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Abstract

In this thesis, we simulate the flow of an electrically conducting fluid past an obstacle placed

inside a duct under the influence of an externally applied magnetic field. Three different obstacles are

considered: a circular and a square cylinder spanning over the full height of the duct and a square

cylinder spanning over the half height of the duct. The magnetic field is oriented along the cylinder

axis and the duct is electrically insulating.

In a first stage of the thesis, we perform a parametric study over both Ha and Re in the case

where both Ha ≫ 1 and N ≫ 1 with 2D simulations using the quasi-2D flow model by [165].

In particular, we provide the first explanation of the collapse of the regular Kármán vortex street

observed experimentally by [180]. We also derive two different scaling laws linking the evolutions of

the flow coefficients and either Re/Ha or Re/Ha0.8.

The second phase of the thesis is dedicated to the development of a 3D MHD capable code to

solve the flow equations with the inductionless approximation. This code is used to investigate the 3D

MHD flow past a truncated square cylinder in a duct. We explain the different stages of elaboration

of our code and validate its performances to MHD duct flows and cylinder wakes. We also implement

a wall function at the interface between the Hartmann layers and the bulk flow.

The non-MHD flow past the truncated cylinder is simulated for 10 ≤ Re ≤ 400. In particular,

the early stages of the unsteady flow regime is characterised by a regular symmetric procession of

hairpin vortices. We explain the formation mechanism of these vortices and its evolution when Re

is increased. Finally, we investigate the MHD flow past the electrically insulating truncated cylinder

at Ha = 100 and 200 for Re up to 1000. The flow dynamics is strongly 2D with the presence of

a Hunt’s wake at very low Re. The unsteady regime leads to the development of a Kármán vortex

street. Switching to a perfectly conducting truncated square cylinder enhances the braking of the

flow by the Lorentz force in the region above the cylinder tip.
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Introduction

Back in January 1832, Michael Faraday set up a rudimentary magnetohydrodynamic power generator.

He placed two copper electrodes in the river Thames in London and measured a voltage between them.

Although the demonstration was not fully successful, Faraday thus demonstrated that the motion of

an electrically conducting fluid, here the salty water of river Thames, under the influence of a magnetic

field, here the Earth’s magnetic field, induces an electric current.

The principle shown by Faraday offered an opportunity to produce electricity at a low environ-

mental cost. A simple analysis of orders of magnitude hovewer dismisses a straightforward application

of magnetohydrodynamic power generator relying on salty water and the Earth’s magnetic field. A

reasonable power generator would require a much stronger conducting fluid like mercury and a very

intense magnetic field, at least 1010 as high as that of the Earth. Magnetohydrodynamics (MHD)

is however at the heart of a promising technology to produce electricity with potentially little effect

on the environment. The objective is to harness nuclear fusion into a reactor, i.e. to reproduce the

nuclear reactions occurring in the Sun into a reactor. This technology shall eventually take over to

nuclear fission at the basis of the current nuclear plants, while tackling most of its flaws.

Different projects are devised to eventually deliver a prototype reactor by 2030. We shall discuss

in more detail the ITER project 1. Figure 1 presents a general overview of ITER reactor. The fusion

reactions involving deuterium and tritium occur in a very hot plasma confined inside a toroidal shell

by a set of superconducting magnet coils. Blankets modules form the walls of the shell. They are

designed to absorb high-energy neutrons from the fusion reaction, feed it with tritium and transfer

the heat generated by the reaction to a water-cooling loop to produce steam, that eventually drives

an electric turbine to generate electricity.

Several designs of blankets are investigated. In the Helium Cooled Lead Lithium (HCLL) blanket

for example [148], liquid metal PbLi circulates in an array of rectilinear rectangular ducts connected

by U-shaped ducts under the influence of the magnetic field. In particular, heat transfer inside these

blankets is more efficient if the flow is turbulent and a technique to promote turbulence consists in

placing obstacles inside the blankets. This is the most straightforward application of the outcomes of

1http://www.iter.org
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blankets superconducting coils

Figure 1: General overview of ITER fusion reactor.

this thesis.

We study the flow of an electrically conducting fluid in a rectangular duct past an obstacle under

the influence of an externally applied magnetic field. This topic combines two main bodies of interests.

On the one hand, it deals with the dynamics of a fluid past an obstacle. Although the shape of the

obstacle may have a dramatic influence, the flow features and dynamics present many similarities

whatever this shape is. A very large amount of research has been performed on the flow past a

circular cylinder for more than a century. We shall therefore introduce this case in more detail. On

the other hand, our configuration requires to describe the interaction between the flow motion and

the induced electric currents. The presence of a magnetic field has indeed a dramatic influence on

the flow dynamics and it requires a thorough review too.

This thesis has two principal objectives. Firstly, we shall present an extensive study of the

MHD flow past a cylindrical obstacle under a magnetic field orientated along the cylinder axis. We

perform parametric studies on the flow parameters. We vary the shape, the height and the electrical

conductivity of the cylinder. We shall also systematically describe the evolution of flow coefficients to

assess the physical mechanisms underlying the flow dynamics. Secondly, we shall develop a 3D MHD

numerical code based on an open source framework. This code is designed to be accurate, consistent,

robust and flexible, but its optimisation has not been our main concern. The ultimate goal of this

thesis is to investigate the physical effects featured in MHD flows past an obstacle under the influence

of an axial magnetic field. We systematically investigate the non-MHD case to identify the related

flow patterns and dynamics. We then consider the MHD case to devise the effects of the magnetic

fields by comparison to the non-MHD study.
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Here are the outlines of this thesis. In part I, we review the principles of magnetohydrodynamics

and a set of classical MHD flows. Then, we make a survey of the flow past a cylinder: firstly in the

absence of a magnetic field 2 and 3 and secondly with its presence in chapter 4. In a first stage of

the thesis, we consider a configuration in which the effects of the magnetic field are utterly dominant

in the flow. Under some assumptions which we shall be defined, we perform two-dimensional (2D)

numerical computations of the MHD cylinder wake using a theoretical quasi-2D flow model by [165].

Doing this, we will describe the flow dynamics, identify flow regimes and the evolution of the flow

patterns within these regimes. This quasi-2D study is the subject of part II.

In a second phase of the thesis which part III is dedicated to, we develop our own three-dimensional

(3D) MHD code to investigate the 3D flow dynamics of MHD cylinder wakes. We describe the

successive steps of the elaboration of the code in chapter 7. The code is then validated to a series of

non-MHD and MHD typical flow configurations in chapter 8. In the latter chapter also, we implement

a wall function to investigate 3D MHD flows in very intense magnetic fields. Finally, we perform 3D

numerical computations to investigate the MHD flow past a truncated square cylinder in a duct.

Chapter 9 is devoted to the case where no magnetic field is imposed and chapter 10 to the case where

it is present.
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Part I

State-of-the-art
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Chapter 1

Introduction to

magnetohydrodynamics

Magnetohydrodynamics (MHD) investigates the coupled effects of the dynamics of electrically con-

ducting fluids and electromagnetism. We shall first introduce fluid mechanics and electromagnetism

laws separately. Then we will review the coupling effects through a set of fundamental MHD flows.

An extensive introduction to MHD is available in [16, 18, 20].

1.1 MHD equations

1.1.1 Navier-Stokes equations

Fluid dynamics are governed by the Navier-Stokes equations (for a comprehensive review of fluid

mechanics, see e.g. [14] or [17]). The fluids under consideration in this thesis are assumed to be

incompressible with density ρ and kinematic viscosity ν. In this context, the Navier-Stokes equations

express the mass conservation (1.1) and the momentum conservation (1.2):

∇ · u = 0 (1.1)

ρ∂tu+ ρ(u · ∇)u = −∇p+ ρν∇2u+ Fvol + j×B (1.2)

where u is the velocity field, p the dynamic pressure, j the current density, B the magnetic field

and Fvol represents volumetric forces other than of electromagnetic nature ( e.g. gravitational force,

externally imposed pressure gradient,...).

The fluid’s incompressibility means that the fluid density ρ can be considered as constant, hence

equation (1.1). Equation (1.2) corresponds to the assessment of the force balance on a given fluid

particle. The left-hand side is the momentum’s particular derivative, which is decomposed into its
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time variations ρ∂tu and the advection term ρ(u.∇)u. Both terms correspond to the inertia term. On

the right-hand side, one recognises the pressure force −∇p, the viscous friction ρν∇2u, the Lorentz

force j × B resulting from the interactions between the currents and the electromagnetic field, and

additional external forces ρFvol.

1.1.2 Electromagnetic equations

Electromagnetism’s laws model the interactions between an electric field E and a magnetic field B in

a continuous medium where electric charges or current are present. They are summarised into a set of

4 equations dubbed Maxwell’s equations. In a continuous medium characterised by an electric charge

density q, a current density j, a magnetic permeability µ and an electric permittivity ǫ, Maxwell’s

equations read:

∇ · E =
q

ǫ
(1.3)

∇ ·B = 0 (1.4)

∇×E = −∂tB (1.5)

∇×B = µj+ µǫ∂tE (1.6)

Equation (1.3) describes how electric charges distributed within the medium generate an electric

field. Equation (1.4) means that the magnetic field is solenoidal so that the magnetic field lines are

closed possibly at infinity. Equation (1.5) (resp. (1.6)) characterises how a changing magnetic (resp.

electric) field induces an electric (resp. magnetic) field. Equation (1.6) furthermore expresses how a

current density generates a magnetic field.

Following equation (1.4), B can be defined as a purely rotational field so that: B = ∇ × A

with potential-vector A. Subsequently, using (1.5), the electric field can be expressed with an electric

potential field φ as:

E = −∇φ− ∂tA (1.7)

In the case of the flow of an electrically conducting fluid with an electric conductivity σ, the

current density is given by Ohm’s law as:

j = qu+ σ(E+ u×B) (1.8)

Ohm’s law expresses the current density as the sum of the convection current (qu) and the con-

duction current (σ(E + u×B)).

At this point, we shall introduce the so-called quasi-static approximation. It relies on a set of 4

conditions: (i) typical fluid velocities are much smaller than the speed of light, (ii) velocity of the
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charge carriers (electrons or ions) remains small with respect to fluid velocity, (iii) the charge carriers

move within the fluid without inertia and (iv) no thermo-electric voltage sources are present [19]. As

a straightforward implication of this approximation, the charge relaxation time defined as τr = ǫ/σ

is extremely short. In the case of the fluids under consideration in this thesis, i.e. liquid metals and

eutectic alloys, a typical value for τr is 10−18 s [16].

In Ohm’s law (1.8), a simple analysis of the respective orders of magnitude of the convection

current and σE leads to (qu)/(σE) ∼ τrU0/L, where U0 is the fluid typical velocity and L is a char-

acteristic length of the fluid domain. In the frame of the quasi-static approximation, the convection

current qu can then be neglected with respect to σE so that Ohm’s law is eventually reformulated as:

j = σ(E + u×B) (1.9)

The conservation of electric charge is a principle universally accepted and can be obtained from

the particular derivative of the total charge which must be zero [18], it can also be recovered from

Maxwell’s equations using (1.3) and the divergence of (1.6):

∇ · j+ ∂tq = 0 (1.10)

By taking the divergence term by term of equation (1.9) and introducing the result into equation

(1.10), one obtains:

∂tq +
q

τr
+ σ∇ · (u×B) = 0 (1.11)

Accounting for the typical value of τr, the last-term on the left-hand side of the previous equation

can be neglected with respect to q/τr so that ∂tq + q/τr = 0. The charge density q can then be

considered as constant and the current conservation is satisfied when:

∇ · j = 0 (1.12)

Consequently the current density lines are closed, which characterises a solenoidal field.

Similarly, in conducting media like liquid metal, eutectic alloy and electrolytes, the displacement

current (ǫµ∂tE) can be neglected [18] and (1.6) becomes:

∇×B = µj (1.13)
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1.1.3 Induction equation

The coupling between the magnetic field B and the velocity field u appears in Ohm’s law but also in

the induction equation. It is obtained from equation (1.5) using (1.4) and the curl of (1.8):

∂tB = ∇× (u×B) +
1

σµ
∇2B (1.14)

The induction equation links the time variations of the magnetic field with the sum of the advection

of the magnetic field by the velocity field and the diffusion of the magnetic field within the domain.

Two mechanisms are involved in the advection process: the deformation of the magnetic field lines

by the velocity field and the stretching of the velocity field lines by the magnetic field. The former

mechanism is especially significant when the direction of greatest change of the magnetic field is

parallel to streamwise direction, such as in problems featuring a fringing magnetic field or when the

region under consideration is located at the extremities of a magnet.

Let us consider that the magnetic field is pulsating at a pulsation ω and we denote B0, U0, and

L as the respective characteristic magnetic field, velocity and length. We derive the non-dimensional

form of the induction equation using the magnetic Reynolds number Rm = σµU0L and the shielding

parameter Rω = σµL2ω:

Rω∂tB
⋆ = Rm∇× (u⋆ ×B⋆) +∇2B⋆ (1.15)

where non-dimensional quantities are indicated by a ⋆ superscript.

When Rm ≫ 1, the magnetic field is non-dissipative, instead its time variations result only from its

advection by the velocity field. If furthermore Rm ≫ Rω, the magnetic field lines are instantaneously

deformed by the velocity field and remains frozen in the medium. This situation is common for MHD

phenomena at the scale of the Earth (Rm ≃ 104 [18]) and in astrophysics.

When Rm ≪ 1, no advection phenomenon is present in the medium and only the diffusion process

shall be taken into account. Two cases must then be distinguished:

• (i) Rm ≪ Rω,

• (ii) Rm ≫ Rω.

In case (i), the time variations of the magnetic field have to be carefully addressed. Let us consider that

an oscillating magnetic field with pulsation ω is applied at the surface of an electrically conducting

medium. The magnetic field will not instantaneously propagate into the interior of the medium,

but it will diffuse from the surface of the medium inwards. Neglecting advection in equation (1.14)

results in ∂tB ≃ 1
σµ∇

2B. The characteristic diffusion length of the magnetic field can be derived by
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dimensional analysis of the latter approximation and:

δm =
√

2/(µσω) (1.16)

δm is the called the magnetic skin depth. The diffusion of the magnetic field therefore generates electric

currents within a thin surface layer of thickness δm. This layer shields the interior of the medium from

the external magnetic field, but the outer surface may turn very unstable. For example, oscillations

may appear at the surface of a droplet of liquid metal submitted to an alternating magnetic field

[136, 143] and pinch-effect may be observed at the surface of a channel flow of liquid metal [150, 169].

If the electrically conducting medium does not involve any free surface, then there is no coupling

between the velocity and magnetic field and the latter can be considered as given in the problem.

In case (ii) where Rm ≪ 1 and Rm ≫ Rω, it follows from (1.13) that the induced magnetic field

Bi scales as RmB0, so that Bi can be considered as negligible. Similarly the time variations of the

magnetic field can also be neglected so that the electric field is irrotational and derived only from the

electric potential φ as shown by (1.7). As a result, the velocity field and the magnetic field are not

coupled anymore and Maxwell’s equations are only reduced to the current conservation (1.12). Once

the latter is associated with the Navier-Stokes equations (1.1) and (1.2), the resulting set of equations

corresponds to the so-called inductionless or low-Rm approximation. In numerical simulations, this

approximation implies crucial simplifications, which result in a dramatic gain in efficiency of the

involved numerical methods [178].

1.2 MHD equations within the low-Rm approximation

The MHD flow of an electrically conducting, incompressible fluid under the influence of an externally

applied, steady magnetic field B0 within the inductionless approximation is fully defined by the

determination of the velocity field u, pressure field p and electric potential φ provided adequate

boundary conditions are given at the limits of the fluid domain together with initial conditions. The

inductionless approximation yields a simplified set of equations. Using U0, ρU
2
0 , σU0B0 and U0B0L

as respective typical velocity, pressure, current density and electric potential, the non-dimensional

formulation of the MHD equations within the inductionless approximation is:

∇ · u⋆ = 0 (1.17)

∂tu
⋆ + (u⋆ · ∇)u⋆ = −∇p⋆ +

1

Re
∇2u⋆ +

Ha2

Re
(j⋆ ×B⋆) (1.18)

∇ · j⋆ = 0 (1.19)
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and

j⋆ = −∇φ⋆ + u⋆ ×B⋆ (1.20)

E⋆ = −∇φ⋆ (1.21)

where the quadratic norm of B0 is used in B⋆ = B0/||B0||, Re = U0L/ν is the Reynolds number and

Ha = LB0

√

σ/(ρν) is the Hartmann number. Re is the ratio of the inertial to the viscous forces, while

Ha is the square root of that of the Lorentz to the viscous forces. A further non-dimensional number

expresses the ratio of the Lorentz to the inertial forces: it is the magnetic interaction parameter or

Stuart number N = σB2
0L/(ρU0), which can be also formulated using Re and Ha as: N = Ha2/Re.

1.3 Boundary conditions

Initial conditions are required to define all the flow variables at the initial time instant in the whole

domain. Boundary conditions must be defined at all the boundaries of the fluid domain under

consideration. The boundaries may be located at the interface between two materials such as at

the interface between the fluid and a solid surface or at the interface between two different media

(e.g. free surface). In the case of an infinite fluid domain, the boundary conditions must accurately

characterise the fluid at infinity (e.g. inlet and outlet boundaries of duct flows). Whatever the

nature of the boundary, the expression of the condition at the interface is obtained after considering

a infinitesimal control volume enclosing the interface. Then one applies the flow equations on this

control volume in the limiting case where the control volume is of zero thickness and matches exactly

the interface. Free-surface problems are out of the scope of this thesis so that the boundary condition

relevant with these problems will not be described thereafter but shall be found in e.g. [18]. We shall

determine only the boundary condition at the interface between the fluid and a wall. The kinematic

and electric boundary conditions at the inlet and outlet of a duct or a channel are introduced in

sections 5.2 and 8.4, respectively. We shall now introduce separately the kinematic and electronic

boundary conditions.

1.3.1 Kinematic boundary conditions

The mass conservation (1.1) requires that the velocity component normal is continuous at the interface

between the fluid and another medium. In the case of the boundary at an impermeable, rigid and

non-moving wall, due to viscosity, the velocity is uniformly zero at interface Γ between the fluid and

the wall:

u⋆ = 0 at Γ (1.22)
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This condition is referred to as the no slip condition. By contrast, the slip condition is defined as:











u⋆ · nw = 0

∂n(u
⋆ · tw) = 0

(1.23)

where nw (resp. tw) is the vector normal (resp. tangential) to Γ and ∂ ∗ /∂n = (∇∗) · nw. This

condition expresses that the normal component of the velocity is continuous at the interface Γ without

any fluid transfer across it. If the fluid is assumed as non-viscous, this condition is applied at an

interface between the fluid and an impermeable wall. In open flow problems, this condition may

also be imposed to model a plane of symmetry inside the fluid domain. For example, in non-MHD

2D cylinder wakes in an infinite fluid domain, the slip condition may be imposed at the boundaries

located on either sides of the cylinder.

1.3.2 Electromagnetic boundary conditions

Both the magnetic and the current density fields are solenoidal so that (1.4) and (1.12) require that

the normal component of both fields is continuous at the interface. If the wall is electrically insulating

(σw = 0), no current can penetrate into the wall, which imposes that the component of the current

density normal to the interface vanishes at the wall. If the wall is perfectly conducting (σw → ∞),

the whole current enters the wall and the component of the current density tangential to Γ vanishes

at the wall. The two previous cases then respectively require at the interface fluid/wall:

j⋆ · nw = 0 if the wall is electrically insulating at Γ (1.24)

j⋆ · tw = 0 if the wall is perfectly conducting at Γ (1.25)

The previous boundary conditions are related to two ideal situations. Industrial applications often

feature walls with a finite non-zero electric conductivity σw. A general boundary condition for the

current density field can be derived using (1.5) and Ohm’s law (1.9):

j⋆ · nw =
σ

σw
j⋆w · nw at Γ (1.26)

1.4 Fundamental MHD flows

In this thesis, we investigate the MHD flow past a cylindrical obstacle in a duct of rectangular cross-

section. We shall now introduce the fundamental results about the MHD flow between two parallel

infinite walls. Then we present the flow dynamics when the fluid is confined in a rectangular duct.

We briefly review the influence of a magnetic field on an isolated vortex.
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1.4.1 MHD flow between two infinite walls perpendicular to the magnetic field

We consider the flow of an electrically conducting fluid between two infinite planar rigid parallel

walls under the influence of a steady, uniform, homogeneous, externally applied magnetic field B0

normal to the walls. Two cases will be included in this presentation: either both walls are electrically

insulating or both are perfectly conducting. The former case refers to the Hartmann flow, named after

J. Hartmann who described the flow dynamics involved in this configuration back in 1937 [137, 138].

U
B0

2a

ex

ey
ez

Figure 1.1: Configuration of the MHD flow between two infinite walls normal to the magnetic field

The exact configuration is sketched on figure 1.1. The x−axis is the streamwise direction and the

walls are located at z = ±a. In this configuration, the flow variables depend only on the z−coordinate.

B0 is applied along the z−axis such that: B0 = B0ez. The velocity u has only one component ux(z)

parallel to the streamwise direction.We consider that the fully developed steady state has been reached

for both the velocity and the magnetic fields, but without any restriction on the value of the magnetic

Reynolds number. The flow is unidirectional and perpendicular to B0 so that it follows from the

induction equation (1.14) that the induced magnetic field Bi is of the form: Bi = Bi(z)ex. The

pressure gradient is also unidirectional, parallel to the x−axis and constant so that a positive force

per unit volume G is defined as: ∇p = −ρGex.

If one expresses the current density j using the curl of the magnetic field (1.13), one deduces that

j = jy(x)ey. Then, using Ohm’s law (1.9) to determine the electric current, one derives that the

electric potential is invariant along both ex and ez. On the other hand, the conservation of electric

current (1.12) yields: ∂2
yyφ = 0, which means that the electric field E is uniform and E = Eey.

We use a, a2G/ν, aG
√

(σρ/ν) as respective characteristic length, velocity, current density [18].

We express the current density using Ohm’s law (1.20):

j⋆y = Ẽ −Hau⋆x for − 1 ≤ z⋆ ≤ 1 (1.27)

with Ẽ = E
aG (σν/ρ)1/2.

and we put (1.27) into the equation of the momentum conservation (1.18):

∂2
z⋆z⋆u

⋆
x −Ha2u⋆x = −1−HaẼ for − 1 ≤ z⋆ ≤ 1 (1.28)
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with a no-slip boundary condition (1.22) imposed on u⋆x at z⋆ = ±1.

The solution for u⋆x is then, for −1 ≤ z⋆ ≤ 1:

u⋆x = uc
[

1−
cosh (Haz⋆)

cosh (Ha)

]

with uc =
1

Ha2
(1 +HaẼ) (1.29)

The current density is deduced by inserting (1.29) into (1.27):

j⋆y = −Ha−1 +Ha
cosh (Haz⋆)

cosh (Ha)
uc (1.30)

The first term on the right-hand side of (1.30) is the current density generated in the core flow. The

latter is of order Ha−1 whatever the conductivity of the wall is. It drives Lorentz forces opposing the

free stream. The second term corresponds to the current circulating inside the boundary layers. If

the walls are insulating, the current density then turns positive in the vicinity of the walls so that the

Lorentz forces accelerate the flow in the boundary layers. This mechanism is active until the Lorentz

forces balance the pressure gradient (resp. the viscous forces) in the core flow (resp. boundary layers).

This academic problem highlights one of the most striking features of MHD flows: how the

boundary layer controls the core flow through the generation of electric currents. This remarkable

boundary layer is the Hartmann layer and the wall at which this layer arises the Hartmann wall. It

characterises the boundary layer arising at a wall whose normal is parallel to one non-zero component

of the magnetic field. Also, while the typical Poiseuille velocity profile can be recovered from (1.29)

when Ha → 0, an asymptotic development of (1.29) for Ha ≫ 1 and −1 < z⋆ < 0 yields (an

equivalent expression can be obtained for 0 < z⋆ < 1):

u⋆x = uc{1− exp [−Ha(1 + z⋆)]} (1.31)

For Ha ≫ 1, the velocity decreases exponentially within the Hartmann layers whose thickness δH

scales with Ha−1. uc can then be interpreted as the velocity reached outside the Hartmann layer

in the core flow so that it is called the core velocity. A remarkable outcome is that the electric

conductivity of the walls does not affect the velocity profile, but only the core velocity uc. If the walls

are perfectly conducting, no electric field exists between the walls. The flow is driven only by the

pressure gradient and uc scales with Ha−2 [see equation (1.29)]. Instead, if the walls are insulating,

a uniform electric field Ẽ remains in the flow and uc scales with Ha−1.

1.4.2 MHD flows in rectangular ducts

In this configuration (see figure 1.2), the fluid flows in a rectangular duct under the influence of an

externally applied steady, uniform and homogeneous magnetic field B0 = B0ez. The distance between
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the walls normal (resp. parallel) to B0 is equal to 2a (resp. 2b) and the origin of the frame of reference

is located at the centre of the duct cross-section. The streamwise direction corresponds to the x−axis,

both pairs of opposite walls are parallel and normal to the y−axis (resp. z−axis). The flow is driven

by a uniform pressure gradient: ∇p = −ρGex. Since the flow is unidirectional and perpendicular

to the magnetic field, it follows from the induction equation (1.14) that the induced magnetic field

Bi has only one non-zero component along the streamwise direction. Both the velocity u and the

induced magnetic field Bi are independent of the streamwise coordinate x so that: u = u(y, z)ex

and Bi = Bi(y, z)ex. Only the configuration where all walls are electrically insulating is detailed

thereafter. We consider that both the velocity and magnetic fields have reached a fully developed

stationary state, but no restriction is made on the magnetic Reynolds number.

U
B0 2a

2b

ex

ey
ez

Figure 1.2: Configuration of the MHD flow in a rectangular duct

We use a, (Ga2/ν) and (µGa2
√

σρ/ν) as respective characteristic length, velocity and induced

magnetic field. We obtain the non-dimensional form of both induction equation and momentum

conservation for −χ ≤ y⋆ ≤ χ and −1 ≤ z⋆ ≤ 1 (χ = b/a):

∇2B⋆
i +Ha∂z⋆u

⋆ = 0 (1.32)

∇2u⋆ +Ha∂z⋆B
⋆
i = −1 (1.33)

At z⋆ = ±1 and y⋆ = ±χ, a no-slip condition (1.22) is imposed for u⋆. The boundary conditions

for the induced magnetic field B⋆
i at z⋆ = ±1 and y⋆ = ±χ shall be derived from equation (1.24). To

this end, we use equation (1.13):

j⋆ =
1

Ha
∇×B⋆

i =
1

Ha

(

∂B⋆
i

∂z⋆
ey −

∂B⋆
i

∂y⋆
ez

)

(1.34)

This equation means that (1/Ha)B⋆
i is the streamfunction for the current density j⋆ in the plane of

the duct cross-section, i.e lines of constant induced magnetic field are the electric current streamlines.

As the duct is assumed as insulating, the contours of the duct cross-section match an isoline of current

density along which the streamfunction B⋆
i is equal to a constant. We can fix the value of this constant

to any value without loss of generality. By convenience, we set it to zero and the boundary conditions

18



for B⋆
i at z⋆ = ±1 and y⋆ = ±χ read:

B⋆
i = 0 at z⋆ = ±1 (1.35)

B⋆
i = 0 at y⋆ = ±χ (1.36)

Both equations (1.32) and (1.33) can be decoupled using Elsasser variables: ζ = u⋆ + B⋆
i and

ξ = u⋆ − B⋆
i , so that only the solution for ζ is required to deduce ξ, u⋆ and B⋆

i . We omit the ⋆

superscript for simplicity’s sake and we express u and Bi as Fourier series on −χ ≤ y ≤ χ and

−1 ≤ z ≤ 1:

u(y, z) =

∞
∑

n=1,3,5

un(z) cos (λny) (1.37)

Bi(y, z) =
∞
∑

n=1,3,5

bn(z) cos (λny) (1.38)

with:

un(z) = (kn/λ
2
n)

[

1−
sinh pn2

cosh (pn1
z)− sinh pn1

cosh (pn2
z)

sinh (pn2
− pn1

)

]

bn(z) = (kn/λ
2
n)

[

sinh pn1
sinh (pn2

z)− sinh pn2
sinh (pn1

z)

sinh (pn2
− pn1

)

]

pn1
=

1

2

(

Ha−
√

Ha2 + 4λ2
n

)

pn2
=

1

2

(

Ha+
√

Ha2 + 4λ2
n

)

λn = nπ/(2χ)

kn = 2
sin (λnχ)

λnχ

This solution was first computed by Shercliff [161] so that this configuration is referred to the

Shercliff flow. For Ha ≫ 1, both expressions for u(y, z) and Bi(y, z) can be further simplified

[18, 19, 20].

In the vicinity of the wall parallel to B0 and away from the Hartmann layers, ∇2Bi ≃ ∂2
yyBi.

Equations (1.32) and (1.33) then yield the characteristic thickness δS of the boundary layers at the

walls parallel to B0: δS ∼ (Ha)−1/2. These boundary layers are the Shercliff or parallel layers and

the walls at which these layers arise are the Shercliff walls.

Equation (1.34) shows that the current density has two non-zero components along ey and ez.

Following (1.38) and (1.34), the z−component (resp. y−component) of j is antisymmetric (resp.

symmetric) with respect to both the z− and y−axes. Therefore, due to symmetry considerations,

two sets of identical electric current loops are located on either side of the plane (z = 0) in the duct
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cross-section. The current density is mainly perpendicular (resp. parallel) to B0 in the Hartmann

(resp. Shercliff) layers. Consequently, the Lorentz forces are efficient in the Hartmann layers and of

little influence in the Shercliff layers. The thickness of the Shercliff layer is thus bigger than that of

the Hartmann layers.

For Ha ≫ 1, the velocity profile becomes flat in the core region, while it exhibits an exponential

decay in the Hartmann layers (see equation (1.29)). As a result, all boundary layers are very thin, the

core flow spreads out over a very large part of the cross section and the velocity gradients are steep

in the boundary layers. We shall see later that mesh-based direct numerical simulations experience

difficulties to deal with MHD flows in ducts at very high Ha as the CPU cost of solving the flow

equations in the Hartmann layers can become prohibitive.

The integration of the velocity over the duct cross-section yields the flow rate Qr and it follows

from equation (1.37) that:

Qr = 2χ

∞
∑

n=1,3,5

kn

∫ 1

0
un(z)dz (1.39)

This equation can be reformulated to provide an expression of the non-dimensional pressure drop

K = Ga2/(νU0) as a function of the flow rate K = 4χ/Qr. Interestingly, an asymptotic expansion of

the expression of the non-dimensional pressure drop yields for Ha ≫ 1 [19, 161]:

K =
Ha

1− (αc/χ)Ha−1/2 −Ha−1
(1.40)

where αc is a coefficient depending on the conductivity of the Shercliff walls. If these walls are

insulating (resp. perfectly conducting), αc = 0.825 (resp. 0.95598). The first term in the denominator

in (1.40) represents the velocity deficit in the core flow and reflects the balance between the pressure

gradient and the Lorentz force in the core flow. The second and last terms represent the pressure

loss in the Shercliff and Hartmann layers, respectively. These contributions scale with the thickness

of the respective boundary layers.

In the Shercliff flow, the duct walls are all insulating. The configuration where all walls are per-

fectly conducting and that with insulating (resp. perfectly conducting) Hartmann walls and perfectly

conducting (resp. insulating) Shercliff walls are investigated in [139]. In summary, the velocity profile

depends mostly on the electric conductivity of the Hartmann walls. The latter indeed rules the order

of magnitude of the core velocity: Ha−1 if the walls are insulating and Ha−2 if the walls are perfectly

conducting, whereas the velocity in the Shercliff layers is always of order Ha−1 [139]. As a result,

in the configuration with perfectly conducting Hartmann walls, the velocity exhibits a very unstable

M-shape profile with a uniform velocity of order Ha−2 in the core region and an overspeed flow region

of order Ha−1 in each Shercliff layer. The case with perfectly conducting Hartmann walls and insu-
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lating Shercliff walls is referred as to the Hunt’s flow. Its stability is investigated in e.g. [141, 160].

In the configuration with insulating Hartmann walls, the velocity profile is smoother since the order

of magnitude of the velocity is the same in the whole flow.

On the other hand, the conductivity of the Shercliff walls has little influence on the flow. In the case

with perfectly conducting Shercliff walls, away of the Hartmann layers, the electric current streamlines

are straight and uniform. Consequently, perfectly conducting Shercliff walls only induce a slight

additional damping to the flow in the Shercliff layers since non-zero Lorentz forces are maintained in

these layers due to electric currents perpendicular to B0.

1.4.3 Isolated vortex under the influence of a magnetic field at low Rm

So far, we have studied the interactions between the Lorentz and the viscous forces governed by the

Hartmann number Ha. We will now investigate the comparative effects between inertia and Lorentz

forces in the simple configuration of an isolated vortex located between two infinite walls perpendicular

to the magnetic field B0 (see figure 1.3). By convenience, we suppose that the vortex axis is parallel

to the magnetic field along the z−axis. We still consider that the fully developed stationary state

is reached for the magnetic field, but the velocity field is now assumed to be time-dependent. The

characteristic length scale of the vortex is denoted as lv, the one along B0 as lz and its characteristic

velocity is Uv. The time scale of the vortex is the turnover time defined as tv = lv/Uv .

B0 ex
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ez

Figure 1.3: Isolated vortex between two infinite walls perpendicular to B0

We express the current density using equation (1.13) to derive the Lorentz force FL with the

induced magnetic field Bi:

FL = Nv[∂zBi −∇(Bi,z)] = Nv[∂zBi,⊥ −∇⊥Bi,z] (1.41)

where Nv = tv/tJ and tJ = ρ/(σB2
0) is the Joule dissipation time. The subscript ⊥ indicates the

component in the plane normal to B0.

On the one hand, the second term on the right-hand side of this equation is irrotational and can

be included into the pressure gradient term of the momentum conservation to form the augmented

pressure p̃. On the other hand, from the induction equation of the form of (1.32), it follows that

Bi can be expressed with u using the inverse of the Laplacian operator ∇−2 via the Biot-Savart law
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[20] provided adequate boundary conditions for the problem are defined to ensure that the Laplacian

operator is invertible. As a result, one obtains the momentum conservation (1.18) as:

∂tu+ (u · ∇)u = −∇p̃+
1

Rev
∇2u−Nv

(

lv
l‖

)2

∇−2(∂2
zzu⊥) (1.42)

where Rev = Uvlv/ν.

The last term on the right-hand side of equation (1.42) corresponds to the damping action of

the Lorentz forces on the vortex. One observes that this damping is effective only on the velocity

components normal to the magnetic field and fuels a diffusion mechanism of the vortex along the

direction of the magnetic field. The efficiency of this anisotropic damping depends on the value of

Nv. If the Joule dissipation time tJ is much larger than the vortex turnover time tv, i.e. Nv ≫ 1,

then the vortex is elongated within a time of the order of tJ and its final size along the magnetic

field scales with lz ∼ l⊥N
1/2
v where l⊥ is the initial length of the vortex in the plane normal to B0.

At this stage, the vortex is elongated and uniform along the direction of the magnetic field except

in the Hartmann layers. On the contrary, if tJ ≪ tv, i.e. Nv ≪ 1, inertial forces dominate the

Lorentz forces. Non-linearities develop in the flow causing disruptions of the vortex and its collapse

into smaller vortices. Nevertheless, whatever the value of Nv, the last term on the right-hand side

of equation (1.42) indicates that the vortex ends immersed into the Hartmann layers are always

perpendicular to the walls, provided inertia is negligible at the scale of these layers.

This anisotropic action of the magnetic field has been observed in numerous experimental investi-

gations [132, 186, 166, 164] and recovered by other approaches. Theoretical arguments in [135] have

shown that the component of the angular momentum parallel to the magnetic field is conserved while

other components tend to quickly vanish, even though experimental results are still lacking to support

this result. Energetic considerations [142, 149, 156] also confirm that the flow structures are strongly

dissipated in the plane normal to the magnetic field, while dissipation along the magnetic field lines

is much weaker.

1.5 Quasi-two-dimensional MHD flow and shallow water model for

Ha ≫ 1 and N ≫ 1

We consider the configuration of the Hartmann flow as sketched in figure 1.1. We suppose furthermore

that both the Hartmann and Stuart numbers are much bigger than unity and the Lorentz forces

dominate both the viscous and inertial forces. Under these conditions, the Hartmann layers are

very thin so that the flow exhibits a quasi-two-dimensional profile. In the core flow, the velocity

profile hardly depends on the coordinate along the magnetic field and the flow structures can be
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considered as fully invariant along this magnetic field. In the Hartmann layers, flow patterns are fully

three-dimensional and the velocity decays exponentially to zero.

Assuming that bothHa ≫ 1 andN ≫ 1, Sommeria and Moreau [165] have elaborated a theoretical

model of the quasi-2D flow by averaging the flow equations along the magnetic field lines. In this

model, called thereafter SM82 model, the core flow is perfectly two-dimensional, the Hartmann layers

are modelled by the exponential profile given in (1.29) and walls are electrically insulating.

Since the velocity vanishes at the walls and the walls are electrically insulating, the averages of

the mass conservation (1.17) and the current conservation (1.19) along the magnetic field between

z = −1 and z = 1 yield:

∇⊥ · ū⊥ = 0 (1.43)

∇⊥ · j̄⊥ = 0 (1.44)

where ū⊥ (resp. j̄⊥) is the component of the velocity (resp. current density) normal to B0 averaged

over the direction of the magnetic field.

