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ABSTRACT 
Transverse solute mixing across a vegetation generated horizontal shear layer was quantified using laser induced fluorometry techniques for arti-
ficial and real vegetation. A two-dimensional finite difference model (FDM) was developed to describe transverse concentration profiles for flows 
containing transverse variations in velocity and transverse dispersion, from a steady solute input. The FDM was employed inversely, to optimize the 
parameters describing the transverse distribution of the transverse dispersion coefficient for vegetation generated shear layers. When laboratory data 
are available, continuous function descriptions produce slightly improved FDM modelled solute concentration profiles compared with simplified step 
discontinuity velocity and dispersion inputs. When laboratory data are not available, estimates of step or continuous transverse distributions from 
other work enable concentration profiles to be predicted with a similar goodness of fit. This paper presents a validated, simple, robust finite difference 
model to describe the mixing of solutes in a channel containing marginal vegetation. 

Keywords: Dispersion; finite difference model; mixing; shear effects; vegetation 

Introduction 

Linear wetlands are increasingly used to provide pollution treat-
ment from diffuse sources such as highways, agricultural land 
and urban environments. As well as enhancing ecological habi-
tat, wetlands perform a number of services making them suitable 
for sustainable drainage applications. The reduction in the mean 
flow velocity promotes sedimentation, whilst a reduction in 
contaminant concentration can be achieved through dispersion 

and bio-chemical degradation. It follows that the detention 
of contamination, and subsequent bio-chemical degradation, is 
affected by the reach hydrodynamics (Maji et al., 2020; Persson 
et al., 1999; Koskiaho, 2003). 

Vegetation may enhance pollution treatment by increasing 
the active surface area populated by micro-organisms and, 
potentially, by promoting dispersion – increasing the likelihood 
of chemical decay due to sunlight and bio-chemical degradation 
(Rowinski et al., 2018). Free-surface wetlands, and some rivers, 
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often contain marginal vegetation, creating horizontal shear lay-
ers, which lead to complex mixing conditions. Understanding 
and modelling the spatial variation of mixing due to vegeta-
tion generated horizontal shear layers is therefore necessary for 
improving the treatment of pollutants. 

Literature review 

Mixing across vegetation–water interfaces has been modelled 
as a shear layer by a number of authors. Whilst most of these 
studies have focused on the horizontal interface created by 
submerged vegetation, creating a vertical shear layer, simi-
lar processes occur around the vertical interface that occurs 
between emergent vegetation and open water, creating a hori-
zontal shear layer. Ghisalberti and Nepf (2005) studied the ver-
tical shear layer created by submerged vegetation, whilst White 
and Nepf (2007) investigated the horizontal shear layer created 
by the vertical interface at the edge of a patch of emergent 
vegetation. 

Considering the horizontal shear layer White and Nepf 
(2008) employed a three-zone model of the system to describe 
flow in the open channel, the mixing layer and the vegetated 
zone, where the interface is defined as the location of the drag 
discontinuity. Incident flow is deflected around the patch and 
becomes a fully developed flow field at a location downstream 
of the leading edge. The lateral discontinuity in drag leads to 
a velocity shear generating coherent shear-layer vortices along 
the vegetation/open-channel interface. These vortices grow to a 
fixed size and penetrate a certain distance into the vegetation, 
both being determined by the vegetation drag and the bed fric-
tion coefficient (Caroppi et al., 2019). These vortices dominate 
mass and momentum transport in the system. The occurrence of 
vortices generates a non-uniform transverse profile of longitu-
dinal velocity that contains an inflection point in the vicinity of 
the interface (Patil & Singh, 2011; White & Nepf, 2007). 

The spatial average velocity in the vegetated zone is con-
trolled by the vegetation drag coefficient, the frontal area per 
unit volume of the vegetation and the energy gradient (Kadlec, 
1990). Conversely, the spatial average velocity in the open 
channel zone is controlled by the flow depth and bed friction 
coefficient. Mixing in the vegetation zone comprises both stem 
scale turbulence and stem scale mechanical processes (Tanino 
& Nepf, 2008). Nepf (2012) showed that the transverse mixing 
coefficient, Dy , scaled with the longitudinal velocity, u, and the 
stem diameter, d. In the open channel zone, transverse mixing is 
dominated by depth scale shear processes caused by the bed fric-
tion and can be approximated using the bed shear velocity, u*, 
and flow depth, h, through the empirical relation Dy = 0.134u*h 
(Rutherford, 1994). 

To predict mixing in many environmental flow scenarios, it 
is often sufficient to simplify the study by taking a two dimen-
sional approach, for example in shallow ponds or wetlands, 
where the vertical effects may be ignored. In such cases solute 

transport and mixing can be described by the 2D advection-
dispersion equation. Rutherford (1994) provides the analytical 
solution to this equation for steady transverse mixing in an 
infinitely wide channel with uniform depth, longitudinal veloc-
ity and transverse mixing coefficient, downstream of a point 
source as: 

� � 
m u(y − y0)

2 

c(x, y) = � exp (1)
h 4πDyxu 4Dyx 

where c(x,y) is the solute concentration, x is the longitudinal 
distance from the source, y is the transverse position, y0 is the 
transverse source location and m is the solute mass inflow rate of 
the source. This solution assumes that the transverse boundaries 
are infinitely far away from the source. For a narrow chan-
nel, reflecting boundary conditions can be catered for using the 
method of images (Rutherford, 1994). 

Some success has been achieved in modelling solute trans-
port under homogeneous mixing conditions (e.g. uniformly 
vegetated flows) using a two-dimensional depth-averaged mass 
transport routing approach (Sonnenwald et al., 2017). In this, an 
initial patch of solute is discretized into a number of cells and the 
solute mass in each cell is independently transported and spread 
longitudinally and transversely at the same velocity and rate 
(i.e. undergoes uniform advection and dispersion). The princi-
ple of superposition is used to combine the individually evolved 
cell-based sub-masses to create the final two-dimensional solute 
concentration profile. 

