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Abstract 

This paper studies financial contagion in a core-periphery interbank 

network where core banks are large in balance sheet size while periphery 

banks are smaller and link only with the core banks. Core banks are all 

bilaterally linked and intermediate liquidity for periphery banks. We 

establish analytic conditions under which financial contagion 

propagates in the core-periphery network and examine the extent to 

which heterogeneity associated with size and number of banks affects 

these conditions. We show that the failure of core banks does not 

necessarily imply contagious failure of periphery banks; the core-

periphery network structure exhibits a ‘robust-yet-fragile’ tendency with 

increased size of core banks; and the resilience of the network to 

contagion depends on the number of core banks, the number of 

periphery banks, and the level of interbank liquidity intermediated 

between the core banks. We also find that, under certain conditions, the 

core-periphery network is more resilient than the complete network with 

increased size of core banks. 
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1. Introduction 

Banking connections can be ideally represented as a network in which nodes represent 

banks, links reflect interbank lending and borrowing, and the structure characterizing 

their interdependence represents the configuration of the banking system. Network 

connections enable banks to diversify risk but they also provide channels through which 

shocks can spread by financial contagion (Glasserman and Young, 2016). The global 

financial crisis demonstrated that the failure of one bank can cause contagious failure 

of other banks owing to their interconnected links, potentially generating systemic risk 

in the banking system (Yellen, 2013).1  

The theoretical literature on financial networks shows that the magnitude of 

financial contagion depends, among other things, on the structure of the interbank 

network (e.g. Allen and Gale, 2000, Freixas et al. 2000, Acemoglu et al., 2015; 

Castiglionesi and Eboli, 2018). As Glasserman and Young (2016) assert, different 

characteristics of interbank networks and their interconnectedness can have different 

implications for financial contagion.  

This paper contributes to the literature on financial networks by presenting a 

theoretical model to assess financial contagion in a stylized core-periphery interbank 

network that is found in many financial systems across the world. We establish 

conditions under which financial contagion propagates in the core-periphery network, 

and examine the extent to which heterogeneity associated with size and number of 

banks affects these conditions. We define the core-periphery network as follows: core 

banks are large in balance sheet size and are all bilaterally linked with each other; 

                                                 
1
 The prominent example is in the aftermath of Lehman Brother's bankruptcy where we witnessed a 

collapse of trading activity in the interbank market because of heightened counterparty risk associated 

with direct interbank exposures; see Gabrieli and Georg (2014) for an explanation of interbank market 

freeze from a network perspective. 
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periphery banks are relatively small and link only with the core banks; core banks 

intermediate liquidity among themselves and for their directly linked periphery banks.  

The study of above defined core-periphery network is motivated by an 

overwhelming number of empirical studies which reveal three stylized features of 

interbank markets. First, the interbank markets are tiered. Boss et al. (2004) showed 

that the Austrian interbank market can best be represented by a tiered community 

structure where, within every community, many second tier banks only link with a first 

tier core bank, whereas core banks link with each other. Similar results are found in the 

Italian interbank market, e-MID (De Masi et al., 2006; Iori et al., 2008), the US Fedwire 

system (Soramäki et al., 2007), the US Federal Funds market (Bech and Atalay, 2010), 

and the UK interbank system (Langfield et al., 2014). Other studies also confirm the 

core-periphery structure for the German interbank system (Craig and von Peter, 2014), 

the Dutch interbank market (in’t Veld and van Lelyveld, 2014), and the Italian interbank 

market (Fricke and Lux, 2015). Second, the aforementioned studies all find that banks 

belonging to the first tier are larger in balance sheet size than banks in the second tier; 

in other words, the periphery banks are smaller relative to the core banks. The third 

stylized feature is that core banks not only share liquidity risk but also intermediate 

interbank deposits with their directly linked periphery banks which do not have the 

facility to extend credits among themselves. By using the core-periphery algorithm, 

Craig and von Peter (2014), Fricke and Lux (2015), and in’t Veld and van Lelyveld 

(2014) confirm that interbank markets exhibit core-periphery structures that are 

clustered around a tight set of large core banks which intermediate liquidities for their 

many but relatively smaller periphery banks. 

In deriving results and analyzing contagion in a core-periphery network, we first 

extend the classic Allen and Gale (2000) model to an economy with many sectors, each 
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of which contains a large bank and many small banks. A large bank exchanges 

interbank deposits with large banks in other sectors to share liquidity risk, and each 

large bank intermediates liquidity for all the small banks in the same sector. In this set-

up, we examine financial contagion by assuming the failure of a core bank and the 

failure of a periphery bank, respectively. Differently from Allen and Gale (2000), our 

analysis shows that contagious failure of one bank does not necessarily imply 

contagious failure of all banks, because the loss due to default depends not only on the 

amount of interbank claims other banks have at the defaulting bank, but also on the 

liquidation value of that bank.2 An important implication of this finding is that the 

failure of core banks does not necessarily lead to contagious failure of periphery banks. 

This result also contrasts with studies on targeted shocks under a fat-tailed financial 

network (e.g., Gai et al., 2011), which assert that the financial network is very 

vulnerable to the failure of core banks simply because of their high connectivity.  

Our analysis then demonstrates the importance of having large core banks in a 

network. With increasing size of the core banks, the core-periphery network exhibits a 

robust-yet-fragile tendency, adding to the current research on financial networks which 

suggests the robust-yet-fragile property exists in terms of average connectivity (e.g., 

Gai and Kapadia, 2010). The resilience of the network to contagion also increases with 

greater number of core banks, which is intuitive since increasing the number of core 

banks decreases the relative weight of the interbank linkage between the core banks. A 

similar effect holds when increasing the number of periphery banks while holding the 

level of cross-sector liquidity risk-sharing constant.  

                                                 
2 Allen and Gale (2000) study financial contagion in symmetric financial networks, in which once one 

of the neighbours of a defaulting bank becomes bankrupt the rest of the banks in the connected network 

must fail. This is because in symmetric networks the loss due to default decreases monotonically with 

the number of contagious failures. 
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We next analyze the effect of interbank liquidity intermediation on financial 

contagion. We show that, conditional on a small number of core banks, if adding a 

periphery bank increases the core banks’ intermediation activity within the sector, then 

the network is more resilient to contagion; whereas if adding a periphery bank increases 

interbank intermediation among sectors then contagion is more likely to propagate. The 

effect reverses when there are many core banks. The implication of this finding is that 

if there are few core banks, the network is more resilient to contagion if the 

intermediation is mostly done within the sector; whereas if there are many core banks 

the network resilience increases with the amount of cross-sector intermediation. This 

result is similar to the work of Acemoglu et al. (2015) and Morris (2000) on modeling 

contagion in weighted networks. 

Finally, following the approach of previous studies (e.g. Allen and Gale, 2000; 

Acemoglu et al., 2015; Castiglionesi and Eboli, 2018), we compare the resiliency to 

contagion of the core-periphery network and the complete network where every bank 

is connected to all other banks. We find that, under certain conditions, the core-

periphery network is more resilient with increasing size of core banks.  

The rest of the paper is structured as follows. Section 2 discusses related literature. 

Section 3 presents the model, after which section 4 shows that Pareto-optimal allocation 

can be decentralized in the core-periphery network. Section 5 investigates financial 

contagion assuming the failure of one core bank and one periphery bank, respectively. 

Section 6 analyzes the network heterogeneities. Section 7 compares the resiliency of 

the core-periphery and complete networks. Section 8 concludes. In the working paper 

version of this paper (Sui, Tanna and Zhou, 2019), we also include an Appendix - 

available from the authors upon request – which contains proofs of some of the 

propositions outlined in this paper. 
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2. Related Literature  

The paper is part of a growing literature that examines how an initial shock to a bank, 

which leads to interbank defaults through direct linkages, propagates within a given 

interbank network.3 As Hüser (2015) and Glasserman and Young (2016) reveal in their 

comprehensive surveys on the interbank networks literature, the majority of these 

studies rely on assessing financial contagion using (average) connectivity as a channel 

for the transmission of liquidity shocks.4 In their seminal work, Allen and Gale (2000) 

argue that networks with higher connectivity yield lower risk of contagion. However, 

Freixas et al. (2000) and Brusco and Castiglionesi (2007) find that the extent of 

contagion is greater the larger the number of interbank connections. Eboli (2013) shows 

that the complete network is fragile to large shocks but more resilient to relatively small 

shocks. Acemoglu et al. (2015) show that less connectivity is better able to prevent 

contagion in the presence of large shocks, whereas a complete network is more resilient 

to small shocks. 

While the aforementioned papers assess financial contagion through connectivity, 

other studies use numerical simulation to study contagion in interbank networks 

typically with star or core-periphery structure. For example, Nier et al. (2007) explore 

the consequences of a targeted shock in a star network with one large core bank 

connecting many small periphery banks. Their analysis focuses on the relationship 

                                                 
3
 While the core-periphery network can be regarded as determined endogenously within our framework 

(via decentralized allocation), we do not study a network formation game in a strategic sense, which 

views the network as emerging from the trade-off between efficiency and stability. The existence of this 

network as an equilibrium structure based on strategic interaction is discussed in Farboodi (2014), Babus 

and Hu (2017) and Castiglionesi and Navarro (2016).  
4
 Some studies analyse financial contagion using random or fat-tailed networks. For instance, Gai and 

Kapadia (2010) reveal features of an interbank network exhibiting a robust-yet-fragile property, whereby 

high connectivity increases risk-sharing and reduces the probability of contagious failure, but when 

contagion occurs, more links allow the possibility of widespread default cascades. Gai et al. (2011), who 

study a fat-tailed network, find that failure of a bank with a large number of links makes financial 

contagion almost certain for a very wide range of parameter values under a targeted shock.  
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between number of periphery banks and contagion. Assuming a shock hits the large 

bank, defaults increase initially with the number of periphery banks but then decrease 

with more periphery banks in the network, revealing a non-monotonic relationship 

between connectivity and contagion.5  Krause and Giansante (2012) study the size 

effect of the core banks in a tiered (core-periphery) network. They show that losses 

from a periphery bank are unlikely to spread as the larger size of the core banks allows 

them to absorb losses more easily and thus contagious failures will be limited - a result 

similar to the random attack in a scale-free network with well-connected banks having 

large balance sheet size. Elliott et al. (2014) consider financial contagion in a core-

periphery network formed by the cross-holding of liabilities. Assuming the failure of a 

periphery bank, they simulate how the weight of interbank linkage between core banks 

affects financial contagion. They find a non-monotonicity in the integration: 

widespread contagions occur if core banks have middle level of cross-holdings, 

whereas the contagions are less severe if this level is either low or high.  

A recent paper by Castiglionesi and Eboli (2018) presents analytic results on 

comparing the resilience of the complete interbank network and the star-shaped 

network in which there is one large core bank connecting with many small periphery 

banks. Differently from our paper, they apply flow network theory to analyse liquidity 

flows in interbank networks, and conclude that the star network is more resilient to 

systemic risk than the complete network. We add to their analysis by comparing the 

resilience between the complete network and the core-periphery network which 

represents a collection of star networks with all core banks bilaterally linked. 

                                                 
5  Freixas et al. (2000) also examine contagious failure in a star network with one core bank and 

homogenous banking size. They show that the effect of a shock on the center bank is more severe than 

on a periphery bank since the center bank is well connected. 



 

8 

 

At a more general level, Glasserman and Young (2016) point out that one of the 

key lessons of the current literature is that we cannot draw any conclusions regarding 

the contagion effect of interbank connections without accounting for the influence of 

other factors, such as heterogeneity in size and weights of links. As they argue, the 

interaction between these factors and the network topology have not yet been fully 

understood at a theoretical level. Our paper, in this sense, aims to fill a gap by 

considering three levels of heterogeneity, namely: the number of (periphery and core) 

banks, the size of the core banks, and the weight of interbank linkage. By bringing 

together different types of heterogeneity in a single core-periphery interbank network, 

we show that some established results from previous studies may not necessarily hold.6 

Also, the analysis of how financial contagion spreads across the network in the presence 

of interbank intermediation has, to the best of our knowledge, not been investigated 

before.7  

 

3. The Model  

The economy lasts for three dates, 𝑡 = 0, 1, 2, and consists of 𝑛 sectors, where 𝑛 is 

an even number. Each sector is denoted by 𝑖, 𝑖 ∈ {1, 2, 3, … , 𝑛}, and contains the same 

number of regions  𝑚 where  𝑚 ≥ 3 .8  Each region is denoted by  𝑖𝑗 , where  𝑗 ∈

{1, 2, 3, … , 𝑚} and 𝑖𝑗 ∈ {1, 2, 3, … , 𝑛} × {1, 2, 3, … , 𝑚}. There is a continuum of ex 

                                                 
6 For example, as we shall see, the effect of the number of periphery banks depends also on the liquidity 

characteristics of the additional bank, and the size effect of the core banks is affected by the weight of 

link between core banks.   
7
 In Elliott et al. (2014), the total amount of cross-holdings for each core bank is exogenously given. 

Therefore, the greater integration between core banks means less link weight between the core bank and 

periphery banks, the core banks hence become more resistant to peripheral failures. Our analysis is 

different from theirs because, when taking the role of interbank intermediaries for core banks into account, 

the total cross-holdings for core banks depends on several factors hence not exogenous. 
8 The notion of a region or sector can be interpreted as different categories of banks focusing on lending 

to different industries, or it can be a geographical metaphor that banks lend to different regions in spatial 

terms. The regional structure can have many interpretations as long as different regions receive different 

liquidity shocks. An interbank network thus plays an important role in redistributing liquidities.  
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ante identical consumers in each region. The population in region  𝑖𝑚 is 𝑘 times 

larger than other regions in each sector. We call 𝑖𝑚 large regions and 𝑖𝑗, ∀𝑗 ≠ 𝑚, 

small regions. 

Each consumer, endowed with one unit of homogeneous consumption good at date 

0, is uncertain about her liquidity preference in the future date. That is, with 

probability 𝜔𝑖𝑗 a consumer in region 𝑖𝑗 is an early consumer who values only date 1 

consumption  𝐶1 with utility  𝑢(𝐶1) , and with probability  1 − 𝜔𝑖𝑗 she is a late 

consumer and values only date 2 consumption 𝐶2 with utility 𝑢(𝐶2); where 𝑢(∙) is a 

neoclassical utility function, i.e., 𝑢′(∙) > 0, 𝑢′′(∙) < 0.  

