joule cone (Fig. 1.8) and satisfies:

|cosθ∗(t)| ∽
(

t

τj

)−1/2

(1.91)

In fact, θ∗(t) marks the ”edge” of the Joule cone that appreciably opens when time evolves

Accordingly, the aspect ratio of each vortical structure grows at the rate (1.37) and the

turbulent flow becomes anisotropic. It should be also noticed that wave vectors with

θ = π/2 remain totally unaffected by Joule dissipation. This further implies that the

perpendicular length scales, l⊥ ⋍ 1/k⊥ can be taken as approximately invariant in this

linear regime.

When studying turbulent flows in MHD one must distinguished between freely decay-

ing and forced turbulence.
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[39]’s earlier analytical work on freely decaying turbulence shows that the initially isotropic

turbulent flow rapidly evolves into strong anisotropy in the linear phase where τj < t < τU ,

after a sudden magnetic field B has been imposed at t = 0. Furthermore, [39] demon-

strates that the global kinetic energy e of the turbulence decays as:

e ∽ e0

(

t

τj

)−1/2

(1.92)

It has been also predicted that the velocity component parallel to the field B carries more

kinetic energy than the one in the transverse plane, though both are still of the same

order of magnitude. This result and the establishment of anisotropy have been later con-

firmed by [59]’s numerical and [4]’s experimental work on freely decaying MHD turbulence.

[74] numerically studies the evolution of an isotropic but forced homogeneous turbulence

in a periodic box where the effect of physical walls onto the turbulence is excluded from the

numerical simulations.For large interaction parameters such as N = 10, the flow rapidly

transforms into a quasi two-dimensional state with a level of anisotropy approximately

equal at all scales in the inertial range of the energy spectra. Furthermore, over about

the first few joule times, [74] observed a stronger increase of the parallel velocity com-

ponent which is in accordance with [39, 59, 4]’s observations in freely decaying turbulence.

b) N ⋍ 1

When N ⋍ 1, MHD turbulence shows the most complex behaviour. For freely decaying

turbulence, this condition marks the end of the linear phase where the Joule cone has

already sufficiently opened (θ∗(t) close to π/2) and the only part in the spectra that con-

tains kinetic energy of the flow is located outside the Joule cone in modes with angles

satisfying (1.90). Energy is now continuously ”removed” from this region and transfered

into the Joule cone at its edge (θ∗(t)) to compensate Joule dissipation induced by current

eddies at the vortice’s extremities (Fig. 1.9). In short, a ”quasi-steady” equilibrium has

been established ([4]).

The global time scales, the inertial time τU(t) = L(t)
U(t)

and the Joule time τj, are of the

same order of magnitude in this state which suggests a decay law for the global kinetic

energy e of the turbulent flow according to:

e ⋍ U2 ∽ L2t−2 (1.93)

This law could be reasonably well confirmed by [4]’s measurements where the kinetic

energy was found to follow a t−1.7 decay.

Locally, in the spectral vicinity of the wave vector k, the ”quasi-steady” equilibrium
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Figure 1.9.: Sketch of the Joule cone in Fourier space in a quasi-steady equilibrium state
where energy is transfered from energy-containing modes into the Joule cone
at its edge, to compensate Joule dissipation induced by current eddies at the
vortice’s extremities ([4]).

log E(k) 

log k 

hydrodynamic

turbulence

MHD

turbulence

~k-5/3

~k-3

energy lost by

Joule dissipation

Figure 1.10.: Characteristic of the energy spectrum E(k) in hydrodynamic and magne-
tohydrodynamic (MHD) turbulence. Turbulent eddies in MHD turbulence
experience additional joule dissipation. This results in a steeper decay in
the energy spectrum E(k) as in hydrodynamic turbulence.

requires the equality of the energy transfer time (U(k)k)−1 and the Joule time τj ∽ t.

Assuming that both time scales are k-independent it yields to the following decay law for

the energy spectra E(k):

E(k) = k−3t−2 (1.94)

The experimental proof of the k−3 spectra for freely decaying turbulence is given by [4].

In this context one should stress that in [4]’s experiment the turbulence is far from being

two-dimensional and, therefore, the measured k−3 spectra has nothing in common with

the enstrophy cascade predicted by [6] for two-dimensional turbulence. The steeper slope

in the energy spectra E(k) in comparison with the k−5/3 decay in classic hydrodynamic

turbulence relates to the additional Joule dissipation that acts at all scales (Fig. 1.10).
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[74]’s direct numerical simulations on forced turbulence revealed another effect when

N ⋍ 1. For N = 0.4, they reported intermittent behaviour consisting of quasi-two-

dimensionality flow states that persists for several times τU , but then become interrupted

by strongly three-dimensional regimes. This effect however has never been observed else-

where than in numerical simulations with boundaries where no dissipation occurs (periodic

or free-slip boundary condition).

Smallest scales for regimes where N & 1 (see [53])

The smallest vortex scales in MHD turbulence, l
M

K (or highest wave numbers k
M

K ⋍ 1/l
M

K )

are like in hydrodynamic turbulence determined by the balance between inertia and vis-

cosity. They dissipate over one turn over and mark the end of the energy spectrum E(k).

Considering scales in the transverse plane this implies for the Reynolds number based on

a vortex, ReV :

ReV ⋍
u

M

⊥K
(l

M

⊥K
)l

M

⊥K

ν
= 1 (1.95)

Following the usual assumption that anisotropy is scale-independent (e.g. [4]), the con-

dition (1.37) applies also to the smallest scales. This combined with (1.95) yields to

([53]):

l
M

‖K

l2
M

⊥K

∽
Ha

L
(1.96)

where L is a typical length scale of the largest scales. Following [53], the corresponding

smallest scales in the transverse plane, l
M

⊥K
, and along the magnetic field B, l

M

‖K
, can be

obtained when using again (1.37) as well as the ratio Ha2/Re = N . They satisfy:

L

l
M

⊥K

⋍ Re1/2 and
L

l
M

‖K

⋍
Re

Ha
(1.97)

The Reynolds number Re in (1.97) is built on a typical large scale velocity U and large

scale length L. It should be noticed that l
M

‖K
increases with the magnetic field B while

l
M

⊥K
does not depend on it. This goes along with the argument that transverse scales are

not affected by the magnetic field and might also explain why l
M

⊥K
is of the same order as

l2DK in 2D turbulence.

c) N < 1

When N < 1, inertial effects are strong and the joule cone has no time to open. In short,

electromagnetic effects are negligible. As consequence, [74]’s numerical simulations on
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forced MHD turbulence show that the flow remains in the 3D isotropic state as in hydro-

dynamic turbulence. In the experiment of [4] on freely decaying turbulence, the authors

also measured the related k−5/3 spectra.

Quasi-2D MHD turbulence

When N >> 1, 3D MHD turbulence is strongly anisotropic and can become classical

two-dimensional turbulence if ”put” between two transverse planes ([64]). In this case,

turbulence features the properties given in Sec. 1.3.1. However, when the two planes are

solid walls, velocity variations can not vanish in their vicinity because of the Hartmann

layer (Sec. 1.2.2). In other words, the flow is quasi two-dimensional and can be described

by [64]’s model (Sec. 1.2.3). [64] further shows that quasi two-dimensional turbulence

may still feature the properties of classical two-dimensional turbulence, but certain con-

ditions are required which we shall present thereafter.

A vortex can become quasi two-dimensional when its characteristic time for two- di-

mensionalisation τ2D = τJ(L/l⊥)
2 is much smaller than its turnover time τU = l⊥/U(l⊥)

(Sec. 1.2.1 and recall that L is the space between the solid walls and l⊥ the length scale of

the vortex perpendicular to the magnetic field B = B0ez.) This suggests an estimate for

a minimum quasi two-dimensional vortex scale in a turbulent flow, l
q2D

⊥ (or wavenumber

k
q2D

⊥ ) as follows ([64, 43]):

l
q2D

⊥ ⋍
1

k
q2D

⊥

>> L N−1/3 with N =
σB2

0L

ρ U(l⊥)
(1.98)

When the imposed magnetic field B0ez is strong enough and all vortices satisfy the above

condition the turbulent flow is quasi two-dimensional. This further implies that the dy-

namic of this flow is controlled by the ratio τH/τU = Rh (Sec. 1.2.3) and two different

cases should be distinguished from here .

Case 1: τU << τH

When τU << τH , Hartmann friction is weak. From this condition one can derive an

estimate for the maximum vortex size, L
q2D

⊥ (or minimum wavenumber K
q2D

⊥ in the E(k)-

spectrum), that is not dissipated during one vortex turn over time τU . Following [64], it

reads:

L
q2D

⊥ ⋍
1

K
q2D

⊥

<< L
Ha

Re
=

L

Rh

with Re =
U(l⊥)L

ν
(1.99)
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In [62, 18]’s experiment on two-dimensional turbulence conditions (1.98) and (1.99) are

satisfied for a large range of wave numbers k⊥ < ki (recalling that ki is the forcing scale,

Sec. 1.3.1). Therefore, classical two-dimensional turbulence as studied by [32, 6] and

characterised by an inverse energy cascade with the typical k−5/3 law has been observed.

Case 2: τU >> τH

When τU >> τH however, a significant part of energy is withdrawn from each turbulent

scale l⊥ (or k⊥) because of strong Hartmann friction inside the Hartmann layer. In this

context, [3, 37]’s experimental studies on quasi two-dimensional MHD turbulent shear

layers reported a k−3 spectrum like in homogeneous three-dimensional MHD turbulence

(Sec. 1.3.2). The authors thought that this may point to a quasi-steady equilibrium at

Figure 1.11.: [64]’s sketch of the Joule cone in Fourier space for turbulent, magnetohy-
drodynamic flows bounded by Hartmann walls with a discrete spectrum for
parallel wave numbers k‖.

each k⊥ between local inertial energy transfer and Hartmann friction. One may also

imagine that in this regime turbulence is made of vortices with wavenumbers K
q2D

⊥ > ki.

In other words, all scales k⊥ < K
q2D

⊥ are already dissipated and an inverse energy cascade

with the k−5/3 law can not exist.

Another important property of MHD turbulence between walls results from the Hart-

mann wall boundary condition J · n = 0. [64] shows that because of this the local

vorticity just at the edge of the Hartmann layer, ωc
z, satisfies:

∂ωc
z

∂z
= −2

a

Ha
∇2

⊥ω
c
z = O

(

1

Ha

)

(1.100)

It follows that ωc
z varies Ha times less along the magnetic field B than in the transverse

plane. This result is of crucial importance as it indicates that the vortex axis in the
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vicinity of the Hartmann walls is parallel to B and vortex inclinations are possible only

further out in the core flow ([64, 43]). Moreover, [64] reported that the spectrum of

parallel wave numbers k‖ should be discrete which implies that angular energy transfer

(due to inertial effects) from energy containing vortices to the Joule dissipation zone can

only happen at these discrete levels (thick black lines in Fig. 1.11).
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2. Experimental setups

In this chapter we describe two different experiments that we built from scratch in the

frame of this work and over a period of about three years. The smaller one of these

two experiments is on an electrically driven, mostly quasi two-dimensional vortex pair

confined by the walls of a cylindrical container and we study the transition to turbulence

induced by boundary layer separation. The larger experiment is on a square array of

vortices enclosed in a cubic container and we study their breakdown to weak and strong

three-dimensionality.

The cylindrical and the cubic container have electrically insulating walls and are her-

metically filled with an electrically conducting fluid, in particular with a liquid metal.

Both containers are placed in a uniform DC magnetic field B0ez such that the liquid

metal is confined between two corresponding Hartmann walls. Firstly, we present those

features which both experiments have in common like for instance construction elements

and measurement techniques and, secondly, describe the set-up of each experiment in

more details.

2.1. Construction elements

In this section we specify the liquid metal as well as the magnetic systems that we use in

our experiments and explain how we organise the flow forcing.

2.1.1. Choice of liquid metal

The eutectic alloys Galinstan and GaInSn are both made from Gallium, Indium and

Tin and exhibit properties that are most appropriate in our experiments (Table 2.1).

Firstly, these alloys are liquid at temperature θm < 20 C◦. This property favours them

against other metals like Gallium, Lithium and Sodium as experiments can be performed

under room temperature and experimental costs can be saved. Secondly, although heavy

metals, Galinstan and GaInSn are non-acute-toxic materials. Unlike mercury, their vapour

pressure is very low so the amount of toxic vapourized metal that one might inhale and

which could cause serious health problems remains negligible. Thirdly, the Galinstan and

GaInSn are less reactive to other chemical elements than the eutectic alloy NaK (note

that NaK is made from Sodium and Potassium). Nak for instance reacts with water to
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form hydrogen which quickly inflames when getting in contact with oxygen.

Lastly one should note that the density ρ, the electric conductivity σ and the viscosity ν of

Galinstan and GaInSn allows us to observe weak as well as strong electromagnetic effects

depending on the strength of the imposed magnetic field B = B0ez and geometrical

dimensions L (corresponding values of Joule time τj = σB2
0/ρ and Hartmann number

Ha= LB0(σ/(ρν)
−1/2) are given in Table 2.1). In this context, weak (large τj, small Ha)

means that corresponding MHD flows have the tendency to be rather three-dimensional

while strong electromagnetic effects (small τj, high Ha) intrinsically favour their two-

dimensionality. This is indeed of particular importance to this work as we are mostly

interested in the physical mechanism that governs the transition between two-dimensional

and three-dimensional flow regimes.

Table 2.1.: Physical properties of different electric conductors and related characteristic
joule times τj = ρ/(σB2

0) as well as Hartmann numbers Ha= LB0(σ/(ρν))
1/2.

Values of τj and Ha are given for magnetic field strengths B0 ∈ {0.1, 5}T and
length scale L = 0.1m which are typical values in our experiments.
Note that Galinstan can be obtained from Geratherm (Geschwenda/Germany)
and GaInSn termed as MCP11 can be purchased from HEK GmbH
(Lübeck/Germany).

liquid melt. Temp. density elect. viscosity joule time Hartmann

metal Temp. θm θ ρ cond. σ ν τj number Ha

[C◦] [C◦] [kg/m3] [S/m] [m2/s] [s]

0.1T 5T 0.1T 5T

Galinstan −19 20 6440 2.3×10
6

4×10
−7

0.28 1.1×10
−4

300 1.5×10
4

GaInSn 10.7 20 6400 3.4×10
6

4×10
−7

0.19 7.5×10
−5

360 1.8×10
4

Mercury -38.8 20 13546 1.04×106 1.14×10−7 1.3 5.2×10−4 260 1.3×104

NaK -11 100 847 2.88×106 5.53×10−7 0.03 1.2×10−5 784 3.9×104

Gallium 29.8 30 6093 3.85×106 3.1×10−7 0.16 6.3×10−5 450 2.2×104

Lithium 180 300 500 3.34×106 9×10−7 0.02 3.9×10−6 874 4.4×104

Sodium 98 130 922 9.34×106 6.5×10−7 0.01 5.8×10−6 1250 6.3×104
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2.1.2. Magnetic field systems

Figure 2.1.: Magnet systems: (a) different magnetic field strengths B0 are obtained by
changing the gap width between two sets of identical permanent magnets
facing each other. (b) different magnetic field strengths B0 are adjusted by
varying the amount of constant electric current circulating through the coil
made of superconducting material. Note that the cryocooler is a SUMITOMO
RDK-408D 4K cold head which is connected to a CSW-71D compressor unit.

Both experiments, in particular the liquid metal filled containers, are subject to a constant

magnetic field that is either generated by permanent magnets (Fig. 2.1a) or by a super-

conducting magnet (Fig. 2.1b). In the former case, two sets of 6 identical permanent

neodymium-magnets are mounted on two iron plates facing each other. The magnetic

field is generated in the gap between the two magnet sets and magnetic field strengths of

B0 ∈ [0.09..0.24]T can be adjusted by moving on of the iron plates (Fig. 2.1a). The liquid

metal filled container is placed inside a volume of size 40 × 40 × 5 mm3 located in the

centre of the x,y-plane with maximum deviations of the magnetic field bez of 5% along

êy, 3% along êx and 1 % along êz.

Magnetic field strengths B0 up to 5T and over a larger volume have been obtained thanks

to a Cryogen-Free magnet (CFM) installed at the Ilmenau University. The magnetic field

is generated within the bore of a superconducting coil through which constant electric

current circulates almost loss-free. The bore diameter and length are 300mm and 400mm

respectively as shown Fig. 2.1b and the magnetic field has a maximal deviation bez of 3%

along êx, êy and êz, over a domain of size 100× 100× 100mm3 located in the bore centre.
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A helium-cooled mechanical 4K cryocooler (Fig. 2.1) brings the coil temperature down

to 4K which is essential to make the coil material superconducting and almost loss-free.

A power supply system feeds the coil with DC electric current according to the required

magnetic field strength. Once the current is set, the power supply is disconnected from

the supra-conducting coil, thus avoiding any regulation-induced ripple in the field. In this

so-called persistent mode, the slow-going decrease of the magnetic field due to the slight

rest-dissipation of the electric current circulating inside the superconducting coil is not

measurable at the timescale of the experiment.
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Figure 2.2.: Example of a noise contaminated signal (left) and corresponding spectrum
(right) induced by the mechanical motion of the cold head attached to the
superconducting magnet.

In order to keep the coil temperature constant at 4K the cooling system is supposed to

work continuously by default. However, the motion of mechanical parts induces additional

high-amplitude electromagnetic noise of about 1Hz and subsequent vibrations (Fig. 2.2)

that contaminates the useful frequency components (typically in the range [0, 35]Hz) and

spoils experimental data. The only way out of this was to switch off the cooling system

when recording signals. This however limited us in recording time to at most 5min as the

electric current inside the coil dissipates when the temperature reaches values > 12K.

2.1.3. Flow forcing - constant electric current injection

The flow in both experiments is driven by injecting constant electric current I through

electrodes that are embedded in one of the Hartmann walls. The electrodes are mounted

flush with the inner wall of the fluid container at their end that is in contact with the

liquid metal and are connected to a well regulated DC power supply at the other end. As

demonstrated in Sec. 1.2.3, such a forcing creates fluid rotation above each electrode.
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Preliminary considerations

a) Choice of electrode material

The intensity of the forcing I is determined by the total electric resistance Rtot = Rw +

Rc + RLM . This is shown by the simplified electric circuit in Fig. 2.3 where Rw is the

resistance of the electrically conducting copper wires that connect the electrodes to the

power supply, Rc is the contact resistance between the electrodes surface and the liquid

metal and RLM is the resistance of the liquid metal. The electric resistances Rw and RLM

Figure 2.3.: Simplified electric circuit for flow forcing through one electric current injection
electrode. Rw is the electric resistance of the copper wires in the electric
circuit and Rc measures the contact resistance between injection electrode
and liquid metal. The electric resistance of the latter is RLM . Note that the
DC power supply was either a Toellner 8852-16 or an EA-PSI 9080-300 6HE
19”.

are almost constant and of the order of a few mΩ in our experiments. Rc however is sub-

ject to fluctuations that can be either of the same order of magnitude as those of Rw and

RLM or much higher depending on the electrode material. This makes the electric current

forcing less precise and can also lead to overheating which destroys the experiment. In

order to keep these effects down to a minimum by the choice of the electrode material we

performed a small experimental test as shown in Fig. 2.4. In this test we measured the

contact resistance for both copper and CrNi electrodes embedded in the bottom wall of

a cylindrical Plexiglas container filled with GaInSn (Table 2.1). It was found that using

copper electrodes in our experiments would be best as corresponding values of measured

contact resistance Rc and temperature were much smaller compared with those obtained

for CrNi electrodes, for all values of the electric current injected through the electrodes

(Table 2.2 and Fig. 2.5). It has however been observed that the electric contact between

electrode and liquid metal can also change erratically sometimes, even for copper elec-

trodes. This probably occurs because of liquid metal oxide particles that settle down onto

the electrode contact surface. This effect causes a sudden change of the contact resistance

Rc which can be of the order of a few mΩ and therefore drastically affect the forcing in
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Figure 2.4.: Schematic representation of the experimental set-up to measure the contact
resistance between the liquid metal and metallic electrodes made either from
copper or CrNi. The contact resistance was obtained by injecting constant
electric current through the metallic electrodes and measuring the related
voltage drop.

Table 2.2.: Contact resistance and measured temperatures for copper and CrNi electrodes
for two different injected electric currents

copper CrNi
I [A] 〈Rc(t)〉 [mΩ] Temperature [◦ C] 〈Rc(t)〉 [mΩ] Temperature [◦ C]
1 3.4 22.5 270 26.9
5 4.7 25 110 70.6

the experiments.

b) Minimizing of the influence of erratic changes in Rc

The flow in our experiments is forced by injecting constant electric current through

n injection electrodes with n ∈ {1, 2, 3, .., 100}, were np electrodes are connected to the

positive and nm = n − np to the negative pole of the DC power supply. Particular em-

phasis is put to obtain a uniform forcing which implies that np = nm so each electrode

should conduct the same amount of current into or out of the liquid metal, depending on

its polarisation, either positive or negative.

