
 

 

Biomechanical metrics of aesthetic 
perception in dance 
 
Bronner, S. and Shippen, J. 
 
Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  
Bronner, S. and Shippen, J. (2015) Biomechanical metrics of aesthetic perception in dance. 
Experimental Brain Research, volume 233 (12): 3565-3581 

http://dx.doi.org/10.1007/s00221-015-4424-4 
 
DOI 10.1007/s00221-015-4424-4 
ISSN 0014-4819 
ESSN 1432-1106 
 
Publisher: Springer 
 
The final publication is available at Springer via http://dx.doi.org/10.1007/s00221-015-
4424-4 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  

http://dx.doi.org/10.1007/s00221-015-4424-4
http://dx.doi.org/10.1007/s00221-015-4424-4
http://dx.doi.org/10.1007/s00221-015-4424-4


 1 

 1 

 2 

Biomechanical metrics of aesthetic perception in dance 3 

 4 

Shaw Bronner and James Shippen 5 

 6 

 7 

Shaw Bronner PhD, PT, OCS, ADAM Center, 90 Eighth Ave. #11B, Brooklyn, NY 11215 and 8 

Brain Function Laboratory, Department of Psychiatry, Yale University School of Medicine, 300 9 

George St., Suite 902, New Haven CT, 06511. E-mail: shaw.bronner@gmail.com, Phone: 917-10 

279-7596, Fax: 718-841-7116. 11 

 12 

James Shippen PhD, CEng, Department of Industrial Design, Coventry University, Priory St, 13 

Coventry, CV1 5FB, UK. E-mail: j.shippen@coventry.ac.uk, Phone: +44- 24- 7688-7072. 14 

 15 

 16 

 17 

 18 

19 

mailto:shaw.bronner@gmail.com
mailto:j.shippen@coventry.ac.uk


 2 

 20 

Abstract   21 

The brain may be tuned to evaluate aesthetic perception through perceptual chunking when we 22 

observe the grace of the dancer. We modelled biomechanical metrics to explain biological 23 

determinants of aesthetic perception in dance. Eighteen expert (EXP) and intermediate (INT) 24 

dancers performed développé arabesque in three conditions: i) slow tempo, ii) slow tempo with 25 

relevé, and iii) fast tempo. To compare organizational metrics of kinematic data, we calculated 26 

intra-excursion variability, principal component analysis (PCA), and dimensionless jerk for the 27 

gesture limb. Observers, all trained dancers, viewed motion capture stick figures of the trials 28 

and ranked each for i) aesthetic proficiency and ii) movement smoothness. Statistical analyses 29 

included group by condition repeated measures ANOVA for metric data; Mann-Whitney U rank 30 

and Friedman’s rank tests for non-parametric rank data; Spearman’s rho correlations to 31 

compare aesthetic rankings and metrics; and linear regression to examine which metric best 32 

quantified observers’ aesthetic rankings, p<0.05. The goodness of fit of the proposed models 33 

were determined using Akaike Information Criteria (AIC). Aesthetic and smoothness rankings of 34 

the dance movements revealed differences between groups and condition, p<0.0001. EXP were 35 

rated more aesthetically proficient than INT dancers. The slow and fast conditions were judged 36 

more aesthetically proficient than slow with relevé (p<0.0001). Of the metrics, PCA best 37 

captured the differences due to group and condition. PCA also provided the most parsimoneous 38 

model to explain aesthetic rankings. By permitting organization of large data sets into simpler 39 

groupings, PCA may mirror the phenomenon of chunking in which the brain combines sensory-40 

motor elements into integrated units of behavior.  In this representation the chunk of information 41 

which is remembered, and to which the observer reacts, is the elemental mode shape of the 42 

motion rather than physical displacements. This suggests that reduction of redundant 43 

information to a simplistic dimensionality is related to the experienced observer’s aesthetic 44 

perception.  45 

 46 

Key words: Akaike Information Criteria, chunking, dimensionless jerk, principal component 47 

analysis, variability 48 

 49 

50 
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 51 
INTRODUCTION 52 

In 1623, the astronomer Galileo Galilei observed that the universe "is written in the 53 

language of mathematics" (Tegmark, 2008). More recently, Max Tegmark wrote “our external 54 

physical reality is a mathematical structure” (Tegmark, 2008). Perception of dance (visual) or 55 

music (auditory) is perception of reoccurring shapes and patterns. These shapes and patterns, 56 

in the abstract, are based on numerical relationships, which are expressions of space and time. 57 

In movement analysis, we employ biomechanical mathematics to describe and analyze 58 

movement. Here, we ask, is there an biomechanical metric that relates to our aesthetic 59 

perception of the dancer?  60 

 61 

Aesthetic perception 62 

When two dancers perform the same movement, a movement practiced multiple times 63 

on a daily basis, how does the viewer intuitively know that one dancer embodies greater 64 

aesthetic proficiency or is more pleasing (Calvo-Merino, Ehrenberg, Leung, & Haggard, 2010; 65 

Calvo-Merino, Jola, Glaser, & Haggard, 2008; E. S. Cross, Kirsch, Ticini, & Schutz-Bosbach, 66 

2011)? Dance (and music) has been a medium for communities to interrelate since primitive 67 

societies (I. Cross, 2012; Kraus, Hilsendager, & Gottschild, 1991). As dance moved to the 68 

performance venue, it became removed from group communal interaction to one of observer – 69 

performer or audience and dancers. This assumes there are aesthetic properties to dance 70 

movement and that the audience experiences an aesthetic response of some sort (Bläsing et 71 

al., 2012). Depending upon their movement experience, observers may evaluate their aesthetic 72 

experience in several ways; through cognitive judgement or affective appreciation (valence) of 73 

dance movement based upon qualities such as movement amplitude, velocity, difficulty, or 74 

control; while others may include their own familiarity and physical ability in their aesthetic 75 

appreciation (Chatterjee, 2003; E. S. Cross, Kirsch, Ticini, & Schütz-Bosbach, 2011; Leder, 76 

Belke, Oeberst, & Augustin, 2004; Montero, 2012; Torrents, Castaner, Jofre, Morey, & Reverter, 77 

2013). The information-processing model presented by Leder at al. (2004) suggests that there 78 

are two types of output in aesthetic processing: aesthetic emotion and aesthetic judgement 79 

(Leder et al., 2004). To date, the majority of research on dance aesthetics has focused on 80 

emotional liking: the observers’ perception of affect and affective reponse to dance (Calvo-81 

Merino et al., 2008; Christensen, Nadal, & Cela-Conde, 2014; Kirsch, Drommelschmidt, & 82 

Cross, 2013; Orgs, Hagura, & Haggard, 2013). The cognitive aesthetic evaluation of technical 83 

proficiency such as control, accuracy, and fluidity, the focus of this study, has been less studied.  84 
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 With no external goal to quantify a score, can we quantify the difference in the viewer’s 85 

aesthetic judgement of these two dancers performing the same movement? What is the 86 

relationship between this perception of dance, in this case a ballet sequence, and its 87 

biomechanical organization? Does the observer perceive dance movement with some 88 

organizational strategy for recall? Does the concept of chunking for the purpose of extracting 89 

meaningful event features, while suppressing extraneous information, relate to a kinematic 90 

metric?  91 

  92 

Linear and nonlinear metrics in human movement 93 

 A dynamic systems approach offers determination of coordinative patterns that may be 94 

overlooked in more traditional linear kinematic measures organized around measures of 95 

centrality. Movement patterns in high and low skilled subjects or those with dysfunction can be 96 

considered adaptations to the constraints of mechanics, environment, and task. Most 97 

movements, such as walking, display stereotypical spatial-temporal patterns, which suggests 98 

that human movements organize degrees of freedom into functional coupled relationships to 99 

achieve the task. These constraints, resulting from what are apparently complex motions, 100 

consist of significantly less active degrees of freedom than an unconstrained system. These 101 

degrees of freedom are patterns of joint movements rather than individual articulations. 102 