The probability can take one of the two values which can be either high or 

low, 𝜔𝑖𝑗 ∈ {𝜔𝐿 , 𝜔𝐻}, 0 < 𝜔𝐿 < 𝜔𝐻 < 1. There are two equally likely states of nature,        

𝑆 = {𝑆1, 𝑆2}. In each region, if the probability of being an early consumer is 𝜔𝐿 in one 

state, it is 𝜔𝐻 in the other state. We normalize the measure of the set of consumers in 

a small region to be equal to one. Since liquidity shocks are independent, the law of 

large numbers holds in each region. We can denote  𝜔𝐻 and  𝜔𝐿 equivalently as 

different amounts of early consumers in small regions, and, 𝜔𝐻
𝑚 and 𝜔𝐿

𝑚 as different 

amounts of early consumers in large regions, where  𝜔𝐻
𝑚 = 𝑘𝜔𝐻 and  𝜔𝐿

𝑚 = 𝑘𝜔𝐿 . 

Denote by 𝜆 (𝑘𝜆) the average demand for liquidity in each small (large) region. Since 

the realization of state S1 and S2 is equally probable in each region, we have 

𝜆 =
𝜔𝐻 + 𝜔𝐿

2
=

𝜔𝐻
𝑚 + 𝜔𝐿

𝑚

2𝑘
. 

 

Let 𝛥 be the excess liquidity demand with respect to average liquidity in small region, 

we can write 

𝜔𝐻 = 𝜆 + 𝛥 and 𝜔𝐿 = 𝜆 − 𝛥 (1) 

for small regions, and 

𝜔𝐻
𝑚 = 𝑘(𝜆 + 𝛥) and 𝜔𝐿

𝑚 = 𝑘(𝜆 − 𝛥)               (2) 
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for large regions.  

The value of probability varies within and across regions. However, aggregate 

liquidity demand is the same in two states.9 In each sector, there are 𝑢 small regions 

negatively correlated with 𝑣 small regions and with the large region, where 𝑢 + 𝑣 =

𝑚 − 1 and 𝑘 + 𝑣 ≠ 𝑢.10 Each large region positively correlates with 𝑛/2 − 1 large 

regions in other sectors, and negatively correlates with the rest of the 𝑛/2 large regions. 

To explain the correlations in more detail, suppose the economy consists of two sectors 

with four regions in each sector, and, the population in large regions is twice the size in 

small regions; that is 𝑛 = 2, 𝑚 = 4 and 𝑘 = 2. Also suppose 𝑢 = 1 and 𝑣 = 2. 

Then, two large regions  14 and  24 are negatively correlated: so if 

region  14 experiences high proportion of early consumer 𝜔𝐻, then region 24 will 

experience 𝜔𝐿, and vice versa. In each sector, there is one small region negatively 

correlated with the large region, and there are two small regions positively correlated 

with the large region. Without loss of generality, suppose in state 1 large 

region 14 experiences 𝜔𝐻. There is one small region in sector 1 experiencing 𝜔𝐿 ; 

and there are two small regions experiencing  𝜔𝐻 . In sector 2, large 

region  24 experiences  𝜔𝐿 ; one small region experiences  𝜔𝐻 ; and two small 

regions experience  𝜔𝐿 . Using (1) and (2), the total amount of early consumers 

is 2(3 + 2)𝜆 = 10𝜆 in state 1. In state 2, the total number of early consumers is also 

                                                 
9
 When the liquidity shock occurs, a region either experiences a high proportion or a low proportion of 

early consumers. This assumption of symmetric liquidity shock is also used by Allen and Gale (2000) 

and Castiglionesi and Eboli (2018). In Castiglionesi and Eboli (2018), the liquidity shock has an expected 

value equal to zero. In our model, unlike Allen and Gale (2000), the expected amount of early consumer 

is equal to 𝜆 for small regions and 𝑘𝜆 for large regions. 
10 The correlations between regions create incentives for liquidity risk-sharing. As we shall see later, 

for 𝑘 + 𝑣 ≠ 𝑢, complete risk-sharing can be reached only through sectoral connection. If 𝑘 + 𝑣 = 𝑢, 

complete liquidity risk sharing can be done within each sector. In this case a star network in each sector 

is an equilibrium. Under the assumption of costly connection, this 𝑛-disconnected star network Pareto 

dominates the core-periphery network. Since the main focus of the paper is on contagion effects under 

the core-periphery network, we assume that complete liquidity risk-sharing cannot be achieved within 

sectors, i.e., 𝑘 + 𝑣 ≠ 𝑢. See footnote 13 for further discussion of the issue of network formation.  



 

11 

 

10λ and the liquidity shock for each region is just the opposite to state 1. In any state 

the aggregate liquidity demand is the same or, equivalently, there is no excess liquidity 

demand in the economy. Table 1 shows the details of the realization of consumers’ 

liquidity shocks for the general case.  

  

              11       … 1u 1u+1      … 1m-1 1m 

S1 𝜔𝐿 = 𝜆 − 𝛥      𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥   𝜔𝐻
𝑚 = 𝑘(𝜆 + 𝛥) 

S2 𝜔𝐻 = 𝜆 + 𝛥      𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥  𝜔𝐿
𝑚 = 𝑘(𝜆 − 𝛥) 

 21       … 2u 2u+1      … 2m-1 2 m 

S1 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥  𝜔𝐿
𝑚 = 𝑘(𝜆 − 𝛥) 

S2 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥  𝜔𝐻
𝑚 = 𝑘(𝜆 + 𝛥) 

 31       … 3u 3u+1      … 3m-1 3 m 

S1 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥  𝜔𝐻
𝑚 = 𝑘(𝜆 + 𝛥) 

S2 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥  𝜔𝐿
𝑚 = 𝑘(𝜆 − 𝛥) 

      ⋮  ⋮      ⋮ ⋮  ⋮ 

 n1      … nu nu+1      … nm-1 nm 

S1 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥  𝜔𝐿
𝑚 = 𝑘(𝜆 − 𝛥) 

S2 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐿 = 𝜆 − 𝛥 𝜔𝐻 = 𝜆 + 𝛥 𝜔𝐻 = 𝜆 + 𝛥  𝜔𝐻
𝑚 = 𝑘(𝜆 + 𝛥) 

 

 

There are two types of asset in the economy: short asset and long asset. One unit of 

consumption good invested in short asset produces a gross return of 1 unit of 

consumption good after one period. The long asset has higher return,  𝑅 > 1 , but 

requires two periods to mature. The long asset can be liquidated prematurely at date 1 

yielding r unit of consumption good for each unit invested at date 0, where 1 > 𝑟 > 0. 

 

Table 1: Regional Liquidity Shocks at Date 1. 
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4. Decentralized Allocation in the Core-Periphery Network  

We now show that a Pareto-optimal allocation can be decentralized in the core-

periphery network. Since consumers are ex ante identical and there is no aggregate 

uncertainty, Pareto-optimal allocation is state independent. A central planner only 

needs to solve 

max  𝜆𝑢(𝐶1) + (1 − 𝜆)𝑢(𝐶2),        

subject to feasibility conditions for different regions at different dates. The feasibility 

constraint at date 0 is 

𝑥 + 𝑦 = 1  

for small region (multiplied by k for large region), where x and y denote the amount of 

endowments invested in the long and short asset, respectively. At date 1 the planner 

needs to satisfy 

𝜆𝐶1 = 𝑦.  

The average fraction of liquidity demand is 𝜆(𝑘𝜆) for each small (large) region, and 

each early consumer is promised 𝐶1. The demand for early consumption is equal to the 

return from short asset.11 At date 2, there is on average 1 − 𝜆 (𝑘(1 − 𝜆)) fraction of 

liquidity demand in each small (large) region. We have 

(1 − 𝜆)𝐶2 = 𝑅𝑥.  

The return from the long asset has to meet the deposit demand from late consumers. 

The solution to the maximization problem is 

𝑢′(𝐶1
∗) = 𝑅𝑢′(𝐶2

∗), (3) 

which also satisfies the first-order condition, where  𝐶1 
∗  and  𝐶2 

∗  are the optimal 

consumption value at date 1 and 2, respectively. The optimal portfolios for small and 

large regions are then    

                                                 
11 Since 𝑅 > 1, all the feasibility conditions must be equal. It is never optimal to carry over any short 

asset from date 1 to date 2. 
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(𝑦, 𝑥) = (𝜆𝐶1
∗, (1 − 𝜆)𝐶2

∗/𝑅) (4) 

and  

(𝑘𝑦, 𝑘𝑥) = (𝑘𝜆𝐶1
∗, 𝑘(1 − 𝜆)𝐶2

∗/𝑅) (5) 

respectively. It is easy to verify that condition (3) implies 𝐶2
∗ > 𝐶1

∗, meaning that the 

optimal solution is also incentive efficient. 

To illustrate, consider large regions only. Let ℎ𝑚 denote the odd numbered large 

region, where  ℎ ∈ {1, 3, 5, … , 𝑛 − 1} and  𝑙𝑚 be the even numbered large region, 

where  𝑙 ∈ {2, 4, 6, … , 𝑛} . Suppose the economy experiences state  𝑆1 , where the 

amount of early consumers in each region  ℎ𝑚 and  𝑙𝑚 are  𝜔𝐻
𝑚 and  𝜔𝐿

𝑚 , 

respectively. According to asset allocation (5), each large region has 𝑘𝜆𝐶1
∗ units of 

short asset. Equation (2) implies region  ℎ𝑚 has excess demand of 𝑘𝛥𝐶1
∗ units of 

liquidity which is equal to the excess liquidity supply in region 𝑙𝑚. Since the number 

of regions in  ℎ is the same as the regions in  𝑙 , the central planner can 

reallocate  𝑘𝛥𝐶1
∗ from each  𝑙𝑚 to each  ℎ𝑚 . At date 2, the transfer reverses. 

Each  𝑙𝑚 has excess demand of  𝑘𝛥𝐶2
∗ consumption goods which is equal to the 

excess supply in each ℎ𝑚. Same reallocation process applies also to small regions.  

Next consider the banking solution. Regional banking industry is competitive. We 

assume that there is a representative bank in each region which maximizes depositors’ 

expected utility, subject to a zero-profit constraint. At date 0, consumers deposit their 

consumption goods at their regional bank; in exchange, each consumer receives a 

deposit contract which promises an amount of consumption, 𝐶1,𝑖𝑗 
𝑆 or 𝐶2,𝑖𝑗 

𝑆 , depending 

on when and in which state she chooses to withdraw. Bank  𝑖𝑗 then allocates the 

deposits in short asset, long asset and the interbank on behalf of the depositors, where 

the interbank deposit contract is the same as consumer’s deposit contract. 
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The fluctuation in liquidity demand among regions motivates banks to share 

liquidity risk by exchanging interbank deposit at date 0, so that banks with liquidity 

surplus can provide liquidity for banks with liquidity shortage. We next show that banks 

can offer each of their depositors a state independent deposit contract which gives 

Pareto-optimal consumption, i.e., (𝐶1,𝑖𝑗 
𝑆 , 𝐶2,𝑖𝑗 

𝑆 ) = (𝐶1 
∗ , 𝐶2 

∗ ), ∀𝑖𝑗, ∀𝑆, if they form the 

core-periphery network.  

For simplicity, we call a bank in a large region the large bank and a bank in a small 

region the small bank. Let the large bank exchange 𝛥 amount of deposits with each of 

the small banks in the same sector, and exchange 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 with each of the 

other large bank𝑠 𝑗𝑚, ∀𝑗 ≠ 𝑖.12 The date 0 budget constraint for each small bank is 

𝑥 + 𝑦 + 𝛥 = 1 + 𝛥, 

where the left-hand side (LHS) is the total assets consisting of long asset, short asset 

and the claims of 𝛥 interbank deposits in the large bank from the same sector, and the 

right-hand side (RHS) is the liabilities comprising consumers’ deposit and the large 

bank’s interbank deposit claims. The budget constraint for each large bank is    

𝑘(𝑥 + 𝑦) + [(𝑚 − 1) + (𝑛 − 1)
2|𝑘 + 𝑣 − 𝑢|

𝑛
] 𝛥 = 𝑘 + [(𝑚 − 1) + (𝑛 − 1)

2|𝑘 + 𝑣 − 𝑢|

𝑛
] 𝛥. 

The term in the square bracket on the LHS is large bank’s total lending consisting 

of  𝛥 to each small bank, with the sum of  𝑚 − 1 small banks in sector  𝑖 , 

and 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 to each large bank, with 𝑛 − 1 large banks in total. The square 

bracket on the RHS is the total interbank borrowing from all small banks in the same 

sector and large banks. Figure 1 illustrates the archetypal interbank network with a core-

periphery structure.  

                                                 
12 Castiglionesi and Eboli (2018) characterize the minimum interbank deposit that achieves the full 

coverage of liquidity risk in different networks. According to their analysis, we can assert that the 

equilibrium interbank deposit each bank holds in the core-periphery network (and the complete network 

- see Section 7) is also minimum to achieve efficient allocation. Interested readers may refer to the proofs 

of Proposition 1-3 in Castiglionesi and Eboli (2018). 



 

15 

 

 
 

 

 

 Given the cross holdings of interbank deposits, we then have13 

 

Proposition 1 Pareto-optimal allocation can be achieved in the core-periphery 

network, in which each large bank exchanges 𝛥 deposits with each small bank in the 

same sector and exchanges 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 deposits with each of the other large 

banks. Large banks are core banks that intermediate liquidity for small banks. Small 

banks are periphery banks each of which links only with a core bank.  

 

The proof of Proposition 1 is in Appendix A.1 (Sui et al., 2019). To grasp the 

intuition, it is easy to see that all banks’ budget constraints at date 0 can be reduced to 

date 0 feasibility constraint. We only need to prove that under the core-periphery 

                                                 
13  One may argue about the multiplicity of equilibrium structures. One possible refinement is to 

introduce information asymmetry on liquidity correlation at date 0. In this case, the core-periphery 

network can be a strict bilateral equilibrium (see Goyal and Vega-Redondo, 2007; and also Jackson, 2008 

for discussion on the stability of different equilibrium concepts). It is because any one bank, or two banks 

by coordinating their actions, would be worse off by deviating from the core-periphery network. For 

example, any periphery bank would be worse off dropping the link with the core bank because there is 

no risk sharing opportunity; and, any two periphery banks have no incentive to drop the link with their 

core banks and, instead, exchange 𝛥 with each other, because there is a positive probability that they 

are positively correlated. Same reason holds for the core banks. Since our main focus is on the contagion 

process in the core-periphery network (and the analysis of network formation games is beyond the scope 

of this paper), the current model suffices to yield the core-periphery equilibrium network for the analysis.  