Similarly, averaging the momentum conservation (1.2) on −1 ≤ z ≤ 1 results in:

(1/N)[∂tū⊥ + (ū⊥ · ∇⊥)ū⊥ + (u′
⊥ · ∇⊥)u′

⊥ +∇⊥p̄] = (1/Ha2)∇2
⊥ū⊥ + (1/Ha2)FW (1.45)

where u′
⊥ = u⊥ − ū⊥ and FW = [∂zu⊥(z = 1) − ∂zu⊥(z = −1)]. FW corresponds to the total wall

friction at both walls. It can be derived from the velocity profile inside the Hartmann layer (1.29)

so that FW = −2Haū⊥. The factor 2 appearing in the definition of FW is due to the presence of 2

Hartmann layers in this configuration.

From the integration of the mass conservation (1.17) over the Hartmann layer, it follows that the

term (u′
⊥ · ∇⊥)u′

⊥ is of order (Ha−1N−1) [154]. SM82 model neglects the inertial effects occurring

inside the Hartmann layers so that this model is accurate down to the order O(Ha−1, N−1). As a

result, (1.45) in the SM82 model turns into

(1/N)[∂tū⊥ + (ū⊥ · ∇⊥)ū⊥ +∇⊥p̄] = (1/Ha2)∇2
⊥ū⊥ − (2/Ha)ū⊥ (1.46)

In this quasi-2D flow model, the magnetic field on the flow imposed a linear damping of the flow

from both Hartmann layers with a related non-dimensional characteristic time:

tH = Ha/(2N) (1.47)

tH shall be thereafter denoted as Hartmann time. This model can also account for possible current
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injections at the wall from electrodes. Current conservation (1.44) is then ∇⊥ .̄j⊥ = jW and the curl

of electric current is ∇⊥× j̄⊥ = 0 where jW is the current injected at both walls. The effect of current

injection can be expressed as a forcing velocity uf = ∇Ψ0 × ez imposed on the flow where Ψ0 is

defined as:

j̄⊥ = −Ha−1∇⊥Ψ0 × ez

Ha−1∇2
⊥Ψ0 = −jW

This modification has been proposed in [157] and leads to a reformulation of (1.46):

(1/N)[∂tū⊥ + (ū⊥ · ∇⊥)ū⊥ +∇⊥p̄] = (1/Ha2)∇2
⊥ū⊥ + (1/Ha)(uf − 2ū⊥) (1.48)

When applied to the Shercliff flow, the three-dimensional nature of the Shercliff layers is not

specifically addressed by the SM82 model, as it assumes that diffusion along the field lines is an

order of magnitude faster than the lateral diffusion of the angular momentum. Nevertheless, the

related error has been shown to be of the order of 10% in the Shercliff flow. In addition, this error is

significant only in the vicinity and inside the Shercliff layers [157]. Besides, the SM82 model requires

electrically insulating perpendicular walls, as the assumption of a quasi-2D flow fails if strong velocity

jets at the lateral extremities of the Hartmann layers are present. Finally, this model assumes that

no fluid transfer exists at the interface between the Hartmann layers and the core flow. As a result,

Ekmann-like recirculation flow, which is the basic formation mechanism of cyclones for example, is

forbidden in the SM82 model. This flaw can be corrected by taking into account the inertial effects

in Hartmann layers, i.e. the terms of order Ha−1 in (1.45). This has been achieved in [157] leading

to a gain in the model accuracy equal to Ha−iN−j with i+ j = 3.

In conclusion, providedHa ≫ 1 and N ≫ 1, the implementation of the SM82 model in a numerical

code is an effective and accurate method to investigate the flow dynamics. The involved CPU cost is

much lower compared to 3D direct numerical simulations. In chapter 6, we implement this model to

study a MHD cylinder wake inside a square duct.
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Chapter 2

Flow past a circular cylinder

In this chapter, we introduce the flow features of the cylinder wake in the case where no magnetic field

is present. Firstly, we consider an unbounded fluid domain and an infinitely long cylinder. The flow

regimes and related patterns are described until the 3D features are settled in the flow. The nature

of the successive transitions are given and the critical thresholds provided. The evolutions of the flow

coefficients are linked to the flow dynamics. We assess the influence of the confinement of the flow

domain by parallel side walls. From now on, the streamwise direction indicates the direction parallel

to the free stream, the spanwise direction is the one parallel to the cylinder axis and the transverse

direction that across both the cylinder axis and the streamwise direction. A very comprehensive

review of the flow dynamics in cylinder wakes is available in [92, 93].

2.1 Two-dimensional features of flow past a circular cylinder

We consider the flow of an incompressible Newtonian fluid past a smooth, infinitely long, straight,

circular cylinder in an unbounded fluid domain in which the streamwise direction is perpendicular

to the cylinder axis. In this reference case sketched on figure 2.1 (a), the flow is governed only by

the Reynolds number Re = U0d/ν defined with the free stream velocity U0, the cylinder diameter

d and the kinematic viscosity ν. A review of experimental works investigating the reference case is

given in [38]. The respective critical Re for the successive transitions between flow regimes have been

well established by experiments, but due to the unavoidable perturbations present in any set-up, they

often exhibit some discrepancy from one experimental campaign to the other. Therefore, instead of

one single value for a critical Re, we provide a interval of Re.

When increasing Re from zero on, the flow exhibits a sequence of three 2D flow regimes, in which

the features are invariant along the cylinder span. For Re up to RecS , 4 < RecS < 5, the flow sticks

to the whole cylinder surface and no separation is visible [30] (see figure 2.2 (a)). This regime is

referred to the creeping flow or Stokes flow and corresponds to a viscous-dominated flow in which
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Figure 2.1: Reference cases: Circular cylinder wake (a); Square cylinder wake (b).

inertia has little influence. When further increasing Re, flow separation appears and two steady

recirculation regions symmetric with respect to the wake centreline develop at the rear of the cylinder

[37, 61, 79, 84] and lengthen downstream. Figure 2.2 (b) presents a schematic view of the resulting

flow. This is the regime of the steady recirculation regions, it is the second and last steady flow regime

before unsteadiness appears at RecU , 50 < RecU < 60.
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Figure 2.2: Steady flow regimes of the unbounded cylinder wake: Creeping flow (a); Regime of the
steady recirculation regions (b). Flow from left to right.

In the vicinity of RecU , the steady recirculation regions reach their maximum length. Their tails

undergo transverse undulations which gradually move upstream, reach the near-wake and destabilise

the whole recirculation regions. The free shear layers on both sides of the cylinder alternatively roll

up at the cylinder back and clockwise (resp. anticlockwise) vortices are generated by the upper (resp.

lower) free shear layer. These vortices eventually detach and flow downstream along two parallel

trajectories, themselves parallel to the wake centreline [37, 43, 64, 69, 71, 84, 91]. This regime is

the periodic laminar flow regime (see figure 2.3 (a)) and probably the most remarkable one, as the

shedding process fuels a procession of alternate counter-rotating vortices, also known as Kármán

vortex street, first described by Bénard [26, 28, 27] and von Kármán [82, 83].

2.2 Route to three-dimensionality: mode-A and mode-B flow regimes

The cylinder wake remains truly 2D as long as the Kármán vortices remain invariant along the

cylinder axis. When Re is further increased, 3D features appear as streamwise vortices settle in

the flow. Two phases in the route to three-dimensionality have been identified by Williamson [86].

They are characterised by the appearance of so-called mode-A and mode-B streamwise vortices, both

depicted in figure 2.3 (b).

Mode-A regime is a regularly spaced, out-of-phase pattern of counter-rotating streamwise vortices
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Figure 2.3: Experimental observations of the laminar periodic flow regime at Re = 120 [43] (a);
Schematic view of the modes A and B flow patterns [34] (b).

with a spanwise wavelength of about 4 cylinder diameters and strongly distorted Kármán vortices

along the spanwise direction [34, 48, 54, 65, 81, 86, 94]. This regime appears according to a hysteretical

transition, i.e. the critical threshold RecA differs whether Re is increased or decreased, for 180 <

RecA < 190 [24]. In mode B, one can observe a continuous sheet of counter-rotating streamwise

vortices alternately distributed over the spanwise direction with a spanwise wavelength of about 1

cylinder diameter. This vorticity sheet undulates between the Kármán vortices whose shape is almost

invariant along the spanwise direction [34, 48, 54, 65, 81, 86, 94]. Unlike mode A, the transition

to mode B is supercritical and with a critical Re noted RecB, this flow regime appears at 250 <

RecB < 270 [24, 87]. Mode-B pattern has been observed in flows for Re up to 104 [87]. The formation

mechanisms of mode-A and mode-B structures are described in [33, 34, 57, 80, 87].

Once the mode-A flow structures are wiped out by the mode-B one from RecB on, the cylinder

wake is truly 3D. When Re is increased, the flow dynamics further evolve and new flow regimes with

characteristic pattern can be observed. These features are out of the scope of this thesis, but detailed

information can be found in [92].

2.3 Flow coefficients

2.3.1 Definitions

We still consider the reference configuration and we now introduce a set of flow coefficients whose

respective evolutions with Re reflect various aspects of the flow dynamics.

In the second steady regime, Lb is defined as the length of the steady recirculation regions. It is

measured along the wake centreline, between the rear of the cylinder and the tail of the recirculation

regions. In the unsteady flow regimes, Lb is defined as the distance between the rear point of the

cylinder and that where the RMS velocity fluctuations reach a maximum [88]. It is rather difficult to

measure Lb in experiments at Re in the lower range of the regime of the steady recirculation regions.
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The rear point of the cylinder along the wake centreline is the base point. It is used in the

definition of the base pressure coefficient Cpb:

Cpb =
2(pb − p0)

ρU2
0

(2.1)

where pb is the static pressure at the base point and p0 the free stream static pressure. In the unsteady

flow regimes, a time average value is used. Systematic pressure measurements are widespread in

experiments, since the measurement methods are reliable and easy to integrate into the experimental

set-up.

As the fluid flows around the cylinder, it exerts a force on the cylinder due to both pressure and

viscous forces. The projection of this force along the streamwise (resp. transverse) direction is the

drag (resp. lift) force. In the reference case, the cylinder is considered as infinitely long, so FD (resp.

FL) represents the drag force (resp. lift force) per unit span length. One subsequently defines the

drag coefficient CD and the lift coefficient CL as:

CD = 2FD/(ρU
2
0 d) (2.2)

CL = 2FL/(ρU
2
0 d) (2.3)

Furthermore, one can distinguish the pressure (resp. viscous) component of the drag coefficient CD,p

(resp. CD,v) along with the relationship CD = CD,p + CD,v. In the steady flow regimes, the drag

and lift coefficients are measured once the flow is fully established while their time average values are

used in the unsteady flow regimes. The transition to 3D flow should be addressed in the definition

of the drag and lift coefficients. As mode-A and mode-B flow regimes are periodic along the cylinder

span, we consider that the drag and lift forces are acting on a typical spanwise length, defined by the

respective spanwise lengths of mode-A and mode-B. The definitions for drag and lift coefficients can

then be considered as unchanged. Note that force coefficients are delicate to obtain in experiments,

especially in the 3D flow regimes. In this matter, numerical experiments provide more reliable data.

An adequate flow coefficient is used to characterise the vortex shedding in the unsteady flow

regimes. This is the Strouhal number St which is base on the frequency f of the vortex shedding:

St = fd/U0 (2.4)

In experiments, St curves are very often derived from the time history of velocity at given locations

in the cylinder wake. In numerical computations, one can obtain them from the time history of CL.
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Figure 2.4: Circular cylinder wake in the reference case: Lb/d versus (Re−RecU) [67]

2.3.2 Evolutions of the flow coefficients against Re

Figure 2.4 is extracted from [67]. It presents the evolution of Lb/d with increasing Re before and

after the transition to unsteadiness. Figures 2.5 and 2.6 are taken from [47] and [66]. The former

reports the evolution of −Cpb versus Re for Re up to 350; the latter presents the respective curves

of the viscous, pressure and total drag coefficient in the steady regime, but only the evolution of the

total drag coefficient in the unsteady flow regime.

In the steady flow regimes, Lb increases linearly with Re as reported in various experimental

investigations [37, 45, 61]. This increase in Lb corresponds to a decrease in both Cpb and CD. The

appearance of the steady recirculation regions corresponds to that of an adverse pressure gradient

at the rear of cylinder. As a consequence, the pressure at the base point increases and gets closer

to p0, hence the decrease in Cpb in the regime of the steady recirculation regions. Similarly, both

the pressure and viscous part of the drag coefficient decrease with increasing Re. The total drag

coefficient CD = CDp + CDv therefore decreases in the steady flow regimes [29, 55].

The transition to unsteadiness occurring at RecU is characterised by a discontinuity in the respec-

tive evolutions of all coefficients. In the unsteady regime, Lb measures the length of the formation

region of the Kármán vortices. Experiments have shown that this region shrinks as Re becomes higher

[44, 62, 87]. Indeed, at the onset of the vortex shedding, the Kármán vortices are released at the back

of the remaining steady recirculation regions and vortices gradually shed closer to the cylinder as Re

is increased. As the Kármán vortices are formed closer from the base point, the kinematic streamline

linking the point where the reference pressure is measured and the base point becomes shorter so that

velocity at the vicinity of the base point increases and in return, pressure pb decreases. As a result,

Cpb decreases after the transition to unsteadiness. Here it is important to notice that Lb and Cpb have

opposite variations in both steady and unsteady flow regimes.

This is in contrast with CDp which starts increasing after the onset of vortex shedding as the results
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Figure 2.5: Circular cylinder wake in the reference case: Cpb versus Re. (Left) 2D flow regimes [47].
(Right) 3D flow regimes [66]. The dash line is the prolongation of the 2D curve from [47].

of the modification of the pressure distribution in the near wake of the cylinder. The same event does

not affect the evolution of CDv which keeps on decreasing. In the first stage of the unsteady regime,

its decrease still outweighs the increase in CDp so that the total drag coefficient CD only exhibits a

change in its decreasing slope initiated throughout the steady regime.

Figure 2.7 is extracted from [88] and shows the evolution of the Strouhal number St with increasing

Re. One can observe that St increases with Re within the laminar periodic flow regime for Re up to

about 180. The shedding frequency can be seen as the ratio of the typical velocity Uv of the Kármán

vortices to the typical distance lv between 2 successive clockwise (or anti-clockwise) vortices. The

Strouhal number can then be written as:

St =
Uv

U0

d

lv
(2.5)

As the formation region of the Kármán vortices shrinks, the inertia of the vortices dragged by the

free stream diminishes so that Uv gradually catches up the free stream velocity as Re is increased.

On the other hand, the shedding process is accelerated by the increase of the free stream velocity on

the outside of the free shear layers. The shedding frequency therefore increases and the distance lv

shrinks. Both the increase in Uv and the decrease in lv were observed experimentally [69, 70] and

explain why St increases within the periodic laminar regime.

The appearance of mode-A regime at the critical threshold RecA is clearly detected in the evolu-

tions of each flow coefficient. Due to the formation of streamwise vortices, the Kármán vortices exhibit
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Figure 2.6: Circular cylinder wake in the reference case: CD versus Re. (Left) 2D flow regimes:
viscous, pressure and total drag coefficient from bottom to top [47]. (Right) 3D flow regimes: Total
drag coefficient only [66]. The dash line is the prolongation of the 2D curve for the total drag coefficient
from [47].

a distorted shape along the cylinder span. The whole columnar Kármán vortex does not separate

from the free shear layer as a single block, instead the shedding process is delayed at the locations

where the streamwise vortices are formed. As a result, the St-curve exhibits a discontinuity at the

transition to mode-A regime as St undergoes a sudden decrease. Further for RecA < Re < RecB ,

the respective evolutions of both mode A and B structures can be tracked down on the St time

histories [48, 66, 86]. The formation of streamwise vortices also modifies the pressure distribution in

the cylinder near wake so that a break in the decreasing slope of Cpb-curve is seen at RecA. Accurate

3D numerical simulations [48, 66] have shown that the transition to mode-A regime also causes a

discontinuity in the CD-curve as CD starts increasing after RecA. Note that, for RecU ≤ Re ≤ RecA,

the rate of increase in CDp gradually levels out the rate of decrease in CDv so that the total drag

coefficient CD = CDp+CDv reaches a minimum value just before RecA. For higher values of Re, CDv

is very low in comparison to CDp. The variations of CD therefore follow from those of CDp and CD

increases.

2.4 Flow past a circular cylinder confined between two parallel walls

The reference case of the unbounded flow domain involves a flow dynamics free of any kind of external

disturbances. This remains however an idealised configuration. Any experimental set-up necessarily
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Figure 2.7: Circular cylinder wake in the reference case: St versus Re [88]

imposes a set of limits to the flow and perturbations can not be totally driven out. In particular, the

flow domain is never unbounded, so that it is important to assess the influence of confinement on the

flow dynamics. Here we consider only the blockage effects on the flow by two parallel side walls.

U

d

2h

Figure 2.8: Configuration of the flow past a circular cylinder between two parallel walls

In this configuration sketched in figure 2.8, the flow domain is still assumed as unbounded in both

streamwise and spanwise directions, but confined in the transverse one. Two infinite parallel walls

are located on each side of the cylinder, at equal distance h from the wake centreline and normal to

the transverse direction. The inflow velocity is no longer invariant along the transverse direction, but

corresponds to a parabolic velocity profile, also known as Poiseuille velocity profile. In addition, due

to the restriction of the channel cross-section by the cylinder, the free stream is accelerated between

the cylinder and the walls. Another important feature is the presence of a boundary layer along each

wall which may interact with cylinder wake. The influence of the confinement of the flow by parallel

side walls is evaluated through the blockage ratio β defined as the ratio of the cylinder diameter d to

the distance between the side walls 2h so that β = d/(2h).
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2.4.1 Influence on the flow dynamics
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Figure 2.9: Critical Re at the onset of vortex shedding versus blockage ratio β = d/(2h)

For β < 0.1, flow confinement has little influence on the flow dynamics. In the range 0.1 < β < 0.6,

the acceleration due to flow confinement causes noticeable changes in the flow. Flow separation occurs

at higher Re [35, 37, 45, 67] and the lengthening of the steady recirculation regions is slower in the

sense that their length still grows linearly with Re, but at a given Re the steady recirculation regions

are shorter if β is higher [35, 37, 45, 67, 73]. At a given Re, increasing β pushes downstream the

point where the free shear layer separates from the cylinder surface [89]. Another effect of the flow

confinement is the stabilisation of the free shear layers. The onset of vortex shedding is initiated by

oscillations of the recirculation regions in the transverse direction. According to [45], the development

of these oscillations is impeded by the presence of the side walls. As a result, as shown on figure 2.9,

the transition to unsteadiness is shifted to significantly higher Re as β is increased [35, 59, 69, 72, 74].

Also, for Re ≥ 200, the development of Kármán vortices initiates the separation of the side

wall boundary layers and the generated secondary vortices then interact with the Kármán vortices

[59, 67, 72]. For 0.6 < β < 1 , the flow dynamics are very peculiar and differ in many aspects from

the typical cylinder wake [36, 72]. The separation of the side wall boundary layers influences the flow

very much. New flow patterns are detected and the nature of the transitions between the flow regimes

have nothing in common with the ones described up to now. For example, one may observe vortex

shedding induced only by the separation of the side wall boundary layers, but not by the cylinder

itself [72].

2.4.2 Influence on the evolutions of the flow coefficients

Figure 2.10 is extracted from [59] and shows the respective evolutions of the total drag coefficient

CD and St with increasing Re for several values of the blockage ratio β. The presence of side walls

introduces an additional pressure gradient along the transverse direction as well as an increase of the
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flow friction from viscous forces within the side wall boundary layers. As a result, the drag coefficient

CD increases with β [52, 59, 72, 73]. In the creeping flow regime where viscosity dominates the

flow, experiments have shown that CD is constant for Re < 0.1 [85] and the value of the constant

CD increases with β [68, 30, 29, 77]. In further regimes, the respective CD curves for increasing

β have a roughly similar shape, but are shifted to higher values of CD. For β < 0.8 in the range

0 < Re < 104, CD significantly decreases and increases very slightly after the onset of vortex shedding

[1, 52, 59, 72, 95]. Note that, as the blockage delays the transition to unsteadiness, the decrease of the

viscous component of the drag coefficient CDv over the steady flow regimes is prolonged over a longer

Re interval. Consequently, at the onset of vortex shedding, when the pressure-based drag coefficient

CDp starts to increase while CDv keeps on decreasing, the decrease in CDv is too weak to counteract

the increase in CDp. CD therefore starts increasing as soon as the transition to unsteadiness is reached.

Figure 2.10: Circular cylinder wake between parallel walls β: CD (a) and St (b) versus Re at different
blockage ratio β [59]

Similar observations can be made on the St-evolution with Re for different values β in the range

0 < Re < 500. The value of St at the onset of vortex shedding increases with β [35, 59, 72]. Indeed,

due to the confinement, at a given Re, the ratio of the typical vortex velocity to the free stream

velocity is higher for higher β and the typical distance between two successive clockwise vortices

is smaller [69]. Also, the evolution of the Strouhal number as defined in (2.5) is the same as that

relevant with the unconfined cylinder wake. As long as the Kármán vortex street is not disturbed by

secondary vortices released after the separation of side wall layers, St increases with Re and higher St

are obtained for higher β at a given Re [59]. Nevertheless, as soon as the secondary vortices interact

with the Kármán vortex street, St decreases (see curve for β = 0.3 in [59]).

Broadly speaking, relatively little attention has been paid in the literature on the influence of flow

confinement in comparison with the large amount of publications on the reference case. For example,
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it could be of interest to identify the influence of the blockage on the appearance of streamwise

vortices. To our knowledge, only the experiments of [67] with β = 0.3 have shown that mode A

(resp. mode B) appears at a lower (resp. higher) critical Re than when no blockage is involved. In

addition, the spanwise lengthwave of mode-A is one cylinder diameter shorter while that of mode-B

is the same as in the unconfined cylinder wake. Also, an investigation of the interactions between the

Kármán vortices and the secondary vortices initiated by the separation of the side wall layer would

bring useful insight in this particular flow dynamics.
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Chapter 3

Flow around more complex obstacles

In this chapter, we modify the geometry of the cylinder. Firstly, we consider the flow past a cylinder

of square cross-section. Secondly, we review the case where the cylinder does not span over the full

height of the fluid domain: one end is mounted on a wall normal to the cylinder axis and the other

one is free.

3.1 Flow past a square cylinder

The shape of the cylinder cross-section is important in the flow dynamics. Flow separation is promoted

at sharp angles of the cross-section. In case no such angle exists as for the circular cylinder, the

separation point fluctuates along the cylinder cross-section and even along the cylinder span such

that the separation line can be wavy [90]. Also, the cross-section shape defines the typical width of

the wake, which has an influence on the stability of the steady flow regime and affects the critical

size of the steady recirculation regions. Finally, the stability of the free shear layers is significantly

influenced by their curvature [58]. We shall introduce in detail the flow past a square cylinder using

the width W of the square cross-section as unit length used to define Re. The square cylinder is

oriented such that the streamwise direction is normal to the upstream cylinder face. This reference

configuration is sketched on figure 2.1 (b). The flow domain is unbounded and the cylinder is infinitely

long. We will describe the flow dynamics in this configuration until three-dimensionality has settled

into the flow.

3.1.1 Flow dynamics

When increasing Re from zero on, the flow exhibits a sequence of 2 steady regimes and 3 unsteady

regimes before three-dimensional instability appears in the flow. The steady flow regimes are similar

to the circular cylinder wake. Flow separation appears in flow at 2 < RecS < 3 and two symmetric

steady recirculation regions lengthen in the wake as Re is increased [104]. Free shear layers separate
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at the downstream corners of the cylinder. The transition to unsteadiness occurs at 40 < RecU < 50

[104, 106] and vortex shedding fuels a regular Kármán vortex street. The successive stages of the

unsteady flow regimes with increasing Re is presented on figure 3.1 extracted from [101]. At 100 <

Re < 120, the free shear layers separate from both upstream and downstream corners [101, 104]. The

separation at the downstream corners generates Kármán vortices, while separation at the upstream

corners gives rise to an unsteady recirculation region which slightly moves along the lateral face

of the cylinder but its reattachment point always remains away from the downstream corner. The

appearance of this lateral recirculation region has no effect on the formation process of Kármán

vortices. For 150 < Re < 160, the junction between the lateral and the rear recirculation regions is

effective [101, 104].

Figure 3.1: Square cylinder wake in the reference case: Time-averaged mean streamlines in the 2D
unsteady flow regimes [101]. Separation only at the rear edges 100 ≤ Re ≤ 120 (a). Separation at both
front and rear edges, appearance of two lateral recirculation regions 120 ≤ Re ≤ 150(b). Separation
only at the front edge, junction between both side and rear recirculation regions 150 ≤ Re ≤ 160(c).

The route to three-dimensionality is also characterised by the successive appearances of mode-A

and mode-B regimes. Respective flow patterns have the same properties as in the circular cylinder

wake with a spanwise wavelength of about 5W and 1W for mode A and mode B respectively [99, 101].

A hysteretical transition characterises also the appearance of mode-A regime at 160 < RecA < 170

[99, 101], but the hysteresis is weak and spans over a narrow Re range less than 6 [99]. The Kármán

vortices are strongly distorted and vortex dislocations develop in the very first stages of mode-A

regime. As in the circular cylinder wake, mode-B regime appears also after a supercritical transition

at 190 < RecB < 200 [99, 101] and Kármán vortices are almost invariant along the spanwise direction.
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The respective formation mechanisms of both modes are very similar to the ones observed in the

circular cylinder (see [99] for a detailed analysis).

3.1.2 Evolution of the flow coefficients against Re

Using the same definitions as previously, the flow coefficients exhibit similar variations as in the

circular cylinder wake [99, 100, 101, 104, 106]. Striking changes are observed in the evolution of the

different drag coefficients. On figure 3.2, we reproduce the respective curves of the pressure and total

drag coefficient given in [104]. The steady regime results in a decrease in both CDp and CDv and

subsequently also in CD, as in the circular cylinder case [104]. In the laminar periodic flow regime

up to about RecA, CD monotonically decreases [106, 104] while CDp first decreases for Re ≤ 90 and

then increases until it becomes finally bigger than CD at Re about 140 [104, 107]. The appearance of

the unsteady recirculation regions along the lateral faces of the cylinder causes CDv to turn negative.

Further within the 3D vortex shedding regime, as in the circular cylinder case, the influence of CDv

wanes as CD follows the variations of CDp and a slight increase in CD is observed [102, 107].

Figure 3.2: Square cylinder wake in the reference case: CD and CD,p versus Re [104]. The intersection
of the curves with the same symbol, filled and open, corresponds to the appearance of the lateral
recirculation region

The influence of the blockage by parallel walls located symmetrically on both sides of the cylinder

is studied in [96, 97, 98, 105, 106] for moderate values of Re up to about 103. Similar effects as in

the circular cylinder case are observed.

In conclusion, the flow dynamics of the square cylinder wake are very similar to that of the circular

cylinder. Actually, the main change is provided by the appearance of recirculation regions along the

lateral faces of the cylinder when the flow separates at the leading edge of the square cylinder. As a

result, the typical size of the square cylinder is then bigger than the cylinder width by about 10 to
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20%. If one accounts for this change in the unit length in the definitions of Re and St, one roughly

recovers the curves relative to the circular cylinder wake as well as about the same values for the

critical thresholds of modes A and B [101]. Also, one can notice that the Re value at which the

lateral recirculation regions reattached at the trailing edge of the cylinder corresponds more or less

to the appearance of mode A.

3.2 Flow past a cylinder with one free end

(a) (b)

U U

W H

Figure 3.3: Configuration of the flow past a truncated square cylinder: Top view (a); Side view (b).

In this configuration, the fluid domain is bounded by an infinite bottom wall and unbounded in

the other directions. Figure 3.3 shows the configuration of the flow past a truncated square cylinder.

A square or circular cylinder is mounted on the bottom wall and its axis is normal to this wall. In the

case of the square cylinder wake, the streamwise direction is normal to the cylinder upstream face.

The unit length for the circular (resp. square) cylinder case is the cylinder diameter d (resp. width

W ). The cylinder aspect ratio γ is the ratio of the cylinder height H to its diameter d (resp. width

W ) in the circular (resp. square) cylinder case.

The flow dynamics relevant to this configuration have been thoroughly studied for Re > 104 to

give insight on a wide variety of industrial problems such as smoke flow from chimney stack or ship

funnel and wind flow past a building. For moderate values of Re, i.e. Re < 103, works are very

scarce in the literature although valuable insight may be provided on the influence of probes used in

intrusive measurements methods [177] or on heat transfer in electronic circuit boards [119].

In these regimes, the cylinder wake consists of the combination of four main structures: the

horseshoe pattern, a system of trailing vortices and the free shear layer arising at the cylinder free

end and those stretching from both cylinder lateral faces. The latter feature is similar to those forming

in the non-truncated cylinder wake. We shall describe in more detail the former three structures.

The boundary layer arising at the bottom wall is disturbed by the presence of the cylinder. At

the junction between the cylinder and the bottom wall, the instability of the bottom wall boundary

layer causes flow separation some distance upstream the cylinder and gives rise to a system of swirls

[108, 114, 116, 117] as shown on figure 3.4(a). The swirl system then spirals around the cylinder and

forms a horseshoe pattern named after its remarkable shape. The number of swirls and its stability

depend on the cylinder cross-section, Re and the thickness of the bottom wall boundary layer. In the

case of a square cylinder, experiments [117] showed that the horseshoe pattern was steady for Re up
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Figure 3.4: (a) Streamline patterns at the front of a plate at Re = 1200 exhibiting the presence of a
system of swirls at the origin of the horseshoe pattern obtained from PIV measurements [116]. The
x−axis corresponds to the bottom wall, the front edge of the plate is located at x = 0 and the y-axis
is here parallel to the cylinder axis. (b) Snapshot of the vortex generated at the cylinder free end at
Re = 100. Experiments by [118] achieved for a truncated circular cylinder.

to 1500 without any restriction on the thickness of the bottom boundary layer. Also, the main swirl

is slightly shifted upstream when Re is increased [108, 114, 123].

The system of trailing vortices consists of two pairs of counter-rotating streamwise vortices located

below the cylinder tip and above the cylinder base, respectively. According to their location, they are

referred to as tip and base vortices. The origin of the both vortices still remains controversial. From

experimental flow visualisations in the wake of a truncated circular cylinder at Re > 104, [112] and

[120] suggested that the tip vortices are generated above the upper cylinder face from the rolling-up

of the lateral ends of the upper free shear layer, while [115] interpreted these tip vortices as the result

of the tilting of the lateral free shear layers in the vicinity of the cylinder free end. From experimental

measurements in the same configuration at Re = 6.104, [125] suggested that the tip vortices have

nothing to do with the lateral free shear layers. Investigating experimentally the flow past a truncated

square cylinder for 200 < Re < 104, [126] drew the same conclusions as [115]. On the other hand,

little information is available on the base vortices. [112], [125] and [126] agreed that they resulted

from the tilting of the lateral free shear layers in the vicinity of the bottom wall. [112] furthermore

indicated that the base vortices were initially aligned along the spanwise direction and then tilted

along the streamwise between the mid-span and the free end. The cylinder aspect ratio γ determines

which of the tip or the base vortices prevail in the wake [125, 126]. Also, increasing the thickness of

the boundary layer at the bottom wall strengthens the base vortices [127].

A free shear layer is generated by the boundary layer arising at the cylinder free end. According

to many researchers [114, 118, 129], it separates at the trailing edge of the cylinder free end to form a

transverse vortex as shown on figure 3.4(b). We shall see in section 9.3 that the latter vortex does not

necessarily result from the the separation of this free shear layer, but can be fed by streamlines flowing

under the lateral free shear layers. At low Re, the tail of the top free shear layer however washes
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down behind the cylinder tip and interferes with the upper part of the cylinder wake [115, 118, 124].

The flow is governed by two parameters: the Reynolds number Re and the cylinder aspect ratio γ.

For moderate values of Re, i.e. up to 1500, the horseshoe system remains steady so that vortex shed-

ding is generated only by the free shear layers. For high values of γ, the flow dynamics are dominated

by the lateral free shear layers and the onset of vortex shedding results in an asymmetric Kármán-like

vortex street [118, 121, 124, 126]. For intermediate values of γ, the transition to unsteadiness leads to

a combination of both top and lateral free shear layers to yield a symmetric vortex shedding formed

by hairpin vortices released along the wake centreline [121, 122, 128, 129]. The latter mode of vortex

shedding eventually turns asymmetric for higher Re as the hairpin vortices are released alternately

on each side of the wake [128]. If γ is close to zero, both free shear layers at the cylinder top and

lateral faces are entangled into a single swirl flow and prevent any vortex shedding from developing

[115, 119, 123]. The respective critical values of γ separating these regimes depend on the shape of

the cylinder cross-section and on the flow confinement. For instance, experiments by [121] detected

a symmetric wake for γ < 2 (resp. γ < 2.5) in the configuration featuring a truncated square (resp.

circular) cylinder. [122] observed a symmetric vortex shedding in the wake of a truncated circular

cylinder for γ up to 4. Also, the onset of vortex shedding is shifted to higher Re as γ is decreased

[122].

A topological approach of the flow has proved to being an efficient means to infer the flow patterns

[113, 123]. In particular, the number of saddle and node points is linked by a simple relationship which

can be used to check the validity of the results obtained from a numerical or analytical approach [113].

The formation mechanism of the Kármán vortices relies on the alternate roll-up and shedding of

the lateral free shear layers as in non-truncated cylinder wakes (see figure 2.3). In contrast, there has

not been yet any clear agreement on the scenario leading to the symmetric hairpin vortex street. From

experimental investigations, [121] suggested that both lateral free shear layers join the top one to form

a single entity in the near-wake and as the latter becomes unstable, an arch-type vortex is formed

and released in the wake. This view is supported by [114] who performed numerical simulations of

the flow past a truncated square cylinder with γ = 0.5 for Re ≤ 2000 and by experimental flow

visualisations by [126] at Re = 221. The latter authors also included the tip and base vortices within

the arch-vortices released in the wake. [129] simulated the flow past a truncated square cylinder

featuring γ = 1 at Re = 500 and claimed that hairpin vortices were originally vortices that detach

from the free shear layer stretching from the cylinder free end and then grow into hairpin vortices.

Until now though, the generation mechanism of hairpin vortices in the wake of a truncated cylinder

has never been the object of any dedicated study so it remains rather unclear.

The respective evolutions of the flow coefficients with Re are roughly similar to those relevant

with the non-truncated cylinder wake. We shall yet emphasise that the difference in the mode of
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Figure 3.5: Time-averaged total drag coefficient versus spanwise position on the cylinder obtained
in the numerical simulations achieved by [118] at Re = 100, 150 and 200 from top to bottom curve.
Circular cylinder wake. The cylinder bottom (resp. top) is located at z = 0 (resp. z = 10)

vortex shedding is reflected by the Strouhal number. Symmetric vortex shedding yields values of

St lower than those relevant with the asymmetric one [121]. On the one hand, in the case of the

symmetric vortex shedding, experiments [122] performed with a circular cylinder at γ = 3 reported

that St increased in the early stages of the unsteady regime up to Re ≃ 200, then decreased slightly

and eventually rose again for Re ≥ 300. On the other hand, in the configuration in which only an

asymmetric vortex street is detected at γ = 6, St monotonically increases for 70 ≤ Re ≤ 300 [122].

A further remarkable aspect of the flow coefficients is their variation along the cylinder span at

a given Re. Three main regions can be identified: two narrow ones at both cylinder ends and a

larger inbetween. For example, figure 3.5 gives the variations of the mean total drag coefficient at

Re = 100, 150, 200 obtained in the numerical simulations achieved for a truncated circular cylinder

with γ = 10 [118]. One observes that the mean drag coefficient is higher in both end regions where the

fluid flows faster, while it is lower and rather constant in the mid-span region of the cylinder where

the flow motion is much slower. Also, [118] detected two distinct shedding frequencies at both end

regions and only one in the mid-span region at Re = 100. Simulations performed at a similar cylinder

aspect ratio γ = 10.7 by [110] also recovered a two-frequency frequency spectrum at Re = 100 yielding

a primary St ≃ 0.15 and a secondary St ≃ 0.013, i.e. the secondary St was one order of magnitude

lower than the primary one.
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Chapter 4

MHD cylinder wake

In this chapter, we introduce the features of MHD cylinder wakes in the case where the magnetic

Reynolds number is much lower than unity. We consider only studies in which the magnetic field

is externally applied, homogeneous, steady and unidirectional. The different configurations under

consideration in this section are sketched on figure 4.1.
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Figure 4.1: Orientation of the magnetic field in MHD cylinder wakes: Streamwise magnetic field (a);
Transverse magnetic field (b); Spanwise magnetic field (c).

Configurations where the direction of the magnetic field B is along the streamwise direction are

considered in [176, 182, 188] (experiments) and [190, 191, 195] (numerics). The magnetic field is

oriented along the transverse direction in [183, 193] (experiments) and [191, 192] (numerics). Studies

in which the cylinder axis and the magnetic field are parallel are featured in experiments [174, 175,

179, 184, 185, 187, 180] and in numerical computations [189, 194].

The orientation of the magnetic field has a dramatic influence. In all configurations, the magnetic

field stabilises the flow, shifts the appearance of flow separation and the transition to unsteadiness to

higher critical thresholds and promotes vortices whose axis is aligned with the magnetic field lines.

In addition, the location of the Hartmann and Shercliff layers depends on the orientation of B.