Because motor behavior is also inherently variable, the challenge is to identify coordination 103 

patterns that may distinguish different groups of subjects, with greater skill or disability, or 104 

between conditions of differing levels of difficulty. A widely applied method in structural 105 

dynamics is to describe complicated movements in terms of a small number of underlying 106 

modes of vibration (e.g. principal component analysis). Could principal component analysis 107 

(PCA) also be related to the manner in which elements are chunked into larger combinations as 108 

as part of the aesthetic perception of movement? 109 

Coordination variability can be assessed by approaches such as angle-angle plots, PCA, 110 

vector coding, and entropy. Seemingly contradictory research findings suggests that there is an 111 

‘optimal’ coordination variability in healthy, skilled subjects, no matter what the movement, that 112 

is necessary to permit adaptation to mechanical, environmental, and task constraints (Chow, 113 

Davids, Button, & Koh, 2008; Pollard, Heiderscheit, van Emmerik, & Hamill, 2005; Stergiou & 114 

Decker, 2011; Wagner, Pfusterschmied, Klous, von Duvillard, & Muller, 2012). This lies between 115 

the higher and lower variability reported in populations with less skill or neurologic and 116 

musculoskeletal dysfunction (Hamill, van Emmerik, Heiderscheit, & Li, 1999; Hein et al., 2012; 117 
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Kiefer et al., 2013). The majority of analyses, to date, have focused on sports activities that 118 

have an end goal such as speed or accuracy. 119 

Patterns of variability (e.g. simple v. complex skills, injured v. healthy subjects) may not 120 

be generalizable and may differ depending on the movement to be analyzed (e.g. basketball 121 

dunk v. ballet movement). To date, dynamic systems approaches have been applied to the 122 

analyses of dance movements in only limited fashion (Hollands, Wing, & Daffertshofer, 2004; 123 

Reeve, Hopper, Elliott, & Ackland, 2013; Smith, Siemienski, Popovich, & Kulig, 2012; Torrents 124 

et al., 2013; Vincs & Barbour, 2014). Are certain metrics sensitive to determine differences due 125 

to skill level or condition difficulty in ballet movement? 126 

 Maximum smoothness theory introduced the jerk metric, the third time derivative of 127 

position, as a quantitative principle of motor control as well as a way to characterize the smooth 128 

gracefulness of natural movements (Hogan & Flash, 1987). This brings dance immediately to 129 

mind. A number of jerk measures have been used to quantify smoothness and coordination in 130 

studies that examine changes due to neurologic impairment and rehabilitation (Rohrer et al., 131 

2002; Teulings, Contreras-Vidal, Stelmach, & Adler, 1997; Yan & Dick, 2006). It has been used 132 

less frequently to examine differences in skill level (Hreljac, 1993). Jerk may provide a metric for 133 

the objective quantification of smoothness of motion and, by extension, to the skill level of the 134 

practicioner. Recently, Hogan and Sternad (Hogan & Sternad, 2009) described the inability of 135 

numerous measures of jerk to correlate with a subjective assessment of smoothness of 136 

movement. These jerk measures, depending on their individual formulation, had dimensions of 137 

time and position to appropriate powers. They proposed a dimensionless measure of jerk which 138 

was found to be insensitive to periods of inactivity and more accurately reflected divergence 139 

from smooth and coordinated movement. Does dimensionless jerk correlate with subjective 140 

smoothness when assessed by trained dance observers? 141 

 142 

Aesthetic criterion of dance 143 

 In ballet, the goal of movement is to meet an technical aesthetic criterion, that includes 144 

specific timing and spatial relationships of upper and lower extremity placement, while making it 145 

appear effortless (Autere, 2013; Cohen, 1997; Hagendoorn 2005). Previous researchers, 146 

examining frequently performed ballet movements such as the développé arabesque and grand 147 

rond de jambe en l’air, reported similar movement organization and timing across various levels 148 

of expertise (e.g.  expert, advanced, and intermediate dancers) (Bronner, 2012; Kwon, Wilson, 149 

& Ryu, 2007; M. Wilson, Lim, & Kim, 2004). In these studies there were no differences in limb 150 

angular displacement and velocity. Only kinematic control of the pelvis (e.g. three-dimensional 151 
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(3-D) peak angular displacement) appeared to differentiate skill level. However, the prescribed 152 

timing and spatial directives may have constrained these biomechanics findings. If there is no 153 

difference between the two dancers in the general shape and timing kinematics of the dance 154 

movement (e.g. peak angular displacement and velocity), alternative approaches are called for. 155 

Could this be due to stability (e.g. less variability), a cost function, or some other set of 156 

kinematic parameters such as dimensionless jerk or nonlinear variability algorithms such as 157 

principal component analysis? Furthermore, does differentiation of skill and condition by a 158 

kinematic metric relate to observer perception? 159 

 The purpose of this study was three-fold. The first aim was to apply linear and nonlinear 160 

dynamic systems approaches to determine the sensitivity of these metrics to differentiate skill 161 

level and condition in a complex ballet sequence, the développé arabesque. The second aim 162 

was to determine whether experienced observer rankings of the performers’ développé 163 

arabesque, viewing abstracted motion capture stick figures, for technical aesthetic proficiency 164 

and movement smoothness can also differentiate skill level and condition. Finally, the third aim 165 

was to compare these biomechanical metrics to the experienced observer rankings for 166 

aesthetics and smoothness to determine which metric best quantified observer perceptions of 167 

the dancers’ développé arabesque sequence. 168 

 169 

2. METHODS 170 

Subjects  171 

Dancers 172 

Eighteen healthy adult dancers (12 female, 8 male), recruited from internationally 173 

recognized professional dance companies and affiliated pre-professional training programs, 174 

volunteered for this study. Each dancer was assigned to one of two groups with distinct levels of 175 

dance expertise: i) expert and ii) intermediate. The expert (EXP) group was based on 176 

employment in a professional company. The intermediate (INT) group, comprised of student 177 

dancers, was determined by ballet class placement by dance faculty. During auditions, students 178 

are placed into ballet technique classes that ranged from beginning to advanced levels (Ballet 1-179 

7); we selected students placed into Ballet 4 and 5, or intermediate level classes. Inclusion 180 

criteria was the ability to attain the criterion dance sequence, développé arabesque, at a height 181 

of 90º (e.g. gesture limb perpendicular to the stance limb and parallel to the floor) and exclusion 182 

was a history of lower extremity injury during the previous six months that caused a dancer to 183 

stop dancing for one week or more. We did not include naïve or beginner participants in this 184 

study because naïve and beginner dancers were not able to meet the inclusion criteria. The 185 
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university Institutional Review Board approved this study. A power analysis of sample size for a 186 

two group repeated measures with three conditions (2 X 3) study, with a large effect size 187 