14 24 

34 44 

11 
12 

13 21 
22 

23 

31 

32 
33 41 

42 

43 

 |𝑘 + 𝑣 − 𝑢|𝛥/2  𝛥 

Figure 1: The figure illustrates a core-periphery financial network with 𝑚 = 4 

and 𝑛 = 4, where core banks {14, 24, 34, 44} are large and periphery banks 𝑖𝑗, 𝑗 ≠
4, are small. The interbank deposit exchange is |𝑘 + 𝑣 − 𝑢|𝛥/2 between each two 

core banks, and 𝛥 between each periphery bank and core bank. 
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network, banks’ budget constraints at date 1 and 2 are also the same as the feasibility 

conditions for the central planner.  

First consider the periphery banks. For each periphery bank having 𝜔𝐻 amount of 

early consumers, it liquidates the interbank deposits from the core bank, and for each 

periphery bank experiencing  𝜔𝐿 liquidity demand, the core bank 

liquidates 𝛥 deposits from it. Suppose the economy is in state 𝑆1 and 𝑘 + 𝑣 > 𝑢. 

There is an excess demand for liquidity in sector  ℎ , so each core bank in 

region ℎ𝑚 then liquidates the interbank deposits from core bank in region  𝑙𝑚 in 

order to satisfy the deposit withdrawal for its own early consumers as well as for the 

periphery banks. Each bank in 𝑙𝑚 is willing to meet the deposit demand because each 

sector 𝑙 has excess supply of liquidity which is the same as the excess demand in each 

sector ℎ. At date 2, the situation reverses and the same argument applies. Suppose 𝑘 +

𝑣 < 𝑢, the interbank deposit withdrawal among core banks reverses at date 1. Since the 

number of banks in ℎ𝑚 and in 𝑙𝑚 are the same, there is no aggregate excess liquidity 

demand in any of the cases. The symmetric states imply that deposit contracts are state 

independent. Each bank can therefore offer (𝐶1 
∗ , 𝐶2 

∗ ) to its depositors. 

 

5. Financial Contagion  

The interbank deposit exchange can cause financial contagion if there is an excess 

liquidity demand at date 1. This section studies how financial contagion propagates in 

the core-periphery network by considering a liquidity shock on a core and a periphery 

bank respectively. 

Table 2 depicts the realization of liquidity shocks with excess liquidity demand. 

Assume there are two additional states, 𝑆3 and 𝑆4. In state 𝑆3, all banks face average 

demand for liquidity except for the core bank in 𝑛𝑚 which faces liquidity demand of 
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𝑘𝜆 + 𝜀. In state 𝑆4, periphery bank 11 faces liquidity demand 𝜆 + 𝜀 whereas other 

banks experience average amount of early consumers. Both 𝑆3 and 𝑆4 occur with 

infinitely small probability so that date 0 asset allocations do not change.14  

 

 11 12 … 1m … n1 n2 … nm 

S3 𝝀 𝝀 … 𝒌𝝀 … 𝝀 𝝀 … 𝒌𝝀 + 𝜺 

S4 𝝀 + 𝜺 𝝀 … 𝒌𝝀 … 𝝀 𝝀 … 𝒌𝝀 

 

 

Note that banks follow a pecking order in liquidating different assets. Intuitively, 

liquidating short assets is least costly because the return is one, whereas by liquidating 

one unit of interbank deposit, bank give up 𝐶2 
∗  units of date 2 consumption and obtain 

𝐶1 
∗

 units of date 1 consumption which incur a cost of 𝐶2 
∗ /𝐶1 

∗ > 1 given condition (3). 

By liquidating one unit of long asset banks receive 𝑟 unit of date 1 consumption and 

give up 𝑅 units of future consumption. We assume 𝑟 is small such that  

𝑅

𝑟
>

𝐶2 
∗

𝐶1 
∗ > 1. 

(6) 

Condition (6) implies that, in the presence of excess liquidity demand, all banks prefer 

liquidating their interbank deposits to long asset. This mutual withdrawal cancels out 

the effect of interbank liquidity risk-sharing, and, as a result, the only way to satisfy 

excess liquidity demand is by liquidating long asset.15 A bank defaults if it cannot meet 

liquidity demand at date 1, and the value of deposit is no longer  𝐶1 
∗ . Instead, all 

                                                 
14 The assumption of infinitely small probability is important in deriving the equilibrium network that is 

Pareto optimal. With positive probability of excess aggregate liquidity, first-best allocation cannot be 

achieved in decentralized economy because markets for liquidity risk-sharing are incomplete. As a result, 

feasible asset allocations for banks are difficult to characterize; see Allen and Gale (2000) for further 

explanation of the difficulties in imposing positive probability.   
15 The justification for this argument is that banks suffer from coordination failure because in the 

presence of excess liquidity demand, liquidating long asset is a public good and every bank tries to free 

ride from this action. See Leitner (2005) for the model in which banks could coordinate by incurring 

private bail-out. 

Table 2: Regional Liquidity Shocks with Excess Aggregate Liquidity Demand. 
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depositors receive the liquidation value of the deposit from the failed bank, denoted 

by 𝐶̃𝑖𝑗, where 𝐶̃𝑖𝑗 ≤ 𝐶1 
∗ . If the liquidation value is too low, the neighbouring banks 

will suffer from contagious failure. We next assess the conditions under which 

contagion occurs by assuming the failure of one core bank and one periphery bank, 

respectively. 

 

5.1.Shock on a Core Bank 

Consider state 𝑆3. Core bank in region 𝑛𝑚 (hereafter bank 𝑛𝑚) has excess demand 

of  𝜀𝐶1 
∗  deposit withdrawal. Condition (6) implies that it  has to meet the excess 

demand by liquidating long asset. Bank 𝑛𝑚 can liquidate some long assets without 

defaulting, if it keeps no less than [𝑘(1 − 𝜆) − 𝜀]𝐶1 
∗ /𝑅 units of long asset to satisfy 

date 2 deposit withdrawal.16 The available long asset that can be liquidated without 

causing bankruptcy is the capital buffer for bank 𝑛𝑚, which is 

𝐶𝐵𝑛𝑚 = 𝑟 [𝑘𝑥 −
[𝑘(1 − 𝜆) − 𝜀]𝐶1 

∗

𝑅
]. 

 

(7) 

Bank 𝑛𝑚 will not fail if and only if 𝜀𝐶1 
∗ ≤ 𝐶𝐵𝑛𝑚. Otherwise, it will default and all 

its depositors withdraw at date 1; it has to liquidate all the long assets and the liquidation 

value of the deposits is  𝐶̃𝑛𝑚 . Let  𝐶𝑛̅𝑚 denote the maximum liquidation value of 

bank 𝑛𝑚, which is the value of the deposits given that all the bank 𝑛𝑚’s neighbouring 

banks can meet bank 𝑛𝑚’s deposit withdrawal at value 𝐶1 
∗ . In what follows, we use 

the maximum liquidation value to investigate the necessary conditions for financial 

contagion.17 Once bank 𝑛𝑚 fails, contagion first propagates to all the periphery banks 

                                                 
16 For 𝐶2 = 𝐶1 

∗ , although late consumers are worse off, they are indifferent between withdrawing at 

date 1 and 2. For 𝐶1 > 𝐶2, the incentive constraint is violated and the late consumers are better off 

withdrawing at date 1. 
17

 The values of deposit are interdependent in the financial network. We follow Allen and Gale (2000) 

and Babus (2016) in studying only the maximum liquidation values. It would be much easier and more 

explanatory than finding the exact value of liquidation for each bank which depends on the entire network 

structure. Eisenberg and Noe (2001) propose a solution concept to characterize the existence and the 

uniqueness of a vector of payments that clears a network. Castiglionesi and Eboli (2018), on the other 
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in sector 𝑛 and other core banks. If other core banks’ capital buffers cannot satisfy the 

losses due to default of bank 𝑛𝑚, they will fail and contagion continues to propagate 

to the rest of the periphery banks. Proposition 2 presents the contagion thresholds for 

periphery banks in sector 𝑛, other core banks and the rest of the periphery banks.  

 

Proposition 2 Suppose bank  𝑛𝑚 fails in state  𝑆3 . The necessary condition for 

periphery bank 𝑛𝑗, ∀𝑗 ≠ 𝑚, not to default is 

𝛥 ∙ (𝐶1 
∗ − 𝐶̅𝑛𝑚) ≤ 𝐶𝐵𝑝; (8) 

the necessary condition for core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛, to survive from the contagion is 

2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ (𝐶1 

∗ −  𝐶𝑛̅𝑚) ≤ 𝐶𝐵𝐶 . 
(9) 

If core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛, fails, periphery banks 𝑖𝑗, ∀𝑖 ≠ 𝑛, 𝑗 ≠ 𝑚, are safe only if  

𝛥 ∙ (𝐶1 
∗ − 𝐶̅𝑚) ≤ 𝐶𝐵𝑃. (10) 

 

The proof of Proposition 2 and the derivations of 𝐶𝑛̅𝑚 and 𝐶̅𝑚 are in Appendix 

A.2 (Sui et al., 2019). The intuitions for the threshold conditions are the following. 

Consider condition (8). Upon failure of bank 𝑛𝑚, periphery banks in  𝑛 can only 

retrieve 𝐶𝑛̅𝑚 for each unit of the interbank deposit, where 𝐶1 
∗ ≥ 𝐶𝑛̅𝑚. The interbank 

deposit exchanges are  𝛥 for each periphery bank and core bank. The LHS thus 

measures the total Losses Due to Default (LDD) of core bank 𝑛𝑚 for each periphery 

bank in sector 𝑛. The RHS is the periphery bank’s capital buffer, where 

𝐶𝐵𝑃 = 𝑟 [𝑥 −
(1 − 𝜆)𝐶1 

∗

𝑅
], 

 

which is the available long asset it can liquidate without defaulting. Condition (8) shows 

that a periphery banks in sector 𝑛 will not default only if the capital buffer is greater 

than or equal to the LDD of bank 𝑛𝑚.  

                                                 
hand, use flow network theory to characterize the maximum flow of interbank payments and endogenize 

the liquidation value of the failed bank. 
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Condition (9) is the threshold condition for other core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛. Although 

periphery banks in sector  𝑛 and other core banks receive the same liquidation 

value  𝐶𝑛̅𝑚 , their amounts of deposits at  𝑛𝑚 are different: the amount exchanged 

between each pair of core banks is 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛. The LHS of condition (9) thus 

measures the LDD for core bank  𝑖𝑚, ∀ 𝑖 ≠ 𝑛 and the RHS is their capital buffer 

denoted by 𝐶𝐵𝐶. Since core banks are 𝑘 times larger than periphery banks, it is easy 

to show 𝐶𝐵𝐶 = 𝑘𝐶𝐵𝑃. 

Once threshold condition (9) is violated, all the core banks fail. Contagion 

continues to propagate to the rest of the periphery banks  𝑖𝑗, ∀𝑖 ≠ 𝑛, 𝑗 ≠ 𝑚 . The 

contagion threshold is now governed by (10), where the LHS is the LDD of core 

bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑛. Note that now the liquidation value of the deposit is 𝐶𝑚̅, which is 

the maximum liquidation value of core bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑛. We can verify that 𝐶𝑚̅ <

𝐶𝑛̅𝑚. Since all the core banks are effectively bankrupt, the maximum liquidation value 

of bank 𝑛𝑚, 𝐶𝑛̅𝑚, no longer holds and decreases to a lower value 𝐶̃𝑛𝑚. The maximum 

liquidation value of core bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑛 is then conditional on a lower liquidation 

value of bank 𝑛𝑚, hence 𝐶𝑚̅ < 𝐶𝑛̅𝑚. This also means that, conditional on the failure 

of all core banks, violation of threshold condition (8) ensures that condition (10) is 

violated; in other words, contagious failure of periphery banks in sector n implies 

contagious failure of all the periphery banks.   

 

5.2. Shock on a Periphery Bank    

Next consider state 𝑆4 . Periphery bank 11 is hit by an exogenous liquidity shock. 

Let 𝐶𝐵11 denote bank 11’s capital buffer. It is safe if and only if 𝜀𝐶1 
∗ ≤ 𝐶𝐵11, where 

𝐶𝐵11 = 𝑟 [𝑥 −
(1 − 𝜆 − 𝜀)𝐶1 

∗

𝑅
]. 

 



 

21 

 

Suppose bank 11 fails, then financial contagion first propagates to core bank 1𝑚. 

If bank 1𝑚’s capital buffer cannot meet the LDD of periphery bank 11, it then defaults 

and contagion continues to propagate to the rest of the periphery banks in sector 1 and 

other core banks. If other core banks suffer from contagious failure then the shock keeps 

on propagating to the rest of the periphery banks. Proposition 3 characterizes all the 

contagion thresholds due to initial failure of a periphery bank.  

 

Proposition 3 Suppose bank 11 fails in state S4. Core bank 1𝑚 is safe if and only if  

𝛥 ∙ (𝐶1 
∗ − 𝐶̅11) ≤ 𝐶𝐵𝐶. (11) 

If core bank 1𝑚 fails, periphery bank 1𝑗, ∀𝑗 ≠ 1, 𝑚, will not default only if  

𝛥 ∙ (𝐶1 
∗ − 𝐶̅1𝑚) ≤ 𝐶𝐵𝑃; (12) 

the necessary condition for core bank 𝑖𝑚, ∀𝑖 ≠ 1, to survive from the contagion is 

2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ (𝐶1 

∗ − 𝐶1̅𝑚) ≤ 𝐶𝐵𝐶 . 
(13) 

If core bank 𝑖𝑚, ∀𝑖 ≠ 1, fails, periphery banks 𝑖𝑗, ∀𝑖 ≠ 1, 𝑗 ≠ 𝑚, are safe only if  

𝛥 ∙ (𝐶1 
∗ − 𝐶̅𝑚′) ≤ 𝐶𝐵𝑃. (14) 

 

See Appendix A.3 (Sui et al., 2019) for detailed proof of Proposition 3. 𝐶1̅1 , 

𝐶1̅𝑚 and 𝐶̅𝑚′ represent the maximum liquidation value of periphery bank 11, core 

bank 1𝑚, and the rest of the core bank 𝑖𝑚, ∀𝑖 ≠ 1, respectively.18 The derivation of 

these results is similar to Proposition 2.  Note that the liquidation value of core 

bank 1𝑚, 𝐶1̅𝑚, is greater than 𝐶̅𝑚′ for the same reason as we discussed above. Thus, 

conditional on contagious failure of core banks 𝑖𝑚, ∀𝑖 ≠ 1, when threshold condition 

(12) fails to hold, it leads to default of all the periphery banks, i.e., threshold condition 

(14) is also violated.    