In cases whereB is parallel to the free stream and points in the same sense, an effect of the magnetic

field is to push the separation point downstream [182, 188] until the latter becomes stagnant and

slightly moves upstream for Stuart numbers N higher than 5 [191, 195]. Similarly, the reattachement

point is located closer to the cylinder base point and vortex shedding is impeded as the vortices

have little room to develop [188, 191, 195]. An important feature is the existence of a 3D steady
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flow, i.e. the transition to unsteadiness which characterises the 2D instability occurs at a higher

Re than the transition to three-dimensionality effective when streamwise vortices appear in the flow

[190, 191]. Actually, the magnetic field promotes the development of vortices aligned with B and

damps all other vortices. In the cylinder wake, unsteadiness is initiated by transverse undulations

of the recirculation regions and three-dimensionality is initiated by the appearance of streamwise

vortices. A streamwise magnetic field then shifts the onset of the transverse oscillations at a higher

Re and allows the formation of streamwise vortices at a lower Re. Consequently, under the influence

of a streamwise magnetic field, the cylinder wake may exhibit 3D steady flow patterns.

The base pressure coefficient Cpb has a non-monotonic evolution against N . Cpb is maximum at

N = 1.5 and its subsequent decrease scales with N1/2 [182]. The pressure drag coefficient CDp has

opposite variations as Cpb with a minimum also at N = 1.5 [182]. Numerical investigations featuring

a circular cylinder [195] recovered the same trend for CDp but isolated the minimum value at N = 0.2.

This study also showed that the magnetic field had little influence on the viscous component of the

drag coefficient, although a slight increase in CDv was observed for N > 2. Finally, St monotonically

decreases with increasing N for 0 < N < 0.16.

The configuration where B is oriented along the transverse direction has been little investigated.

The onset of vortex shedding is shifted to higher Re, but smaller than in the case when B is aligned

with the streamwise direction [192].

Figure 4.2: MHD circular cylinder wake with a spanwise magnetic field: St versus Re [179]

When the magnetic field is aligned with the cylinder axis, similar stabilising effects of the wake by

the magnetic field are observed [174, 176, 180, 189]. The critical Re for the transition to unsteadiness

increases following a linear dependency with Ha [175, 180]. In addition, Kármán vortices have a cigar-

like shape near the Hartmann walls for N ≥ 2 [189]. This feature has been theoretically predicted

by [157]. The vortex extremities are immersed into the Hartmann layers where the electric current
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is sucked into the vortex core. A vertical current density pointing outwards the Hartman layer is

generated. It depends linearly on the vertical coordinate. This results in a quadratic profile of

the velocity field and cigar-like vortex ends. Also, for both high Re and Ha, i.e. Ha > 103 and

Re > 2000, experiments [180] detected an unsteady flow regime with an irregular Kármán vortex

street and secondary vortices appearing at positions outside the rows of Kármán vortices. Moreover

the loss of regularity of the Kármán vortex street involves a sudden decrease in St [179] (see figure

4.2). The pressure drag coefficient is constant for N up to about 20 and then decreases in the range

20 < N < 220 [175].
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Part II

Two-dimensional numerical

computations
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Chapter 5

Numerical set-up in 2D simulations of

cylinder wakes

Two-dimensional numerical simulations have been performed both with the commercial software

FLUENT/UNS (version 6.2) [199] and the open source code OpenFOAM [205, 206, 210]. Both

codes are based on the finite-volume method. An extensive introduction to this numerical method is

available in [209]. The general concepts and methods used in numerical computations are introduced

in e.g. [198, 207]. We shall however very briefly introduce the finite-volume method in section 5.1.

Cylinder wakes have become a benchmark configuration to assess the performance of a given

numerical code. Indeed, the geometrical configuration is very simple, the flow regimes and patterns

are well identified, turbulent flows foollow on from laminar flow in a rather narrow Re interval and

a large amount of data is available in the literature. In section 5.2, we review the influence of the

respective components of the numerical set-up used in 2D computations. The PISO scheme designed

to address the coupling between the pressure and the velocity fields is described in section 5.3. Section

5.4 is dedicated to the implementation of the SM82 model into the numerical code. The consequences

of the choice of a segregated or a coupled solver are shown in a simple example in section 5.5. Finally

we present the perturbation method required to make sure the numerical code recovers the critical

threshold of the transition to unsteadiness in section 5.6.

5.1 Introduction to the finite-volume method

The finite-volume method is one of the most popular methods in Computational Fluid Dynamics

(CFD). A mesh is designed to decompose the fluid domain into a set of adjacent control volumes or

cells. The flow equations are applied to each cell and averaged over its volume. To this end, the

finite-volume method uses the integral formulation of the conservation equations. For example, the
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Navier-Stokes equations are written under the following non-dimensional integral formulation:

∫

V

[

∂u

∂t
+∇ · (uu)

]

dV =

∫

V

[

∇p+
1

Re
∇2u

]

dV (5.1)

∫

V
(∇ · u)dV = 0 (5.2)

where the fluid is considered as incompressible and V denotes the volume of a given mesh cell.

These equations are then simplified using the Gauss’ theorem and volume integrals can then be

transposed into surface integrals over the volume surface on the form of:

∫

V
∇ ⋆ ϑdV =

∮

∂V
dS ⋆ ϑ (5.3)

where ∂V denotes the surface of a given cell of volume V , ⋆ stands for any tensor operation and ϑ

denotes any tensor field.

Under the finite volume method, each term of the flow equation is then reformulated using Gauss’

theorem. For example, the mass conservation (5.2) is reformulated as:

∫

V
(∇ · u)dV =

∮

∂V
u · dS =

∑

faces

uf · Sf (5.4)

where the f superscript indicates quantities taken at the cell faces. The mass conservation is then

written as the discrete sum of the velocity fluxes over the cell faces.

This example shows that the finite volume formulation requires the definition of where the vari-

able is located in the cells. According to the arrangement of the variable in the control volumes,

interpolation schemes may be required to implement Gauss’ theorem.

Using Gauss’ theorem for each term when possible, the flow equations are finally expressed as

equations involving volume, surface and contour integrals. The final step is then to linearise the latter

integrals when necessary. To this end, one uses discretization schemes in time for time derivative terms

and in space for spatial derivative terms (see e.g. [198, 199, 205] for an exhaustive list of existing

discretization schemes). The order of accuracy of the numerical simulations depends on those of both

the discretization and interpolation schemes. Mesh skewness may also require a special care as it may

greatly deteriorate the order of accuracy of the whole simulation [202].

5.2 Influence of the 2D numerical set-up

The first computations of the flow past a circular cylinder were performed by hand by Thom [79] in

the late 1920’s and later by Kawaguti [51]. For information, it took a year and a half to Kawaguti to

compute the flow at Re = 40. Early 2D simulations were limited due to low resolution, convergence
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problems and small domain size [42]. As computers have gained in performance and reliability,

numerical techniques have become more sophisticated and numerical set-ups more realistic. Cylinder

wakes were simulated with the lattice-Boltzmann method in [76, 118], finite element method in [22,

23, 25, 35, 40, 41, 48, 60, 73, 78, 95], finite difference or volume method in [31, 36, 98, 39, 42, 49, 54,

56, 59, 63, 65, 101, 72, 107, 94] and spectral methods [47, 50, 66, 81] to mention the most common

numerical techniques.

In the finite volume method, the flow equations can be written in a formulation involving the

vorticity field and the kinematic stream function as variables. In this case, polar meshes are used,

but special care is required for the outer boundary since it characterises both the inflow and outflow

boundaries. In particular, the distance at which the outer boundary is located strongly influences

the reliability of the results. Oseen’s approximation can be used at this boundary. This technique

consists in neglecting inertial terms in regions where their order of magnitude is comparable to that of

the viscous terms. The Navier-Stokes equations are then modified to account for this approximation

and an expression as a series can be derived for both the stream function and the vorticity at a large

distance from the cylinder axis [14]. As long as the flow remains steady, this technique provides results

in reasonable agreement with experimental data [17, 39]. For unsteady flows, the equations derived

with Oseen’s approximation may be modified by the addition of a small linear periodic disturbance

on the free stream velocity. In addition, the definition of the boundary condition for the vorticity field

on a solid surface remains challenging. For this reason, most of the finite volume based codes solve

the Navier-Stokes equations in a formulation involving the velocity and the pressure as variables and

a rectangular mesh for which all the boundaries are well identified.

If the fluid domain is assumed unbounded, special care must be dedicated to the respective lo-

cations of the boundary. The ratio of the cylinder diameter to the distance between the lateral

boundaries defines a numerical blockage ratio, which has a similar influence on the flow as in the case

where physical walls confine the flow [23] (see also chapter 2.4). With a numerical blockage ratio

smaller than 1/16, lateral boundaries have little effect on the flow [25, 53]. At the inlet of a channel

or a duct, the flow may be considered as fully established and one can map the velocity field at the

inlet either by giving an analytical expression if any or by imposing a velocity profile extracted from

preliminary numerical computations. The distance of the inlet boundary to the cylinder must only

be determined so as to not influence the local acceleration of the fluid in the vicinity of the cylinder.

Usually it is located at a distance of about 10d upstream the cylinder axis [106].

A more sensitive point is the location of the outflow boundary. Two main kinds of boundary

conditions are used at the outlet in finite-volume: either a zero normal gradient boundary condition

is applied which is easy to implement, or a convective boundary condition which is a bit more sophis-

ticated. Far away from the cylinder, one may consider that the perturbations have vanished and the
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flow is back to streamwise invariance. This is modelled by a homogeneous Neumann condition for the

velocity:

∂nu|outlet = 0 (5.5)

where ∂n∗ = (∇∗) · nw. The convective boundary condition reads:

∂tu|outlet + Uc ∂nu|outlet = 0 (5.6)

where ∂t∗ is the time derivative and Uc is a constant velocity, usually defined as the mean streamwise

velocity.

Only the latter condition prevents pressure waves from being reflected on the outflow boundary,

while it eases the convection of flow structures through the outlet. Consequently, the convective

boundary condition can be located closer from the cylinder than the other one with little influence on

the flow [21, 46, 106]. In case the reflective boundary condition is applied, its pernicious effects can

be smoothed by inserting a buffer region before the outlet. This technique consists of significantly

relaxing the mesh in a small section upstream the outlet to artificially enhance the damping of flow

structures through numerical diffusion before they reach the outlet [49]. When the reflective boundary

is used, it shall be located at least at 15 diameters from the cylinder [78]. A detailed comparison of

both boundary conditions is available in e.g. [21, 106].

The boundary conditions for the pressure are derived from the combination of the pressure equa-

tion and the boundary conditions for the velocity. For duct and channel flows, it results in a homoge-

neous Neumann boundary condition imposed at all the boundaries [189]. However this configuration

induces some numerical difficulties, as the problem for the pressure field in a rectangular computa-

tional domain is defined as completely symmetric. To alleviate this difficulty, one takes advantage of

the fact that the pressure field in duct and channel flows is greatly determined from the streamwise

pressure gradient. It is therefore usual to fix the value of the pressure at the duct or channel outlet

to an arbitrary value, for example zero:

p|outlet = 0 (5.7)

The implementation of this boundary condition at the outlet induces however some slight flow dis-

tortion, as vortices leaving the fluid domain generate a non-uniform pressure distribution.

To minimise the flow distortion due to the implementation of condition (5.7), one may impose the

mean value of the pressure across the outlet. Assuming that the outlet boundary is normal to the

x-axis, one defines the pressure at the outlet as:

p(y, z)|outlet = P̄ − 〈p〉outlet + pc(y, z) (5.8)

50



where P̄ is the imposed arbitrary mean value of the pressure across the outlet, pc is the local value

of the pressure in the cell located next to the outlet and 〈p〉outlet =
1

Soutlet

∫

Soutlet
pc(y⋆, z⋆)dS (Soutlet

denotes the surface of the outlet boundary). Using condition (5.8) results in a smoothing of the

pressure variations over the outlet boundary and therefore minimise flow distortion.

5.3 Pressure-velocity coupling scheme PISO

5.3.1 Scope of the scheme

The flow equations can be solved either with a coupled solver which solves all the equations at the same

time or with a segregated one in which the equations are treated one after the other. A segregated

solver is less demanding in CPU power and shall be used in the present numerical code. Nevertheless,

as the flow equations are solved one after the other, a numerical scheme is included in the code to

account for the coupling between the flow quantities.

In the finite-volume method, the most widespread pressure-velocity schemes are the SIMPLE

algorithm proposed by [196] and the Pressure-Implicit with Splitting of Operators (PISO) algorithm

introduced by [201]. Many variants of these schemes were elaborated afterwards [198, 207]. In the

present thesis, we only use a variant of PISO which we shall describe now.

The flow equations are written under their integral formulation on a collocated mesh (see section

7.1.2 for a description of the possible mesh arrangements). In this arrangement, the flow variables

are all located at the centroid of the control volume, but the velocity is not used directly into PISO.

PISO is an iterative scheme, whose each step is decomposed into a predictor step followed by a

series of pressure solutions and explicit velocity corrections. In the predictor step, the momentum

equation is linearised and used to derive a guess velocity um∗ using the pressure from the previous

time step. um∗ does not satisfy the mass conservation and must be corrected. To this end, the

fluxes of velocity are computed from um∗ and introduced into the mass equation. This results in an

equation linking the pressure and the fluxes of velocity, from which the pressure can be calculated.

The pressure is then used to correct both the velocity and its fluxes in an explicit way, which in

turn are used to update the pressure equation. This initiates an iterative procedure which runs until

the tolerance fixed beforehand for the respective flow variables is reached. We shall see in the next

section that the numerical implementation of the SM82 model does not affect this pressure-coupling

algorithm.
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5.3.2 Pressure equation and PISO steps

We now describe in more detail the successive PISO steps in the non-MHD case. The flow equations

are the Navier-Stokes equation:

∂tu+∇ · (uu) +∇p = (1/Re)∇2u (5.9)

∇ · u = 0 (5.10)

The second term on the left-hand side of (5.9) is the convection term, which has been written under

its divergence form [204] using (5.10).

Time and space discretization schemes are chosen and applied for each term of equations and

integrated over the cell volumes using the Gauss’ theorem. We denote T, D and C the time, diffusion

and convective discretisation schemes, respectively. Equation (5.9) then reads:

T(u) =
1

Re
D(u)− C(u)−∇p (5.11)

It follows then from this equation that the velocity at the centre of mesh cell M can then be written

as a combinaison of the velocities at the neighbour cells N , the pressure term and a source term QM

including here the velocities at the two previous time steps as we implement a backwards quadratic

time scheme. Equation (5.9) is therefore expressed under the following formulation [198, 202]:

AMuc
M = −

∑

N

ANuc
N +Qc

M − (∇p)cM (5.12)

whereAM and AN are the coefficients obtained from the time- and space-discretization of the velocities

uM and uN , respectively, and the superscript c indicates quantities taken at the cell centre. This

formulation is a semi-discretized formulation as the pressure gradient term is not discretized [208]

and all terms are actually divided through by the cell volume. Similarly, (5.10) can be written as:

∑

faces

uf
M · Sf = 0 (5.13)

where the superscript f indicates quantities taken at the cell face.

At a given time step, the PISO algorithm reads:

1. Estimate the velocity from (5.12) taking the value of the pressure from the previous time step

(m− 1);

(ûc
M )q =

1

AM

[

−
∑

N

AN (ûc
N )q + (Qc

M )q − (∇p)cm−1

]

(5.14)

where the subscript q indicates the value of the quantities obtained at the current PISO step.
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2. Calculate the velocity (ûf
M )q at the cell faces from the interpolation at the faces of each term

on the right hand side of (5.14);

3. Assemble the Poisson equation for the pressure using (5.13) and (ûf
M )q obtained at step 2;

∑

faces

1

AM
(∇p)fq · Sf =

∑

faces

(ûf
M )q · S

f (5.15)

4. Solve equation (5.15) to obtain the pressure at current PISO step q;

5. Correct both the fluxes of velocity and the velocity with the pressure term;

(uf
M )q+1 · S

f = (ûf
M )q · S

f −
1

AM
(∇p)fq · Sf (5.16)

(uc
M )q+1 = (ûc

M )q −
1

AM
(∇p)cq (5.17)

The satisfaction of equation (5.15) ensures that the fluxes of velocity are conservative.

6. Use corrected velocity in equation (5.14) and iterate over steps (2) to (5) until tolerance reached;

(uf
M )m+1 · S

f = (uf
M )q+1 · S

f (5.18)

(uc
M )m+1 = (uc

M )q+1 (5.19)

pcm+1 = pcq+1 (5.20)

5.4 Numerical implementation of the SM82 model

In the SM82 model, the flow is governed by equations (1.43) and (1.48). In the present thesis,

there is no current injection at the Hartmann walls so that the forcing velocity uf is uniformly zero.

We furthermore consider configurations which feature 2 Hartmann walls only. The implementation

of the SM82 model only involves the addition of the linear term [−(2/Ha)ū⊥] in the momentum

equation. This term is expressed implicitly, i.e. at the current time on which the iterations of the

PISO algorithm are achieved [1, 159]. The additional term only modifies the coefficient AM in (5.12)

and consequently does not affect the PISO algorithm.

5.5 Influence of the choice of the solver

A segregated solver treats the flow equations one after the other. It has been stressed in [42] that the

use of such a solver introduces an artificial numerical damping between the flow equations, which may

eventually undermine the stability properties of the numerical code and shift the transition between
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two flow regimes to a higher value for Re. In contrast, a coupled solver treats all the flow equations

at the same time and does not induce such a numerical damping. It comes with a higher CPU cost

yet, since the matrix to be inverted is more complex and requires a numerical method involving more

inner iterations at a given time step (see e.g. [199]). To assess the influence of the solver on the

2D simulations achieved with FLUENT/UNS, we have built a set of 2D meshes for the configuration

with a blockage ratio β = 0.25 (see configuration sketched on figure 2.8). The main characteristics of

these meshes are gathered in table 5.1.

Meshes G1 G2 G3 G4 G5 G6

Number of nodes along 72 144 216 288 360 432
the cylinder circumference
Total number of nodes 1.0 × 104 2.6 × 104 5.0× 104 7.5× 104 1.0 × 105 1.2 × 105

Table 5.1: Main characteristics of the different meshes used to assess the influence of the choice of the
solver. The related configuration is the confined circular cylinder wake with a blockage ratio β = 0.25.

Figure 5.1 shows the critical Re for the appearance of the steady recirculation regions obtained

with a segregated and a coupled solver when increasing the number of mesh nodes. The critical Re

remains stable and in excellent agreement with [35] when refining the mesh and using a coupled solver,

while it departs from the reference value of [35] when refining the mesh and using a segregated solver.

This indicates that the artificial numerical damping introduced by the segregated solver becomes

more significant when the grid is refined. The best choice would have then been to achieve the whole

study using the coupled solver only. However, the CPU cost involved is too expensive if one intends

to make a parametric investigation on both Re and Ha. We have therefore run our simulations using

a segregated solver.

5.6 Perturbation method

The over-stabilisation of the flow can also be noticed in the vicinity of the transition to unsteadiness.

The onset of vortex shedding corresponds to the transition between a symmetric and an asymmetric

wake. While any experimental set-up introduces small perturbations in the flow due to e.g. surface

roughness of the walls, inlet velocity slightly 3D, confining walls not perfectly parallel [31], the distur-

bances of the numerical set-up are mainly restricted to numerical truncation and round-off errors. In

addition, the symmetry of the flow is favoured in numerical simulations by the symmetric disposition

and definition of the boundary conditions. As a result, numerical computations tend to naturally

yield a critical Re for the transition to unsteadiness at a much higher Re than that obtained in ex-

perimental campaigns. This feature is illustrated on figure 5.2, which reports the length of the steady

recirculation regions with increasing Re obtained in simulations performed with a segregated and a

coupled solver. Whereas the expected linear increase in Lb with Re is recovered with the use of a
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Figure 5.1: Non-MHD confined cylinder wake at β = 0.25: Critical Re for the appearance of the
steady recirculation regions obtained with a segregated and a coupled solver. Calculations with the
coupled solver have been performed with meshes G2, G3 and G4 only. The value for Chen [35] is
obtained after interpolating the authors’ data. Simulations achieved with FLUENT/UNS.

coupled solver, in the computations performed with the segregated solver, the linear increase in Lb is

no longer recovered, but Lb saturates as Re gets closer of the critical threshold for the onset of vortex

shedding. However whereas the use of a segregated or a coupled solver has a significant influence on

the Lb-curve, its influence on the evolution of the base pressure coefficient with Re is very weak (see

figure 5.2 right). This indicates that the growth of the recirculation is a very sensitive aspect of the

flow dynamics.
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Figure 5.2: Non-MHD confined circular cylinder wake at β = 0.2: (a) length of the steady recirculation
regions Lb and (b) base pressure coefficient Cpb versus Re obtained from simulations run with a
segregated and a coupled solver. Simulations achieved with FLUENT/UNS.

In the case of the unbounded circular cylinder wake, numerical simulations performed by [31] at

Re = 103 captured unsteady flow pattern at the beginning of the simulation and as the simulation time

increases, only unsteadiness vanishes and only steady flow pattern can be identified in the flow. As the
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perturbations of the experimental set-up are hard to identify, no model can be used to reproduce them

in the numerical set-up. A numerical technique consists then in adding a vorticity-like perturbation

in the flow to initiate the vortex shedding in the cylinder wake. Several techniques are available in the

literature. [22] introduces a small vorticity-like perturbation to the whole velocity field at the start of

the simulation. The most wide-spread, efficient and easy-to-implement technique consists in rotating

the cylinder about its own axis for a short while at the start of the simulation (see e.g [31, 35]). The

perturbation method used by [31] has been used in our simulations, as its use has provided a critical

Re for the onset of vortex shedding in agreement with existing data within the shortest establishment

time. This method is described in the following equation:

ucylθ =



























−0.14U0 if 2.8tu < t < 4.3tu,

+0.1U0 if 4.5tu < t < 6tu,

0 otherwise.

(5.21)

where ucylθ is the tangential velocity of the cylinder surface and tu the turnover time.
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Chapter 6

Quasi-two dimensional circular

cylinder wake in a square duct

In this chapter, we are concerned only with the 2D simulations of the MHD circular cylinder wake

confined between two parallel walls achieved with FLUENT/UNS. We describe the different steps in

the construction of the numerical set-up. The non-MHD 2D flow past a confined circular cylinder is

used as a benchmark to test the components of the numerical set-up. The MHD performances of the

present code are compared to the experiments of [174, 179, 180]. The results of this part have been

published in [1] which is available in appendix. We shall thus focus on the results. Details of the

methods and procedures used to obtain them are provided in [1].

6.1 Numerical set-up

6.1.1 Configuration and flow equations

We assume that both Hartmann and Stuart numbers are much bigger than unity so that the flow

dynamics can be well modelled by the SM82 model. The geometrical configuration is presented on

figure 6.1. It corresponds to the experimental set-up of [174]. We consider a flow of the electrically

conducting, incompressible eutectic alloy GaInSn (density ρ = 6360 kg.m-3, kinematic viscosity ν =

3.4 × 10−7 m2.s-1, electrical conductivity σ = 3.46 × 106 Ω−1.m-1). The duct walls and the cylinder

are assumed to be electrically insulating. The cylinder of diameter d = 0.01m is at the centre of

the duct and its axis is parallel to the side walls (z-axis) and orthogonal to the streamwise direction

(x-axis). The duct has a square-cross section of width equal to 0.04m which yields a blockage ratio

of β = 0.25. A steady homogeneous externally applied magnetic field B with intensities between 0

and 1.35 Tesla is imposed along the cylinder axis.

Using the cylinder diameter d as typical length, the flow equations (1.43) and (1.46) are now
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Figure 6.1: Geometrical configuration of the quasi-2D study (a). 2D equivalent problem in the average
plane to which equations (6.1) and (6.2) apply (b). Computational domain (c). Detail of the mesh
around the cylinder between the dash-lines indicated on the computational domain (d).

written as:

∇⊥ · u⊥ = 0 (6.1)

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ +∇⊥p =
1

Red
∇2

⊥u⊥ − 2
d2

a2
Ha

Red
u⊥ (6.2)

where u⊥ is the velocity component normal to the magnetic field and averaged between both Hart-

mann walls located at z = ±a/d, Red = U0d/ν and Ha = aB0

√

σ/(ρν) (U0 is the maximum velocity

at the inlet).

6.1.2 Mesh

The computational domain is sketched in figure 6.1(c). The mesh is composed of a polar mesh

embedded in a square of dimensions 3d× 3d centred on the cylinder axis and a rectangular Cartesian

mesh covering the resting computational domain. A detail of this mesh is shown on figure 6.1(d).

The origin of the coordinate system is taken on the cylinder axis. The cylinder circumference ∂C is

defined by the equation x2 + y2 = 1/4. The side walls confining the flow are located at y = ±b/d.

Following the recommendations of [78], the inlet and outlet boundaries are located at x = Lu/d =

12 and x = Ld/d = 42, respectively. The distance 2b between the confining walls is deduced from the

blockage ratio 2b = d/β. We shall retain the configuration in which β = 0.25 since it corresponds

to that of the experimental set-up of [174]. Few works in the literature considering a blockage ratio

β = 0.25 are however available. We have therefore proceeded to the validation of the numerical model

also with a configuration featuring β = 0.2.
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6.1.3 Boundary conditions

A zero normal gradient is imposed on the pressure at all the mesh boundaries:

∂np = 0 at



























y = ±b/d,∀x;

x = −Lu/d,∀y;

x = Ld/d,∀y.

(6.3)

No-slip boundary condition (1.22) is applied at the side walls and cylinder surface:

u⊥(x,±b/d) = 0 (6.4)

u⊥|∂C = 0 (6.5)

At the inlet, we impose an analytical velocity profile obtained from the conservation of momentum

when considering a steady velocity field. The velocity profile imposed at the inlet is subsequently

u⊥(−Lu/d, y) = U(−Lu/d, y)ex with:

U(−Lu/d, y) =











1− (yd/b)2 for non-MHD computations,

cosh (yd
√
2Ha/a)−cosh (b

√
2Ha/2a)

1−cosh (b
√
2Ha/2a)

for MHD computations.

(6.6)

The outlet boundary condition is designed so that the outflow is back to streamwise invariance. This

is obtained with a homogeneous Neumann condition (5.5) imposed at x = Ld/d.

6.2 Non-MHD validation tests

The validation tests aim to tune the different aspects of the numerical set-up. The quality of the

mesh is checked, the influence of the boundary conditions is assessed and the stability property of the

numerical method is established. As the MHD flow configuration has been little investigated in the

literature, we first achieve non-MHD simulations of the confined cylinder wake. This step also gives

an important insight in the flow dynamics when no magnetic field is present. We will then refer to

these non-MHD features when looking in detail at the MHD cylinder wake.

6.2.1 Influence of the mesh: simulation at Red = 100

A set of meshes is built whose characteristics are given in table 6.1. For each mesh, we have performed

a simulation at Red = 100 over a long simulation time equal to 120tu where tu is the turnover time

defined as:

tu = d/U0 (6.7)
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Meshes M1 M2 M3 M4 M5

Number of nodes along 120 180 260 300 360
the cylinder circumference
Number of nodes in the 7 10 15 16 20
Shercliff layers at Ha = 1080
Number of points along the radius 32 56 72 80 96
of the embedded polar mesh
Total number of nodes 2× 104 4× 104 7× 104 1× 105 1.3× 105

ǫst = |1− St(Mi)/St(M5)| 3.6 × 10−2 1.3 × 10−2 2.6× 10−3 2.6× 10−3 /
ǫcd = |1− CD(Mi)/CD(M5)| 5.5 × 10−3 9.1 × 10−4 2.8× 10−4 2.1× 10−4 /

Table 6.1: Main characteristics of the different meshes and errors in drag coefficient CD and Strouhal
number St relative to M5 mesh at Red = 100. One sees that even for the highest value of Ha, M4
insures a high enough resolution in the Shercliff layers.

The perturbation method (5.21) has been used in each simulation. The respective Strouhal number

St and the total drag coefficient CD have been systematically calculated and compared to those from

M5 mesh. The related errors in St and CD, respectively defined by ǫst and ǫcd, are given in table 6.1.

We have found that both ǫst and ǫcd decrease as the mesh is refined, which shows good convergence.

In order to save CPU time and keep a reasonable accuracy in our computations, we shall perform

both MHD and non-MHD simulations with the M4 mesh.

6.2.2 Critical Re at the onset of vortex shedding

The transition to unsteadiness has been tracked by gradually increasing Red by small steps. The initial

conditions for the very first simulation corresponds to a fluid at rest. Then once a fully established

state is reached by the flow, it is used as initial conditions for the following simulations. The critical

threshold for the transition to unsteadiness in a flow configuration with a blockage ratio β = 0.25

was obtained in [35]. In the vicinity of this critical threshold, the perturbation method (5.21) is

implemented in the numerical model. We have found a critical Red for the onset of vortex shedding

in very good agreement with [35] as can be seen on figure 6.2. This proves that the stability properties

of the present numerical model are very satisfactory.

6.2.3 Total drag coefficient and Strouhal number versus Red

[59] have carried a parametric study over both β and Red of the confined circular cylinder wake for

0 ≤ β ≤ 0.4 and Red up to 500. In particular, they provide the respective evolutions of the total

drag coefficient CD and Strouhal number St with Red for each value of β. We have compared the

curves that they obtained with β = 0.2, 0.3 with the ones which we have computed with β = 0.25.

On this comparison shown on figure 6.3, our respective curves for CD and St are located between the

respective curves obtained with β = 0.2 and β = 0.3. Both the shape of the curves and the values
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6.3 MHD validation test

At this stage, we have ensured that the present numerical model recovers the flow patterns of both

steady and unsteady regimes in the non-MHD case. The respective critical Red for the appearance

of the steady recirculation regions and the onset of vortex shedding are accurately predicted and

the curves of global flow coefficients match well with existing data. We shall now make sure that

the present numerical model is also reliable in the MHD case. To this end, we have considered the

experimental set-up of [180] at Red = 5000 andHa = 1200. In this configuration, the authors observed

a regular Kármán vortex street in the cylinder wake. In this case, bothHa andN are much bigger than
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unity, so that the SM82 flow model is well adapted to capture the flow dynamics. We have simulated

this flow using equations (6.1) and (6.2) using both the present numerical code and OpenFOAM. The

same boundary and initial conditions have been implemented in both numerical packages and the

computations have been achieved over the same simulation time. As a result, both codes yield the

regular Kármán vortex street observed by [180]. We have obtained a Strouhal number equal to 0.2595

(resp. 0.2582) in the simulation performed with the present numerical model (resp. OpenFOAM).

Both values compare well and the agreement with the experimental St ≃ 0.28 is reasonable. The

discrepancy between the numerical and the experimental values reflects the unavoidable imperfections

between the numerical and the experimental systems. Consequently, the present numerical model is

able to reproduce the MHD flow past a circular cylinder even for both high Ha and Red, up to

respective values of the order of 5× 103.

6.4 Stability diagram

6.4.1 Flow regimes

We have performed a parametric study over both Red and Ha. Simulations have been achieved

for a magnetic field with intensities B = 0, 0.2, 0.4, 0.7, 1.0, 1.35 Tesla which corresponds to Ha =

0, 160, 320, 560, 800, 1080 respectively, and for Red up to 6000. At a given Ha, when one gradually

increases Red, four flow regimes can be identified resulting in the stability diagram given on figure 6.4.

The three first regimes are well-known, as they correspond to the initial non-MHD flow regimes, i.e the

creeping flow regime I, the regime of the steady recirculation regions II and the laminar periodic flow

regime with the regular Kármán vortex street III. We denote Rec1 and Rec2 the respective critical Red

for the appearance of regimes II and III respectively. For Red higher than a third critical threshold,

denoted Rec3, the Kármán vortex street becomes irregular.

The regime IV is specific to confined cylinder wakes, in which the boundary layers at the side

walls are likely to separate and generate vortex shedding [59, 67, 72]. As seen on figure 6.5, the

Kármán vortices are still initiated by the rolling-up of the free shear layers as in regime III, but

in the cylinder wake, between these vortices and the side wall layers, secondary counter-rotating

vortices are generated by separation of the Shercliff layer at the side walls, shed, and eventually flow

downstream. These vortices either cross the wake obliquely and interact strongly with the adjacent

Kármán vortices or are quickly dissipated as soon as they detach from the Shercliff layer.

The oblique trajectory of the secondary vortices results from the combined action of the free stream

that takes them away downstream and of the Kármán vortices at the origin of their formation, that

thrust them towards the opposite side wall [see vortices S1 and Kc on figure 6.5(a)]. As a first

consequence, the Kármán vortices dissipate a large amount of energy during the formation of the
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secondary vortices and the subsequent interaction with them. This lost energy misses downstream

to further maintain the periodic vortex street. The second consequence is that the formation process

of the secondary vortices disturbs the Kármán vortex street which no longer appears as a regular

procession of vortices, but rather as an irregular one. Remarkably, the chaotic vortex street oscillates

from one wall to the other [see figures 6.5(a) and 6.5(c)].

6.4.2 Dependence on Ha

We find that the appearance of the successive flow regimes are shifted at higher Red due to the

influence of the magnetic field. Indeed, as can be seen from equation (6.2), the Hartmann friction

shifts the growth rate of the flow instabilities byHa/Red [155, 168]. AsHa is increased, a higher Red is

required to reach the transition to another flow regime compared to the non-MHD configuration. This

is why, both Rec1 and Rec2 are controlled by the friction parameter Red/Ha. This ratio, introduced

by [163], measures the effective ratio of inertial to Lorentz forces in quasi-2D flows. Both Rec1 and

Rec2 obey an affine dependence with Ha for Ha ≥ 160 with Rec1 ∝ 0.32Ha and Rec2 ∝ 0.86Ha. By

contrast, such a dependence has not been singled out for the transition to regime IV, even if an affine

asymptotic one is seen for Ha ≥ 560 with Rec3 ∝ 1.12Ha. Additional computations achieved for
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Figure 6.5: Flow regime IV: successive stages of the field of vorticity magnitude (s−1) at Ha = 560
and Re = 5000 at: t = 3.22tH (a), 3.33tH (b), 3.44tH (c). S1, S2 and S3 are secondary vortices,
Kc (resp. Kac) is a clockwise (resp. anticlockwise) Kármán vortex. ωmax is the maximum vorticity
magnitude.

higher values of Ha would be required to confirm this trend.

We have also found that the onset of vortex shedding appears at the same critical threshold

whether Red is increased from regime II or decreased from regime III. As it was established in exper-

iments by [180], the nature of the transition to unsteadiness is thus supercritical and not hysteretical.

Nevertheless, in the simulations performed in the early stages of regime III, the flow has never reached

any fully-established state even when extending the simulations time up to 20tH (see figure 6.6).

We have indicated on figure (6.4) the respective critical thresholds for the transition to unsteadiness

obtained in both experiments of [174] and [180]. The agreement with [174] is excellent at Ha = 560,

but less convincing at Ha = 1080. We shall however point out that the procedure used in [174] to

detect the onset of vortex shedding relies on the recordings of velocity from two probes located in

the near wake of the cylinder. In their experiments, the onset of vortex shedding is detected when

one of the measurement probe first records an unsteady signal. The corresponding value of Red was

then claimed to be the critical threshold for the transition to unsteadiness. It is well established that,

as Red is increased within the unsteady flow regime, the vortex formation region shrinks and the

vortices are shed closer from the cylinder. In the case the vortex shedding is initiated at a position

slightly downstream of the measurement probes at a given Red, the transition to unsteadiness would
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reach any clearly established state after almost 20tH . Bottom: CL versus t/tH for Ha = 1080 and
Red ≃ 1.5Rec2; the flow is fully established after tH .

not be detected for this value of Red by the procedure of [174], but at a higher value when the tail of

the vortex formation region reaches the position of the measurement probe. As a consequence, the

critical threshold Rec3 detected by [174] at Ha = 1080 might be bigger than the real value and indeed

we have found a higher Rec3 than [174].

The transition to unsteadiness as detected by [180] systematically occurs at lower Red than those

obtained in the present simulations. This must be due to the difference in the respective flow con-

figurations. The blockage ratio β is higher in the configuration used in our computations than in

the experimental set-up of [180]: 0.25 and 0.1 respectively. In the range 0.1 ≤ β ≤ 0.6, non-MHD

investigations [35, 37, 45, 72] found that increasing the blockage ratio resulted in a shifting of the

onset of vortex shedding to higher Red. In the MHD case, increasing β shall enhance the stabilisation

of the flow by the magnetic field, which is consistent with the fact that, for a given Ha, we have

systematically detected the onset of vortex shedding at a higher Red than [180].

The collapse of the periodic laminar flow regime was also observed in experiments of [180]. The

authors moreover established that increasing Ha shifted the break-up of the regular Kármán vortex

street to a higher Red. Regime IV was observed as clockwise (resp. anticlockwise) vortices were

detected in the lower (resp. upper) part of the wake, while only vortices of opposite sense of rotation

were detected in regime III. Nevertheless, their measurement system could give information on the

cylinder wake only within a 3-diameter wide stripe centred on the wake centreline. Consequently,

their observations could not indicate the exact origin of the secondary vortices. In this respect, the

present simulations clearly show that the latter vortices are generated from separation of the Shercliff

layers at the side walls, which were outside of the observation windows of [180].
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6.5 Steady flow regimes

6.5.1 Lengthening of the recirculation regions

The evolution of the non-dimensional length Lb of the steady recirculation regions versus Red are

given in figure 6.7. In both non-MHD and MHD cases, the growth of the recirculation regions scales

with Red with a respective slope and a maximum length that diminish as Ha increases. In addition,

we have found a universal scaling law relating Lb with Red/Ha0.8 in the limit Ha → ∞. Only the

curve with Ha = 160 slightly departs from this law as the transition to unsteadiness comes closer,

indicating a non-asymptotic regime.
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Figure 6.7: (a) Length Lb of the recirculation regions versus Red in the non-MHD case. The dash
line is the linear regression of the data. (b) MHD universal scaling law Lb = f1(Red/Ha0.8).