(f=0.80), power=0.95, and  = 0.05, determined a sample size of 8 was necessary. Therefore, 188 

the selected sample size of 18 subjects was more than sufficient. Participant demographics 189 

were collected at intake. 190 

The ratio of female to male dancers was the same within each group (5 females, 4 191 

males). Comparison of group demographics was performed using a paired t-test for 192 

independent samples. There were differences between groups in age (EXP = 25.8 ± 2.6 and 193 

INT = 20.4 ± 1.5 years, p<0.0001) and years of dance experience (EXP = 15.22 ± 6.68 and INT 194 

= 5.50 ± 5.15 years, p=0.003), but no difference in height (1.71 ± 0.076 m), mass (62.20 ± 8.67 195 

kg), leg length (0.92 ± 0.05 m), or starting first position turnout (107.94 ± 11.89º). 196 

 197 

Observers 198 

Previous research has reported differences in the aesthetic experience of viewers with 199 

differing levels of expertise in performing the observed movements (Calvo-Merino et al., 2010; 200 

E. S. Cross, Kirsch, Ticini, & Schutz-Bosbach, 2011; Kirsch et al., 2013). Therefore, we selected 201 

trained dancers to act as observers of the arabesque sequences. Experienced dancers are able 202 

to rapidly process movement, developed as part of their training, and may use ‘schematic 203 

expectancies’ to maximize their short-term memory (C. Stevens et al., 2010). Twenty seven 204 

different dancers, recruited from international caliber professional dance companies and 205 

affiliated pre-professional training programs, volunteered to evaluate the arabesque data for i) 206 

aesthetic proficiency and ii) smoothness. Observers included nine professional and 18 207 

advanced or intermediate pre-professional dancers (22 female, 5 male), They had a broad span 208 

of dance experience from 4 to 40 (mean 15 ± 9) years and ranged from 18 to 55 (mean 28 ±12) 209 

years of age. 210 

 211 

Experimental Protocol 212 

Motion capture 213 

The dance-specific task, développé arabesque, was a sequential, multi-joint movement 214 

that required intra and inter-segmental coordination of lower and upper extremity movement 215 

with changes from bipedal to unipedal postural control. It is practiced in every ballet class, and 216 

consequently was well known to each subject. Each dancer’s preferred 1st position foot 217 

placement (heels touching with lower extremities externally rotated) was marked on the floor, 218 

measured (Bronner, 2012), and used as the starting position (Fig. 1).  219 
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 220 

Insert Fig. 1 here 221 

 222 

A tape recording of a metronome with voice instruction overlay provided the tempo of the 223 

movement sequence (40 or 90 beats·min-1). Dancers practiced the développé arabesque 224 

sequence (Fig. 1A – D) for three conditions prior to data acquisition to synchronize their 225 

movements with the metronome. The dancers were instructed to emphasize spatial and 226 

temporal precision. From the starting posture (1st position), the gesture lower extremity passed 227 

through passé (hip and knee flexion, with ankle plantar flexion), and extended posteriorly to 228 

arabesque (gesture hip and knee extension with ankle plantar flexion), where it was held for one 229 

count, followed by return to the initial 1st position. Dancers performed six consecutive 230 

‘excursions’ (or repetitions of the développé arabesque sequence) within one trial with the right 231 

lower extremity as gesture limb. This was followed by six consecutive ‘excursions’ with the left 232 

lower extremity as gesture limb.  233 

 The developpé arabesque sequence was performed in three conditions to reflect 234 

differing tempo and balance constraints. For Condition 1, the developpé arabesque was 235 

performed on flat foot at a tempo of 40 beats·min-1 (Slow-flat). For Condition 2 using the same 236 

40 beats·min-1 tempo, dancers were asked to relevé (rise up onto the toes of the stance limb 237 

and hold) (Slow-bal) during the arabesque phase of the sequence. For Condition 3, the 238 

développé arabesque was performed on flat foot at a tempo of 90 beats·min-1 (Fast). The 239 

excursions lasted approximately 40s in length for Conditions 1 and 2, and 18s for Condition 3. 240 

Kinematic data were collected at a sampling rate of 120 Hz, with a 5-camera motion 241 

analysis system (Vicon 250, Oxford Metrics Ltd, Oxford, UK). A full body marker set comprised 242 

of 29 reflective, spherical markers in the Plug-In gait marker set was used to create an 11-243 

segment model. Attire for all subjects consisted of a dark colored unitard to maximize contrast of 244 

reflective markers.   245 

Kinematic data were reconstructed using a Vicon Bodybuilder model (Oxford Metrics 246 

Ltd, Oxford, UK). Kinematic data were filtered with a 4th order 20Hz order low pass FIR filter. 247 

Dance movements may require movement of three or more limbs; four in the case of a jeté or 248 

leap. Both upper extremities and one lower extremity are moving in the développé arabesque, 249 

In ballet, the gestural foot is often considered an expressive focal point. Therefore, we focused 250 

our analysis on the gestural lower extremity.  251 

 252 

Observer rankings 253 
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We defined aesthetic proficiency as the technical accuracy of timing, dynamics, and 254 

shape as performed by each dancer. We defined smoothness as the fluid trajectory of the lower 255 

extremity gesture limb. The ranking numbers 1-18 were selected for the total number of 256 

subjects, with 1 for most to 18 for least in: i) aesthetic technical proficiency, and ii) movement 257 

smoothness. Aesthetic proficiency and smoothness rankings were conducted in separate 258 

sessions. Ranking was selected, rather than rating, in order to compare each dancer to the 259 

others within a given condition. Observers evaluated the abstracted motion capture stick figure 260 

data for the left and right lower extremity as gesture limb of all subjects on a laptop computer 261 

within one condition in a single viewing (add youtube movie example of stick figures). Group 262 

assignment was unknown to the observers. There were six consecutive ‘excursions’ within one 263 

trial per gesture limb. Observers were permitted to view a trial again if needed as they 264 

reorganized the ranking numbers of a given condition.  265 

 266 

Data analysis 267 

Observer rankings 268 

Mean aesthetic and smoothness observer rankings were calculated for each dancer trial 269 

in each condition. For the aesthetic and smoothness rank data, the non-parametric Mann-270 

Whitney U rank test for two independent samples was used to determine group differences. The 271 

non-parametric Friedman two-way ANOVA rank test (K-related samples) was used to determine 272 

condition differences. Statistical significance was set at p≤0.05 for both the Mann-Whitney and 273 

Friedman tests. If significance was determined in the Friedman test, post hoc pairwise 274 

comparisons were conducted using the Wilcoxon signed-rank test with a Bonferroni correction 275 