 

5.3. Discussion  

                                                 
18 Note that 𝐶1̅𝑚 ≠ 𝐶𝑛̅𝑚 and 𝐶𝑚̅′ ≠ 𝐶𝑚̅. See Appendix A.2 and A.3 (Sui et al., 2019) for the 

derivations.  
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In the core-periphery network, the heterogeneities in the amount of interbank deposit 

exchanges and bank sizes imply that different banks have different contagion thresholds. 

Proposition 2 and 3 show that contagion threshold depends on three factors: the 

liquidation value of interbank deposit, the amount of interbank deposits a bank has at 

the defaulting bank, and banks’ capital buffers. The more interbank deposits a bank has 

at defaulting bank the less likely the threshold condition holds; the greater the 

liquidation value of the defaulting bank the more likely that the capital buffer exceeds 

the LDD, and the greater the capital buffer, e.g. 𝐶𝐵𝐶, the more likely it can satisfy the 

threshold condition.  

This result is different from Allen and Gale (2000) in which the symmetric structure 

and identical bank size imply that the liquidation value decreases monotonically with 

the number of contagious failures. In other words, contagious failure of one bank leads 

to contagious failure of all banks in the interconnected network. By contrast, 

Proposition 2 and 3 show that, in the core-periphery network, contagious failure of one 

bank does not necessarily imply contagious failure of all banks. Formally, propositions 

2 and 3 can be summed up as follows: 

 

Corollary For |𝑘 + 𝑣 − 𝑢| ≤ 𝑛𝑘/2, contagious failure of more than one core bank 

implies the failure of all banks in the network; whereas, for  |𝑘 + 𝑣 − 𝑢| > 𝑛𝑘/2, 

contagious failure of core banks does not necessarily imply the failure of all banks.  

 

To elaborate on the corollary, compare condition (8) with (9) in Proposition 2. 

Although periphery banks 𝑛𝑗, ∀𝑗 ≠ 𝑚 and core banks 𝑖𝑚, ∀𝑖 ≠ 𝑛 receive the same 

liquidation value of interbank deposit from core bank 𝑛𝑚, their capital buffer and 

amount of interbank deposit exchange with bank  𝑛𝑚 are different. Since  𝐶𝐵𝐶 =

𝑘𝐶𝐵𝑃, we can rewrite condition (9) as  
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2|𝑘 + 𝑣 − 𝑢|

𝑛𝑘
𝛥 ∙ (𝐶1 

∗ −  𝐶𝑛̅𝑚) ≤ 𝐶𝐵𝑝, 

where  2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛𝑘 can be interpreted as the amount of interbank deposit 

exchange between core banks per unit of capital buffer. Thus, if the per unit amount of 

interbank deposit exchange between core banks is less than the amount of deposit 

exchange between periphery bank and core bank (𝛥), which effectively implies that 

|𝑘 + 𝑣 − 𝑢| < 𝑛𝑘/2, then contagious failure of other core banks 𝑖𝑚, ∀ 𝑖 ≠ 𝑛, must 

imply the failure of periphery banks in sector  𝑛, but the reverse relation does not 

necessarily hold; that is, contagious failure of periphery banks in sector 𝑛 does not 

necessarily imply contagious failure of other core banks. On the other hand, 

if |𝑘 + 𝑣 − 𝑢| > 𝑛𝑘/2, then contagious failure of periphery banks in sector 𝑛 must 

imply the failure of other core banks 𝑖𝑚, ∀ 𝑖 ≠ 𝑛, whereas contagious failure of other 

core bank does not necessarily imply the failure of periphery banks in sector 𝑛. If the 

per unit amount of interbank deposit exchange is the same between core banks, and 

between periphery and core bank, i.e. |𝑘 + 𝑣 − 𝑢| = 𝑛𝑘/2, then threshold conditions 

(8) and (9) are the same.  

Suppose condition (9) does not hold and all the core banks fail. Since the 

liquidation value 𝐶̅𝑚 is less than 𝐶̅𝑛𝑚, for |𝑘 + 𝑣 − 𝑢| ≤ 𝑛𝑘/2 condition (10) cannot 

hold and the rest of the periphery banks  𝑖𝑗, ∀𝑖 ≠ 𝑛, 𝑗 ≠ 𝑚  also fail; whereas 

for  |𝑘 + 𝑣 − 𝑢| > 𝑛𝑘/2 , it is not necessarily the case because although periphery 

banks  𝑖𝑗, ∀𝑖 ≠ 𝑛, 𝑗 ≠ 𝑚 , receive lower liquidation value, the amount of interbank 

claims it has at the core bank is less than the claims each core bank has at bank 𝑛𝑚. 

However, as we have shown above, violation of condition (8) ensures the failure all the 

rest of the periphery banks. It is easy to show that the same argument applies to the 

threshold conditions (12), (13) and (14) in Proposition 3.  
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The corollary also stands in contrast to the studies on targeted shocks under a fat-

tailed network structure, which stress the importance of core banks in the process of 

contagion. Albert et al. (2000) show that fat-tailed networks are vulnerable to a targeted 

attack on well-connected nodes. Their result is replicated by Gai et al. (2011) who 

explore the consequences of a targeted shock on financial contagion. They argue that, 

for concentrated or tiered financial networks, the failure of core banks almost surely 

implies the failure of periphery banks for a wide range of parameter values, because the 

core banks connect to a large part of the network which leads to severe contagion. We 

show that financial contagion is not determined only by the number of links. The 

contagion thresholds also depend crucially on the level of capital buffer in the core 

banks and the amount of interbank deposits on each link. These two factors are 

implicitly determined by the size of the core banks 𝑘, the number of core banks 𝑛, the 

number of periphery banks  𝑚, and the liquidity characteristics of periphery 

banks, 𝑣 and 𝑢, which determines the amount of interbank deposits each core bank 

needs to intermediate between sectors.19 In the following section, we study how these 

factors affect contagion thresholds, and hence the resilience of the network.  

 

6. Analysis of Network Heterogeneity 

We analyze the effects of network heterogeneity by varying, in turn, the size of core 

banks, the number of core banks, and the number of periphery banks. We study the 

                                                 
19

 To show how the liquidity characteristics of periphery banks affects contagion thresholds, consider 

the core-periphery network shown in Figure 1 as an example, where m = n = 4. Suppose 𝑘 = 2, 𝑣 =
0 and 𝑢 = 3, that is, in each sector, the core bank is twice the size of three periphery banks which are 

all negatively correlated with the core bank. The per unit interbank deposit exchange between core banks 

is then 𝛥/4 which is less than the per unit interbank deposit exchange between periphery bank and core 

bank (𝛥). The first part of the corollary holds. Now suppose  𝑘 = 2, 𝑣 = 3 and  𝑢 = 0, the three 

periphery banks are all positively correlated with the core bank in each sector . Then per unit interbank 

deposit exchange between core banks becomes 1.25𝛥, which is greater than 𝛥. In this case, contagious 

failure of core banks does not necessarily imply the failure of periphery banks. Section 6.3 discusses 

more on the liquidity characteristics of periphery banks.  
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changes in these parameters on the contagion thresholds such that that the changes do 

not affect the achievement of efficient allocation in Section 4. That is, when we vary 

the size of core banks, 𝑘, we change the size of the population in all large regions. It is 

easy to see that Pareto optimal allocation can still be achieved in the core-periphery 

network. In varying the number of core banks, we assume many efficient disconnected 

core-periphery networks with the same liquidity characteristics of individual banks. For 

example, two disconnected efficient core-periphery networks, as shown in Figure 2, can 

merge into a larger core-periphery network - as in Figure 1 - such that it achieves 

efficient allocation where each core bank now connects with greater number of core 

banks. When considering the number of periphery banks, we change the number of 

small regions in all sectors so that the decentralized allocation in the core-periphery 

network is Pareto optimal. 

 
 

 

6.1. Size of Core Banks 

Consider how the size of core bank relative to periphery bank (𝑘) affects the contagion 

thresholds in proposition 2 and 3. In state  𝑆3 , bank 𝑛𝑚 will not fail if and only 

if 𝜀𝐶1 
∗ ≤ 𝐶𝐵𝑛𝑚. Substituting out 𝐶𝐵𝑛𝑚 using (7) and (5) we have 
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 |𝑘 + 𝑣 − 𝑢|𝛥  𝛥 

Figure 2: The figure illustrates two disconnected interbank networks, each of which 

achieves efficient allocation by exchanging |𝑘 + 𝑣 − 𝑢|𝛥 interbank deposits between 

core banks, and 𝛥 between each periphery bank and core bank. 
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(𝑅 − 𝑟)𝜀𝐶1 
∗ ≤ 𝑟𝑘(1 − 𝜆)(𝐶2 

∗ − 𝐶1 
∗ ), (15) 

where the RHS is positive given the first-order condition (3). Condition (15) is more 

likely to hold as 𝑘 increases. This result is intuitive: large size of core banks means 

there are more late consumers sharing a given liquidity shock, hence core banks have 

more capital buffer to satisfy the excess liquidity demand. 

Suppose bank  𝑛𝑚 fails. The contagion threshold for periphery banks in 

sector 𝑛 is governed by condition (8). Substituting out 𝐶𝑛̅𝑚 in (8) using (A.1) and 

taking the derivative of the LHS with respect to k, we have 

𝛥 ∙
(1 − 𝜆)(𝐶1 

∗ −
𝑟
𝑅 𝐶2 

∗ ) [(𝑚 − 1) +
2|𝑣 − 𝑢|

𝑛 (𝑛 − 1)]

{𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛 (𝑛 − 1)] ∙ 𝛥}
2 . 

 

(16) 

The pecking order condition (6) implies that 𝐶1 
∗ > 𝑟𝐶2 

∗ /𝑅 in the numerator, so (16) 

is positive. The periphery banks in sector n are more likely to fail as the size of the core 

bank 𝑛𝑚 increases. In other words, the maximum liquidation value of 𝑛𝑚, 𝐶𝑛̅𝑚 , 

decreases with 𝑘.20 The intuition is the following. The greater size of core bank means 

it is less likely to fail. However, once it fails, there are more late consumers withdrawing 

at date 1. This means that the core bank has to liquidate more long assets at low 

liquidation value 𝑟. The greater amount of premature liquidation therefore decreases 

the liquidation value of interbank deposit per capita.  

Next consider condition (9). Although  𝐶𝑛̅𝑚 decreases with the size of core 

bank 𝑛𝑚, the capital buffer for other core banks also increases with k. The contagion 

threshold depends on the amount of interbank deposits exchanged between core banks. 

Suppose 𝑘 + 𝑣 < 𝑢, then as 𝑘 increases, liquidity risk-sharing weighs more within 

sectors than among sectors. It is more likely that |𝑘 + 𝑣 − 𝑢| < 𝑛𝑘/2, which means 

                                                 
20 It is easy to verify that this condition holds also for other maximum liquidation values of core bank, 

i.e., 𝐶1̅𝑚, 𝐶𝑚̅ and 𝐶𝑚̅′.   
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contagious failure of periphery banks in sector  𝑛 does not necessarily imply 

contagious failure of other core banks. However, since condition (8) is less likely to 

hold for large 𝑘, the failure of periphery banks in sector n decreases the liquidation 

value of 𝑛𝑚 to a lower value 𝐶̃𝑛𝑚. In this case, the size effect on contagion threshold 

(9) is ambiguous. Suppose  |𝑘 + 𝑣 − 𝑢| > 𝑛𝑘/2 and  𝑘 + 𝑣 > 𝑢 . As  𝑘 increases, 

interbank deposit exchange increases between core banks, which implies that condition 

(9) is less likely to hold relative to condition (8); the failure of core bank nm implies 

contagious failure of all the other core banks.   

As we have shown in Section 5, subject to the failure of all the core banks, violation 

of condition (8) means that condition (10) does not hold. Since (8) is less likely to hold 

when the size of the core banks is large, it then implies that, once all the core banks fail, 

the rest of the periphery banks must fail.  

Now consider state 𝑆4 . According to proposition 3, contagion threshold for 

bank 1𝑚 is subject to condition (11). Since 𝐶𝐵𝐶 = 𝑘𝐶𝐵𝑃, we can rewrite (11) as  

𝑅(𝐶1 
∗ − 𝐶̅11) ∙ 𝛥 ≤ 𝑟𝑘(1 − 𝜆)(𝐶2 

∗ − 𝐶1 
∗ ). (17) 

For large size of the core bank 1𝑚, condition (17) is more likely to hold for the same 

reason as discussed in condition (15). 

Suppose bank 1𝑚 defaults, it must be true that condition (11) is violated and the 

contagion threshold for the periphery banks in sector 1 is subject to condition (12). If 

failure of bank 1𝑚 leads to contagious failure of the rest of periphery banks in sector 

1, then the following condition must hold:  

(𝐶1 
∗ − 𝐶̅11) ≤ 𝑘(𝐶1 

∗ − 𝐶1̅𝑚), (18) 

where the LHS can be interpreted as the LDD per unit of interbank deposit for core 

bank 1𝑚, and the RHS, which is from condition (12), is the per unit LDD for each 

periphery bank in sector 1 while taking account of the capital buffer difference 𝐶𝐵𝐶 =
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𝑘𝐶𝐵𝑃. Since the maximum liquidation value 𝐶1̅𝑚 decreases with the size of the core 

bank for the same reason above, the failure of the large core bank implies contagious 

failure of all periphery banks in the same sector.  

Similar to the derivation of (18), if the failure of core bank 1𝑚 implies contagious 

failure of the rest of the core banks, then it must be that  

(𝐶1 
∗ − 𝐶̅11) ≤

2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝐶1 

∗ −  𝐶1̅𝑚). 
(19) 

Since 𝐶1̅𝑚 decreases with 𝑘, then, as 𝑘 increases, condition (19) is more likely to 

hold for 𝑘 + 𝑣 > 𝑢. For 𝑘 + 𝑣 < 𝑢, as 𝑘 increases, the amount of interbank deposit 

held between core banks decreases, condition (19) does not necessarily hold. However, 

as 𝑘 increases further, interbank deposit exchange increases again between core banks, 

and condition (19) is likely to hold. There is a possible non-monotonic effect in the 

contagion process between core banks with respect to 𝑘: for 𝑘 + 𝑣 < 𝑢, increasing the 

size of core banks decreases the interbank deposit cross holding between core banks. 

