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Abstract 

The link to the online abstract of this manuscript, accepted in Phys. Rev. Fluids, is 

https://journals.aps.org/prfluids/accepted/32074S4aH8b1c608e19768b42571f9001086a3f44. 

A subcritical route to turbulence via purely quasi-two-dimensional mechanisms, for a quasi-two-

dimensional system composed of an isolated exponential boundary layer, is numerically investi-

gated. Exponential boundary layers are highly stable, and are expected to form on the walls of 

liquid metal coolant ducts within magnetic confinement fusion reactors. Subcritical transitions 

were detected only at weakly subcritical Reynolds numbers (at most ≈ 70% below critical). Fur-

thermore, the likelihood of transition was very sensitive to both the perturbation structure and 

initial energy. Only the quasi-two-dimensional Tollmien–Schlichting wave disturbance, attained by 

either linear or nonlinear optimisation, was able to initiate the transition process, by means of the 

Orr mechanism. The lower initial energy bound sufficient to trigger transition was found to be 

independent of the domain length. However, longer domains were able to increase the upper energy 

bound, via the merging of repetitions of the Tollmien–Schlichting wave. This broadens the range 

of initial energies able to exhibit transitional behaviour. Although the eventual relaminarization of 

all turbulent states was observed, this was also greatly delayed in longer domains. The maximum 

nonlinear gains achieved were orders of magnitude larger than the maximum linear gains (with the 

same initial perturbations), regardless if the initial energy was above or below the lower energy 

bound. Nonlinearity provided a second stage of energy growth by an arching of the conventional 

Tollmien–Schlichting wave structure. A streamwise independent structure, able to efficiently store 

perturbation energy, also formed. 

∗ christopher.camobreco@monash.edu 

1 

mailto:christopher.camobreco@monash.edu
https://journals.aps.org/prfluids/accepted/32074S4aH8b1c608e19768b42571f9001086a3f44


I. INTRODUCTION 

There is significant interest in understanding transitions to quasi-two-dimensional (Q2D) 

turbulence, given the wide range of natural and industrial flows which exhibit quasi-two-

dimensionality. These include magnetohydodynamic (MHD), shallow channel and atmo-

spheric flows [1, 2]. The conditions under which 3D MHD turbulence becomes quasi-two 

dimensional, and the appearance of three-dimensionality in Q2D MHD turbulence have been 

clarified [3–6]. However, a clear subcritical path to Q2D turbulence from a Q2D laminar 

state has not been identified. The aim of the present work is thus to establish a purely 

Q2D subcritical route to turbulence. This is motivated by the design of coolant ducts in 

magnetic confinement fusion reactors, where pervading field strengths range between 4–10 

T [7, 8]. Understanding transition in coolant ducts is important for ensuring sufficient heat 

transfer at the plasma-facing (Shercliff) wall [9–13] and to establish the feasibility of self-

cooled reactor designs [7]. Limits on maximum pressure gradient [9, 14, 15] and pumping 

efficiency [11, 16–18] motivate seeking the most efficient route to turbulence. However, quasi-

two-dimensional turbulence is unlikely to arise in blankets via strongly three-dimensional 

turbulence [7]. Thus, this work limits itself only to the use of an initial two-dimensional 

perturbation; secondary excitations with three-dimensional random noise are not applied. 

Transitions in MHD flows have previously been initiated by a perturbation comprising 

either two three-dimensional oblique-waves or a two-dimensional initial field with three-

dimensional random noise [19, 20], which are routes prohibited in Q2D systems. Using 

these techniques, for Hartmann channel flow, [19] found excellent agreement with the crit-

ical Reynolds numbers at which transition was observed experimentally [21], observing a 

strongly three-dimensional subcritical transition. Although less energetic perturbations gen-

erated more growth, they did not sufficiently modulate the base flow. The perturbations 

which attained the highest maximum energy, regardless of initial energy, were most likely 

to incite transition. Complicating matters at high field strengths, three-dimensional noise 

relaminarized the flow, instead of triggering transition. 

To assess subcritical transitions in Q2D MHD flows, the SM82 model [3] is applied, as 

realistic magnetic confinement field strengths (4–10 T) are currently beyond the capability 

of three-dimensional numerics. The SM82 model governs the evolution of a velocity field 

averaged along uniform magnetic field lines. In the limit of quasi-static Q2D MHD, the 
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magnetic field is imposed and the Lorentz force dominates all other forces. The bulk flow is 

two-dimensional, with thin Hartmann layers formed along walls perpendicular to field lines. 

In the SM82 model, the presence of Hartmann layers is modelled with linear friction on the 

average flow. The validity of the SM82 approximation is well supported in the quasi-two-

dimensional limit [22–25]. Departure from the two-dimensional average has been observed 

in regions of strong viscosity or inertia. [23] demonstrates errors less than 10% between 

quasi-two-dimensional and laminar three-dimensional Shercliff layers, which do not vanish, 

even in the asymptotic limit when the Lorentz force dominates. There is also excellent 

agreement at high magnetic field strengths [26] between the linear transient growth of full 

three-dimensional simulations, and Q2D simulations based on the SM82 model. 

The linear stability and linear transient growth of duct flows under strong magnetic fields 

are determined solely by boundary layer dynamics [27, 28]. Direct numerical simulations 

depict instabilities isolated to the Shercliff layers, on walls parallel to the magnetic field 

[26, 29]. As such, an exponential boundary layer in isolation is considered. The isolated 

quasi-two-dimensional boundary layer profile is identical to an asymptotic suction boundary 

layer [30], where friction replaces wall suction. The analogy has been highlighted in [31], by 

performing a change of variables, such that the wall suction boundary condition becomes 

impermeable. This introduces an additional term in the governing equations for the trans-

formed velocity, of the form −(∂u/∂y)/Re. Comparatively, the friction term in the SM82 

model is −u/Re. However, as the underlying exponential boundary layer remains the same, 

both flows are very stable [30, 32]. 

Nonlinear optimisation and edge tracking algorithms have been widely used to assess 

subcritical turbulent transitions in hydrodynamic pipe [33, 34], plane Couette [35, 36] and 

plane Poiseuille flows [37, 38], as well as in Blasius [39–42] and asymptotic suction [43, 44] 

boundary layers. A fundamental part of this process involves searching the state space for 

seperatrices, which divide the basins of attraction of the laminar fixed point and turbulent 

state [43]. The minimal seed is then the nonlinearly optimised perturbation with the smallest 

initial energy that is able to cross the separatrix [33]. Separatrix 1 is henceforth defined 

as a segment of the laminar-turbulent basin boundary where the minimal seed crosses. 