Equation (1) is not directly applicable to mixing across shear-
layers. Instead, for cases with a transverse depth discontinuity 
within the cross-section, Kay (1987) produced an analytical 
solution for an infinitely wide two-zone channel with the dis-
continuity, located at y = 0. This channel has a deep flow zone 
(y > 0, subscript 2) and a shallow flow zone (y < 0, subscript 
1). Both zones have spatially uniform depth, velocity and trans-
verse mixing coefficient within them and yi is the distance of 
the source into the deeper zone. The solution, again for a steady 
point source, is: 

� � � 
m u2(y + yi)

2 

c(x, y) = √ exp − 
2h πu2D2x 4D2x � ��√ √ 

u2(y − yi)
2h2 u2D2 − h1 u1D1 + √ √ exp − ,

h2 u2D2 + h1 u1D1 4D2x 

y < 0 (2a) 

√ 
m h2 u2D2 c(x, y) = √ √ √ 

h πu2D2x h2 u2D2 + h1 u1D1 � � ��   √ √ �2 u1 y + yi u2/u1 D1/D2 × exp − , y > 0 
4D1x 

(2b) 
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Several mathematical modelling approaches are available for 
describing the turbulent transport of solute in partially vege-
tated flows. The most sophisticated is based on a computational 
fluid dynamics (CFD) approach (Sonnenwald et al., 2019; Yan  
et al., 2017). In the simplest terms, this consists of a flow 
model which provides a computed turbulent velocity field for 
use in a turbulent mass transport model. Although CFD codes 
have been routinely used for non-vegetated flows for many 
years, there remain some obstacles to their successful applica-
tion to partially vegetated flows. For example, doubts remain 
over the most appropriate way to represent the roughness effects 
of vegetation patches (Sonnenwald et al., 2016) and there is 
considerable uncertainty in the appropriate values of several 
empirical coefficients for such flows. 

Turbulent mixing processes due to vegetated shear layers 
have received much attention, but laboratory studies have been 
limited to cases using artificial vegetation, formed by distribu-
tions of vertical cylinders, either in a regular or random pattern 
(Ghisalberti & Nepf, 2005; White & Nepf, 2007). Mixing stud-
ies in real vegetation have been predominantly conducted in the 
field for homogeneous vegetation (Huang et al., 2008; Light-
body et al., 2008; Nepf, 1999). The quantification of mixing 
in real vegetation-generated shear layers, throughout the annual 
growth cycle, is lacking. Moreover, the application of theory 
developed in idealized homogeneous conditions has been poorly 
evaluated in real, heterogeneous flows for two-dimensional 
engineering applications. 

Considering the limitations of many of the modelling 
approaches discussed, particularly with regards to their applica-
bility to real vegetation, a simple robust approach to modelling 
the transport and spread of solutes across a shear-layer, suit-
able for practical application, is desirable. This paper therefore 
develops a simple 2D finite difference numerical model that 
is capable of predicting transverse solute concentration pro-
files created by vegetation-generated horizontal shear layers. It 
employs prescribed transverse distributions of both the longitu-
dinal velocity and transverse dispersion coefficient. The model 
has been validated against analytical solutions and has been 
employed to estimate parameters used to describe the transverse 

variation of transverse dispersion from new laboratory studies 
of regular artificial and real vegetation. The paper concludes by 
exploring methods for estimating the parameters describing the 
dispersion coefficient distributions from previously published 
research. 

3 Laboratory study 

The mixing characteristics of emergent vegetation-generated 
horizontal shear layers were investigated using laser induced 
fluorometry (LIF) and acoustic Doppler-shift velocimetry 
(ADV) in a controlled 24 m long, 1 m wide horizontal labo-
ratory flume at the University of Warwick, UK. Two artificial 
vegetation stem densities, of 1594 and 398 stems m−2, with  
solid volume fractions, φ, of 0.02 and 0.005, respectively, were 
investigated using a 7.5 m long linear array of emergent 4 mm 
diameter cylinders with laterally staggered geometry (Fig. 1). 
The artificial vegetation tests provided an idealized case from 
which to evaluate the application of the Ghisalberti and Nepf 
(2005) flux-gradient model (West, 2016). Two natural vegeta-
tion cases were also studied by installing winter and summer 
season Typha latifolia (φ = 0.01 and φ = 0.019 respectively), 
supplied directly from a cultivator (Salix UK), in the flume 
(Fig. 2a and b, respectively). The vegetation was within its 
natural bed and was fixed into the bed of the channel using 
pre-inserted steel spikes. The first set of experiments considered 
conditions where for the four vegetation types the vegetation 
extended over the full width of the channel. The second set of 
experiments considered a partially vegetated channel: for the 
artificial vegetation cases, the vegetation had a width of 600 mm 
(Fig. 1); for the natural vegetation cases, the vegetation was 
cropped to a width of 500 mm along the channel centreline, 
such that the bed of the open channel region was the same nat-
ural bed (Fig. 2c and d). Vegetation was installed upstream of 
the injection location for a distance of 1.8 m or 5.0 m for the 
artificial and real vegetation, respectively. Comprehensive veg-
etation characteristics are provided in Sonnenwald et al. (2017). 
Observations from three of the fully vegetated cases are used 

Figure 1 Schematic plan view of experimental set-up for artificial partially vegetated case, showing low density (red) and high density (black and 
red) stem patterns 
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Figure 2 Experimental configurations for winter Typha (a, c) and summer Typha (b, d). (a) and (b) show details of the vegetation, illustrating the 
different stem densities for (a) winter φ = 0.01 and (b) summer φ = 0.019. (c) and (d) show the how the vegetation was cropped along the channel 
centreline, revealing the natural bed in the open channel region (right hand side) 

in final testing of the model, particularly in regard to optimiz-
ing its parameters (Section 4). Later in this paper, observations 
from the partially vegetated cases are used to investigate the 
transverse variation in transverse dispersion coefficient (Section 
5). The complete dataset can be accessed at West et al. (2018) 
(https://doi.org/10.15131/shef.data.7077386.v1). 