For np = nm = 1, the total current I flows through both electrodes in equal measure and

fluctuations or erratic changes of the contact resistance Rc are compensated by the related
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Figure 2.5.: Measured contact resistance between liquid metal and injection electrodes
for both copper and CrNi electrodes and different injected electric currents I.
Left: related voltage drop Uc(I) over the contact surface. Right: Temperature
θ(I) near the contact surface. Note that both the CrNi and the copper elec-
trodes exhibit the same roughness at the interface between electrode surface
and liquid metal.

Figure 2.6.: Equivalent electric circuits for electric current forcing through n = 4 injection
electrodes (note that np = nm = 2). a) non-uniform forcing induced by local
variations of the contact resistance Rc (I1 6= I2 6= I3 6= I4). b) uniform forcing
as controlled by constant electric resistances R2Ω >> Rc (I1 = I2 = I3 = I4).

voltage drop over the power supply system which works in the ”constant current” mode

(Fig. 2.3). When however np = nm > 1, I splits into sub-currents I{1,2,..,n}, each of inten-

sity that is controlled by Rc in the corresponding electric path as shown in Fig. 2.6a for

np = nm = 2. Local erratic variations of Rc can now no further be compensated by the DC

power supply as it adjusts the voltage drop only over the total resistance Rtot (Fig. 2.6a).

This leads to an irregular distribution of electric current and to an ill-controlled forcing.

In order to avoid this effect in the experiment, each electric path has been extended by a
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constant, ohmic resistance of R2Ω = 2Ω ± 0.25% (Fig. 2.6b, SRT REA 6402R± 0.25% /

100 W). Since R2Ω is at least two orders of magnitudes higher than any other resistance

in each electric cicuit it determines the electric current passing through each electrode.

In other words, implementing resistances R2Ω makes the electric forcing uniform. The

uniformity of the forcing in the experiments is verified by monitoring the voltage U2Ω

over resistances R2Ω (Fig. 2.6b). The corresponding electric current passing through each

electrode is then determined by local ratios U2Ω/R2Ω.

c) Geometry of the flow forcing

To allow for different forcing geometries in the experiments where np = nm > 1 we put in

each electric circuit a switcher that connects corresponding electrodes either to the posi-

tive or negative pole of the DC power supply. An example is again shown schematically

Figure 2.7.: Variability of the flow forcing geometry. Each electric circuit contains a
switcher that connects electrodes to either the positive (np) or negative (nm)
pole of the DC power supply. The above example shows a uniform forcing
with np = nm = 2.

for np = nm = 2 in Fig. 2.7. The electric current enters the fluid through those electrodes

that are connected to the positive pole, then crosses the liquid metal of resistance RLM

and leaves the container through the electrodes with negative polarisation.

Current switchboard system

The current switchboard system has been built from scratch too and is used for exper-

iments where 2 < n ≤ 100. It should provide a uniform forcing for different forcing

geometries.
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a) Design

The current switchboard system is made using the elements described in Sec. 2.1.3. This

implies that all electric circuits that are connected to the electrodes include a R2Ω re-

sistance and a switcher. Each R2Ω resistance takes a maximal power of Pmax = 100W

and needs to be continuously cooled to avoid its overheating and destruction (note that

this specification also limits the injected electric current per electrode to the value of
√

Pmax/R2Ω ). To this end, all R2Ω resistances are mounted in groups of 10 to the left

and right hand side of heat sinks made of aluminum cooling plates. These plates evacuate

the heat generated by the R2Ω resistances into streaming cold water (Fig. 2.8). According

Figure 2.8.: Cooling of R2Ω-resistances. Example of one aluminum cooling plate with 10
resistances R2Ω mounted to either of its sides. The plate acts as a heat sink
that evacuates the heat generated by the resistance R2Ω into flowing cold
water.

to the number of 100 maximum connected electrodes, the switchboard system contains

10 of such sets in total. They are arranged in a square lattice of 10× 10 R2Ω resistances

as illustrated in Fig. 2.9. The switchboard shown in Fig. 2.9 is mounted above the R2Ω

resistances. It contains a square array of 10 × 10 black connectors that are plugged into

a MDF panel and that are electrically connected to corresponding R2Ω resistances po-

sitioned just underneath. Further 100 blue (resp. 100 red connectors) are inserted into

the plate on either sides to the black ones and screwed in below copper bars that are

connected to the positive (resp. negative) pole of the DC power supply (Fig. 2.9). Now,

whether a single electrode is positive or negative polarised depends on the connection of

”its” R2Ω resistance to either a blue or a red connector on the MDF panel (note that in

Fig. 2.9, this connection is made by black U-shaped connectors, however other connectors

are indeed used in the experiment). The final current switchboard system as it is used

in the laboratory is displayed in Fig. 2.10 (note that black cables are electrically linked

to R2Ω resistances and conduct the electric current to corresponding electrodes in the

experiments ).
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I

electrically
connected
to the electrodes

copper bars

aluminium cooling plate R2Ω resistance

U-shaped connector switchboard

Figure 2.9.: Design of the switchboard. All electric current injection electrodes are elec-
trically connected to one side of the 10 × 10 lattice made of black female-
connectors plugged into the board. At the other side, also black but U-shaped
male-connectors (switchers) contact them further to either the positive (resp.
negative) pole of the DC power supply when connected to the blue (resp.
red) female-connectors. Note that the above switchboard connections show
the configuration that we use to create a flow forcing through an array of
4× 4 injection electrodes.

b) Verification of uniform current distribution

In order to check the precision of the electric current switchboard system it was con-

nected to a square lattice of 10 × 10 copper electrodes soldered into a copper plate of

size 20× 20cm and thickness 0.5cm (electrode diameter de = 2mm, lattice spacing 2cm).

All 100 electrodes were alternatively connected to the positive or negative pole of the DC

power supply so that the electric current should be homogeneously distributed inside the

copper plate (np = nm). The power supply fed the entire electric circuit with I = 50A

to obtain electric currents of I/np = I/nm = 1A per electrode. Measurements of voltage

drops over corresponding R2Ω resistances have shown that the current switchboard system

distributes the electric current uniformly to a precision of 0.5%.
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Figure 2.10.: Electric current switchboard system. Switchboard and cooling plates with
resistances R = 2Ω are hold by a rectangular wooden box that is equipped
with wheels at the bottom which allows us to move it easily. One should
notice that our current switchboard system can be used in any other MHD
experiment where the flow is electrically driven and a precise control of the
forcing is required. Note that the distribution of the electric current is con-
trolled by monitoring the voltage drop over each R2Ω-resistance (Sec. 2.1.3)
using a Keithley 2701 data logging system.
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2.2. Measurement techniques

In this section we firstly describe the set-up of the measurement system which is based

on local measurements of the electric potential. Secondly we specify the conditions under

which the velocity field just outside the Hartmann layer can be obtained from the electric

potential measured at walls orthogonal to the imposed magnetic field (Hartmann wall)

and explain how those measurements help us to identify and quantify the presence of

three-dimensionality in the flow. Lastly we briefly mention the information one may draw

from electric potentials obtained at walls parallel to the magnetic field.

2.2.1. Set-up of the electric potential measurement system

The electric potential φ is measured locally on electric potential probes that are embedded

in each of the walls confining the liquid metal filled container as schematically shown in

Fig. 2.11a. These walls are electronic boards of thickness 1 − 2mm and consist of either

fiber-reinforced epoxy FR4 or Roger RO4003C material. They exhibit small holes with

diameter 0.2mm where corresponding electric potential probes made from thin copper

wires are soldered in. Again, we use copper as potential probe material to provide good

electrical contact to the liquid metal.

All electric potential probes are made flush with that surface of the wall which contacts

the liquid metal. In short, electric potentials are measured at the flow boundaries, thus

non-intrusively. Printed electric circuits at the back side of each electronic board (illus-

trated thereafter in Sec. 2.4 and Sec. 2.5.1) convey all signals to connectors and further

to corresponding channels of a 736-channel, single-ended and high precision, amplifier

system shown on Fig. 2.11a and Fig. 2.11b. In this context, single-ended means that

each electric potential is measured with respect to a reference potential which needs to be

defined at one point somewhere at the edge of the liquid metal flow, for instance at one

of the electric potential probes as shown in Fig. 2.11. This also implies that local electric

potentials φ are indeed electric potential differences. Such signals can be of order of 10µV

so they require amplification. For this reason, each channel of the measurement system

contains a low-noise amplifier with gain factor 111 as well as a 24 bit A/D converter

that digitises the signal before transmitting it to the PC where a MATLAB/SIMULINK

software module controls the signal recording (Fig. 2.11). A low pass filter with cut-off

frequency of 45 Hz is used to attenuate the background electronic noise of 50Hz and

other high-frequency components induced by electronic equipment in the proximity of

the experiments. The cut-off frequency is kept sufficiently high so that the frequencies

relevant to the flow, typically in the range [0..35] Hz, remain unaffected. It should be

further stressed that all 736 channels work in parallel. This allows us to simultaneously

record electric potentials at different locations, at sampling frequencies f = 2m where
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Figure 2.11.: Measurement system.(a) Simplified sketch representing the principle of mea-
suring and recording electric potentials. Electric potential is measured lo-
cally by means of electric potential probes embedded in Hartmann and par-
allel walls. (b) Picture of one of the multi-channel amplifier-towers used in
the experiment.

m ∈ {1, 2, ..., 8}. In the experiments, signals are sampled with 128Hz (m = 7) where a

peak to peak noise of about 2µV limits the precision of the measurement system.

2.2.2. Electric potentials measured at Hartmann walls

Electric potentials measured at walls that are orthogonal to the magnetic field lines

B = B0ez (Hartmann walls) are of special importance in liquid metal MHD. Their local

values φw as well as their gradients perpendicular to the magnetic field ∇⊥φw allow us

to respectively obtain the stream function Ψ (1.56) and the velocity field uc
⊥(x, y) at the

edge of the Hartmann layer (recall that the superscript ()c indicates quantities measured

at the interface between the Hartmann layer and the core of the flow, Sec. 1.2.2). This

however requires the following two conditions:

1) The electric current density just outside the Hartmann layer Jc
⊥ is small so that Ohm’s
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law (1.50) can be approximated by:

−∇φc + uc
⊥ ×B ⋍ 0 (2.1)

φc is the electric potential just outside the Hartmann layer. As noticed by [30] and [62],

this approximation applies to quasi-2D and even to weakly 3D flows, albeit with a larger

error than in quasi-2D flows.

2) The variation of the electric potential φ across the Hartmann layer is negligible. Ac-

cording to (1.46) this is valid in the limit of high Ha. It implies that:

φc ⋍ φw and ∇⊥φ
c ⋍ ∇⊥φw (2.2)

Combining condition 1) and 2) it leads to:

−∇φw + uc
⊥ ×B = O

(

max

(

δ

Ha2
,

‖Jc
⊥‖

σ‖uc
⊥ ×B‖

))

. (2.3)

When δ/Ha2 ≪ 1 and ‖Jc
⊥‖/σ‖uc

⊥ ×B‖ ≪ 1, the local velocity uc
⊥(x, y) just at the edge

of the Hartmann layer can be deduced from local electric potential differences between

probes distant by ∆x and ∆y from one another according to (Fig. 2.12):

uc
x ⋍ − 1

B0

(

φw

(

x, y +∆y
)

− φw

(

x, y
)

∆y

)

, uc
y ⋍

1

B0

(

φw

(

x+∆x, y
)

− φw

(

x, y
)

∆x

)

(2.4)

It is also important to notice that even if the Hartmann layer becomes turbulent its

thickness δ remains of the order Ha−1 and relations (2.4) are still valid.

Figure 2.12.: Principle of Electric potential velocimetry. Velocities uc
⊥ at the edge of the

Hartmann layer can be obtained from local electric potential differences
measured at the Hartmann wall when the core flow is quasi-2D or weakly
3D and when variations of the electric potential across the Hartmann layer
are negligible in the limit of high Ha.

In order for three-dimensionality to spoil the validity of (2.4), the current density in the
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core Jc
⊥ would have to be of order of (σ‖uc

⊥ × B)‖. One may obtain a rough measure

of the related error in (2.4) when integrating the z-component of Ohm’s law (1.6) along

the field lines of B and across the core of a flow that is confined by two Hartmann walls

distant by the length L. This yields to an estimate for the vertical component of the

current density in the core ‖Jc
z‖ ⋍ σ∆φ/L where ∆φ is the potential difference across the

core flow. Combining this with current conservation (1.5) it provides an estimate for the

horizontal current density Jc
⊥ in the core:

‖Jc
⊥‖ ⋍ −∆φ

L⊥

L2
σ. (2.5)

where L⊥ is a typical transverse length scale. The above relation implies that the error

on the calculation of the velocity because of the presence of three-dimensionality in the

flow is of order of ((L⊥/L
2)∆φ/‖uc

⊥ ×B)‖).

Lastly one should note that the principle of extracting flow velocities from measured elec-

tric potential differences, also referred to as ”Electric Potential Velocimetry”, is known

since Faraday ’s attempt to determine the velocity of the Thames river in London [19].

In his attempt, the field lines B across the Thames flow were generated by the magnetic

field induced in the earth’s core. But, since his measurement instrumentation was not

adequate at this time, Faraday failed. The measuring principle though has been applied

successfully about 150 years later in magnetic flow meters [60] to measure flow rates in

food and chemical industry.

2.2.3. Measurement of three-dimensionality

The presence of three-dimensionality can be identified by comparing sets of electric poten-

tial measured at both Hartmann walls that confine the liquid metal flow. For simplicity

we denote these walls thereafter as bottom and top Hartmmann wall, respectively posi-

tioned along the magnetic field lines B = B0ez at z = 0 and z = L. Since the electric

potential does not vary across the thin Hartmann layer (2.2), two identical sets point to

a strictly quasi-2D flow. If on the other hand these sets of measurements differ the flow

is necessarily three-dimensional.

When in the state of three-dimensionality values of φw are smaller at the top wall,

but lines of iso-electric-potential (thereafter: iso-φw lines) at the bottom and top Hart-

mann wall still remain topological identical, we call weak this manifestation of three-

dimensionality as it reflect a three-dimensionality where the horizontal velocity field is of

the form u⊥(x, y, t)f(z) in the core flow as theoretical analysed by [54]. In other words,
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flow structures are subject to differential rotation along magnetic field lines B0ez, but still

extend from the bottom to the top wall, hence they are not disrupted. By contrast, flow

structures that do not extend from the bottom to the top wall yield to iso-φw patterns on

top and bottom that are not topologically equivalent anymore and the velocity field is no

longer of the form u⊥(x, y, t)f(z). Accordingly, we term this type of three-dimensionality

as strong.

Comparing iso-φw contours at bottom and top Hartmann walls to distinguish between

weak and strong three-dimensionality applies well to steady or slightly unsteady flows

regimes, but this approach is not as revealing when the flow becomes chaotic or turbu-

lent. In this case, the presence of weak and strong three-dimensionality is better measured

by the correlation between values of time-dependent quantities ST (t) and SB(t) obtained

at the same location (x,y) near the top and the bottom Hartmann wall respectively. In

our experiments ST (t) and SB(t) are typically local electric potential gradients just out-

side the Hartmann layer. If however the flow is quasi-2D or weakly 3D and approximation

(2.4) holds one could built those signal correlations on corresponding velocities just out-

side the Hartmann layer too. According to the definition of the correlations functions C1

and C2 given thereafter this would indeed yield to the same result:

C1 =

k
∑

i=0

SB(ti)ST (ti)

√

√

√

√

k
∑

i=0

S2
B(ti)

k
∑

i=0

S2
T (ti)

and C2 =

k
∑

i=0

SB(ti)ST (ti)

k
∑

i=0

S2
B(ti)

(2.6)

k is the number of samples over which C1 and C2 are calculated. C1 quantifies how

much phase and frequency are correlated, regardless of signal amplitudes. C2 is the more

usual correlation function, that incorporates the signal amplitude. If C1 = C2 = 1 sets

of measurements on the top and bottom are identical and the flow is quasi-2D. On the

other hand, C1 below 1 reflect strong three-dimensionality only, while C2 is smaller than

1 whenever either weak or strong three-dimensionality is present. At this point it should

be stressed that correlations functions C1 and C2 are influenced by the presence of noise,

especially in flow regimes where signals are weak and the ratio rS/N between respectively

the amplitude of the signal and the noise is small. An estimation of the corresponding

error can be found in the appendix A.

2.2.4. Electric potentials measured at the parallel wall

In contrast to electric potentials measured at the Hartmann wall local values of φp and

∇φp measured at the walls that are parallel to the imposed magnetic field B can neither
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be related to the stream function Ψ nor to the velocity field uc in the core flow. This is

because of the complexity of those viscous shear layers or parallel layers with thickness

δs ⋍ Ha−1/2 that shape in the vicinity of such walls (Sec. 1.2.3). However, local potential

gradients ∇φp contain information about the electric current distribution near the wall

which should make it possible to draw some conclusions relevant to the flow structure just

outside the parallel layer in the core flow and along the magnetic field B.

Local values of the electric potential have been indeed measured on potential probes em-

bedded in parallel walls in our big experiment on the appearance of three-dimensionality

(Fig. 2.22). Corresponding signals however have not been analysed in the frame of this

dissertation.
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2.3. Source of errors when measuring electric potentials

In this section we describe the effect of thermoelectricity and discuss its influence on

locally measured electric potentials. We also explain how electric potential measurements

are affected by slight inhomogeneities of the the magnetic field system.

2.3.1. Effect of thermoelectricity

The effect of thermoelectricity is a direct consequence of temperature differences in elec-

trically conducting materials. It results from the phenomenon of thermodiffusion that

appears for instance as displacement of negative electric charges from the cold to the hot

end of a metallic conductor, with the temperatures θc and θh respectively (e.g. [52]). This

generates a thermoelectric voltage V
h/c
th between these two ends that, according to [52],

can be approximated to:

V
h/c
th = −α(θh − θc) +

1

e
[µ(θh)− µ(θc)] (2.7)

where α is the Seebeck-coefficient that depends on the material, e = 1.6× 10−19C is the

elementary charge and µ(θh) as well as µ(θc) are chemical potentials (see e.g. [52] for

further explanation).

The effect of thermoelectricity is used in thermocouples to measure temperatures differ-

ences (e.g. [52]). A thermocouple is typically made of two different metallic conductors

with corresponding Seebeck-coefficients α1 and α2, connected to one another at their

ends. Any temperature difference (θh − θc) between both joints induces a total thermo-

electric voltage Vth which is the sum of both the voltage V
h/c
th generated in each of the

two conductors and the chemical potentials across the two joints [52]:

Vth = (α1 − α2)(θh − θc) (2.8)

(notice that chemical potentials along each conductor that appear in (2.7) cancel out with

those that exist across the two joints).

The above principle of a thermocouple applies also to local electric potential measure-

ments in our experiments as shown in Fig. 2.13a. It means that a thermoelectric voltage

drop Vth is captured in each recorded signal too, on the top of the electric potential in-

duced by the flow. This could lead to a miss-interpretation of our experimental results so

we shall estimate the influence of thermoelectricity on the electric potential measurements.

As illustrated in Fig. 2.13a, one metallic conductor is made from copper and constitutes
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the electric potential probe and the reference probe. Copper has the Seebeck coefficient

αCu = 7µV/K which can be obtained from thermoelectric series [20]. In other words, one

Figure 2.13.: (a) The effect of thermoelectricity in the experiment: A thermoelectric volt-
age drop Vth is induced when the temperature at the interface between po-
tential probe and liquid metal is different to the temperature at the interface
between reference potential probe and liquid metal (principle of a thermo-
couple). (b) Experimental setup to obtain an estimate for the Seebeck co-
efficient of GaInSn αLM : The liquid metal hold inside a plastic tube (inner
diameter 0.5cm) is brought to the temperatures θh = 100◦C and θh = 0◦C
at its ends using a regulated soldering gun and a vessel with ice water of
0◦ respectively. The thermoelectric voltage drop Vth across the liquid metal
conductor and the copper conductors electrically connected to its ends pro-
vides then an estimate for αLM according to (2.8).

would measure a voltage drop of V
h/c
th = 0.7mV over the two ends of a copper wire where

the temperature is assumed to increase linearly from 0◦C up to 100◦C from one to the

other wire end.

The Seebeck coefficient of the second conductor, here liquid metal, is denoted as αLM

and neither for Galinstan nor for GaInSn given by the literature, however both values

should be of the same order of magnitude. To obtain an estimate for αLM we set up a

small test-experiment that, in fact, resembles a local thermocouple as it appears in the

experiment (Fig. 2.13a), but with known temperatures θc = 0◦C and θc = 100◦C at the

joints between both conductors (Fig. 2.13b). This led to a thermoelectric voltage drop of

Vth = 2mV over the entire circuit so that, according to (2.8), αLM can be approximated

to:

αLM ⋍ − Vth

100K
+ αCu = 5µV/K (2.9)

This implies that a temperature difference of ∆θ = 1K between a electric potential probe

and the reference probe would generate a thermoelectric voltage Vth ⋍ 2µV. In the exper-

iments, these probes are typically distant by about 0.1m so one may indeed expect ∆θ’s
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of the order of 1K. The effect of thermoelectricity may therefore limit the precision of

locally measured electric potentials obtained at the Hartmann wall φw and parallel wall

φp to 2µV or to even slightly higher values. However, since values of φw and φp are found

to be typically in the range of [10...10000]µV throughout our experiments the effect of

thermoelectricity on them remains of minor relevance.