Hydrodynamic studies of three-dimensional turbulent transitions have determined that the 

laminar-turbulent basin boundary is the ‘edge’ of a stable manifold. At a saddle node (the 

edge state) an unstable solution crosses [43, 45]. However, such an unstable solution is not 

necessarily the minimal seed [36] as the seperatrix can be closer to the fixed laminar point 
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FIG. 1. A state space representation of the problem. Four cases are considered, two with initial 
energies E0 just below and above the minimum initial energy sufficient to cross separatrix 1 (ED) 
and two with E0 just above and below the maximum initial energy sufficient to cross separatrix 2 
(ED,2). An initial energy ED < E0 < ED,2 either crosses separatrix 1 (red curve crosses solid dark 
green line) or avoids crossing separatrix 2 (blue curve eventually avoids solid light green line) to 
transition to turbulence. Eventually the turbulent state relaminarizes. 

elsewhere in the state space. This discussion is aided by Fig. 1, which depicts two initial 

conditions with slightly different initial energies. One perturbation has an initial energy 

E0 < ED and returns back to the laminar state without crossing separatrix 1, such that 

ED is the minimum initial energy sufficient to cross separatrix 1. The case with E0 > ED 

continues on to the turbulent attractor. An upper bound on the edge state was also identified 

by [45]. It stemmed from additional dissipation generated by distortion of overly energised 

initial seeds. This segment of the laminar-turbulent boundary is henceforth defined as 

separatrix 2. The perturbation with initial energy E0 > ED,2 crosses seperatrix 2, missing 

the trajectory toward the turbulent attractor, such that ED,2 is the maximum initial energy 

sufficient to avoid separatrix 2. The perturbation with E0 < ED,2 reaches the turbulent 

attractor, following an almost identical trajectory to the turbulent state as the perturbation 

with E0 > ED. After remaining in the basin of the turbulent attractor for some time, 

relaminarization occurs. 

Nonlinear optimisation has also been used to demonstrate that nonlinear transient growth 

occurs solely via the collaboration of multiple linear transient growth mechanisms [34]. This 

cannot occur in two-dimensional systems, as only the Orr mechanism is present. Thus, 

nonlinear optimisation effectively degenerates to linear optimisation. The two-dimensional 
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inviscid Orr mechanism is characterized by an initial perturbation that is tilted opposite to 

the mean shear [46]. Energy from the mean shear transiently grows the perturbation energy, 

as the base flow advects the structure into an upright position. Perturbation energy decays 

as the structure is further tilted into the mean shear, returning energy to the base flow [47]. 

Initially, this work compares linearly and nonlinearly optimised perturbations, which may 

form the minimal seeds for inciting subcritical turbulent transitions. 

Therefore, this paper considers: 

• What roles linear transient growth (in particular, the Orr mechanism) and nonlinearity 

play in Q2D transition scenarios. 

• Whether distinct initial energies representing separatrix 1 and 2 on the laminar-

turbulent boundary can be defined, as for 3D systems. 

• How sensitive transition is to the structure and wavelength of the initial field. 

This paper proceeds as follows: the problem setup, § II, establishes the Shercliff bound-

ary layer domain and base flow. § III details the determination, validation and results of 

the linear transient growth analysis, as linear optimals form the initial seeds for nonlinear 

simulations. § IV discusses and validates the approach for determining nonlinear optimals 

and compares the linear optimals to their nonlinear counterparts for small target times. 

§ V validates the nonlinear evolutions of linear optimals, for prescribed initial energies, and 

then considers the energies delineating transitional states, perturbation structures through 

growth and decay stages, and the effect of domain length. Conclusions are drawn in § VI. 

II. PROBLEM SETUP AND SOLUTION PROCESS 

II.1. Problem setup 

An incompressible Newtonian fluid with density ρ, kinematic viscosity ν and electric 

conductivity σ flows through a duct with rectangular cross-section of width a (z−direction) 

and height 2L (y−direction). A uniform magnetic field Bez is imposed. Quasi-two-

dimensionality, based on the SM82 model [3, 23] is assumed. The revelant length scale 

is the Q2D Shercliff boundary layer thickness δS = L/H1/2, where the Hartmann friction 

parameter H = L2(2B/a)(σ/ρν)1/2 [27]. Normalizing lengths by δS, velocities by maxi-

mum undisturbed duct velocity U0, time t by δS/U0 and pressure p by ρU0
2, the governing 
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FIG. 2. Schematic diagram of the sidewall domain with a characteristic length of the Shercliff 
boundary layer height δS. The thick horizontal line represents an impermeable no-slip boundary. 
The dotted line represents a stress-free parallel flow condition. The vertical dashed lines represent 
a periodicity constraint on velocity and fluctuating pressure. A uniform magnetic field is directed 
into the page. The out-of-plane Hartmann walls (the sources of linear friction) are not drawn. 

momentum and mass conservation equations become 

∂u 1 1 
= −(u · r⊥)u − r⊥p + r 2 

⊥u − u, (1)
∂t ReS ReS 

r⊥ · u = 0, (2) 

where u = (u, v) is the quasi-two-dimensional velocity vector, representing the z−averaged 

field, and r⊥ = (∂x, ∂y) and r⊥ 
2 = ∂x 

2 + ∂y 
2 are the quasi-two-dimensional gradient and 

vector Laplacian operators, respectively. The flow is governed by one dimensionless param-

eter, a Reynolds number based on the boundary layer thickness, ReS = U0δS/ν. Hereafter, 

quantities are expressed in dimensionless form unless specified otherwise. The rightmost 

term in equation (1) is a linear friction term describing Hartmann braking from the two 

out-of-plane duct walls [3]. At H � 100, δS � L [26, 27], such that the sidewall boundary 

layer that dictates transition behaviour is isolated. A domain extending from the sidewall 

a distance Ly into the flow is considered, with streamwise-periodic length Lx, as depicted 

in Fig. 2. The streamwise length Lx = nlx spans n integer repetitions of a flow structure 

having streamwise length lx = 2π/α and streamwise wavenumber α. 

Instantaneous variables (u, p) are decomposed into base (U , P ) and perturbation ( û, p̂) 

components via small parameter �, as u = U + �û; p = P + �p̂, for use in linear transient 

growth analysis. The fully developed, time steady, parallel flow U = U(y)ex, with boundary 

conditions U(y = 0) = 0, U(y → ∞) = 1, and a constant driving pressure gradient scaled 

to achieve a unit maximum velocity, is U = (1 − exp(−y), 0). 
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II.2. Solver 

An in-house nodal spectral element solver temporally integrates equations (1) and (2) 

using a third order backward differencing scheme with operator splitting. The two-dimen-

sional Cartesian domain is discretized with quadrilateral spectral elements over which Gauss– 

Legendre–Lobatto nodes are placed. The Navier–Stokes solver, with the inclusion of the 

friction term, has been previously introduced and validated [11, 26, 48, 49]. No-slip velocity 

boundary conditions are applied at the impermeable wall, u = û = 0, supplemented by high-

order Neumann pressure boundary conditions [50]. Pressure is decomposed into a constant 

pressure gradient, and a fluctuating component p0, and periodicity is imposed between the 

upstream and downstream boundaries on the velocity and fluctuating pressure. At the 

stress-free boundary a parallel flow condition (v = v̂ = 0) is strongly enforced. A constant 

flow rate condition is also enforced in nonlinear simulations, by appropriate adjustment of 

the flow rate after each time step. 