A continuous vertical line source of Rhodamine 6G fluo-
rescent tracer was made at the vegetation/clear flow interface. 
Transverse concentration profiles were measured 1.0 m and 
2.0 m downstream of the injection using a 532 nm wavelength 
laser (Changchun New Industries Optoelectronics Tech. Co. 
Ltd., Changchun, Jilin Province, P.R. China) (CNI 200 mW, 
532 nm DPSS laser, Model: MGL-III-532-200 with PSU-III-
FDA power supply) mounted at the flow mid-depth. A CCD 
camera (FLIR Systems, Wilsonville, Oregon, USA) (Point Grey 
1.3MP On Semi VITA CMOS 1/2∗∗ Monochrome, Global 2) 
positioned underneath the flume, below a 40 mm wide glass 
window, recorded images of the laser beam at 5 Hz. The injec-
tion rate was adjusted to ensure that the upstream LIF measure-
ments were utilizing the full greyscale range of the cameras. A 
cut-off filter was installed above the camera to prevent excita-
tion light reaching the camera. The LIF system was calibrated, 
taking account of the variation in power attenuation, given the 
heterogeneous distribution of tracer concentration, after Ferrier 
et al. (1993), as described in Sonnenwald et al. (2017). 

The measurement of the transverse variation in the longitudi-
nal velocity was developed throughout this study. In the initial 

set-up, for the high density artificial vegetation, a Nortek Vec-
trino II vertical profiler was used, with measurements made 
at only 16 points, approximately 60 mm spacing, across the 
1 m channel width, which prevented the determination of the 
boundary shear layer. This was improved by employing Met-
flow Ultrasound Velocity Profiling (UVP) from an array of 
ultrasound transducers in the walls of the flume at the flow 
mid-depth. For winter Typha, a single UVP probe was used at 
both of the upstream and downstream boundaries. However, in 
this configuration, readings were limited to recording the veloc-
ities between 100 and 900 mm from the channel walls. The 
remaining 100 mm adjacent to each side wall was assumed to 
be constant, and hence these data do not show the boundary 
layer at the side walls. In the final set-up, used for low den-
sity artificial vegetation and summer Typha, two UVP probes 
were installed at both upstream and downstream boundaries, one 
at each side of the channel, each recording the first 750 mm, 
ensuring that the central 500 mm of the flow had two values 
recorded. For this configuration, shown in Fig. 1, the boundary 
shear at the side walls is clearly visible in the results. Veloc-
ity data were filtered using the phase-space filtering technique 
developed by Goring and Nikora (2002) and a mean velocity 
profile was calculated from the average of the upstream and 
downstream locations. Further details can be found in West 
(2016). 

A constant flow depth of 0.15 m was selected, measured to 
0.1 mm accuracy using a Vernier gauge and controlled with the 

https://doi.org/10.15131/shef.data.7077386.v1
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3 3Figure 3 Transverse velocity and concentration profiles at Q = 3.4 × 10−3 m s−1 (left) and Q = 7.5 × 10−3 m s−1 (right) for (a, b) low-density 
artificial vegetation; (c, d) high-density artificial vegetation; (e, f) winter Typha; and (g, h) summer Typha 

use of a downstream tailgate at the channel outlet. Five dis-
charges were investigated (3.35, 4.25, 5.25, 6.35 and 7.35 l s−1) 
such that in-vegetation velocity was representative of veloci-
ties found in real vegetation (e.g. Huang et al., 2008; Koskiaho, 
2003; Lightbody et al., 2008; Nepf, 1999). 

Figure 3 presents measurements, for both artificial and real 
heterogeneous vegetation cases, of the mean transverse veloc-
ity profile (filled circles) and the transverse tracer concentration 
profiles, recorded at the LIF sections 1.0 m (blue line) and 
2.0 m (red line) downstream from the injection, at the high-
est and lowest discharges studied. Both the velocity and tracer 
concentration data recorded for real vegetation exhibit greater 
variations throughout the cross-section compared with the arti-
ficial vegetation caused by the heterogeneous nature of the 
material, as shown in Fig. 2. 

Modelling framework 

This section describes the development of a 2D finite differ-
ence numerical model that can be used to predict transverse 
solute concentration profiles given arbitrary transverse velocity 
and transverse mixing coefficient distributions. After validation, 

the model was employed inversely, to optimize the parame-
ters within a pre-defined function developed to describe the 
transverse variation of transverse dispersion coefficient. 

4.1 Model selection 

For the present study, the velocity field was available from 
observations, so no flow model was required, but the het-
erogeneous mixing conditions were not appropriate for the 
routing approach mentioned above. Additionally, for steady 
line sources the mass transport problem can be reduced to 
one having a less sophisticated two-dimensional mathematical 
description than that required for unsteady sources. It was also 
anticipated that the study’s objective of optimizing a mathe-
matical model in order to identify the distribution of a mixing 
coefficient would be more tractable when using a simplified 
approach. 

Since the effect of longitudinal mixing is negligible for steady 
sources (Rutherford, 1994) the transverse and longitudinal evo-
lution of a steady vertical line source in a straight, uniform 
channel is governed by the interaction of longitudinal advection 
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and transverse mixing. This is described by: 

∂c(x, y) ∂ ∂c(x, y)
h(y)u(y) = h(y)Dy (y) (3)

∂x ∂y ∂y 

where h(y), u(y) and Dy (y) are transverse distributions of the 
depth, longitudinal velocity and transverse mixing coefficient, 
respectively. Note that this equation allows for transverse vari-
ations in depth, longitudinal velocity and transverse mixing 
coefficient, but all of these are constant in the longitudinal direc-
tion. At both banks of the channel the transverse solute flux is 
zero (i.e. reflecting conditions), so that the boundary conditions 
are described, at both banks, by: 

∂c(x, y)
Dy (y) = 0  (4)  

∂y 

Although exact analytical solutions to the system described by 
Eqs (3) and (4) are available for a very small number of special 
cases, in order to apply the equations to identify an otherwise 
unknown distribution of transverse mixing coefficient, some 
form of approximate numerical solution of them is required. The 
following section describes the formulation of the model from 
the point of view of undertaking a simulation. 