(0.05/3 = 0.017). The assumption of homogeneity of variance was checked for aesthetic and 276 

smoothness rank data using Levene’s test for non-parametric ranked data.  277 

 278 

Three-D pelvis-hip angle-angle and toe displacement variability 279 

Intra-excursion variability for the pelvis-hip, an important control area (Bronner, 2012), 280 

was calculated on the angle-angle phase plane for all three cardinal planes. For the 3-D angle-281 

angle analysis, pelvis inclination was defined as the included angle between the normal to the 282 

right anterior iliac spine (RASIS), left anterior iliac spine (LASIS), sacrum plane and global 283 

vertical. The hip articulation angle was defined as the included angle between the femur 284 

proximal to distal axis and the normal to the RASIS, LASIS, sacrum plane. Each trial was 285 

decomposed into its constituent excursions (six per trial). The excursion commenced when the 286 
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toe marker on the gesture leg exceeded an altitude of 190mm and ended when the marker 287 

descended below 190mm.  288 

 The 3-D angle of the pelvis and hip angle between the normal of the pelvis and  289 

the proximal/distal axis of the gesture femur were calculated. The standard deviation  290 

across the excursions of the pelvis and hip angles were calculated as a fractional basis  291 

of the excursions. The pelvis-hip MSD was the mean of these standard deviations. 292 

We did not normalize the temporal component of the data of these excursions as this 293 

process can distort the spatial relationship between trials (Hamill, McDermott, & Haddad, 2000), 294 

which was a parameter of interest. Furthermore, dancers have been found to be extremely 295 

consistent when performing movements to an external tempo (Reeve et al., 2013).  296 

 Three-D angle-angle plots were constructed of the pelvis and hip for the  297 

three conditions and an MSD value was calculated for each subject. Similarly, MSD was 298 

calculated for the 3-D toe displacement using the same decomposition into its constituent 299 

excursions (six per trial) and onset and offset criteria. The mean and standard deviation of the 300 

gesture toe was calculated along its 3-D trajectory. The toe MSD was the mean of the standard 301 

deviation along the trajectory. 302 

Because each excursion had a discrete onset and offset, circular statistics were not 303 

necessary. To compare pelvis-hip and toe variability for left and right gesture limbs, separate 2 304 

(group) X 3 (condition) repeated measures ANOVA comparisons were conducted, with pairwise 305 

comparisons. Statistical significance was set at p≤0.05 for all tests.   306 

 307 

Principal component analysis 308 

PCA is a data reduction technique for the compression of large data sets (Jolliffe, 2002) 309 

and has been shown to be appropriate for feature extraction in human movement analysis 310 

(Daffertshofer, Lamoth, Meijer, & Beek, 2004). PCA was used to quantify 3-D kinematic patterns 311 

using the full data set. The joint angle time histories were calculated from the motion data. A 15-312 

element state vector was defined for each time instant of each trial from the angular position of 313 

the pelvis (3 degrees of freedom (DOF) in a rotation sequence about the P-A axis, followed by 314 

rotation about the lateral axis, followed by rotation about the S-I axis) together with the joint 315 

articulations of the hip (3 DOF in a rotation sequence about the abduction/adduction axis, 316 

followed by rotation about the flexion/extension axis, followed by rotation about the 317 

internal/external rotation axis), knee flexion (1 DOF) and ankle dorsi/plantar flexion and 318 

internal/external rotation (2 DOF) of the stance and gesture limbs. Knee flexion was defined as 319 

the angle between the line from the knee joint centre to the hip joint centre and the line from the 320 
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knee joint centre to the ankle joint centre in the plane defined by these two lines. These 321 

variables were selected as elements in the state vector as they span the domain of possible 322 

lower limb motion with the exception of knee varus/valgus and ankle abduction/adduction which 323 

were considered trivial. 324 

The principal components were calculated for the matrix of the above vector for each 325 

time in the trial. The matrix was initialized normalized, so that they have zero mean and unity 326 

variance. Principal components that contributed less than 2% to the total variance in the data 327 

set were eliminated. Mean dimensionality of the non-redundant state manifold count was 328 

calculated for each group and condition and compared with a 2 X 3 repeated measures 329 

ANOVA, with pairwise comparisons, p≤0.05.  330 

 331 

Jerk 332 

Dimensionless jerk as described by Hogan and Sternad (2009), was calculated for 3-D 333 

linear displacement of the gesture toe as: 334 

 335 

Jerkdimensionless 336 

    337 

where  D = duration of the trial 338 

 x(t) = position variable 339 

 v = first time derivative of the position variable 340 

 341 

and for 3-D angular displacment of the gesture hip as: 342 

 343 

Jerkdimensionless =  344 
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   345 

where θ = angular displacement 346 

 347 

Separate 2 (group) X 3 (condition) repeated measures ANOVA comparisons for the i) 3-D linear 348 

displacement of the gesture toe; and ii) 3-D angular displacment of the gesture hip were 349 

conducted, with pairwise comparisons. Statistical significance was set at the p≤0.05 for all tests.   350 

 351 

Correlation of observer rankings and biomechanical variables  352 

Aesthetic rankings were compared to smoothness rankings, MSD for 3-D pelvis-hip 353 

angle-angle and toe displacement variability, PCA, and dimensionless jerk for 3-D hip angle and 354 

toe displacement using Spearman’s rho correlations for nonparametric variables, p≤0.05.  355 

 356 

Modeling rankings and movement metrics 357 

We employed mixed model linear regression analysis to examine which variables, MSD, 358 

PCA, and jerk, were good predictors of each observer’s aesthetic and smoothness perception. 359 

Separate regression analyses approximated the i) aesthetic; and ii) smoothness ranking data 360 

with regressors that consisted of the following:  361 

Model 1) 5 predictors: PCA, jerk (hip and toe), and MSD (3-D pelvis-hip and toe); 362 

Model 2) 1 predictor: PCA;  363 

Model 3) 2 predictors: jerk (hip and toe);  364 

Model 4) 1 predictor: toe jerk; 365 

Model 5) 2 predictors: MSD (pelvis-hip and toe); and  366 

Model 6) 1 predictor: MSD toe.  367 

 368 

The goodness of fit of the proposed models were determined using Akaike Information Criteria 369 

(AIC), with the least AIC value, indicating the best fit. The AIC value is 370 

 371 

AIC = 2k – 2 ln(L), 372 

 373 
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Where k is the number of parameters in the model, and L is the maximized likelihood function 374 

for the model. The corrected AIC value (AICc) for finite sample size where  375 

  376 

AICc = AIC + 2k(k+1)/(n-k-1) 377 

 378 

was selected for comparison of the models. All statistics were conducted using SPSS (SPSS v. 379 

21, IBM Corp, Armonk, NY).  380 

 381 

RESULTS 382 

Observer rankings 383 

 The Mann-Whitney U test for group indicated that aesthetic rankings were lower for EXP 384 

dancers (median = 4.10, interquartile range (IQR) = 2.20-6.20) compared to INT dancers 385 

(median = 10.20, IQR = 8.20-12.00) [U=88.00, p<0.0001]. A non-parametric Friedman test of 386 

differences among repeated measures for condition was conducted, rendering a Chi-square test 387 

value of 15.267, p<0.0001. Post hoc Wilcoxon signed-rank test indicated that Slow-flat aesthetic 388 

rankings (median = 7.75, IQR = 4.88-10.13) were significantly lower than Slow-bal (median = 389 

8.30, IQR = 5.17-12.00) [z = 2.109, p=0.017]; Fast rankings (median = 7.90, IQR = 2.20-11.20) 390 

were also lower than Slow-bal [z = 3.570, p<0.0001]; and Slow-flat was lower than Fast [z = 391 