III. LINEAR TRANSIENT GROWTH 

III.1. Formulation and validation 

At subcritical Reynolds numbers, all eigenmodes of the linear evolution operator decay. 

Thus, to begin establishing a subcrtical route to turbulent transitions, the linear initial 

value problem is considered. Linear growth is generated by the superposition of decaying 

non-orthogonal Orr–Sommerfeld modes [51, 52]. To interrogate the transient growth of a R 
perturbation, total kinetic energy E = (1/2) û · û dΩ = (1/2) kûk is chosen to quantify 

growth, following [53, 54], where Ω represents the computational domain. The maximum 

possible linear transient growth is found by determining the initial condition for perturbation 

ûτ (t = 0) maximizing G = kû(τ )k / kû(0)k via evolution to time τ . For a given ReS, 

Gmax = max (G(τ, α)) is sought, along with the optimal time horizon τopt and streamwise 

wavenumber αopt. Thereby lx,opt = 2π/αopt. The analysis proceeds with integration of the 

linearised forward evolution equations 

∂û 1 2 1 
= −(û · r⊥)U − (U · r⊥)û− r⊥p̂+ r û− û, (3)

∂t ReS 
⊥ ReS 

r⊥ · û = 0 (4) 
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Δt 
2.5 × 10−3 

Nel = 70 |% Error| Nel = 98 |% Error| Nel = 154 |% Error|
33.25571762 2.45 × 10−1 33.36191967 2.59 × 10−3 33.36189331 2.60 × 10−3 

1.25 × 10−3 33.23149556 1.72 × 10−1 33.36145641 1.20 × 10−3 33.36142823 1.20 × 10−3 

6.25 × 10−4 33.20232632 8.45 × 10−2 33.36122729 5.15 × 10−4 33.36119843 5.15 × 10−4 

3.125 × 10−4 33.17957603 1.59 × 10−2 33.36111304 1.73 × 10−4 33.36108413 1.72 × 10−4 

0 0 0 
1.5625 × 10−4 33.17428683 33.36105549 33.36102678

5.60 × 10−1 8.61 × 10−5 0 

TABLE I. The real component of the leading eigenvalue, at ReS = 7.071 × 103 , α = 0.7071 and 
τ = 42.43 (close to optimal), with domain height Ly = 14.14 and polynomial order Np = 15 for 
various numbers of elements. Meshes with 1, 2 and 4 elements per unit height (Nel = 70, 98 and 
154, respectively) within the first five units from the wall are compared. Absolute percentage errors 
are quoted for each mesh separately, relative to the smallest time step case, except the last row, 
which compares to the Nel = 154 mesh. The eigenvalue convergence tolerance is 10−7 . 

from time t = 0 to t = τ . This is followed by backward time integration of the adjoint 

equations 

∂û‡ 
ˆ ‡ − r⊥ ̂

‡ − 
1 2 ˆ‡ − 

1
ˆ‡= (r⊥U)

T · u ‡ − (U · r⊥)û p r⊥u u , (5)
∂t ReS ReS 

r⊥ · û‡ = 0 (6) 

for the Lagrange multiplier of the velocity perturbation û‡, from t = τ to t = 0. Boundary 

conditions û = û‡ = 0 are applied at the wall and v̂ = v̂‡ = 0 at the stress-free boundary. 

‘Initial’ conditions for forward and backward evolution are û(0) = û‡(0) and û‡(τ) = û(τ), 

respectively. G is then the largest real eigenvalue of the operator representing the sequential 

action of forward then adjoint evolution [53, 54], obtained by a Krylov subspace scheme. 

The scheme iterates until a specified eigenvalue tolerance is reached. The corresponding 

eigenvector contains the optimal initial field (optimal for short). 

The mesh for computation of linear optimals has a region of high resolution near the wall, 

with sparse resolution further away. Element spacing is also sparse in the streamwise direc-

tion, as the variation must be sinusoidal (from linearity). Three key factors are considered 

when assessing accuracy, the number of elements in the wall normal direction, the temporal 

resolution and the domain height where the stress-free condition is applied, as shown in 

Tables I and II. Based on the magnitude and behaviour of the errors, the highest near wall 

resolution (Nel = 154 mesh from Table I) was selected, with Δt = 1.25 × 10−3 . Based on 

Table II, Ly = 14.14 is sufficient for determining the linear τopt and αopt. However, it was 

deemed pertinent to increase Ly to 28.28 and to recompute time and wavenumber optimised 
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Ly 7.071 × 102 |% Error| 7.071 × 103 |% Error| 7.071 × 104 |% Error|
14.14 6.11779740087 3.14 × 10−6 33.3619198126 2.66 × 10−6 166.410928536 1.04 × 10−3 

28.28 6.11779759275 7.63 × 10−10 33.3619206992 7.05 × 10−10 166.409189845 2.76 × 10−9 

56.57 6.11779759280 0 33.3619206994 0 166.409189849 0 

TABLE II. The real component of the leading eigenvalue, varying the domain height, for various 
ReS. Initially, ReS = 7.071 × 103 at α = 0.7071 and τ = 42.43 was tested as part of a formal 
validation, Nel = 154 for Ly = 14.14, Δt = 2.5×10−3 , Np = 15. The optimals at ReS = 7.071×102 

and 7.071 × 104 were tested post validation, Nel = 250 for Ly = 14.14, Δt = 1.25 × 10−3 , Np = 13. 

fields to initiate the nonlinear evolutions reported in § V. This ensures that the parallel flow 

assumption remains valid if structures increase in height due to vortex merging. 

III.2. Results 

At least one infinitisemal disturbance can achieve exponential growth at Reynolds num-

bers above the critical Reynolds number ReS,crit. ReS,crit thereby forms a bound above 

which transition to turbulence is possible, so long as the domain length has a correspond-

ing wavenumber within the neutral curve. For this problem, ReS,crit can be determined by 

rescaling the results of [27]; changing length scale from L to δS. Thus ReS,crit = 4.835 × 104 

and αS,crit = 0.1615. The ratio rc = ReS/ReS,crit is then defined. 

Linear transient growth results are presented in Fig. 3. Duct results from [27] at finite H 

are also included in Fig. 3(a), supporting the argument that the boundary layer at each duct 

wall is sufficiently isolated at large H, and can be modelled separately. At rc = 0.00135, 

Gmax = 1, while by rc = 1, Gmax ≈ 100. This modest rise in gain with increasing rc may 

be attributed to two factors. The first is that the base flow is naturally highly stable [32]. 