Even less affected by the effect of thermoelectricity are local gradients ∇⊥φw, related ve-

locities just outside the Hartmann layer uc
⊥ and gradients ∇φs as corresponding potential

probes are usually distant by not more than 5mm. It means that their local temperatures

should be almost identical. Whenever a thermoelectric voltage Vth is measured in signals

obtained from adjacent electric potential probes, values of Vth captured at each probe

should be about the same and cancel each other when subtracting the signals from one

another.

2.3.2. Inhomogeneity of the magnetic field

The magnetic field systems presented in Sec. 2.1.2 produce magnetic fields B that are

slightly inhomogeneous. In order to estimate the influence of this effect on electric po-

tential measurements on either Hartmann walls we restrict here to small inhomogeneities

b(x, y)ez along these walls so we assume that B = (B0 + b(x, y))ez. This implies for

quasi-2D or weakly 3D flows that (2.3) can be written as follows:

∇φw ⋍ (uc
⊥ × B0ez)

(

1 +
b(x, y)

B0

)

(2.10)

We note therefore that local velocities are estimated with an error of b(x, y)/B0 (values

of this ratio for both magnet systems are given in Sec. 2.1.2). Furthermore, taking the

vector product of either side of (2.10) with ez yields:

∇φw × ez ⋍ −uc
⊥(B0 + b(x, y)) (2.11)

where φw is stream function of the field uc
⊥(B0 + b(x, y)). Since ∇φw · uc

⊥ = 0, lines of

constant φw (or iso-φw lines as defined in Sec. 2.2.3) still correspond to stream lines of the

velocity field u⊥ despite local magnetic field inhomogeneities b(x, y). However, the value

of φw along each stream line will be different to that of the stream function Ψ which is

defined as ∇Ψ× ez = u⊥. According to (1.56) this implies that:

Ψ = − φw

B0 + b(x, y)
(2.12)
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2.4. Experiment on a confined electrically driven vortex

pair

In this section we describe the set-up and the measurement technique of the small scale

experiment where a pair of counterrotating vortices is generated in a cylindrical container

hermetically filled by liquid metal. Although parameters are chosen to favour quasi two-

dimensionality, we put particular emphasis on the measure of residual three-dimensional

effects and their consequences on the quasi-2D flow.

2.4.1. Experimental set-up and measurement technique

The experiment is sketched on Fig. 2.14. It is made of a closed cylindrical plexiglas con-

tainer with radius R̃ = 20 mm and height a = 5 mm where all walls are electrically

insulating. The cylindrical cavity is hermetically filled with Galinstan that has the phys-

ical properties given in table 2.1. The top and bottom plates of thickness 1.5 mm are

made of electronic board material FR4 (Fig. 2.16).

Once filled, the container is centered inside the gap between permanent magnets that

create a the magnetic field B pointing along ez (Sec. 2.1.2), Fig. 2.15). Magnetic fields

strengths B0 ∈ {0.09T, 0.12T, 0.19T, 0.24}T are achieved by adjusting the gap width and

relate to Hartmann numbers Ha as given in Table 2.3.

The flow is forced by injecting the total amount of constant electric current I through

n = 2np = 2nm = 2 electrodes located at (0, d, 0) and (0,−d, 0) and with d = 8mm

(Sec. 2.1.3). Both electrodes are connected to a regulated D.C. power-supply (Toellner

8852-16), providing electric currents in the range I ∈ [0− 20]A with a maximum output

ripple 0.5 × 10−3A. For strong magnetic fields B such a forcing creates a base flow of

two quasi-2D counter rotating vortices where each vortex would have a 2D circulation of

Γ0 = I/(πn
√
σρν) according to (1.74) in Sec. 1.2.3. This suggests defining U0 = 2Γ0/d as

a reference velocity a priori along ex, at the centre between the axis of the two vortices.

Expressed non-dimensionally this yields to the Reynolds number Re0:

Re0 =
U0R̃

ν
=

I

πν
√
σρν

R̃

d
(2.13)

Electric potential is measured locally thanks to two symmetric sets of 56 potential probes

(diameter dpr = 0.25 mm) embedded in the top (z = a) and bottom (z = 0) Hartmann

walls respectively at locations sketched on Fig. 2.14. The two sets are aligned exactly op-

posite each other along the êz axis. All signals are measured with respect to an reference

probe located near the box centre and are recorded with sampling frequency 128Hz using

63



[mm]0 10 20 30 40

~

~

~

~

d

Figure 2.14.: Sketch of the experiment. top: cross section of the cylindrical container, bot-
tom: top view of the bottom plate. (1) electric board, (2) electric current
injection electrodes (diameter de = 1mm), (3) electric potential probes, (4)
in-/outlet to fill cavity with Galinstan, (5) reference probe for electric poten-
tial measurements, (6) plexiglas hollow cylinder. ∆x̃ = 2.5mm, ∆ỹ = 1.75
mm and ∆r̃ = 0.6 mm are the distances between the potential probes.
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Figure 2.15.: Installation of the liquid metal filled, cylindrical container in the centre of
the gap spanned by two identical sets of permanent magnets. By varying
the gap width the strength of the magnetic field B can be changed.

Figure 2.16.: Bottom plate made of electronic board material FR4 with embedded electric
potential probes and electrodes fixed to a plexiglas holder. Left: View onto
the side of the bottom plate that is in contact to the liquid metal. Potential
probes as well as electrodes are mounted flush to the surface. Right: View
onto the back of the board with printed electric circuits that convey all
signals to connectors.

the high precision amplifier system presented in Sec. 2.2.

Since the flow is expected to be mostly quasi two-dimensional one can apply approxima-

tion (2.3) as given in Sec. 2.2. This implies that velocities just outside the Hartmann layer
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can be extracted from measurements of the electric potential on both Hartmann walls

using (2.4). Corresponding electric potential probes have been placed to obtain profiles

of velocities ũx and ũy along the diameter ỹ = 0 and, velocity profiles ũθ(r̃, θ, t) near the

side walls at r̃ = 19.7 mm for angle θ ∈ [45.6◦, 134.4◦] (see Fig. 2.14 for more details).

Table 2.3.: Hartmann number Ha= aB0

√

σ/(ρν) and Hartmann friction time τH =
a2/(2νHa) for the height of the cylindrical container a = 5mm and magnetic
field strengths B0 ∈ {0.09T, 0.12T, 0.19T, 0.24T}.

B0 [T] 0.09 0.12 0.19 0.24

Ha 13.5 18 28.5 36

τH [s] 3.3 1.75 1.1 0.85

Furthermore, the comparison between sets of measurements obtained at z = a and z = 0

allows us to spot residual three-dimensional effects using the elements given in Sec. 2.2.3.
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2.5. Experiment on the appearance of

three-dimensionality

In this section we describe the specifications of the large scale experiment that was

purpose-built to study the appearance of three-dimensionality in MHD flows. The prin-

ciple of our experiment follows that of [62] in which a constant homogeneous magnetic

field B was applied across a square, shallow container of height 0.02m filled with liquid

metal mercury. In his configuration, the time scale for ”two-dimensionalisation” τ2D(l⊥)

for each flow structure of transverse size l⊥ was less than 10−2s and much smaller then the

structure’s inertia τU(l⊥). Accordingly, the flow was quasi two-dimensional (Sec. 1.3.2).

Unlike [62]’s earlier experiment though, our container is not shallow, but cubic and with

inner edge L = 0.1m. For low magnetic field strengths, this favours times τ2D(l⊥) which

are of the order of 1s and therefore much longer than those of [62]. When τ2D(l⊥) becomes

comparable to τU(l⊥) three-dimensionality in related flow structures should occur.

2.5.1. Design container

When designing the container, we aimed at having a construction that is made of mod-

ular elements. Firstly, this reduces development costs and time, and secondly, it offers

far more flexibility. For instance, this allows us to easily modify the experiment when

aiming at studying physical mechanism, beyond those of the present work. In this spirit,

the container consists of a cubic brazen frame and plates containing elements to force

or measure the flow inside the box mounted on each side (Fig. 2.17). This implies that

modifications to the experiment can be done just by interchanging corresponding plates.

In the present work, the two side plates across (denoted as bottom and top plate) and

two side plates along the magnetic field B are equipped with the elements presented in

Sec. 2.1.3 and Sec. 2.2. This means that potential probes and current injection electrodes

are embedded into electrically insulating electronic boards made of RO4003C material

(Fig. 2.18) that, once fixed to corresponding board holders made of copper (Fig. 2.19a),

constitute one of the interchangeable plates (Fig. 2.19b). We should mention that we use

RO4003C as board material as it is resistant to temperatures up to 250◦C. This is indeed

crucial as the temperature in the vicinity of the Hartmann wall will reach higher values

than in the core due to high current densities in the thin Hartmann layer, in particular

near the electric current injection electrodes.

It is also important to notice that the brazen frame and the plates are made electrically

insulating by coating them with a thin layer of black Polyamid. This layer layer has the

thickness of about 150µm and resists temperatures up to 100◦C. If for instance the walls

parallel to the magnetic field lines B would be electrically conducting it cannot develop

an electric potential gradient at the wall that according to (2.3) balances uc
⊥ × B. This
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Figure 2.17.: Modular design made of a cubic frame with interchangeable side plates.
When modifications on the experiment are required, those plates can be
easily swapped to exchange flow forcing and flow measurement systems.
Left: open container with side plates unmounted. Right: closed container
where the front plate is only partly drawn to allow for a view into the
container.

implies that velocities at the edge of the Hartmann layer cannot be extracted from elec-

tric potential measurements at the Hartmann wall. Furthermore, electric conductivity of

the walls implies a stronger damping of the flow that appears under the form of ohmic

dissipation induced by significant current densities inside the walls. The influence of this

effect on flows in our experiment is indeed interesting from the physical point of view, but

not part of the present work.

2.5.2. Filling with liquid metal

The liquid metal alloys GaInSn and Galinstan are both prone to quick oxidation when

they come into contact with air. This results into a thin layer of liquid metal oxide that

covers its surface and may deposit onto potential probes and injection electrodes when

filling the container. This drastically deteriorates their electrical contact with the liquid

metal and yields to unusable experimental data. Electric contact problems between liquid

metal and potential probes as well as injection electrodes may also result from gas bubbles

that could remain in the container after filling. Furthermore, such bubbles brutally change

the electric current distribution inside the flow and, accordingly, the physics of the flow.

In order to avoid these effects we firstly flush the container with inert gas argon, to press

air particles out and, secondly, evacuate remaining particles of air and argon from the
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Figure 2.18.: Top and bottom plate with electrodes and potential probes that are soldered
into corresponding electronic boards made from high temperature resistant
roger material RO4003C . Left column: Frontview showing their side that
faces the liquid metal. The set of electrodes and potential probes are made
flush with the surface. Right column: Backview with printed electric circuits
that transfer signals to connectors. Note that the two side plates along the
magnetic field B are made following the same principle.

Figure 2.19.: Manufacturing of the side plates. (a) board holder made of copper with
cutouts to provide a greater support surface to the board (note that wires
conveying the signals to the amplifiers need to have access to the connectors
attached to the back of each board (Fig. 2.18)). (b) finished side plate, here
the bottom plate, with the board mounted onto the copper holder.

container up to a vacuum of order of 10−2kPa.

2.5.3. Installation inside the superconducting magnet

The container has been mounted to the movable part of an aluminum rack which slides

on the top of a rack that is fixed to the ground beneath the superconducting magnet

(Fig. 2.21a). Once filled with liquid metal outside the magnet (Fig. 2.21b), this allows
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Figure 2.20.: Hermetic filling of the cubic container with liquid metal alloy GaInSn. The
container’s evacuation from gas particles avoids electric contact problems
and remaining gas-bubbles inside the liquid metal after filling.

us to easily move the container into the magnet bore, placed at always the same position

at the centre of symmetry of the magnetic field lines (Fig. 2.21c). This not only secures

identical conditions between different sets of measurements, but also minimizes field in-

homogeneities over the fluid domain. Furthermore, since only the cubic frame is attached

to the vertical aluminum bars, side plates can be removed to clean the cavity or to replace

them by other ones without changing the position of the container with respect to the

aluminum rack. Lastly, this setup ensures the complete absence of mechanical contact

between the magnet and the box.

2.5.4. Experimental set-up and measurement techniques

The experiment is shown on Fig. 2.22. It features a cubic container with inner edge

L = 0.1m where all container walls are electrically insulating. Once hermetically filled

with GaInSn liquid metal (Table 2.1), the container is subject to the magnetic field B0ez

shown in Fig. 2.1b (Sec. 2.1.2). Magnetic field strengths B0 ∈ [0.1, 5]T with corresponding

Hartmann numbers Ha ∈ [364, 18220] are achieved by varying the electric current that

circulates inside the superconducting coil (see table 2.4 for selected values of B0 and

related Ha).

The flow entrainment relies on the same principle as in [62]’s or our small experiment

(Sec. 2.4.1). This implies that uniform DC electric current I is injected at the bottom

Hartmann wall (z = 0 ) through n injection electrodes (electrode diameter de = 1mm). In

total 100 electrodes are thus mounted flush to this wall, with either n = 100(= 2np = 2nm)

or n = 16(= 2np = 2nm) of them alternately connected to either pol of the DC power

supply EA-PSI 9080-300 6HE 19’ (Sec. 2.1.3). The DC power supply provides DC electric

currents in the range I ∈ [0 − 300]A . This too corresponds to a forcing geometry of

either a square array of 10 × 10 or 4 × 4 electrodes spaced by distances Li = 0.01m or
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Figure 2.21.: Experiment installed inside the superconducting magnet. (a) Schematic
picture of the container mounted onto an aluminum rack that have four
sliding blocks to allow for its sliding along the fixed aluminum rack and
brings the container always into the centre of the magnet. (b) Container
outside the magnet. (c) Container in the centre of the magnet where the
homogeneity of the field B is best

Li = 0.03m respectively. When the imposed field B is strong and the injected electric

current I is weak one creates a base flow made of quasi-2D vortices spinning in alternate

directions as in [62]’s experiment. Each quasi two-dimensional vortex would again have

a 2D-circulation of Γ0 = I/(πn(σρν)1/2 in absence of viscous dissipation in the vortex

core (Sec. 2.4 and Sec. 1.2.3). This suggests also defining U0 = 2Γ0/(Li/2) as a reference

velocity a priori in the centre between the axis of individual counter-rotating vortex pairs.

U0 expressed non-dimensionally yields to the corresponding Reynolds number Re0:

Re0 =
U0Li

ν
=

4I

nπν(σνρ)1/2
(2.14)

As in [28], electric potential φ is measured locally in the x−y plane at the bottom (z = 0)

and top (z = L) Hartmann walls using two identical sets of 196 electric potential probes

(see also Sec. 2.2 for a review of the measurement technique). These two sets are aligned

exactly opposite each other along the ez axis as shown on Fig. 2.22. At the wall centre,

probes are positioned in a dense 10 × 10 grid of spacing ∆x = ∆y = 2.5mm to visualise

the smaller vortex structures in the flow. Middle-sized vortices and vortices of the size of
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Table 2.4.: Typical values of Hartmann number Ha= LB0(σ/(ρν))
1/2, Hart-

mann friction time τH = L2/(2νHa) and two-dimensionalisation time
τ2D(Li) = σB2

0/ρ(L/Li)
2 = τj(L/Li)

2 for magnetic field strengths B0 ∈
{0.5T, 1T, 2T, 3T, 5T} and electrode spacings Li ∈ {0.01m, 0.03m}.

B0 [T] 0.5 1 2 3 5

Ha 1822 3644 7290 10933 18222

τH [s] 6.9 3.4 1.7 1.1 0.7

τ2D(Li = 0.01m) [s] 0.8 0.2 4.6× 10−2 2.1× 10−2 7.5× 10−3

τ2D(Li = 0.03m) [s] 8× 10−2 2.1× 10−2 5× 10−3 2.3× 10−3 8.4× 10−4

the box are captured by measurements on probes that are positioned in groups of always

three probes (distant by ∆x = ∆y = 2mm from one another), around the centre array

and further out close to the parallel walls respectively.

Electric potential is are also measured in the y − z and x − z plane at the wall where

x = 0 and y = L respectively, on 195 probes located as sketched in Fig. 2.22. These

probes are spaced by distances ∆y = 4mm and ∆z = 4.6mm along ey and ez respectively

(note that sets of probes in the x − z and y − z planes are arranged identically). Those

measurements should shed some light on the flow structure along the magnetic field lines

B, but again, corresponding recorded electric potential have not been analysed in the

frame of this dissertation (Sec. 2.2.4).

All electric potentials are simultaneously recorded with sampling frequency 128Hz using

the high-precision signal processing amplifier system presented in Sec. 2.2. This provides

both local time-dependent electric potential gradients ∇φ(x, y, 0), ∇φ(x, y, L), ∇φ(0, y, z)

and ∇φ(x, L, z) and a visualisation of iso-electric-potential lines (thereafter: iso-φ lines)

at corresponding walls. Furthermore, when the flow is quasi-2D or weakly 3D, iso-φ

lines and potential gradients obtained at the bottom and top Hartmann wall can be

directly related to streamlines and velocities respectively, both obtained at the edge of

corresponding Hartmann layers (Sec. 2.2.2).

Like in our other experiment (Sec. 2.4.1), the presence of three-dimensionality in the core

flow reflects on different sets of measurements obtained at top and bottom Hartmann

walls. The form under which it appears can be identified from differences in related iso-φ

contours as well as signal correlations (Sec. 2.2.3) .
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Figure 2.22.: Sketch of the cubic container. Top: cross section. Bottom: top view onto
the bottom plate. (1) cubic brazen frame; (2) top-holder with top-electronic
board (3) with 196 potential probes (4); (5) bottom-holder with bottom-
electronic board (6) with the same set of 196 potential probes (7) as on the
top and additional 100 forcing electrodes (8); (9) parallel-electronic board
with 195 potential probes (10) (the same set of probes exists in the x − z
plane where y = L)); (11) side plate; (12) reference probe; (13) inlet and
outlet to evacuate the container and to fill it with liquid metal. All container
walls are electrically insulating, except on locations where potential probes
or electrodes are embedded.
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2.6. Experimental procedure

The experiments presented in previous Secs. 2.4, 2.5 are performed following the same

experimental procedure. Starting at I = 0A, the total electric current I injected through

n electrodes was increased in steps up to the maximum that is reached when either

I/n = 10A or I/n = 7A, depending on whether measurements are performed on the small

or the large scale experiment (recall that in the latter the amount of current that can be

injected through each electrode is limited by the R2Ω-resistance). When a bifurcation is

found, the step size of changing I has been reduced to obtain detailed information on the

flow properties around the transition. For each corresponding forcing I measured non-

dimensionally by Re0(I) we waited until the flow was fully developed before recording

electric potentials over a period in the range of [10τH , 300τH ]. This procedure is repeated

for different values of magnetic field strength B0 with corresponding non-dimensional

Hartmann numbers Ha (Table 2.3 and Table 2.4). Ha and Re0 are then the two control

parameters in both experiments.
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Chapter 3

Experiment on a confined electrically

driven vortex pair
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3. Experiment on a confined electrically

driven vortex pair

In this chapter we present the results obtained from the experiment on the electrically

driven vortex pair confined in a shallow, cylindrical container. It should be noted that

the whole content of this chapter is published in [28].

3.1. Introduction

We are interested in the transition to turbulence induced by the presence of a wall in

quasi two-dimensional flows. In applications, boundaries are often responsible for the

development of turbulence. Their role is for example crucial in the dynamics of wings

or flying objects where boundary layer separations initiate vortex shedding and subse-

quent turbulent patterns that, in turn, determine lift and drag forces. The complexity of

theses flows makes them difficult to investigate experimentally and very costly to tackle

numerically. In this regard, quasi two-dimensional flows in simpler configurations allow

us to easily reproduce some elementary properties of the transitions phenomena that oc-

cur in real configurations and to understand the two-dimensional part of their dynamics.

This is why a large number of studies have been dedicated to the very generic quasi

two-dimensional separated flow past a circular cylinder (see [72, 73] and [40] for a review

of numerical work on boundary-generated two-dimensional turbulence). These flows are,

to a large extent, determined by how single vortices or vortex pairs interact with walls

so it is essential to understand the dynamics of such a reduced system. There has been

number of studies around this theme and one can cite two that are closest to our pur-

pose: [63] demonstrated some elegant visualisation of the vortex/wall interaction in liquid

metal Magnetohydrodynamic flows and [40] recently performed numerical simulations of

a forced vortex array in a square box. They exhibit a transition to turbulence through a

sequence of supercritical bifurcations that leads to a chaotic, then turbulent state, as in

the case of the cylinder wake. In the work presented in this chapter we aim at reproduc-

ing such a boundary induced transition to turbulence experimentally and analyse it, by

studying a forced vortex pair confined in a circular domain.
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Since a purely two-dimensional flow cannot be achieved experimentally, we wish to put a

particular emphasis on the measure of residual three-dimensional effects and their conse-

quences on the quasi two-dimensional flow. To this end, we study a flow in a thin layer of

liquid metal under an externally imposed, transverse magnetic field, as [63] did, using the

experimental setup described in Sec. 2.4. If the transverse magnetic field is strong enough,

the resulting flow is quasi two-dimensional in the sense that physical quantities don’t vary

across the layer except in the vicinity of the walls that confine it, where so-called Hart-

mann boundary layers develop because of the no slip condition (see for instance [42]).