4.2 Model development 

A numerical solution was sought to overcome the limita-
tions of the flux gradient model outlined by Ghisalberti and 
Nepf (2005). There are many finite difference and finite vol-
ume schemes available to solve advective-transport problems 
(Abbott & Basco, 1989; Versteeg & Malalasekera, 2007). In 
sympathy with the simple approach adopted for this study, a 
robust but low-order finite difference scheme was used. The 
main advantages of this approach were that the likely sources 
of, and the nature of, any numerical errors were well known 
and solutions could be developed easily. The main disadvantage 
of this approach was that a significant amount of model testing 
was required to ensure that sufficiently refined discretizations, 
to eliminate significant numerical errors, were used in the two-
dimensional spatial plane involved. The solution method for Eq. 
(3) and its boundary conditions is described in Appendix 1. 

4.3 Model validation 

To investigate the sensitivity of solutions to numerical errors 
caused by the spatial discretization, the two analytical solu-
tions from Rutherford (1994) and Kay (1987) (Eqs 1 and 2) 
were used to test the numerical model. An attempt was also 
made to modify Kay’s analytical solution for application to 
a finite-width channel, by imposing no-flux transverse bound-
ary conditions. This was undertaken by “reflecting” solute back 
into the channel using the method of images. This was success-
ful until the “reflected” solute encountered the step-change in 
velocity and mixing conditions: when this occurred, the solution 

broke down. Further work on this is needed before its potential 
can be exploited fully, but it was used in sensitivity testing to 
mitigate the impact of the narrow channel on the accuracy of 
the Kay solution compared to the FDM model, which does have 
appropriately represented reflecting boundaries. 

The testing philosophy was to investigate the numerical solu-
tion for channel geometries, and over ranges of parameters, 
that were relevant to the experimental conditions for which the 
model was to be applied later. So a uniform depth (transversely 
and longitudinally) channel 6 m long, 1 m wide, with longitudi-
nal velocities between 0.005 and 0.2 m s−1 and transverse mix-

2ing coefficients between 10−5 and 10−3 m s−1 was used. For 
Eq. (1) the velocity and mixing coefficient were constant over 
the width of the channel, whereas for Eq. (2), smaller parameter 
values were specified in one half of the width (vegetated, slow 
zone) than in the other half (clear flow, fast zone), e.g. a veloc-

2ity of 0.02 m s−1 with a mixing coefficient of 10−4 m s−1 in the 
slow zone and a velocity of 0.2 m s−1 with a mixing coefficient 

2 s−1of 10−3 m in the fast zone. Various steady source loca-
tions were employed. For each combination of parameter values 
solutions were obtained for successive reductions in longitudi-
nal and transverse discretization steps. The results of the model 
testing are briefly summarized in the following paragraphs. 

It was found that converged numerical solutions would be 
obtained for Rutherford’s case provided that x ≤ 0.05 m and 

y ≤ 0.01 m and for Kay’s case provided that x ≤ 0.01 m 
and y ≤ 0.005 m. In other words, further refinements in the 
spatial discretization yielded no change in the simulated con-
centration field. The above values reflect the presence of smaller 
concentration gradients in the longitudinal direction compared 
to the transverse direction and the more complex transverse 
flow structure of Kay’s case. Example comparisons between 
the numerical and the analytical solutions are provided in non-
dimensional form in Fig. 4. In all cases the analytical solutions 
were computed independently by the authors rather than relying 
on the figures in the published sources, and the numerical solu-
tions were obtained using the upper discretization limits given 
above. For reasons of clarity the results from both cases are 
shown in a common non-dimensional manner, so that, at first 
sight, the analytical solution plots may appear to be different to 
those shown in the original sources. In Fig. 4b, the velocity and 
mixing coefficient distributions are summarized to the left of the 
plot. 

Figure 4a compares the numerical solution for the trans-
versely uniform conditions with the analytical solution shown 
in fig. 3.7a of Rutherford (1994). Clearly, there is very good 
agreement. Figure 4b compares the numerical solution for the 
transverse discontinuity case with the analytical solution shown 
in fig. 5c of Kay (1987). Although the corresponding conver-
gence tests were undertaken for a narrow channel of uniform 
depth (reflecting the laboratory conditions described in Section 
3), the numerical solutions in Fig. 4b were obtained for a wide 
channel with a transverse step-change in depth in order to be 
directly comparable with the analytical solution. Again, there 
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Figure 4 Comparison of model results (symbols) with analytical solutions (lines) for non-dimensional concentration, c*, where c* = c/cs1 
and cs1 is the total mass flux at location x* = 1. (a) Rutherford (1994) – uniform conditions – source at y* = 0.25 for U = 0.1 m s−1; 

2 3Dy = 1 × 10−2 m s−1, where  w is channel width and (b) Kay (1987) – step variation – source at y* = 1.0 for flow rate 2 × 10−3 m s−1; 
2u1 = 0.1 m s−1; D1 = 1 × 10−2 m s−1; with depth in y* > 0 twice that in y* < 0 

is very good agreement. Overall the results were shown to be 
independent of grid scale and the model successfully reproduced 
the two dimensional concentration distributions compared to 
analytical solutions. 

4.4 Model application 

In contrast to the simulation tests against analytical solutions 
described above, the numerical model was also tested by apply-
ing it to several cases of observed solute transport in uniformly 
vegetated conditions as described in Section 3 and presented 
in more detail in Sonnenwald et al. (2017). These applications 
mimicked the sort of modelling described in Section 5 and pro-
vided further confidence that, not only was the numerical model 
reliable, but the optimization method was successful. 

The aim of these tests was to identify the optimum homoge-
neous transverse mixing coefficient, given observed transverse 

concentration profiles at two longitudinal locations for a steady 
vertical line source using an available estimate of the homo-
geneous longitudinal velocity. Using the upstream transverse 
concentration profile as the upstream boundary condition, opti-
mization of the mixing coefficient was achieved by repeating 
simulations for various coefficient values and identifying the 
simulation having the best fit to the corresponding downstream 
transverse concentration profile. In these model runs the dis-
cretization parameters were: x = 0.01 m and y = 0.005 m. 
Data for three vegetation types (continuous injection tracer stud-
ies were not performed for the low-density artificial vegetation) 
and five flow rates were used. Optimized mixing coefficients 
were compared with those obtained using the twodimensional 
routing procedure introduced in Section 2 (Sonnenwald et al., 
2017) modified to account for a continuous injection. 