The second is that two-dimensional systems only permit growth via the Orr mechanism [47]. 

This greatly reduces optimal growth, and produces the modest scaling of Gmax ∼ ReS
2/3 
for 

large ReS. Representative initial and optimal fields are provided in Fig. 4, which exhibit the 

classic initial condition of a strongly sheared wave which transiently grows as it is advected 

upright, until τopt. The modes otherwise resemble those of [27], excepting wall confinement 

effects at low H in the aforementioned work. 
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FIG. 3. Linear transient growth of an exponential boundary layer as a function of rc = ReS/ReS,crit. 
(a) Growth optimised over initial field, wave number and time interval. Present data (squares) are 
compared against Q2D duct results from [27] (circles). The arrow indicates increasing H through 
1, 3, 10, 100 and 1000. With increasing H, the duct results [27] approach the isolated exponential 
boundary layer results (this work). (b) Optimal wave number. (c) Optimal time interval. 

IV. NONLINEAR TRANSIENT GROWTH 

IV.1. Formulation and validation 

In this work, nonlinear transient growth is employed solely to assess the similarities 

between the linear and nonlinear optimals for small target times (τ ∼ τopt). Admittedly, 

nonlinear transient growth routines can identify the initial energy representing separatrix 1, 

if the target time specified is long enough to allow the minimal seed to reach the turbulent 
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(a) (b) 

yy 

x x x x 

FIG. 4. Optimised v̂-velocity fields. (a) rc = 0.0146, αopt = 0.7071. (b) rc = 0.146, αopt = 0.5586. 
Simulations computed with Ly = 28.28 and images clipped at y = 10. Solid lines (red flooding) 
positive; dotted lines (blue flooding) negative. 

attractor [33, 34]. This target time is not known a priori. It is shown in § V that the 

turbulent attractor is reached between t = 1.4 × 103 and t = 2 × 103 at rc = 0.585. As 

τopt = 75.94 at rc = 0.585 (figure 3) the additional computation cost is proportional to 

t/τopt = 18.44 − 26.34. In contrast, the hydrodynamic pipe flow work in [33] had τopt . 30, 

while the minimal seed reached the turbulent attractor by t = 75, so t/τopt . 2.5. Thus, 

for this problem, it was not amenable to determine separatrix 1 directly from the nonlinear 

transition growth algorithm. 

The scheme to determine the nonlinear growth GN = kû(τ)k / kû(0)k, for a specified 

target time τ , optimised over all initial perturbations, requires maximizing the functional 

[33, 55] � � Z τ Z τ 

L := h 1 û(τ)2i − λ0 h 
1 
û(0)2i − EP − hΠr⊥ · ûidt − Γ(t)hû · ezidt 

2 2 Z τ � 0 0 

∂û 1 − hû‡ · + (U · r⊥)û+ ( û · r⊥)U + ( û · r⊥)û+ [Λ(t)ez + r⊥p 0]
∂t ρ0 � 

− 
1 r 2 

⊥û+ 
1 

û idt (7)
ReS ReS 

where the Lagrange multipliers λ0, Π and Γ(t) are constraints on the specified initial energy R 
of the perturbation EP = (1/2) û(0)2dΩ, mass conservation and flow rate, respectively. 

Pressure is decomposed into a time-varying pressure gradient Λ(t), to maintain the flow rate, 

and fluctuating component p0 . h. . . i represent integrals over the computational domain. The 

Lagrange multiplier û‡ ensures that the full nonlinear Navier–Stokes equations are enforced 

over all times 0 < t < τ [56]. Each iteration j of the optimisation procedure begins with 

the forward evolution, from t = 0 to t = τ , of the nonlinear perturbation equation (within 

the square brackets of the last term of equation (7)). If GN for iteration j is larger than for 
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Δt GN; EP = 10−6 |% Error| Np GN; EP = 10−4 |% Error|
5 × 10−3 55.9721743040676 1.88 × 10−5 11 54.6714139912327 5.24 × 10−4 

2.5 × 10−3 55.9721692244256 9.69 × 10−6 13 54.6711233880979 7.81 × 10−6 

1.25 × 10−3 55.9721654578752 2.96 × 10−6 15 54.6711274190738 4.31 × 10−7 

6.25 × 10−4 55.9721633006764 8.91 × 10−7 17 54.6711283768056 1.32 × 10−6 

3.125 × 10−4 55.9721637995307 0 19 54.6711276549269 0 

TABLE III. Validation of the time step and polynomial order for the nonlinear transient growth, 
for initial perturbation energies of 10−6 and 10−4, at rc = 0.293, n = 1. The mesh is based on the 
Nel = 154 case from linear optimisation, except with Ly = 28.28. The tolerance for convergence 
was 10−7 . Nonlinear computations use the linear αopt and τopt. 

iteration j − 1, the adjoint ‘initial’ field is û‡(τ) = û(τ) and the iteration continues with 

backward evolution via the adjoint equations 

∂û‡ ‡= (r⊥U )T · û‡ − (U · r⊥)û
‡ + (r⊥û)

T · û‡ − (û · r⊥)û
∂t 

1 1 
+Γ(t)ez − r⊥Π − 

ReS 
r 2 
⊥û

‡ − 
ReS 

û‡ (8) 

r⊥ · û‡ = 0 (9) 

from time t = τ to t = 0. An under-relaxation factor �N is chosen (say, 0.5) for the first 

iteration, or adjusted as described in [33]. The initial field for the j +1 iteration is ûj+1(0) = 

ûj (0) + �N(−λ0û
j (0) + û‡,j(0))/λ0, where λ0 is sought such that hûj+1(0) · ûj+1(0)i = 2EP. 

However, if GN does not increase in iteration j, adjoint evolution is not performed, as the 

updated field (iteration j) is further from the optimal than the previous (j − 1) field. An 

additional adjustment is then made to the under-relaxation factor, �N → �N/4. The forward 

iteration restarts with ûj (0) = ûj−1(0) + �N(−λ0û
j−1(0) + û‡,j−1(0))/λ0. This ensures 

monotonic growth in successive iterations, and avoids contaminating the initial field after 

iterations with too large an �N. Iterations continue until the relative change in λ0 and 

residual (δL /δû(0))/λ2
0 are both below a specified tolerance, following [33]. 

Validation of the nonlinear transient growth is provided in Table III at rc = 0.293, 

considering the polynomial order and time step, for two initial energies. The same mesh for 

determination of the linear optimals is used, with Ly = 28.28. As the nonlinear transient 

growth scheme does not evolve the perturbations through turbulent states, the resolution 

requirements are similar to those of the linear computations, § III.1, rather than the nonlinear 

forward evolutions, § V.1. For consistency, the same time step of Δt = 1.25 × 10−3 was 

selected, with Np = 15. 
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FIG. 5. Comparison between linear and nonlinear optimals for various initial energies E0 = û2 +R 
v̂2 dΩ/ U2 dΩ at rc = 0.293. (a) Difference in the maximum linear growth obtained with the 
linear optimal (LOP) and maximum nonlinear growth with the nonlinear optimal (NLOP), for 
three domain lengths, and difference in the linear growth of the LOP and the nonlinear growth 
of the LOP scaled to E0 (n = 1 only). (b) Comparison between the nonlinear growth of the 
NLOP and nonlinear growth of the LOP scaled to E0 (n = 1). The linear growth of the LOP is 
Gmax = 55.9876. 