This implies that contagion could be contained within sector 1 and it may lead to greater 

resilience for the rest of the sectors in the network. However, when the size of core 

banks continues to increase, liquidity risk-sharing weighs more between sectors and it 

makes the network less resilient to contagion. For the same reason above, contagious 

failure of all core banks implies violation of condition (14), hence all the rest of 

periphery banks fail.  

The next proposition summarizes the analysis above:  

 

Proposition 4 Increasing the size of core banks increases their resilience to the initial 

liquidity shock and to the failure of periphery banks. For core banks that are large 

enough, the failure of a core bank leads to contagious failure of all periphery banks in 

the same sector; while contagious failure of one core bank leads to failure of all banks.   
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The proposition implies that the size effect of the core banks exhibits a robust-yet-

fragile property. That is, bigger size of the core banks makes the core-periphery network 

more resilient to liquidity shocks. However, once a large core bank defaults, the 

network is more likely to incur widespread contagion.      

 

6.2. Number of Core Banks  

We next examine how the increase in the number of core banks,  𝑛 , affects the 

contagion thresholds. It is easy to see that increasing  𝑛 increases the maximum 

liquidation value of core banks, 𝐶𝑛̅𝑚 and 𝐶1̅𝑚 (see A.1 and A.4) as well as decreases 

the amount of interbank deposit exchanges between core banks, which implies that 

conditions (9) and (13) are more likely to hold. Therefore, financial contagion is less 

likely to propagate from one sector to other sectors. This is simply due to diversification 

effect of liquidity risk-sharing. The increase of 𝐶𝑛̅𝑚 and 𝐶1̅𝑚 also has positive effect 

on the resilience of the periphery banks in sector n and 1, as conditions (8) and (12) are 

more likely to hold. Therefore, the large number of core banks makes the network more 

resilient not only to cross-sectoral contagion but also to contagion from core banks to 

periphery banks within each sector. It is more likely that |𝑘 + 𝑣 − 𝑢| < 𝑛𝑘/2 for large 

n and the first part of the corollary in section 5 holds, which again suggests the robust-

yet-fragile property of the network with respect to contagious failure of core banks.   

 

6.3. Number of Periphery Banks  

Consider the effect of increasing the number of periphery banks, 𝑚. Since, as we shall 

see below, the effect of varying one periphery bank at a time depends on the liquidity 

characteristic of the bank, in order to isolate the contagion effect of 𝑚, we first vary a 

pair of periphery banks which are negatively correlated. Condition (8), after substituting 

out 𝐶𝑛̅𝑚 using (A.1), becomes       
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𝛥 ∙ {
𝑘(1 − 𝜆) (𝐶1 

∗ −
𝑟
𝑅

𝐶2 
∗ )

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥

} ≤ 𝐶𝐵𝑃, 

 

(20) 

where 𝑚 appears only in the denominator of the LHS. The LDD for periphery bank in 

sector 𝑛 therefore decreases with the number of periphery banks. Since other core 

banks receive the same liquidation value of core bank  𝑛𝑚  as periphery banks in 

sector 𝑛, condition (9) is also more likely to hold.  

We next examine whether the contagious failure of the core bank would imply the 

failure of periphery banking as 𝑚 increases. We have shown that the failure of core 

bank 1𝑚 implies contagious failure of the periphery banks in sector 1 if condition (18) 

holds. Substituting out 𝐶̅11 and 𝐶1̅𝑚 from (18) using (A.3) and (A.4), we have 

(1 − 𝜆)(𝐶1 
∗ −

𝑟
𝑅 𝐶2 

∗ )

𝑘(1 + 𝛥)
≤

𝑘(1 − 𝜆) (𝐶1 
∗ −

𝑟
𝑅 𝐶2 

∗ ) + 𝛥(𝐶1 
∗ − 𝐶̃11)

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥

, 

 

(21) 

where again 𝑚 appears only in the denominator of the RHS. That is, when the number 

of the pair increases, condition (21) is less likely to hold. Or, equivalently, as the pair 

of periphery banks increases, the maximum liquidation value of core bank 1𝑚 is more 

likely to be greater than the maximum liquidation value of periphery bank 11. By the 

same argument, for |𝑘 + 𝑣 − 𝑢| > 𝑛𝑘/2, conditions (10) and (14) are also more likely 

to hold. Thus periphery banks are more resilient to the failure of core banks, which 

reflects the second part of the corollary. The result is intuitive: more periphery banks 

imply that there are more late consumers among the periphery banks sharing the risk of 

contagion from the core bank; this in turn increases the liquidation value of the core 

bank.  

Next, consider adding one periphery bank at a time. The effect depends on the 

number of the core banks and the characteristic of the additional bank. To illustrate, 

taking the derivative of (20) with respect to  𝑚 , for  𝑘 + 𝑣 > 𝑢 , it would appear 
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that 𝐶𝑛̅𝑚 increases with 𝑣, and the effect is opposite when increasing 𝑢. However, 

this is not necessarily the case. Consider two extreme cases: first, there are only two 

core banks (𝑛 = 2); second, the number of the core banks is large enough such that 

other core banks will not suffer from contagious failure of one of the core banks, that 

is, conditions (9) and (13) hold for any liquidation value.  

Suppose  𝑘 + 𝑣 > 𝑢 , and  𝑛 = 2 . When increasing 𝑣 ,  core banks have to 

intermediate for the “𝑣” periphery banks by exchanging more interbank deposits across 

sectors. Substituting out 𝐶𝑛̅𝑚 from condition (9) and taking the derivative of LHS with 

respect to 𝛥, we have   

𝑘(1 − 𝜆) (𝐶1 
∗ −

𝑟
𝑅 𝐶2 

∗ ) (𝑘 + 𝑣 − 𝑢)

[𝑘 + (𝑘 + 2𝑣) ∙ 𝛥]2
. 

 

 

The LDD increases with the amount of interbank deposit exchange between core banks, 

and condition (9) is less likely to hold. Since the liquidation value of core bank 𝑛𝑚 is 

more likely to decrease to 𝐶̃𝑛𝑚, condition (8) is less likely to hold. On the other hand, 

when increasing 𝑢, liquidity risk-sharing and intermediation are mostly done within 

sectors which decreases the level interbank deposit exchange among core banks. So 

both condition (8) and (9) are more likely to hold. However, the effect is non-monotonic 

when 𝑢 is large enough such that 𝑘 + 𝑣 < 𝑢. The same argument applies to condition 

(12) and (13).  

Now suppose 𝑘 + 𝑣 > 𝑢 and there are many core banks. The effect is the opposite. 

Since  𝑛 is large, increasing the level of cross-sector intermediation, i.e. the “𝑣 ” 

periphery banks, increases  𝐶𝑛̅𝑚 , whereas increasing  𝑢 decreases  𝐶𝑛̅𝑚 , because 

liquidity risk-sharing and intermediation concentrates more within sectors rather than 

spreading out evenly among the sectors. As 𝑢 continue to increase, conditions (8) and 
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(12) are then more likely to hold again. Thus, the non-monotonic effect is the opposite 

compared to the case when 𝑛 is small.  

We summarise the analysis in sections (6.2) and (6.3) in the following proposition: 

 

Proposition 5 Ceteris paribus, the resilience of the network increases with the number 

of core banks and the number of periphery banks, respectively. For small number of 

core banks, the network is more (less) resilient if an additional periphery bank 

decreases (increases) the level interbank intermediation between core banks; for 

number of core banks that is large enough, the opposite is true.    

 

This proposition, in a nutshell, highlights the impact of network heterogeneity 

associated with increasing the number of core banks and the number of periphery banks 

in a way that is comparable to the results of Acemoglu et al. (2015) and Morris (2000). 

They consider “ 𝛿 -connected” financial network and “ 𝛾 -cohesive” network, 

respectively, which are measures of the connectiveness among different “clusters” in 

the network. They show that in order to achieve resilience, the weight of links has to be 

unevenly distributed such that contagion is contained in one part and does not propagate 

to another part of the network. In our analysis, as n increases, the amount of interbank 

deposit exchange between core banks decreases, which is equivalent to having a 

firewall of weakly connected core banks. As a result, contagious failure does not easily 

propagate from one core bank to other core banks and to the periphery banks in other 

sectors. Similarly, when considering the number of periphery banks, if the addition of 

a periphery bank increases core banks’ intermediation activity within the sector, it also 

weakens the weight of links between core banks and makes the sector more resilient to 

cross-sector contagion. Moreover, when considering the resilience of the network as a 

whole, Proposition 5 suggests that if core banks are already susceptible to contagious 

failure from the default of one core bank, the network is more resilient when the 
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intermediations are mostly done within sectors; whereas, if 𝑛 is large enough such that 

diversification leads to strong resilience to cross-sector contagion, the network is more 

resilient when interbank intermediation is mostly among the core banks.   

 

7. Core-Periphery versus Complete Network 

This section compares the resilience of the core-periphery network with a complete 

network in which all large banks and small banks have nm-1 links, implying that they 

are all bilaterally linked. 21  We first show that Pareto-optimal allocation can be 

decentralized in the complete network. We then derive contagion thresholds by 

considering an initial default of one large bank and one small bank, respectively. 

Without loss of generality, suppose the economy is in state  𝑆1 in which large 

banks ℎ𝑚 face high proportion of early consumers 𝜔𝐻. The total number of banks 

which face high proportion of early withdrawal is 
𝑛

2
+

𝑛

2
(𝑣 + 𝑢) , where the first 

component of this expression (𝑛/2) is the total number of large banks experiencing a 

high proportion of early withdrawal; and the second component is the total number of 

small banks facing high proportion of early withdrawal, of which 𝑛𝑣/2 is the number 

of small banks from the sectors in which large banks are positively correlated with 

bank ℎ𝑚, and 𝑛𝑢/2 is the number of small banks from the sectors in which large 

banks are negatively correlated with bank  ℎ𝑚 .22  Since  𝑢 + 𝑣 = 𝑚 − 1 , the total 

number of banks which experience high proportion of early withdrawal is  𝑛𝑚/2; 

which is the same as the number of banks facing a low proportion of early consumers.  

                                                 
21 Since the main focus of this paper is on the analysis of the core-periphery interbank network, we 

compare the resilience only under the condition where 𝑘 is large, leaving a detailed analysis for future 

research.  
22 In sectors where large banks are negatively correlated with bank ℎ𝑚, there are 𝑢 small banks that 

are positively correlated with bank ℎ𝑚.    
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Let each small bank exchange 2𝛥/𝑛𝑚 amount of deposits with each bank; and let 

each large bank exchange  2𝛥/𝑛𝑚 amount of deposits with each small banks and 

exchange 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 with each large banks.23 The date 0 budget constraint for 

each small bank is 

𝑥 + 𝑦 +
2(𝑛𝑚 − 1)

𝑛𝑚
𝛥 = 1 +

2(𝑛𝑚 − 1)

𝑛𝑚
𝛥, 

where the LHS is the total assets consisting of long asset, short asset and total claims 

of  interbank deposits in  𝑛𝑚 − 1 banks, and RHS is the liabilities comprising 

consumers’ deposit and the total interbank deposit claims from 𝑛𝑚 − 1 banks. The 

budget constraint for each large bank is    

𝑘(𝑥 + 𝑦) + [
2(𝑚 − 1)

𝑚
+

2(𝑛 − 1)

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] 𝛥 = 𝑘 + [

2(𝑚 − 1)

𝑚
+

2(𝑛 − 1)

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] 𝛥. 

The term in the square brackets on the LHS is large banks’ total interbank lending which 

consists of  2𝛥/𝑛𝑚 to each small bank with the sum of  𝑛(𝑚 − 1) small banks, 

and 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 to each large bank with 𝑛 − 1 large banks in total. The term in 

the square brackets on the RHS is the total interbank borrowing from all the small banks 

and large banks. Given the cross holdings of interbank deposits at date 0, we have 

 

Proposition 6 Pareto-optimal allocation can be achieved in the complete network, in 

which each small bank exchanges 2𝛥/𝑛𝑚 interbank deposits with each of the other 

banks, and each large bank exchanges 2𝛥/𝑛𝑚 with each small bank and exchanges 

 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 with each of the other large banks.  

 

The detailed proof of Proposition 6 is in Appendix A.4 (Sui et al., 2019). The 

intuition is the following: All banks’ budget constraints at date 0 can be reduced to date 

                                                 
23 For each bank, the effective interbank deposit exchange is with negatively correlated banks. For each 

large bank the total effective interbank deposit exchange is with (𝑛𝑚 − 𝑛)/2 small banks which means 

there are still (𝑘 −
𝑚−1

𝑚
) 𝛥 liquidity shock needs to be shared with 𝑛 − 1 large banks. Hence, each 

large bank exchanges 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 with each of the other large banks.     
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0 feasibility constraint. For any small bank that faces 𝜔𝐻 at date 1, it withdraws 2𝛥/

𝑛𝑚 from all banks that faces 𝜔𝐿 or 𝜔𝐿
𝑚. The total liquidity received is 𝛥. For any 

small bank that faces 𝜔𝐿, it has to meet the deposit withdrawal of 2𝛥/𝑛𝑚 from each 

bank facing 𝜔𝐻, the total interbank deposit withdrawal is also 𝛥. Given equation (1) 

there is no excess liquidity demand for any small banks. For any large bank that 

faces  𝜔𝐻
𝑚 , it withdraws  2𝛥/𝑛𝑚 from each of the  (𝑛𝑚 − 𝑛)/2 small banks that 

face  𝜔𝐿 and withdraws  
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 from each of the  𝑛/2 large banks that 

faces 𝜔𝐿
𝑚; the total liquidity received is 𝑘𝛥. For any large bank that experiences 𝜔𝐿

𝑚, 

it has to meet the deposit withdrawal of  2𝛥/𝑛𝑚 from each small banks that 

faces  𝜔𝐿 and  
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 from each large banks that faces  𝜔𝐻

𝑚 . The total 

interbank deposit withdrawal is also 𝑘𝛥. Given (2), there is no excess liquidity demand 

for any large banks. The same argument holds at date 2. Each bank can thus 

offer (𝐶1 
∗ , 𝐶2 

∗ ) to its depositors. 

Next consider states 𝑆3 and 𝑆4. Since banks’ sizes are heterogenous, contagion 

thresholds for large banks and small banks are different. Let 𝐶𝑛̅𝑚
𝑐  and 𝐶̅11

𝑐
 denote the 

maximum liquidation values of bank  𝑛𝑚 and  11 under the complete network. 