The mean and standard deviation (over the 15 cases consid-
ered) of the difference between the mixing coefficients obtained 
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from the numerical model and the routing procedure were 
2 s−15.4 × 10−6 and 1.2 × 10−5 m , respectively. In general, 

these differences were two orders of magnitude smaller than the 
mixing coefficient being estimated, suggesting good agreement 
between the two approaches. The relatively large value for the 
standard deviation was caused by the significant heterogeneity 
of the summer Typha. 

For application to the problem of horizontal vegetated shear 
layers, adapting the approach of Ghisalberti and Nepf (2005) 
who studied a vertical shear layer caused by submerged vege-
tation, a continuous distribution was assumed for the transverse 
variation of the transverse dispersion coefficient (Fig. 5). The 
peak transverse dispersion coefficient, DP, was assumed to 
occur at the vegetation–clear flow interface, with fixed, constant 
values of D1 and D2 at large distances away from the interface, 
in the vegetation and the clear flow, respectively. Either side 
of the peak, semi-Gaussian profiles were assumed, which pro-
vide smooth continuous transitions, with the spread away from 
the peak independently defined by the standard deviations σ 1 

and σ 2. The optimization problem was therefore formulated as 
maximizing the goodness of fit R2 (Young et al., 1980) between t 
simulated and observed concentration profiles within the limits 

2 s−1 s−1of 1 × 10−8 m and 0.1 m2 for the transverse disper-
sion coefficients and 1/3w and 3 y for the standard deviations, 
where w is channel width and y is the transverse discretization 
step size. This was implemented with the MATLAB function 
fmincon by taking the negative of the R2 

t . 
The constraints assume that transverse dispersion at the 

interface is greater than transverse dispersion within both the 
vegetation (Dp > D1) and the open water (Dp > D2). The mini-
mum value of transverse dispersion coefficient was chosen to be 
slightly greater than molecular diffusion, whilst the maximum 
value was chosen to be larger than any values of transverse dis-
persion in vegetation reported by Sonnenwald et al. (2017). The 
lower and upper limits of the spread were chosen to ensure that 
the continuous dispersion coefficient profile could not collapse 
to almost a step profile by being too small or expand to more 
than 2/3 of the channel width. 

Figure 5 Assumed continuous dispersion coefficient distribution, 
illustrating values for D1, D2, DP , σ 1 and σ 2, where  y* = y/y0, y0 
indicates the location of the interface and y* < 1 is within vegetation 

5 Results 

Having obtained laboratory measurements of velocity and tracer 
spread due to a vegetation generated shear layer, this section 
compares the ability of two different transverse parameter dis-
tribution types to predict the observed transverse concentration 
profiles. Following this, using previously published relation-
ships, an approach to estimate one of the dispersion parameter 
distribution types is explored. 

5.1 Parameter identification 

The numerical model developed above was used to compare 
a transverse step distribution (i.e. a discontinuity) with a con-
tinuous transverse distribution, for both longitudinal velocity 
and transverse dispersion, to simulate transverse solute concen-
tration profiles. For the step distribution, width mean veloci-
ties within the vegetated and unvegetated zones were obtained 
by averaging the recorded experimental velocity distributions 
either side of the interface between the two zones. For the con-
tinuous parameter distribution, the recorded experimental veloc-
ities were used. The model was run to obtain optimized values of 
the parameters to describe the transverse dispersion distribution: 
two for the step distribution (D1 and D2) and five for the contin-
uous distribution (D1, D2, DP, σ 1 and σ 2). The model used the 
observed transverse tracer concentration profile at 1 m down-
stream from the injection site (upstream boundary condition) 
as input to optimize the prediction of the corresponding tracer 
concentration profile at 2 m downstream of the injection site. 
As above, the discretization parameters were x = 0.01 m and 

y = 0.005 m. Fully reflecting transverse boundary conditions 
were used. The resulting spatial distributions of the transverse 
dispersion coefficient and the predicted concentration profiles 
are compared for the lowest and highest flow rate cases for arti-
ficial and real vegetation in Figs 6 and 7, respectively. Note that 
the dispersion coefficients have been non-dimensionalized with 
the transverse mean flow velocity (across the full width of the 
channel) and with the stem diameter. Table 1 summarizes the 
goodness of fit of the optimized predicted concentration profile 
to the observed profile for all cases. 

For three of the four vegetation conditions studied, both the 
step and continuous velocity and dispersion distributions are 
able to predict concentration profiles in close agreement with 
the measured data and have similar values of R2. The exception t 
is summer Typha (Figs 7f and h), where the continuous veloc-
ity and dispersion coefficient distributions perform noticeably 
better, with mean R2 of 0.822 compared to 0.770 (Table 1). The t 
good performance of the continuous dispersion distributions has 
confirmed the semi-Gaussian trend around the interface. At the 
lowest discharge, the high density artificial vegetation (Fig. 6e) 
and the summer Typha (Fig. 7e) cases do not show noticeable 
non-dimensional peak dispersion values. This is in contrast to 
the very high non-dimensional peak dispersion parameters of 
14.1, 65.5 and 70.8, shown in Figs 6a, 7c and g, respectively, 
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Figure 6 Comparison between optimized step (S) and continuous (C) distributions of dispersion coefficient (left) and predicted concentra-
tion profiles (right) for (a–d) low-density artificial vegetation, and (e–h) high-density artificial vegetation, where (a), (b), (e), and (f) are for 

3 3 −1Q = 3.4 × 10−3 m s−1 and (c), (d), (g), and (h) are  for  Q = 7.5 × 10−3 m s

where close to the vegetation interface, around which the trans-
verse concentration profile shows little transverse gradient, the 
optimum is poorly defined. This is a similar restriction to that 
which affects the gradient flux approach of Ghisalberti and Nepf 
(2005), alluded to in Section 2 (West, 2016). 