It is well accepted from the non-MHD studies that in cylinder wakes, the variations of the length

of the recirculation regions strongly influence those of the base pressure coefficient Cpb. The respective

Cpb curves in both MHD and non-MHD cases are reported on figure 6.8. Whichever the value of Ha,

−Cpb decreases throughout the steady flow regimes, while a discontinuity in the slope is observed at

the onset of the vortex shedding. For the MHD computations, a universal scaling law has been found

in which Cpb scales with Red/Ha, and not Red/Ha0.8. To understand why the base pressure coefficient

decreases in the steady flow regime, one can analytically compute the base pressure coefficient based

on the pressure drop induced by the channel flow only, i.e. that due to the Hartmann and viscous

friction only [1]. We denote CHD
pb (resp. CMHD

pb ) the resulting analytical base pressure coefficient in

the non-MHD (resp. MHD) case and we obtain with Lc = Lu + d/2:

−CHD
pb = 16

Lcd

h2
1

Red
(6.8)

−CMHD
pb = 4

Lcd

a2
Ha

Red
for Ha ≫ 1 (6.9)

The latter base pressure coefficients govern the evolution of −Cpb when the presence of the cylinder
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Figure 6.8: (a) Base pressure coefficient versus Red in the non-MHD case. (b) MHD universal scaling
law Cpb = f2(Red/Ha).

has little effect on the flow, e.g. in the creeping flow regime. Indeed, from equations (6.8) and (6.9),

it follows that −Cpb decreases when Red increases at a given Ha, as observed in our simulations. The

presence of the cylinder has an increasing influence on the flow throughout regime II. −Cpb therefore

drifts away from −CHD
pb in the non-MHD one, whereas it slightly departs from −CMHD

pb in the MHD

one. This shows that the pressure drop induced by the cylinder only is negligible with respect to that

induced by the Hartmann friction over a length Lc of the order of magnitude d in the MHD cases,

whereas it is dominant when Ha = 0 where no Hartmann damping is present. As a result, the MHD

values of −Cpb are all the closer to equation (6.9) as Ha is larger. This explains why Red/Ha is the

governing parameter.

6.5.2 Outer boundary layer of the steady recirculation regions

To complete our investigations of the flow dynamics in the steady flow regime, we have analysed the

outer boundary layer of the steady recirculation regions and in particular their thickness δ as Red is

increased. δ is estimated from the streamwise velocity profile across the recirculation regions. The

detailed procedure is described in [1] (see appendix). The respective evolutions of δ with Red at

Ha = 1080 and with Ha at constant critical parameter r = 0.7 [r = (Red − Rec1)/(Rec2 − Rec1)] are

given on figure 6.9.

One observes that δ is of the order of the thickness of the Shercliff layer δ ∼ Ha1/2. The curvature

of the boundary layer, which is accounted for in the derivation of δ, plays an important part in

the determination of δ. In the upstream half of the recirculation regions, the boundary layer is

rather parallel to the streamwise direction and roughly exhibits the same characteristics as a Shercliff

layer, hence its thickness of about one δs. In contrast, in the downstream half, as the curvature

of the boundary layer becomes more significant, δ increases for 0.5 < (x − 1/2)/Lb < 0.8 with a

maximum thickness systematically reached at (x − 1/2)/Lb ≃ 0.7 with a value of about 2δs to 3δs.
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Figure 6.9: Thickness of the boundary layer of the recirculation regions for (a) increasing Ha at
r = 0.7 and (b) for increasing r at Ha = 1080. r = (Red −Rec1)/(Rec2 −Rec1).

Eventually, a sharp decrease in δ is observed at the tail of the recirculation regions. In the latter

region, the boundary layer is mostly oriented along the transverse direction and consequently under

little influence from the free stream. This boundary layer then turns back to a parallel side layer so

that its thickness drops down to δs.

For a given value of the critical parameter r, the increase in Ha does not affect much the shape

of the curve, but induces a shift towards higher values of δ/δs. In particular, the maximum thickness

increases with r until it reaches a critical thickness which the steady recirculation regions cannot

sustain anymore initiating the vortex shedding and the Kármán vortex street.

6.6 Laminar periodic flow regime III

In the steady flow regimes, we have established a couple of trends regarding the evolution of various

flow coefficients. We shall now consider how far the onset of vortex shedding and the periodic laminar

flow regimes influence these trends. To this end, we describe how the transition to unsteadiness modify

the evolutions of both the length of the vortex formations regions and the pressure drop coefficient.

We will then focus on the drag coefficient.

6.6.1 Length of the vortex formation region

For the unsteady flow regime, the length of the vortex formation region is defined in subsection 2.3.1.

We denote this length Lf . Figure 6.10 shows the evolution of both Lb and Lf before and after the

transition to unsteadiness respectively, for Ha = 0, 160, 560, 800. The linear lengthening of the steady

recirculation regions is followed in both the non-MHD and the MHD cases by a decrease in Lf once

the flow becomes unsteady. The slope of the decrease is initially steep and Lf eventually reaches a

plateau for very high values of Red with a final value of about 0.5d. The drop in Lf is more significant
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for the highest value of Ha (Ha = 800). After the initial sharp decrease in Lb, the shapes of the

curves are quite similar and the values are shifted to smaller Lf . In the limit of high Ha, the curves

all collapse on a single one, which supports the establishment of an asymptotic state.
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Figure 6.10: Length Lb of the steady recirculation regions in steady flow regime II (Red < Rec2) and
length Lf of the vortex formation region in unsteady flow regime III (Red > Rec2)

In the periodic laminar regime, the vortices are released closer and closer from the cylinder as Red

is increased, hence the decrease in Lf . As Lf reaches its plateau, the vortex formation region is only

about half a diameter long. The free shear layers consequently roll up very close to the cylinder surface

so that the boundary layer at the rear of the cylinder eventually separates and generates vortices (see

[1] Fig. 13). These vortices may either shed and merge into the adjacent Kármán vortex or shed and

be released together with the adjacent Kármán vortex into the cylinder wake. The mechanism of this

secondary vortex shedding is similar to that induced by the Shercliff layer in regime IV. It has no

significant influence on the formation mechanism of the Kármán vortices and especially none of the

flow coefficients exhibit any change when these secondary vortices appear.

6.6.2 Base pressure coefficient in regime III

In steady flow regimes, the increase in Lb corresponds to a drop in −Cpb in both the MHD and

non-MHD cases. Surprisingly, in unsteady flow regime III, the decrease in Lf observed in both cases

corresponds to an increase in −Cpb only in the non-MHD case. On the contrary, as seen on figure

6.8, in the MHD computations, the onset of vortex shedding does not imply an increase in −Cpb, but

only a discontinuity in its decreasing slope. To further investigate this point, we have computed a

base pressure coefficient in which the pressure drop has been measured between the base point and

the front stagnation point located on the wake centreline at the cylinder surface (x = −1/2; y = 0).

We denote this base pressure coefficient C ′
pb. The pressure drop considered in the definition of C ′

pb is

taken over a length L′
c = d. We report the evolutions of both Cpb and C ′

pb versus Re at Ha = 560 in

figure 6.11. One observes that, whereas −Cpb keeps on decreasing after the transition to unsteadiness,
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−C ′
pb increases in the unsteady flow regime.
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Figure 6.11: Base pressure coefficients Cpb and C ′
pb versus Red at Ha = 560 for a reference pressure

located at the inflow boundary and at the front of the cylinder, respectively.

Since it is measured only along one cylinder diameter, the pressure drop used in C ′
pb is less

influenced by the Hartmann friction, which has been shown to be dominant on the pressure drop in

the MHD steady regime. Considering C ′
pb as base pressure coefficient means that the variations of

the length of the vortex formation region and those of the base pressure coefficient are identical in

both MHD and non-MHD cases, i.e these quantities exhibit opposite variations in both steady and

unsteady regimes. In the steady regimes, the lengthening of the steady recirculations strengthens the

advert pressure gradient at the cylinder rear, hence the decrease in −C ′
pb. In the unsteady regimes,

the collapse of the vortex formation region weakens this advert pressure gradient and induces an

increase of −C ′
pb. In summary, the modification of the pressure due to the shrinkage of the vortex

formation region is outweighed by the pressure drop inherent to the Hartmann damping, unless the

pressure drop is measured over a length of the order of one cylinder diameter.

6.6.3 Drag coefficient

Whereas the base pressure coefficient reflects a local aspect of the flow, the drag coefficient gives a

global insight of the flow in the vicinity of the cylinder circumference. Figure 6.12 shows the evolutions

of the total drag coefficient CD versus Red/Ha0.8 in the MHD and non-MHD cases.

In both non-MHD and MHD cases, CD decreases within the steady flow regimes and then increases

in the unsteady ones. A slight discontinuity can be observed at the transition to unsteadiness in the

non-MHD cases, whereas a clear one is seen in the MHD computations. The transitions to regime

II and IV does not involve any discontinuity, nor any modification in the respective slopes. Finally,

we have found a universal law in the MHD cases linking CD to Re/Ha0.8, i.e. a similar law as the

one found for the length of the steady recirculation regions. This law furthermore indicates that an

asymptotic regime is reached for high values of Ha.
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Figure 6.12: (a) Total drag coefficient CD versus Red in the non-MHD case and (b) MHD universal
law CD = f3(Re/Ha0.8)

As explained in section 2, the transition to unsteadiness implies a change in the variations of

the pressure-based drag coefficient, which stops decreasing and begins to increase. This change then

induces a discontinuity in the decreasing slope of the total drag coefficient CD in unbounded cylinder

wakes. In confined flows, as the transition to unsteadiness is shifted to higher Re, it induces a change

in the variations of CD which starts increasing after the onset of vortex shedding, even though this

increase is very smooth. In the present MHD simulations, the transition to unsteadiness is further

shifted to higher Re so that the discontinuity seen on the CD curve is more pronounced at the onset

of vortex shedding.

6.7 Higher Red flows

6.7.1 Drop in St at the transition to flow regime IV

The Strouhal number St is a flow coefficient which specifically reflects the process of vortex shedding

in the cylinder wake. The evolution of St versus Red obtained in the present MHD and non-MHD

simulations are shown on figure 6.13(a-b).

In the MHD computations, St increases up to a first value, then decreases down to a minimum

value from which it increases once again up to an absolute maximum and eventually drops. The

latter dramatic drop in St corresponds to the transition to regime IV and the break-up of the regular

Kármán vortex street. Indeed, the development of a secondary vortex is seen by the incoming Kármán

vortex as an obstacle, which impedes its motion downstream in the cylinder wake [see, e.g. vortices

Kc and S1 in figures 6.5 (a) and (c)]. This causes a sudden drop in the vortex shedding frequency

and subsequently a drop in St. The collapse of the regular Kármán vortex street was also correlated

to a sudden drop in St in [180] although only a few values of St were measured in their experiments

(see figure 4.2). Interestingly, at both Ha = 500 and Ha = 1200, the sudden drop is observed for
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Figure 6.13: Strouhal number St versus Red in the non-MHD (a) and MHD cases.

5.103 < Red < 104 and the critical St reached before the break-up of the regular Kármán vortex

street is about 0.29, i.e. at Red and St values of the same order of magnitude as in the present

simulations. In contrast, as the development and release of the secondary vortices occur downstream

of the cylinder, away from the near wake of the cylinder, it has little influence on the evolution of

Cpb, Lf and CD (see figures 6.8, 6.10 and 6.12, respectively).

6.7.2 Kelvin-Helmholtz instability in the free shear layers

We now consider the flow at Red = 3× 104 and Ha = 1080. With regards to the assumptions at the

basis of the SM82 model, this simulation represents a borderline case and the corresponding results

should be regarded as qualitative only, all the more so as no data neither numerical nor experimental

are available in the literature for comparison. The goals are here to introduce a flow regime where

instabilities take place in the free shear layers and check the validity of the quasi-2D assumption when

such instabilities settle in the flow.

This simulation shows that the free shear layers on both sides of the cylinder turn unstable and

are subject to the development and release of small-scale Kelvin-Helmholtz (KH) vortices (see figure

6.14). These vortices feed a chain which rolls up at the rear of the cylinder, merge into a large vortex

that is eventually released downstream in the cylinder wake.

Red = 3× 104 still yields a large enough Stuart number (N ≃ 2.5) to safely assume that the large

structures are quasi-2D. The KH vortices are however of a much smaller scale of the order of δs, the

thickness of the Shercliff layer. Such small structures are 2D provided that N(U0/Uv)(δs/a)
3 ≫ 1,

where Uv is the structure’s velocity [165]. The latter velocity is infinitesimal at the initial stages of

development of the structure so that it can be fairly assumed that the structure is initially 2D and

little affected by 3D inertial effects. As the structure grows and gains in energy taken from the flow,

the present simulation shows that Uv becomes of the order of U0 and N(U0/Uv)(δs/a)
3 ≃ 6.10−4.

This strongly suggests that the KH vortices are likely to experience some disruptions because of 3D
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Figure 6.14: Kelvin-Helmholtz instability: snapshot of the field of vorticity magnitude at Ha = 1080,
Red = 3× 104 and t = 4.6tH . ωmax is the maximum vorticity magnitude.

inertial effects, which the SM82 model is unable to render.

In the non-MHD case, where the KH vortices are 3D, it is fairly accepted that the latter vortices

are generated from a 2D mechanism [32, 75]. On this basis and following the same method described

in [15], we have performed a simplified linear stability analysis on the MHD free shear layers to

determine the critical Red at which a linear perturbation causes the KH vortices to turn 3D. The

detailed computations are given in [1] (see in appendix). At Ha = 560, the corresponding critical

Red is around 20, which is obviously much smaller than the observed one. This shows that additional

effects such as the stabilizing influence of the curvature [58] and the non-constant thickness of the

free shear layer play a crucial part and ought to be accounted for in more complex analyses.

6.8 Conclusions

In this part of the thesis, we have investigated the flow of an electrically conducting fluid past a circular

cylinder under an intense, externally applied axial magnetic field. We have considered the case where

both Ha and N are much bigger than unity so that the flow structure is quasi-2D. In this context,

the SM82 model is well adapted to capture the flow dynamics within a very good approximation. We

have performed a parametric study over both Ha and Red. We have identified a sequence of flow

regimes which exhibits many similarities with the non-MHD case. In steady flow regime II, we have

shown that high Ha values yielded shorter recirculation region and that the thickness of their external

boundary layer scaled with the thickness of the Shercliff layer. Furthermore, this thickness has been

shown to be non-constant along the boundary layer. Also, we have described an unsteady flow regime

in which the Kármán vortex street became irregular. The latter regime was beforehand described in

experiments by [180], but the mechanism leading to its appearance has been explained by the present

simulations. We have eventually performed a simulation at very high Red in which Kelvin-Helmholtz

vortices developed in the free shear layer, even though the outcomes of this simulation should be
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regarded as qualitative only.

The magnetic field shifts the appearance of respective flow regimes to higher Red as Ha is higher.

The transitions to regimes II and III are governed by the friction parameter Red/Ha. We have

obtained the evolution of a set of flow coefficients versus Red and Ha and identified the variations of

these coefficients with the flow dynamics. In particular, for the MHD cases, we have found a universal

scaling law linking Cpb with Red/Ha and both Lb and CD with Red/Ha0.8.

In a larger extent, this study shows that the SM82 flow model can be efficiently used to acquire

extensive information over a wide variety of flow aspects. The SM82 model is simple, easy to im-

plement into a numerical code and leads to a dramatic gain in CPU time in comparison with fully

3D numerical simulations. Some flow features can however not be captured by the SM82 model. As

this model forbids any fluid transfer between the Hartmann layers and the core flow, it might over-

look possible Ekman recirculation flow inside a vortex normal to the Hartmann layer. In addition,

although it has been shown that the error involved was small [159], the SM82 model considers the

Shercliff layer as perfectly 2D. It could be of interest to assess how far the three-dimensionality of

the Shercliff layer influences the process of vortex shedding identified in flow regime IV. Also, there

is still no agreement in the literature on the respective lower boundary values of Ha and N at which

the flow cannot be modelled by the SM82 flow model anymore. In an attempt to give some insight

on the limits of the SM82 model, we shall later present the comparative results of a cylinder wake

from simulations achieved with the SM82 model on the one hand and from 3D computations on the

other hand.
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Three-dimensional numerical
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Chapter 7

Numerical set-up in the

three-dimensional simulations

In this chapter, we describe the numerical set-up used in the 3D numerical simulations. In the first

section, we briefly review the aspects of 3D numerical set-ups used in the simulations of the non-

MHD flow past a cylinder which have been shown to have a significant influence on the results of

the simulations. We also review the different options to arrange the flow variables in a given cell of

the mesh. The second section is dedicated to the construction of the numerical model used in the

3D MHD simulations. We assess whether the full MHD equations or the simplified ones of the low

Rm approximation shall be used. We explain how far MHD flows affect the mesh design and the

arrangement of the mesh variables. We shall also describe the treatment of the current density and

the Lorentz force. At the end of this chapter, the detailed steps of the present 3D MHD numerical

code are given. The latter has been built from the open source code OpenFOAM [202, 205, 206, 210].

FLUENT/UNS has not been used in any 3D simulations.

7.1 Numerical set-up of non-MHD flows past cylinders

The reliability of early 3D computations of non-MHD cylinder wakes has been undermined by the

same issues which have affected early 2D simulations, i.e. poor mesh resolution, convergence problems

and/or restricted numerical domain [66]. We shall introduce thereafter the problems relative to the

boundary conditions and the arrangement of the flow variables in a given mesh cell.

7.1.1 Boundary conditions

In 3D simulations of cylinder wakes, special care has to be dedicated to the definition of the boundary

conditions for the velocity at both cylinder ends. Since the flow patterns in the early stages of three-
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dimensionality have strong periodic properties (see section 2.2), a periodic boundary condition is likely

to noticeably influence the results of the simulations [54, 66]. For example, [66] showed how periodic

boundary conditions affected the time history of the Strouhal number. In addition, this choice pre-

supposes that only spanwise periodic structures exist in the flow, which remains controversial [189].

Also, when using a periodic boundary condition, the spanwise distance along the cylinder axis between

the planes where this condition is applied has to be chosen with care. The respective flow patterns

of modes A and B have indeed very different characteristic spanwise lengths: λA = 4d and λB = d.

Consequently, a numerical domain with a spanwise length smaller than λA and a periodic boundary

condition imposed at the boundaries normal to the cylinder axis promotes the appearance of mode-B

flow pattern at the expense of mode-A structures [54, 66]. Further inaccuracies on the values of the

flow coefficients may also appear if the spanwise length is ill-defined [66]. Instead of imposing periodic

boundary conditions, one may apply a slip boundary condition (1.23) that has a lesser influence on the

flow [76, 102, 103, 189]. Also, to our knowledge, all existing 3D numerical simulations in finite-volume

[102, 107, 189] have been achieved on a mesh with a regular spanwise spatial step.

7.1.2 Arrangement of the flow variables
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Figure 7.1: Arrangement of the flow variables in a cell of a structured mesh: Regular mesh (a)
Collocated mesh (b); Staggered mesh (c); Fully staggered mesh (d). Fux , Fuy and Fuz are the fluxes
of velocity along the x, y and z-axis respectively.

The determination inside a mesh cell of the respective locations where the variables are stored has
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significant implications on the complexity of the discretised numerical equations and on the number

of interpolations required throughout the algorithm.

In non-MHD numerical simulations, three possible kinds of mesh arrangement are given in figures

7.1(a-c). In a regular mesh shown on figure 7.1(a), all the variables are stored at the cell centroid.

Using this arrangement, the pressure field, though correct from a numerical point of view, is likely

to exhibit non-physical checkerboarding patterns as the result of the formulation of the discretised

pressure equation (5.15) [198, 202, 204]. [200] shifted the location of the velocity components onto

the cell faces and defined the staggered mesh given on figure 7.1(c). In this configuration, the control

volumes centred respectively on the velocity and the pressure nodes, are no longer identical, but

overlap each other. As a result, the expression of the pressure equation exhibits a strong coupling

between both odd and even mesh node numbers. This subsequently promotes non-oscillatory pressure

solutions [198, 204]. Although this arrangement limits the number of interpolations required in the

numerical algorithm, the formulation of the discretised equations is more complex [198, 200, 204].

[208] reformulated the pressure equation to involve the fluxes of velocity at the faces of the mesh

cell. These fluxes are obtained by the interpolation of the velocity field onto the cell faces and defined

as conservative by construction [202, 204]. In this configuration, the velocity is used at a pseudo-

variable as the pressure-velocity coupling is formulated with the pressure and the fluxes of velocity.

This corresponds to the collocated mesh shown on figure 7.1(b), which is provided in OpenFOAM

and FLUENT/UNS. This mesh arrangement benefits from the advantages of both the regular mesh,

as the formulation of the discretised numerical equations remains rather simple, and the staggered

mesh, as the fluxes of velocity are actually located at the cell faces and used to solve the pressure

equation in a similar fashion as in a staggered mesh (see PISO algorithm in section 5.3).

7.2 Numerical set-up of MHD flows at low Rm

In this section, we describe the issues encountered in the construction of a 3D MHD numerical code:

the choice of the flow equations to be numerically solved, the mesh requirements, the arrangement

of the flow variables in the mesh cell, the implementation of the Lorentz force, the coupling between

the flow variables and the definition and implementation of the electric boundary conditions. The

above issues shall be addressed one after the other. Following their respective implications and the

recommendations found in the literature, we shall describe the successive steps of the construction of

our 3D MHD numerical code.
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7.2.1 Flow equations

We have derived in section 1 the full set of the MHD equations composed of both the Navier-Stokes

equations (1.1) and (1.2) and the Maxwell equations (1.3), (1.4), (1.5) and (1.13). Under this formu-

lation, these equations involve strong limitations on the numerical methods designed to solve them.

In particular, the coupling between the velocity field u and the magnetic field B exhibited in the

induction equation is highly non-linear and the respective characteristic time-scales of both fields are

very different. The time scale of the diffusion mechanism of the velocity field and that of the magnetic

field are therefore very different too. A very small computational time step is eventually required to

ensure that the numerical results are obtained within a good accuracy [147].

In the frame of this thesis, we are concerned with MHD phenomena at the laboratory scale for

most of which the magnetic Reynolds number Rm is much smaller than unity [18]. One can then

consider the flow equations within the low-Rm approximation in which the coupling between the

velocity and the magnetic field is weak. If furthermore the magnetic field is uniform and externally

applied, its time variations can be neglected and the set of flow equations further simplified to involve

only the Navier-Stokes equations and the conservation of the electric current including Ohm’s law.

These equations are thereafter written under their non-dimensional form assuming that the fluid is

incompressible and the imposed magnetic field is B0 = B0ez:

∂tu+ (u · ∇)u = −∇p+
1

Re
∇2u+

Ha2

Re
[(−∇φ+ u× ez)× ez] (7.1)

∇ · u = 0 (7.2)

∇2φ = ∇ · (u× ez) (7.3)

The implementation of this set of equations involves a significant gain in efficiency of the numerical

code since the coupling between u and B0 is negligible and the requirement on the computational

time step is less prohibitive [146].

[147] performed simulations of the damping of vortices in a conducting fluid by a uniform magnetic

field using two different numerical codes solving the full MHD equations and those within the low-Rm

approximation, respectively. They compared the respective time histories of the circulation of the

vortex obtained at Rm = 0.1 and Rm = 1. In both cases, the application of the magnetic field induces

a decay of the vortex circulation. The discrepancy between the curves obtained from both codes at

Rm = 0.1 is very weak, whereas it is more significant at Rm = 1. This study indicates thus that

the condition Rm ≪ 1 theoretically required to use the low-Rm approximation remains valid for Rm

up to about 0.1 without undermining much the reliability of the results. The present 3D numerical

code is therefore designed to solve the MHD equations within the low-Rm approximation composed

of equations (7.1), (7.2) and (7.3).
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7.2.2 Mesh requirements

Block-structured meshes require a special care at the interface between the mesh blocks. If two adja-

cent mesh blocks do not match at their common interface, interpolation schemes must be implemented

to ensure the flow quantities and gradients smoothly and accurately propagate at the interface. Also,

mesh skewness at the interface between two adjacent mesh blocks shall be assessed, as mesh skewness

may be a significant source of numerical error [202].

Mesh refinement is necessary in the boundary layers. In MHD duct flows (see section 1), they

correspond to both the Hartmann and Shercliff boundary layers. The grid refinement required in

these layers must then be carefully propagated in the core flow to have a smooth mesh transition

between the boundary layers and the core flow. As a result, the thickness of the Hartmann layers

greatly influences the number of mesh cells required in the numerical domain to accurately simulate

the flow. For high values of Ha, the Hartmann layers are very thin so that the resolution of the flow

inside these layers demands large CPU effort and storage capacity.

Numerical methods are more efficient and cheaper if the mesh is uniform, i.e. if the mesh spacing

in each direction is constant. Nevertheless, for high Ha, a uniform mesh requires such a high number

of cells that the limits in CPU storage may eventually become prohibitive. For example, [167] achieved

3D Direct Numerical Simulations (DNS) of MHD duct flows using uniform meshes in the early 1990’s.

Since computer performance was still rather poor at this time, that author was unable to achieve

computations for Ha > 100 due to the limitations in CPU storage. Also, in unsteady cases, the

numerical time step scales with the typical size of the smallest mesh cell. As a consequence, the

CPU cost of fully 3D DNS at high Ha is very expensive not only because the Hartmann layers have

to be resolved, but also because the simulation time soars dramatically due to the shrinkage of the

numerical time step. A decade after [167], 3D DNS unsteady simulations of a cylinder wake were

made on a uniform mesh by [189]. A wall function, which is introduced in section 8.2, was used to

prevent the numerical code to deal with the flow inside the Hartmann layers and provide gain in CPU

efficiency. Those authors could compute the flow for Ha up to about 400, but had to make do with a

low mesh resolution in the Shercliff layers involving a risk of overlooking important features in these

layers.

Besides, in the case of MHD duct flows past a truncated cylinder whose axis is parallel to the

magnetic field, an additional Hartmann layer arises at the cylinder free end and instead of only two

Hartmann layers, three such layers are present in the flow. Although this Hartmann layer is only

located in the vicinity of the cylinder free end, in a structured mesh, the refinement propagates over

the whole numerical domain.

Also, unlike the previous quasi-2D computations, the electric potential is an additional flow vari-
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able and its distribution must be determined at each time step. In particular, in MHD flows in

electrically insulating ducts, the electric current streamlines exhibit a sharp curve at the intersection

between the Shercliff and the Hartmann layers (see e.g. figure 10.6). Besides, although the current

density is only of order Ha−1 in the core flow, the mesh should be fine enough in the vicinity of the

duct symmetry plane to render properly the change of direction of the electric streamlines.

It is usual in non-MHD computations of cylinder wakes to gradually relax the mesh downstream

of the cylinder. A compromise shall then be found to capture accurately the flow dynamics over the

largest possible distance downstream the cylinder and save both CPU and storage capacity. [189]

claimed the artificial diffusion of the flow structures generated by the gradual coarsening of the mesh

dominated the MHD damping of these structures. We have seen in the quasi-2D flow simulations that,

over a distance of the order of 10 cylinder diameters, the MHD damping significantly overweighs the

viscous damping when Ha ≫ 1 (see the analytical expression for the base pressure coefficient given

by equation (6.9)). In contrast, over a distance of the order of 1 cylinder diameter, the MHD damping

is not as dominant, but still rules over the viscous damping (see subsection 6.6.2). We think therefore

that the artificial damping of the flow structures by the coarsening of the mesh is not likely to influence

the flow significantly for Ha > 50 and the mesh can be gradually relaxed provided the flow structures

in the near-wake of the cylinder are accurately captured.

7.2.3 Arrangement of the flow variables

MHD computations bring further numerical issues, since the conservation of the electric current and

the subsequent treatment of the Lorentz force must be addressed in an accurate, conservative and

consistent way. Both definitions of the current density and the Lorentz force involve a cross product

[see equations (7.1) and (7.3)]. Consequently, a component of e.g. the Lorentz force along a given

direction is obtained with the components of the gradients of the electric potential in the other two

directions. The interpolation required to obtain the gradients and the position of the flow variables

influences the stability and the accuracy of the numerical scheme as well as the conservation of the

current density [145, 152]. Using a staggered mesh, [145] performed a stability analysis to obtain a set

of conditions necessary to yield a monotonic, and hence stable, method, although a non-monotonic

numerical method may also be stable. This analysis results in prohibitive limitations on the mesh

spacing along the transverse direction, i.e. the direction perpendicular to both the magnetic field and

the streamwise direction. [145] eventually shifted the position of the electric potential variable onto

the cell edges to obtain a fully staggered mesh sketched in figure 7.1(d). That author then elaborated

an accurate, conservative and consistent numerical code on this mesh arrangement. The resulting

numerical method was monotonic and did not involve any restriction on the mesh spacing along the

transverse direction. A fully staggered mesh was also successfully used in the simulations of MHD
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duct flows by [162, 170].

[152] stressed that the use of a fully staggered mesh enhances the numerical complexity of the

discretised equations already pointed out when using an ordinary staggered mesh. The complexity is

further increased if one imposes a multi-directional magnetic field. Although 3D simulations of MHD

flows at high Ha are cheaper with non-uniform meshes, [152] also showed that the calculation of the

gradient of electric potential required at least 6 neighbouring cells to be conservative and consistent

with respect to the current density and therefore demanded large storage capacities.

So far, we have reviewed the implications of the use of three different mesh arrangements: the

regular mesh, the staggered mesh and the fully-staggered mesh. The choice of a regular mesh was

rejected because the resulting pressure field may be unphysical. When using a staggered mesh, the

stability and accuracy of the numerical method with respect to the current density may be at risk.

Finally, a fully staggered mesh implies the resolution of very complex discretised equations and a

larger storage capacity. We have already seen that the use of a collocated mesh allows the building

of an accurate and consistent numerical scheme for non-MHD computations (see section 7.1.2). We

shall now explain how this mesh arrangement can also be successfully used in 3D MHD simulations.

7.2.4 Treatment of the current density and Lorentz forces on a collocated mesh

Until recently, 3D MHD-capable numerical codes built on a collocated mesh have failed to address in an

accurate and consistent fashion the conservation of the current density and the subsequent treatment

of the Lorentz force in the momentum equation. In a breakthrough work, [152] explained how the

inaccurate treatment of the current density and/or the Lorentz force undermined the reliability of

previous simulations achieved on a collocated mesh. The authors then introduced a simple method to

alleviate this issue on a structured collocated mesh. The method was further expanded to arbitrary

collocated meshes in [153]. We shall summarise the findings of these authors without going too far

into the details of the calculations.

For convenience, we assume that a steady, uniform magnetic field is externally applied along the

z-axis so that Ohm’s law is written as:

j = jφ + ju (7.4)

with jφ = −∇φ and ju = u× ez.

The discretisation of the current conservation (7.3) must be consistent and must thus be imple-

mented by taking the term-by-term divergence of Ohm’s law:

∇ · (∇φ) = ∇ · (u× ez) (7.5)

Consequently, as in the numerical treatment of the pressure equation, the consistent way to discretise
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the left-hand side of (7.5) consists in applying the discretisation scheme of the divergence operator to

that of the gradient of the electric potential.

The finite-volume method treats the flow equations under their integral formulation. The inte-

gration of the current conservation (∇ · j = 0) over a given mesh cell is thus equal to the sum of the

fluxes of current density over the cell faces. It is then natural to locate the components of the current

density at the cell faces, i.e. at the same position of the fluxes of velocity as shown on figure 7.1 (b).

The current conservation also means that j is defined as conservative and the interpolation schemes

required to compute j must preserve this property.

The mesh is considered as structured so that a system of indices (a, b, c) along the x−, y− and

z−axes may be defined. The respective conservative discretised divergence operators of ju and jφ for

a given cell centred on (a, b, c) are then given by:

(∇ · ju)a,b,c =
(ju,x)a+ 1

2
,b,c − (ju,x)a− 1

2
,b,c

xa+ 1

2

− xa− 1

2

+
(ju,y)a,b+ 1

2
,c − (ju,y)a,b− 1

2
,c

yb+ 1

2

− yb− 1

2

(7.6)

(∇ · jφ)a,b,c =
(jφ,x)a+ 1

2
,b,c − (jφ,x)a− 1

2
,b,c

xa+ 1

2

− xa− 1

2

+
(jφ,y)a,b+ 1

2
,c − (jφ,y)a,b− 1

2
,c

yb+ 1

2

− yb− 1

2

+
(jφ,z)a,b,c+ 1

2

− (jφ,z)a,b,c− 1

2

zc+ 1

2

− zc− 1

2

(7.7)

where ju,x, ju,y (resp. jφ,x, jφ,y and jφ,z) are the respective components of ju (resp. jφ). By definition,

ju = u× ez has no component along ez. We shall insist here on the fact that both (7.6) and (7.7) are

calculated at the cell centre from a combination of values defined at the cell faces.

Both (7.6) and (7.7) are involved in the assembling of (7.5) and require the interpolation of

respectively the velocity and the electric potential from the cell centre to the cell faces. The order

of accuracy of the implemented interpolation schemes has to be higher or equal than that of the

discretisation schemes of the different operators involved in (7.5).

Once the treatment of the current density has been accurately handled, the next step consists in

dealing with the Lorentz force. In the flow equations, the latter appears in the momentum conservation

(7.1), but it may be involved at several stages within the numerical algorithm. [152] described two

possible algorithms. In a first one, the Lorentz force is computed only once at the cell centre in

the very first step of the algorithm, while it is computed several times both at the cell centre and

faces throughout the second algorithm. The first method is the better choice because the involved

interpolation schemes required for the calculation of the Lorentz force are less prone to numerical errors

and the expression of the subsequent pressure boundary condition is simpler [152]. Consequently we

shall use the first method, whose detailed steps are given in the next subsection, and describe how

the Lorentz force is derived at the centre of a given mesh cell.
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With a unidirectional magnetic field along the z-axis, the non-dimensional Lorentz force FL at

cell centre (a, b, c) is written as:

(FL)a,b,c = ja,b,c × ez = (jφ)a,b,c × ez + (ju)a,b,c × ez (7.8)

Since the components of the current density are located at the cell faces, the computation of the

Lorentz force requires the interpolation of j, i.e. of jφ and ju, from the cell faces to the cell centre.

Whether the interpolation scheme is both conservative and consistent or neither conservative nor

consistent has dramatic consequences on the accuracy of the simulations. Let us first consider the

interpolation of the x-component of jφ from the cell faces onto the cell centre. From the direct

calculation of jφ at cell centre (a, b, c), it follows:

(jφ)a,b,c · ex = −
φa+1,b,c − φa−1,b,c

xa+1 − xa−1
(7.9)

The interpolation scheme used in this equation is of second order of accuracy. Another one with the

same order of accuracy reads:

(jφ)a,b,c · ex =
1

2

(

φa+1,b,c − φa,b,c

xa+1 − xa
+

φa,b,c − φa−1,b,c

xa − xa−1

)

(7.10)

On a uniform mesh, the mesh spacings are constant and equations (7.9) and (7.10) are subsequently

identical. On a non-uniform mesh, which is required to perform MHD simulations at high Ha, only

(7.10) is both consistent and conservative. Using Taylor series to expand (7.9) and (7.10), [152]

showed that the error involved in (7.9) was twice as big as that related to (7.10) at the first order and

bigger at the second order too. As a result, for a structured mesh, the second interpolation scheme

applied in (7.10) must be chosen.

Let us now discuss the interpolation required in the computation of ju = u× ez that is obtained

at the cell faces. The consistent and conservative interpolation scheme implemented to compute the

velocity at the cell centre from its values at the cell faces is given for the x-component of the velocity

at cell centre (a, b, c):

(ux)a,b,c =
1

2

[

(ux)a+ 1

2
,b,c + (ux)a− 1

2
,b,c

]

(7.11)

The direct use of the velocity components, as stored at the cell centre, characterises a non-consistent

treatment of the Lorentz force.
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7.2.5 Interpolation schemes in an arbitrary collocated mesh

So far, we have reviewed interpolation schemes designed for structured meshes. In an unstructured

one, the mesh cells may exhibit a skewed shape. The discretisation schemes of the respective operators

have to address the mesh skewness, as the latter may induce a significant error within the simulations

resulting in a loss of up to one order of accuracy [202]. Although the present 3D MHD numerical

code is not specifically developed to simulate MHD flows in very complex geometrical configurations in

which no structured mesh can be constructed, its elaboration has been achieved in the view for it being

as robust and versatile as possible. In this spirit, we have implemented a more robust interpolation

scheme for the treatment of the current density and the Lorentz force. Its characteristics are provided

in [153]. It simply takes advantage of the current conservation (∇ · j = 0) from which it follows:

j = ∇ · (jr) (7.12)

where r denotes the distance vector and j is set conservative by construction. Equation (7.12) is at

the basis of the interpolation scheme used to calculate the current density at the cell centroid from

its value at the cell faces. Using (7.12), we can deduce:

jc =
1

V c

∫

V c

jdV =
1

V c

∫

V c

[∇ · (jr)]dV =
1

V c

nf
∑

f=1

jfnr
fSf (7.13)

where the superscript c (resp. f) indicates that the value at the cell centroid (resp. face) is considered,

V c is the cell volume, nf the number of cell faces, jn the current density normal to the cell face, rf

the distance vector at the cell face and Sf the surface of the cell face. This interpolation scheme is a

volume average of the fluxes of current density over a given cell. The Lorentz force at the cell centroid

can then be simply computed with (7.13) as:

Fc
L = jc ×B (7.14)

Also, the discretisation scheme of the gradient operator shall be modified to account for the mesh

skewness. Expressions of schemes including linear skewness corrections are detailed in [153], while a

volume skewness correction is implemented in [171].