Proposition 7 presents the contagion thresholds in state 𝑆3 and 𝑆4:  

 

Proposition 7 Suppose large bank 𝑛𝑚 fails in state 𝑆3. The necessary condition for 

small banks not to default is 

2

𝑛𝑚
𝛥 ∙ (𝐶1 

∗ − 𝐶𝑛̅𝑚
𝑐 ) ≤ 𝐶𝐵𝑃, 

(22) 

and the necessary condition for all the large banks 𝑖𝑚, ∀𝑖 ≠ 𝑛, to be safe is 

2

𝑛
(𝑘 −

𝑚 − 1

𝑚
) 𝛥 ∙ (𝐶1 

∗ −  𝐶𝑛̅𝑚
𝑐 ) ≤ 𝐶𝐵𝐶 . 

(23) 

Suppose bank 11 fails in state 𝑆4. The necessary condition for other small banks not to 

default is 



 

36 

 

2

𝑛𝑚
𝛥 ∙ (𝐶1 

∗ −  𝐶̅11
𝑐

) ≤ 𝐶𝐵𝑃, 
(24) 

and the necessary condition for all the large banks to survive is 

2

𝑛𝑚
𝛥 ∙ (𝐶1 

∗ −  𝐶̅11
𝑐

) ≤ 𝐶𝐵𝐶. 
(25) 

 

The proof of Proposition 7 is in Appendix A.5 (Sui et al., 2019). The intuition is similar 

to the ones in Proposition 3 and 4. (𝐶1 
∗ −  𝐶𝑛̅𝑚

𝑐 ) and (𝐶1 
∗ −  𝐶̅11

𝑐
) measure the LDD 

per unit of interbank deposit. The LHS of the four conditions thus measure the total 

amount of LDD during the defaults of bank 𝑛𝑚 and 11. Compare threshold condition 

(22) with (23). Since 𝐶𝐵𝐶 = 𝑘𝐶𝐵𝑃 and 𝑘 > 1, the LDD per unit of capital buffer for 

large banks is greater than for small banks,24 i.e., condition (22) is easier to hold than 

condition (23). Thus contagious failure of all large banks does not necessarily imply 

contagious failure of all small banks. In state 𝑆4 the LDD per unit of capital buffer is 

smaller for large banks than for small banks; violation of threshold condition (24) does 

not necessarily imply that condition (25) does not hold, whereas the opposite is true.  

 We now compare the resilience between the core-periphery and complete network 

in which bank 𝑛𝑚 fails. Taking the derivative of 𝐶𝑛̅𝑚
𝑐  (A.6) with respect to 𝑘, we 

have 

−

2(𝑚 − 1)
𝑛𝑚 (𝐶1 

∗ −
𝑟
𝑅 𝐶2 

∗ ) 𝛥

{𝑘 + [
2(𝑚 − 1)

𝑛𝑚 +
2(𝑛 − 1)

𝑛 𝑘] 𝛥}
2. 

 

(26) 

Since  𝐶1 
∗ > 𝑟𝐶2 

∗ /𝑅 , (26) is negative. The maximum liquidation values of 

bank 𝑛𝑚, 𝐶𝑛̅𝑚
𝑐 , decrease with 𝑘.25 Thus, as 𝑘 increases condition (22) and (23) are 

                                                 
24 If 𝑘 = 1, interbank deposit exchanges are the same between small banks and between large banks, 

i.e. 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 =

2

𝑛𝑚
𝛥. For 𝑘 > 1, we have (𝑘 −

𝑚−1

𝑚
) >

𝑘

𝑚
, that is deposit exchange per unit 

capital buffer between two large banks is greater than the deposit exchange between a large bank and a 

small bank.  
25 The intuition is the same as condition (16): once the large bank fails, there are more late consumers 

withdrawing from large bank hence more long assets being liquidated at low scrap value  𝑟, which 

decreases the liquidation value of interbank deposit per capita. 
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unlikely to hold. Suppose 𝑘 is large enough such that threshold (22) does not hold. 

This in turn implies that condition (23) does not hold, so all the banks in the complete 

network fail.  

Comparing condition (8) with (22), the interbank deposit exchange between 

periphery bank and core bank is 𝑛𝑚/2 times larger than the deposit exchange between 

small bank and large bank. Also, since condition (16) shows that 𝐶𝑛̅𝑚 also decreases 

with 𝑘. Thus, as 𝑘 increases, LDD in (8) is greater than in (22). The failure of all the 

banks in the complete network implies the failure of periphery banks in sector 𝑛.  

Next consider contagion thresholds for other core banks. The analysis in Section 

6.1 shows that condition (9) depends on the amount of interbank deposit exchange 

between core banks per unit of capital buffer. If |𝑘 + 𝑣 − 𝑢| > 𝑛𝑘/2and 𝑘 + 𝑣 > 𝑢, 

then as 𝑘 increases condition (9) is less likely to hold relative to condition (8). Thus, 

the failure of core bank 𝑛𝑚 implies contagious failure of all banks. However, if 𝑘 +

𝑣 < 𝑢, as 𝑘 increases, interbank deposit exchange between core banks per unit of 

capital buffer deceases; liquidity risk-sharing weighs more within sectors than among 

sectors. We then have |𝑘 + 𝑣 − 𝑢| < 𝑛𝑘/2 . In this case, contagious failure of 

periphery banks in sector 𝑛 does not necessarily imply contagious failure of other core 

banks. Proposition 8 summarizes the analysis above  

 

Proposition 8 Consider state 𝑆3 in which bank 𝑛𝑚 fails. For 𝑘 that is large enough 

such that threshold condition (22) does not hold, the core-periphery network is more 

resilient than the complete network if 𝑘 + 𝑣 < 𝑢.  

 

 Next consider the failure of bank  11 in state  𝑆4 . Under the core-periphery 

network, threshold condition (11) shows that LDD per unit capital buffer decreases 

with 𝑘, which means (11) is more likely to hold. This is also true for the threshold 

condition (25) for large banks in the complete network. The threshold condition for 
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small bank (24), however, is independent of the size of large banks. This implies that, 

for 𝑘 that is large enough such that contagion thresholds for large banks in both the 

core-periphery bank and the complete network are satisfied, it is still possible that all 

small banks in the complete network suffer from contagious failure. We then have 

 

Proposition 9 Consider state 𝑆4 in which bank 11 fails. For 𝑘 that is large enough 

such that threshold condition (11) holds, the core-periphery network is more resilient 

than the complete network.  

 

Propositions (8) and (9) accord with the findings of Castiglionesi and Eboli (2018). 

They show that contagion thresholds in the star network are strictly greater than the 

thresholds in the complete network, in all cases. That is because the ratio of consumer 

deposits to interbank deposits in star is less than the ratio of the banks in the complete 

network; intuitively, the larger the ratio the smaller the flow of losses that propagates 

within the network. Their argument also applies in the core-periphery network which 

can be seen as a hybrid structure with both star and complete structures. Large banks 

form a complete network between themselves, and each of them forms a star network 

with small banks in their sector. If 𝑘 + 𝑣 < 𝑢, there are more small banks negatively 

correlated with the large bank and other small banks in each sector. As 𝑘 increases, 

liquidity risk-sharing can be done mostly within sectors; interbank deposit exchange 

between core banks hence decreases, which implies that the ratio of consumer deposits 

to interbank deposits of all the core banks decreases. In this case the core-periphery 

network is more resilient than the complete network. If 𝑘 + 𝑣 > 𝑢, this ratio for core 

banks becomes greater in order to achieve efficient allocation; the core-periphery 

network then becomes relatively less resilient. 
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8. Conclusion 

This paper has examined financial contagion in a stylized core-periphery interbank 

network where large core banks intermediate liquidity between themselves and for their 

directly connected smaller periphery banks. We contribute to the theoretical literature 

on interbank networks by examining the effects of heterogeneity associated with the 

number of banks, the size of core banks, and the weight of interbank linkages within a 

single core-periphery structure. Our analysis involves deriving conditions under which 

direct linkages in the core-periphery network exhibits financial contagion from liquidity 

shocks to the core and periphery banks in turn. Furthermore, we study the contagion 

effects of liquidity intermediation both across sectors where core banks operate, and 

within sectors where core banks intermediate liquidity for the periphery banks. Within 

this network structure, we scrutinize the conditions under which heterogeneity 

associated with size and number of banks dampens or fuels contagion. Finally, we 

compare the resilience of the core-periphery network and the complete network to 

contagion.  

Our overall findings are that the network resilience depends on the size of core 

banks, the number of core banks and the number of periphery banks. We first show the 

failure of core banks does not necessarily imply contagious failure of periphery banks. 

We then show that the resilience of the network increases with the number of core banks, 

as well as with the number of periphery banks while holding the amount of cross-sector 

liquidity risk-sharing constant. If an additional periphery bank increases the core banks’ 

intermediation activity within the sector, it makes the network more resilient to 

financial contagion; whereas if the additional periphery bank increases intermediation 

among sectors then the financial contagion is more likely to propagate to the rest of the 

network. The effect is the opposite when there are more core banks in the network. 
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Finally, we show that, under certain conditions, the core-periphery network is more 

resilient than the complete network with increased size of core banks. However, the 

relative resiliency of the two networks depends on the amount of interbank deposits 

held by the core banks.         

Our analysis has policy implications for the propagation of shocks among banks 

that are deemed to be “too big to fail” and “too interconnected to fail”. Following the 

global financial crisis, these banks are perceived to pose substantial risk and there have 

been concerns about reducing their size and connectivity to ensure stability and 

soundness of the financial system (Volcker, 2012). This paper shows that large size of 

the core banks and the dense interconnectedness among them could in fact act as a 

buffer to prevent contagion not only within but across sectors, thereby increasing the 

resilience of the whole financial network. The stability of the network depends not only 

on the number of interbank connections but also on the weight of the interbank linkages. 

We show that “too interconnected to fail” is a concern only in the case where small 

number of core banks intermediate large amounts of interbank deposits among them.    

The present paper has studied financial contagion in a given core-periphery 

network. We believe that an analytic study of the trade-off between the risk of contagion 

and the benefit of liquidity risk-sharing within a core-periphery network is an important 

area for further research, along with a detailed analysis of the resilience to contagion of 

the core-periphery network vis-à-vis the complete network based on considerations 

other than the increased size of core banks that we conducted in this study.  
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Appendix  

A.1. Proof of Proposition 1  

Without loss of generality, suppose the economy is in state S1. In each sector ℎ, there 

are v periphery banks each having 𝜔𝐻 amount of deposit withdrawal and u periphery 

banks each facing 𝜔𝐿 amount of early consumer. Each core bank ℎ𝑚 has 𝜔𝐻
𝑚 early 

consumers. In each sector 𝑙, there are v number of periphery banks facing 𝜔𝐿 and u 

number of periphery banks facing 𝜔𝐻 amount of early consumer. Each core bank 𝑙𝑚 

has 𝜔𝐿
𝑚 early consumers. All deposits are valued at 𝐶1. 

First consider periphery banks that experience 𝜔𝐻. Let each of them withdraw 𝛥 

deposits from the core bank. The budget constraint is then 

𝜔𝐻𝐶1 = 𝑦 + Δ𝐶1. 

Each periphery bank has y units of return from short asset. Since 𝜔𝐻 = 𝜆 + 𝛥, the 

budget constraint can be reduced to the planner’s feasibility condition at date 1. Next 

consider periphery banks facing  𝜔𝐿 amount of early consumer, let core bank 

liquidate  𝛥 interbank deposits from each of them. The total liquidity demand is 

then (𝜔𝐿 + 𝛥). Its budget constraint is then 

(𝜔𝐿 + 𝛥)𝐶1 = 𝑦. 

Since   𝜔𝐿 = 𝜆 − 𝛥 , the constraint is again the same as the planner’s feasibility 

condition.  

Now consider core banks in the case where 𝑘 + 𝑣 > 𝑢. For bank ℎ𝑚, the liquidity 

demand is 𝜔𝐻
𝑚 from the early consumers, 𝛥 from each periphery bank having 𝜔𝐻, 

and 2(𝑘 + 𝑣 − 𝑢)∆/𝑛 from other core bank in ℎ𝑚, ∀ℎ ≠ ℎ. Each bank ℎ𝑚 has 𝑘𝑦 

units of return from short asset, liquidates 𝛥 interbank deposits from each periphery 

bank experiencing  𝜔𝐿 , and withdraws  2(𝑘 + 𝑣 − 𝑢)𝛥/𝑛 deposits from each core 

bank 𝑖𝑚, ∀𝑖 ≠ 𝑖. The budget constraint for core bank ℎ𝑚 is 
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{𝜔𝐻
𝑚 + [𝑣 +

2(𝑘 + 𝑣 − 𝑢)

𝑛
(
𝑛

2
− 1)] 𝛥} ∙ 𝐶1 = 𝑘𝑦 + {𝑢 +

2(𝑘 + 𝑣 − 𝑢)

𝑛
(𝑛 − 1)} 𝛥 ∙ 𝐶1. 

Since 𝜔𝐻
𝑚 = 𝑘(𝛥 + 𝜆), the equation also can be simplified to the central planner’s 

feasibility condition at date 1. Bank 𝑙𝑚 each faces 𝜔𝐿
𝑚 early consumers, 𝛥 amount 

of deposit withdrawal from periphery bank having  𝜔𝐻 , and  2(𝑘 + 𝑣 − 𝑢)𝛥/

𝑛 deposit demand from each bank ℎ𝑚. The supply of the liquidity is the return from 

short asset,  𝑘𝑦 , and the claims of  𝛥 deposits from each periphery bank 

having 𝜔𝐿 early consumers. The budget constraint is 

{𝜔𝐿
𝑚 + [𝑢 +

2(𝑘 + 𝑣 − 𝑢)

𝑛
∙

𝑛

2
] 𝛥} ∙ 𝐶1 = 𝑘𝑦 + 𝑣𝛥 ∙ 𝐶1, 

Since 𝜔𝐿
𝑚 = 𝑘(𝜆 − ∆), the budget constraint is the same as the planner’s feasibility 

condition at date 1.  

We next consider the case where  𝑘 + 𝑣 < 𝑢 . The budget constraint for core 

bank 𝑙𝑚 becomes 

{𝜔𝐿
𝑚 + [𝑢 +

2(𝑢 − 𝑘 − 𝑣)

𝑛
∙ (

𝑛

2
− 1)] 𝛥} ∙ 𝐶1 = 𝑘𝑦 + {𝑣 +

2(𝑢 − 𝑘 − 𝑣)

𝑛
∙ (𝑛 − 1)} 𝛥 ∙ 𝐶1. 