Table 1 provides the goodness of fit, R2, values between the t 
observed and predicted transverse concentration profiles for the 
step and continuous parameter distributions for all the vege-
tated conditions and discharges studied. The values show that, 
in almost all the cases (19 out of 20), the continuous velocity 
and dispersion distributions predict tracer concentration pro-
files closer to the observations than those predicted by the step 
velocity and dispersion distributions. For all the summer Typha 
discharge cases, the quality of both the step and continuous 
parameter distribution predictions is poorer than the rest of the 
cases, illustrating the difficulty of predicting dispersion in real 
vegetation. Considering the other three vegetation conditions, 
in the majority of cases the high density, artificial vegetation 
is simulated better than the other two vegetation conditions, as 
reflected in the mean R2 values shown in Table 1.t 

Looking for any general trends in the parameters, Fig. 8 
(filled symbols) presents the optimized continuous dispersion 

coefficient distribution parameters, as a function of flow rate. In 
general, the dispersion parameter values, optimized from fitting 
to the measured concentration profiles, are within the follow-
ing ranges: D∗ 0.01 to 1; D∗ 0.0001 to 1; D∗ 1 to 100; with 1 2 p 

σ 1 and σ 2 0.015 to 0.1 m and 0.03 to 0.25 m, respectively. 
There is a large range of values and much scatter in these opti-
mized parameters. In addition, the high density real vegetation, 
i.e. the summer Typha, appears to be significantly different to 
the other experimental conditions (e.g. Fig. 8a), whilst the low 
density real vegetation, i.e. winter Typha, exhibits four orders 
of magnitude difference between low and high discharges for 
D∗ (Fig. 8b), with two orders of magnitude difference across 2 

several of the other parameters. D∗ would be expected to 2 

increase with discharge due to increasing bed-shear, but this 
is not reliably shown for any vegetation type. Such variations 
might be expected from experiments using real vegetation, so 
it may be more revealing to focus on the artificial vegetation 
cases. 

For the artificial vegetation cases, considering variations with 
discharge: D∗ is approximately constant for both vegetation 1 

densities, whilst D2
∗ , DP 

∗ and σ 1 show too much scatter to dis-
cern any trends. On the other hand, σ 1 shows a weak increase 
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Figure 7 Comparison between optimized step (S) and continuous (C) distributions of dispersion coefficient (left) and predicted concentration 
3profiles (right) for (a–d) Winter Typha, and (e–h) Summer Typha, where (a), (b), (e), and (f) are for Q = 3.4 × 10−3 m s−1 and (c), (d), (g), and (h)  

3 −1are for Q = 7.5 × 10−3 m s

with discharge for both vegetation densities. Considering the 
effects of vegetation density: the magnitude of both D1 

∗ and σ 2 

decreases from low density artificial to high density artificial, 
i.e. in accordance with volume fraction, whilst D2 

∗ and σ 1 show 
the opposite trend. There appears to be no discernible trend in 
the variations of DP 

∗ with vegetation density. 

5.2 Parameter estimation 

Having shown that continuous velocity and transverse dis-
persion coefficient distributions are slightly better than step 
distributions for predicting solute mixing around the vegeta-
tion generated shear layer, this section explores how we can 
independently obtain estimates of the distributions from pre-
viously published research. For the step distributions this only 
requires two velocity and two dispersion coefficients, whilst the 
continuous transverse distributions of longitudinal velocity and 
transverse dispersion require many more parameter values. 

White and Nepf (2008) provide a method for calculating the 
transverse variation in longitudinal velocity across a vegetation 
generated shear layer. Following this approach, the velocities 
in the vegetated and clear water zones, i.e. u1 and u2, respec-
tively, and hence U ( = u2 – u1), have been taken from the 

observed velocity field. No further estimation is required for the 
step velocity distribution, whilst for the continuous velocity dis-
tribution, only the transition between these two values has been 
estimated. The drag coefficient, CD, and bed friction coefficient, 
Cf , have been estimated from Sonnenwald, Stovin, et al. (2019) 
and Rameshwaran and Shiono (2007), respectively. A rough-
ness factor ks = 0.16 mm and channel slope S = 1/10,000 have 
been assumed. Using these, a continuous transverse velocity dis-
tribution can be estimated, examples of which are shown in Fig. 
9 (left column). D1 has been estimated from Tanino and Nepf 
(2008), with D2 being estimated from eq. (37) in White and Nepf 
(2008), and DP being based on fig. 15 in White and Nepf (2008), 
where the 0.7 scaling parameter is modified to 1.0. σ 1 and σ 2 

were taken as  I and  O, respectively, using eqs (39) and (40) 
in White and Nepf (2008). The estimated continuous transverse 
dispersion distributions are also shown in Fig. 9 (left column). 

The estimated continuous transverse dispersion coefficient 
distribution parameters are shown in Fig. 8 (open symbols), 
where values are within the following ranges: D∗ 

1 0.03 to 0.1; D∗ 

0.05 to 1.0; DP 
∗ 0.1 to 2.0; with σ 1 and σ 2 0.01 to 0.1 m and 0.01 

to 0.05 m, respectively. D1 
∗ appears approximately constant with 

discharge and vegetation type, and shows little scatter, whilst the 
other four parameters all exhibit a weak increase with respect to 

2 
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Table 1 Summary of goodness of fit, R2 
t , values between laboratory data and predicted spatial concentration 

profiles for step, continuous and estimated dispersion distributions 

Transverse velocity and dispersion 
parameter distributions 

Optimized Estimated 

3 −1)Vegetation type Discharge Q (10−3 m s Step Continuous Step Continuous 

Low-density AV 3.4 0.966 0.980 0.921 0.950 
4.2 0.951 0.978 0.888 0.918 
5.2 0.975 0.981 0.948 0.973 
6.4 0.974 0.980 0.954 0.978 
7.5 0.984 0.988 0.963 0.986 

Mean 0.970 0.981 0.935 0.961 
High-density AV 3.4 0.992 0.995 0.960 0.962 

4.2 0.987 0.975 0.956 0.955 
5.2 0.947 0.996 0.835 0.835 
6.4 0.989 0.998 0.922 0.923 
7.5 0.974 0.998 0.909 0.908 

Mean 0.978 0.992 0.917 0.917 
Winter Typha 3.4 0.971 0.990 0.778 0.774 

4.2 0.981 0.990 0.784 0.795 
5.2 0.980 0.988 0.745 0.786 
6.4 0.983 0.990 0.745 0.798 
7.5 0.977 0.984 0.729 0.754 