IV.2. Results 

Nonlinear optimals were computed with τ = τopt and domain lengths based on n = 1, 

n = 2 or n = 3 repetitions of lx,opt, for various initial energies. These results are shown in 

Fig. 5(a), which compares the difference between the linear transient growth of the linear 

optimal and the nonlinear transient growth of the nonlinear optimal (red data points), with 

the former always greater than the latter (all results are positive valued). As nonlinear col-

laboration between linear transient growth mechanisms cannot occur, the maximum growth 

obtained at vanishingly small initial energy is greater than with finite initial energy. Figure 

5(a) also shows that for an initial energy defined per unit duct length, the results are not 

dependent on domain length. Thus, it is the initial energy density that is the important 

parameter. 

Additionaly, Fig. 5(a) compares the difference in the linear transient growth of the lin-

ear optimal and the nonlinear transient growth of the linear optimal scaled to E0 (square 

symbols). These results are almost coincident with those for the nonlinear growth of the 

nonlinear optimal (triangle symbols). Thus, the difference between the nonlinear and linear 
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growth is mostly due to the finite energy of the initial field. The mode structure is only 

very weakly dependent on initial energy (the linear and nonlinear optimals are virtually in-

distinguishable; not shown). This supports a remark made by [34], that in two-dimensional 

systems the nonlinear optimal contains the linear mode trivially. This comparison is further 

highlighted in Fig. 5(b), which directly compares the nonlinear growth of the nonlinear op-

timal to the nonlinear growth of the linear optimal. This difference is very small for initial R R 
energies up to E0 ≈ 10−6, where E0 = û2 + v̂2 dΩ/ U2 dΩ is considered to account for 

the varying domain length. 

For E0 & 10−6 the nonlinear growth of the nonlinear optimal then slightly exceeds the 

nonlinear growth of the rescaled linear optimal. However, the differences are still small at 

E0 = 10−5 , which is an initial energy more than sufficient to generate large amounts of 

nonlinear second-stage growth, as is discussed in detail in § V. Thus, there is little ‘error’ 

in estimating the minimal seed energy with the linear optimal, for the initial energies of 

interest. 

V. NONLINEAR EVOLUTION AT SPECIFIED INITIAL ENERGIES 

V.1. Validation 

The initial energy of each linear optimal is scaled to E0 when seeded onto the base 

flow. Forward evolution of the full nonlinear equations (1) and (2) then commences. The R R 
measures Ev = (1/2) v̂2 dΩ and E = (1/2) û2 + v̂2 dΩ are defined. These separate the 

growth of the perturbation, captured by Ev, and the effective modulation of the base flow, 

via a streamwise-independent structure, captured by E. 

The effect of time step variation is depicted in Fig. 6(a), 6(b). These show negligible 

differences between Δt = 1.25 × 10−3 and significantly smaller time step sizes. Δt = 1.25 × 

10−3 was therefore deemed satisfactory. The polynomial order has to be more carefully 

selected, as the spatial accuracy is strongly dependent on ReS and E0, as shown in Fig. 

6(c), 6(d). Discrepancies within chaotic regions cannot reasonably be avoided, although the 

trajectories thereafter match well. A polynomial order of Np = 19 is sufficient for smaller 

initial energies (all rc), and either Np = 23 (rc = 0.293 or 0.585) or Np = 29 (rc = 1.463) 

for larger initial energies, based on resolution testing approximately 40 different ReS − E0 

combinations. 
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FIG. 6. (a–b) temporal and (c–d) spatial resolution testing of the nonlinear evolution of linear 
optimals, for various initial energies E0. (a & c) rc = 0.293. (b & d) at rc = 0.585. The smaller 
polynomial order (value annotated for each curve), or larger time step (see legend), is denoted by 
a long dashed line for each E0. n = 1 unless otherwise stated. A black long dashed line represents 
the linear evolution. 

V.2. Delineation energy 

The nonlinear evolution of linear optimal perturbations in domains with lengths based on 

n = 1 repetitions of lx,opt are considered first. The lower delineation energy ED, representing 

separatrix 1, is shown in Fig. 7(a) as a function of Reynolds number. Figures 7(b), (c) 

demonstrate how the delineation energy is determined at rc = 0.585 (ED = 2.69187 × 10−6). 

ED is determined with a bisection method [35, 41, 42]. However, the bisection method is 

modified as when E0 = ED the energy-time history does not hover about a mean value [41], 
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as the solution is not on the edge of a stable manifold. Furthermore, all turbulent flows 

eventually relaminarize. Thus, the flow is deemed returning to a laminar state if its energy 

reaches a secondary local maximum, and is deemed to be turbulent if its energy exhibits a 

secondary local inflection point. An initial energy between the largest initial energy that 

remains laminar, and smallest that incurs transition to turbulence, is then tested, and 

defined as either the new laminar or new turbulent bound. This process is repeated until 

ED is determined to 4 significant figures. 

For the rc simulated, Fig. 7(a), there is no clear trend in ED with ReS (the dashed guideline 

has an rc 
−1 trend). A dot-dashed line at rc = 0.293 provides a rough lower estimate for the 

ReS at which no perturbation is capable of reaching the turbulent attractor, with any initial 

energy (in an n = 1 domain). At rc = 0.293 nonlinear second-stage growth yielded a 

maximum in E greater than the initial linear maximum, at best. For rc ≤ 0.146 the linear 

growth provided the global maximum in E. 