7.2.6 Detailed steps of the present 3D MHD numerical algorithm

In the build-up of the present numerical code, we have reviewed the influence of the most important

components of the code. Since this thesis deals with MHD phenomena at low magnetic Reynolds

number Rm, the code has been designed to solve the 3D MHD equations within the low-Rm approxi-
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mation, i.e. equations (7.1), (7.2) and (7.3) together with Ohm’s law (1.20). To meet the requirements

on the mesh, we make sure that at least 3 to 4 mesh cells are present within both the Hartmann

and the Shercliff layers (tests in section 8.3.1). We have developed the code from an open source

OpenFOAM 1.4.1 framework [205, 206] on a collocated mesh. Using the findings of [152, 153], we

have implemented both conservative and consistent interpolation schemes to deal with the current

density and the Lorentz force.

The pressure-velocity coupling is treated using the same PISO algorithm introduced in section

5.3 in which the Q term (see equations (5.12) and following) includes the Lorentz force term. The

Poisson equation for the pressure is obtained by taking the divergence of (5.12) term-by-term. The

divergence of the Lorentz force does not depend on the electric potential so that the latter can be

ignored in the treatment of the pressure-velocity coupling. Nevertheless, although it has never been

achieved in any numerical computation to our knowledge so far, the present numerical code addresses

the coupling between the kinematic and the electric variables by going through the numerical loop at

least twice per time step in the unsteady computations. We also insist that both steady and unsteady

cases were simulated with the same numerical procedure and in particular, no steady solver was used.

We shall now detail the sequence of steps performed by our code. The corresponding OpenFOAM

code is provided in appendix.

The numerical procedure performed within one time step eventually reads:

1. Estimate the velocity at the cell centre from the momentum equation deprived of the pressure

term;

ûc
q = uc

m +∆t

[

1

Re
D(u)− C(u) +NFL(u, φ)

]c

q

(7.15)

where D, C and FL denote respectively the diffusion, convective and Lorentz force terms once the

time and space discretisation has been performed. The superscript c indicates quantities taken

at the cell centre; the subscript m (resp. q) is the time (resp. PISO) iteration counter at the

previous time (resp. PISO) step. ∆t is the time step.

For simplicity, we suppose here that an Euler discretisation scheme is used to update the term

of the velocity time derivative ∂tu, hence the term ucm on the right-hand side. In fact, we use a

backward quadratic scheme of second-order accuracy.

2. Interpolate to obtain the fluxes of velocity (ûf
q · Sf ) at the cell faces where the superscript f

denotes quantities at cell faces.

3. Assemble and solve the Poisson equation for the pressure;

∑

faces

1

AM
(∇p)fq · Sf =

∑

faces

ûf
q · Sf (7.16)
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where AM is defined in section (5.3).

4. Explicit correction of both the fluxes of velocity and the velocity with the pressure term;

uf
q+1 · S

f = ûfq · Sf −
1

AM
(∇p)fq · Sf (7.17)

uc
q+1 = ûc

q −
1

AP
(∇p)cq (7.18)

5. Implicit correction: update non-linear terms of (7.15) using the corrected velocity and fluxes of

velocity and solve (7.15) to obtain a new velocity;

6. PISO loop: repeat steps (2) to (5) until tolerance is reached, then;

ufm+1 = ufq+1 (7.19)

uc
m+1 = uc

q+1 (7.20)

pcm+1 = pcq+1 (7.21)

7. Assemble and solve the Poisson equation for the electric potential using the fluxes of velocity;

Nf
∑

f

(∇φ)fm+1 · S
f =

Nf
∑

f

(uf
m+1 × ez) · S

f (7.22)

where the magnetic field is assumed to be unidirectional along the z−axis.

8. Calculate the fluxes of current density at the cell faces;

jfm+1 · S
f = −(∇φ)fm+1 · S

f + (uf
m+1 × ez) · S

f + SK(φm+1) (7.23)

where SK(φm+1) is a correction term added to address the possible mesh skewness.

9. Interpolate the current density from the cell faces to the cell centre;

jcm+1 =
1

V c

Nf
∑

f

(jfm+1 · S
f )(rf − rc) (7.24)

10. Calculate the Lorentz force term at the cell centre;

(FL)
c
m+1 = jcm+1 × ez (7.25)

11. Implement the kinematic-electric coupling: iteration of loop from steps (1) to (10).
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Chapter 8

Validation of the 3D MHD numerical

code and physical models

In this chapter, we review the different steps performed to validate the present 3D MHD numerical

code. The successive tests shall be achieved for MHD flows in configurations of increasing complexity.

Firstly, we show the ability of the code at capturing the 3D non-MHD flow dynamics. 3D simulations

of MHD cylinder wakes by [189] included the use of a wall function. We shall introduce this one in

detail and describe its implementation into our numerical code. We then consider the Shercliff flow

for which analytical expressions for the velocity and pressure drops are available (see section 1.4). We

shall subsequently compare our numerical solutions obtained from 3D full DNS and 3D simulations

using wall functions. In the final validation test, we compute the MHD flow past a square cylinder

in the configuration investigated by [189]. As a conclusion on this chapter, we compare the solutions

obtained from two different numerical methods in two simple examples at N < 1 and N > 10,

respectively.

8.1 Non-MHD validation test: Square cylinder wake

The first validation test aims at checking the ability of the present code to deal with the non-MHD

3D flow dynamics. We consider the flow past an infinitely long square cylinder placed at the wake

centreline between two infinite planar impermeable parallel walls as depicted on figure 8.1. The

cylinder width is denoted W and the distance between both walls 2b. The origin of the frame of

reference is taken at the cylinder axis at the exact cylinder mid-span. The Reynolds number is

defined as ReW = WU0/ν where U0 is the maximum of the inlet velocity profile. The flow regimes

and related patterns of the non-MHD square cylinder wake are described in details in section 3.1.

Following [189], we consider the flow at ReW = 200. At this ReW , the flow is 3D unsteady with the

presence of mode-A streamwise vortices in the cylinder wake. The Kármán vortices may also exhibit
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disruption at the vicinity of the midspan region. Testing our code to this configuration shall therefore

bring valuable information on its ability to capture 3D structures accurately. The resulting values

of both the pressure drag coefficient CDp and the Strouhal number St shall be compared to those

provided in [189].

U
2b

W

ex

ey

ez

Figure 8.1: Configuration of the non-MHD flow past a square cylinder between two parallel walls.

8.1.1 Numerical set-up

The non-MHD flow motion is governed by the Navier-Stokes equations (7.1) and (7.2) in which the

fluid is assumed incompressible and the magnetic field is zero. The inlet and outlet boundaries are

located at x = −10 and x = 30, respectively, whereas in [189], they are located at x = −5 and

x = 15, respectively. The duct side walls are located at y = ±5 and the upper and lower boundaries

normal to the cylinder axis at z = ±5, as in [189]. The duct side walls and the cylinder surface are

impermeable: a no-slip condition (1.22) and a homogeneous Neumann boundary are applied to the

velocity and pressure fields respectively at these boundaries. At the upper and lower boundaries of

the computational domain, a slip (1.23) and homogeneous Neumann conditions are imposed to the

velocity and the pressure fields, respectively. At the inlet, we prescribe the velocity profile over the

whole cross-section. The profile is a uniform block profile with intensity U0 as in [189]. At the outlet,

a homogeneous Neumann condition is implemented for the velocity field and the pressure is set to an

arbitrary value fixed to zero.

We have designed a non-uniform mesh Cartesian in all three directions. The mesh has been refined

at the vicinity of the duct walls and cylinder surface, while it has been relaxed at the vicinity of both

the centre-plane z = 0 and the outlet boundary. The details of this mesh are provided in table 8.1. In

agreement with [189], special care has been dedicated to the resolution of the mesh in the near-wake

of the cylinder. Our mesh exhibits a total number of points close to that of [189]. Nevertheless, the

computational method of the latter requires a fully uniform mesh and the CPU resources available

to those authors have limited the maximum number of mesh points. Compared to ours, the mesh of

[189] is then over-resolved in some regions of the domain and under-resolved in some others, especially

in the boundary layer at the cylinder lateral faces. Also, their computational domain extends over a
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Present Mück et al. [189]

Number of grid points nx × ny × nz 200×90×80 200 × 100× 80
Non-dimensional distance between the nearest grid point
and the cylinder surface

0.03 0.05

Total number of points 1.4 × 106 1.6 × 106

Table 8.1: Main characteristics of the meshes used respectively in the present code and [189] to
simulate the non-MHD channel flow past a square cylinder at ReW = 200.

shorter distance both upstream and downstream the cylinder. The feedback effect of the downstream

boundary in [189] is accurately compensated for by the use of a non-reflective boundary condition at

the outlet.

8.1.2 Results

We have simulated the flow at ReW = 200. The initial flow conditions and simulation time are

set as in [189]. The initial velocity field inside the domain is set to a uniform and unidirectional

vector field along the streamwise direction with an intensity equal to U0, the maximum of the inlet

velocity profile. The computations have been run over a total time equal to 1000 turnover times

tu = W/U0. Snapshots of the resulting flow are shown in figure 8.2. Disrupted Kármán vortices and

mode-A streamwise vortices are observed in the wake as pointed out in the simulations of [189]. We

furthermore have singled out the presence of secondary recirculation regions at the lateral faces of the

cylinder as seen on figure 8.3. This feature shall indeed appear before the flow becomes unsteady and

remain at higher ReW [101, 104]. This was however overlooked in [189] probably due to under-resolved

boundary layers at the cylinder lateral faces.

We have determined both the pressure drag coefficient CDp = 1.70 and the Strouhal number

St = 0.164. These values compare very well with those of [189] exhibiting a discrepancy of 3%

and 1% for respectively CDp and St. Slight differences between our numerical set-up and that of

[189] might explain the small discrepancy between the respective values of CDp and St. The inlet

boundary is only 5 cylinder widths away from the cylinder axis in [189] and it is located twice as far

from the cylinder axis in our numerical set-up. Also, the boundary layers at the lateral cylinder faces

are better resolved in our computations than in those of [189]. From this validation test it follows

that the present numerical code effectively captures the 3D non-MHD flow dynamics and the flow

coefficients are recovered within a very satisfactory accuracy.

8.2 High Ha flows: implementation of a wall function

Finite-volume based numerical computations of high Ha flows have been limited so far by the pro-

hibitive demand in both CPU storage and resources required to resolve the flow in the very thin
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(a) (b)

Figure 8.2: Vortex street for Re = 200 and Ha = 0 at t = 746tu: (a) 3D and (b) side views.
Degenerated mode-A streamwise vortices are depicted by iso-surfaces of x−vorticity [ ω⋆

x = −1.2
(resp. ω⋆

x = −1.2) in cyan (resp. yellow) ] and Kármán vortices by iso-surfaces of z−vorticity [
ω⋆
z = −2.4 (resp. ω⋆

z = 2.4) in blue (resp. red) ]. ω⋆
i is the i-component of the non-dimensional

vorticity with ωi = (U0/W )ω⋆
i .

Hartmann layers. To tackle this issue, numerical methods [189, 145, 167, 173] have relied on theoreti-

cal approaches describing the flow at high Ha in the Hartmann layers [181, 165, 172]. Later [158] have

derived more accurate expressions for the velocity and current density field inside these layers. Since

the flow can be dealt with analytically within the Hartmann layers, a specific boundary condition

has been designed to accurately treat the flow at an interface located at some distance away from

the Hartmann layers. This boundary condition is a wall function and its implementation allows the

simulation of very high Ha flows without the need to resolve the flow inside the very thin Hartmann

layers. We shall now describe the wall function which was used in [189, 145, 167]. Its implementa-

tion in the present code is required as it was used in the 3D computations of the MHD flow past a

square cylinder under the influence of an externally applied magnetic field parallel to the cylinder

axis achieved by [189]. We shall validate the present code using the results of these computations.

8.2.1 Description of the wall function

We assume that both Ha and N are much bigger than unity so that all quantities are expressed

using Taylor series with respect to both Ha−1 and N−1 [157, 154]. We shall derive two conditions,

one for the velocity and one for the electric potential at an interface located at some distance off

the Hartmann layer. We denote ΓH this interface. The Hartmann wall is considered as electrically

insulating and no current injection is present at the wall. We decompose the velocity and electric

potential gradient into the sum of their component along the direction of the magnetic field and

their component in the plane normal to the magnetic field. The former (resp. latter) component is
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Figure 8.3: Snapshot of the vortex street at t = 1000tu. Kinematic streamlines showing the presence
of a secondary recirculation region at the mid-span of the cylinder lateral face. Flow from left to
right.

indicated by the subscript n (resp. ⊥) and n is the unit vector parallel to the magnetic field.

u = u⊥ + unn (8.1)

∇φ = ∇⊥φ+ (∂nφ)n (8.2)

Under the condition Ha ≫ 1, inside the Hartmann layer, the normal derivative dominates the

tangential ones and the normal coordinate can be replaced by a stretched coordinate η = nHa. The

non-stretched normal coordinate n is of order Ha−1 in the Hartmann layer, while the stretched one

is of order one in this layer. One must therefore distinguish two sets of variables whether the flow

is considered inside the Hartmann layer (tangential coordinates and stretched normal coordinate η)

or outside it in the core flow (tangential coordinates and non-stretched normal coordinate n). Using

these two sets of coordinates, one can derive two sets of flow equations and subsequently two sets

of solutions inside and outside the Hartmann layer, respectively. Finally a condition matches the

respective solutions at an intermediate scale between the order Ha−1 and the order one, i.e. between

the solutions in the core flow and that in the Hartmann layer. This condition might involve some

tedious mathematics as for example a variable defined at a given order inside the Hartmann layer

might be linked to one defined at a different order in the core flow. Detailed calculations are available

in [154]. In the following explanations we shall only provide the results of these calculations to derive

the expression of the wall function.

Under the condition Ha ≫ 1, the velocity in plane normal to the magnetic field decays exponen-

tially within the Hartmann layers to zero at the wall and the profile is given by equation (1.31). The
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exponential decay of the velocity to a constant inside the Hartmann layer implies a simple matching

condition at ΓH :

lim
n→0

uOUT = lim
η→∞

uIN (8.3)

where the origin of the frame of reference is taken at the Hartmann wall and uOUT and uIN denote

the velocity outside and inside the Hartmann layer, respectively.

The expression of the velocity component parallel to the magnetic field at ΓH follows from the

integration of the mass conservation (7.2) using the analytical expression of the velocity profile inside

the Hartmann layer (1.31) and the matching condition (8.3) at ΓH :

ubn =
−1

Ha
(∇⊥ · ub

⊥) (8.4)

where the b superscript indicates quantities in the bulk flow. Similarly a condition on the normal

gradient of u⊥ is derived by taking the curl of the Ohm’s law at ΓH :

∂nu
b
⊥ = 0 (8.5)

The condition on the electric potential is obtained from the integration of the conservation of

electric current (7.3) across the Hartmann layers and using both (1.31) and the matching condition

for the velocity (8.3) at ΓH [181, 158]:

∇nφ
b =

−1

Ha
[(∇⊥ × ub

⊥) · n] (8.6)

Note that this expression is valid only if no current is injected through the Hartmann walls. Otherwise,

an additional current source term shall be included on the right-hand side of (8.6) [158].

Equation (8.6) shows that the current entering the Hartmann layer is of order Ha−1. Since

Ha ≫ 1, one can neglect the variations of the electric potential along the direction normal to the

Hartmann wall and reformulate the expression of the normal gradient of electric potential at the order

Ha−1 as:

∇nφ
b =

−1

Ha
∇2

⊥φ
b (8.7)

This equation means that the current entering inside the Hartmann layer at ΓH diffuses in this layer,

i.e. (8.7) expresses the conservation of current at the interface ΓH .

At the order Ha−1, the wall function consists of the following system of boundary conditions at
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ΓH :

un = 0 (8.8)

∂nu⊥ = 0 (8.9)

∇nφ =
−1

Ha
∇2

⊥φ (8.10)

The system of equations (8.8) and (8.9) corresponds to the slip condition. It means that any fluid

transfer between the Hartmann layers and the core flow is neglected by this wall function. It is

therefore unable to capture possible Ekmann secondary recirculation flows at the interface ΓH . In

contrast, the quadratic shape of the vortices at the vicinity of ΓH is accurately rendered by the

condition on the electric potential (8.10) [154] (see also the simulations of [189]).

Weak inertial effects in the Hartmann layers are responsible for the fluid transfer between the

Hartmann layer and the core flow. [158] improved the previous wall function by extending the Taylor

series up to terms of order (Ha−1N−1). This provides a non-zero velocity normal to ΓH which replaces

condition (8.8) and describes the fluid transfer across the interface ΓH . The present code does not

include this improved version of the wall function, only the one described by equations (8.8), (8.9)

and (8.10). We shall now explain how the latter is implemented into the code.

8.2.2 Numerical implementation of the wall function

The interface ΓH , where the wall function has been derived, is defined at an intermediate scale between

the orders one and Ha−1. This definition does not provide a clearly identified physical location of ΓH

and a test on this location shall therefore be performed to assess its influence on the flow and how it

shall be determined (see section 8.3.2).

Both boundary conditions on the velocity (8.8) and (8.9) are implemented in a straightforward

way at ΓH . In contrast, the boundary condition on the electric potential (8.10) requires special care.

Indeed, the electric potential has to satisfy both the current conservation (7.3) and condition (8.10)

so that an iterative procedure is implemented to ensure both requirements are fulfilled at any time

step.

The implementation of the wall function only results in a modification of step 7 of the numerical

algorithm described in section 7.2.6. At the end of step 6, the PISO loop addressing the pressure-

velocity coupling is over. Before solving the Poisson equation for the electric potential at step 7, the

normal gradient of the electric potential φ defined in equation (8.10) is derived using the value of φ

at previous iteration k. The Poisson equation derived from the current conservation is then solved to

determine the new distribution of φ at current iteration (k + 1). The two previous steps are iterated

until both (7.3) and (8.10) are satisfied within the predefined tolerance. The numerical algorithm
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then goes through steps 8 to 11 as stated in section 7.2.6.

[145, 189, 167] implemented an under-relaxation scheme to improve the convergence rate of the

iteration loop between (7.3) and (8.10). Such scheme has been also tested in the present numerical

code for Ha up to about 300 without much effect on the CPU time. We have therefore not included

it in the present code. Its influence is expected to be more sensitive for very high Ha simulations.

We have found that the most spectacular improvements in numerical stability and convergence were

obtained by ensuring that the treatment of the current density and Lorentz forces was consistent

[152].

8.3 MHD flow in an electrically insulating duct

We consider the configuration of the Shercliff flow sketched in figure 8.4. This classical MHD problem

is presented in section 1.4.2. The analytical expression for the velocity profile is given by equation

(1.37).

U
B0

2a

2a

x

y

z

Figure 8.4: Configuration of the Shercliff flow.

The Shercliff flow has been investigated using the 3D numerical code with the use of wall functions

and without it (full DNS). We shall compare the results provided by each method. For these simula-

tions, the duct has a square cross-section of width 2a. The origin of the frame of reference is at the

centre of the duct cross-section located at equal distance to the inlet and the outlet. The streamwise

direction is set along the x−axis and an external, steady, homogeneous, uniform and unidirectional

magnetic field B0 is applied along the z−axis. Using a as characteristic length, the Hartmann walls

are consequently located at z = ±1 and the Shercliff walls at y = ±1, while the inlet and outlet

are located at x = −10 and x = 10, respectively. At the Shercliff walls, the no-slip condition (1.22)

is imposed for the velocity and a homogeneous Neumann one is applied for both the pressure and

electric potential. At the inlet, a homogeneous Neumann condition is imposed for all field. At the

outlet, a homogeneous Neumann condition is applied for the velocity and electric potential, while a

homogeneous Dirichlet condition is imposed for the pressure.
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The boundary conditions at the Hartmann walls for the full DNS are:

u = 0,

∂nφ = 0, (8.11)

∂np = 0;

and for the simulations using wall functions:

un = 0 and ∂nu⊥ = 0,

∂nφ = −Ha−1∇2
⊥φ, (8.12)

∂np = 0.

A constant and uniform streamwise pressure gradient is applied in the duct to drive the flow.

The latter is added as a constant source term in the momentum equation (7.1). In the numerical

algorithm, this term is added on the right-hand side of equation (7.15).

8.3.1 Full DNS

Full DNS have been achieved to investigate the flow at Ha = 50, 100 and 200 at a fixed Re = 50. The

simulations have been run on a Cartesian mesh featuring 100, 80 and 80 points along the x-, y- and

z-axes, respectively. The mesh is refined in the Hartmann and Shercliff layers. In all cases, at least

4 mesh nodes are present inside these layers with a smooth mesh transition between the boundary

layers and the core flow. The respective velocity profiles in the cross-section x = 0 along the y- and

z-axes are shown in figures 8.5(a-b). One observes that the discrepancy between the numerical and

analytical velocity profiles is very small of the order of 1%. This shows that the present code deals

very accurately with the boundary layers.

We have also made sure that the code properly recovers the streamwise pressure drop in the duct.

To this end, we have performed two extra computations of the case at Ha = 100 with a mesh featuring

5 (resp. 2) nodes in the Hartmann layer and 2 (resp. 5) nodes in the Shercliff layer. We denote these

meshes m1 and m2, respectively. The reference mesh used in the previous test at Ha = 100 is

denoted m3 and meshes m1 and m2 are based on mesh m3. Mesh m1 is obtained by decreasing the

total number of points along the y−axis from 80 down to 40 and keeping a constant spatial step

along this axis. Mesh m2 is obtained by transferring more mesh nodes from the Hartmann layers

into the core flow while keeping constant the number of mesh nodes along the z-axis. The shape of

the velocity profiles is accurately recovered whatever the mesh, but an error appears on the pressure

drop as shown in table (8.2). A good resolution is indeed required in the Hartmann layers to render
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Figure 8.5: Shercliff flow at Re = 50 from full DNS: numerical (line) and analytical (×) streamwise
velocity profiles in the cross-section (x = 0) (a) across the magnetic field for (|y| ≤ 1, z = 0) and (b)
along the magnetic field for (y = 0, |z| ≤ 1).

Mesh m1 Mesh m2 Mesh m3

nH × nS 5× 2 2× 4 5× 4
ǫK = |1−K(mi)/Ksh| 1.01% 2.80% 0.61%

Table 8.2: Error in the pressure drop ǫK relative to the analytical value Ksh (1.40). nH (resp. nS)
is the number of mesh nodes inside the Hartmann (resp. Shercliff) layer. Full DNS at Ha = 100 and
Re = 50.

accurately the distribution of current density inside these layers, as the circulation of current in the

Hartmann layers controls the flow in the core.

8.3.2 Simulations using wall functions

Simulations using wall functions have been performed to investigate the Shercliff flow at Ha = 50,

100 and 1000 for Re = 50. The simulations have been run on a Cartesian mesh featuring 10, 80

and 80 points along the x-, y- and z-axes. In the cases Ha = 50 and 100, the mesh is completely

uniform with the same mesh spacing in all the directions. This mesh ensures that at least 4 points

are present in the Shercliff layers. For Ha = 1000, the mesh has been refined in the Shercliff layers

with a smooth transition between these layers and the core flow and the same distributions of mesh

nodes along both the y− and z-axes. The respective velocity profiles in the cross-section x = 0 along

the y- and z-axes are reported in figures 8.6(a-b).

One observes that the analytical velocity profile across the magnetic field is recovered with an

excellent accuracy. The order of accuracy of the wall function is O(Ha−1N−1) and its performances

are therefore expected to be better for Ha ≫ 1, even though the numerical velocity profile at Ha = 50

is already in excellent agreement with the analytical solution. The use of wall functions at the

Hartmann walls results in a constant velocity along the magnetic field due to the use of the slip

boundary condition for the velocity. An error is therefore committed in the vicinity of the Hartmann
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Figure 8.6: Shercliff flow from simulations at Re = 50 using wall functions: numerical (line) and
analytical (×) streamwise velocity profiles in the cross-section (x = 0) (a) across the magnetic field
for (|y| ≤ 1, z = 0) and (b) along the magnetic field for (y = 0, |z| ≤ 1). The numerical profiles on (b)
all collapse along the same line with ux(x)/max(ux) = 1.

Mesh w1 Mesh w2 Mesh w3

Location of the wall function z = ±(1− 2Ha−1) z = ±(1−Ha−1) z = ±1
ǫK = |1−K(mi)/Ksh| 2.01% 1.62% 1.90%

Table 8.3: Error ǫK in the pressure drop relative to the analytical value Ksh (1.40). Simulations
with wall functions at Ha = 100 and Re = 50.

layers in comparison with the analytical profile. The increase in Ha improves the accuracy of the

wall function and the error committed thus decreases. In particular, the use of the wall function is

recommended to simulate the flow at very high values of Ha for which the CPU cost of full DNS is

prohibitive, as shown here for the flow at Ha = 1000.

We have investigated the influence of the location of the wall function on the streamwise pressure

drop. The mesh used for the previous test is denoted w3 in which the wall function is imposed at

z = ±1. Meshes w1 and w2 have then been designed by placing the wall function at z = ±(1−2Ha−1)

and z = ±(1 − Ha−1), respectively. Meshes w1, w2 and w3 all feature the same numbers of mesh

nodes along each axis. The respective errors on the streamwise pressure drop are given in table (8.3).

They are all around 2%, but the best agreement is obtained with mesh w2. The implementation of

the wall function results in a flat velocity profile along the magnetic field. In the vicinity of the wall,

the velocity is slightly overestimated and under-estimated in the region between the plane where the

wall function is implemented and the Hartmann wall. It is therefore recommended to implement the

wall function at a distance off the Hartmann wall equal to the thickness of the Hartmann wall so that

the respective errors made on either sides of the boundary compensate each other.

Finally, we have investigated the influence of the number of points along the y-axis. Again we

have considered the results at Ha = 100 and Re = 50 obtained from mesh w3. This mesh has been

modified by doubling the number of points along the y-axis to yield an additional mesh featuring then
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10×160×80 mesh nodes along ex×ey×ez. The subsequent error made on the pressure drop is 1.71%,

i.e. lower than that committed with the use of mesh w3. The agreement of the velocity profile along

the y-axis is also better than that reached with mesh w3. As stated in [167], due to the use of the

wall function, the flow is almost invariant along the direction of the magnetic field and the coupling

between the velocity and the electric potential therefore depends only on the y-direction. A better

resolution of the mesh along this direction thus improves the accuracy of the numerical solution.

8.4 MHD flow past an insulating square cylinder

8.4.1 Configuration and numerical set-up

We now consider the MHD flow past an electrically insulating square cylinder in a rectilinear duct.

The configuration under investigation is sketched in figure 8.7. The cylinder of square cross-section

is placed at equal distance to both duct side walls and spans over the full height of the duct. The

cylinder width is W , the duct height (resp. width) along the z−axis (y−axis) is denoted 2a (resp.

2b). An externally applied, homogeneous, steady, uniform magnetic field B0 = B0ez is imposed along

the cylinder axis. This configuration is taken over from [189] and features 2a = 2b = 10W . We shall

assess the performances of the present 3D code by comparing our results to those provided in [189].

U

B0 2a
2b

W

ex

ey

ez

Figure 8.7: Configuration of the MHD flow past a square cylinder in a duct under an axial magnetic
field as investigated in [189].

The flow has been computed at a fixed ReW = 200 for Ha = 50 (N = 0.5), Ha = 100 (N = 2) and

Ha = 265 (N = 14). As in [189], we have implemented wall functions at the top and bottom boundary

planes normal to the magnetic field. In the present computations, for each case, the flow is at rest

at the start of the simulation. [189] achieved successive computations at ReW = 200 by gradually

increasing Ha from 0 up to 425 and using the resulting flow at a given Ha as initial conditions for the

simulation at the next value of Ha. [189] performed all the simulations with the same mesh, while the

meshes used in the present computations have been designed so as to feature at least 4 mesh nodes

in the Shercliff and Hartmann layers. The non-MHD case is treated in section 8.1.

The boundary conditions at the Shercliff walls located at y = ±1 are identical to those used in
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the simulations of the Shercliff flow (see previous section). The wall function described in section 8.2

is used at the upper and lower boundaries. Following [189], the wall functions are implemented at

the physical location of the Hartmann walls at z = ±1. The conditions at these boundaries are given

by (8.12). At both the inlet and outlet located at x = −10 and x = 30 respectively, the boundary

conditions for the pressure are identical to those described in the previous simulations of the Shercliff

flow and so is the boundary condition for the electric potential at the inlet. Following [189], we have

implemented the following boundary condition for the electric potential at the outlet:

∂nφ = (u× ez) · n (8.13)

This boundary condition is exact only when averaged across the outlet, but it is here applied locally

as if the currents normal to the outlet would be absent. This is not the case in general, but as

these currents are of the order of Ha−1, they are considered as negligible with respect to the normal

component of the current in the limit Ha ≫ 1. Since the latter condition on Ha is fulfilled in the

present test, we shall use this boundary condition for the electric potential at the outlet.

The velocity profile obtained from the computations of the Shercliff flow is imposed at the inlet

and a homogeneous Neumann condition is imposed at the outlet. Finally, at the cylinder surface, a

homogeneous Neumann condition is applied for both the potential and the pressure while a no-slip

condition (1.22) is imposed for the velocity.

8.4.2 Results

In each Ha case, the simulations have been run over a total time higher than 4tH (1.47) and a

snapshot of the resulting cylinder wake is shown on figure 8.8. All computations have yielded an

unsteady flow and our observations are in full agreement with those made by [189]. At Ha = 50,

counter-rotating streamwise vortices are present in the flow, although they are dissipated soon after

they are released in the wake. The pattern of these streamwise vortices bears many similarities with

the non-MHD mode-A pattern (see section 2.2). Only one pair of streamwise vortices is observed in

the flow so that it is not possible to determine its exact spanwise wavelength. The Kármán vortices

exhibit disruption at their mid-span in between the pair of streamwise vortices and their spanwise

shape is therefore strongly distorted. The gap generated by the disruption then broadens as the

vortices travel downstream. The ends of the Kármán vortices are perpendicular to the Hartmann

layers, in agreement with the theory described in section 1.4.3.

At Ha = 100, only Kármán vortices are observed in the wake without any disruption of their

spanwise shape. Streamwise vorticity is detected only in the very close vicinity of the cylinder walls,

but no streamwise vortex is released in the wake. The lateral free shear layers on both sides of
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Figure 8.8: Snapshot of the vortex street at ReW = 200 from simulations with wall functions at both
upper and lower boundaries at Ha = 50 (N = 0.5) and t = 3tH (a-b), Ha = 100 (N = 2) and t = 5tH
(c-d) and Ha = 265 (N = 14) and t = 9tH (e-f). 3D (left) and side (right) views. Colours have the
same meaning as in figure 8.2. Iso-surfaces ω⋆

x = ±0.7 are not present at Ha = 100 and 265.
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the cylinder exhibit an almost invariant spanwise shape. The increase of Ha results indeed in a

more uniform stretching of the shear layers and spanwise vortices and a suppression of the vortices

perpendicular to the magnetic field. Also, the ends of the Kármán vortices are perpendicular to the

Hartmann layers and further downstream a cigar-like shape is observed at their ends. The latter

feature is due to the generation of a vertical current density from the Hartmann layer outwards

linearly dependent with the vertical coordinate. This causes differential rotation at the vortex ends

and gives them a quadratic shape (see section 1.5 or e.g. [157, 158]).

The trend described in the flow at Ha = 100 is enhanced in the case Ha = 265. The flow is

still unsteady, but the Kármán vortices detach at a greater distance from the cylinder than in the

previous Ha cases indicating that at Ha = 265, ReW = 200 is closer to the critical threshold of the

transition to unsteadiness. The stretching of the flow structures along the direction of the magnetic

field is enhanced and the shedding of the Kármán vortices is achieved along a line almost fully parallel

to the magnetic field.

We have computed the time-average pressure drag coefficient CDp and the Strouhal number St for

each case. A curve of the time-average CDp is provided in [189], but the values shown on the graph

are in contradiction with the text. We shall then focus rather on the variations of the curve than on

the values of CDp. The values of CDp and St versus N obtained in our simulations are reported in

figure 8.9. The variations of CDp with N are identical to those found by [189]. The same trend has

been recovered in MHD circular cylinder wakes under the influence of a streamwise magnetic field in

experiments by [182] and 2D numerical simulations by [195]. The increase in CDp observed for N ≥ 0.5

(i.e. for Ha ≥ 50) follows from the mechanism described in section 6.6.3 for the quasi-2D MHD flow

past a circular cylinder. An increase in Ha enhances the pressure drop due to the Hartmann friction

and therefore induces an increase in CDp, but this mechanism is only valid for the quasi-2D flows,

which is the case for N ≥ 2 (Ha ≥ 100). At N = 0.5, three-dimensionality is still significant in the

flow as shown by the presence of mode-A streamwise vortices. For low values of N , the pressure drop

due to the Hartmann friction does not outweigh that due to the presence of the cylinder. As the

influence of the streamwise vortices wanes, the formation region of the Kármán vortices lengthens

and exhibits less variations along the spanwise direction. This results in an increase of the adverse

pressure gradient due to the presence of this formation region and consequently a decrease in CDp.

This discrimination between the quasi-2D and the 3D regimes is also noticed on the variations

of St with N . For low values of N , N ≤ 0.5, three-dimensionality is present and St decreases with

N , whereas it increases with N in the quasi-2D flow regime for N ≥ 0.5. In the 3D regime, the

increase in N induces the gradual disappearance of mode-B vortices and promotes the formation of

mode-A ones. As can be seen from the comparison of figures 8.2 and 8.8(a-b), the increase in N

from 0 to 0.5 induces the gradual disappearance of mode-B vortices and strengthening of mode-A
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ones. Disruptions of the Kármán vortices occurs soon after their release and the shedding mechanism

deteriorates, hence the decrease in St. When investigating the MHD circular wake under the influence

of a streamwise magnetic field, 2D simulations [195] and experiments [188] also reported a decrease

in St as N was increased from 0 up to 0.4. By contrast, for N ≥ 1, Kármán vortices become strongly

two-dimensional and all the available energy contributes to their downstream transport, hence the

increase in St.
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Figure 8.9: (a) Pressure drag coefficient CDp and (b) Strouhal number St versus Stuart number N .

8.5 MHD flow past a square cylinder: comparison between numer-

ical methods

At this stage of the thesis, three different numerical methods are thus available: full 3D DNS, 3D

simulations involving a wall function between the Hartmann layer and the core flow and quasi-2D

computations using the SM82 model. Although full DNS are by definition the most reliable method,

their CPU cost may be deterrent and promote the use of a wall function or the SM82 model to simulate

the flow. One may thus wonder which of the three methods is the most adequate to investigate a given

configuration. To our knowledge however, no work in the literature has provided a set of guidelines

to assess the frame of application of each method. We shall now give some clues on this point as

we will compare the solutions provided by the full 3D DNS and 3D simulations using wall functions

on the one hand and those obtained from the 3D computations using wall functions and from 2D

simulations using the SM82 model. In both cases, we consider the configuration investigated in [189]

at Re = 200.

8.5.1 Comparison full DNS and simulations using the wall functions

We have taken over the configuration of [189] and simulated the case at Ha = 50, Re = 200 (N = 0.5)

with full DNS and with simulations using the wall functions at both Hartmann walls. The description
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of the numerical set-up and settings of the case run with the solver using the wall functions is given

in the previous section. The full DNS have been performed using exactly the same configuration and

settings. Only the Hartmann layers at the top and lower duct walls have been fully resolved at each

time step and the boundary conditions at the related Hartmann walls satisfy (8.11).

A snapshot of the cylinder wake obtained at t = 3tH from full DNS is shown on figure 8.10 and

can be directly compared to the snapshot of the flow simulated with the use of wall functions at the

same time instant t = 3tH presented on figure 8.8(a-b). One observes that the structures present in

(a) (b)

Figure 8.10: Snapshot of the vortex street at ReW = 200, Ha = 50 and t = 3tH from full DNS: (a)
3D and (b) side views. Streamwise vortices are depicted by iso-surfaces of x−vorticity and Kármán
vortices by iso-surfaces of z−vorticity. Colours have the same meaning as in figure 8.2. For clarity,
the extension of the streamwise vortices in the vicinity of the Hartmann walls is truncated.

the vortex street are very similar whether they are obtained from full DNS or from the simulations

using the wall functions. In both cases, the Kármán vortices present disruptions at their mid-span

and their spanwise shape is very distorted due to the presence of the streamwise vortices. Also the

time average values of the flow coefficients are in excellent agreement. In the full DNS, the total drag

coefficient is CD = 1.44 and the Strouhal number St = 0.14, while in the simulation using the wall

functions, CD = 1.45 and St = 0.142.

The main difference is obviously seen inside and in the vicinity of the Hartmann layers. With full

DNS, streamwise vorticity is present inside the Hartmann layers and are connected to the Kármán

vortices. Also there is some fluid exchange between the Hartmann layers and the core flow, which is

forbidden in the simulations using wall functions.