2.233, p=0.012]. [Note, lower rank indicated greater excellence in aesthetic proficiency 392 

rankings. For smoothness results see Supplement.] 393 

 394 

Insert Fig. 2 here 395 

 396 

Three-D pelvis-hip angle-angle and toe displacement variability 397 

Three-D gesture limb pelvis-hip angle-angle plots for a representative subject from each 398 

group performing six excursions during each condition are seen in Fig. 3. The MSD seen in the 399 

six plots demonstrate variability around the mean. Comparisons found a significant difference 400 

between groups [F(34,1)=6.532, p=0.015] (Fig. 4A), with EXP displaying lower pelvis-hip angle-401 

angle MSD than INT dancers. There were no differences between conditions.  402 

There were group differences in 3-D toe displacement MSD [F(34,1)=12.406, p=0.001] 403 

with EXP reflecting lower toe MSD than INT, and for condition [F(34,1)=5.277, p=0.028]. Fast 404 

condtion 3-D toe MSD was lower than the Slow-bal condition (p=0.014). There was an 405 

interaction between group and condition [F(34,1)=4.254, p=0.047] (Table 1, Fig. 4B). Three-D 406 

toe MSD was lower in EXP compared to INT dancers in the Slow-flat (p=0.047) and Slow-bal 407 
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conditions (p=0.004). 408 

 409 

Insert Figs. 3 and 4 here 410 

 411 

Principal component analysis 412 

The PCA analysis had three effects: (1) it orthogonalized the components of the input 413 

vectors so that they were uncorrelated with each other; (2) it ordered the resulting orthogonal 414 

components (principal components) so that those with the largest variation came first; and (3) it 415 

eliminated those components that contributed the least to the variation in the data set. The PCA 416 

dimensionality of the movement reported indicates the number of mode shapes which were 417 

required to account for 98% of the total variance of the motion data captured during the 418 

arabesque excursions. 419 

Figure 5A shows an example of five principal modes calculated for a representative INT 420 

dancer. The first mode, and hence the mode contributing the most variance to the movement, 421 

was predominantly a hip flexion/extension motion. The second mode was mainly a hip 422 

abduction/adduction. The third mode was associated with knee flexion/extension of the support 423 

limb, the fourth mode was support limb ankle internal/external rotation, and the fifth mode was 424 

associated with gesture limb ankle internal/external rotation. The combination of these five 425 

modes accounted for 98% of the variance of the trial. 426 

 427 

Insert Fig. 5 here 428 

 429 

Figure 5B shows an example of the four principal modes calculated for a representative 430 

EXP dancer. The first mode consists of hip flexion/extension motion, similar to the intermediate 431 

dancer. The second mode for the expert dancer was also mainly a hip abduction/adduction, 432 

however the third mode was dominated by support limb ankle internal/external rotation. The 433 

fourth mode was primarily support limb knee flexion/extension. These four modes accounted for 434 

98% of the variance of the trial. 435 

The mean dimensionality of the state manifold accounting for 98% of the variance for 436 

EXP dancers was significantly lower than the mean dimensionality for INT dancers for group 437 

[F(34,1)=25.339, p<0.0001] and condition [F(34,1)=14.876, p<0.0001] (Fig.6A and B). Post hoc 438 

pairwise comparisons for condition indicated there were differences between Slow-bal and 439 

Slow-flat (p=0.008) as well as Slow-bal and Fast (p<0.0001), with Slow-flat and Fast less than 440 

Slow-bal.  441 
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 442 

Insert Fig. 6 here 443 

 444 

Dimensionless jerk 445 

 Comparisons of 3-D toe jerk found differences between conditions [F(34,1)=81.420, 446 

p<0.0001] but not for group (Fig. 7B). Pairwise condition comparisons were not significant.  447 

Similarly, for 3-D hip angular jerk, there were differences between conditions [F(34,1)=24.649, 448 

p<0.0001] but not for group (Fig. 7A). Pairwise condition comparisons found jerk was lower for 449 

the Fast condition than the Slow-flat or Slow-bal conditions (p<0.0001 and p=0.002, 450 

respectively).  451 

 452 

Insert Fig. 7 here 453 

 454 

Relationships between aesthetics and biomechanical variables  455 

 Rankings for aesthetics and smoothness were highly correlated (r=0.817 p<0.0001). 456 

[See Supplement for additional smoothness correlations]. There were significant correlations 457 

between aesthetics rankings and PCA (r=0.620, p<0.0001), 3-D hip angular jerk (r=0.460, 458 

p<0.0001), 3-D toe jerk (r=0.258, p=0.014), pelvis-hip angle-angle MSD (r=0.460, p<0.0001), 459 

and toe MSD (r=0.447, p<0.0001).  460 

 461 

Modeling rankings and movement metrics 462 

 Among the models, model 2, which used a single predictor of PCA, demonstrated the 463 

least AICc value for aesthetic ranking responses of the observers (Table 1). 464 

 465 

Insert Table 1 here 466 

 467 

DISCUSSION 468 

In general, observer aesthetic and smoothness rankings and biomechanical parameters 469 

were capable of distinguishing between group and condition, with the exception of 3-D toe jerk 470 

and pelvis-hip angle-angle MSD metrics. In discrimination between groups, kinematic metrics 471 

revealed that the movement of EXP dancers was smoother (e.g. lower jerk), more consistent 472 

(e.g. lower MSD), and displayed lower organizational parameters (fewer principal components) 473 

across all conditions. Differences between groups were generally greater in the Slow-flat and 474 

Slow-bal conditions compared to the Fast condition. In discerning differences between 475 
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conditions for both groups, there was generally an inverted horseshoe trendline to the data, with 476 

Slow-bal reflecting higher rankings for aesthetics (e.g. less aesthetic proficiency) and 477 

smoothness (e.g. less smooth), higher MSD, higher dimensional components, and higher jerk. 478 

In contrast, the Fast condition reflected the lowest number of principal components and lowest 479 

jerk. PCA provided the most parsimoneous model to explain observer rankings. Each of the 480 

variables are discussed further in the sections below. 481 

 482 

Observer rankings 483 

 We chose dancer-observers who were well trained in the movements that they ranked 484 

for aesthetics and smoothness. Evidence suggests that cortical regions involved in the action-485 

observation network respond more strongly when the observer sees a kinesthetically familiar 486 

movement compared to one that the observer has never performed (Bläsing et al., 2012; Calvo-487 

Merino, Glaser, Grezes, Passingham, & Haggard, 2005; E. S. Cross, Hamilton, & Grafton, 488 

2006). Aesthetic judgement has been linked to both action and processing fluency (Hayes, Paul, 489 

Beuger, & Tipper, 2008; Reber, Schwarz, & Winkielman, 2004). Experienced dancers compared 490 

to naïve observers judge the motor perceptual experience of precision, fluidity, and control 491 

differently. Therefore, we selected dancers to perform the observer rankings with the 492 

expectation that this expertise refines their observation of the technical aesthetic qualities of 493 

dance (Montero, 2012). In this study, despite reviewing the motion capture stick figures on 494 

separate occasions to rank for aesthetic proficiency or smoothness, rankings for aesthetic 495 

proficiency and smoothness were highly correlated. This suggests that movement fluidity may 496 

be an important component of cognitive aesthetic perception.  497 

 Several groups have developed dance-specific aesthetic competance evaluation 498 

measures that focus on the cognitive aspects of aesthetics such as technique accuracy, 499 

dynamics, and control (Angioi, Metsios, Twitchett, Koutedakis, & Wyon, 2009; Chatfield & 500 