A second delineation energy ED,2 = 1.09646 × 10−5 could also be defined for rc = 0.585, 

denoting seperatrix 2. The bisection method is unchanged, except that now it is the larger 

initial energy that is considered laminar, and the smaller initial energy that transitions to 

tuburbulence. Thus, there is only a finite band of initial energies ED ≤ E0 ≤ ED,2 able 

to attain a temporary turbulent state. Only perturbations which resemble conventional, 

linearly grown TS waves were able take advantage of the nonlinear second-stage growth, 

which appears to be the only subcritical route to high energy turbulent states. This process 

is disrupted at larger E0, which noticeably distort the perturbation, inducing rapid decay 

after the linear growth, similar to the discussion in [45]. These arguments are also supported 

by additional nonlinear simulations, at rc = 0.585 and rc = 1.463. The initial seeds tested for 

comparison were the eigenvector field which generates the second largest linear growth in τopt, 

and random noise, in the same size domains and over a wide range of initial energies. In none 

of these simulations was a TS wave structure observed akin to that necessary to obtain the 

nonlinear second-stage growth observed in Fig. 7(b). The eigenvector generating the second 

largest linear growth managed to achieve only very small amounts of nonlinear second-stage 

growth. Random noise seeds monotonically decayed. Overall, only the eigenvector which 

generates the largest linear growth was able to transition to turbulence, by virtue of at least 

an additional order of magnitude of nonlinear growth. It will be shown later that ED does 

not vary with n (for rc ≥ 0.439) but that ED,2 does. 
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FIG. 7. (a) The lower delineation energy as a function of rc = ReS/ReS,crit (n = 1 domain). 
The dot-dashed line roughly approximates the maximum rc for which the delineation energy is 
undefined. (b) Energy time histories at rc = 0.585, varying E0. Light red curves with E0 < ED have 
a secondary local maximum at best. The orange arrow indicates the switch from local maximum 
to inflection point, and the lowest initial energy (dashed dark green curve; ED) sufficient to cross 
separatrix 1. All green curves transition to turbulence. The largest initial energy that avoids 
crossing separatrix 2 (ED,2) is also dashed. Light blue curves with E0 > ED,2, which are briefly 
chaotic, all cross separatrix 2, with the purple arrow indicating the switch back from an inflection 
point to a local maximum. All curves are rescaled to start at unity to aid visualization, and the 
linear curve is denoted with a black long dashed line. At rc = 0.585, Gmax = 89.9630, while the 
maximum gain at E0 = ED exceeds 103 . (c) Same results as (b), except depicted as a 3D surface, 
to accentuate the discontinuous changes at the separatrices. 
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FIG. 8. Linearised evolution at rc = 0.293, Ly = 28.28; v̂-velocity contours. Solid lines (red 
flooding) positive; dotted lines (blue flooding) negative. 
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FIG. 9. Nonlinear evolution at rc = 0.293, Ly = 28.28, E0 = 1.10 × 10−5; v̂-velocity contours. 
Solid lines (red flooding) positive; dotted lines (blue flooding) negative. 

V.3. Temporal evolution of optimals 

The observable effects of nonlinearity are similar so long as nonlinear second-stage growth 

occurs and regardless whether E0 > ED, E0 < ED or if ED is even defined (rc = 0.293). 

As such, a linearised evolution at rc = 0.293 is depicted in Fig. 8, and compared to the 

corresponding nonlinear evolution at E0 = 1.10 × 10−5 in Fig. 9. Animations comparing the 
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FIG. 10. (a) An example of the arched TS wave depicted by the v̂-velocity contour lines (solid 
positive; dotted negative), at rc = 0.585, E0 = 2.69187 × 10−6 > ED, t = 2.121 × 103 . The 
underlying backbone of the arch is highlighted by overlaying the high-pass-filtered vorticity ω̂z, 
where streamwise Fourier coefficients of modes κ ≤ 3 have been removed. (b) An example of the 
conventional TS wave from the linear transient growth analysis, at rc = 0.585, t = 77.78. 

linear and nonlinear evolutions are also provided as supplementary material [57]. The first 

relevant differences are discerned at t = 49.50. The nonlinear evolution shows a mode which 

appears pinched at the wall, while the linear structure remains flat-bottomed. Following 

the nonlinear case, as time progresses, the structure rolls over this more slowly moving 

pinch point. At t = 63.64, additional localised circulation has appeared near the wall, 

with a very small region of negative velocity immediately upstream of the pinch point (at 

x ∼ 10.5). Nonlinear second-stage growth then occurs, as the structure alternates between 

an arched TS wave (t = 155.6) and structures which break apart (t = 169.7) and coalesce 

into an arched TS wave again (t = 282.8). After this occurs a few times, the arched TS 

wave structure retains the form seen at t = 282.8 for over a thousand times units (see 

Fig. 13(b) for the corresponding energy time history), unlike the rapidly decaying linear 

counterpart. The advecting arched TS wave structure is eventually smoothed out near the 

wall (online animation only), and finally decays in the same manner as the linear counterpart. 

The linearised evolution monotonically decays as the structure leans into the mean shear 

(t = 63.64). This decay is more rapid for the near wall structure, leaving teardrop-shaped 

remnants outside the boundary layer as shown at t = 1273. 

The arching of the TS wave appears paramount to the second-stage growth, as flatter TS 

waves only decay, if outside the neutral curve. An enlarged arched TS wave is shown in Fig. 
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FIG. 11. Energy growth at rc = 0.439, E0 = 3.869×10−6 > ED, n = 1. (a) E = (1/2) û2 + v̂2 dΩ.R 
(b) Ev = (1/2) v̂2 dΩ. At rc = 0.439, Gmax = 73.9706 and ED = 3.853 × 10−6 . All curves are 
rescaled to unit initial energy. The linear evolution is shown as a black long dashed line. 

10(a). A high-pass-filtered in-plane vorticity ω̂z = v/∂x − ∂ ̂∂ˆ u/∂y is overlaid (streamwise 

Fourier coefficients of modes κ ≤ 3 have been removed) to help guide the eye along the 

backbone of the arch, which is a thin, highly sheared layer. The largest vorticity magnitudes 

are still near the pinch point. To highlight the differences, a conventional TS wave is provided 

in Fig. 10(b), in its upright position, from the linear simulation. The arch is distinctly 

nonlinear, as the high-pass-filtered vorticity is zero for the conventional, linear TS wave. 

With increasing time, the conventional TS wave will tilt into the mean shear, whereas the 

arched TS wave remains upright, and will continue advecting through the domain relatively 

unchanged. 

V.4. Roles of streamwise and wall-normal velocity components 

The disturbance is now considered in more detail by separating growth solely in E, Fig. 

11(a), and Ev, Fig. 11(b), for E0 just greater than ED. Growth appears larger in the 

latter measure as the wall-normal velocity makes up a smaller fraction of the energy in the 

initial field. Both û2 and v̂2 show noticeable second-stage growth. However, the v̂-velocity 

magnitudes rapidly decrease after the second-stage growth, while the û-velocity magnitudes, 

and thus E, decrease slowly. 

The flow structures throughout this evolution are depicted in Figs. 12(a) for û and Figs. 
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FIG. 12. Temporal evolution at rc = 0.439, Ly = 28.28, n = 1, with E0 = 3.869 × 10−6 > ED. 
(a) Streamwise perturbation û = u − U . (b). Wall-normal perturbation v̂ = v. Solid lines (red 
flooding) positive; dotted lines (blue flooding) negative. 