Mean 0.978 0.988 0.756 0.781 
Summer Typha 3.4 0.875 0.886 0.867 0.866 

4.2 0.696 0.764 0.674 0.674 
5.2 0.793 0.863 0.729 0.728 
6.4 0.728 0.784 0.434 0.425 
7.5 0.758 0.812 0.491 0.486 

Mean 0.770 0.822 0.639 0.636 
Mean 0.924 0.946 0.812 0.824 

AV = artificial vegetation. 

discharge across all the vegetation types. D∗ 
2 and DP 

∗ decrease 
with increasing volume fraction (low density artificial, low den-
sity real, high density artificial, high density real), with similar 
variations for both spread parameters, σ 1 and σ 2. Comparing 
these estimated parameter values with the corresponding ones 
obtained by optimizing the numerical model to the observed 
data (Fig. 8) indicates limited agreement. Whereas differences 
may be up to one order of magnitude for D1 

∗ , σ 1 and σ 2, differ-
ences for the other two parameters are typically much larger. 
D∗ is underestimated, and the larger optimized D∗ is consis-1 1 

tent with the findings of Sonnenwald et al. (2017). The larger 
optimized values of σ 2 suggest a greater influence of the shear-
layer on the open-channel than predicted by White and Nepf 
(2008), which may be a limitation of the eddy-viscosity based 
approach. 

A comparison between observed concentration profiles and 
those predicted with the numerical model using the estimated 
step and continuous velocity and transverse dispersion coeffi-
cient distributions is provided in Fig. 9. Overall, these results 
suggest that using estimated parameters to predict concentration 
profiles, for either step or continuous functions, across a vegeta-
tion generated shear layer can give good results for the artificial 

vegetation, with R2 around 0.9 (Table 1). This predictive capa-t 
bility decreases in real vegetation: the winter Typha has a mean 
R2 value of approximately 0.76, whilst in the most heteroge-t 
neous vegetation case, the summer Typha, the mean R2 falls to t 
0.64, with a significant difference between high and low flow 
rates. In some cases, the peak concentration at the interface is 
overestimated, with slight underestimations in the spread, but 
there is little difference between the concentration profiles from 
step and continuous parameter distributions. 

6 Discussion 

Table 1 provides the goodness of fit, R2, between concentration t 
profiles predicted using optimized step and continuous distri-
butions of velocity and dispersion coefficient and using cor-
responding distributions estimated from previously published 
studies. In all the cases studied, the concentration profiles 
obtained with the optimized parameters are better than those 
obtained with the estimated parameters. 

To parameterize the transverse distribution of dispersion 
coefficients, the inverse modelling approach is limited when 
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Figure 8 Comparison between optimized (filled) and estimated (open) continuous transverse dispersion coefficient distribution parameters with 
respect to flow rate 

Figure 9 Estimated continuous velocity and transverse dispersion distributions (left), with resulting concentration profile compared with laboratory 
3measurements (right), for (a, b) low-density artificial vegetation, and (c, d) high-density artificial vegetation, at Q = 7.5 × 10−3 m s−1 and for (e, 

3 −1f) winter Typha, and (g, h) summer Typha, at  Q = 3.4 × 10−3 m s
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there are no, or very low, transverse concentration gradients, 
which is also the limitation of the gradient flux approach. 
Uncertainty and noise in the solute concentration measurements 
reported may be caused by a combination of the trapping of 
tracer in the 40 mm wide vegetation-free viewing windows and, 
in the Typha studies, the heterogeneity of the vegetation. Despite 
these limitations, the numerical modelling approach described 
has been shown able to characterize the spread of a tracer across 
a vegetation generated shear layer using either a step or continu-
ous distribution. The results presented in Fig. 8 show variations 
with respect to discharge and they confirm that the seasonal 
variation is greater than the variation with discharge. This war-
rants further investigation, as the quantification of mixing in real 
vegetation generated shear layers throughout the annual growth 
cycle in the literature is limited. 

Whilst the results presented here compare step with con-
tinuous distributions, these comparisons have been performed 
by changing two parameters, namely the longitudinal veloc-
ity and the transverse dispersion coefficient. In this case, for 
vegetation generated shear layers, the difference between pre-
dicted concentration profiles is so subtle that further analysis of 
each parameter individually is not warranted. However, there 
are other contexts, for example between the main channel and 
the over-bank region in compound channel flows and between 
onshore and offshore mixing due to waves breaking, where such 
spatial parameter distributions may have a greater impact. The 
development of the numerical model also provides a framework 
for undertaking inverse modelling of mixing data to investigate 
the spatial distribution of transverse dispersion parameters in 
other scenarios. 

7 Conclusions 

A simple, robust two-dimensional finite difference model of 
steady solute transport has been developed and validated against 
analytical solutions. It is able to predict transverse solute 
concentration profiles across vegetation-generated shear layers 
given transverse distributions of both the longitudinal velocity 
and the transverse dispersion. The numerical model has been 
employed inversely to parameterize transverse distributions of 
transverse dispersion coefficients from new observed solute con-
centration profiles, at the laboratory scale, for two cases of 
artificial and real vegetation at several flow rates. There is con-
siderable spread in the parameter values obtained. The ability 
to estimate the transverse distribution of velocity and transverse 
dispersion, using previously published relationships, was inves-
tigated. Model predictions using both the step and continuous 
distributions of velocity and transverse dispersion show similar 
goodness of fit to the observed concentration data. The limited 
fit, especially for high flow rates under summer Typha, illus-
trates the need for improved predictive techniques to describe 
mixing within real vegetation and across natural vegetation 
generated shear layers. 
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8 Supplemental data 

Supplemental experimental data can be accessed from West, P., 
Hart. J., Sonnenwald, F., Stovin, V., and Guymer, I. (2018). 
Transverse dispersion in vegetation across a shear-layer 2016: 
Artificial, Carex, Typha [data set] https://doi.org/10.15131/shef. 
data.7077386.v1 