Because of this particular flow structure, several small but important laboratory Magne-

tohydrodynamic experiments have been built where a layer of liquid metal held between

two parallel planes is used to obtain an experimental realisation of quasi two-dimensional

flows. Among them, [62] has provided an experimental evidence of the two-dimensional

inverse energy cascade that characterises two-dimensional turbulence. [5] experimentally

and [15, 21] numerically have studied the quasi two-dimensional wake of a circular cylin-

der and identified the usual regimes found in the hydrodynamic case. In none of these

studies, however, was the actual limit of the quasi two-dimensionality assumption exam-

ined, although more general studies have proposed theoretical scenarios for the transition

between quasi two-dimensional and three-dimensional flows ([64, 10]). This question is

crucial in order to quantify the relevance of Magnetohydrodynamic flows in thin layers to

two-dimensional flows. We shall therefore address it by calculating the correlations be-

tween quantities measured on either side of the fluid layer, just outside of the Hartmann

layers as [68] did, to measure the progressive elongation of a single pulsed vortex in a

magnetic field. This will allow us to determine whether the observed flow properties are

influenced by three-dimensional effects that are related to differential rotation and vortex

disruption (Sec. 2.2.3).

Thereafter in Sec. 3.2, we present experimentally observed flow regimes and compare them

qualitatively with flow patterns found numerically by [28]. In Sec. 3.3 we identify scaling

laws for measured topological quantities against a single parameter R0
h =Re0h/Ha that is

known to control the dynamics in quasi two-dimensional flows (see Sec. 1.2.3). The nature

of bifurcation observed at the transition between flow regimes is characterised in Sec. 3.4.

Finally, we discuss the appearance of three-dimensionality and the role of the Hartmann

layer friction in all observed flow regimes in Sec. 3.5 and Sec. 3.6 respectively.

To recall our experimental setup shown on Fig. 2.14 and described in Sec. 2.4 we shall now

briefly discuss its main properties. The experiment features a horizontal shallow liquid

metal layer of height a = 5mm enclosed in a cylindrical container of radius R̃ = 20mm.

The liquid metal layer is penetrated by a vertical, constant magnetic field B = B0ez.

A pair of counterrotating vortices is generated by injecting constant electric current I

from one Hartmann wall, through two point electrodes distant by 16mm. The magnetic
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field strength B0 and the electric current I, respectively expressed non-dimensionally as

Hartmann number Ha= aB0(σ/(ρν)
1/2 and Reynolds number Re0 = IR̃/(πνd(σρν)1/2),

control the flow in steady and unsteady regimes. Related flow states are identified from

local quantities such as velocity profiles obtained from electric potential measurements at

the Hartmann walls (Sec. 2.2.2): along the diameter y = 0, and at distance 0.3mm from

the circular side wall between angles θ = 45.6◦ and θ = 134.4◦ (see Fig. 2.14). To back

our experimental analysis we also take advantage of more global representations of the

flow provided by [28], who numerically simulate the mostly quasi two-dimensional flow

for Hartmann number Ha= 43 using [54]’s two-dimensional model (Sec. 1.2.3).
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3.2. General aspects of the flow

In this section we report observed flow regimes that occur in the mostly quasi two-

dimensional flow in the cylindrical container when increasing the electric forcing from

I = 0 (or Re0 = 0). The established flow state goes through a sequence of bifurcations

that appear at critical forcing measured non-dimensionally by the Reynolds numbers

Re0III , Re
0
IV , Re

0
V and Re03D.

0 10 20 30 40
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Figure 3.1.: Critical Reynolds numbers vs. Hartmann number. Re0III : transition from
the steady flow regime to the periodic flow regime. Re0IV : transition from
the periodic flow regime to the flow regime with two base frequencies. Re0V :
transition to the flow regime where the profile of ux almost becomes symmetric
again. Re03D: transition to three-dimensionality (see Sec. 3.5).

These critical values are in fact functions of the Hartmann number Ha as shown in Fig. 3.1

and corresponding flow regimes are described thereafter.

At very low forcing, such that Re0 <Re0III , the flow is steady and the corresponding

profile of ux (marked by ”I” in Fig. 3.2a) along the diameter y = 0 is almost symmetric

about x = 0, with ux > 0 everywhere. In this regime ”I”, the point of maximum velocity

uM
x is however located at xM > 0, xM being small and increasing with Re0 (Fig. 3.3a).
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Figure 3.2.: Experimentally obtained, time averaged quantities where velocities and dis-
tances are normalized by the forcing U0 and the cylinder radius R respectively.
(a) velocity profiles 〈ux(x, 0)〉 for Ha= 36. (b) width of recirculating region

〈∆xr〉t = 〈x(1)
r −x

(2)
r 〉t vs. Re0/Ha. (c) RMS of velocity fluctuations u′(x, 0, t)

along the diameter y = 0 for Ha=36. Black markers: 〈u′
x(x, 0, t)

2〉1/2t , white

markers: 〈u′
y(x, 0, t)

2〉1/2t . (d) 〈xm
f 〉t and 〈xM

f 〉t vs. Re0/Ha for Ha= 36. The

corresponding flow regimes are indicated as I, II, III, IV and V.

Velocities uθ(r = 0.985R, θ, t), measured near the cylinder wall, are orientated anticlock-

wise and almost azimuthal, without any sign reversal (Fig. 3.4).
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Figure 3.4.: Time averaged velocity profiles.〈uθ(r = 0.985R, θ)〉t along the circular side
wall for Ha= 36. Note that the precise determination of θs′ is limited by the
number of measurement points along the side wall and a low signal to noise
ratio rS/N .

The type of profile as shown in Fig. 3.2a in this regime is also typical from regime ”I”

that [28] found numerically for Ha= 43 (Fig. 3.6a).In this first steady regime, contours of

vorticity (Fig. 3.5a) and stream lines (Fig. 3.5b) provided by the numerical simulations

essentially show two steady counterrotating vortices, antisymmetric about the êx axis and
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centered slightly to the right of the electrode axis. This explains therefore the location

of the maximum velocity uM
x that was found at xM > 0 along the diameter y = 0 as it

corresponds to the position of the initial vortex pair. In fact, the distance between the

location of their rotation axis and the electrodes results from the balance between their

mutual influence that tends to imprint a motion toward x > 0, and the influence of the

circular wall. Furthermore, Fig. 3.5a (left) shows that each of these vortices presents a

sharp vorticity maximum located away from the vortex centre that corresponds to a free

shear layer in the shape of a ring.

For slightly higher values of Re0, but still in regimes where Re0 <Re0III , the flow changes

into a second steady state denoted as regime ”II” where the velocity profile uθ(r =

0.985R, θ, t) first exhibits a change of sign at angle θs′ (Fig. 3.4).

[28]’s numerical results presented Fig. 3.5b confirm that this observation can be related to

the side layers that separate from the cylinder wall at angle θs′ at two symmetric locations

behind the initial vortices to form counterrotating recirculation regions. Interestingly, [28]

points too to an apparent analogy between these regions to those which appear in duct

flows past a cylindrical obstacle with an homogeneous magnetic field oriented along the

cylinder axis, as studied by [15] (Fig. 3.7).

When the forcing is further increased, the flow still remains steady and θs′ is displaced

along the wall in clockwise direction (Fig. 3.3c). This displacement also coincides with

the increase of xM (Fig. 3.3a and Fig. 3.6a ), which indicates that it is a consequence

of the displacement of the initial vortex pair in the x > 0 direction. The zone of posi-

tive azimuthal velocity for θ > θs′ in Fig. 3.4 therefore characterises the antisymmetric

counterrotating recirculation regions that appear behind each of the two initial vortices

because of the separated boundary layer.

The transition into regime ”III” occurs when the flow becomes unsteady at Re0 =Re0III .

It results into a periodic oscillation of local electric potentials φ(x, y, t) (Fig. 3.8a) which

yields strong peaks with base frequency f1 and further harmonics 2f1 and 3f1 in the

frequency spectrum. Corresponding spectra, recorded from measurements on the bottom

plate at x = −0.4375R, y = −0.04375R and z = 0 are shown on Fig. 3.9a (note that

time-dependent signals φw(x, y, z, t) and related power spectra taken from potential mea-

surements at other locations yield qualitatively similar results). Accordingly, xM and θs′

obtained from velocity profiles III of ux and uθ in Fig. 3.2 and Fig. 3.4 respectively are

time-dependent and when the forcing is intensified, 〈xM〉t and the RMS of its fluctuations,

xM
RMS = 〈(xM(x, 0, t)−〈xM(x, 0)〉t)2〉1/2t , increases. We also found that the time-averaged

angle 〈θs′〉t where separation occurs is displaced along the circular wall in the θ < 0

direction (see Fig. 3.3c). Having inspected time series of subsequent vorticity contours

provided by numerical simulations for this regime we could attribute the transition into
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Figure 3.5.: Snapshots of equilibrium and quasi-equilibrium states in all flow regimes for
Ha= 43 obtained from [28]’s numerical simulations that use the model of [54]
(see Sec. 1.2.3 ). Contours of vorticity normalised by U0/a (left column),
streamlines (centre column), contours of vertical velocity as given by (1.76),
normalised by U0 (right column). (a) regime I. (b) regime II. (c) regime III.
(d) regime IV.
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Figure 3.7.: [28]’s schematic representation of the analogy between steady flows with
boundary layer separation inside (top) and around (bottom) a cylinder con-
tainer. A, B and C are stagnation points, S1 and S2 are separation points.
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Figure 3.9.: FFT of recorded time-dependent signal φ(x = −0.4375R, y =
−0.04375R, 0, t) for Ha= 36. (a) periodic flow (regime III). (b) two base
frequency flow (regime IV). (c) chaotic/turbulent flow in flow regime IV. (d)
chaotic/turbulent flow in flow regime V. Oscillation amplitudes A and fre-
quencies fi are normalised by BzU0a and the Hartmann friction time t−1

H

respectively.

flow regime ”III” to a destabilisation of the separated boundary layers at the back of the

initial vortex pair (Fig. 3.5c) shows a snapshot of this time series). The vorticity time

series visualises small vortices that form in the vicinity of the locations where the bound-

ary layer detaches from the circular wall and grow along the separated boundary layers,

until they are released almost simultaneously from either side of the centerline y = 0

into the stream between the two electrodes. As in the experiments, this results in the

appearance of a low base frequency and subsequent harmonic oscillations of the velocity
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field (see [28] for detailed information). That the measurements do indeed characterize

the vortex shedding regime found in the numerical simulations can be also proven by the

good qualitative agreement between numerical and experimental mean velocity profiles,

as well as RMS of velocity fluctuations (resp. Figs. 3.2a, 3.6a and Figs. 3.2c, 3.6b).

This vortex shedding also explains the presence of maxima at x < 0 in the profiles III of

〈u′
x(x, 0, t)

2〉1/2 and 〈u′
y(x, 0, t)

2〉1/2 plotted along the diameter y = 0, as they correspond

to the location where the shed vortices impact onto the centerline (see Fig. 3.2c). It is

also noteworthy that, as in the previous regime ”II”, this vortex shedding process is remi-

niscent to that of the Von Kàrmàn street behind a cylindrical obstacle as e.g. numerically

studied from [15], but differs from it: at the onset of the unsteady regime ”III”, vortices

detached from the cylinder wall are released in turn and not almost simultaneously as in

the flow inside the cylindrical container. The synchronisation of this shedding is however

lost at slightly higher forcing.

A further flow regime, called regime ”IV” is found when Re0 =Re0IV as a second base

frequency f2, with f2 < f1, appears in the frequency spectrum of φ(x, y, t). The spectrum

is then seen to be extended as further frequency peaks occur for Re0 slightly higher than

Re0IV (Fig. 3.9b and corresponding time-dependent signal Fig. 3.8b). This equates to a

regime that [28] identified in his numerical simulations and denoted too as regime ”IV”

as here again, the time averaged profiles of velocity as well as RMS profiles of velocity

fluctuations, obtained experimentally and numerically are in good qualitative agreement

(Figs. 3.2a, 3.2b) and Figs. 3.6a, 3.6b respectively). Further in this regime, a clear max-

imum in the profiles of 〈u′
y(x, 0, t)

2〉1/2 appears in the region x > 0 at xM
f (Fig. 3.2c),

roughly at the location xM where ux = uM
x (recall that xM identifies the location of the

initial vortex pair along the centerline y = 0,ig. 3.2a). This can be interpreted using a

series of images of vorticity contours obtained from the numerics of [28] at subsequent

time steps (Fig. 3.5d for a related snapshot). They show that the above observation is

related to the two initial vortices, however strongly disrupted now, starting to oscillate

around the centerline y = 0 while exhibiting both long and short wave instabilities so

the global picture becomes that of a strongly chaotic flow (Fig. 3.5d). This argument

finds support as the frequency spectrum experimentally obtained in this regime shows

that the amplitude of all measured frequencies raises significantly above that from pre-

vious regimes. According to [40] this indicates a transition to a spectrum with a broad

continuous component, thus implying that the flow for higher forcing in regime ”IV” is

turbulent.

Also, since vortices that are shed into the x < 0 region are stronger in regime ”IV” they in-

duce a flow of negative mean velocity that occupies a region of width 〈∆xr〉 = 〈x(1)
r −x

(2)
r 〉

along the centerline as can be noticed from the velocity profile ”IV” in Fig. 3.2a. When

the forcing is intensified, the associated return flow extends and, therefore , 〈∆xr〉 in-
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creases (Fig. 3.2b). Furthermore, once sucked into the stream between the two oscillating

vortices located at x > 0, the shed vortices are strongly squeezed and stretched which

damps their fluctuations along êx and may explain the minimum in the profile ”IV” of

〈u′
x(x, 0, t)

2〉1/2 at xm
f in Fig. 3.2c. Since this stretching is directly induced by the two

initial vortices, the evolution of xm
f follows that of xM

f with increasing forcing, until these

two points clearly separate, which marks the end of regime IV.

As a last remark related to our experimental observations in this regime ”IV”, we should

refer to similarities to the Von Kàrmàn street behind a cylindrical obstacle: [28] pointed

out that [15] also identified the appearance of a lower base frequency in the flow regime

he calls regime ”IV”. It corresponds to vortices that, after being detached from the duct

side walls, disturb the Von Kàrmàn street. Further details related to similarities between

the flow within and past the cylinder for flow regimes ”I”, ”II”, ”III” and ”IV” can be

found in [28].

A last flow regime, denoted as regime ”V”, has been detected at Re0 =Re0V where all

quantities are brutally altered. 〈∆xr〉t drastically shrinks (Fig. 3.2b) and negative ve-

locity components vanish completely along the diameter y = 0, resulting in a profile of

〈ux〉t that is almost symmetric about x = 0 (Fig. 3.2a). Accordingly, the average 〈xM〉t
rapidly drops to the vicinity of x = 0 at first, increases again and then slightly decreases

for higher forcing. Also, the averaged point of sign reversal along the circular wall 〈θs′〉t
is displaced in anticlockwise direction, thus following the displacement of 〈xM〉t. For

Re0 >>Re0V however, very strong velocity fluctuations make the detection of θs′(t) in the

profile uθ(r = 0.985R, θ, t) impossible. The corresponding spectrum in this regime shows

that the flow is turbulent, but interestingly, also reveals a new dominating base frequency

f3 that is much lower than f2 (Fig. 3.9d).

The experimental findings in this regime can not be compared to numerical simulations

as the interaction parameter N in [28]’s numerical calculations at the end of the previous

regime ”IV” is already close to unity which implies that [54]’s model on which they rely

fails to deliver accurate results. Furthermore, the transition into regime ”V” seems to be

related to the transition from a laminar to a turbulent Hartmann layer as we will demon-

strate in Sec 3.6. In this case too, [54]’s model breaks down as it can neither account for a

turbulent Hartmann layer profile nor for the transition between a laminar and a turbulent

Hartmann layer (see e.g. [28] for more information on the validity of [54]’s model).
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3.3. Scaling laws in observed flow regimes

The Reynolds numbers Re0III , Re
0
IV and Re0V , in the previous section identified as critical

forcing that separates observed flow regimes, are shown on Fig. 3.1 where the evolution

of corresponding points in the figure suggests that those numbers depend linearly on the

Hartmann number Ha. This indicates that the transition between regimes is governed

by a single parameter R0
h =Re0/Ha which is known to control quasi two-dimensional

MHD flows dominated by Hartmann friction (Sec. 1.2.3). In order to further check this

property, all Re0 dependent quantities have been plotted against R0
h instead of Re0 (see

Figs. 3.2b, 3.3a and 3.3c). It clearly appears that any set of curve describing a topolog-

ical quantity (〈xM〉t, 〈θs′〉t,〈∆xr〉t) can be merged into a single one, provided they are

respectively scaled as:

〈xM〉t
Ha3/5

∼ f(Re0/Ha), 〈θs′〉tHa1/5 ∼ g(Re0/Ha), 〈∆xr〉t ∼ h(Re0/Ha) (3.1)

The fact that the lower values of Ha (Ha= 13.5 and less noticeably Ha= 18) match these

scalings imperfectly certainly indicates that these are valid in the limit of large Ha and

breakdown at lower Ha, where electromagnetic effects are less intense and regimes are not

asymptotic in this sense anymore.
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3.4. Analysis of the bifurcations

In this section we analyse the nature of bifurcations that occur at the transition to un-

steady flow regimes ”III” and ”IV” (Sec. 3.2). To this end, we determine the absolute value

of amplitude Ai and frequency fi at the saturation level (dAi(t)/dt = 0) of corresponding

base oscillations Ai(t) sin(2πfi + φv
i ) (with phasing φv

i and i ∈ {1, 2}), depending on the

strength of the forcing I (or expressed non-dimensionally by Re0). In order to obtain a

reasonable representation of the evolution of the instability we refined our experimental

procedure (Sec. 2.6). It means that we decreased the step size of injected electric current

to 0.01A within the range Ic ± 0.05 A where Ic denotes the critical forcing where any

transition occurs. Once Ic + 0.05A is reached, a possible hysteresis around Ic was sought
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Figure 3.10.: Analysis of the bifurcations based on times series of φw(t) measured near
the box centre at x = −0.4375R, y = −0.4375R and z = 0. (a) square of
the amplitude A1 of mode 1 vs. r1. (b) frequency f1 of mode 1 vs. r1. (c)
square of the amplitude A2 of mode 2 vs. r2. (d) frequency f2 of mode 2 vs.
r2. Oscillation amplitudes Ai and frequencies fi are normalised by BzU0a
and the Hartmann friction time t−1

H respectively.

by decreasing the current in the same steps. This helps us to find out whether observed

bifurcations are of supercritical or subcritical nature (e.g [16, 34]). Note that the analysis

thereafter is based on time-dependent electric potentials φw(t) measured near the centre

of the container at x = −0.4375R, y = −0.4375R and z = 0, however, it was checked that

time series obtained at other locations (x, y and z ∈ {0; a}) yielded qualitatively similar
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results.

The evolution of the stationary amplitude |A1| of mode 1 with fundamental frequency

f1 versus the critical parameter r1 =Re0/Re0III − 1 is reported on Fig. 3.10a (recall that

values of Re0 are dimensionless representations of the forcing I). It is found to follow a

square root function in the region of small parameters r1 < 0.15. Since it was also no

hysteresis observed at the transition, this indicates a supercritical bifurcation or Hopf -

bifurcation. According to [34], the weakly non-linear evolution of the amplitude of the

perturbation |A1| can be described by the Landau equation in the region r1 < 0.15 as

follows:
d

dt
|A1|2 = 2σ1|A1|2 − l1|A1|4 +O(|A1|6) , with σ1 > 0 (3.2)

where σ1 denotes the growth rate of the instability. l1 is the Landau constant and measures

the nonlinear saturation in the perturbation growth ([34]). Values of A1 in Fig. 3.10a are

obtained at the saturation level of the instability and the amplitude of the oscillation is

stationary. In short, in regimes that satisfy d(|A1|2)/dt = 0. This implies that (3.2) can

be modified into:

|A1|2 ⋍
2σ1

l1
=

2k1
l1

r1 (3.3)

Again, l1 is the Landau constant and k1 is a constant too ([34]). We have determined

the ratio k1/l1 for 0 < r1 < 0.15 by interpolating the set of points A1(r1) in Fig. 3.10a

with a square root function It yielded k1/l1 ⋍ 3× 10−4 for all values of Ha, but Ha= 13.5

as this case departs from the asymptotic curve and exhibits stronger saturation (see

Fig. 3.10a). Also, related base frequencies f1 increase linearly for small r1 as a function

of Re0 and seem to saturate for higher r1 as the flow approaches regime IV (Fig. 3.10b).