12(b) for v̂. While the maximum and minimum v̂-velocities have similar magnitude, the û 

structures have a much larger magnitude minimum velocity (compared to the positive max-

imum). The û structures elongate until they eventually become uniform in the streamwise 

direction. Thus, as v̂ decays, rather than reducing the magnitude of û, continuity (equa-

tion 2) is instead satisfied by reducing ∂ ̂ This stores perturbation energy, recalling u/∂x. 

the slow decay of E in Fig. 11(a). The streamwise-independent structure forms regardless 

if E0 > ED or E0 < ED. However, there is more perturbation energy to store if the flow 

transitions to turbulence, when E0 > ED. Lastly, it is worth noting that in this configu-

ration, any non-sinusoidal streamwise variation indicates nonlinearity. Thus, the formation 

of the streamwise-independent structure is distinctly nonlinear. Streamwise-independent 

structures are also commonly observed in the final form of 3D simulations, e.g. [19]. By 

comparison, the v̂ structures maintain similar size until they rapidly decay to a structure 

resembling the long time state of the linear optimal. 
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FIG. 13. Energy time histories at rc = 0.293, varying the initial energy and domain length via R R 
repetitions n of lx,opt. (a) E = (1/2) û2 + v̂2 dΩ. (b) Ev = (1/2) v̂2 dΩ. Additional nonlinear 
growth is provided for even multiples of n, for all initial energies tested at rc = 0.293, via pairwise 
coalescence of TS wave repetitions. All curves are rescaled to unit initial energy. The linear curves 
are presented with black long dashed lines. At rc = 0.293, Gmax = 55.9876. 

V.5. Influence of domain length 

In § V.2, ED and ED,2 were considered in n = 1 domains. The effect of increasing 

the domain length on ED and ED,2 is now discussed, for integer repetitions up to n = 4 

(Lx = nlx,opt). Growth measures E and Ev are shown in Fig. 13 for rc = 0.293, with four 

distinct influences of domain length discussed. Recall that in the n = 1 domain at rc = 0.293 

some E0 can attain growth to a secondary local maximum (e.g. E0 = 1.10 × 10−5) but no 

E0 transition to turbulence (cross separatrix 1). The first influence of domain length is that 

if two instances of the same perturbation evolve in an n = 2 domain, an inflection point 

appears in the energy-time history, indicating a crossing of separatrix 1. This occurs as the 

two individual repetitions of the TS wave structure coalesce into a single wave structure, 

with a rapid jump in energy at the secondary maximum from the n = 1 case. Secondly, 

at E0 = 1.10 × 10−5, but with an n = 3 domain, this extra jump in energy does not occur 

(n = 3 follows n = 1). There would be a mismatch in wavelengths if only one pair of 

structures coalesced, prohibiting the interaction of all three repetitions. Thirdly, again at 

E0 = 1.10 × 10−5 , the n = 4 case can experience both the n = 2 pairwise coalescence 

(4 → 2 repetitions), and then another coalescence (2 → 1 repetition), which allows for an 

additional, albeit smaller, jump in energy. In the E0 = 1.10 × 10−5 case, the n = 4 curve 
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FIG. 14. Temporal evolution at rc = 0.293, Ly = 28.28, n = 2, E0 = 5.48 × 10−5; v̂-velocity 
contours. Solid lines (red flooding) positive; dotted lines (blue flooding) negative. This case decays 
in an n = 1 domain, but undergoes second-stage growth in an n = 2 domain because it restructures 
to an arched TS wave after the coalescence of the two individual perturbation repetitions. 

closely follows the n = 2 curve early on, indicating the time it takes for the lower energy 

case to sense the full domain length. However, fourthly, the E0 = 5.48 × 10−5 case differs 

between n = 2 and n = 4, with the structure able to increase in size more rapidly in the 

latter case when reforming to an arched TS wave structure. This is inhibited in smaller 

(n = 1) domains, in which the structure decays because it is distorted by too large an initial 

energy. The same is true of even larger initial energies, E0 = 1.64 × 10−4 and 3.29 × 10−4 , 

which undergo second-stage growth in the n = 2 domain, while the n = 1 cases only decay 

after the linear maximum. 

The v̂-velocity fields are depicted in Fig. 14 for E0 = 5.48 × 10−5 , n = 2 at rc = 0.293. 

Recall that with n = 1, E0 = 1.10 × 10−5 attains second-stage growth, whereas E0 = 

5.48 × 10−5 is too highly energised and rapidly decays, as the flow field does not resemble 

an arched TS wave, e.g. Fig. 10(a). The two repetitions of the distorted TS wave shown in 

Fig. 14(a), 14(b) are not yet interacting. The interaction between the two wavelengths is 

shown in Fig. 14(c), where one repetition becomes dominant, and will shortly subsume the 

other, Fig. 14(d). In Fig. 14(e), the wave has re-formed into a single repetition of the arched 

TS wave structure. The arched TS wave then undergoes nonlinear second-stage growth, as 

it slowly relaxes back to a conventional TS wave, Fig. 14(g). It finally decays to a field 

resembling the long time solution of a linear transient growth computation. However, unlike 
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FIG. 15. Energy time histories, varying the initial energy and domain length via repetitions n of 
lx,opt. (a) rc = 0.585, Gmax = 89.9630, ED = 2.6919 × 10−6, maximum nonlinear gain observed for 
E0 > ED is ≈ 4 × 103 (n = 2). (b) rc = 1.463, Gmax = 166.4092, ED = 1.2096 × 10−6, maximum 
nonlinear gain observed for E0 > ED is ≈ 2 × 104 (n = 2). All curves are rescaled to unit initial 
energy. E0 < ED are unable to take advantage of the extra domain length, and still rapidly decay. 

a linear optimal, this process will still have stored perturbation energy in a sheet of negative 

û-velocity, visible when comparing the energy measures shown in Figs. 13(a), 13(b). 

The energy growth at larger Reynolds numbers is depicted in Fig. 15. These illustrate the 

length of time over which high energy states are maintained when E0 > ED. At rc = 0.585, 

n = 1, E0 = 2.67 × 10−6 < ED rapidly decays, while E0 = 2.71 × 10−6 > ED maintains 

large energies for the order of 104 time units, particularly so when n = 2. This is even 

clearer at rc = 1.463, with very large amounts of growth, and a very slow decay, when 

E0 = 1.213 × 10−6 > ED. A case E0 = 1.209 × 10−6 just slightly below ED = 1.2096 × 

10−6 provides a clearer indication of the additional growth due to reaching the turbulent 

attractor, compared to the underlying nonlinear second-stage growth (to a local maximum). 

Of additional interest is that it takes a far greater time to relaminarize turbulent states in 

larger domains. The oscillations appear to be less energetic, or otherwise damped out more 

rapidly, in the n = 1 domains. Lastly, all rc = 0.585 and rc = 1.463 cases show that E0 < ED 

cannot take advantage of the extra space afforded in n = 2 domains, and decay following 

the n = 1 curves, such that ED does not depend on domain length. Note that at rc = 1.463 

the wavenumbers in n = 1 and n = 2 domains are outside the neutral curve. 