Byrnes, 1990; Krasnow & Chatfield, 2009). Each group demonstrated excellent repeatability 501 

between judges in their respective measures, with sensitivity to determine change with training 502 

or due to expertise. Similar judgement of competancy is also used in sports competitions such 503 

as diving, gymnastics and figure skating (Díaz-Pereira, Gómez-Conde, Escalona, & Olivieri, 504 

2014; Looney, 2004; Pajek, Cuk, Pajek, Kovac, & Leskosek, 2013; Young & Reinkensmeyer, 505 

2014). We chose to rank aesthetic judgement specific to each dancer’s ballet technique for this 506 

reason. Aesthetic valience may be more variable across individuals due to personal taste (Leder 507 

et al., 2004).  508 

 Researchers have employed several ways of displaying dance movement in order to 509 
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study the aesthetic perception of dance. Observers have viewed dance as point light displays 510 

(Sevdalis & Keller, 2011), motion capture stick figures (Sato, Nunome, & Ikegami, 2014; 511 

Torrents et al., 2013), static stick figures (Daprati, Iosa, & Haggard, 2009), video (Calvo-Merino 512 

et al., 2008; E. S. Cross, Kirsch, Ticini, & Schütz-Bosbach, 2011; Jola & Grosbras, 2013; Miura 513 

et al., 2010), and live performance (Angioi et al., 2009; Stevens et al., 2009). Observation of live 514 

and video performances are most ecologically valid and may be important to study aesthetic 515 

valence. In contrast, abstraction of the dancer’s movement in point-light or motion capture stick 516 

figure representation allows the observer to focus on form and fluidity to make technical 517 

aesthetic judgements without distraction by costumes, sets, or music. 518 

  Observers were able to distinguish between groups and conditions with both aesthetic 519 

proficiency and smoothness rankings. It is possible that these dancer-observers were able to 520 

accomplish this due to their specialized training in recognizing movement configurations, 521 

encoding them (in the case of ballet, this may include verbal encoding as it has a set 522 

vocabulary), and then extracting key information as part of the process of learning new 523 

choreography (C. Stevens et al., 2010; Stevens, Ginsborg, & Lester, 2010). In this study, the 524 

développé arabesque was a relatively short, well-learned phrase, enabling the observers to 525 

focus on differences between the performers.  526 

 527 

Relationships between observer rankings and biomechanical variables 528 

 Our results found that aesthetic rankings and all variables were significantly correlated. 529 

The highest correlation between aesthetic proficiency and biomechanical metrics was to PCA 530 

(r=0.620, greater than that of smoothness to PCA, r=0.479, see Supplement). Recently, multiple 531 

factor analysis (MFA), an extension of PCA to handle multiple data tables that measure sets of 532 

variables collected on the same observations, was applied to four dance movements: (1) 533 

arabesque penchée requiring balance; (2) tour en dehors or turn; (3) brisé volé en arriére en 534 

tournant or skater’s jump; and (4) a forward fall, performed by expert dancers (Torrents et al., 535 

2013). Non-expert observers rated motion capture stick figures performing each of the 536 

movements for aesthetic ‘beauty.’ Movement amplitude was the basic parameter used in 537 

judging positive aesthetics, followed by turning velocity, and the length of time that balance was 538 

maintained. In other studies, greater difficulty or faster movements were more appealing to 539 

naïve oservers (Calvo-Merino et al., 2008; E. S. Cross, Kirsch, Ticini, & Schütz-Bosbach, 2011). 540 

These findings correspond to the lower aesthetic and smoothness rankings we found for the 541 

Fast condition (lower ranking of aesthetic proficiency and smoothness indicated greater 542 

excellence). However, we found that aesthetic and smoothness rankings were highest for the 543 
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Slow-bal condition, the more difficult of the conditions. The expertise of these observers did not 544 

rank balance itself with positive aesthetics. It is likely, they perceived technical problems in the 545 

performers’ achievement of that condition. 546 

 Sato et al. (Sato et al., 2014) investigated the relatonship of aesthetic competance to 547 

variability of amplitude, velocity and shape in hip hop dance. Three groups of dancers with 548 

differing skill levels performed the wave. Similar to this study, motion capture stick figures were 549 

rated by experienced judges. Aesthetic judgement discriminated successfully between experts, 550 

non-expert, and novice dancers and correlated highly with smoothness propogation of the wave. 551 

Components of aesthetic technical proficiency include control, accuracy, and fluidity. Therefore, 552 

it is possible that the movement smoothness is a subset of aesthetic technical proficiency, 553 

explaining the high correlation (r=0.817) between the two parameters in our analysis. 554 

There were also correlations between smoothness rankings and all variables with the 555 

exception of pelvis-hip angle-angle MSD. Again, the highest correlation was to PCA. Dancers’ 556 

training focuses on timing and the dynamic quality of movment. Therefore, the observers, all 557 

trained dancers, may have been particularly attuned to the smoothness perception parameter 558 

as it relates to fluidity.  559 

 560 

Three-D pelvis-hip angle-angle and toe displacement variability  561 

Angle-angle MSD analyses demonstrate variability in coodination patterns during 3-D 562 

joint coupling. This variability may decrease or increase with expertise depending on the task, 563 

offering flexibility to achieve certain goals (Wagner et al., 2012; C. Wilson, Simpson, van 564 

Emmerik, & Hamill, 2008).  565 

 566 

In dance, the aesthetic shape and timing goals may dictate the coordination patterns. 567 

Researchers have reported more stable joint coordination in dancers compared to non-dancers 568 

during a rhythmic coordination task (Kiefer et al., 2011).  Greater variability in pelvic motion in 569 

the développé arabesque, measured by the coefficient of variability (CV), differentiated between 570 

intermediate and expert dancers in all three planes (Bronner, 2012). The greatest variability was 571 

found in intermediate dancers in the transverse plane. Similar differences for end segment 3-D 572 

toe and finger CV differentiated skill level in the same study. Other dance researchers reported 573 

that CV was able to distinguish between experts and novice hip hop dancers in several 574 

kinematic measures (Sato et al., 2014).  Both pelvis-hip angle-angle and 3-D toe MSD findings 575 

in this study were similarly able to differentiate differences between skill in this study.  576 

The effect that altered speed and balance constraints have on angle-angle variability is 577 
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less clear. One study comparing pelvis-trunk coordination and variability in walking and running 578 

found no changes in variability due to speed (Seay, Van Emmerik, & Hamill, 2011). In this study 579 

only 3-D toe MSD distinguished differences between conditions. Pelvis-hip control of the center 580 

of mass may be a critical control parameter, particularly when the participant must stand on one 581 

limb. This may explain our finding of no differences between conditions in pelvis-hip angle-angle 582 

MSD. 583 

 584 

Principal component analysis 585 

PCA is a  technique which reduces complex data sets into smaller set of principal 586 

components which are capable of repoducing the original movement the as a linear 587 

superposition of these modes and hence is an efficient data compression method.  The 588 

technique also has the effect of associating noise in the motion with components which add little 589 

variance and hence can often be eliminated from the analysis.. We found that our more skilled 590 

EXP dancers demonstrated lower dimensional components when compared to the INT dancers. 591 

Previously, a different intra-limb organizational strategy was found in the temporal kinematics of 592 

the développé arabesque in EXP compared to INT dancers (Bronner, 2012). This difference 593 

may be reflected in the lower number of PCA nodes seen here in the EXP group. 594 