Furthermore, since sets of points related to frequencies f1 obtained for different Hartmann

numbers almost collapse to a single curve when scaling them with the Hartmann friction

time τH = (1/2)(a2/(νHa)) indicates that the frequency f1 increases monotonically with

Ha at the onset of regime ”III”.

The second bifurcation at Re0 =Re0IV results in a spectrum with two base frequencies

f1 and f2 and subsequent linear combinations of the form m1f1 +m2f2 with (m1,m2) ∈
{−2,−1, 0, 1, 2}2 as in [7] and [40] (Fig. 3.9b). As for mode 1, the fundamental frequency

f2 of mode 2 increases linearly with the critical parameter r2 =Re0/Re0IV −1, but the slope

seems to depend weakly on Ha (Fig. 3.10d). No saturation was detected for 0 < r2 < 1.5

but it may well occur for higher forcing. As A1(r1), A2(r2) follows a square root function

according to |A2|2 ⋍ 2σ2/l2 = 2k2r2/l2, without any measurable hysteresis. An interpola-

tion of A2(r2) for 0 < r1 < 0.15 yields also k2/l2 ⋍ 3× 10−4 (Fig. 3.10c and one can also

conclude to the supercritical nature of the bifurcation to regime IV.

Lastly, since f1 and f2 seem to be two independent base frequencies it points to two-

91



frequency quasi-periodicity at the onset of regime ”IV” (e.g. [49, 25]). As for period-

doubling or intermittency, quasi-periodicity can appear in the sequence of transition

scenarios in dynamical systems that yield to chaotic behaviour. In this context, quasi-

periodicity does not mean that the flow motion is almost periodic. It rather implies that a

time series of a flow related quantity can be decomposed into parts which themselves are

periodic, but their periods are incommensurate and the ratio of corresponding frequencies

f2/f1 would yield an irrational number. However, because of the limit in precision when

determining frequencies f1 and f2 we can only suppose the presence of quasi-periodicity.

In order to prove it one would need to use other techniques like for instance Poincare-

mapping ([1, 27]). Poincare-mapping provide a better tool to identify particular flow

characteristics like quasi-periodicity. Though interesting and important, applying such

techniques to our experimental data would have gone beyond the scope of the present

work.
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3.5. Appearance of three-dimensionality

In this section we show how and under which form three-dimensionality appears for all

cases of Ha studied, using elements presented in Sec. 2.2.3. Since the arrangement of

probes in this experiment does not provide a visualisation of iso-φ contours we dis-

tinguish between weak and strong three-dimensionality only from correlations between

electric potential gradients ∇φw(x, y, 0, t) and ∇φw(x, y, a, t) obtained at the bottom

and top Hartmann walls respectively. Correlations built on electric potential gradients

∂yφw(x, 0, z, t) are thereafter denoted as C2, while those correlations built on fluctuations

only ∂yφ
′
w(x, 0, z, t) = ∂yφw(x, 0, z, t)−〈∂yφw(x, 0, z)〉t are called C ′

1, C
′
2 (recall that indices

()1 and ()2 denote the type of correlation function defined by (2.6) ). At this point, we

should emphasize that correlation factors C ′
1, C

′
2 and C2 can be influenced by the pres-

ence of ⋍ 2µV peak to peak noise (see appendix A). This is especially the case in steady

flow regimes ”I” and ”II” where signals are weak and the ratio rS/N between the effective

amplitude (RMS) of the signal and that of the noise, respectively, is small. For very slow

fluid motion this may induce an error on the correlations of about 20% in the case of

Ha= 36. The error however progressively decreases if the flow intensity increases and is

already not more than 5% when the flow changes into the unsteady regime ”III”.

The variations of spatially averaged correlations 〈Ci〉 and 〈C ′
i〉 with Re0 are depicted

on Figs. 3.11a, 3.11c and 3.11d for all values of Ha studied here (note that the average is

made from local correlations Ci(x, 0) and C ′
i(x, 0) obtained along the diameter y = 0 for

x ∈ [−0.8125R, 0.8125R] ). When Ha= 36 and Ha= 28.5, the correlation factor 〈C2〉 is

nearly unity for all investigated regimes and one can conclude that the flow is very close

to quasi two-dimensionality. This also justifies plotting profiles of velocities and velocity

fluctuations in Figs. 3.2a, 3.2c and 3.4 for Ha= 36 instead of profiles of ∇φw as relations

(2.4) from Sec. 2.2.2 are valid.

For Ha= 18, 〈C2〉 seems to be slightly below unity even for very high signal to noise ratios

rS/N , indicating some small three-dimensionality. For Ha= 13.5, this effect is more sub-

stantial, and one sees that three-dimensionality is always present. This certainly explains

why the case Ha= 13.5 departs from all the others in the scaling laws found in Sec. 3.3.

Since flow fluctuations are about one order of magnitude smaller than the mean flow in

all observed regimes ”I”-”V”(Figs. 3.2a, 3.2b), the correlation 〈C2〉 mostly reflects the

presence of three-dimensionality in the mean flow, in particular its weak form. It shows

however less how signals between bottom and top plate are correlated in phase and fre-

quency which would provide information on the appearance of strong three-dimensionality

as defined in Sec. 2.2.3. A refined picture can therefore be obtained when inspecting spa-

tially averaged correlations 〈C ′
1〉, 〈C ′

2〉 based on fluctuations ∂yφ
′
w(x, 0, z, t) only (Figs.

3.11c, 3.11d).
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Figure 3.11.: Correlations of electric potential gradients ∇φw(x, 0, z, t) as both pro-
file and spatial averaged quantities along the diameter y = 0 for x ∈
[−0.8125R, 0.8125R]. (a) 〈C2〉 built on ∂yφw(x, 0, z, t) vs. Re0/Ha8/5. (b)
profile of C ′

1 built on fluctuations ∂yφ
′
w(x, 0, z, t). (c) 〈C ′

1〉 built on fluc-
tuations ∂yφ

′
w(x, 0, z, t) vs. Re0/Ha8/5. (d) 〈C ′

2〉 built on fluctuations
∂yφ

′
w(x, 0, z, t) vs. Re

0/Ha8/5.

Both 〈C ′
1〉 and 〈C ′

2〉 are weak near the onset of unsteadiness where the amplitude of fluc-

tuations and the ratio rS/N is small. They increase for higher forcing to a value of about

unity and remain almost constant for Re0 ≤Re03D (some small deviation can be again

related to the presence of noise). Correlations in this flow regime are indeed close to

unity at all locations (x, y) along the centerline, thus indicating quasi two-dimensionality

(Fig. 3.11b). Furthermore, the fact that 〈C ′
1〉 ⋍ 〈C ′

2〉 tells us that flow fluctuations are

strongly correlated in phase, frequency and amplitude which implies that they are subject

to neither weak nor strong three-dimensionality.

This behaviour changes drastically at the critical value Re0 = Re03D. Both 〈C ′
1〉 and 〈C ′

2〉
linearly decrease for Re0 >Re03D while 〈C2〉 remains almost constant (see Figs. 3.11a,
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3.11c and 3.11d). This indicates the presence of three-dimensional vortices in the other-

wise quasi two-dimensional flow. It can be seen from the profile in Fig. 3.11b that these

three-dimensional structures are mostly located in the region x > 0 where vortices are

strongly accelerated by the mean flow. Furthermore, since 〈C ′
2〉 decreases more strongly

than 〈C ′
1〉, one can conclude to less intense fluctuations on the top Hartmann wall and

to weak three-dimensionality that appears under the form of differential rotation along

the field B0ez at the scale of corresponding vortices (Sec. 2.2.3). A similar weakly three-

dimensional effect that however appears in the core flow has been identified by [54] and

[47] where the presence of Hartmann walls led almost two-dimensional vortices assume a

barrel or cigar shape. The decrease in 〈C ′
2〉 also tells us that the flow in these structures

is not only slower on the top plate than on the bottom plate, but also shifted in phase

and frequency. In other words, the overall flow field u(x, y, z, t), even though mostly quasi

two-dimensional, is not strictly of the form u⊥(x, y, t)f(z) anymore as it exhibits strong

three-dimensionality in its fluctuating part (Sec. 2.2.3).

It is noteworthy that for Ha≥ 28.5, Re03D is much larger than Re0V so three-dimensionality

appears well into turbulent flow regime V, whereas regimes I, II, III, IV are strictly quasi

two-dimensional. Also, Re03D scales approximately as Ha8/5, except for the lower values of

Ha, Ha= 18 and Ha= 13.5. In these cases, the region of influence of the noise is extended

as signals are weaker, so one can’t tell whether the plateau 〈C ′
1〉 ⋍ 〈C ′

2〉 ⋍ 1 is reached for

Re0 <Re03D. On the other hand, for these low values of Ha, higher values of Re0/Ha8/5

could be reached and a new regime appears at Re0 =Re0p, where both 〈C ′
1〉 and 〈C ′

2〉 stop
decreasing and stay constant for all Re0 >Re0p (see Fig. 3.11c and 3.11d). This behaviour

can be due to residual viscous friction, that transports momentum along êz. Furthermore,

since the electric current is injected at the bottom plate, the motion near the top plate is

mostly be induced by the motion near the bottom so they cannot be totally uncorrelated.

However, whether the second plateau would extend when Re0 → ∞ can not be answered

here.

Lastly one should mention that [28]’s numerical simulations also show the appearance of

Ekman pumping because of local fluid rotation just above the Hartmann layer (Sec.1.2.3).

Figs. 3.5 (right column) illustrate that the related velocity component uz(x, y) is larger

where horizontal velocity gradients are important as strong fluid sources and sinks appear

in the core flow. It should be stressed that values of uz(x, y) could not be measured ex-

perimentally as it requires difficult bulk measurements which were not performed in the

frame of this work.

95



3.6. Hartmann layer friction

The results presented in Sec. 3.2 show that the flow changes completely in nature and in-

tensity at the onset of regime ”V” where Re0V =Re0. This indicates a sudden reallocation

of energy which can not be related to the appearance of three-dimensionality in the core

flow at Re03D since Re03D >Re0V (Figs. 3.1, 3.11). It may however indicate a variation in

the Hartmann layer friction which could indeed occur when the flow inside the Hartmann

layer changes from a laminar into a turbulent state (Sec. 1.2.2). In order to further check

this property we use thereafter in this section elements in the spirit of [45]’s experimental

investigation on the destabilisation of the Hartmann layer.

Our experiment is not made for flow measurements within the very thin Hartmann layer

nor for a global measurement of the dissipation as obtained in the experiment of [45].

We can however obtain a rough measure of the fraction of the injected energy that is
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Figure 3.12.: α2D = (ũM
x /U0)

2 vs. Rh = ũM
x (δ/ν) for Ha= 28.5 and Ha= 36. Note that

ũM
x and Rh drops strongly at the onset of regime ”V” and increases again

within regime ”V”.

passed on to the almost quasi two-dimensional flow for Ha≥ 28.5 by monitoring the evo-

lution of α2D = (ũM
x /U0)

2 vs. the Reynolds number Rh = ũM
x (δ/ν) (recall that ũM

x is the

maximum velocity in the profile along the diameter y = 0 (Fig. 3.2a)). In this regard

α2D is analogous to the friction factor F defined in [45] in the sense that it represents a

ratio between a velocity built on the forcing and a measured velocity (here ũM
x ). Also,

as in [45], Rh is built on the Hartmann layer thickness as well as on a velocity derived

from measurements of electric potentials and it controls the transition from a laminar to
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a turbulent Hartmann layer. [45] however measure their voltage across the whole channel

which gives them an average flow velocity, whereas our measurement corresponds to the

maximum velocity in the driving jet along êx. But in a sense, [45]’s and our Rh reflect

the same physics, except that ours is local while [45]’s is global.

The idea of using α2D is to show that the energy not transmitted to (ũM
x )2 is either

dissipated or transmitted to the residual three-dimensional part of the otherwise mostly

quasi-two-dimensional flow. In short, a change in the Hartmann friction should reflect on

the evolution of α2D.

Figure 3.12 presents the evolution of α2D vs. Rh for Ha= 28.5 and Ha= 36. For Rh lower

than the critical value RV
h ⋍ 120 where the transition to flow regime ”V” occurs, α2D

decreases almost linearly with Rh. Since the flow is close to quasi two-dimensionality in

this regime, this essentially reflects joule dissipation in the Hartmann layers (or Hart-

mann layer friction). For Rh >Rc
h = RV

h , α2D suddenly drops. Here, the flow is still close

to quasi two-dimensionality as Re0 <Re3D (see Fig. 3.11). This suggests that the extra

dissipation might come from a brutal change in the Hartmann layer friction, triggered by

a transition from a laminar to a turbulent Hartmann layer. It may certainly be objected

that the critical value Rc
h ⋍ 120 is well below Rc

h ⋍ 380 found in recent experimental ([45])

and numerical ([33]) studies on rectangular duct flows. This however might be related to

the fact that local fluid rotation ωzez present above the boundary layer give the latter the

properties of a Hartmann-Boedwadt layer which is indeed much less stable than a simple

Hartmann layer as in [45, 33] (Sec. 1.2.2). Furthermore, our forcing mechanism is not the

same as in [45] and therefore triggers a different flow. While the flow in [45]’s experiment

is expected to be steady when the Hartmann layer destabilises, the flow in the present

work, although still close to quasi two-dimensionality, is already strongly turbulent, be-

cause of instabilities generated in the side layers (see Sec. 3.2).

For Rh >>RV
h , α2D decreases almost linearly with Rh but with a gentler slope than at

low Rh (Fig. 3.12). For these values of Rh, Re
0 >Re03D so three-dimensional perturbations

are also present that generate some additional Joule dissipation in the core flow on the

top because of the dissipation in the turbulent Hartmann layer.
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3.7. Conclusion

We have performed an experiment where a vortex pair confined by a circular wall was

created by injecting electric current into a thin layer of liquid metal perpendicular to an

homogeneous magnetic field B. Such a flow is known to be almost quasi two-dimensional

as physical quantities hardly vary along the field lines, except in the thin Hartmann

boundary layers at the walls perpendicular to the field B (see [64, 54]). Electric po-

tential measurements at these walls have been used to determine part of the mostly

two-dimensional flow field outside the Hartmann layers. Flow visualisations provided by

[28]’s numerical simulations based on the shallow water model of [54] and performed for

parameters similar to those in the experiments helped us to interpret different regimes

spanned by the system when the electric current is increased. It was shown that the

system undergoes a transition to quasi-2D turbulence through a sequence of supercritical

bifurcations that [28] found to bear important similarities to those observed in the wake

of a circular cylinder ([15]). Firstly, two recirculating regions appear behind the initial

vortex pair as the boundary layer on the circular wall separates in two symmetric points

(regime ”II”). Secondly the separated boundary layer becomes unstable and vortices shed

and are sucked into the jet between these initial vortices (regime ”III”). When the forcing

Re0 is increased, the flow quickly changes into the chaotic regime ”IV”, as the shed vor-

tices are re-injected into the main flow making the latter more unstable. Although flow

characteristics in the cylinderwake are similar at the onset of regime ”IV”, [28] found that

Re0 spans a much larger interval in the previous regime ”III” compared to the one for

the flow inside cylindrical container. Further insight into the analogy between these two

systems could be obtained by investigating their properties as dynamical systems. Such

a task was undertaken by [40] who has identified a clear scenario for the transition to

turbulence of a single vortex in a square box from two-dimensional DNS. It is worth men-

tioning that the frequency spectra and dynamical behaviour found in the present study

strongly resembles that found in theirs.

At higher injected electric current we have identified another transition in the quasi two-

dimensional flow patterns where the velocity profile along the centre diameter becomes

almost symmetric (regime ”V”). This regime was beyond the validity range of [54]’ nu-

merical model so [28] could not provide exact flow patterns. Experimentally we noticed,

however, a drastic drop at Re0 =ReV0 exactly, in the slope of α2D = (ũM
x /U0)

2 vs Rh, Rh

being the Reynolds number based on the thickness of the Hartmann layer, that points to

a likely transition to turbulence in this region.

Finally, we have checked the two-dimensionality of the system by calculating correlations

between electric potential gradients measured on the same magnetic field line, on the top

and bottom Hartmann walls enclosing the fluid layer. It turns out that for Ha≥ 28.5 the

main flow is very close to quasi two-dimensionality in all investigated regimes as correla-
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tions are nearly unity. This justifies interpreting electric potential gradients measured at

the walls as velocities just outside the Hartmann layer according to (2.4). When these

correlations are based on the flow fluctuations only, a sudden decrease appears well into

regime ”V” which we could show is due to both flow structures subject to differential rota-

tion along the field B, but still extending from the bottom to the top Hartmann wall (weak

three-dimensionality), and flow structures that are disrupted across the fluid layer height

(strong three-dimensionality) . This provides the first evidence of a transition between

quasi two-dimensionality and three-dimensionality in forced, wall-bounded liquid metal

MHD flows. Since this transition occurs well into regime V for Ha≥ 28.5, this also allows

us to be certain that regimes ”I”, ”II”, ”III” and ”IV” are strictly quasi two-dimensional

and reflect two-dimensional dynamics. Clearly though, experiments performed in our

second experiment refine our understanding of such a flow transition mechanism as it is

particularly designed to study the appearance of three-dimensional in wall-bounded MHD

flows (Sec. 2.5 and Chap. 4).

99



100



Chapter 4

Experiment on the appearance of

three-dimensionality



102



4. Experiment on the appearance of

three-dimensionality

In this chapter we single out the mechanism that explains the appearance of three-

dimensionality in wall bounded magnetohydrodynamic (MHD) flows where the magnetic

Reynolds number Rm is smaller than unity (Sec. 1.1). The results that we present here are

obtained from measurements on the experiment described in Sec. 2.5. It should further

be noted that the main content of this chapter is published in [29].

4.1. Introduction

Magnetohydrodynamic (MHD) flows intrinsically tend to two-dimensionality. They share

this feature with stratified flows and rotating flows such as those which appear in at-

mospheres and oceans. The mechanisms responsible for this two-dimensionalisation are

fairly well understood. In stratified flows, the relaxation of iso-density surfaces generates

waves that transport momentum across them [50]. This role is played by inertial waves

in rotating flows [22]. In MHD flows where the flow of an electrically conducting fluids is

subject to a magnetic field, the tendency to two-dimensionalisation along the field lines

results from the effect of the Lorentz force (Sec. 1.2.1). When this effect is dominant,

flows confined between walls can become quasi two-dimensional, as boundary layers still

develop along the walls. These boundary layers are called Hartmann layers in MHD,

sometimes also Hartmann-Bodewdt (or Hartmann-Ekman) if the fluid rotates above the

boundary layer (Sec. 1.2.2).

How three-dimensionality appears in such flows is however much less understood, although

crucial since it determines both turbulent and transport properties of these flows. Exam-

ples range from the dynamics of oceans and atmospheres which are stratified and rotating,

to liquid metal heat exchangers and the casting of liquid metals (MHD). In rotating and

in MHD flows, some weak three-dimensionality is known to be induced by local rotation

in the bulk of the flow generating Ekman recirculations (Sec. 1.2.3). These recirculations

leads to velocity variations along the rotation direction of the magnetic field [2, 54, 62]. In
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MHD, [64]’s heuristic theory also suggested that small scale vortices should disrupt into

strongly three-dimensional ones under the effect of inertia (Sec. 1.3.2). Recent numerical

simulations of ideal strictly two-dimensional MHD flows without Hartmann walls have

indeed shown that strong three-dimensionality appeared brutally when three-dimensional

perturbations became unstable, and sometimes led to two-dimensional/ three-dimensional

intermittency [74, 71]. In wall-bounded MHD flows however, the question when and un-

der which form (weak/ strong) three-dimensionality appears has remained unsolved, ever

since it was raised in the 60’s when the anisotropic properties of these flows started to

be systematically investigated [39]. In this chapter we bring an experimental answer to

it by analysing square arrays of vortices rotating along a strong magnetic field in a cubic

container, in the spirit of [62]’s experiment.

Thereafter in Sec. 4.2 we firstly present flow phase diagrams and related flow states in

steady and slightly unsteady flow regimes. And secondly, we explain when and how three-

dimensional inertial forces in these flow regimes induce a weak (differential rotation) and

strong (disruption) form of three-dimensionality in individual flow structures. The appear-

ance of weak and strong three-dimensionality in chaotic/turbulent flow regimes is singled

out in Sec. 4.3 and refined in Sec. 4.4 where we give an important law that describes

quantitatively how inertial effects select strongly three-dimensional flow fluctuations from

the flow related frequency spectrum.