Since there are more periphery banks facing 𝜔𝐻 early consumers, bank 𝑙𝑚 liquidates 

all the interbank deposits from other core bank 𝑖𝑚, ∀𝑖 ≠ 𝑖. Other bank 𝑙𝑚, ∀𝑙 ≠ 𝑙 also 

liquidates its deposit at  𝑙𝑚 . Core bank  ℎ𝑚 faces  2(𝑢 − 𝑘 − 𝑣)𝛥/𝑛 deposit 

withdrawal from each bank 𝑙𝑚. The budget constraint for bank ℎ𝑚 is 

{𝜔𝐻
𝑚 + [𝑣 +

2(𝑢 − 𝑘 − 𝑣)

𝑛
∙

𝑛

2
] 𝛥} ∙ 𝐶1 = 𝑘𝑦 + 𝑢𝛥 ∙ 𝐶1, 

The constraints for 𝑙𝑚 and ℎ𝑚 can be reduced to the planner’s feasibility condition. 

All banks’ budget constraints at date 1 are thus the same as the planner’s feasibility 

constraint.  

At date 2, there are v periphery banks facing (1 − 𝜔𝐻) amount of deposit 

withdrawal from late consumers and u periphery banks facing (1 − 𝜔𝐿) amount of 

late consumer, in each sector ℎ. Each core bank ℎ𝑚 has (1 − 𝜔𝐻
𝑚) early consumers. 
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In each sector 𝑙, there are v number of periphery banks having liquidity demand (1 −

𝜔𝐿) and u number of periphery banks facing  (1 − 𝜔𝐻) . Each core bank lm has 

(1 − 𝜔𝐿
𝑚) late consumers. All date 2 deposits are valued at 𝐶2. 

Each periphery bank facing  (1 − 𝜔𝐿) late consumers liquidates  𝛥 interbank 

deposits from the core bank, and each periphery bank facing (1 − 𝜔𝐻) late consumers 

meets the deposit withdrawal of 𝛥 by the core bank. The budget constraints for the 

two types of periphery bank are 

(1 − 𝜔𝐿)𝐶2 = 𝑅𝑥 + 𝛥𝐶2 
and 

 

[(1 − 𝜔𝐻) + 𝛥]𝐶2 = 𝑅𝑥, 

respectively. Each periphery bank has 𝑅𝑥 units of consumption goods from the return 

of the long asset. Since  𝜔𝐿 = 𝜆 − 𝛥 and  𝜔𝐻 = 𝜆 + 𝛥 , the budget constraints for 

periphery banks are hence the same as the planner’s feasibility condition at date 2.  

Consider the case where 𝑘 + 𝑣 > 𝑢. For each core bank ℎ𝑚, the total liquidity 

demand consists of (𝑘 − 𝜔𝐻
𝑚) from the late consumers deposit withdrawal, 𝛥 deposit 

withdrawal from each periphery bank having  (1 − 𝜔𝐿) , and  2(𝑘 + 𝑣 − 𝑢)∆/

𝑛 deposit withdrawal from each core bank in 𝑙𝑚. Each bank ℎ𝑚 has 𝑘𝑅𝑥 return of 

the long asset, and liquidates  𝛥 interbank deposits from each periphery bank 

experiencing (1 − 𝜔𝐻). The budget constraint for bank ℎ𝑚 is 

{(𝑘 − 𝜔𝐻
𝑚) + [𝑢 +

2(𝑘 + 𝑣 − 𝑢)

𝑛
∙

𝑛

2
] 𝛥} ∙ 𝐶2 = 𝑘𝑅𝑥 + 𝑣𝛥 ∙ 𝐶2 

Core bank  𝑙𝑚 each faces  (1 − 𝜔𝐿
𝑚) late consumers and 𝛥 amount of deposit 

withdrawal from periphery bank having (1 − 𝜔𝐿). The total supply of the liquidity 

consists of the return from the long asset  𝑘𝑅𝑥 , claims of  𝛥 deposits from each 

periphery bank having (1 − 𝜔𝐻) late consumers, and 2(𝑘 + 𝑣 − 𝑢)𝛥/𝑛 interbank 

deposit withdrawal from each bank ℎ𝑚. The budget constraint is 
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[(𝑘 − 𝜔𝐿
𝑚) + 𝑣𝛥] ∙ 𝐶2 = 𝑘𝑅𝑥 + [𝑢 +

2(𝑘 + 𝑣 − 𝑢)

𝑛
∙

𝑛

2
] 𝛥 ∙ 𝐶2, 

Since  𝜔𝐻
𝑚 = 𝑘(𝛥 + 𝜆) and  𝜔𝐿

𝑚 = 𝑘(𝜆 − ∆) , the budget constraints for core 

bank ℎ𝑚 and 𝑙𝑚 are both reduced to planner’s feasibility condition at date 2.  

Finally consider the case where 𝑘 + 𝑣 < 𝑢 . There are more late consumers in 

sector ℎ than sector 𝑙. Core bank ℎ𝑚 liquidates all the interbank deposits from core 

bank 𝑙𝑚.  The budget constraint for bank ℎ𝑚 becomes 

[(1 − 𝜔𝐻
𝑚) + 𝑢𝛥] ∙ 𝐶2 = 𝑘𝑅𝑥 + {𝑣 +

2(𝑢 − 𝑘 − 𝑣)

𝑛
∙

𝑛

2
} 𝛥 ∙ 𝐶2. 

Core bank 𝑙𝑚 faces 2(𝑢 − 𝑘 − 𝑣)𝛥/𝑛 deposit withdrawal from each core bank ℎ𝑚. 

The budget constraint for core bank ℎ𝑚 is 

{(1 − 𝜔𝐿
𝑚) + [𝑣 +

2(𝑢 − 𝑘 − 𝑣)

𝑛
∙

𝑛

2
] 𝛥} ∙ 𝐶2 = 𝑘𝑦 + 𝑢𝛥 ∙ 𝐶2. 

The simplification of the above two budget constraints is again the planner’s feasibility 

condition at date 2. The same argument applies to state S2. The deposit contract in 

competitive banking system with core-periphery financial network hence replicates the 

central planner’s optimal allocation.  

 

A.2. Proof of Proposition 2 

Suppose bank 𝑛𝑚 fails in state S3, then all the depositors in bank 𝑛𝑚 withdraw at 

date 1. The demand for deposits consists of 𝑘 from its regional consumers, 𝛥 from 

each periphery bank in sector n, and 2|𝑘 + 𝑣 − 𝑢|∆/𝑛 from each core bank 𝑖𝑚, ∀𝑖 ≠

𝑛. The total value of deposits is  

{𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥} 𝐶̃𝑛𝑚. 

The liquidity supply of bank 𝑛𝑚 consists of 𝑘𝑦 units of short asset, 𝑘𝑥 units of long 

asset valued at r, 𝛥 interbank deposits from periphery bank 𝑛𝑗, ∀𝑗 ≠ 𝑚, valued at 𝐶̃𝑛𝑗, 

and 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 from core bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑛, valued at 𝐶̃𝑖𝑚. The sum is 
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𝑘(𝑦 + 𝑟𝑥) + 𝛥 ∙ ∑ 𝐶̃𝑛𝑗

 𝑛𝑗,𝑗≠𝑚

+
2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ ∑ 𝐶̃𝑖𝑚

 𝑖𝑚,𝑖≠𝑛

. 
 

The liquidation value of bank 𝑛𝑚’s deposits is determined by the clearing condition 

𝐶̃𝑛𝑚 =
𝑘(𝑦 + 𝑟𝑥) + 𝛥 ∙ ∑ 𝐶̃𝑛𝑗 𝑛𝑗,𝑗≠𝑚 +

2|𝑘 + 𝑣 − 𝑢|
𝑛 𝛥 ∙ ∑ 𝐶̃𝑖𝑚 𝑖𝑚,𝑖≠𝑛

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛 (𝑛 − 1)] ∙ 𝛥
. 

If all the other banks are safe, 𝐶̃𝑛𝑚 becomes 

𝐶𝑛̅𝑚 =
𝑘(𝑦 + 𝑟𝑥) + [(𝑚 − 1) +

2|𝑘 + 𝑣 − 𝑢|
𝑛 (𝑛 − 1)] ∙ 𝛥𝐶1 

∗

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛 (𝑛 − 1)] ∙ 𝛥
, 

 

(A.1) 

where 𝐶𝑛̅𝑚 is the maximum liquidation value of bank 𝑛𝑚.  

The necessary condition for periphery bank 𝑛𝑗, ∀𝑗 ≠ 𝑚, not to default is 

(𝜆 + 𝛥)𝐶1 
∗ ≤ 𝑦 + 𝛥𝐶𝑛̅𝑚 + 𝐶𝐵𝑃 

where the LHS is the deposit withdrawal from the early consumers and bank 𝑛𝑚, and 

the RHS is the total liquidity available without causing default which comprises short 

asset y, claims of deposit  𝛥 from bank  𝑛𝑚 valued at  𝐶𝑛̅𝑚 , and the capital 

buffer 𝐶𝐵𝑃. Using (4), the inequality can be simplified as 

𝛥 ∙ (𝐶1 
∗ − 𝐶𝑛̅𝑚) ≤ 𝐶𝐵𝑃. 

Next consider the contagion threshold for core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛. The necessary 

condition for core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛, to survive from the contagion is 

(𝑘𝜆 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] 𝛥) ∙ 𝐶1 

∗  

≤ 𝑘𝑦 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 2)] 𝛥 ∙ 𝐶1 

∗ +
2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ 𝐶𝑛̅𝑚

+ 𝐶𝐵𝐶 , 

where the LHS is the deposit withdrawal from the early consumers 𝑘𝜆, 𝛥 is interbank 

deposit withdrawal from each periphery bank in the same sector and 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 

withdrawal from each core bank. The RHS is the total liquidity available without 
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causing bankruptcy which comprises short asset 𝑘𝑦, claims of deposit 𝛥 from each 

periphery bank valued at  𝐶1 
∗ , 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 claims each from  (𝑛 − 2) core 

banks, also valued at 𝐶1 
∗ , 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 from core bank 𝑛𝑚 which is valued 

at 𝐶𝑛̅𝑚 , and the capital buffer denoted by 𝐶𝐵𝐶 . Using (5), the above inequality is 

reduced to 

2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ (𝐶1 

∗ −  𝐶𝑛̅𝑚) ≤ 𝐶𝐵𝐶 . 

Suppose the above condition does not hold, then all the core banks fail and 

contagion continues to propagate to the rest of the periphery banks in the network. 

Consider the maximum liquidation value for the core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛, denoted by 𝐶𝑚̅. 

The total value of deposits is  

{𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥} 𝐶𝑚̅. 

The liquidity supply of bank 𝑛𝑚 consists of 𝑘𝑦 units of short asset, 𝑘𝑥 units of long 

asset valued at r, 𝛥 interbank deposits from periphery bank 𝑛𝑗, ∀𝑗 ≠ 𝑚, valued at 𝐶1 
∗ , 

and 2|𝑘 + 𝑣 − 𝑢|(𝑛 − 2)𝛥/𝑛 from core bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑖, 𝑛, valued also at 𝐶̅𝑚. Since 

all the core banks are effectively bankrupt, the maximum liquidation value of 

bank 𝑛𝑚 no longer holds and the liquidation value decreases to a lower value 𝐶̃𝑛𝑚. 

The sum is 

𝑘(𝑦 + 𝑟𝑥) + (𝑚 − 1)𝛥𝐶1 
∗ +

2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 2) ∙ 𝛥𝐶𝑚̅ +

2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 𝐶̃𝑛𝑚. 

We then have 

𝐶̅𝑚 =
𝑘(𝑦 + 𝑟𝑥) + (𝑚 − 1)𝛥𝐶1 

∗ +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 2) ∙ 𝛥𝐶̅𝑚 +

2|𝑘 + 𝑣 − 𝑢|
𝑛 𝛥 𝐶̃𝑛𝑚

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛 (𝑛 − 1)] ∙ 𝛥
. 

 

(A.2) 

Periphery banks 𝑖𝑗, ∀𝑖 ≠ 𝑛, 𝑗 ≠ 𝑚, are safe only if  

(𝜆 + 𝛥)𝐶1 
∗ ≤ 𝑦 + 𝛥𝐶𝑚̅ + 𝐶𝐵𝑃 

which can be reduced to 
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𝛥 ∙ (𝐶1 
∗ − 𝐶̅𝑚) ≤ 𝐶𝐵𝑃 

Comparing (A.2) with (A.1) it is easy to see that 𝐶𝑚̅ < 𝐶̅𝑛𝑚.  

 

A.3. Proof of Proposition 3    

Suppose bank 11 defaults in state S4, The demand for deposits consists of 1 from its 

regional consumers, 𝛥 from core bank 1𝑚. The total value of deposits is 

(1 + 𝛥)𝐶̃11, 

The liquidity supply of bank 11 consists of 𝑦 units of short asset, 𝑥 units of long 

asset valued at r, and 𝛥 interbank deposits from core bank 1𝑚, valued at 𝐶̃1𝑚. The 

sum is 

𝑦 + 𝑟𝑥 + 𝛥𝐶̃1𝑚. 

The maximum liquidation value of bank 11 is then determined by  

𝐶1̅1 =
𝑦 + 𝑟𝑥 + 𝛥𝐶1 

∗

1 + 𝛥
, 

(A.3) 

Core bank 1𝑚 is safe if and only if  

(𝑘𝜆 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] 𝛥) ∙ 𝐶1 

∗  

≤ 𝑘𝑦 + [(𝑚 − 2) +
2|𝑘+𝑣−𝑢|

𝑛
(𝑛 − 1)] 𝛥 ∙ 𝐶1 

∗ + 𝛥𝐶1̅1 + 𝐶𝐵𝐶. 

Rearranging the inequality and applying (5), the inequality becomes 

𝛥 ∙ (𝐶1 
∗ − 𝐶̅11) ≤ 𝐶𝐵𝐶. 

Suppose this condition fails to hold, then contagion will propagate to the rest of 

periphery banks in sector 1 and other core banks. Consider the maximum liquidation 

value of bank 1𝑚, denoted by 𝐶1̅𝑚. Bank 1𝑚’s total liquidity demand is  

{𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥} ∙ 𝐶1̅𝑚. 