Differences due to skill or practice have been reported by other researchers (Ko, Challis, 595 

& Newell, 2003). In 2-D analyses, these researchers reported a shift to lower dimensional 596 

components with learning, represented by two principal components (Ko et al., 2003). In a 3-D 597 

learning study, Hong and Newell reported no change in the number of three principal 598 

components that explained 90% of the variance (Hong & Newell, 2006). However, the 599 

movement was a relatively constrained one on a ski-simulator. In a simple 3-D pointing 600 

movement with an accuracy constraint, researchers reported more than 95% of the variance 601 

was included in one principal component, representing ten joint angles from shoulder to wrist 602 

(Tseng, Scholz, Schoner, & Hotchkiss, 2003). Using a 32 marker set and motion capture, 603 

Hollands et al. (Hollands et al., 2004) reported that only a small number of principal components 604 

were sufficient to describe a 15s movement phrase performed by two professional dancers. 605 

Nine modes represented the dataset, with 82% of the variance represented in the first three 606 

PCAs. However, the movement phrase was not described nor was any difference found 607 

between the two dancers. 608 

In this study, dance skill (e.g. group) had a direct effect on the number of active modes 609 

of coordination. Given the complexity of the développé arabesque with gesture and stance 610 

limbs, requiring changes in stability, balance and speed, results demonstrated a surprisingly low 611 
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dimensionaility, ranging from four to seven dimensions in EXP and INT dancers respectively. 612 

The Slow-bal condition in EXP dancers was primarily reflected in the 5th component, while the 613 

Fast condition was reflected in the 3rd and 4th components. In contrast in INT dancers, Slow-flat 614 

and Slow-bal were reflected in the higher 5th, 6th, and 7th components while the Fast condition 615 

was primarily reflected in the 5th and 6th components. Unfortunately, there is no standard way to 616 

analyze or report PCA, therefore it is not possible to directly compare our results to those 617 

previously conducted on dance-related movements.  618 

Singular value decomposition (SVD) is similar to PCA in pairing a large number of 619 

features into a smaller subset of major movement structures (Land, Volchenkov, Blasing, & 620 

Schack, 2013; Volchenkov & Bläsing, 2013; Volchenkov, Bläsing, & Schack, 2014). This 621 

method was able to discern the level of movement expertise in both ballet dancers and golfers.  622 

Our results found PCA was also able to discriminate between conditions, with Fast and 623 

Slow-flat demonstrating lower dimensionality than Slow-bal. In contrast, using accelerometry, 624 

PCA was not able to differentiate between conditions in walking at slow, preferred, and fast 625 

speeds (Kavanagh, 2009). 626 

 627 

Dimensionless jerk 628 

 We employed the dimensionless measure of jerk to eliminate differences between the 629 

conditions due to movement duration or extent (Hogan & Sternad, 2009). We observed an 630 

inverted horseshoe in hip and toe jerk histographs for both groups, with the Fast condition 631 

reflecting the greatest smoothness (lower jerk) and Slow-bal condition reflecting the least 632 

smoothness (higher jerk).  633 

Minimal jerk theory was initially proposed to explain planning of hand movements in 634 

space. It assumed that movment is based on a kinematic endpoint path trajectory, predicting 635 

straight line paths and bell-shaped velocity curves with a dynamic optimization criterion to 636 

maximize smoothness (Flash & Hogan, 1985). The majority of jerk research has focused on arm 637 

movements based on the endpoint path trajectory. Alternatively, to explain subsequent 638 

observations of the linear relationship of joint velocities when joints move in a coordinated way 639 

and trajectories that are not necessarily straight lines, an optimization-based minimum angular 640 

jerk model was proposed (Friedman & Flash, 2009). Subsequent comparison of this model 641 

using a two-joint index finger a grasping movement to other optimzation models reported that 642 

the best fit was the angular jerk model.  643 

Researchers have demonstrated a decrease in jerk metrics with training or expertise 644 

(Hreljac, 1993, 2000; Schneider & Zernicke, 1989) and increased jerk metrics with increased 645 
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gait speed when comparing walking and running (Hreljac, 2000). However, none of these 646 

studies utilized dimensionless jerk. As described by Hogan and Sternad (Hogan & Sternad, 647 

2009), the dimensionless jerk measure indicates the number of velocity fluctuations but is 648 

independent of movement duration.  649 

Due to the computational complexity of performing a single limb balance while moving 650 

the leg (and torso) at various speeds, durations, and balance constraints, we chose to 651 

investigate dimensionless minimal jerk optimization for both endpoint and angular jerk variables 652 

of the gesture limb. Our results found that both angular and endpoint jerk metrics were sensitive 653 

discriminators between conditions (tempo and balance), but not to discriminate differences in 654 

expertise (group) in this experimental paradigm. Recently, a novel measure for quantifying 655 

movement smoothness, spectral arc-length metric, has been proposed to overcome 656 

shortcomings in existing metrics (Balasubramanian, Melendez-Calderon, & Burdet, 2012). This 657 

metric warrants further investigation. 658 

Interestingly, the Fast condition revealed lower rankings in both aesthetic proficiency and 659 

smoothness, fewer principle components, lower 3-D toe MSD, and lower jerk. Although we 660 

manipulated the arabesque sequence with speed and balance constraints, the Fast condition 661 

was not performed at a maximal speed but was metronome controlled. The Fast condition may 662 

have minimized demand on pelvis-hip coordination with subsequent reduction in 3-D toe MSD 663 

due to diminished time in single limb weight bearing. Increased tempo may also have resulted in 664 

reduced sub-movements and lower jerk. 665 

 666 

Modeling rankings and movement metrics 667 

 For aesthetic rankings, model 2 received the least AICc value, indicating that this was 668 

the most parsimonious model for the data. Model 2 modeled aesthetic ranking on the PCA 669 

predictor variable. For smoothness rankings, model 2 again received the least AICc value, 670 

signifying the best fitting model for the data (supplemental data).  671 

AIC tells us what variables are important and which are not in establishing a model. If a 672 

variable appears in a model that has a higher AICc score compared to a model that does not 673 

contain that variable, then that variable can be ignored. In the case of both aesthetic and 674 

smoothness rankings, the model with the least AICc value, PCA, corresponded with the highest 675 

correlation values.   676 

 PCA, which permits the organization of large data sets into simpler groupings, may 677 

reflect how the brain organizes huge amounts of sensory input into chunks (Chen, Penhune, & 678 

Zatorre, 2008; Janata & Grafton, 2003), or, in the case of dance, what is known as phrases. 679 
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Chunking is thought to be the way in which the brain combines sensory-motor elements into 680 

integrated units of behavior during motor learning. Chunking, in a dynamic process, emerges 681 

spontaneously: as we learn to read, we focus on individual letters and then quickly combine 682 

them into words, leading to groups of words and then whole sentences. A similar process is 683 

thought to occur in both music and dance: we begin with notes or steps, which then become 684 

chunked into short phrases or elemental components which can be linearly, or non-linearly, 685 

combined to recreate a representation of the original experience whilts retaining minimal 686 

information. Sequences become organized into fewer but larger chunks, decreasing the need 687 

for cognitive control with a shift to other neural areas such as those related to motor execution 688 

and ultimately, with expertise, automaticity (Sakai, Hikosaka, & Nakamura, 2004).  689 