Lastly we shall remind the reader of our experimental setup described in Sec. 2.5. The

experiment features a liquid metal filled cubic container of inner measure L = 0.1 subject

to the constant magnetic field B0ez. The flow is generated by injecting constant electric

current I from one Hartmann wall, through either n = 100 or n = 16 electrodes, arranged

in a 10 × 10 or 4 × 4 square lattice of step Li = 0.01m or Li = 0.03m. The electrodes

are alternately connected to either pol of a DC power supply. For low electric currents I

and high magnetic field strengths B0 this generates a base flow of respectively 100 or 16

cylindrical, quasi two-dimensional vortices of size Li × L rotating alternatively along ez

in a square array. The flow is controlled by the amount of the injected current I and the

strength B0 of the imposed magnetic field, respectively measured non-dimensionally by

the Reynolds number Re0 = 4I/(nπν(σρν)1/2) with Re0 ∈ [0, 1.3×105] and the Hartmann

number Ha= LB0[σ/(ρν)]
1/2 with Ha∈ [364, 18220]. Different flow states are identified

from local measurements of the electric potential φw(t), on two identical sets of 196 electric

potential probes embedded in top and bottom Hartmann wall respectively. The presence

of three-dimensionality is determined by comparing these sets.
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4.2. Observed flow states

In this section we report flow states that appear when the flow forcing measured non-

dimensionally by the Reynolds number Re0 is increased. For all Hartmann numbers Ha

and lattice spacings (or vortex injection scale) Li ∈ {0.01, 0.03}m, the flow follows the

same sequence of regimes: at low Re0 it is made of an array of steady vortices that

follows the geometry of the forcing. When Re0 reaches a critical value of Re0(Ha) the

flow becomes unsteady. Steady and unsteady flow regimes in the (Ha, Re0) parameter

space are reported thereafter for lattice spacings Li = 0.01m and Li = 0.03m on the

phase diagrams in Figs. 4.1,4.5 and Fig. 4.8 respectively. In both figures a ”high” Ha and

a ”low” Ha range clearly stand out. The ”high” Ha range corresponds to regimes where

the transition from steady to unsteady flow states is controlled by the same parameter

R0
h =Re0/Ha for all cases of Ha, while the ”low” Ha range comprises regimes where

values of R0
h depend on Ha. Lastly, we would like to remark that we also observed some

unexpected instability behaviour in the region of very high Ha for the larger injection

scale Li = 0.03m.

4.2.1. Flow states forced through 10× 10 electrodes (Li = 0.01m)

Thereafter we present flow states observed around the transition to unsteadiness for Ha&

7500 and Ha< 7500, respectively denoted as ”high” Ha and ”low” Ha range in Fig. 4.1.

Related contours of iso-φw (iso-electric-potential) are visualised in the centre region of both

Hartmann walls in an area of 30×30mm2 spanned by x ∈ [30, 60]mm and y ∈ [40, 70]mm

(see area enclosed by the green, doted line in Fig. 2.22). In this region, electric potential

φw is measured locally on a dense grid of 121 electric potential probes. Finally note that

critical Reynolds numbers Re0I , Re
0
II defined thereafter are not related to those used in

Sec. 3.2.

Flow states observed for high Ha (Ha& 7500)

In the steady regime Re0 <Re0I(Ha), contours of iso-φw lines at the bottom and top Hart-

mann walls represent the expected square array of steady alternately rotating vortices.

Each vortex has the transverse length scale l⊥ ⋍ Li = 0.01m and parallel length scale

l‖ ⋍ L = 0.1m as can be seen from Fig. 4.1a. Since iso-φw patterns in Fig. 4.1a are barely

distinguishable from one another it indicates that the flow is very close to quasi two-

dimensionality. This is also confirmed by time-averaged profiles of local electric potential

gradients 〈∂yφw(x, y/L = 0.5, 0, t)〉t and 〈∂yφw(x, y/L = 0.5, z/L = 1, t)〉t obtained along

the center line y/L = 0.5 at the bottom and top wall respectively (see black dashed line in

Fig. 4.1a). These profiles are almost identical as can be seen from Fig. 4.4a. Since quasi

two-dimensionality implies that relations (2.4) are valid, profiles of 〈∂yφw〉t in Fig. 4.4a
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Figure 4.1.: Phase diagram for flows forced through an array of 10 × 10 injection elec-
trodes which corresponds to the injection scale Li = 0.01m. It gives critical
Reynolds numbers Re0I(Ha), Re

0
st(Ha), Re

0
II(Ha) and Re03D(Ha) vs. Ha and

shows snapshots of iso−φw lines, obtained at the centre of bottom and top
Hartmann walls (area enclosed by green dashed line in Fig. 2.22). It should
be emphasized that Re03D represents the non-dimensional injected electric
current at the transition between nearly quasi two-dimensional and strongly
three-dimensional, turbulent flow regimes (resp. regime I and regime II in
Fig.4.11). The snapshots show iso-φw contours for Ha= 14580, representing
quasi-two-dimensional flow regimes: a) steady flow regimes (Re0 <Re0I), b)
flow regimes at the transition to unsteadiness (Re0 &Re0I), c) chaotic flow
regimes (Re0 >Re0I). Note that blue and red colours indicate the vortex
rotation in clockwise and anti-clockwise direction respectively.
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could be also interpreted as velocity profiles just outside the Hartmann layer. The pro-

files show that the absolute value of the velocity along ex would be highest in the centre

between the axes of two counterrotating vortices.
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Figure 4.2.: Time evolution of electric potential fluctuations φ′
w(t) = φw(t) − 〈φw(t)〉t

obtained at (x/L = 0.5875, y/L = 0.5125) at both bottom and top Hartmann
wall for Ha= 14580. (a) periodic oscillation at the transition to unsteadiness,
Re0I =Re0 = 2422. (b) chaotic/turbulent flow regime for Re0 = 3071 >Re0I .
Note that signals taken at other locations yield similar results.

For forcing Re0 &Re0I(Ha) this flow becomes unsteady. Accordingly, a periodic oscilla-

tion appears in the time-dependent signal of recorded electric potentials φw(t) (Fig. 4.2a).

This results into a fundamental frequency f in the frequency spectrum that scales with

Ha according to f ∽ Ha1/2 (Fig. 4.3).
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× 104
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Figure 4.3.: Hartmann number Ha vs. fundamental frequency f that appears at the
destabilisation of the 10 × 10 vortex array at Re0I . In the high Ha region
(Ha& 7500) f increases according to the law f ∽Ha1/2.
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These oscillations correspond to the connection and disconnection of iso-φ lines from adja-

cent co-rotating vortices which points to the periodic formation of quasi two-dimensional

vortex pairs (Fig. 4.1b). [62] experimentally and [69] analytically show that the vor-

tex pairing process is indeed the main mechanism that appears when an initial steady,

square array of circular vortices destabilises. For higher forcing Re0 >Re0I , the flow be-

electrodes
injection

x

y
z

Figure 4.4.: Time averaged profiles of electric potential gradients 〈∂yφw(x, 0.5, 0)〉t and
〈∂yφw(x, 0.5, L)〉t along the centerline y/L = 0.5 (see Fig. 4.1a) and normal-
ized by U0B0, obtained at the bottom and top Hartmann wall respectively.
Left: steady flow regime Re0 = 2047. Right: chaotic flow regime Re0 = 3071.

comes chaotic, then turbulent (Fig. 4.2b)), but the contours of iso-φw as well as profiles

of 〈∂yφw(t)〉t at bottom and top walls remain almost identical (Figs. 4.1c, 4.4b), still in-

dicating quasi-two-dimensionality.

The physics in the high Ha range is therefore dominated by the effect of the Lorentz

force. It makes individual vortices of typical transverse size l⊥ ⋍ Li over the time

τ2D(Li) = ρ/(σB2
0)(L/Li)

2 quasi two-dimensional before three-dimensional inertial ef-

fects can affect them (related time scales τ2D are given in Table 2.4). In this regime,

almost no electric current density remains in the bulk so that the flow experiences most

of its dissipation due to linear friction friction exerted by either Hartmann layers over

the Hartmann damping time τH = L2/(2νHa) (Sec. 1.2.3 and Table 2.4 for related time

scales τH ). This also implies that the dynamics of the flow in the high Ha range should

depend only on one non-dimensional control parameter R0
h which is defined according to

(1.69) as:

R0
h =

Re0I(Ha)

Ha
= 2

τH
τU0

(Li)

(

Li

L

)2

. with τ−1
U0

(Li) =
U0

Li

= 2
2I

nπ
√
σρνL2

i

(4.1)

That R0
h does control the flow dynamics in the high Ha range is confirmed as we found

that the 10 × 10 quasi two-dimensional vortex array destabilised when it reached the
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critical value R0
h =Re0I(Ha)/Ha= 0.164 (Fig. 4.1). In fact, R0

h in (4.1) is a local control

parameter since it is built on the amount of electric current locally injected per electrode

2I/n. It describes therefore the flow dynamics of a local quasi two-dimensional vortex

created above the corresponding injection electrode. R0
h does however not explain whether

the walls parallel to the imposed field B0ez have an influence on the vortex dynamics and

its destabilistation or not.

In Sommeria’s experiment on the destabilisation of a 6× 6 quasi-two-dimensional vortex

array though ([62]), the corresponding stability control parameter RS
h is built on the total

amount of the electric current I and describes the global flow dynamic. This also implies

that the influence of the walls parallel to the magnetic field B0ez should reflect on the

value of RS
h . Applied to the geometry of our experiment RS

h is defined as:

RS
h =

(

R0
h

nπ

16

)1/2

(4.2)

[62] found that his steady 6 × 6 array of vortices, each with dimension l⊥ ⋍ l‖ ⋍ 0.02m

destabilised when RS
h reaches the critical value RS

h = 1.78. Interestingly, even though the

vortices in our 10× 10 array have with l⊥ ⋍ 0.01m and l‖ ⋍ 0.1m different dimensions we

found that they destabilise at RS
h = 1.8, very close to the value RS

h = 1.78 for [62]’s 6× 6

vortex array. Since both critical values are apparently almost identical one might think

that the presence of the side walls affects the destabilistion of the 6×6 and 10×10 vortex

array, if at all, similarly. Also important to notice is that thanks to comparable sets of

measurements on both Hartmann walls, we have been able to verify [62]’s assumption of

quasi-two-dimensionality in both steady and unsteady flow regimes.

Finally we should remark that no hysteresis has been observed around the transition

at Re0 =Re0I . However, in contrary to our small experiment we can not clearly conclude

to a supercritical nature of the instability (Sec. 3.4). The reason is that the strongly

chaotic bevaviour for slightly higher forcing Re0 >Re0I precluded us from tracking the

evolution of the amplitude of the first unstable mode with base frequency f versus the

critical parameter Re0/Re0I − 1.

Flow states observed for intermediate Ha (3500 < Ha < 7500)

Flow states observed around the destabilisation of the 10× 10 vortex array for intermedi-

ate Ha are significantly different to those observed for high Ha. In this Ha range, Lorentz

forces are weaker so that vortices generated in the vicinity of the bottom Hartmann wall

need longer times τ2D(Li) to extend up to the top Hartmann wall (Table 2.4). This im-

plies that three-dimensional inertial effects become more important.
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Figure 4.5.: Top: magnification of the low Ha region of the stability diagram in Fig. 4.1.
Bottom: related snapshots of iso−φw contours for 3500 < Ha < 7500 and Ha=
1822. Weak three-dimensionality under the form of differential rotation along
the axis of individual vortices is present for all Ha and in all regimes separated
by critical parameter Re0I , Re

0
st and Re0II . Also strong three-dimensionality

appears for Ha= 1822: firstly, under the form of partial vortex pairing for
Re0 &Re0I and, secondly, under the form of steady Giraffe-like vortices for
Re0st <Re0 <Re0II (Sec. 4.2.1).
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In the steady regime where Re0 <Re0I(Ha), both bottom and top contours of iso-φw

still exhibit the topology of a square lattice of vortices. The intensity of φw and the flow

however, is significantly lower in the vicinity of the top wall (Fig. 4.5a,b). This can be also

seen from corresponding profiles of electric potential gradients 〈∂yφw(t)〉t in Figs. 4.6a,b.

In other words, weak three-dimensionality under the form of differential rotation at the

scale of each vortex is present. Weak in this sense implies too that the structures that are

affected by this type of three-dimensionality still extend from the bottom to the top Hart-

mann wall, without disruption of iso-φ surfaces in the core flow along the field lines B0ez

(Sec. 2.2.3). Since differential rotation is a direct consequence of more significant three-

electrodes
injection

z x

y

3500 <Ha< 7500

Ha= 1822

Figure 4.6.: Time averaged profiles of electric potential gradients 〈∂yφw(t)〉t along the
centerline x, y/L = 0.5 obtained on both top and bottom Hartmann wall
(see also Fig. 4.5a) and normalized by U0B0, obtained at the bottom and
top Hartmann wall respectively. Top: steady flow regimes where Re0 = 171,
for a) Ha= 7290 and b) Ha= 3644. Bottom: steady flow regimes where
Ha= 1822, for c) Re0 = 171 and d) Re0 = 512.

dimensional inertial effects in the intermediate Ha range one understands intuitively that

it appears progressively from high to lower values of Ha (Figs. 4.5a,b,d and Figs. 4.6a,b,c).

Weak three-dimensionality that appears under the form of differential rotation in individ-

ual vortices has been also observed in our small experiment where it is reflected in the

stronger decrease of the correlation factor 〈C ′
2〉 compared to 〈C ′

1〉 for forcing Re0 >Re03D
(Sec. 3.5).

In this low Ha range, the transition to unsteadiness at Re0 =Re0I(Ha) is no longer con-
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trolled by R0
h = 2τH/τU0

(Li)(Li/L)
2 = 0.164, indicating a non-asymptotic regime that is

less dominated by the Lorentz force (Fig. 4.1). Vortex pairing however is still observable

for Re0 & Re0I(Ha), and flows near bottom and top walls remain topologically identi-

cal at all time, even though some differential rotation is present. As for regimes where

Ha& 7500, the first unstable mode is periodic, but its frequency f no longer scales with

Ha1/2 (Fig. 4.3).

For Re0 >Re0I(Ha), the flow becomes more chaotic, but, remarkably, stabilises again when

Re0 =Re0st(Ha). In this regime, iso-φw lines in Fig. 4.5c show paired vortices at bottom and

top walls, although the flow is less intense near the latter, than near the former. In short,

this second steady regime is characterized by the presence of weakly 3D, steady vortex

pairs. This flow destabilises again at Re0 & Re0II(Ha) > Re0st(Ha) where the vortex pairing

process resumes, but more erratically. Related time series of iso-φw contours obtained at

the bottom and top Hartmann wall show that their topology remains the same, however

the merging and disconnecting of iso-φ lines between co-rotating vortices is more irregular.

”Giraffe”-like flow structures for lowest Ha= 1822

In the previous subsection it has been shown how inertial effects induce three-dimensionality

in flows that are less dominated by the effect of the Lorentz force. It is therefore not sur-

prising that three-dimensionality manifests itself most spectacularly in the case of lowest

Hartmann number studied here, Ha= 1822, creating yet another set of remarkable, novel

flow structures.

In steady flow regimes where Re0 < Re0I(Ha) the flow is still made of a square array

of 10 × 10 vortices. Each vortex is subject to weak three-dimensionality in the form of

differential rotation, as observed in flow regimes where 3500 < Ha < 7500. The vortex

rotation rate near the top Hartmann wall however is even less intense, indicating stronger

differential rotation in individual vortices (see Fig. 4.5d and Fig. 4.6c).

At the transition to the first unsteady regime Re0 = Re0I(Ha) though, oscillations in the

flow field are erratic, rather than periodic as for cases Ha> 3500. Furthermore, these fluc-

tuations are stronger near the top Hartmann wall than near the bottom Hartmann wall.

Corresponding contours of iso-φw in Fig. 4.5e are topologically not equivalent anymore,

indicating the appearance of strong three-dimensionality, on the top of weak-three dimen-

sionality (Sec. 2.2.3). The iso-φw contours show that the vortex pairing process in this

regime is indeed only apparent near the top Hartmann wall. This in turn indicates that

the top-end of vortices merge, while their bottom ends remain disjoint and almost steady

in the vicinity of the bottom Hartmann wall. In other words, strong three-dimensionality

appears as partial vortex pairing along the magnetic field lines B0ez. This also implies
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that the horizontal velocity field is not of the form u⊥(x, y)f(z) anymore (Sec. 2.2.3).

Not surprising, strong three-dimensionality becomes even more blatant when Re0 and

therefore the effect of inertia is further increased. At Re0 = Re0st(Ha) where the flow

re-stabilises as for intermediate Hartmann numbers 3500 < Ha < 7500, this results into

remarkable, steady flow structures. These structures still display the mostly regular 10×10

iso−φw pattern at the bottom Hartmann wall, indicating the typical square array of al-

ternately rotating vortices with transverse size l⊥ ≈ Li. Corresponding iso−φw lines

on the top Hartmann wall show an almost regular pattern too, but related vortices are

about twice as large (l⊥ ≈ 2Li) and arranged in a 5× 5 array (Fig. 4.5f, recall again that

contours of iso-φw are plotted in the centre region of both Hartmann walls covering an

area of 30 × 30mm2). Furthermore, these large vortices clearly rotate more slowly than

the small ones in the vicinity of the bottom Hartmann wall, implying that the strongly

three-dimensional flow structures between top and bottom Hartmann walls are subject

to weak three-dimensionality too (Fig. 4.6d).

Figure 4.7.: Caricature of strongly three-dimensional and steady flow structures that ap-
pear for lowest values of Ha. The connection between the 10×10 vortex array
and 4× 4 vortex array obtained at the bottom and top Hartmann wall might
be pictured as the appearance of Giraffe-like flow structures.

In order to be able to explain how the 10×10 vortex array connects to the 5×5 vortex ar-

ray it would require the visualisation of the flow between top and bottom Hartmann wall.

This however is not possible here so that we prefer to keep the picture of these steady,

strongly three-dimensional flow structures rather simple for now, and even caricature-like
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for amusement. This means that we term the connection between 10×10 and 5×5 vortex

array as the formation of Giraffe-like vortices. Each of these Giraffes is ”standing” on

the bottom Hartmann wall with its feet ”made” from sets of four, co-rotating vortices

which connect to one single vortex in the vicinity of the top Hartmann wall forming the

Giraffe’s corpus (Fig. 4.7).

At Re0 = Re0II(Ha), this flow destabilises again resulting in periodic oscillations that

quickly become chaotic at slightly higher forcing.

4.2.2. Flow states forced through 4× 4 electrodes (Li = 0.03m)

The flow states that undergoes the 4 × 4 vortex array are mostly similar to those of

the 10 × 10 vortex array. Individual vortices in the 4 × 4 base flow however have a

transverse size of l⊥ ⋍ Li which is 3 times larger than in the 10 × 10 vortex array.

Again, a region of low Ha and a region of high Ha clearly stands out, but this time for

ranges of Ha. 1450 and Ha& 1450 respectively. Furthermore, we encountered rather

unexpected instability behaviour when Ha ≥ 3640. Lastly one should notice that flow

patterns presented thereafter are obtained from local electric potential measurements at

top (z = L) and bottom (z = 0) Hartmann wall in an area of 60 × 60mm2 spanned by

x ∈ [20, 80]mm and y ∈ [20, 80]mm (area enclosed by the cyan, dotted line Fig. 2.22).

Flow states similar to the 10× 10 forcing geometry for Ha< 3640

In this section we firstly describe the phase diagram of the 4× 4 vortex base flow for the

range Ha< 3640, where a high and low Ha region clearly stand out again (Fig. 4.8). And

secondly, we point to similarities of related flow states to those that appear when the base

flow is made of a 10× 10 vortex array (Sec. 4.2.1). It should be noted that values of the

critical parameter Re0I used thereafter to distinguish between steady and unsteady flow

regimes are different to those given in Sec. 4.2.1.

For Re0 <Re0I(Ha) the flow is steady and contours of iso-φw obtained at the top and

bottom Hartmann wall are topologically identical (Fig. 4.8a, b). They indicate a 4 × 4

array of alternatively rotating, almost quasi two-dimensional vortices, each with dimen-

sion l⊥ ⋍ Li = 0.03m and l‖ ⋍ L. In the region of low Hartmann numbers though, the

flow is clearly less intense in the vicinity of the top Hartmann wall, thus indicating the

presence of weak three-dimensionality that appears under the form of differential rotation

in individual vortices (Fig. 4.8b). In fact, similar observations have been made in steady

regimes when the flow is forced through the 10 × 10 electrode array (Sec. 4.2.1). The

range of high Ha in Fig. 4.8 however extends to much smaller values of Ha than in the

10 × 10 case. This implies that the larger vortices in the 4 × 4 array are less prone to
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Figure 4.8.: Phase diagram for Li = 0.03m giving the critical Reynolds numbers Re0I(Ha),
Re0III(Ha), Re

0
IV (Ha), Re

0
V (Ha) and Re0V I(Ha) vs. Ha and snapshots of iso−φw

lines, obtained at the bottom and top Hartmann walls. Flow regimes in low
and high Ha regions when Ha< 3640 are similar to those found for Li =
0.01mm (Fig. 4.1). The sudden change in the flow state for Ha> 3640 should
be regarded with some reservation as the physical meaning of this behaviour
is unclear. Note again that blue and red colours indicate the vortex rotation
in clockwise and anti-clockwise direction respectively.
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three-dimensional inertial effects.