One final influence of the domain length is considered. At rc = 0.585, ED,2 = 1.09646 × 
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FIG. 16. Contours of v̂-velocity at rc = 0.585, E0 = 1.43 × 10−5 , Ly = 28.28 at t ≈ 2.8 × 103 . 
(a) n = 3. (b) n = 4. Solid lines (red flooding) positive; dotted lines (blue flooding) negative. 
Although the n = 3 and n = 4 cases coalesce, without the TS wave having an arched appearance, 
they decay monotonically. 

10−5 when n = 1, Fig. 7(b). Over-energised cases, with E0 = 1.43 × 10−5 > ED,2 and 

in longer domains (n = 2 through n = 4), are shown in Fig. 15(a). These all appear to 

decay coincidentally with the n = 1 case, seemingly implying that ED,2 has not significantly 

changed with increasingly domain length, at rc = 0.585. Comparatively, at rc = 0.293 with 

n = 2 (Fig. 13) second-stage growth is observed (akin to cases with ED ≤ E0 ≤ ED,2), 

in multiple over-energised situations, via the restructuring depicted in Fig. 14. This would 

imply that at rc = 0.293, ED,2 has changed noticeably with increasing domain length. At 

rc = 0.585, with a larger initial energy, the vortex merging process may occur too rapidly, 

unlike the rc = 0.293, n = 2 cases. At rc = 0.585 the n = 3 and n = 4 cases reformed into 

the simpler conventional flat bottomed TS wave structure, shown part way through their 

decay in Fig. 16, rather than arched TS waves capable of nonlinear second-stage growth. 

This issue may also be exacerbated by the wavelength restrictions imposed by the periodic 

boundary conditions, recalling the rc = 0.293, n = 3 case indicated that a mismatch in 

wavelength between TS wave instances can also prevent growth. Overall, results in longer 

domain do not contradict the fact that E0 = 1.43×10−5 does not incite sustained turbulence 

at rc = 0.585, so that separatrix 2 is still clearly defined. However, they do indicate that 

ED,2 can be very difficult to accurately determine, as consistent behaviour was not observed 

across all Reynolds numbers tested. As a final note, the investigations at rc = 0.585, n = 3 
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and n = 4 also highlight that the energy growth is due to the form of the merged structure, 

and not coalescence, as the cases monotonically decay after the linear peak, during which 

time they are merging. 

VI. CONCLUSIONS 

The present work has numerically illustrated a subcritical route to turbulence driven by 

purely quasi-two-dimensional mechanisms, in a laminar Q2D exponential boundary layer. 

This system approximates a magnetohydrodynamic duct flow under a strong transverse 

magnetic field. It was shown that the linear optimals form an excellent approximation of 

the nonlinear optimals, when tested for small (linear τopt) target times. The transition 

process then has two stages. First, linear transient growth, via the Orr mechanism. This 

was followed by a second stage of substantial nonlinear growth, able to propel the flow across 

the laminar-turbulent basin boundary. However, only linear optimals with specific initial 

energies ED ≤ E0 ≤ ED,2 were capable of following this route to a temporary turbulent 

state, before later relaminarizing. The lower bound, ED, defines the minimal seed energy 

capable of transition. The upper bound, ED,2, represents an initial perturbation too highly 

energised, which chaotically distorts the TS wave, inducing rapid dissipation, rather than 

transitioning to turbulence. 

The additional nonlinear growth which leads to the existence of the delineation energy 

ED (separating states which rapidly relaminarize, and those which temporarily maintain 

turbulence) is linked to the formation of an arched TS wave, which forms when a conventional 

TS wave becomes pinched close to the wall. The arched TS wave still provides significant 

nonlinear growth when E0 < ED, but does not transition because the optimal is too far 

(measured in an energy norm) from the boundary of the turbulent attractor. While closer 

to the basin boundary at E0 > ED,2, distortion of the conventional TS wave prevents the 

arch from forming. If the arch forms, the relaxing of the arched TS wave into its conventional 

counterpart eventually results in the decay of the perturbation. However, during this process, 

perturbation energy is stored in a streamwise sheet of negative velocity, which effectively 

becomes a modulation to the original base flow. This modulated base flow may prove easier 

to re-excite if targeted by flow control methods. Overall, this quasi-two-dimensional system 

was found to be highly sensitive to the energy and structure of the initiating perturbation, 

with only the optimal initial field capable of transition for tests in shorter domains. 
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Larger domain lengths were also investigated. Firstly, this showed that successive vortex 

merging may be capable of increasing the upper delineating energy ED,2, by allowing dis-

torting structures which would naturally rapidly decay, to instead coalesce into an arched 

TS wave structure, capable of sustaining turbulence over longer times. However, for suf-

ficiently large initial energy, even very long domains still indicated the existence of high 

energy states which only rapidly decay after the initial linear growth. Perturbations with 

energy below the lower delineating energy ED could not make use of the merging process, 

and still decayed in longer domains. Perturbations with E0 > ED, which are sufficient to 

transition to turbulence, made use of the longer domains by pairwise coalescence of TS wave 

repetitions, achieving up to an order of magnitude of additional growth (compared to the 

shorter domains). The largest nonlinear gains are therefore achieved with E0 > ED and in 

longer domains. The comparison between the nonlinear growth of the linear optimal and 

the linear growth of the linear optimal is striking at larger Reynolds numbers. The non-

linear gains achieved, at Reynolds numbers approximately 40% below and above critical, 

were ≈ 4 × 103 and ≈ 2 × 104, respectively, compared to the optimised linear gains of 89.96 

and 166.4, respectively. Furthermore, it appeared to take noticeably longer for turbulent 

oscillations to become subdued in longer domains. 

The prospect of subcritical transitions is promising for the feasibility of self-cooled liquid 

metal reactor ducts. However, the fact that all Reynolds numbers are scaled on the boundary 

layer thickness must be kept in mind. Although a sidewall Reynolds number of 105 provided 

both very large growth, and slow relaminarization, at a realistic magnetic field strength, 

the corresponding Reynolds number based on the half duct height would be around 107 . 

This is well beyond what is currently expected for reactor operation, which range from 104 

to 106 [7, 58, 59]. Furthermore, no assessment of the sensitivity to wall properties on the 

formation of the arched TS wave has been performed, which given the thermal, electrical 

and slip issues considered in magnetohydrodynamic coolant duct flows [60–63], provides an 

important avenue for future work for self-cooled reactor designs. 

Lastly, further investigation is warranted from a theoretical point of view. Although 

subcritical turbulent transitions were obtained, it is curious that all turbulent flow fields 

relaminarized. It would be worth exploring whether the turbulent states are in a true basin 

of attraction. The Q2D turbulent states may be unstable, such that a small deviation from 

their trajectory drives them out of the basin, causing relaminarization. However, it cannot 

be excluded that the behaviour originates from the numerical method, or choice of periodic 
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boundary conditions. 
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