To refine our analysis, we have computed the average of the velocity along the direction of the

magnetic field at the time instant t = 3tH in both cases. We have then derived the associated error

with respect to the z−averaged velocity provided by the full DNS. Figure 8.11 presents the spatial

distribution of this error in the cylinder wake for −1 ≤ x ≤ 10. One observes that the error is very
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Figure 8.11: Error in the L2-norm of the z−averaged velocity ǫu = ||〈uDNS − uWF 〉z||/||〈uDNS〉z||
between the full DNS and the simulations using wall functions at Ha = 50, N = 0.5 and t = 3tH .

high in the near wake of the cylinder, while it is still significant further downstream in the vicinity

of the vortices. The fluid exchange between the Hartmann layers and the core flow as well as the

presence of strong streamwise vorticity inside the Hartmann layers are accounted for only in the full

DNS. This may explain the strong discrepancy observed in these regions. One may also question

the definition of the error chosen to assess the quality of the respective solutions. We have indeed

compared the z-average of the velocities and therefore ignore their variations along the z-axis. Further

work on this point is required to draw some more complete conclusions.

Also some discrepancy between both velocity field, though much lower, is spotted in the Shercliff

layers at the cylinder lateral faces (see insert on figure 8.11) and at the duct walls opposite to these

cylinder faces. This results from the sudden confinement imposed by the presence of the cylinder.

Although deeper investigations are required, in the case chosen for comparison, it is recommended

to use full DNS, as the Stuart number is lower than 1. The fluid exchange between the Hartmann

layers and the core flow needs to be accurately addressed and the use of this wall function is clearly

not adapted as it does not allow such exchange. The wall function designed by [158] includes weak

inertial effects inside the Hartmann layers and therefore describes the fluid exchange between these

layers and the core flow. The implementation of this wall function should compare better to the full

DNS for N ≃ 1.
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8.5.2 Comparison 3D code with wall functions and 2D code with the SM82 model

We now consider the case at Re = 200 and Ha = 265 (N = 14). We have simulated the 3D flow with

a solver using the wall functions (see previous section). On the other hand, we have used the SM82

model to run 2D simulations in the plane normal to the direction of the magnetic field using the mesh

as designed in this plane for the 3D simulations. The numerical set-up in the 2D simulations is similar

to that elaborated in the investigations of the MHD circular wake from chapter 6, only the shape

of the cross-section of the cylinder differs. Both simulations have been started with a flow initially

at rest and the total simulation time is about 10tH . Figure 8.12 presents a snapshot of the cylinder

wake at t = 10tH obtained from the 2D simulations using the SM82 model. One observes that they

Figure 8.12: Snapshot of the vortex street at ReW = 200, Ha = 265 and t = 10tH from 2D simulations
using the SM82 model. Iso-surfaces of z−vorticity. Blue and red colours have the same meaning as
in figure 8.8.

result in a steady flow, while 3D simulations yield unsteady flow patterns as seen on figure 8.8(e-f).

We have perturbed the flow by artificially adding unsteady vorticity in the flow over a short while

at the beginning of the run, but the flow has still eventually recovered the steady regime. Doubling

the total simulation time has also not brought any change in the flow. It should be stressed that the

case chosen for this comparison meets the conditions of reliability of the SM82 model as both Ha and

N are much bigger than unity. The 3D simulations show that the flow is actually just unsteady as

the formation region of the Kármán vortices is longer and the vortices are quickly dissipated in their

motion downstream. The SM82 model relies on averaging the flow over the direction of the magnetic

field. It therefore partly ignores the flow variations over this direction and causes an overstabilisation

of the flow. In the vicinity of the transition between two flow regimes, here transition to unsteadiness,

the use of the SM82 model may induce a shifting of the critical threshold of the onset of vortex

shedding to higher Re. This is probably the reason why the 3D simulations and the 2D ones yield a
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different flow regime.

In summary, both cases chosen in this section are extreme ones that have highlighted the draw-

backs of the use of wall functions and that of the SM82 model, respectively. A better review of

the possibilities offered by each numerical method to investigate a given configuration requires addi-

tional work and adequate definition of criteria to assess the performances of the respective numerical

approaches.

8.6 Conclusions and perspectives

Throughout this series of validation tests, we have shown that our numerical code is able to render

within an excellent accuracy 3D MHD flow dynamics. We have first made sure that complex 3D

non-MHD flow structures are well captured. We have insisted on including a sufficient number of

mesh nodes inside both Hartmann and Shercliff layers, as the boundary layers in MHD flows play

a crucial role in the dynamics. For example, due to a coarse resolution of the Shercliff layer at the

lateral cylinder faces, [189] overlooked secondary recirculations. In addition, in an effort to reduce

the CPU cost of high Ha flows, we have also implemented a wall function at the interface between

the Hartmann layers and the core flow. Using this approach, we have successfully validated the MHD

flow past a square cylinder to [189].

Although the advances in CPU technology keep on pushing the limits of feasibility of full DNS

at high Ha, the use of wall function for high Ha flows may further broaden the possibilities to

simulate high Ha flows in more complex configurations. Also, the quasi-2D flow model by [165] used

to investigate the MHD flow past a circular cylinder in chapter 6 can also be used at least to gain

valuable information on the flow at a very low CPU cost. The need to bring forward some guidelines

which would suggest the benefits and the drawbacks on a given numerical approach to investigate

a given problem remains to be fulfilled. For N ≃ 1, 3D full DNS are highly recommended, since

the wall function as implemented in our code does not include the possible fluid exchange between

the Hartmann layers and the core flow. Revamping the definition of the wall function to account

for this fluid transfer as described in [158] could correct this flaw. Finally, we have singled out the

overstabilising effect of the SM82 model which may overestimate the critical threshold of transition

between two flow regimes.
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Chapter 9

Three-dimensional non-MHD flow past

a truncated square cylinder

In this chapter, we describe the simulations of the 3D flow around a truncated square cylinder in a

duct in the case where no magnetic field is present. The scope of this non-MHD study is to provide

a thorough review of both the steady and unsteady flow patterns, identify the mechanism of vortex

shedding and detail the evolutions of the flow coefficients and how they reflect the flow dynamics.

The non-MHD results finally represent a good basis on which we shall refer to as we will investigate

the MHD case to identify the effects of the Lorentz forces by direct comparison. The main results of

this chapter are given in [2].

9.1 Configuration and flow equations

We consider the flow of an incompressible fluid (density ρ and kinematic viscosity ν) past a truncated

cylinder of square cross-section in a rectilinear duct of rectangular cross-section. Figure 9.1 presents

the configuration under consideration in the present study. The cylinder is mounted on the duct

bottom wall at equal distance from both duct side walls. It is oriented so that its upstream face is

normal to the streamwise direction taken along the x−axis. It spans over half of the duct height

along the z−axis. The origin of the frame of reference is located at the centre of the cylinder upper

face. The duct height is 2a and its width 2b. The cylinder has a square cross-section of width W

and a height h. The present configuration features h = 4W , 2a = 8W and 2b = 10W , which yields

a transverse (resp. spanwise) blockage ratio β = W/(2b) = 0.1 (resp. βz = h/(2a) = 1/2) and a

cylinder aspect ratio γ = h/W = 4. βt is low so that it does not have any noticeable effect on the

flow dynamics [109], while the effects of the spanwise flow confinement shall be discussed throughout

our investigations.

We investigate the flow using 3D Direct Numerical Simulations (DNS) with the code described
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Figure 9.1: Configuration of the flow past a truncated square cylinder in a duct: (a) top view; (b)
side view.

in the previous part. The flow motion is governed by the Navier-Stokes equations (1.1) and (1.2).

The cylinder width W and the maximum of the inlet velocity profile U0 are used to obtain the

non-dimensional formulation of the latter equations:

∇ · u = 0 (9.1)

∂u

∂t
+ (u · ∇)u = −∇p+

1

ReW
∇2u (9.2)

where ReW = WU0/ν.

9.2 Numerical model

9.2.1 Numerical set-up

The numerical domain is 15W (resp. 30W ) long upstream (resp. downstream) the cylinder. The

remaining dimensions are fixed by the configuration described above. A no-slip impermeable boundary

condition is imposed at all walls, i.e. at y = ±b/W , z = ±a/W and at the cylinder surface ∂CT defined

as the reunion of the cylinder upper face (|x| ≤ 1/2; |y| ≤ 1/2; z = 0), the upstream and downstream

faces (|x| = 1/2; |y| ≤ 1/2;−γ ≤ z ≤ 0) and the lateral faces (|x| ≤ 1/2; |y| = 1/2;−γ ≤ z ≤ 0):

u = 0 at



























−15 ≤ x ≤ 30, |y| = b/W, |z| ≤ γ;

−15 ≤ x ≤ 30, |y| ≤ b/W, |z| = γ;

∂CT

(9.3)
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Meshes M1 M2 M3

nx × ny × nz 135 × 120 × 32 135× 120 × 64 135 × 120× 96
δx × δy × δz 0.03 × 0.06 × 0.06 0.03 × 0.06 × 0.03 0.03 × 0.06 × 0.02
Total number of nodes 7.4× 105 1.5× 106 2.2 × 106

ǫst = |1− St(Mi)/St(M3)| 0.10 0.03 /
ǫcd = |1− CD(Mi)/CD(M3)| 3.51 × 10−3 3.05× 10−3 /

Table 9.1: Main characteristics of the different meshes and errors in drag coefficient CD and Strouhal
number St relative to M3 mesh at Re = 200. ni is the number of mesh nodes along the i-axis and
δi is the non-dimensional distance between the cylinder face normal to the i−axis and the grid point
nearest to the latter face.

A homogeneous Neumann boundary condition is applied at the outlet for the velocity:

∂nu = 0 at x = 30 (9.4)

Following the recommendations of [106], the outlet is located at a distance downstream the cylinder

greater than 25W to damp out the feedback effect of the outlet boundary onto the upstream flow.

Preliminary 3D computations of the duct flow with the cylinder absent are performed at a pre-

scribed ReW until the fully-established state is reached. The resulting velocity profile in the duct

cross section is then extracted and applied as the inlet boundary condition for the velocity field in the

3D simulations with the cylinder present. A homogeneous Neumann boundary condition is applied

for the pressure field at all boundaries but at the outlet:

∂np = 0 at



























−15 ≤ x ≤ 30, |y| = b/W, |z| ≤ γ;

−15 ≤ x ≤ 30, |y| ≤ b/W, |z| = γ;

∂CT

(9.5)

To minimise flow distortion at the outlet, we impose a zero mean value of the pressure at the outlet

(5.8).

9.2.2 Mesh validation

We design a Cartesian non-uniform mesh. The mesh used in the validation test of the 3D non-

truncated cylinder wake as investigated by [189] has been partially taken over in this study. Since the

test have been very successful at rendering the 3D flow dynamics, we have only tested the influence

of the number of nodes along the cylinder axis while keeping the mesh structure in the plane normal

to the cylinder axis. Three different meshes have been tested, their characteristics are provided in

table 9.1. We have simulated the flow at Re = 200 over 1000 turnover times tu = d/U0 and derived

the total drag coefficient CD and the Strouhal number St in each case. We have found that both
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the errors in CD and St relative to mesh M3 decrease with the number of nodes, which shows good

convergence. In order to save CPU time and keep a reasonable accuracy in our computations, we

shall perform all our simulations with the M2 mesh.

9.2.3 Vortex identification

It is usual to use vorticity field and kinematic current streamlines to isolate vortical structures in

the flow. These approaches are however not rigorous and may result in wrong interpretations of

flow structures. Establishing an objective definition of a vortex was discussed in several studies in

the literature. [203] assessed different techniques of identification and tracking of vortical structures.

One of them is based on the analysis of the eigenvalues of the symmetric tensor S2 + Ω2, where S

and Ω are the respective symmetric and antisymmetric part of the velocity gradient tensor ∇u. In

this approach, a vortex core corresponds to a pressure minimum not induced by viscous effects nor

unsteady straining. It is defined as a connected region with two negative eigenvalues of S2 +Ω2. A

vortex is therefore detected at a given location in the fluid domain if the median eigenvalue, denoted

λ2, is locally negative. This approach is particularly efficient at spotting ring-type vortices [203].

Unfortunately, it delivers no information on the rotation directions of the vortical structures. For this

reason, flow patterns will also be characterised by iso-surfaces of vorticity, especially in the unsteady

flow regime. In the steady one, we will analyse the streamlines, since they match the flow trajectories

[197].

9.3 Steady flow regime

We have performed a series of nine successive simulations by increasing ReW at ReW = 10, 20, 50,

100, 150, 200, 250, 300 and 400. Computations have been run over a total simulation time higher

than 1000tu where tu = W/U0 is the turnover time.

A steady flow regime has been detected for ReW ≤ 150 with appearance of secondary recirculation

regions on both the top and lateral cylinder faces at ReW = 150. Vortex shedding is observed for

ReW ≥ 200 and fuels a symmetric vortex street for ReW = 200 and 250, while an asymmetric one

establishes for ReW = 300 and 400. We shall now thoroughly assess the steady flow patterns at

Re = 100. Then we will review the evolution of the latter structures as ReW is increased throughout

the steady flow regime. We will then show how the destabilization of the steady structures eventually

leads to the shedding of regular hairpin vortices at ReW = 200. The formation and release mechanism

of these vortices will be described and the reasons of the transition to an asymmetric vortex street

will be given.
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9.3.1 Flow patterns at ReW = 100
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Figure 9.2: Steady flow patterns at Re = 100. Iso-surfaces of λ2 = −0.05 (a) and kinematic stream-
lines with horseshoe pattern in pink, trailing vortices in green, streamlines rejoining the stagna-
tion points on the upstream cylinder face in cyan, head vortex in red, spanwise vortices in blue,
black streamlines are only deflected by the cylinder wake without noticeably influencing it: three-
dimensional (b), side (c) and top (d) views.

Figure 9.2(a) shows the steady flow patterns at Re = 100 depicted by iso-surfaces of λ2 = −0.05,

i.e. less than 0.2% of the absolute minimum in λ2, and by kinematic streamlines in figures 9.2(b-d)

The horseshoe system is depicted by the pink streamlines. The front swirl region of the horseshoe

pattern located at x = −0.5 is indicated by HS in figure 9.2(a). A second set of streamlines (in green)

originating upstream at the vicinity of the centre-plane (y = 0), just above the previous streamlines,

impacts the bottom duct wall between the cylinder upstream face and the front of the horseshoe

system. It then recirculates around the cylinder base and below the lateral free shear layers to rejoin

two foci, denoted F1 and F2 in figure 9.2(d). It subsequently spirals upwards underneath the lateral

layers and tilts along the streamwise direction to create a pair of counter-rotating trailing vortices.

This description corresponds to that of the base vortices as given in [112] and [123]. The foci have also

been detected in numerical simulations by [114] and [129] but have not been linked to the formation
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of base vortices. At Re = 100, these vortices are very weak so that they do not induce a significant

pressure minimum likely to be captured by the iso-surfaces of λ2. Far upstream, in the centre-plane

(y = 0), the border between the previous sets of streamlines is located at (z = h1 − γ) and the upper

border of the second set at (z = h2 − γ).

Interestingly, no pair of tip vortices have been detected in the steady flow regime neither from iso-

surfaces of λ2, nor from kinematic streamlines. This absence relies probably on two factors. Firstly,

the spanwise flow confinement imposes a spanwise velocity gradient as that induced in boundary layers

and [127] have shown that the thickening of the bottom boundary layer results in an enhancing of

the base vortices at the expenses of the tip ones. Secondly, the present cylinder aspect ratio is rather

low and no tip vortices have been observed in simulations run with a low aspect ratio [123, 129].

A third set of streamlines (in cyan) originating within the centre-plane (y = 0), just above the

second set at (h2 − γ ≤ z ≤ h3 − γ) ends at the front stagnation points on the upstream cylinder face

along the wake centreline. A fourth set of streamlines (in black) are just deflected by the cylinder

wake without taking any part in the flow dynamics. Figure 9.2 (b) also reveals the presence of front

(S1) and rear (S2) saddle points located in the boundary layer at the bottom duct wall on the wake

centreline respectively upstream the horseshoe pattern at (x = −xu − 1/2) and at the downstream

border between the first two sets of streamlines at (x = xd + 1/2) as seen in [113, 123].

Both sets of blue and red streamlines on figure 9.2 (b-c) rejoin the centre-plane (y = 0) behind

the cylinder. Blue streamlines also move around the cylinder base and inbetween the lateral free

shear layers from their bottom up. On the one hand, the streamlines located just upstream S2 head

upwards and back upstream along the wake centre-plane behind the cylinder and separate into two

substreams at saddle point S3 on the cylinder downstream face. The lower substream is deflected by

the cylinder rear face along the y−axis, reaches the trailing edges of the cylinder lateral faces and

is carried away by the free stream to form a pair of weak counter-rotating spanwise vortices. The

upper substream heads towards the cylinder tip where the free stream takes it away along the wake

centreline. On the other hand, the blue streamlines located just downstream S2 head upwards and

downstream until they reach the free stream and align along the streamwise direction.

A gap between the blue streamlines moving downstream and upstream is observed at the rear of

the cylinder below the cylinder tip where a transverse vortex is seen [red lines in figure 9.2 (c-d)].

This head vortex consists of a pair of symmetric transverse vortices located at short distance off

the centreplane (y = 0) and connected to a single transverse vortex within this centreplane. Only

the right part of the head vortex, denoted HV, is seen on figure 9.2(a). The streamlines enter this

three-vortex structure at the periphery of the symmetric vortices, spiral towards the axis and exit at

the periphery of the centre vortex onto the wake centreline. Like all the structures described so far,

the transverse vortex is fuelled by streamlines flowing around the cylinder base and inbetween the
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lateral free shear layers from their bottom up as in [123, 129]. By contrast, the head vortex observed

in [113, 124, 126] is generated by streamlines curling from the cylinder free end.

Two free shear layers arise at the lateral downstream edges of the cylinder and stretch on both

sides of the wake [see z−vorticity contours on figure 9.4]. Due to the presence of the bottom duct

wall and the free shear layer stretching from the top trailing edge of the cylinder, their streamwise

length is reduced at both their ends and reaches its maximum in the vicinity of the base vortices.

9.3.2 Effect of increasing ReW within the steady regime

The flow patterns involved in the steady regime appear at different ReW . At ReW = 10, no swirl is

detected at the front of the horseshoe system. Only a weak one is observed at ReW = 20, that gains

in strength for ReW ≥ 50 and generates a second vortex by flow separation at the bottom wall. As

ReW is increased, saddle point S1 moves upstream and S2 barely moves, so that xu increases and

xd remains almost constant. The dynamics of the horseshoe pattern is similar to that described in

e.g. [108, 114, 117, 123]. Also, upstream the cylinder, the set of streamlines fuelling the horseshoe

pattern is pushed downwards when ReW is increased, i.e. h1 shrinks. The set of streamlines at

the origin of the trailing vortices experiences the same evolution and h1 diminishes with increasing

ReW . In contrast, the upper border of the set of streamlines rejoining the front stagnation points on

the cylinder upstream face hardly moves throughout the steady flow regime and h3 remains almost

constant.

Due to the presence of the cylinder, a pair of opposite transverse jets and an upwards one are

generated at the cylinder upstream face. At low ReW , these jets are weak and the flow separates at

the trailing edges of the lateral and top faces. At ReW = 150, the jets are stronger and flow separation

is observed at the front edges of the latter faces. Downstream these edges, at the faces, secondary

flow recirculations are observed, as shown on figures 9.3(a-b). The lateral recirculation regions result

from the stretching of the spanwise vortices along the lateral faces. The top one is generated by a

swirl on the cylinder upper face which reattaches at short distance off the trailing edge. Also, the

spanwise vortices do no longer exist, but are entangled within the base vortices [see figure 9.3(a)].

The head vortex appears at ReW = 50. For higher ReW , it gradually drifts both downstream and

upwards. The latter move is favoured by both the appearance of the top secondary recirculation,

which enhances the upwards deflection of the top free stream, and the upwards jet generated by the

pair of streamwise vortices from their mutual interactions at the centre-plane (y = 0).

In the late stages of the steady flow regime, the situation behind the cylinder is the following:

a pair of strong counter-rotating streamwise vortices is surrounded on both its sides and top by the

free shear layers stretching from the cylinder top and sides. We shall now describe how this set of

structures becomes unstable and drives the onset of vortex shedding.
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(a) (b)

Figure 9.3: Secondary recirculation regions at ReW = 150: (left) top view of the lateral secondary
recirculation resulting from the stretching of the blue streamlines; (right) side view of the top sec-
ondary recirculation (in red) generated by a swirl reattaching close to the trailing edge of the cylinder
upper face.

9.4 Unsteady flow regime

9.4.1 Formation and release of hairpin vortices

At ReW = 200, one observes a regular, laminar, symmetric vortex street consisting of a single row of

hairpin vortices along on the wake centreline. The formation and release of hairpin vortices at Re =

200 at three successive time instants depicted by iso-surfaces of both vorticity field and λ2 = −0.5

(0.5% of its absolute minimum) are provided in figures 9.4(a-c).

At t = 1349tu, one observes a hairpin vortex in the early stage of its formation in the near cylinder

wake and a freshly released hairpin vortex in the far wake. The presence of three distinct vortical

structures, denoted as TV, LV and RV and originating from respectively the top, left and right free

shear layers are distinguished in figure 9.4 (a). Under their mutual interactions, the base vortices,

shown in cyan and yellow in figure 9.4(b), generate an upwards jet between them which lifts the

tail of the top free shear layer. This results in an inversion of the curvature of the latter which

becomes unstably curved [58] leading to the breakaway of its tail. At t = 1349tu, two secondary

counter-rotating streamwise vortices, denoted SR and SL on figure 9.4(b), then rise just upstream

the structure shed from the top free shear layer and wrap around the base vortices, while TV, LV

and RV have gathered into a single bow of vorticity. The subsequent pairing between both base and

secondary streamwise vortices eventually triggers the symmetric shedding of structures from both

lateral free shear layers [in blue and red in figure 9.4(c)] observed at t = 1351tu. At this moment, the

head of the hairpin vortex is completely formed and taken away by the free stream, while the base

vortices split and join the head of the hairpin vortex to form the legs of this vortex, as shown by the
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Figure 9.4: Vortex street at Re = 200 depicted by iso-surfaces of (a-c) non-dimensional vorticity ω
and (d-f) λ2 = −0.5 at t = 1349tu (top), 1351tu (middle) and 1353tu (bottom). ωx = 2.5 (resp. -2.5)
in yellow (resp. cyan); ωy = 5 in green; ωz = 5 (resp. -5) in red (resp. blue). The red lateral free shear
layer is not shown in (b). TV, LV and RV are vortical structures shed from the top, left and right
free shear layers, respectively; BR and BL the base vortices; SR and SL the secondary streamwise
vortices clearly visible (e-f) but not (b-c) where their locations are indicated by dashed arrows. Red
and blue arrows on (d) indicate the jets induced by the base and hairpin vortices respectively.
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hairpin vortex present in the far wake on figure 9.4(a).

This shedding is symmetric and has been observed in experiments [121, 122], but the present

formation scenario comes at odds with those provided in previous works. Our computations show

that the hairpin vortices are not generated only by the destabilization of the top free shear layer as

suggested in [114] and [129]. The head of the hairpin vortex are formed from the smooth assembling

of a structure shed from the top and lateral free shear layers. The hairpin vortices observed in the

present simulations differ from the arch-type vortices observed in experiments by [121] and [126].

Firstly, their head is located at the downstream end of the hairpin structure. This may be due to

the spanwise velocity gradient imposed by the spanwise flow confinement. The free stream velocity

is higher in the vicinity of the cylinder tip so that the hairpin head, located in this region, shall be

carried away downstream more efficiently than the rest of the hairpin structure. Secondly, the hairpin

legs are almost parallel to the streamwise axis and not aligned along the spanwise direction. In our

configuration, the hairpin legs are the base vortices which are oriented along the streamwise axis,

whereas in those of the arch-type vortices are the spanwise vortices shed from the lateral free shear

layers. This shows that the base vortices play an active part in the vortex shedding mechanism, which

shall therefore not be reduced only to the interactions between both top and lateral free shear layers

as in [121] and [126]. The active part of the base vortices in the formation of hairpin vortices has

been stressed in the flow past a trapezoidal tab [111, 130].

9.4.2 Formation and release of secondary Ω-shaped vortices

We have described how the hairpin vortices are generated and released in the cylinder wake. A chain

of secondary Ω-shaped vortices appears following the release of the hairpin vortices. We shall now

describe these secondary vortices and their formation mechanism.

Figure 9.5 (a) shows the vortex street at t = 1353tu depicted by iso-surfaces of λ2 = −0.03, i.e

a lower threshold than that used in figure 9.4(a-c). This figure reveals the presence of a chain of

Ω-shaped vortices between two successive hairpin vortices. The strength of the Ω-shaped vortices

decreases as they are further away from the hairpin vortex. The Ω-shaped vortices are located in the

plane (y, z) [see figure 9.5 (c)] and their bottom ends rejoin the secondary streamwise vortices [see

figure 9.5 (d)]. The Ω-shaped vortices are the mirror image of the hairpin vortex as they all rotate

in the sense opposite to the hairpin vortex as shown by figures 9.5 (b-d). Vortex streets involving

hairpin vortices and secondary reverse vortices, i.e. rotating a sense opposite to that of the hairpin

head, have been observed on the flow past a trapezoidal tab in experiments [130] and numerical

simulations [111]. The latter simulations have furthermore shown that the reverse vortices were part

of Ω-shaped vortices. Also, reverse vortices vortices were observed between and below two successive

hairpin vortices, while they are aligned along the streamwise axis in the present configuration.
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Figure 9.5: (a) Iso-surfaces of λ2 = −0.03 at Re = 200 and t = 1353. Fields of non-dimensional (b)
x-vorticity in plane A (x = 12.9) with |ωx| ≤ 2, (c) z−vorticity in plane B (z = 0) with |ωz| ≤ 1.5
and (d) y−vorticity in plane C (y = 0) with |ωy| ≤ 1.8 (minimum and maximum values in blue and
red, respectively). Thick white lines on (b-d) are the intersected λ2−iso-surfaces. H1 and H2 are two
successive hairpin vortices, Ω1, Ω2 and Ω3 three Ω-shaped vortices, SR and SL the respective left and
right secondary streamwise vortices and BR and BL the respective left and right base vortices.

The formation of Ω-shaped vortices follows from a mechanism encountered in turbulent boundary

layers in channel flows described in e.g. [131]. In its motion downstream, the head of the hairpin

vortex broadens and induces a backwards streamwise jet inside the head. The pair of streamwise

vortices forming the legs of the hairpin vortex generates an upwards jet between them. The shearing

between the latter jet and the one induced by the head of the hairpin vortex causes the formation of

a bridging shear layer between both streamwise vortices. The shear layer eventually rolls up into an

Ω-shaped vortex in the plane (y, z). This mechanism is active all along the legs of the hairpin vortex

and leads to the formation of several Ω-shaped vortices between two successive hairpin vortices.

9.4.3 Effect of increasing ReW on the vortex street

We shall now detail how the hairpin vortices are affected when ReW is increased up to 400. The

vortex street at ReW = 250 and ReW = 300 is shown in figure 9.6. At ReW = 250, the shedding

mechanism described above remains unchanged, although the shape of the hairpin vortices becomes

irregular and the primary streamwise vortices undergo weak spanwise oscillations. The latter induce a
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Figure 9.6: Vortex street at (a) ReW = 250 and t = 1420tu and (b) Re = 300 and t = 1044tu. (top)
Iso-surfaces of λ2 = (a) -0.5 and (b) -0.7; iso-surfaces of vorticity: (middle) top and (bottom) 3D
views. Colours have the same meaning as in figure 9.4.
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slight asymmetry in the vortex street. For ReW ≥ 300, the latter oscillations have gained in intensity.

The legs of the hairpin vortices do not split at the same z−coordinate, while their head turn into a

chaotic aggregate of structures shed from the free shear layers. Hairpin vortices are therefore released

alternately on either side of the wake centreline and a fully asymmetric vortex street is therefore

observed as seen on figure 9.6(b). The chain of Ω-shaped vortices is still observed, but their shape is

also irregular and their orientation follows that of the hairpin vortices at the origin of their formation.

A similar evolution of the vortex street with increasing Re has been described by [128] in experiments

of the flow past a square plate.

To summarize the flow dynamics, we report in figure 9.7 the main features observed in the present

non-MHD investigations.

Steady Unsteady

recirculation
at side and top faces

symmetric asymmetric
sheddingshedding

10 150 200 250 300 400

ReW

Figure 9.7: Summary of the outcomes of the simulations

9.5 Flow coefficients

We shall now give a deeper insight into the flow dynamics through the scrutiny of the variations with

ReW of a set of flow coefficients. The latter have all been introduced in section 2.3 but the spanwise lift

coefficient Cz which shall be defined in this section. The first part is dedicated to the evolutions with

ReW of the flow coefficients averaged over both cylinder span and time. These evolutions shall reflect

the global flow dynamics. In the second part of this section, we will present the respective spanwise

distributions of the flow coefficients at different ReW within both the steady and the unsteady flow

regimes. The examination of the relevant curves shall give valuable insight on some local aspects

of the flow and bring better understanding of the physical mechanisms underlying the global flow

dynamics.

9.5.1 Average values

Figure 9.8 presents the variations of the length of the recirculation regions with ReW . Lb is defined

in section 2.3: in the steady (resp. unsteady) flow regime, it is the length of the steady recirculation
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Figure 9.8: Length Lb of the recirculation region versus ReW . For ReW ≥ 200, the respective time
averages of Lb are reported. The dash-lines are the respective linear regressions in the steady and
unsteady flow regimes.

regions (resp. vortex formation region). One observes that Lb increases within the steady regime and

slightly decreases with the unsteady one. The maximum length reached by the recirculation regions

is about 2.3W . The subsequent decrease is very smooth as Lb eventually drops down to about 2W

at ReW = 400.

The linear lengthening of the recirculation regions in the steady regime is also observed in the

case of the non-truncated cylinder and relies on the action of the free stream at the outer boundary of

the lateral free shear layers. The appearance of secondary recirculation regions at the cylinder lateral

faces induces a sudden changes in the curvature at the vicinity of the cylinder and consequently alters

the action of the free stream on the outer boundary of the lateral free shear layers. As a result, the

latter still lengthen, but not at the same pace as in the early stages of the steady regime. The decrease

in Lb in the unsteady flow regime results from the shortening of the lateral free layers induced by

the vortex shedding. This shortening is however not uniform along the span, as the formation of the

hairpin vortices triggers the shedding of the lateral free shear layers in the upper part of the latter

layers only. Consequently, the spanwise average of Lb decrease is weak.

The dynamics of the recirculation regions determines the variations of all the drag coefficients.

The respective evolutions of the base pressure coefficient Ci
pb, the pressure drag coefficient CDp, the

viscous drag coefficient CDv and the total drag coefficient CD with increasing ReW are shown in figure

9.9. Ci
pb is computed with the reference pressure taken at the inlet.

The base pressure coefficient −Ci
pb decreases throughout the steady regime and increases within

the unsteady one. The variations of −Ci
pb are then opposite to those of Lb as in the non-truncated

case. The recirculation regions correspond indeed to a region of adverse pressure gradient which

opposes the streamwise pressure gradient in the duct. As the recirculation regions lengthen, this

adverse gradient becomes more significant and the pressure difference between the inlet and the base
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Figure 9.9: (a) Base pressure coefficient Ci
pb, (b) pressure drag coefficient CDp, (c) viscous drag

coefficient CDv, (d) total drag coefficient CD versus ReW . Ci
pb is computed with the reference pressure

taken at the inlet. For ReW ≥ 200, the time average of the coefficients is reported.

point shrinks, hence the decrease in −Ci
pb within the steady regime. In return, when the recirculation

regions shorten in the unsteady regime, the adverse pressure gradient reduces and −Ci
pb increases.

The variations in the pressure drag coefficient CDp follow from the same mechanism so that CDp

exhibits the same evolution as −Ci
pb. As the viscous drag coefficient CDv continuously decreases

throughout the steady regime, the total drag coefficient CD also decreases in this regime. At ReW =

200, after the onset of vortex shedding, CDv is one order of magnitude lower than CDp (CDv ≃ 0.02

and CDp ≃ 0.7) and keeps on decreasing in the unsteady flow regime. As a result, the evolution of CD

follows from that of CDp and since the latter increases in the unsteady flow regime due to the shrinking

of the mean recirculation regions, CD also increases within the unsteady flow regime. Remarkably

the values of CD are about half as high as that of the non-truncated cylinder [102, 104, 107].

Similarly to the drag and lift coefficient, a third flow coefficient based on the z-component Fz of

of the force exerted by the flow on the cylinder is defined as the spanwise lift coefficient Cz [114]:

Cz =
2Fz

ρU2
0W

2
(9.6)

We shall distinguish two parts in the spanwise lift coefficient: Czt is the contribution of the cylinder
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Figure 9.10: Spanwise lift coefficient versus ReW : Czt is computed over the cylinder top face only (a)
and Czs over the whole cylinder surface but the top face (b).

upper face only and Czs that of the cylinder lateral, front and rear faces. The variations with ReW

of both Czt and Czs are shown on figure 9.10.

By definition, on the cylinder top face, Czt results exclusively from the integration of the pres-

sure force and is defined up to a constant determined by the value of the reference pressure. As a

consequence, only the variations of Czt reflect the flow dynamics, while its absolute values shall be

regarded relatively to the reference pressure. In particular, the sign of Czt bears no significance. Czt

decreases in the steady regime and slightly increases in the unsteady one. As for the drag coefficient,

the decrease of Czt results from the lengthening of the spanwise recirculation regions at the back of the

cylinder. The reason for its increase is the appearance of the secondary recirculation over the cylinder

upper face that induces an adverse pressure gradient. The destabilization of the top free shear layer

in the unsteady regime for ReW ≥ 200 slightly enhances this trend throughout the unsteady regime.

On the other hand, Czs results only from the z-component of the viscous friction at the cylinder

stem faces, i.e. from the variations of the z-component uz of the velocity at these faces. At ReW = 10,

uz is very weak in the vicinity of the lateral cylinder faces. The value of Czs therefore relies mainly

on the flow downwash from the cylinder free end. The latter results in negative values for Czs.

When ReW is increased up to 150, three aspects of the flow dynamics in the cylinder wake have

been identified. Firstly, the appearance and dynamics of the head vortex shown by red streamlines

on figures 9.2(c-d) causes the flow downwash to be shifted further from the cylinder free end at the

downstream end of the head vortex. Secondly, the upper substream of blue streamlines (see figure

9.2(c) and section 9.3.1) induces an upwards jet along the upper part of cylinder rear face. Finally,

as the foci F1 and F2 shown on figure 9.2(d) are located closer to the cylinder rear face when ReW is

increased, the upwards spirals feeding the base vortices also induces an upwards jet along the upper

lower of cylinder rear face. These three effects thus combine to result in an increase of Czs which

subsequently turns positive for ReW ≥ 20. Secondary recirculations appear at the lateral cylinder
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faces at ReW ≥ 150 and feed an advert friction, which eventually causes a decrease in Cz.
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Figure 9.11: Strouhal number St versus ReW .

The frequency of the symmetric (resp. asymmetric) mode was obtained from the time history of

the total drag coefficient CD (resp. lift coefficient CL). We were then able to calculate the Strouhal

numbers associated to the respective frequencies of the symmetric and asymmetric modes. Their

dependence on ReW is presented on figure 9.11. At ReW = 200, the vortex street is indeed perfectly

symmetric so the asymmetric mode is absent. At ReW = 250, a slight asymmetry is observed in the

wake due to the appearance of the slight vertical oscillations of the base vortices. These oscillations are

enhanced when ReW is further increased until the wake becomes chaotic and completely asymmetric.

When the wake is symmetric at ReW = 200, only the symmetric mode is present with an associated

St = 0.07. When the asymmetric mode appears at ReW = 250, its associated St is much lower

(St = 0.01) but increases with Re. As the wake becomes more asymmetric, the Strouhal number

associated to the symmetric mode collapses down to values below those of the asymmetric one.

9.5.2 Spanwise distribution

We shall now consider the spanwise distribution of the respective flow coefficients at different Re

within both the steady and unsteady flow regimes.

Figure 9.12 presents the curves relative to the length of the recirculation regions at different

ReW from 10 up to 400. At ReW = 10, Lb is more or less constant over the cylinder span except

at the vicinity of the bottom wall where it gradually increases as the latter wall gets closer. Also,

the recirculation regions extends over the whole cylinder span and is zero at the cylinder tip. At

ReW = 50, a peak region is observed slightly above the cylinder mid-span. This region widens along

the spanwise direction, lengthens along the streamwise one and drifts upwards for higher ReW . The

maximum of this peak region is slightly less than 4.5W reached at z ≃ −0.2h for ReW = 200. For

ReW ≤ 100, the spanwise extension of the recirculation matches exactly the cylinder span. When

124



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Lb/W

z
/h

Figure 9.12: Spanwise distribution of the length of the recirculation regions Lb at ReW = 10 (◦), 50
(×), 100 (△), 200 (∇) and 400 (∗).

further increasing ReW , the latter extension exceeds the cylinder height h. At ReW = 400, the

maximum spanwise extension is about 1.1h reached at Lb ≃ 0.75W downstream the cylinder. On the

other hand, when increasing ReW from 10 on, the bottom end of the recirculation region stretches

up to about 3W at Re = 100 and then decreases down to about 2W at ReW = 400.