The vortex array destabilises at the critical forcing Re0I(Ha) as a periodic oscillation of

base frequency fI appears in the spectrum of recorded electric potentials φw(x, y, z, t)

(Fig. 4.8 and Fig. 4.9a). fI varies with Ha, but we could not obtain a clear dependency

like the f ∽ Ha1/2 law found for fundamental frequencies at the destabilistation of the

10 × 10 array of quasi two-dimensional vortices. Related time series of iso−φw contours

however show periodic connection and disconnection of iso−φw lines in high Ha regimes

(1450 ≤ Ha ≤ 3640). This points again to the formation of quasi two-dimensional vortex

pairs (Fig. 4.8c, [62, 69]). The corresponding local control parameter R0
h =Re0I(Ha)/Ha

has the value 1.78 (note that the local parameter R0
h = 1.78 found here should not be

mistaken for the global parameter RS
h = 1.78 given in Sec. 4.2.1 for the 10 × 10 vortex

array). Since this value is about 10times larger than the control parameter Rh = 0.164

in the case of the 10× 10 vortex array it indicates that the larger quasi two-dimensional

vortices in the 4 × 4 array are more stable against two-dimensional inertial effects. Al-

though less obvious, it seems that the parallel walls have a stabilising effect on these larger

vortices too as the related global control parameter RS
h (4.1) has the value 2.36 and is

clearly greater than those found for an array of 6× 6 and 10× 10 quasi two-dimensional

vortices ([62] and Sec. 4.2.1 respectively).

In the low Ha regime and for the lowest case Ha= 364 though, the destabilisation of

the already weakly three-dimensional vortex array seem to be affected by strong three-

dimensional inertial effects. Although less clear, one might think that contours of iso-φw

obtained at both Hartmann walls are topologically not equivalent anymore (Fig. 4.8d).

While bottom iso-φw contours still indicate the square array of 4 × 4 vortices, the con-

tours obtained at the top seem to show paired vortices. In other words, we think that

these observations again point to strong three-dimensionality in form of partial vortex

pairing as observed for the 10 × 10 vortex array for Ha= 1822. The reason why this

effect occurs for the 4 × 4 vortex array only at much lower Ha= 364 possibly relates to

the scale-dependent Lorentz force which makes vortices with large l⊥ over a shorter time

τ2D(l⊥) quasi two-dimensional than vortices with small l⊥ (1.40).

In Sec. 4.2.1 we have also demonstrated that three-dimensional inertial effects might be

responsible for flow re-stabilisation and even can create steady, strongly three-dimensional

Giraffe-like structures. Although neither of these interesting effects could be rediscovered

in the low Ha range of the 4× 4 vortex array it does not mean that they could not exist.

It is rather possible that we have missed them since we did not increase the forcing Re0

much above the critical value Re0I . It would therefore be important to perform further

measurements in this regard.
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Figure 4.9.: Spectra of time-dependent electric potential φw(x, y, z, t) at parameters a)
Re0 &Re0I and Ha= 3280, b) Re0 &Re0III and Ha= 5470, c) Re0 &Re0IV and
Ha= 5470. These spectra are obtained along the same magnetic field line
B0ez at top and bottom Hartmann wall, on electric potential probes that
are located near the centre of the walls (note that spectra obtained at other
location yield qualitatively similar results). The amplitude A of oscillations
with fundamental frequency fI , fIII and fV I is normalised by Re0νB0 =
4Γ0B0 with Γ0 = I/(nπ(σνρ)1/2) and n = 16. Again, the appearance of the
fundamental frequencies fV I for regimes where Ha> 3640 has to be regarded
with reservation as the physical meaning is unclear. This observation requires
further experimental validation.

Peculiar flow states for Ha> 3640

In the high Ha range 1450 < Ha < 3640, the initially steady flow of 4 × 4 quasi two-

dimensional vortices destabilises through periodic formation of vortex pairs at R0
h = 1.78.

For even higher Ha> 3640 however, the phase diagram Fig. 4.8 changes abruptly and the

overall picture becomes peculiar. Even if we are not able to give a clear physical inter-

pretation related to these unexpected observations, we still present them, also pointing

to the fact that they would need further, important experimental investigation.

Lastly, one should notice that indexes of critical values Re0III , Re
0
IV , Re

0
V defined there-

after are not related to those used in Sec. 3.2 to distinguish between different flow regimes

in the shallow cylindrical container.

For Re0 <(min|Re0III , Re0V I |) the flow is steady (Fig. 4.8). Related contours of iso−φw

117



show the same topology at the top and bottom Hartmann wall as in steady regimes

when 1450 <Ha< 3640, thus indicating the 4× 4 array of quasi two-dimensional vortices

(Fig. 4.8a).

At Re0 &Re0III(Ha), periodic, quasi two-dimensional vortex pairing sets in (see Fig. 4.8 and

related flow patterns in Fig. 4.8e). Accordingly, corresponding spectra of recorded elec-

tric potentials φw(x, y, z, t) exhibit a clear peak at fundamental frequency fIII (Fig. 4.9b).

These observations are indeed similar to those that have been observed when the 4 × 4

vortex array destabilises at Re0I(Ha) for 1450 <Ha< 3640. But, although Re0III(Ha) lays

on a line with slope 1.62, not very different to the value 1.78 observed for Re0I(Ha), it

is shifted to a lower value than Re0I(Ha), by ∆Re0 of order or 2000 (Fig. 4.8). In other

words, the quasi two-dimensional flow destabilises at much lower rotation rate of individ-

ual vortices in the 4× 4 array when Ha> 3640 than for the range 1450 <Ha< 3640.

The vortex pairing process continues mostly periodically with fundamental frequency fIII

until it almost stops for Re0 ≥Re0IV (Fig. 4.8). Accordingly, the amplitude of the corre-

sponding oscillation A(fIII) obtained at the top and bottom Hartmann wall is very small

(Fig. 4.9c). Related times series of iso−φw(t) contours show merged iso−φw lines on top

and bottom Hartmann wall, indicating almost quasi-two-dimensional and nearly stabilised

vortex pairs (snapshot in Fig. 4.8f). In this flow regime one observes also periodic oscilla-

tions of higher fundamental frequency fV I > fIII and amplitude A(fV I) > A(fIII) in time-

dependent signals φw(x, y, z, t) (Fig. 4.9c). In fact, these ”high” frequency oscillations oc-

cur for each set of Ha in the range Ha> 3640 when the forcing Re0 reaches the critical value

Re0V I(Ha). Fig. 4.8 further shows that Re0V I(Ha) ≈Re0IV (Ha) when 3640 <Ha. 4740, but

Re0V I(Ha) <Re0IV (Ha) and even Re0V I(Ha) <Re0III(Ha) for Ha& 4740. In other words,

electric potential oscillations with ”high” frequency fV I can not exclusively be linked to

the appearance of almost steady vortex pairs.

At Re0 =Re0V the vortex pairing process resumes and the flow quickly becomes chaotic

for slightly higher forcing Re0 >Re0V .

As already mentioned, the reader should regard the above presented observations with

some reservation, as we do in fact. The sudden change in the instability behaviour com-

pared to cases where Ha< 3640 indeed raises many questions. Up to now, we neither have

a physical explanation why the 4× 4 vortex array destabilises at much lower forcing than

expected nor can we relate the appearance of ”high” frequency oscillations to any phys-

ical effect with certainty. One may however speculate that these oscillations correspond

to small, quickly rotating vortices that have been generated in the vicinity of the side

walls due to boundary layer separation as in our other experiment (Sec. 3.2). In order to

confirm this and to be able to explain the overall instability behaviour in this Ha region

one would need to perform further important experimental and numerical work.

118



4.3. Appearance of three-dimensionality in chaotic and

turbulent flow regimes

In this section we firstly explain how we obtain relevant quantities that characterize the

appearance of weak and strong three-dimensionality in flow regimes that are chaotic or

turbulent. And secondly, using these quantities we describe the link between inertia and

the appearance of three-dimensionality.

4.3.1. Quantities that characterize the appearance of

three-dimensionality

To single out the mechanism that explains the appearance of three-dimensionality in

chaotic or turbulent flow regimes we use spatially averaged correlations 〈C ′
1〉 and 〈C ′

2〉
based on local electric potential gradients and the true interaction parameter Nt(Li)

(1.39) built on the injection scale Li. Thereafter we explain how we obtain sets of these

quantities for injection scales Li ∈ {0.01, 0.03}m, Reynolds numbers Re0 ∈ [0, 1.3 × 105]

and Hartmann numbers Ha∈ {1092, 1822, 3644, 7290, 10930, 14580, 18220}.

Spatially averaged correlations 〈C ′
1〉 and 〈C ′

2〉

In order to quantify the appearance of three-dimensionality and to distinguish between

weak and strong three-dimensionality we apply the correlation functions C1 and C2 as

defined in Sec. 2.2.3, to time dependent electric potential gradients obtained at the

bottom (z = 0) and top (z = L) Hartmann wall at locations (x, y). Since the mean

flow is negligible compared to flow fluctuations in chaotic or turbulent flow regimes,

the correlations C1 and C2 are built on fluctuations of the electric potential gradient

∇φ′
w(x, y, t) = ∇φw(x, y, t)−〈∇φw(x, y, t)〉t, more precisely on local gradients ∂yφ

′
w(x, y, t)

(note that correlations built on ∂xφ
′
w(x, y, t) yield quantitatively similar results). Accord-

ingly we term these correlations C ′
1 and C ′

2. In order to get a more global representation

of three-dimensionality we determine their spatial averages 〈C ′
1〉 and 〈C ′

2〉 which are built

on correlations locally obtained on the 10× 10 grid of measurement points located in the

centre of the Hartmann wall (Fig. 2.22). Our flow forcing mechanism however induces

intrinsically some three-dimensionality in the vicinity of individual injection electrode as

can be seen from Fig. 4.10. Since we do not know how this local phenomenon might affect

our analysis on the global appearance of three-dimensionality, we excluded correlations

obtained close to individual injection electrodes from spatial averages 〈C ′
1〉 and 〈C ′

2〉 (for
more details read caption of Fig. 4.10).

Lastly one should mention that the ratio rS/N between the effective amplitude (RMS)

of fluctuations ∂yφ
′
w and that of the noise is of the order of 102 in chaotic flow regimes.
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Figure 4.10.: Spatially averaged correlations 〈C ′
1(r)〉r vs. distance r to an injection elec-

trode. Values of 〈C ′
1(r)〉r are built on correlations obtained at the 10×10 grid

of electric potential probes in the centre of the Hartmann wall (Fig. 2.22),
at fixed distances r ∈ [0, 6.25]mm and r ∈ [0, 20.35]mm from individual
injection electrodes for: a) forcing geometry 10 × 10, Re0 = 39240 and
Ha∈ {18220, 10930} and b) forcing geometry 4 × 4, Re0 = 74630 and
Ha∈ {10930, 1822} respectively. Correlations obtained at measurement
points less than 3.5mm or 10.1mm from individual electrodes, for forcing
geometry 10 × 10 or 4 × 4 respectively, are excluded from spatial averages
〈C ′

1〉, 〈C ′
2〉 and 〈C ′

1(fp)〉. This eliminates the local influence of the flow forc-
ing mechanism on the global appearance of three-dimensionality analysed in
Sec. 4.3.2 and Sec. 4.4 respectively.

This implies that the error on local correlations C ′
1 and C ′

2 is not larger than 1% (see

appendix A).

The true interaction parameter Nt

To assess the link between inertia and the appearance of three-dimensionality we plot

spatially averaged correlations 〈C ′
1〉 and 〈C ′

2〉 thereafter in Fig. 4.11 against the true

interaction parameter Nt(Li) which is built on the injection scale Li. According to (1.39)

Nt(Li) reads:

Nt(Li) =
σB2

0Li

u′ρ

(

Li

L

)2

=
Ha2

Re

(

Li

L

)4

=
τu′(Li)

τ2D(Li)
. (4.3)

Nt(Li) measures the relative influence of Lorentz to inertial forces in vortices with trans-

verse length scale l⊥ = Li ∈ {0.01, 0.03}m. The quantity u′ in the Reynolds number

Re= u′Li/ν and the vortex turnover time τu′(Li) = Li/u
′ in (4.3) is a typical velocity

built on the spatial average of local RMS’s of corresponding moduli |∂φ′
w(x, y, 0, t)| =

(∂yφ
′2
w(t) + ∂xφ

′2
w(t))

1/2 obtained at the bottom Hartmann wall:

u′ =
〈〈|∂φ′

w(t)|2〉
1/2
t 〉

B0

. (4.4)
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To get u′, we firstly determine local values of |∂φ′
w(x, y, 0, t)| by interpolating between

measurement points of the 10×10 grid in the centre region (Fig. 2.22) to obtain a 20×20

grid with spacing 1mm between points in the region spanned by x = [37.5 57.5]mm and

y = [42.5 62.5]mm. And secondly, we calculate the corresponding spatial average to get

the quantity 〈〈|∂φ′
w(t)|2〉

1/2
t 〉.

4.3.2. Appearance of three-dimensionality

In this section we single out the mechanism that explains how the subtle interplay between

inertial and Lorentz forces produces weak and strong three-dimensionality in chaotic and

turbulent flow regimes. To this end, we plot spatially averaged correlations 〈C ′
1〉, 〈C ′

2〉
vs. the true interaction parameter Nt(Li) in Fig. 4.11. At this point it is also important

to recall again that values of 〈C ′
1〉 below unity reflect strong three-dimensionality, while

〈C ′
2〉 is smaller than unity whenever either weak or strong three-dimensionality is present

(Sec. 2.2.3).

Remarkably, the correlation diagram in Fig. 4.11 shows that all measurement points

collapse into two single curves for 〈C ′
1(Nt(Li))〉 and 〈C ′

2(Nt(Li))〉. This proves that either
form of three-dimensionality (weak and strong) we detect here is exclusively of inertial

nature. Both 〈C ′
1〉 and 〈C ′

2〉 decreases with decreasing Nt(Li) as stronger inertia gives

rise to perturbations that are less effectively damped by the Lorentz force. Fig. 4.11

however shows that 〈C ′
2〉 < 〈C ′

1〉 for all values of Nt(Li). This implies that the flow is

always less intense in the vicinity of the bottom than on the top Hartmann wall, thus

indicating again the presence of weak three-dimensionality that appears under the form

of differential rotation in individual vortices.

The dynamics of this weakly three-dimensional flow however, is still mostly two-dimensional

when 〈C ′
1〉 ⋍ 1. This is the case in regime I of the correlation diagram in Fig. 4.11, in the

range of high values of Nt(Li). Accordingly, the topology of contours of iso-φw at the bot-

tom (z = 0) and top (z = L) Hartmann wall are almost identical and corresponding power

spectral density (PSD) of electric potential gradients ∂yφ
′
w overlap over the full frequency

range (Fig. 4.11d). Towards the transition between regime I and regime II in Fig. 4.11,

Nt(Li) approaches values close to unity and 〈C ′
1〉 noticeably decreases, indicating the ap-

pearance of strong three-dimensionality. Since the correlation factor 〈C ′
1〉 is about 0.93 at

this transition and still very close to unity, the appearance of strong three-dimensionality

remains small and the flow is still nearly quasi two-dimensional. Although small, the

appearance of strong three-dimensionality at the transition between those regimes can be

clearly seen when inspecting related topologies of iso-φw contours. They are not identical

anymore and one clearly identifies small structures of size l⊥ that are generated near the
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Figure 4.11.: Top: Spatially averaged correlations 〈C ′
1〉 and 〈C ′

2〉 vs. the true interaction
parameterNt(Li) =Ha2/Re (Li/L)

4 where the Reynolds number Re= u′Li/ν
is based on the typical velocity u′ obtained at the bottom Hartmann wall
and the injection scale Li ∈ {0.01, 0.03} m. Bottom: snapshots of iso- lines,
(a)-(d) and corresponding Power Spectral Density of iso-∂yφ

′
w at bottom

(red) and top (green) Hartmann wall, normalized by (U0B0)
2. Attention

should be paid too to the threshold between nearly quasi two-dimensional
flow regimes (”I”) and strongly three-dimensional flow regimes (”II”) that is
defined where 〈C ′

1〉 ≈ 0.93. It is marked by the curve Re03D(Ha) in the (Ha,
Re0) parameter space in Fig. 4.1 for Li = 0.01m. It should further be noted
that labels ”I”, ”II” and ”III” have nothing in common with those used to
distinguish between flow regimes in our small experiment in Sec. 3.2.

122



bottom Hartmann wall but do not extend to the top Hartmann wall (Fig. 4.11c). Larger

vortices however remain nearly quasi two-dimensional as they are almost not affected by

three-dimensional inertia (Fig. 4.11c). This suggests defining a critical or cutoff vortex

size lc⊥ which separates smaller, strongly three-dimensional vortices from larger, mostly

quasi two-dimensional ones. Because of the great precision with which time dependent

electric potential gradients ∂yφw are recorded, it is however easier to identify a related

cutoff frequency fc that separates slow, almost quasi two-dimensional, large scale fluctu-

ations from fast, small scale, strongly three-dimensional ones (see the PSD in Fig. 4.11c).

In regime II where 0.42 . Nt(Li) . 4.5, 〈C ′
1〉 and 〈C ′

2〉 almost abruptly decreases with

Nt(Li) Fig. 4.11. This is cleary different to the evolution of 〈C ′
1〉 and 〈C ′

2〉 in regime I

and one identifies a threshold that separates regime I from II. This threshold is plotted

in the (Ha, Re0) parameter space at the non-dimensional injected electric current Re03D
in Fig. 4.1, for injection scale Li = 0.01m . Contours of iso-φw in Figs. 4.11c,b in this

regime II illustrate that the strong decrease of 〈C ′
1〉 and 〈C ′

2〉 is induced by larger and

larger structures that are strongly three-dimensional as the Lorentz force becomes less

and less efficient against three-dimensional inertia. Accordingly, the cutoff frequency fc

shifts toward lower frequencies in the spectrum Fig. 4.11b.

A last regime, regime III, has been identified for Nt(Li) < 0.42 where signals are almost

uncorrelated. Three-dimensionality still increases when Nt(L1) decreases, though more

slowly than in the previous regime II. Related PSD in Fig. 4.11a show that strongly

three-dimensional inertia progressively contaminates the lowest frequency range so that

fc becomes very small. Accordingly, contours of iso-φw in Fig. 4.11a illustrate that al-

most no structure extends to the top Hartmann wall so hardly any flow is remaining

there. In other words, the flow in the cubic container is mostly three-dimensional and

quasi two-dimensionality might appear only in vortices that are larger than the box size L.

In summary, one may picture the transition from a mostly quasi two-dimensional flow

to a strongly three-dimensional flow through sequent regimes I, II and III by the appear-

ance of strong three-dimensionality in vortices with transverse size l⊥ that is, respectively

smaller than the injection scale Li, about the injection scale Li and larger than the injec-

tion scale Li.
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4.4. Frequency-selective strong three-dimensionality

In Sec. 4.3.2 we have identified a cutoff frequency fc which is related to a critical vortex

size lc⊥ that distinguish between vortices of size l⊥ that are strongly three-dimensional

(l⊥ . lc⊥) and those that are mostly quasi two-dimensional (l⊥ & lc⊥). Accordingly,

fc separates slow, nearly quasi two-dimensional fluctuations from fast, strongly three-

dimensional ones in the spectrum (Fig. 4.11a-c). In this section we single out the link

between this frequency selective strong three-dimensionality and inertia by plotting fc(Li)

against the true interaction parameter Nt(Li) for injection scales Li ∈ {0.01, 0.03}m. It

should be noted that related values of fc(Li) are obtained using the technique explained

in appendix B.

Fig. 4.12 shows that the link between frequency selective strong three-dimensionality

and inertia satisfies the law,

fc ⋍ 1.7τ−1
u′ N

2/3±0.03
t (Li), (4.5)

to a great precision.

This important law provides a clear estimate for the minimum frequency fc of fluctuations

in the flow that are strongly three-dimensional. It is also in the spirit of [64]’s heuristic law

that gives the condition for the minimum vortex size lc⊥ that is still quasi two-dimensional

in a Hartmann wall-bounded, turbulent flow (Sec. 1.3.2). Using (1.98) and the superscript

()c instead of ()q2D, [64]’s law writes expressed in terms of the true interaction parameter

Nt(Li):

lc⊥ >> LiN
−1/3
t (Li). (4.6)

Since we could not determine lc⊥ from our measurements because of the limit in spatial

resolutionit still remains an interesting and important task for future work to prove the

above heuristic law of [64] experimentally.