Orgs et al. (Orgs et al., 2013) suggested a hierarchical model of aesthetic perception of 690 

dance movement: postures, movements, and the larger units of phrases. They suggest that 691 

observer experience may affect how observers weight these hierarchical levels, with dance 692 

experts focusing more on phrasing or larger chunks. Similarly, Bläsing (Blasing, 2014) reported 693 

dance expertise reduced perceived segment boundaries, with, subsequently, longer phrases. In 694 

competitive diving, PCA was applied to kinematic data to predict judges’ technical scores, 695 

reporting a high correlation between predicted and actual scores (Young & Reinkensmeyer, 696 

2014). We ask, are the judges extracting fundamental patterns of coordination that reflect these 697 

PCA results?  698 

Various motor control theories have attempted to explain how we organize the 699 

complexity of movement with its multiple degrees of freedom. Just as we may use a 700 

minimization cost function of some sort to perform a motor act, the brain may seek to organize 701 

what it perceives to be the simplest mode. Similarly, aesthetic perception may utilize chunking 702 

to assess complex movement. PCA may provide an organizational structure of pattern 703 

recognition to explain this phenomenon. PCA can reveal hidden structure within a complex data 704 

set while simultaneously filtering out noise. The efficiency of smooth movement, minimization of 705 

effort, and clear lines found in the expert dancer were reflected in lower PCA components.  706 

 707 

Limitations 708 

Perhaps ranking was not the optimal metric for aesthetic or smoothness perception. In 709 

the future, we will investigate the effectiveness of Likert scales for multiple components of 710 

aesthetic perception (e.g. both cognitive technical judgement and valience) that observers can 711 

apply to each dancer trial separately. This does not require them to hold in their memory how 712 

the other dancers performed within a given condition.  713 
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No movement kinetics were included in our models or analyses. Given the important 714 

contribution of dynamics to the quality of dance movement, future investigation will investigate 715 

whether kinematics and/or kinetic metrics are preferred determinants of aesthetic perception. 716 

 717 

Conclusion 718 

Our examination of a number of biomechanical metrics in a complex dance sequence 719 

with shape, timing, and balance constraints found that PCA best captured the differences due to 720 

expertise and condition. Further comparison between these biomechanical metrics and 721 

movement aesthetic rankings found that PCA provided the most parsimoneous model to explain 722 

these observer rankings. If the grace of a dancer is a component reflected in aesthetic 723 

perception, it was not well captured quantitatively by jerk metrics. Perhaps the way our brain 724 

perceives and the way we view movement is that which simplifies the movement into the fewest 725 

organizational groupings; in this case, PCA. A movement with a low PCA dimensionality is 726 

highly constrained and possesses significantly fewer generalized degrees of freedom than joint 727 

variables. The experienced dancers revealed lower PCA dimensionality, and it was these 728 

dancers that were most ranked as most aesthetically proficient. This suggests that reduction of 729 

redundant information, a simplistic dimensionality, may be an important part of observer 730 

perception. Our model of the biological determinant of aesthetics suggests that the brain is 731 

tuned to value movement grace, clarity, fluidity, and efficiency of intent, that is found in the 732 

beauty of dance. 733 

In a study employing linear and nonlinear metrics to analyze a complex movement, we 734 

found that  the nonlinear PCA was the most promising tool for the quantification of this art form. 735 

Further study of dance biomechanics using PCA may provide insight into motor learning, motor 736 

control, and neuro-aesthetics.  737 

738 
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 744 

Table 1. AICc models of aesthetic rankings 

                  
 

       
  

Model Predictors Parameters AICc ΔAICc F df p 

  
 

            

        1 5 PCA 542.475 86.556 25.734 84,1 <0.0001 

  
hip ang jerk 

 
1.736 84,1 0.191 

  
toe jerk 

  
1.006 84,1 0.319 

  
MSD pelvis-hip 

 
0.01 84,1 0.92 

  
MSD toe 

  
7.967 84,1 0.006 

        2 1 PCA 455.919 0 46.367 88,1 <0.0001 

        3 3 hip ang jerk 572.012 116.093 1.357 87,1 0.247 

  
toe jerk 

  
5.063 87,1 0.027 

        4 1 toe jerk 520.174 64.255 8.743 88,1 0.004 

        5 2 MSD pelvis-hip 483.974 28.055 4.451 87,1 0.038 

  
MSD toe 

  
10.978 87,1 0.001 

        6 1 MSD toe 485.193 29.274 17.748 88,1 <0.0001 

                

        Abbreviations: AICc, Akaike Information Criteria corrected; ΔAICc, change in AIC; PCA, 745 

principal component analysis; ang, angular; MSD, mean standard deviation.  746 

747 
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 748 

 749 

 750 
 751 

Fig. 1 Arabesque sequence for the Slow-flat and Fast conditions: A) First position, B) Passé, 752 

C) Arabesque, D) First position. In the Slow-bal condition, the dancers rises onto their forefoot 753 

during the arabesque and briefly holds it before returning to first position. 754 

755 
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 756 

  757 

Fig. 2 Aesthetic proficiency ranking. Median for Group and Condition. Note: lower ranking 758 

denotes greater aesthetic excellence. 759 

 760 

761 
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 762 
A.      B.       C. 763 

    764 
 765 
D.      E.       F.  766 

   767 
 768 
Fig. 3 Mean standard deviation (MSD) 3-D pelvis-hip angle-angle plots of representative 769 

subjects. The pelvis is on the x-axis and hip is on the y-axis, the EXP subject is seen in green 770 

and INT subject is in red. A-C. The trial was decomposed into its constituent excursions (six per 771 

trial). On each plot is a line which represents the mean of the excursions together with an 772 

envelope which indicates ±1 standard deviation of the excursion trajectories. The colour of the 773 

envelope is red for the INT and green for the EXP dancer. A-C. Representative EXP subject 774 

performing six excursions of the three conditions: A) Slow-flat, B) Slow-bal, and C) Fast. D-F. 775 

Representative INT subject performing six excursions of the three conditions: D) Slow-flat, E) 776 

Slow-bal, and F) Fast. 777 

 778 

779 
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 780 
A. 781 

 782 

B.  783 

 784 

Fig. 4 Mean standard deviation (MSD) (SD) for 3-D segmental coordination. A) 3-D pelvis-hip 785 

angle-angle; and B) 3-D toe displacement (INT group blue, EXP group red). 786 

787 
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 788 
A. 789 

 790 
 791 

B.  792 

 793 
 794 

 795 

Fig. 5 Principal components. A) Examples of the five modes which accounted for 98% of the 796 

variability of the motion of an INT dancer. B) Examples of the four modes which accounted for 797 

98% of the variability of the motion of an EXP dancer.798 
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 799 

 800 
A. 801 

802 

 803 
 804 
Fig. 6 Principal component analysis. A) Mean dimensionality of the state manifold for the INT 805 

group; B) Mean dimension for the EXP group (Blue is Slow-flat, Red is Slow-bal, and Green is 806 

Fast condition). 807 

 808 
809 
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 810 
A.  811 

 812 
B.  813 

 814 
 815 
Fig. 7 Mean (SD) dimensionless jerk. A) Sagittal plane gesture hip angular jerk; B) 3-D gesture 816 

toe jerk (INT group blue, EXP group red). 817 

818 
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