From these observations it follows that the variations in the spanwise averaged stretching of the

recirculation regions in the steady regime results mainly from those of the bottom and upper peak

regions. The lower peak region is present at the lowest ReW , unlike the upper one which appears

only at ReW = 50. The lower one reflects the dynamics of the horseshoe pattern and the upper

one that of the head vortex. In the steady flow regime, these two structures lengthens along the

streamwise direction, hence the increase in Lb in the corresponding regions. In the unsteady regime,

the upper fluid jet fuelled by the primary streamwise vortices deteriorates the downstream shape of

the horseshoe so that Lb slightly shrinks. The similar mechanism applies for the head vortex and

leads to the same variations in Lb in the upper peak region. In addition, the upwards drift of the head

vortex and the presence of secondary recirculation for ReW ≥ 150 causes the recirculation regions

to eventually overcome the cylinder tip from ReW = 150 onwards. In other words, the top of the

recirculation regions coincides with the top free shear layer. As already mentioned previously, one

observes that this layer washes down behind the cylinder tip at low ReW and gradually moves upwards

for increasing ReW .

The streamwise distributions of the pressure base coefficients Ci
pb and Cf

pb, computed respectively

with the pressure reference at the inlet and at the front stagnation point, is reported in figures 9.13 (a)

and (b), respectively. Note that, in the determination of Ci,f
pb (z), the base pressure and the reference

pressure are taken at the same z-coordinate and the variations in the coefficient are shown relatively

to the spanwise and time average.

The streamwise distribution of Ci
pb exhibits an invariant point at z ≃ −0.4h. On the one hand,
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above this point, Ci
pb decreases sharply over the whole span for 10 ≤ ReW ≤ 200 and a slight increase

is observed at ReW = 400 for −0.005h ≤ z ≤ −0.4h. On the other hand, below the invariant point,

Ci
pb smoothly increases and then barely varies for ReW ≥ 100. An invariant point is also detected on

the streamwise distribution of Cf
pb at z ≃ −0.7h. The sharp drop in Cf

pb above this point is though

limited to a narrow spanwise interval close to the cylinder tip. Also, below the invariant point, a

slight increase in Cf
pb is also observed over the whole ReW interval.

From figure 9.12 it follows that the invariant point present on the Ci
pb curve corresponds to the

bottom end of the head vortex, while that exhibited on the Cf
pb curve has to do with the upper border

of the horseshoe pattern. On the one hand, the adverse pressure gradient relative to the head vortex

grows and gains in strength within the steady flow regime so that Ci
pb decreases in the upper part of

the cylinder. As the head vortex drifts upwards, the minimum of Ci
pb also shifts closer to the cylinder

tip. The transition to the unsteady regime induces a shrink in the head vortex, in terms of time

average, and the subsequent increase in Ci
pb observed at ReW = 400. On the other hand, the bottom

region of the cylinder is immersed within the horseshoe pattern and the evolution of Cf
pb reflects the

dynamics of the latter structure. Since the horseshoe pattern remains steady for the ReW interval

considered in this study, the relative variations in Cf
pb are weak.

Figures 9.14 (a-c) presents the respective spanwise distributions of the pressure (CDp), viscous

(CDv) and total (CD) drag coefficients at different ReW within both the steady and the unsteady flow

regimes. The variations are shown relatively to the respective spanwise and time averages. Three

regions are identified on this set of curves: two narrow ones at both cylinder ends and a large one

between them [118]. The CDp curves are very similar to the Cf
pb ones. The spanwise variations of

CDv show that both end regions are associated to a peak of CDv which increases with higher ReW ,

while the large mid-span one is rather plateau-shape with a minimum value decreasing with higher
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Figure 9.14: Spanwise distributions of (a) the pressure drag coefficient CDp, (b) the viscous drag
coefficient CDv, (c) the total drag coefficient CD at ReW = 10 (◦), 50 (×), 100 (△), 200 (∇) and 400
(∗). < · >z is the spanwise average.

ReW . In addition, CDv turns negative over a narrow spanwise interval at ReW = 200, which is wider

at ReW = 400. Finally the total drag coefficient CD exhibits variations only in both end regions,

whereas the mid-span barely changes. Also, these curves look very much alike those relative to CDp.

The spanwise variations of CDp rely on the same effects as those described for the Cf
pb curves.

A remarkable feature is seen on the evolutions of CDv which turns negative on some extent of the

cylinder span. This is caused by the appearance and subsequent growth of secondary recirculation at

the cylinder lateral faces for ReW ≥ 150. The counter-flow induced by the latter recirculation opposes

the main stream and eventually pushes CDv into negative values. As a consequence, in the region

where CDv is negative, the total drag coefficient CD is higher than the pressure one CDp. This has

been observed in 2D square cylinder wakes [104]. In contrast, in the end regions, the fluid circulates

at a higher velocity than in the mid-span region and generates the peaks in CDv, although this has

a weak influence on the variations in CD. The latter are governed by the pressure drag coefficient

whose values significantly overweigh those of CDv at high ReW , hence the strong similarity between

both curves of CDp and CD. Although the general shape of the CD and CDp curves do not change

much with ReW , their respective spanwise and time averages vary as shown on figures 9.9 (b) and

(d).
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9.6 Conclusions and perspectives

9.6.1 Summary of the outcomes

In this chapter, we have investigated the non-MHD flow past a truncated square cylinder in a duct

of rectangular cross-section for Reynolds numbers up to 400.

Through a thorough scrutiny of the steady flow regime, we have identified the steady flow patterns

and their dynamics in this regime. We have shown that all the structures are generated by streamlines

circulating underneath the lateral free shear layers. The high spanwise blockage ratio promotes the

development of the base vortices at the expenses of the tip ones. In the late stages of the steady

regime, we have detected the appearance of secondary recirculation at both upper and lateral faces

of the cylinder. The appearance of the top secondary recirculation combined with the upwards flow

jet induced by the base vortices gradually shift the head vortex to higher spanwise positions.

These dynamics are the key to understanding the transition to the unsteady flow regime. The

upwards jet between the base vortices lifts the tail of the top free shear layer which eventually turns

unstable and initiates the formation of hairpin vortices at ReW = 200. Those vortices have been

detected in many experimental works involving an obstacle of different shapes with an aspect ratio γ

such that 1 ≤ γ ≤ 4 [121, 122, 128, 129]. We have singled out a formation mechanism undiscovered

so far which has little in common with those introduced in former works [114, 121, 129]. In our

computations, the hairpin vortices result from the smooth assembling of structures shed from initially

steady patterns, i.e. from the top and lateral free shear layers and the base vortices. Again, due the

strong spanwise confinement, the shedding mechanism yields a vertical head connected to two almost

streamwise legs, in contrast with the arch-type vortices observed in [121, 126]. Also, we have detected

the formation of a chain of Ω-shaped vortices as a consequence of the release of the hairpin vortices.

The Ω-shaped vortices are well known in turbulent boundary layers and their formation follows from

the same mechanism [131]. For ReW ≥ 250, the vortex street gradually turns asymmetric. We have

observed that growing spanwise oscillations of the base vortices are linked to the transition to the

asymmetric wake.

The different stages of both flow regimes and the dynamics of the different flow patterns have

been related to the evolution of the set of flow coefficients. Basically, many similarities with the

non-truncated cylinder wakes have been recovered. The variations of the spanwise and time averaged

flow coefficients are very similar and reflect the same mechanisms. We have observed on the spanwise

distribution of the viscous drag coefficient CDv the effect of the presence of secondary recirculation

which induces negative values of CDv. On the other hand, the secondary recirculation appearing at

the upper cylinder face causes an increase of the spanwise lift coefficient Cz. Finally, we have shown

that the Strouhal number collapses when the wake turns asymmetric indicating the vanishing of the
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symmetric frequency mode associated with the hairpin vortex vortex singled out at ReW = 200.

9.6.2 Perspectives

The non-MHD wake past a truncated cylinder is a reference case. We shall later refer to the physics

described in this configuration as we consider the MHD case in the following chapter. We shall

however bring forward some comments on the present outcomes.

Although the chosen configuration is relevant from a physical point of view, the cylinder wake is

subject to the influence of the duct walls. The transverse blockage ratio β = d/(2b) featured in this

configuration is equal to 0.1. Such a ratio has little effect in the flow dynamics of the non-truncated

cylinder wake and we shall expect the same negligible influence in the truncated case. [109] showed

that a ratio lower than 0.25 had no effect on the horseshoe pattern. A parametric study on β may

indicate whether the transverse blockage ratio might promote the stability of the hairpin vortices

and enhance the symmetric properties of the wake. A similar parametric investigation performed

on the spanwise blockage ratio βz = h/(2a) could also address these issues. The present spanwise

confinement is however high and explains the shape of the hairpin vortices and why the base vortices

prevail in the flow. Also, there is a significant discrepancy between the critical values of the aspect

ratio separating the regimes involving the shedding of hairpin vortices and Kármán vortices provided

by different experimental works [115, 121, 128]. A further parametric study over the cylinder shape

and aspect ratio should bring a good insight on this question.
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Chapter 10

Three-dimensional MHD flow past a

truncated square cylinder

We now investigate the MHD flow past an insulating square cylinder in an insulating duct in an

externally applied magnetic field aligned with the cylinder axis using 3D full DNS. The non-MHD

case is treated in the previous chapter. We shall show the effects of the magnetic field on the flow

dynamics. We describe the steady flow patterns, their dynamics and the paths of the electric current

in the steady regime. We then consider the unsteady flow patterns and give the mechanism of

vortex shedding. The evolutions of the respective flow coefficients and their spanwise distribution

at increasing ReW and Ha are provided. Finally, we consider the case where the insulating square

cylinder is replaced by a perfectly conducting cylinder. The consequences on the flow dynamics and

coefficients are discussed and systematically compared with the case with an insulating cylinder.

The results provided in this chapter are to be included in an article currently in preparation [3].

10.1 Configuration and flow equations

We consider the flow of an electrically conducting fluid around a truncated cylinder of square cross-

section under an externally applied, steady, homogeneous magnetic field in a duct of rectangular

cross-section. The geometric configuration sketched in figure 10.1 is exactly the same as that of the

previous non-MHD study, i.e. h = 4W , 2a = 8W and 2b = 10W . The magnetic field B0 is oriented

along the cylinder axis and points upwards such that B0 = B0ez.

The magnetic Reynolds number Rm is assumed to be much smaller than unity so that the flow is

governed by the MHD equations written in the low-Rm approximation. The 3D MHD numerical code

described in section 7.2 is used to investigate the flow dynamics. Using the cylinder width W , the

duct half-height a, the maximum of the inlet velocity U0 and the intensity of the magnetic field B0

as respective characteristic length of the velocity field, diffusion length of the magnetic field, velocity
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Figure 10.1: Configuration of the MHD flow past a truncated square cylinder: top (a) and side (b)
views

and magnetic field, the non-dimensional flow equations are the momentum conservation (10.1), the

mass conservation (10.2) and the electric current conservation (10.3) together with Ohm’s law (1.20):

∂u

∂t
+ (u · ∇)u = −∇p+

1

ReW
∇2u+

W

a

Ha2

ReW
[(−∇φ+ u× ez)× ez] (10.1)

∇ · u = 0 (10.2)

∇2φ = ∇ · (u× ez) (10.3)

The Reynolds number is based on the cylinder width ReW = WU0/ν and the Hartmann number on

the half-height of the duct Ha = aB0

√

σ/(ρν).

10.2 Numerical set-up

The dimensions of the computational domain and the boundary conditions for the pressure are iden-

tical to those of the non-MHD configuration. Figure 10.2 shows an overview of the mesh designed for

the case at Ha = 100.

For the velocity, only the velocity profile imposed at the inlet to drive the flow differs from the

non-MHD study. It is obtained from preliminary 3D MHD computations in the duct with the cylinder

absent, i.e. from 3D simulations of the Shercliff flow (see section 8.3).

The duct walls and the cylinder are considered as electrically insulating and impermeable and no

wall function is implemented at any of the Hartmann walls. Consequently, the boundary conditions

for the electric potential at the duct and cylinder walls are identical and given by (8.11). At the inlet,
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Figure 10.2: Overview of the mesh designed for the case Ha = 100 in the planes y = b/W (a), z = −γ,
x = −20 (c) and at the cylinder surface (d).

a homogeneous Neumann condition is imposed:

∂nφ = 0 at x = −15, |y| ≤ b/W, |z| ≤ γ (10.4)

At the outlet boundary, we impose equation (8.13) as we assumed that the condition Ha ≫ 1 is

met in our simulations. Equations (8.13) and (10.4) enforce a zero normal component of the electric

current to prevent any leak of electric current through these boundaries and guarantee the current

conservation inside the computational domain [189].

We have achieved two sets of computations by increasing ReW at Ha = 100 for ReW =1, 10, 20,

50, 100, 300, 400, 600 and 800 and at Ha = 200 for ReW = 1, 10, 20, 50, 100, 400, 600, 800 and

1000. Each series has been started at ReW = 1 for which the fluid is considered at rest in the initial

conditions. The flow is computed over a total simulation time higher than 5tH (1.47). The final state
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of the flow at a given ReW is used as initial conditions for the next value of ReW .

10.3 Steady flow regime

10.3.1 Hunt’s wake

Figure 10.3: Streamwise velocity magnitude in the plane y = 0 at Ha = 200: ReW = 1, 10, 20 and
50 (top to bottom, left to right).

Figure 10.3 shows the magnitude of the streamwise velocity in the centre-plane y = 0 at Ha = 200

for 1 ≤ ReW ≤ 50. No flow separation could be detected at anywhere in the fluid domain at ReW = 1

and 10. This corresponds to the creeping flow regime. One observes an almost zero velocity region

above the cylinder upper face up to the top Hartmann walls. Outside this region, the flow is quasi-2D:

it is fully two-dimensional in the core flow and three-dimensional in the Hartmann and Shercliff layers.

Above the cylinder tip, the flow structures imposed by the presence of the cylinder are stretched along

the direction of the magnetic field leading to the formation of a ghost half-cylinder on the top of the

existing one. This feature has been predicted in the analytical investigations of the MHD flow past

an obstacle in a strong magnetic field by Hunt and co-workers [181, 140]. We shall therefore denote

the latter as Hunt’s wake. The present flow visualisations have however been the first evidence shown
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of the existence of such a feature, since the experiments of [133] that detected it above an electrically

conducting disk placed in a trough inside an electrically insulating duct. When ReW is increased, the

low-velocity flow region above the cylinder is gradually pushed downstream by the free stream.

10.3.2 Steady recirculation regions

hv

hv

(a) (b)

(c)

Figure 10.4: Kinematic streamlines at ReW = 100 and Ha = 200: (a) 3D view; (b) side view and (c)
top view. Red lines depict the head vortex degenerating into two columnar spanwise vortices. Blue
lines show the spanwise vortices initiated by the red spanwise vortices. Pink streamlines originate
upstream the cylinder in the plane z/h = −0.998 immersed within the bottom Hartmann layer. Cyan
streamlines rejoin the stagnation points along the upstream cylinder face. Black streamlines are only
deflected by the cylinder wake without any noticeable influence on the latter.

Flow separation is observed at the rear of the cylinder at ReW = 10 and 20 for Ha = 100 and

200, respectively. The resulting steady flow patterns seen in the cylinder wake are shown in figure

10.4 in the case ReW = 100 and Ha = 200. Red streamlines originate upstream the cylinder in the

centre-plane y = 0 at (z ≃ −γ + hv) and pass within the Hartmann layer at the cylinder upper face.

They separate at the rear of the cylinder and give rise to a transverse vortex extending from the

mid-span up to the tip of the cylinder. The streamlines enter this vortex from the outside and get

out at its centre to generate two symmetric counter-rotating spanwise vortices spiralling downwards
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along the rear cylinder face. The red streamlines then circulate downstream along the streamwise

direction in the vicinity of the bottom Hartmann layer. At the rear of the cylinder, the red spanwise

vortices give rise to bigger but weaker spanwise vortices depicted by blue streamlines in 10.4(c). Pink

streamlines originate upstream the cylinder in the plane z/h = −0.998 immersed within the bottom

Hartmann boundary layer. These streamlines strictly remain in this plane in the whole fluid domain.

A set of streamlines in cyan also originates upstream the cylinder in the centre-plane y = 0 and rejoins

the line of stagnation points at the upstream cylinder face. The black streamlines are just deflected

by the cylinder wake without affecting much the flow patterns. Note how deep they dive behind the

cylinder on figure 10.4 (b).

(a) (b)

Figure 10.5: Steady flow patterns at ReW = 400 and Ha = 100. (a) Lateral free shear layers: iso-
surfaces of z−vorticity ω⋆

z = −20 (resp. 20) in blue (resp. red). (b) Steady secondary recirculation
region at the lateral cylinder face: kinematic streamlines.

A striking difference with the non-MHD steady flow patterns is the absence of any horseshoe

structure at the bottom wall around the cylinder basis. In the non-MHD case, the horseshoe pattern

results from the interaction of the boundary layers arising at the upstream cylinder face and at the

bottom wall. From this destabilisation a system of swirls is generated at some distance upstream the

upstream cylinder face which then spiral around the cylinder basis to form a remarkable horseshoe-like

structure. In the MHD case, the bottom boundary layer is a Hartmann layer. This boundary layer

is much more stable than the non-MHD one [144, 151]. For the values of ReW and Ha considered

in this study, the Hartmann layers remain stable. No swirl forms at the upstream cylinder face

and therefore no horseshoe pattern develop around the cylinder basis. As a consequence, the flow

streamlines originating in a plane immersed into the bottom Hartmann layer remain in this plane.

A second striking difference with the non-MHD steady flow patterns is the shape of the lateral

free shear layers. Figure 10.5(a) shows the lateral free shear layers at ReW = 400 and Ha = 100. In

the vicinity of the cylinder, these shear layers are almost invariant along the z−axis. Their spanwise

extension gradually shrinks from their upper extremity down as they extend downstream due to
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erosion by the free stream. The magnetic field strongly dissipates the vortices perpendicular to the

direction of the magnetic field. In addition, it stretches the lateral free shear layers along the z−axis

so that the characteristic V-shape seen in the non-MHD case is no longer observed in the MHD one.

In particular, these shear layers are so long at the vicinity of the Hartmann layers that no fluid can

enter the cylinder wake underneath these shear layers as observed in the non-MHD case. The MHD

flow structures are made of streamlines circulating above the cylinder tip and washing down behind

the cylinder.

10.3.3 Effect of increasing ReW at a given Ha on the steady flow patterns

Increasing ReW within the steady regime at a given Ha has several noticeable effects. Firstly, the

lateral free shear layers stretch further downstream while keeping an almost invariant spanwise shape.

Secondly, the spanwise vortices gain in strength and broaden. They are not only generated by the

head vortex, but also by streamlines passing above the cylinder tip and spiralling from the cylinder

tip down. Finally, in the late stages of the steady regime, we have detected the presence of steady

secondary recirculation regions at the lateral faces of the cylinder: for ReW ≥ 300 at Ha = 100 and

for ReW ≥ 400 at Ha = 200. Figure 10.5(b) shows the steady secondary recirculation at a lateral

cylinder face observed at ReW = 400 and Ha = 100. As in the non-MHD case, these secondary

recirculations are generated by the stretching of blue streamlines from the spanwise vortices along

each lateral cylinder faces and spiral upwards. A secondary recirculation has been also detected at

the upper cylinder face at ReW = 600 and Ha = 100. In this case and as already observed in the

non-MHD study, it emanates from flow separation at the front edge of the upper cylinder face. No

secondary recirculation at this face has been detected in the steady regime at Ha = 200.

10.3.4 Electric current streamlines

The streamlines of the electric current at ReW = 100 and Ha = 100 are shown in figure 10.6 in three

different duct cross-sections located upstream, across and downstream the cylinder.

Upstream of the cylinder, the current streamlines remain in the cross-section (x = −10) and one

observes the characteristic patterns of the Shercliff flow. In this region, the presence of the cylinder

has indeed little influence on the flow. Similarly, downstream of the cylinder, as the perturbations

induced the cylinder gradually dissipate, the electric streamlines gradually recover the typical patterns

of the undisturbed Shercliff flow.

Across the cylinder, the electric current accumulates in the region above the cylinder tip as

the cylinder is electrically insulating. The flow braking induced by the Lorentz forces is therefore

greatly enhanced in this region. The flow is significantly decelerated above the cylinder tip and when

reaching the trailing edge of the cylinder upper face, it just washes down into the rear of the cylinder.
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Figure 10.6: Electric streamlines in the cross-section at (top left) x = −10, (top right) x = 0 and
(bottom) x = 15 for ReW = 100 and Ha = 100. Flow from back to front.

In the vicinity of the cylinder faces, the current streamlines get out of the cross-section (x = 0)

indicating that the x-component of the current density is non-zero in these regions. The presence of

the cylinder actually induces a deflection of the flow along both y- and z-axes. The current density

is not unidirectional in these regions and the electric streamlines are thus more intricate.

10.3.5 Lengthening of the steady recirculation regions

We shall now take a deeper look at the dynamics of the recirculation regions within the steady regime

through the scrutiny of the evolutions of their length Lb with ReW , Ha and z/h.

Figure 10.7 shows the variations of the spanwise average of Lb, denoted 〈Lb〉z, versus ReW at

Ha = 100 and 200. At both Ha = 100 and 200, 〈Lb〉z lengthens with ReW in the steady flow regime.

The slope of the curve is steeper and at a given ReW , 〈Lb〉z is bigger for Ha = 200 than for Ha = 100.
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Figure 10.7: Spanwise averaged non-dimensional length of the recirculation region 〈Lb〉z versus ReW
at Ha = 100 (∇) and Ha = 200 (△). In the unsteady regime, Lb is the length of the vortex formation
region. The dash-lines are the linear regressions in the steady flow regimes.

The magnetic field little influences the streamwise elongation of the lateral free shear layers: it only

shifts the critical ReW at which they become unstable to a higher value. The linear streamwise

extension of the free shear layers already observed in the non-MHD case is thus also observed in the

MHD one. The magnetic field however stretches the free shear layers along the spanwise direction

so that the spanwise shape of these layers exhibits less variation along the z-axis for Ha = 200 than

for Ha = 100 and 〈Lb〉z is bigger. This latter feature is clearly observed on the respective spanwise

distributions of Lb(z) at Ha = 100 and 100 for 20 ≤ ReW ≤ 1000 shown on figures 10.8(a-b).
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Figure 10.8: Spanwise distribution of the length of the recirculation regions Lb at ReW = 20 (◦), 50
(×), 100 (�), 300(∆), 400 (∇), 600(+), 800(∗) and 1000 (�). (a) Ha = 100 and (b) Ha = 200.

The steady recirculation regions do not extend over the full cylinder span, but only from the

bottom Hartmann wall up to z/h ≃ −0.2 (resp. -0.3) for Ha = 100 (resp. Ha = 200). At a given

ReW , the maximum streamwise elongation of the recirculation regions is almost the same for both

values of Ha. Also, at ReW = 400, Lb(z) is significantly bigger inside the bottom Hartmann layer for

Ha = 200 than for Ha = 100.
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The steady spanwise vortices at the origin of the recirculation regions are initially fuelled by the

head vortex. The latter is located below the cylinder tip at the downstream cylinder face and the

spanwise vortices are generated from the centre of the head vortex down. The maximum height

reached by the recirculation regions corresponds to the position of the centre of head vortex. At a

given ReW , the latter is closer to the cylinder mid-span at Ha = 200 so that the spanwise extension

of the recirculation regions is smaller for this value of Ha. By comparison with the non-MHD, as no

horseshoe pattern is present around the cylinder basis in the MHD case, the spanwise distribution of

Lb exhibits little variations in this region.

Finally, we shall stress that, at both Ha, the last occurrence of the steady regime in our computa-

tions exhibits a value of 〈Lb〉z below the one which can be extrapolated from the linear regression in

the steady regime (see figure 10.7). For values of ReW close to the critical threshold of the transition

to unsteadiness, the flow dynamics are more sensitive to numerical errors and such a sensitive feature

as the maximum streamwise elongation of the recirculation regions is prone to biased estimation.

10.3.6 Consequences on the base pressure coefficient

As already mentioned several times so far, the variations of Lb are directly connected to those of the

base pressure coefficient. The reference pressure used in the definition of this coefficient has been

taken in two different duct cross-sections. It is denoted Ci
pb when it is formed using the reference

pressure in the cross-section (x = −20), i.e. at the inlet boundary and Cf
pb if it is computed using

the reference pressure in the cross-section (x = −0.5), i.e. at the upstream cylinder face. At a given

spanwise coordinate −γ ≤ z ≤ 0, these coefficients are then defined as:

Ci
pb(z) =

p(x = 0.5, y = 0, z) − p(x = −20, y = 0, z)

0.5ρWU2
0

(10.5)

Cf
pb(z) =

p(x = 0.5, y = 0, z) − p(x = −0.5, y = 0, z)

0.5ρWU2
0

(10.6)

Figures 10.9 (a) and (b) show the respective evolutions of the spanwise averaged Ci
pb and Cf

pb with

ReW/Ha. Both −Ci
pb and −Cf

pb decrease within the steady flow regime. This decrease is linked to the

lengthening of the steady recirculation regions and the subsequent enhancing of the advert pressure

gradient (see e.g section 9.5.1).

A good agreement with the scaling in Re/Ha is obtained between both −Ci
pb curves at Ha = 100

and Ha = 200 and the discrepancy between both curves of −Cf
pb is still low for Re/Ha ≤ 0.3 but

deteriorates for higher values of Re/Ha. In the MHD case, the pressure gradient imposed by the

Hartmann friction dominates that induced by the presence of the cylinder. We have shown in section

6.5.1 that a good estimation of the base pressure coefficient in laminar flows due to the Hartmann
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Figure 10.9: Spanwise averaged base pressure coefficient versus ReW /Ha at Ha = 100 and 200: (a)

Ci
pb computed with the reference pressure taken at the inlet and (b) Cf

pb computed with the reference
pressure taken at the upstream cylinder face. In the unsteady regime, time averaged values are
reported.

friction only is given by (6.9) in which the base pressure coefficient scales with (Re/Ha)−1. As the

pressure difference used in Ci
pb is computed over a larger distance than that used in Cf

pb, the pressure

drop due to the Hartmann friction has a greater influence on the values of Ci
pb than on those of

Cf
pb. The scaling in Re/Ha is therefore better with −Ci

pb than with −Cf
pb. The friction parameter

Re/Ha is an effective measure of the ratio between the inertial and the Lorentz forces in quasi-2D

MHD flows. Since a good agreement is obtained with a scaling with this parameter, it is a first

indication that, at the values of Ha considered in these investigations, the flow dynamics are mostly

quasi-two-dimensional in the far wake region but not in the near wake.
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Figure 10.10: Spanwise distribution of the base pressure coefficient Ci
pb with the reference pressure

at the inlet at ReW = 50 (×), 300(∆), 400 (∇), 600(+), 800(∗) and 1000 (�). For Ha = 100, the
z-range for which Ci

pb(z) is higher at ReW = 800 (blue curve) than at ReW = 600 is located above

the horizontal dashed line. < Ci
pb >z is the spanwise averaged value.

Figure 10.10 shows the spanwise distributions of −Ci
pb with respect to its spanwise average at

Ha = 100 and 200 for 50 ≤ ReW ≤ 1000. The shape of the respective distributions for Ha = 100 and
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200 at a given stage of the steady regime is similar, but the amplitude of their variations is smaller

at Ha = 200 than Ha = 100. In the steady regime, the spanwise variations reflect the spanwise

variations of the length of the recirculation regions. The z−coordinate at which the streamwise

elongation of the recirculation regions is maximum corresponds to an absolute minimum of −Ci
pb,

while the shrinking of the recirculation regions on either side of this maximum results in an increase

in −Ci
pb. The spanwise variations are smoother at Ha = 200 than at Ha = 100, as a higher magnetic

field enhances the uniformisation of the flow along its lines.

10.3.7 Outer boundary layer of the steady recirculation regions

We shall now investigate the outer boundary layer of the steady recirculation regions depicted by the

blue streamlines in figure 10.4. The thickness δ of the steady recirculation regions is estimated from

the streamwise velocity profile following the method described in [1]. We shall review the respective

influences of ReW , z/h and Ha on δ.
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Figure 10.11: Thickness of the outer boundary layer of the recirculation region (a) for increasing ReW
at Ha = 100 and z/h = −0.56 and (b) at ReW = 400 for Ha = 100 (open symbols) and 200 (solid
symbols) with z/h = −0.34 (∇) and z/h = −0.91 (∆). δs is the thickness of the Shercliff layer.

Figure 10.11(a) presents the influence of ReW on the thickness δ at Ha = 100 and z/h = −0.56.

One observes that δ is of the order of the thickness δs of the Shercliff layer. The boundary layer is

parallel to the magnetic field so that it involves the same balance between the Lorentz forces and

viscosity that results in a thickness δ of the order of Ha−1/2. The outer boundary layer of the steady

recirculation regions is however subject to strong viscous and inertial effects that make its thickness

more or less depart from this value.

δs increases linearly with the streamwise coordinate with some slight variations at the tail of the

recirculation regions. This linear dependence was not observed in the quasi-2D flow past a circular

cylinder (see figure 6.9). This is partly due the shape of the cylinder cross-section, which has some

influence on the streamwise profile of the lateral free shear layers. Firstly, the point at which the
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flow separates at a circular cylinder moves along the circumference when Re is increased, whereas it

remains fixed at the cylinder front edge in the case of a square cylinder. Secondly, the free shears

layers wrap around the cylinder before they separate and a circular cylinder thus imposes an initial

curvature of these layers unlike in the case of a square cylinder. Finally, in the laminar regime, the

shape of the cylinder is one of the parameters governing the width of the wake [102] and therefore the

distance between both free shear layers. Investigations by [58, 102] showed that the curvature of the

free shear layers and a greater vicinity between them promote the formation of vortices inside these

layers, that results from a greater instability of these layers.

As ReW is increased, the slope of the curves slightly decreases and the internal boundary layer

becomes thinner. One also notices a striking discontinuity of the curve for ReW = 400 at (x/〈Lb〉z ≃

0.35) where δ suddenly drops from 0.65δs down to 0.45δs. This discontinuity appears at the same

ReW as the secondary recirculations at the lateral cylinder faces. The presence of these recirculations

imposes a local curvature of the free shear layer and therefore a discontinuity in the δ-curve is observed

at the root of the free shear layer. Away from the secondary recirculation, the shape of the curve is

similar to that observed at lower ReW and the thickness of the boundary layer increases linearly with

x. Also, variations of δ are noticed at the tail of the recirculation regions. In this region, the parallel

layers are very elongated and very thin. Consequently, the computation of δ is more sensitive in this

region.

Finally, the influence of Ha on δ is presented on figure 10.11(b) for ReW = 400 at two different

spanwise coordinates z/h = −0.91 and −0.34 for Ha = 100 and 200. The general shape of the

δ-curves is not affected by Ha as a linear increase in δ is seen for all the curves. The normalised

thickness δ/δs is however bigger at Ha = 200 than at Ha = 100. This is in line with the observations

made previously for the influence of ReW on δ.
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Figure 10.12: Spanwise distribution of the thickness of the outer boundary layer of the recirculation
region at Ha = 100 and ReW = 400 for z/h = −0.20 (+), -0.34(∆), -0.56(◦), -0.80 (∇) and -0.99 (∗).
A magnified view for x/〈Lb〉z < 0.5 is shown on (b).
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Figure 10.12 shows the variations of δ at ReW = 400 and Ha = 100 as a function of the spanwise

coordinate along the cylinder height for −0.99 ≤ z/h ≤ −0.20. It is maximum in the upper part of

the recirculation regions with a maximum of 1.4δs measured at the tail of the recirculation regions

at z/h = −0.20. Again, the presence of a secondary recirculation has a noticeable effect on δ for

z/h = −0.56 and -0.80, as a sudden drop in δ is seen at x = 0.3〈Lb〉z after a initial increase. As

the secondary recirculations extend mostly over the bottom half of the lateral cylinder face, a sudden

drop in δ is therefore observed only for z/h ≤ −0.5.

10.4 Unsteady flow regime

10.4.1 Unsteady flow features

The unsteady flow regime appears as spanwise vortices shed from the lateral free shear layers. Vortex

shedding is observed at ReW ≥ 800 at both Ha = 100 and Ha = 200. Note however that, in the case

ReW = 600 and Ha = 100, unsteadiness is observed in the flow during the transient phase, but dies

out in the established regime when the simulation time exceeds several tH . This indicates that the

critical ReW for the transition to unsteadiness at Ha = 100 is closer to 600 than 800 and therefore

very likely to be lower than in the case Ha = 200.

The vortex street observed at ReW = 1000 and Ha = 200 at three different time steps is shown

in figures 10.13(a-c). The shedding mechanism feeds a Kármán-like vortex street, i.e. an alternate

procession of counter-rotating vortices is observed in the cylinder wake. As ReW is increased within

the unsteady regime, the lateral free shear layers shrink and vortices shed closer to the cylinder. If

one identifies the formation region of the Kármán vortices and measure its streamwise elongation

following the method described in [88], the increase of ReW thus induces a decrease of the length of

this formation region as shown on figures 10.7 and 10.8.

The vortices do not shed uniformly from the free shear layers and once released, they break down

into a set of smaller spanwise vortices, which form a trailing chain. This chain follows the motion of

the initially shed vortex and thus exhibits a wavy streamwise shape as seen on e.g. figure 10.13(a).

The vortex street is therefore asymmetric, unlike the one which develops at the onset of vortex

shedding in the non-MHD case. As the magnetic field is oriented along the cylinder axis, it dissipates

all the structures perpendicular to its direction and promotes the development of the spanwise recircu-

lation regions and the lateral free shear layers. The pair of counter-rotating streamwise vortices (base

vortices) detected in the non-MHD case are therefore absent in the MHD flow. The non-MHD shed-

ding mechanism relies heavily on this pair of streamwise vortices (see section 9.4.1). Their suppression

by the magnetic field in the MHD case thus implies that the MHD unsteady regime is initiated by a

different mechanism that is based on the destabilisation of the lateral free shear layers. In that sense,
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Figure 10.13: Vortex street at ReW = 1000 and Ha = 200. Iso-surfaces of z−vorticity: ω⋆
z = −50

(resp. 50) in blue (resp. red): (a) t = 11.76tH ; (b) t = 11.78tH and (c) t = 11.80tH . (Clockwise from
left): 3D, side and top views.
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the flow dynamics are reminiscent of that of the laminar non-truncated cylinder wakes described in

chapter 2 . The transition to unsteadiness results from the destabilisation of the recirculation regions

and the formation of an asymmetric Kármán vortex street. By contrast, in the non-MHD case, no

structure is favoured at the expense of others so that the transition to unsteadiness is a consequence

of the complex interaction between the vortical structures present in the wake.

The front edge of the lateral free shear layers forms an angle θ at their top end as indicated on

figure 10.13(b). The effect of the magnetic field is to stretch the free shear layers along its direction,

whereas that of the free stream is to erode them along the x-axis. Angle θ shall then depends on the

Stuart number N that means the ratio of the two effects. In the extreme case N → ∞, in which θ

would be equal to 90 degrees, a Hunt’s wake would be observed.

Also, the secondary vortices fuelled by the recirculation regions rising at both lateral cylinder

faces entwine with the Kármán vortices. These secondary vortices are fed by streamlines spiralling

from the bottom of the lateral cylinder faces upwards. Their upper part is taken downstream by the

adjacent Kárman vortex, whereas their bottom part lags behind. As the result, the lateral free shear

layers exhibit a convex, slant shape in the vicinity of the cylinder bottom as seen on e.g. figure 10.13

(c). Since the secondary vortex and the adjacent Kármán vortex are co-rotating, the pairing effect

between both vortices is likely to play a part in the break-down of the Kármán vortex into smaller

vortices after its shedding.

Finally, we shall point out that a secondary recirculation region is detected at the upper cylinder

face in the steady regime at Ha = 100 for ReW = 600, but in the unsteady one at Ha = 200 for

ReW = 1000. It is generated by separation of the upper boundary layer slightly behind the upstream

edge of the upper face as in the non-MHD case. This top recirculation thus appears at a higher

ReW than the lateral recirculations in both Ha cases. The boundary layer at the upper cylinder face

is a Hartmann layer. Experimental [151] and numerical [144] investigations agreed that the critical

Reynolds number at which the Hartmann layer turns unstable is proportional to Ha. This is why the

top recirculation appears at a higher ReW at Ha = 200 than at Ha = 200.

In summary, we have indicated the main features of the MHD flow dynamics on figure 10.14.

10.4.2 Base pressure coefficient

We have already indicated that the onset of vortex shedding induces a collapse of the formation

region of the Kármán vortices. We shall now see how this collapse influences the evolutions of the

base pressure coefficient.

Again, we consider two definitions of the base pressure coefficient whether the reference pressure

is taken at the duct inlet used to define Ci
pb (10.5) or at the line of stagnation points on the upstream

cylinder face used to define Cf
pb (10.6). Figure 10.9 gives the respective evolutions of the spanwise-
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Figure 10.14: Summary of the simulations on the MHD flow past a truncated square insulating
cylinder. CF denotes the creeping flow regime.

and time-averaged values of −Ci
pb and −Cf

pb with ReW/Ha.