Notation 

c(x,y) = solute concentration (kg m−3) 
CD = drag coefficient (–) 
Cf = bed friction coefficient (–) 
d = stem diameter (m) 
Dy = transverse mixing coefficient (m2 s−1) 
h = flow depth (m) 
i = the finite number of longitudinal computa-

tional nodes (–) 
j = the finite number of transverse computa-

tional nodes (–) 
ks = roughness factor (m) 
m = the solute mass inflow rate of the source (kg 

s−1) 
N = number of nodes (–) 
p, q and r = functions of α, β, γ ,   
R2 = goodness of fit (–) t 
S = channel slope (–) 
u = longitudinal velocity (m s−1) 
u* = bed shear velocity (m s−1) 
w = channel width (m) 
x = longitudinal distance from the source (m) 
y = transverse position (m) 
yi = the distance of the source into the deeper 

zone (m) 
y0 = transverse source location (m) 
y* = relative transverse position (–) 
σ i = standard deviations (m) 
φ = solid volume fractions (–) 

x = longitudinal discretization step size (m) 

http:data.7077386.v1
https://doi.org/10.15131/shef
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y = transverse discretization step size (m) 
α, β, γ and   = model coefficients 
subscript 1 = shallow flow zone, y < 0; vegetated zone 
subscript 2 = deep flow zone, y > 0; clear water 
subscript p = peak value 
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Appendix A – Solution Method 

The finite difference approximation to Eq. (3) took the form: 

hj uj [ci
j − cj

i−1] 
x � 

j +1 j1 (hj +1Dj +1 + hj Dj ) [c − ci ]i = 
y 2 y �

j j −1
(hj Dj + hj −1Dj −1) [ci − c ]− i (A1)

2 y 

where h, u, D and c are as previously defined, x and y are the 
discretization steps in the longitudinal and transverse directions, 
respectively, and superscripts i and j refer to the finite number 
of computational nodes at which h, u, D and c have numerical 
values (i representing longitudinal location and j representing 
transverse location). Since h, u and D do not vary longitudi-
nally, subscripts are not required. Equation (A1) represents an 
“upwind” treatment of longitudinal advection and a “central” 
treatment of transverse mixing for the approximation of Eq. (3) 

Figure A1 Location of computational grid points used to approximate 
Eq. (3) at node i, j 

at node i, j. Figure A1 illustrates the “computational molecule” 
in the computational plane. 

After grouping of terms, Eq. (A1) can be written as: 

j −1 j −1 j j j +1 j +1 jα c + β c + γ c =  (A2) 

where the coefficients α, β, γ and   are functions of x, y and 
nodal values of h, u and D (all of which are known). α, β, γ and 
  are given as: 

j −1 −(hj −1Dj −1 + hj Dj )
α = (A3)

2 y2 

j hj uj (hj +1Dj +1 + 2hj Dj + hj −1Dj −1)
β = + (A4)

x 2 y2 

j +1 −(hj +1Dj +1 + hj Dj )
γ = (A5)

2 y2 

hj j
j u j

 = ci−1 (A6)
x 

Assuming there are N nodes in the transverse direction, 
application of Eq. (A2) to all interior nodes yields N − 2 equa-
tions containing N unknown values of solute concentration. The 
remaining two equations required to solve for all nodal values 
of solute concentration come from applying the boundary con-
ditions at the first and last transverse nodes (see below). The 
system of equations forms a tri-diagonal matrix and was solved 
using the Thomas or “double sweep” algorithm (e.g. Abbott & 
Basco, 1989), which is a special form of Gaussian elimination 
using recurrence relationships rather than matrix methods. 

For each transverse boundary, Eq. (4) is enforced by specify-
ing the solute concentration at a dummy node, which is located 
one transverse space step beyond the bank, to be the same as the 
solute concentration at the nearest interior node. Hence, assum-
ing the node at the right-hand bank is identified as j = 0, Eq. 
(A2) here takes a slightly simpler form (because c –1 = c1): 

0 0 1 1 1 0β c + (α + γ )c =  (A7) 

Substitution of Eq. (A7) into Eq. (A2), for j = 1, eliminates c0. 
The resulting equation can then be substituted into Eq. (A2), for 
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j = 2, to eliminate c1. Repeating this process for increasing j 
(forward sweep), it is relatively easy to deduce that, in general: 

j +1 j +1 j +2 j +2 jp c + q c = r (A8) 

where p, q and r are functions of α, β, γ ,   and previous values, 
given as: 

j αj −1−qj jp = + β (A9)
pj −1 

j jq = γ (A10) 

αj j −1 
j j +1 − 

r
r =  (A11)

pj 

For N transverse nodes, the node at the left-hand bank is 
identified as j = N – 1. Therefore Eq. (A8) for the final two 
values of j are: 

N −2 N −2 N −1 N −1 N −3p c + q c = r (A12) 
N −1 N −1 N N N −2p c + q c = r (A13) 

NThe boundary condition requires c = cN −2. Using this with 
Eqs (A12) and (A13) enables the following expression for cN −1 

to be obtained, which only contains known quantities. Hence 

Journal of Hydraulic Research (2020) 

cN −1 is now known. 

N N −2 N −2q rN −3 − p r
cN −1 = (A14)

qN qN −1 − pN −2pN −1 

Successive application of (a re-arranged) Eq. (A8) for 
decreasing j (backward sweep) then yields all but one of the 
remaining unknown solute concentrations, the final one (c0) 
coming from Eq. (A7). 

To calculate the transverse solute concentration distribution 
at a downstream longitudinal location the following steps are 
undertaken: 

(1) Specify the transverse solute concentration profile at an 
upstream longitudinal location, denoted by i = 0 (this is the 
upstream boundary condition) 

(2) Specify the values of h, u and D at all nodes in the compu-
tational domain (recognizing possible transverse variations 
but no longitudinal variations) 

(3) Apply the “double sweep” algorithm to calculate the trans-
verse solute concentration profile at the next longitudinal 
location, denoted by i = 1 (uses information at longitudinal 
locations denoted by i = 0 and i = 1) 

(4) Increase i by 1 and repeat steps 3 and 4 until the solution 
reaches the required downstream longitudinal location. 
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