The liquidity supply of bank 𝑛𝑚 consists of 𝑘𝑦 units of short asset, 𝑘𝑥 units of long 

asset valued at r,  𝛥 interbank deposits from each periphery bank  𝑛𝑗, ∀𝑗 ≠ 1, 𝑚 , 

valued at 𝐶1 
∗ , and 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 from each core bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑖, 𝑛, valued also 
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at   𝐶1 
∗ . Since core bank  1𝑚  defaults, the maximum liquidation value of bank 

11 decreases to a lower value 𝐶̃11. The total claims from bank 11 is then 𝛥 𝐶̃11. The 

sum of liquidity supply is then  

𝑘(𝑦 + 𝑟𝑥) + [(𝑚 − 2) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥𝐶1 

∗ + 𝛥 𝐶̃11 

We then have 

𝐶1̅𝑚 =
𝑘(𝑦 + 𝑟𝑥) + [(𝑚 − 2) +

2|𝑘 + 𝑣 − 𝑢|
𝑛 (𝑛 − 1)] ∙ 𝛥𝐶1 

∗ + 𝛥 𝐶̃11

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛 (𝑛 − 1)] ∙ 𝛥

. 

 

(A.4) 

First consider periphery bank 1𝑗, ∀𝑗 ≠ 1, 𝑚. It is safe only if 

(𝜆 + 𝛥)𝐶1 
∗ ≤ 𝑦 + 𝛥𝐶1̅𝑚 + 𝐶𝐵𝑃 

which can be simplified as 

𝛥 ∙ (𝐶1 
∗ − 𝐶̅1𝑚) ≤ 𝐶𝐵𝑃 

Other core banks 𝑖𝑚, ∀𝑖 ≠ 1, will not fail only if 

(𝑘𝜆 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] 𝛥) ∙ 𝐶1 

∗  

≤ 𝑘𝑦 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 2)] 𝛥 ∙ 𝐶1 

∗ +
2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ 𝐶1̅𝑚 + 𝐶𝐵𝐶 

which can be reduced to 

2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 ∙ (𝐶1 

∗ −  𝐶1̅𝑚) ≤ 𝐶𝐵𝐶 . 

Suppose this condition does not hold, then the maximum liquidation value for the core 

bank 𝑖𝑚, ∀𝑖 ≠ 1, is denoted by 𝐶𝑚̅′. The total liquidity demand is  

{𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ Δ} 𝐶̅𝑚′. 

The liquidity supply of bank 𝑛𝑚 consists of 𝑘𝑦 units of short asset, 𝑘𝑥 units of long 

asset valued at r, 𝛥 interbank deposits from periphery bank 𝑛𝑗, ∀𝑗 ≠ 𝑚, valued at 𝐶1 
∗ , 

and 2|𝑘 + 𝑣 − 𝑢|𝛥/𝑛 from core bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑖, 𝑛, valued also at 𝐶̅𝑚′. Since all the 

core banks are effectively bankrupt, the maximum liquidation value of bank 1𝑚 no 

longer holds and the liquidation value decreases to a lower value 𝐶̃1𝑚. The sum is 
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𝑘(𝑦 + 𝑟𝑥) + (𝑚 − 1)𝛥𝐶1 
∗ +

2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 2) ∙ 𝛥𝐶̅𝑚′ +

2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 𝐶1𝑚. 

The maximum liquidation value of the core bank 𝑖𝑚, 𝑖 ≠ 1, is determined by 

𝐶̅𝑚′

=
𝑘(𝑦 + 𝑟𝑥) + (𝑚 − 1)𝛥𝐶1 +

2|𝑘 + 𝑣 − 𝑢|
𝑛

(𝑛 − 2) ∙ 𝛥𝐶̅𝑚′ +
2|𝑘 + 𝑣 − 𝑢|

𝑛
𝛥 𝐶̃1𝑚

𝑘 + [(𝑚 − 1) +
2|𝑘 + 𝑣 − 𝑢|

𝑛
(𝑛 − 1)] ∙ 𝛥

 

 

(A.5) 

Periphery bank 𝑖𝑗, ∀𝑖 ≠ 1, 𝑗 ≠ 𝑚, is safe only if  

(𝜆 + 𝛥)𝐶1 
∗ ≤ 𝑦 + 𝛥𝐶𝑚̅′ + 𝐶𝐵𝑃, 

which can be reduce to 

𝛥 ∙ (𝐶1 
∗ − 𝐶𝑚̅′) ≤ 𝐶𝐵𝑃. 

Comparing (A.4) with (A.5), we have 𝐶𝑚̅′ < 𝐶1̅𝑚.  

 

A.4. Proof of Proposition 6: Decentralized Allocation in Complete Network 

First consider small banks that experience 𝜔𝐻 . Let each of them withdraw all the 

interbank deposits from the other banks. The date 1 budget constraint is then  

[𝜔𝐻 +
𝑛𝑚 − 2

𝑛𝑚
𝛥] ∙ 𝐶1 = 1 +

2(𝑛𝑚 − 1)

𝑛𝑚
𝛥 ∙ 𝐶1, 

where (𝑛𝑚 − 2)𝛥/𝑛𝑚  is the total interbank deposit demand from other  (𝑛𝑚 −

2)/𝑛𝑚 banks that also faces 𝜔𝐻. Each small bank has y units of return from short 

asset. Since  𝜔𝐻 = 𝜆 + 𝛥 , the budget constraint can be reduced to the planner’s 

feasibility condition at date 1. Next consider small banks facing 𝜔𝐿. Let each of them 

withdraw the interbank deposits from other banks which also face 𝜔𝐿 and keep the 

interbank claims from banks facing 𝜔𝐻. Its budget constraint is then 

[𝜔𝐿 +
2(𝑛𝑚 − 1)

𝑛𝑚
𝛥] ∙ 𝐶1 = 1 +

𝑛𝑚 − 2

𝑛𝑚
𝛥 ∙ 𝐶1. 

Since   𝜔𝐿 = 𝜆 − 𝛥 , the constraint is again the same as the planner’s feasibility 

condition.  

Now consider large banks that experience 𝜔𝐻. Let each of them withdraw all the 

interbank deposits from the other banks. The budget constraint is then  
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{𝜔𝐻
𝑚 + [

𝑚 − 1

𝑚
+

𝑛 − 2

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] 𝛥} ∙ 𝐶1 = 𝑘𝑦 + [

2(𝑚 − 1)

𝑚
+

2(𝑛 − 1)

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] 𝛥 ∙ 𝐶1. 

Now consider large banks that experience 𝜔𝐿 . Let each of them withdraw the 

interbank deposits from other banks which also face 𝜔𝐿 and keep the interbank claims 

from banks facing 𝜔𝐻. Its budget constraint is then 

{𝜔𝐿
𝑚 + [

2(𝑚 − 1)

𝑚
+

2(𝑛 − 1)

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] 𝛥} ∙ 𝐶1 = 𝑘𝑦 + [

𝑚 − 1

𝑚
+

𝑛 − 2

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] 𝛥 ∙ 𝐶1. 

At date 2, small banks facing  (1 − 𝜔𝐿) late consumers liquidate  2𝛥/

𝑛𝑚 interbank deposits from each of the  𝑛𝑚/2 banks facing  (1 − 𝜔𝐻) late 

consumers. The budget constraint is 

(1 − 𝜔𝐿)𝐶2 = 𝑅𝑥 + 𝛥𝐶2 

And the budget constraint for each small facing (1 − 𝜔𝐻) is   

[(1 − 𝜔𝐻) + 𝛥]𝐶2 = 𝑅𝑥, 

Since 𝜔𝐿 = 𝜆 − 𝛥 and 𝜔𝐻 = 𝜆 + 𝛥, the budget constraints for periphery banks are 

hence the same as the planner’s feasibility condition at date 2. Each large bank 

facing (1 − 𝜔𝐿) withdraw 2𝛥/𝑛𝑚 from each small bank and 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 from 

each large bank who experience low proportion of late consumers. The budget 

constraint is  

(𝑘 − 𝜔𝐿
𝑚)𝐶2 = 𝑘𝑅𝑥 + [

𝑚 − 1

𝑚
+ (𝑘 −

𝑚 − 1

𝑚
)] 𝛥𝐶2 

And the budget constraint for each large bank facing (1 − 𝜔𝐻) is   

{(𝑘 − 𝜔𝐻
𝑚) + [

𝑚 − 1

𝑚
+ (𝑘 −

𝑚 − 1

𝑚
)] 𝛥} ∙ 𝐶2 = 𝑘𝑅𝑥 

The simplification of the above two budget constraints is again the planner’s feasibility 

condition at date 2. The deposit contract in competitive banking system with complete 

network replicates the central planner’s optimal allocation. 
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A.5. Proof of Proposition 7 

Suppose bank 𝑛𝑚 fails in state S3, then all the depositors in bank 𝑛𝑚 withdraw at 

date 1. The demand for deposits consists of 𝑘 from its regional consumers, 2𝛥/

𝑛𝑚 from each small bank, and 
2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 from each large bank. The total value 

of deposits is  

{𝑘 + [(𝑛𝑚 − 𝑛)
2

𝑛𝑚
+ (𝑛 − 1)

2

𝑛
(𝑘 −

𝑚 − 1

𝑚
)] ∙ 𝛥} 𝐶̃𝑛𝑚

𝑐  

which can be simplified as 

{𝑘 + [
2(𝑚 − 1)

𝑛𝑚
+

2(𝑛 − 1)

𝑛
𝑘] ∙ 𝛥} 𝐶̃𝑛𝑚

𝑐  

The liquidity supply of bank 𝑛𝑚 consists of 𝑘𝑦 units of short asset, 𝑘𝑥 units of long 

asset valued at r, 2𝛥/𝑛𝑚 interbank deposits from each small bank 𝑖𝑗, ∀𝑗 ≠ 𝑚, valued 

at 𝐶̃𝑖𝑗
𝑐 , and 

2

𝑛
(𝑘 −

𝑚−1

𝑚
) 𝛥 from each large bank 𝑖𝑚, ∀ 𝑖 ≠ 𝑛, valued at 𝐶̃𝑖𝑚

𝑐 . The sum 

is 

𝑘(𝑦 + 𝑟𝑥) +  
2

𝑛𝑚
𝛥 ∙ ∑ 𝐶̃𝑖𝑗

𝑐

 𝑖𝑗,𝑗≠𝑚

+  
2

𝑛
(𝑘 −

𝑚 − 1

𝑚
) 𝛥 ∙ ∑ 𝐶̃𝑖𝑚

𝑐

 𝑖𝑚,𝑖≠𝑛

. 
 

If all the other banks are safe, 𝐶̃𝑛𝑚 becomes 

𝐶𝑛̅𝑚
𝑐 =

𝑘(𝑦 + 𝑟𝑥) + [
2(𝑚 − 1)

𝑛𝑚 +
2(𝑛 − 1)

𝑛 𝑘] 𝛥 ∙ 𝐶1 
∗

𝑘 + [
2(𝑚 − 1)

𝑛𝑚 +
2(𝑛 − 1)

𝑛 𝑘] 𝛥
, 

 

(A.6) 

where 𝐶𝑛̅𝑚
𝑐  is the maximum liquidation value of bank 𝑛𝑚.  

The necessary condition for all the small banks not to default is 

(𝜆 +
2

𝑛𝑚
𝛥) ∙ 𝐶1 

∗ ≤ 𝑦 +
2

𝑛𝑚
𝛥 ∙ 𝐶𝑛̅𝑚

𝑐 + 𝐶𝐵𝑃 

Using (4), the inequality can be simplified as 

2

𝑛𝑚
𝛥 ∙ (𝐶1 

∗ −  𝐶𝑛̅𝑚
𝑐 ) ≤ 𝐶𝐵𝑃. 

Next consider the contagion threshold for all the large banks. The necessary 

condition for core bank 𝑖𝑚, ∀𝑖 ≠ 𝑛, to survive from the contagion is 
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[𝑘𝜆 +
2

𝑛
(𝑘 −

𝑚 − 1

𝑚
) 𝛥] ∙ 𝐶1 

∗ ≤ 𝑘𝑦 +
2

𝑛
(𝑘 −

𝑚 − 1

𝑚
) 𝛥 ∙ 𝐶̅𝑛𝑚

𝑐
+ 𝐶𝐵𝐶 

Using (5), the above inequality is reduced to 

2

𝑛
(𝑘 −

𝑚 − 1

𝑚
) 𝛥 ∙ (𝐶1 

∗ − 𝐶𝑛̅𝑚
𝑐 ) ≤ 𝐶𝐵𝐶 . 

Suppose bank 11 defaults in state S4, The demand for deposits consists of 1 from 

its consumer depositors and 2𝛥/𝑛𝑚 from each of the (𝑛𝑚 − 1) banks. The total 

value of deposits is 

(1 +
2(𝑛𝑚 − 1)

𝑛𝑚
𝛥) ∙ 𝐶̃11

𝑐 , 

The liquidity supply consists of 𝑦 units of short asset, 𝑥 units of long asset valued at 

r, and 2𝛥/𝑛𝑚 interbank deposits from each bank. The maximum liquidation value of 

bank 11 is then determined by  

𝐶̅11
𝑐

=
𝑦 + 𝑟𝑥 +

2(𝑛𝑚 − 1)
𝑛𝑚 𝛥 ∙ 𝐶1 

∗

1 +
2(𝑛𝑚 − 1)

𝑛𝑚 𝛥
, 

 

 

The necessary condition for the other small banks not to default is 

(𝜆 +
2

𝑛𝑚
𝛥) ∙ 𝐶1 

∗ ≤ 𝑦 +
2

𝑛𝑚
𝛥 ∙ 𝐶̅11

𝑐
+ 𝐶𝐵𝑃 

Using (4), the inequality can be simplified as 

2

𝑛𝑚
𝛥 ∙ (𝐶1 

∗ −  𝐶̅11
𝑐

) ≤ 𝐶𝐵𝑃. 

Next consider the contagion threshold for all the large banks. The necessary 

condition for large banks to survive from the contagion is 

(𝑘𝜆 +
2

𝑛𝑚
𝛥) ∙ 𝐶1 

∗ ≤ 𝑘𝑦 +
2

𝑛𝑚
𝛥 ∙ 𝐶1̅1

𝑐 + 𝐶𝐵𝐶 

Using (5), the above inequality is reduced to 

2

𝑛𝑚
𝛥 ∙ (𝐶1 

∗ − 𝐶̅11
𝑐

) ≤ 𝐶𝐵𝐶 . 
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