The decrease of both −Ci
pb and −Cf

pb observed in the steady regime is due to the lengthening of the

steady spanwise recirculation regions (see section 10.3.6). After the onset of vortex shedding, −Ci
pb

keeps on decreasing in both Ha, although a slight change in the decreasing slope is observed. The

same evolution is observed for −Cf
pb at Ha = 200, whereas the (−Cf

pb)-curve at Ha = 100 exhibits a

slight increase after the transition to unsteadiness. The evolution of all four curves is linked to the

shrinkage of the formation region of the Kármán vortices that causes a decrease of the adverse pressure

gradient in the cylinder near wake. For this reason, −Cf
pb at Ha = 100 starts increasing after the onset

of vortex shedding. This modification of the pressure distribution is however weak in comparison to

the pressure drop imposed by the Hartmann friction. When this friction is accounted for along a

length of several cylinder widths, the related pressure drop outweighs significantly the modification

of the advert pressure gradient due to the shrinkage of the vortex formation region, hence −Ci
pb keeps

on decreasing in both Ha cases after the transition to unsteadiness. Even in the case of Cf
pb where the

pressure drop is computed over a length equal to one cylinder width, the modification of the advert

pressure gradient is too weak to counter-balance the pressure drop induced by Hartmann friction at

Ha = 200. In the non-MHD case, no Hartmann friction is present and consequently the base pressure

coefficient starts increasing after the onset of vortex shedding as shown on figure 9.9.

The importance of the choice of the location at which the reference pressure is taken is further

underlined by comparing the spanwise variations of −Cf
pb shown on figure 10.15 to those of −Ci

pb
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Figure 10.15: Spanwise distribution of the base pressure coefficient Cf
pb with the reference pressure

at the upstream cylinder face at ReW = 100 (�), 300(∆), 400 (∇), 600(+), 800(∗) and 1000 (�). At

Ha = 100, the z-range for which −Cf
pb is higher at ReW = 800 (blue curve) than at ReW = 600 is

located above (resp. below) the upper (resp. lower) horizontal dashed line.

reported on figure 10.10. As ReW is increased in the unsteady regime, the shape of the spanwise

distribution of −Cf
pb varies little, but the curves are shifted to lower values. After the onset of vortex

shedding, the decrease in the counter pressure gradient induced by the collapse of the vortex formation

region does not reverse this trend at Ha = 200. At Ha = 100 however, this decrease induces higher

values of −Cf
pb in regions close to both cylinder ends at ReW = 800 than at ReW = 600. This is

observed for −0.15 ≤ z/h ≤ 0 and −1 ≤ z/h ≤ −0.5. By comparison, on the respective spanwise

distributions of −Ci
pb for Ha = 100 at ReW = 600 and ReW = 800 shown on figure 10.10, this is

only observed in the region close to the cylinder free end for −0.11 ≤ z/h ≤ 0. Since the shrinkage of

the vortex formation region is weak in the region close to the cylinder tip, it has little effect on the

pressure distribution in this region and the spanwise averages value of −Ci
pb is little affected and keeps

on decreasing. On the other hand, the shrinkage is very significant in the bottom half of the wake:

its length is up to three times as small at ReW = 800 than at ReW = 600 for −0.75 ≤ z/h ≤ −0.5

[see figure 10.8(a)]. This has dramatic consequences on the advert pressure gradient in the bottom

half of the wake. It results in higher −Cf
pb at ReW = 800 than at ReW = 600 in this region and by

extension on the spanwise average of −Cf
pb which starts increasing after the onset of vortex shedding.

10.4.3 Consequences on the drag coefficients

Figures 10.16 (a-c) present the respective evolutions of the pressure drag coefficient CDp, viscous drag

coefficient CDv and total drag coefficient CD versus ReW /Ha at Ha = 100 and 200. Their respective

spanwise distributions are presented on figure 10.17.

In both Ha cases, for ReW /Ha ≤ 1, CDv decrease with a slope scaling with ReW /Ha. The

values of CDv subsequently depart significantly from this initial scaling as a sudden drop is noticed

at ReW/Ha = 3 for Ha = 100 and ReW/Ha = 2 for Ha = 200. This corresponds to the appearance
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Figure 10.16: (a) Pressure drag coefficient CDp, (b) viscous drag coefficient CDv and (c) total drag
coefficient CD versus ReW /Ha. In the unsteady regime, time-averaged values are reported.

of secondary recirculations at the lateral cylinder faces. These recirculations induce negative CDv

along a portion of the lateral faces as shown on the spanwise distribution of CDv reported on figures

10.17(c-d). Negative values of CDv cause a sudden drop of its spanwise average. The variations of

CDv in the MHD case are in line with those of the non-MHD case (see section 9.5.1).

The pressure and the total drag coefficients decrease throughout the steady flow regime. At

Ha = 100, after the onset of vortex shedding, both CDp and CD exhibit a change of slope as they

increase between ReW/Ha = 6 and 8, unlike for Ha = 200 where no increase is observed for any of

these two coefficients. The variations of CDp are very similar to those of Cf
pb as CDp results from the

integration of the pressure over the upstream and downstream cylinder faces and therefore reflects

on the same mechanism as Cf
pb. The spanwise distributions of CDp shown on figures 10.17(a-b) also

exhibit strong similarities to those of Cf
pb. As the contribution of CDv to the total drag coefficient

CD decreases with increasing ReW , the variations of CD follow from those of CDp. This is also true

for the spanwise distributions of CD visible on figures 10.17(e-f). We have shown in section 10.3.6

that the streamwise pressure drop scales with ReW /Ha in the early stages of the steady regime. The

CDp-curves at different values of Ha tend to merge at low ReW /Ha. This scaling is less relevant

for CDv as the Hartmann friction has little influence on the viscous forces. Relatively high values of
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CDv at low ReW /Ha are responsible for the slight discrepancy of the CD-curves at low ReW/Ha.

In the late stages of the steady regime and after the onset of vortex shedding, the dynamics of the

recirculation regions and then that of the formation region of the Kármán vortices are responsible

for more significant variations in pressure at the rear of the cylinder. As a result, the curves of both

CDp and CD depart from the scaling law in ReW /Ha in this regime. Finally, we shall stress that

the variations of the drag coefficients in the MHD cases are very similar to those observed in the

non-MHD case. Only in the latter case, the transition to unsteadiness causes a spectacular reversal

of the slope of the respective curves of CDp and CD, as no Hartmann friction softens the effect of the

pressure change at the rear of the cylinder (see section 9.5.1).

10.4.4 Spanwise lift coefficient

We now look at the spanwise lift coefficient Cz (9.6). Again, as explained in section 9.5.1, pressure

forces contribute to Cz only on the cylinder upper face, while viscous forces contribute to it only

on the lateral, upstream and downstream cylinder faces. We consider therefore the pressure and the

viscous spanwise lift coefficients, denoted Czt and Czs, respectively. The variations of Czt with the

Stuart number N is reported on figure 10.18(a) and those of Czs with ReW/Ha on figure 10.18(b).

By definition, the values of Czt strongly depend on the value of the reference pressure and the

location of the mesh cell where it is allocated (see section 9.5.1). In particular, the sign of Czt bears

no significance. One observes that Czt increases monotonically with N , i.e at a given Ha, it decreases

monotonically with ReW in both steady and unsteady flow regimes. The scaling with N is excellent

for N ≫ 1 and slightly deteriorates for N . 1 when the flow is unsteady. In the limit N → ∞ and

within the steady regime, it follows from the momentum conservation (7.1) that the pressure gradient

is proportional to N within a good approximation and negative along the streamwise direction, hence

the linear dependency between Czt and N . In the unsteady regime, N gets closer to one and inertia

effects counter-balance those of the Lorentz force. The pressure gradient scaling with N is therefore

less relevant in this regime. Czt however keeps on decreasing after the onset of vortex shedding,

whereas, in the non-MHD case, the transition to unsteadiness causes a switch to increasing values of

Czt as shown on figure 9.10(a). In the non-MHD case, Czt starts increasing as a consequence of the

appearance of secondary recirculation at the upper cylinder face that induces a significant enough

modification of the pressure to trigger an increase of Czt. By contrast, in the MHD case, although

secondary recirculation also appears at the upper cylinder face, the induced pressure modification

is not able to counter-balance the pressure drop due to the Hartmann friction. The appearance of

this secondary recirculation at ReW = 600 (N = 1) for Ha = 100 and ReW = 1000 (N = 2.5) for

Ha = 200 though causes the deterioration of the scaling with N .

No monotonic trend is observed for Czs. No flow separation is present in the creeping flow regime
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and the spanwise velocity component is close to zero at the lateral cylinder faces. At very low

ReW , ReW = 1, for which a Hunt’s wake is observed, the flows on the upstream and downstream

cylinder faces are antisymmetric with respect to the plane (x = 0). Consequently the spanwise viscous

frictions at the upstream and downstream faces compensate each other and Czs is close to zero for

ReW/Ha → 0. Increasing ReW within the creeping flow regime breaks the flow antisymmetry as the

Hunt’s wake is pushed slightly downstream. This induces a slight imbalance between the spanwise

frictions at the upstream and downstream faces. The flow is decelerated as it passes above the cylinder

tip so that the spanwise velocity is slightly higher at the upstream face than at the downstream one

and Czs increases and turns positive. The initial change of slope at ReW/Ha = 0.1 corresponds to

the appearance of the head vortex at the rear cylinder face. On the one hand, as shown by the red

streamlines on figure 10.4, the head vortex induces an upwards flow at the rear cylinder face. The

spanwise velocity resulting from this upwards flow is however weak and located only in the centre-

plane y = 0. On the other hand, the head vortex generates two downwards spiralling vortices on

either sides of the centre-plane y = 0. As a consequence, the spanwise wall friction at the downstream

faces counter-balances that at the upstream face and Czs decreases. This trend is enhanced as the

rear spanwise vortices (blue streamlines on figure 10.4) are generated from the cylinder tip in the late

stages of the steady regime. The appearance of secondary recirculation at ReW /Ha = 3 (resp. 2)

for Ha = 100 (resp. 200) at the lateral cylinder faces causes an increase in Czs due to the upwards

spiralling flow feeding these recirculations.

10.4.5 Strouhal number

We have simulated three unsteady flows: one at Ha = 100 and two at Ha = 200. For each case,

we have computed the Strouhal number from the time-history of the lift coefficient. Their values are
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Ha = 100 Ha = 200

ReW = 800 St = 0.1235 St = 0.1218
ReW = 1000 / St = 0.1474

Table 10.1: Strouhal number St versus ReW and Ha.

reported in table 10.1. At Ha = 200, St increases from 0.1218 to 0.1474 between ReW = 800 and

ReW = 1000. At ReW = 800, St is higher at Ha = 100 is higher than at Ha = 200. In comparison

with the non-MHD case (see figure 9.11), the MHD values of St are one order of magnitude higher

than the non-MHD ones calculated from the asymmetric mode, thus reflecting two entirely different

mechanisms of vortex shedding.

The increase in St relies on the same mechanism described in e.g. subsection 2.3.2: when ReW

increases, the velocity of the Kármán vortices reaches that of the free stream and the distance be-

tween two successive vortices with the same sense of rotation diminishes. The stabilising effect of

the Hartmann friction results in Kármán vortices with a smoother spanwise shape. In contrast, the

vortex street observed in the non-MHD flow past a truncated square cylinder is fuelled by complex

interactions between spanwise, streamwise and transverse structures. The non-MHD shedding mech-

anism is truly laminar only within a narrow ReW interval beyond the onset of vortex shedding. In

this case, the value of St is quite high and as the shedding mechanism deteriorates for higher ReW ,

the vortex street turns chaotic and St drops sharply.

10.5 Perfectly conducting cylinder

We consider now the MHD flow past a perfectly conducting, square truncated cylinder placed in

an insulating duct. The main goal of these investigations is to indicate the general influence of the

conductivity of the cylinder on the flow dynamics. Further calculations and analyse are required to

have a better understanding of its precise effects.

We take over the configuration used in the previous section and we replace the insulating truncated

square cylinder by a perfectly conducting one with the same dimensions. The boundary condition

for the electric potential at the cylinder surface ∂CT (defined in subsection 9.2.1) has been changed

accordingly. The cylinder is considered as perfectly conducting so that the electric potential is uniform

on its whole surface. It is then fixed to an arbitrary value equal to zero:

φ = 0 at ∂CT (10.7)

The mesh characteristics are given in table 10.2. We have performed four simulations at Ha = 100

for increasing ReW with ReW = 10, 100, 400 and 600. The flow is steady for 10 ≤ ReW ≤ 400 and

unsteady at ReW = 600. The flow patterns are very similar to those with an insulating cylinder. We
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nx × ny × nz δx × δy × δz nH × nS Total number of mesh nodes
200× 50 × 80 0.12 × 0.12× 0.012 4× 7 1.16 × 106

Table 10.2: Main characteristics of the mesh used in the simulations performed with a perfectly
conducting cylinder. ni is the number of mesh nodes along the i−axis. δi is the non-dimensional
distance between the cylinder face normal to the i−axis and the grid point nearest to the latter face.
nH and nS are the numbers of mesh nodes in each Hartmann and Shercliff layers, respectively.

shall consequently only point out the changes in the following comments.

10.5.1 Flow patterns, dynamics and electric current streamlines

Due to the presence of a perfectly conducting cylinder is the existence of the creeping flow over a

greater range of ReW than with an insulating cylinder, since, at ReW = 10, no flow separation is

detected in the former case in contrast with an insulating cylinder.

The steady flow patterns detected at ReW = 100 are shown on figure 10.19. The most spectacular

change with respect to the case with an insulating cylinder is the absence of any transverse vortex

at the downstream cylinder face. The flow streamlines (in red) originating in the centre-plane y = 0

reattach in the same plane along a line from the trailing edge of the upper cylinder face downwards

over a distance hd. A pair of counter-rotating spanwise vortices are still observed in the near-wake

on either side of the centre-plane y = 0. They are generated by streamlines (in blue) passing over the

cylinder tip at some distance off the centre-plane y = 0. A saddle point denoted SP is detected at the

confluence between the set of red streamlines, the upper end of the spanwise vortices and the black

streamlines. The latter set of streamlines does not play any part in the formation of any of the wake

features. The cyan streamlines rejoin the line of stagnation points at the upstream cylinder face in

the centre-plane y = 0 and span over a height hv.

By increasing ReW from 100 to 400 within the steady regime, the reattachment line at the top rear

of the cylinder lengthens downwards, i.e. hd increases, saddle point Sp in the cylinder wake moves

significantly downstream and slightly downwards and height hv shrinks. Also, the spanwise vortices

lengthen along the x-axis. The lateral free shear layers stretch further downstream in the cylinder

wake. Secondary recirculations are observed at ReW = 400 at both the lateral and top cylinder faces

from the stretching of the streamlines generating the spanwise vortices and flow separation at the front

edge of the top face, respectively. The paths of electric current are depicted in three cross-sections at

ReW = 100 in figure 10.20. In the cross-section upstream the cylinder and far away downstream the

cylinder, the electric current streamlines exhibit the characteristic patterns observed in the Shercliff

flow. The infinite conductivity of the cylinder however induces a slight attraction of the current

streamlines to the cylinder. In the cross-section across the cylinder, one observes that most of the

current circulates from the bottom Hartmann layer to the Shercliff layer at the lateral cylinder face.
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Figure 10.19: Simulations with a perfectly conducting cylinder: steady flow patterns at ReW = 100
and Ha = 100. Kinematic streamlines: (a) 3D view; (b) side view and (c) top view. Red streamlines
show that no head vortex is present at the cylinder rear face, but reattach at the rear of the cylinder.
Spanwise vortices are depicted by the blue streamlines which originate from the region above the
cylinder tip, but off the centre-plane y = 0. Pink streamlines originate upstream the cylinder in
the plane z/h = −0.998 immersed within the bottom Hartmann layer. Cyan streamlines rejoin the
line of stagnation points at the upstream cylinder face. Black streamlines are only deflected by the
cylinder wake without noticeable influence on the latter. (d) Lateral free shear layers depicted by the
iso-surfaces of z−vorticity: ω⋆

z = −10 and 10 in blue and red, respectively.
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Figure 10.20: Simulations with a perfectly conducting cylinder: electric current streamlines in the
cross-section at (a) x = −8W , (b) x = 20W and (c) x = 0 at ReW = 100 and Ha = 100. Flow from
back to front

In addition, current loops are seen in the region above the cylinder tip that recirculate inside the

bulk of the cylinder leading therefore to a much higher braking of the flow than in the case with an

insulating cylinder [134]. This is well illustrated by the comparison of the streamwise velocity profiles

along the y−axis in the plane (x = 0.49) at z = 1/2 at Ha = 100 and ReW = 100 shown on figure

10.21. The flow passing along the wake centreline is more decelerated in the presence of a perfectly

conducting cylinder than in that of an insulating one. As a result, a head vortex is generated only in

the case where the flow washing down behind the cylinder is fast enough to separate at the trailing

edge of the upper cylinder face, i.e. only in the case with an insulating cylinder.

A snapshot of the vortex street seen at ReW = 600 is shown on figure 10.22. The vortex shedding

fuels an asymmetric Kármán vortex street as in the case with an insulating cylinder. The vortices

shed from the lateral free shear layers and break away into smaller vortices. The bottom end of the

vortices exhibits a cigar-shape. The flow is fully unsteady at ReW = 600, while it is still steady in the

computations with an insulating cylinder. In the latter case, the spanwise vortices are weak since the

streamlines at their origin first generate a transverse vortex. On the contrary, the spanwise vortices
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Figure 10.21: Streamwise velocity profile along the y-axis above the cylinder tip at z = 1/2 in the
cross-section x = 0.49 at Ha = 100 and ReW = 100 in the case with an insulating cylinder (green
line) and in that with a perfectly conducting one (blue line). The vertical black lines indicate the
extremities of the upper cylinder faces.

in the case with a perfectly conducting cylinder are promptly generated by streamlines passing over

the cylinder tip. At a given ReW , they are consequently stronger than the ones in the case with an

insulating cylinder and the collapse of the steady recirculation regions occurs at a lower ReW . It shall

however be noted that extra computations are required to characterise the mechanism trigeering the

onset of vortex shedding.

10.5.2 Flow coefficients

As already stressed several times so far, the dynamics of the recirculation regions at the rear of the

cylinder determine greatly the evolutions of the flow coefficients with ReW . Figure 10.23 presents the

comparative spanwise distributions of the length of the steady recirculation regions at Ha = 100 for

ReW = 100 and 400 in the simulations run with an insulating and a perfectly conducting cylinder.

In the case with a perfectly conducting cylinder, one observes that both the spanwise and streamwise

extensions of the recirculation regions is bigger than in the case with an insulating cylinder. Again,

in the latter case, the head vortex is at the origin of the spanwise vortices and therefore limits their

spanwise extension. No such head vortex is present in the case with a perfectly conducting cylinder

and the spanwise vortices are formed by streamlines spiralling from the cylinder tip downwards so that

the recirculation regions extend up to the cylinder tip. The difference in the streamwise elongation

results from the difference in strength of the spanwise vortices already pointed out previously. Stronger

spanwise vortices induce longer recirculation regions. This causes a greater instability of these regions

and therefore the onset of vortex shedding occurs at a lower ReW than in the case with an insulating
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Figure 10.22: Simulations with a perfectly conducting cylinder: snapshot of the vortex street at
ReW = 600, Ha = 100 and t = 9.1tH . Iso-surfaces of z−vorticity ω⋆

z = −18 (resp. 18) in blue (resp.
red). (a) 3D view; (b) side view and (c) top view.

cylinder.

We report the comparative evolutions of the spanwise- and time-averaged values of the force coef-

ficients resulting from computations involving either an insulating or a perfectly conducting cylinder

on figure 10.24. For the viscous drag coefficient CDv, the discrepancy between the two curves is

small. In contrast, for the pressure drag coefficient CDp and subsequently for the total one CD, the

discrepancy between the respective curves is much more significant. For all three drag coefficients,

the curves relating to the perfectly conducting cylinder are below those relating to the insulating

cylinder, although the respective shapes of the curves are similar.

The variations of CDp are linked to the dimensions and the dynamics of the recirculation regions

located in the near-wake of the cylinder. These recirculations are longer in the case with a perfectly

conducting cylinder, i.e. the counter pressure gradient fed by the recirculations is greater in this case

and CDp is lower than in the case with an insulating cylinder. Also, one observes that CDp is higher

at ReW = 400 than at ReW = 100, i.e. the increase of CDp is initiated within the steady flow regime

by contrast with the case with an insulating cylinder and the non-truncated cylinder wake in general.

In these cases, the switch from decreasing to increasing CDp is due to the onset of vortex shedding

that causes the collapse of the vortex formation region. This explains why the unsteady flow regime
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Figure 10.23: Spanwise distributions of the length Lb of the steady recirculation regions at Ha = 100
for ReW = 100 (∇) and ReW = 400 (∆). Insulating (open symbols) and perfectly conducting (solid
symbols) cylinder.

at ReW = 600 does not affect the variations of CDp in the case of the perfectly conducting cylinder,

for which the shrinkage of the vortex formation region strengthens the increase of CDp initiated in

the steady regime. Further analysis and computations are however required to explain what induces

this increases within the steady regime.

Figures 10.25(a-d) present the spanwise distributions of the pressure, viscous and total drag co-

efficients and of the viscous component of the spanwise lift coefficient Czs obtained from simulations

involving either an insulating or a perfectly conducting cylinder. The spanwise distributions of CDv

are little affected by the conductivity of the cylinder. The presence of a secondary recirculation at

the lateral cylinder faces results in both cases in negative values of CDv. In contrast, the respective

spanwise distributions of CDp differ in the region near the cylinder tip. In the simulations run with

a perfectly conducting cylinder, CDp is very low at the cylinder tip and then increases monotonically

up to the cylinder mid-span. In the computations performed with an insulating cylinder, CDp is

also very low at the cylinder, but then it increases up to a maximum value reached at z/h ≃ −0.1

from which it decreases down to the cylinder mid-span. In the case with an insulating cylinder, the

presence of the head vortex at the rear of the cylinder tip induces a local pressure minimum that

generates an extremum of CDp. With a perfectly conducting cylinder, the head vortex is absent and

no extremum of CDp is detected close to the cylinder tip. Also, the existence of the creeping flow

regime at ReW = 10 in the case with a perfectly conducting cylinder unlike in that with an insulating

one induces a negative value for the viscous component of the spanwise lift coefficient Czs [see figure

10.25(d)], whereas Czs > 0 at ReW = 10 with an insulating cylinder due to the presence of both the

head vortex and the spanwise recirculations behind the cylinder.

We have also computed the value of the Strouhal number St at ReW = 600 and we have found
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Figure 10.24: Spanwise and time-averaged values of the (a) pressure CDp, (b) viscous CDv, (c) total
CD drag coefficients and (d) viscous spanwise lift coefficient Czs versus ReW at Ha = 100. Insulating
cylinder (c = 0) and perfectly conducting cylinder (c = ∞).

St = 0.1183. In the simulations with an insulating cylinder, the flow is still steady at ReW = 600,

but at ReW = 800, St = 0.1235. As only one unsteady case was simulated, little can be inferred on

the influence of the cylinder conductivity on St. Nevertheless, since the Kármán vortices are higher

and longer than in the case with an insulating cylinder, the inertia of the vortices should be greater

and therefore so should be the shedding period. Consequently, one would expect slightly lower values

of St with a perfectly cylinder than with an insulating one. Further unsteady computations would

be required to confirm this reasoning.

10.6 Conclusions and perspectives

10.6.1 Summary of the outcomes

In this chapter, we have investigated the MHD flow past a truncated square cylinder in an electrically

insulating rectangular duct under an externally applied axial magnetic field using 3D full DNS. The

cylinder has been considered, firstly, as fully insulating and, secondly, as perfectly conducting. The

latter case has been investigated only briefly to give insight on the influence of the cylinder conductivity

on the flow dynamics. The study with an insulating cylinder has been our reference case and therefore
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Figure 10.25: Spanwise distributions of the (left) pressure drag coefficient and (right) viscous drag
coefficient at Ha = 100. ReW = 10 (∇) and ReW = 400 (∆). Insulating (open symbols) and perfectly
conducting (plain symbols) cylinder.

treated in more detail. We shall now summarise the outcomes of this study.

Two sets of computations have been performed at Ha = 100 and 200 for 1 ≤ ReW ≤ 1000. At

very low ReW , we have provided some visualisations of Hunt’s wake in which the flow passes round

the region above the cylinder tip as if the cylinder would span over the full height of the duct. It

theoretically exists for Ha ≫ 1 and N ≫ 1. For the values of Ha set in this study, such a wake

has been detected only in the creeping flow regime. Simulations at Ha > 1000 are likely to provide

Hunt’s wake including the steady recirculation regions and even the initial part of the Kármán vortex

street.

Beyond the creeping flow regime, steady recirculation regions appear and lengthen in the cylinder

wake. In the early stages of this regime, we have shown that the spanwise vortices are generated

by a transverse vortex located at the rear cylinder face slightly below the cylinder tip. Unlike the

non-MHD case, the magnetic field stretches the lateral free shear layer and prevents any fluid from

entering the cylinder wake beneath these shear layers so the MHD wake structures are formed by

streamlines passing over the cylinder tip. We have demonstrated that the outer boundary layer of

the steady recirculation regions has a thickness δ of the order of that of the Shercliff layer. Also,

imposing a magnetic field changes the nature of the boundary layers. At the bottom duct wall,

there is a very stable Hartmann layer and no horseshoe pattern is therefore observed. Finally, the

appearance of secondary recirculation at the lateral cylinder faces has a dramatic effect on the viscous

drag coefficient.

In the steady regime, the electric current streamlines are fully 2D upstream the cylinder and far

away downstream it. In the vicinity of the cylinder, as the latter is insulating, the current density

accumulates in the region above the cylinder tip. This implies a significant increase of the Lorentz

forces in this region and consequently a greater braking of the flow. The latter is decelerated when

160



reaching this region and then washes down behind the cylinder with low velocity. This explains why

the flow remains steady at much higher ReW than in the non-MHD case.

The onset of vortex shedding leads to the formation of an asymmetric Kármán vortex street. The

magnetic field indeed promotes the development of the lateral free shear layers and strongly dissipates

structures orientated across its direction. The transition to unsteadiness results only from the insta-

bility of these shear layers and the recirculation regions which has been thoroughly investigated in

e.g. 2D cylinder wakes. Under the influence of the magnetic field, the mechanism of vortex shedding

is strongly laminar and the subsequent values of St are much higher than the ones obtained in the

non-MHD cases.

Several simulations have been performed at Ha = 100 and 10 ≤ ReW ≤ 600 after replacing the

insulating truncated square cylinder by a perfectly conducting one. It has induced a greater braking

of the flow above the cylinder tip. As a result, the creeping flow regime exist over a wider ReW -range

than in the case with an insulating cylinder. Also, in the regime of the steady spanwise recirculations,

no transverse vortex is present at the rear cylinder face as the spanwise recirculations are generated

from streamlines spiralling from the cylinder tip down. At a given ReW , the latter recirculations are

longer in the case with the perfectly conducting cylinder. They are also more unstable at higher ReW

and the onset of vortex shedding thus occurs at a lower ReW than in the case with an insulating

cylinder. The flow dynamics of the perfectly conducting truncated cylinder however require extra

simulations and analysis to explain e.g. the switch of the pressure drag coefficient from a decrease to

an increase within the steady flow regime and the mechanism of transition to unsteadiness.

10.6.2 Perspectives

As in non-MHD study, the results obtained in the MHD investigations also depend on the choice

of the configuration. The aspect ratio of the cylinder, the shape of its cross-section, the blockage

ratio β = W/2b and the gap between the cylinder tip and the top wall are likely to have a more

or less noticeable influence. For example, higher values of β may result in the flow separation of

the boundary layers at the side duct walls for ReW values in the range of that considered in the

previous investigations. The orientation of the magnetic field is however expected to have a more

spectacular impact on the flow dynamics. Since a spanwise magnetic field prevents the fluid from

passing behind the cylinder from under the lateral free shear layers, an interesting study would be to

impose a magnetic field along a direction perpendicular to the spanwise one. A streamwise magnetic

field would promote streamwise vortices which play a crucial part in the non-MHD vortex shedding.

The values of Ha considered in this study are moderate. 3D full DNS of MHD flows at higher

Ha would require greater CPU resources. The latter problem could be partially tackled by using

wall functions to avoid solving the flow inside the bottom and top Hartmann layers. One issue would
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however remain about the treatment of the Hartmann layer located at the upper cylinder face. Using

a structured mesh implies a propagation of the local mesh refinement required inside this Hartmann

layer over the whole fluid domain. Nevertheless, the flow dynamics at very high Ha can be fairly well

described by asymptotic models, whereas the dynamics of low to moderate Ha flows are more subtle,

especially if ones considers the very different flow patterns observed at Ha = 0 and Ha = 100.

Finally, the case of a partially conducting cylinder would bring even more information on the

influence of measurement probes. Meshing and solving the distribution of the electric potential inside

the cylinder are also likely to improve the reliability of the measurement methods by suggesting some

corrections to the measured signals. Also, controlling the boundary condition at the cylinder end

located outside the duct shall have a sensitive influence on the flow dynamics and deserve to be

investigated.
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Summary and perspectives

One main concern of this thesis has been the development of a numerical code able to simulate 3D

MHD flows within the low-Rm approximation. Our code has been elaborated within the OpenFOAM

1.4.1 framework that relies on the finite-volume method and is free of any license agreement. We

have carefully reviewed the literature and devised the requirements to design an accurate, consistent

and conservative numerical algorithm. In particular, by contrast with previous codes which were

undermined by a poor treatment of the current density and Lorentz forces, we have taken advantage

of the work of [152, 153] to implement a current-conservative and consistent scheme. Although our

code has been developed to be robust and flexible, further work is however required to optimise the

efficiency of the code. The code would greatly benefit from a thorough assessment of the discretisation

schemes and the numerical techniques on its stability and CPU cost. Several modifications of the

code are also likely to broaden its range of application. For example, there is a large interest to gain

insight on the effects of a space- and/or time-dependent externally applied magnetic field on the flow

dynamics. Also, the understanding of the effects of a fringing magnetic field in regions where the

flow enters or leaves the magnetic field is another major issue in the designs of blankets for ITER

fusion reactor. Secondly, a time- and space-dependent magnetic field with a low frequency of the

order of 1 Hz is used in continuous casting process to control the flow of molten metal. These kinds

of modifications into our code do not apparently present much difficulty, although a detailed scrutiny

is required to assess their exact numerical implications.

Throughout this thesis, we have successfully implemented three different numerical approaches:

full 3D DNS, 3D simulations using wall functions and 2D simulations based on the SM82 model. Full

3D DNS are the most reliable, as they do not involve any model nor approximation other than the low

Rm one. For high Ha MHD flows, they however demand very large CPU power and memory storage

capacity. Although the recent advances in CPU technology have made it possible to investigate MHD

flows with full DNS for Ha up to about 5000 in simple geometrical configuration [171], alternative

numerical methods based on the use of wall functions or the SM82 model can be used to obtain an

initial assessment of the flow or even fully investigate the flow using parametric studies at a lower CPU

cost. Additional work is though required to devise a set of guidelines to provide recommendations on
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the most adequate numerical method according the geometric configuration and the range of Ha and

N under consideration.

The second objective of this thesis has been to achieve an extensive review of MHD flows past a

cylindrical obstacle under an axial magnetic field. For both high Ha and N , we have investigated

the MHD flow past a circular cylinder with 2D simulations. Using the SM82 model, it has been

possible to perform a parametric study on both Ha and Re. We have recovered the flow regimes

observed in experiments by [180] and explained the collapse of the regular Kármán vortex street as

the consequence of the interaction between the Kármán vortices and secondary ones released from

separation of the Shercliff layers at the duct side walls. We have also found two types of scaling law

linking the base pressure coefficient Cpb to the friction parameter Re/Ha on the one hand and the

length of the steady recirculation regions and all drag coefficients to Re/Ha0.8.

We have then considered a configuration featuring strong 3D effects in the flow and we have

therefore investigated the flow past a truncated square cylinder inside a duct. In the non-MHD inves-

tigations, we have indeed highlighted complex 3D flow dynamics with intricate interactions between

vortical structures for Re up to 400. After a thorough analyse of the steady flow patterns regime,

we have identified an very original scenario for the formation and release of hairpin vortices feeding

a symmetric vortex street at Re = 200. We have stressed that the high spanwise flow confinement

enhances the role of the pair of streamwise vortices spiralling upwards from the bottom of the wake

and induces a more efficient entrainment of the head of the hairpin.

The flow dynamics is completely modified when the magnetic field is present. We have performed

two sets of computations with an insulating cylinder at Ha = 100 and 200 for Re up to 1000. At

very low Re for N ≫ 1, we have provided visualisations of a Hunt’s wake. For higher Re, the steady

structures are generated from streamlines circulating above the cylinder tip by contrast with the

non-MHD study where they are all induced by streamlines passing underneath the lateral free shear

layers In the unsteady flow regime, one observes an asymmetric Kármán vortex street where vortices

form from the rolling-up of the lateral free shear layers.

Replacing the electrically insulating cylinder by a perfectly conducting one at Ha = 100 enhances

the braking of the flow by Lorentz forces. Striking differences are the suppression of the transverse

vortex and an increase of the pressure drag coefficient in the middle of the steady regime. This study

requires however further computations and analyse.

To conclude, we shall stress that our study raises serious questions on the interest of promoting

turbulence and thus heat transfer in blankets by placing obstacles. Indeed, for Ha = 100 and N < 10,

we have shown that the flow dynamics is dominated by quasi-2D effects and mostly laminar. In fusion

reactor blankets, typical values of both Ha and N are several orders higher and placing obstacles is

therefore very unlikely to promote turbulence in the flow.
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[8] V. Dousset and A. Pothérat. Numerical simulations of a cylinder wake in a strong external axial
magnetic field. Julius Hartmann meeting, Coventry, UK, February 2007.
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[157] A. Pothérat, J. Sommeria, and R. Moreau. An effective two-dimensional model for MHD flows
with transverse magnetic field. J. Fluid Mech., 424:75–100, 2000.
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Appendix A

Implementation of MHD solvers in

OpenFOAM

A.1 C++ script of the MHD solver used in Direct Numerical Sim-

ulations

/*---------------------------------------------------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.

\\/ M anipulation |

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

// Settings of the simulation and the mesh

# include "setRootCase.H"

# include "createTime.H"

# include "createMesh.H"

# include "createFields.H"

# include "initContinuityErrs.H"
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# include "readPISOControls.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

const vector nB = B0.value()/mag(B0.value()); // Magnetic field direction

// Arbitrary scalar included in Poisson equation for electric potential

scalar consist = 1;

// Initialization of Lorentz force

volVectorField lorentz = sigma * (-fvc::grad(PotE) ^ B0) + sigma * ((U ^ B0) ^ B0);

for (runTime++; !runTime.end(); runTime++)

{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "CourantNo.H"

for (int cor=0; cor<PotElnCorr; cor++)

{

Info << "Iteration No " << cor+1 << "\n";

fvVectorMatrix UEqn

(

fvm::ddt(U) // Time variation term of velocity U

+ fvm::div(phi, U) // Convection term with flux of velocity phi

- fvm::laplacian(nu, U) // Viscous term

==

(1.0/rho) * lorentz // Lorentz force term

);

solve( UEqn == -fvc::grad(p)); // Pressure gradient term

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)
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{

volScalarField rUA = 1.0/UEqn.A();

U = rUA*UEqn.H();

phi = (fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, U, phi);

adjustPhi(phi, U, p);

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pEqn

(

fvm::laplacian(rUA, p) == fvc::div(phi)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve();

// Correction of pressure for non-orthogonal meshes

if (nonOrth == nNonOrthCorr)

{

phi -= pEqn.flux();

}

}

# include "continuityErrs.H"

U -= (rUA*fvc::grad(p));

U.correctBoundaryConditions();

}

// Fluxes of cross product velocity and magnetic fields

surfaceScalarField psiub = fvc::interpolate(U ^ B0) & mesh.Sf();

// Consistent treatment of Poisson equation for electric potential PotE
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fvScalarMatrix PotEEqn

(

fvm::laplacian(consist,PotE) == consist * fvc::div(psiub)

);

PotEEqn.setReference(PotERefCell, PotERefValue);

PotEEqn.solve();

// Conservative treatment of the current density

surfaceScalarField jn = -(fvc::snGrad(PotE) * mesh.magSf()) + psiub ;

surfaceVectorField jnv = jn * mesh.Cf();

// Equation (42) in Ni et al. (2007, PartII)

volVectorField jfinal = fvc::surfaceIntegrate(jnv) - fvc::surfaceIntegrate(jn) * mesh.C();

jfinal.correctBoundaryConditions();

// Derivation of the Lorentz force

lorentz = sigma* (jfinal ^ B0);

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return(0);

}
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A.2 Performances of the solver

We have simulated the 3D flow of an electric conducting fluid in an electrically insulating duct of

rectangular cross-section under the influence of a transverse magnetic field. The configuration is

described in section 8.3. In this test, the Hartmann number is 50.

The mesh is fully structured and built with 605475 points. Parallel computations were run over 2

nodes using 6 processors out of 8 available on each node. One node has 16 GBits shared memory and

the public domain OpenMPI implementation of the message Passing Interface is used. The mesh was

equally decomposed over each processor. Second-order discrezation schemes in time and space were

used. The job was run over 79805 time steps with an execution time 605717 seconds for a clock time

of 606671 seconds.
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Appendix B

Article published in Physics of Fluids 20,

017104 (2008)

Numerical simulations of a cylinder wake under a strong axial magnetic field
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Appendix C

Article published in Journal of Fluid

Mechanics 653, pp.519-536 (2010)

Formation mechanism of hairpin vortices in the wake of a truncated square cylinder in a duct
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