Fig. 4.12 shows too that cutoff frequencies fc could be obtained for all values of the

true interaction parameter Nt(Li), even in flow regimes where Nt(Li) is large and signals

are almost fully correlated (see regime I in Fig. 4.11). Firstly, this points to the high

precision with which values of fc are determined using the frequency-filter-technique ex-

plained in the appendix B. And Secondly, even more important, it indicates that strongly

three-dimensional fluctuations appear not abruptly, but, like weak three-dimensionality,

progressively when inertial forces becomes increasingly more significant compared to the

Lorentz force. However, whether the latter finding is a general physical mechanism at

the transition between quasi two-dimensional and strongly three-dimensional flows needs

further experimental and numerical confirmation.
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Figure 4.12.: Cutoff frequency fc, normalized by the injection scale turnover frequency
τ−1
u′ (Li) vs. Nt(Li)

Lastly, since the state of turbulent fluctuations, either strongly three-dimensional or quasi-

two-dimensional depends only on Nt = τ ′u(l⊥)/τ2D(l⊥), and therefore on the times scales

τu′ and τ2D, a similar law to our experimental law fc ∽ N
2/3
t should hold too in other,

non-MHD flows with a tendency to two-dimensionality, albeit with a different expression

for τ2D ([29]).
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4.5. Conclusion

We performed a magnetohydrodynamic (MHD) experiment to single out the mechanism

that explains how and under which form three-dimensionality appears from initially quasi

two-dimensionally, in flows bounded by physical walls. Answering this fundamental ques-

tion is crucial not only from the scientific point of view, but bears too critical consequences

in practical situations: in liquid metal heat exchangers or metal casting processes, for in-

stance, where three-dimensional flows are preferable to quasi two-dimensional ones to

enhance heat and mass transport and favour homogeneous mixing.

Our experiment was purposely designed to create individual vortices of size l⊥ that can

either assume a quasi two-dimensional or a three-dimensional state, depending on whether

their two-dimensionalisation time τ2D(l⊥) is much smaller or comparable resp. larger to

their inertial time scale τU(l⊥).

The flow in a liquid metal filled, cubic container subject to the magnetic field B0ez

was forced by injecting constant electric current I from one wall perpendicular to B0ez

(Hartmann wall) through electrodes arranged in a square array with spacing Li and al-

ternatively connected to either pol of a DC power supply. For strong fields B0 and weak

electric current I this forcing is known to produce a base flow of a steady, quasi two-

dimensional vortex array with individual vortices of size l⊥ ≈ Li rotating in alternate

direction along B ([62]). Depending on the strength of I and B0, respectively expressed

non-dimensionally by the Hartmann number Ha and Reynolds number Re0, the flow un-

dergoes different states in which weak and strong three-dimensionality in individual flow

structures of size l⊥ appeared too, always when corresponding three-dimensional inertial

forces become of comparable strength with the Lorentz force (τ2D(l⊥) & τU(l⊥)). Electric

potentials φw measured locally on either Hartmann walls monitor both flow characteristics

outside thin Hartmann layers that shape along the Hartmann wall and the appearance

of three-dimensionality.

For high Ha and in steady regimes we found that the flow assumes the expected square

array of quasi two-dimensional, alternatively rotating vortices [62]. For all values of Ha

in that range this flow destabilises at the same critical parameter R0
h =Re0/Ha= cst. into

typical, periodic vortex pairing that occurs along the field B over the full container height

([62, 69]). For low Ha however, three-dimensional inertial forces are more significant so

that the steady vortex array is not strictly quasi two-dimensional anymore, but subject

to a weak form of three-dimensionality that appears as differential rotation in individ-

ual vortices. The vortex pairing process still occurs over the full box height when this

weakly three-dimensional vortex array destabilises, but at critical parameters R0
h(Ha) that

depends on Ha. For very small Ha though, we identified the appearance of strong three-
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dimensionality as the pairing process at critical parameters R0
h(Ha) appears only partially

along the field B. Remarkably in this low Ha range, at forcing slightly higher than critical

values of R0
h(Ha) the vortex pairing process stops abruptly resulting into either steady,

weakly three-dimensional vortex pairs for intermediate Ha or, most spectacularly, in the

appearance of steady, strongly three-dimensional, Giraffe-like structures for a very small

Ha.

To quantify the appearance of weak and strong three-dimensionality in chaotic and tur-

bulent flow regimes we analysed correlations of fluctuations of electric potential gradients

∂yφ
′
w(t), between pairs of measurement points aligned opposite each other on top and bot-

tom Hartman wall. How either form of three-dimensionality are linked to inertial forces

was singled out by plotting spatially averaged correlations against [68]’s true interaction

parameter Nt(Li) built on vortices with size l⊥ = Li. This showed us that the effect of

inertia induced always weak three-dimensionality under the form of differential rotation

in individual vortices, but progressively less towards large values of Nt(Li). Strong three-

dimensionality in individual vortices with τ2D(l⊥) & τU(l⊥) occurs also less towards large

Nt(Li). This indicates that the critical vortex size lc⊥ that separates small, strongly three-

dimensional vortices (l⊥ . lc⊥) from large, mostly quasi two-dimensional ones (l⊥ & lc⊥)

increases also with Nt(Li). A related cutoff frequency fc(Nt) has been identified from

corresponding spectra of fluctuations ∂yφ
′
w(t) separating respectively fast, strongly three-

dimensional fluctuations from large, mostly quasi two-dimensional ones. The link between

inertial forces and this frequency-selective strong three-dimensionality could be quantified

by the important law fc ∽ N
2/3
t , in the spirit of [62]’s heuristic law lc⊥ ∽ N

−1/3
t . The law

fc ∽ N
2/3
t may also apply to other flows with tendency to two-dimensionality such as

stratified and rotating flows which appear in atmospheres and oceans.
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General conclusion

The physics of magnetohydrodynamic (MHD) that imposes tendency to two- dimension-

ality in liquid metal flows is of general interest. Since rotating or stratified flows in

geophysics and astrophysics have the same tendency, it helps understanding them by

studying fundamental MHD problems at the laboratory scale. MHD effects are impor-

tant too in practical applications involving molten metal like in the steel casting industry

or in the blankets of future nuclear fusion reactors. In all these situation it is crucial, but

often unclear when and under which form inertial forces induce three-dimensionality as

well as how flows are affected by the presence of walls.

In this dissertation we addressed the above key issues by performing two MHD labo-

ratory experiments at the fundamental level. Both experiments featured a liquid metal

flow subject to a homogeneous magnetic field B0ez and bounded by physical walls. In the

smaller one of these experiments the flow was confined by the walls of a shallow, cylindrical

container of height 0.005m and the field B0ez pointed along the cylinder axis. This design

favours quasi two-dimensional flows, hence flows that are invariant everywhere across the

shallow fluid layer (i.e along B0ez), except in thin Hartmann layers that develop along

the walls orthogonal to the field (Hartmann walls).

Unlike this experiment aimed mostly at quasi two-dimensional flows, our other, larger

experiment was designed not shallow but cubic with inner edge 0.1m, to promote the

appearance of three-dimensionality too. In both experiments, the liquid metal was forced

by injecting DC electric current locally, through electrodes that are embedded in one

Hartmann wall. This created a base flow made of a vortex pair in our small and a

square array of vortices in our large scale experiment as in [62]. Flow characteristics at

different intensities of the forcing and magnetic field as well as the appearance of three-

dimensionality were determined by measuring the electric potential φw on the Hartmann

walls that confined the liquid metal from the top and from the bottom. In this disser-

tation we distinguish between a weak and a strong form of three-dimensionality. Weak

three-dimensionality implies that corresponding flow structures are almost strictly quasi

two-dimensional but subject to differential rotation along B0ez, whilst strongly three-

dimensional flow structures do not anymore extend from the bottom to the top wall.

The mostly quasi two-dimensional flow in the shallow container was found to undergo

a sequence of supercritical bifurcations to turbulence, triggered by boundary layer sepa-

ration from the circular wall at the back of the initial vortex pair. Interestingly, subsequent

flow regimes bore also some analogies to those that appear in flows around a cylindrical
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obstacle [28]. To shed more light into these analogies however, it calls now for further

experimental and theoretical analysis. This applies also to observations made at the onset

of the last identified flow regime ”V” where the turbulent flow, still mostly quasi two-

dimensional, brutally changed its character and experienced a sudden extra dissipation.

We suggested that the extra dissipation might be linked to the transition from a laminar

to a turbulent Hartmann layer. Furthermore, we provided first evidence for the appear-

ance of weakly and strongly three-dimensional flow structures in the otherwise mostly

quasi two-dimensional flow by calculating correlations between fluctuations of the elec-

tric potential gradient ∂yφ
′
w obtained on the same magnetic field line, on top an bottom

Hartmann walls.

At this point we shall recall again that we initially aimed at using this experiment for

test purposes only. But thanks to its further important development we could use it too

to study the above interesting MHD effects.

The main task of this dissertation was however to clarify experimentally how the in-

terplay between inertia and the Lorentz force induces three-dimensionality in complex,

wall-bounded MHD flows where the presence of Hartmann layers precludes strict two-

dimensionality. We answered this important question by analysing a vortex array in a

cubic container where we controlled the strength of inertia and Lorentz force respectively

by the intensity of the forcing and the imposed magnetic field B0ez. If the intensity of

the latter was high, the forcing produced nearly quasi two-dimensional vortices in steady

and slightly unsteady regimes similar to what [62] observed. However, in regimes where

the field B0ez was small, the Lorentz force could not maintain quasi two-dimensionality.

Accordingly, inertial forces induced weak and strong three-dimensionality in individual

vortices, manifesting itself most spectacularly in the appearance of steady, Giraffe-like flow

structures (Fig. 4.7). The link between inertia and the appearance of three-dimensionality

in chaotic and turbulent flow regimes was even more subtle. Simply speaking, the effect of

inertia selected small, quickly rotating flow structures by making them both weakly and

strongly three-dimensional, whilst large, slowly rotating flow structures remained nearly

quasi two-dimensional as mostly controlled by the effect of the Lorentz force. In this re-

gard probably most importantly, we could quantify this selecting mechanism by a related

cut-off frequency fc that separates quasi two-dimensional from strongly three-dimensional

flow fluctuations in the frequency spectrum according to the law fc ∽ Nt(Li)
2/3, Nt being

the true interaction parameter based on the vortex injection scale Li ([68]).

The above results indeed show that ”only” by the use of electric potential measurements

on either Hartmann walls we were able to propose an excellent, experimental answer to

the question of how three-dimensionality appears in wall-bounded MHD flows. The shape

of corresponding three-dimensional flow structures between the two Hartmann walls re-

mained however unclear so that this opens now the scope for further research. To assess
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this issue and to refine our picture of the appearance of three-dimensionality it requires

important bulk measurements, to obtain velocities u⊥(z) and uzez. Intrusive electric po-

tential measurements for instance, or too acoustic waves emitted by ultrasound probes

([9]) could provide these three-dimensional information of the flow. Corresponding mea-

surement systems may be implemented in a new side plate that, because of the modularity

of the experiment, can be swapped easily with another one previously used in the set-up.

Before however performing such difficult bulk measurements one may already shed some

light into flow region between either Hartmann walls by analysing recorded sets of electric

potentials measured on walls parallel to the imposed field B0ez (Fig. 2.22). This might

give some insight into the shape of flow structure near the wall outside the parallel layer.

Lastly we shall recall that the results of both the small scale and the large experiment have

been recently published in ”Experiment on a confined electrically driven vortex pair” [28]

and ”Appearance of three-dimensionality in wall-bounded MHD flows” [29] respectively.
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[7] P. Bergé, Y. Pomeau, C. Vidal, and David Ruelle. Order within chaos: towards a

deterministic approach to turbulence. John Wiley & Sons Inc, 1984.

[8] G. G. Branover. Resistance of magnetohydrodynamic channels. Magnetohydrody-

namics, 3:1–11, 1967.

[9] D. Brito, H. C. Nataf, P. Cardin, J. Aubert, and J. P. Masson. Ultrasonic doppler

velocimetry in iquid gallium. Exp. Fluids, 31:653–663, 2001.

[10] P. A. Davidson. The role of angular momentum in the magnetic damping of turbu-

lence. J. Fluid Mech., 336:123–150, 1997.
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[54] A. Pothérat, J. Sommeria, and R. Moreau. An effective two-dimensional model for

MHD flows with transverse magnetic field. J. Fluid Mech., 424:75–100, 2000.
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A. Influence of noise on signal

correlations

Three-dimensionality in chaotic and turbulent flow regimes is quantified using the cor-

relation functions C1(ST (t), SB(t)) and C2(ST (t), SB(t)) as shown in Sec. 2.2.3. Though

filtered to attenuate background electronic noise, signals ST (t) and SB(t) still contain noise

of about ⋍ 2µV peak to peak which is mostly internal noise generated by the measure-

ment system. The noise induces an error in values of C1(ST (t), SB(t)) and C2(ST (t), SB(t))

which we shall estimate thereafter.

Measured signals ST (t) and SB(t) can be decomposed as follows:

ST (t) = S0
T (t) +NT (t) and SB(t) = S0

B(t) +NB(t) (A.1)

where S0
T (t) and S0

B(t) are flow related, time-dependent quantities while NT (t) and NB(t)

represent the noise captured in signals obtained at the bottom and top respectively. Com-

bining (A.1) with (2.6) yields respectively:

C1 =

k
∑

i=0

[

S0
B(ti) +NB(ti)

][

S0
T (ti) +NT (ti)

]

√

√

√

√

k
∑

i=0

[

S0
B(ti) +NB(ti)

]2 n
∑

i=0

[

S0
T (ti) +NT (ti)

]2

and,

C2 =

k
∑

i=0

[

S0
B(ti) +NB(ti)

][

S0
T (ti) +NT (ti)

]

k
∑

i=0

[

S0
B(ti) +NB(ti)

]

(A.2)

In the following we restrict our analysis to the correlation function C1, but the same ap-

proach applies also to the function C2.

We assume here that flow related quantities and the noise generated by the measurement

system are intrinsically not correlated to each other. This implies that for large enough
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number of measurement samples
k
∑

i=0

S0
B(ti)NB(ti) ⋍

k
∑

i=0

S0
T (ti)NT (ti) ⋍

k
∑

i=0

S0
B(ti)NT (ti) ⋍

k
∑

i=0

S0
T (ti)NB(ti) ⋍ 0 and (A.2) modifies into:

C1 =

k
∑

i=0

S0
B(ti)S

0
T (ti) +

k
∑

i=0

S0
B(ti)S

0
T (ti)

√

√

√

√(1 + αT + αB + αTαB)
k
∑

i=0

(NB(ti))
2

k
∑

i=0

(NT (ti))
2

(A.3)

where αT =
k
∑

i=0

(NT (ti))
2/

k
∑

i=0

(S0
T (ti))

2 is the ratio between the effective amplitude (RMS)

of the noise and the signal respectively near the top wall and, accordingly

αB =
k
∑

i=0

(NB(ti))
2/

k
∑

i=0

(S0
B(ti))

2 the ratio near the bottom wall. Using Taylor series the

term 1/
√

(1 + αT + αB + αTαB) can be approximated to (1− (αT +αT +αTαB)/2), and,

since αTαB << αT , αB relation (A.3) can be simplified into:

C1 =

(

k
∑

i=0

S0
B(ti)S

0
T (ti)

√

√

√

√

k
∑

i=0

(S0
B(ti))

2

k
∑

i=0

(S0
T (ti))

2

+

k
∑

i=0

NB(ti)NT (ti)

√

√

√

√

k
∑

i=0

(S0
B(ti))

2

k
∑

i=0

(S0
T (ti))

2

)

(

1− αB + αT

2

)

+O
(

α2
T , α

2
B, αTαB

)

(A.4)

where the first term on the right denotes the signal correlation C0
1(S

0
B(t), S

0
T (t)) that is

unaffected by the noise. The second term in (A.4) quantifies the correlation between the

noise. Since cross channel noise is a well known effect in electronics we can not exclude

this effect from our analysis.When further simplifying relation (A.4) and dropping second

order terms it yields:

C1 = C0
1

(

1− αB + αT

2
+

k
∑

i=0

NB(ti)NT (ti)

k
∑

i=0

S0
B(ti)S

0
T (ti)

)

(A.5)
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Accordingly, when applying the above approach also to C2(ST (t), SB(t)) one finds:

C2 = C0
2

(

1− αB +

k
∑

i=0

NB(ti)NT (ti)

k
∑

i=0

S0
B(ti)S

0
T (ti)

)

(A.6)

The last two terms in the brackets in relations (A.5) and (A.6) correspond to the relative

error on correlations C1 and C2 induced by the presence of noise. On the one hand, C1

and C2 are affected by ”signal to noise” ratios rS/N = 1/αB and rS/N = 2/(αB + αT )

respectively. If rS/N is small, for instance rS/N = 5, it induces a maximal error of about

20% in the correlation factor, provided that the noise itsself is uncorrelated and the third

term in relations (A.5) and (A.6) vanishes. On the other hand, if the noise NT (ti) and

NB(ti) between channels is correlated it would artificially increases the correlation be-

tween signals ST (t) and SB(t).
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B. Determination of the cutoff

frequency fc

In Sec. 4.3.2 we have identified a cutoff frequency fc that separates quasi two-dimensional

fluctuations from strongly three-dimensional ones (Fig. 4.11c, Fig. 4.11b and Fig. 4.11a).

In this section we explain how we obtain fc for or a given true interaction parameter

Nt(Li).

In order to calculate fc precisely, we firstly apply a low-pass filter with variable cut-

off frequency fp in the range ∈ [0.01, 20]Hz, to time series of local electric potential

gradients ∂yφ
′
w(x, y, 0, t) obtained at the bottom Hartmann wall. This gives us a set

of frequency filtered signals ∂yφ
′filt
w (x, y, 0, t, fp) (note that for each set we vary fp in

steps ∆fp ∈ [0.01, 0.1] Hz). Secondly, for each value of fp we calculate the local cor-

relation factor C ′
1(fp) between the frequency filtered signal ∂yφ

′filt
w (x, y, 0, t, fp) and the

unfiltered signal obtained along the same magnetic field line on the top Hartmann wall

∂yφ
′
w(x, y, L, t) (recall again that the correlation function C ′

1 quantifies the appearance of

strong three-dimensionality). We then spatially average local functions C ′
1(fp) taking the

same measurement points on which spatial averages 〈C ′
1〉 and 〈C ′

2〉 in Sec. 4.3.2 are based

on (see also explanations to Fig. 4.10). This gives us the more global function 〈C ′
1(fp)〉

shown for Nt(Li) = 0.12 and Nt(Li) = 692 in Fig. B.1 and Fig. B.2 respectively. The

cutoff frequency fc corresponds to the value of fp where the function g(fp) = 〈C ′
1(fp)〉 is

maximum. Power Spectral Density of related frequency filtered and unfiltered quantities

plotted in Figs. B.1a, b, c, d show indeed that this maximum evaluates fc very well.

For low-pass filter frequencies fp < fc, strongly three-dimensional but also fraction of

quasi-two-dimensional fluctuations are removed from the spectrum of ∂yφ
′filt
w (x, y, 0, t, fp)

(Fig. B.1b). Accordingly, the value of the corresponding correlation factor 〈C1(fp)〉 is

small (Fig. B.1). The function 〈C1(fp)〉 increases with increasing fp and reaches a maxi-

mum at fp ≈ fc where the spectrum of ∂yφ
′filt
w (x, y, 0, t, fp) contains quasi-two-dimensional

fluctuations only (Fig. B.1c). When further increasing the filter cutoff frequency in the

range fp > fc, one progressively adds strongly three-dimensional fluctuations to the bot-

tom signal ∂yφ
′filt
w (0, t, fp) and therefore the correlation factor 〈C1(fp)〉 decreases.

The above described technique applies still to flow regimes where the interaction parame-
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Figure B.1.: Determination of the cutoff frequency fc. Top: spatially averaged correla-
tion function 〈C ′

1(fp)〉 vs. cutoff frequency of the filter fp for our smallest
Nt(Li = 0.01m) = 0.12. 〈C ′

1(fp)〉 is built on local correlations between
frequency filtered bottom signals ∂yφ

′filt
w (x, y, 0, t, fp) and corresponding un-

filtered top signals ∂yφ
′
w(x, y, L, t). Bottom: Power Spectral Density of un-

filtered top signals and related bottom signals: a) unfiltered. b) filtered with
fp < fc. c) filtered with fp = fc = 0.14Hz. d) filtered with fp > fc. The
flow related cutoff frequency fc corresponds to the maximum of the function
〈C ′

1(fp)〉. Note that weak three-dimensionality that appear under the form of
differential rotation in individual vortices can not be noticed as corresponding
spectra are normalized by the their largest frequencies in the spectrum)

terNt(Li) is high. Flow fluctuations in such regimes are mostly quasi two-dimensional over

the full range of the frequency spectrum and the fraction of strongly three-dimensional

ones is almost negligible. Although the maximum of the function C ′
1(fp) is less noticeable

in such regimes, we could still identify a flow related cutoff frequency fc, even for our

highest Nt(Li) = 692 (Fig. B.2).
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Figure B.2.: Determination of the the cutoff frequency fc. Spatially averaged correlation
function 〈C ′

1(fp)〉 vs. cutoff frequency of the filter fp for our highest Nt(Li =
0.03m) = 692. Our precise analysis allows us to identify a cutoff frequency
fc, although the strongly three-dimensional part of the spectrum of flow
fluctuations is almost negligible.
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