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Abstract

In the present paper, biaxial load fatigue crack growth tests are reported. Specimens were made of

an advanced aluminium-lithium alloy AA2198-T8 joined by the friction stir welding process, capable

of producing advanced integral metallic structures that can offer significant cost and weight savings

over the current joining methods. Two material rolling directions are considered in relation to the
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welding and crack growth direction. Welding-induced initial distortion was measured before the

experiment for better result interpretation.

Test specimens are representative of two different weld orientations, i.e. longitudinal weld parallel

to the material rolling direction and circumferential weld perpendicular to the material rolling

direction for investigating the inherent material anisotropy of aluminium-lithium alloys. In all tests

the fatigue crack was initiated in the thermo-mechanical process zone of the weld and propagated

parallel to the weld joint line.

It is shown that the rolling direction of the selected aluminium alloy strongly affects the crack

growth path. The specimens welded orthogonally to the rolling direction exhibit a shorter fatigue

crack growth life than the specimens welded parallel to the rolling direction.

Keywords

AA2198, aluminium-lithium, biaxial, crack path, distortion, fatigue crack growth, FSW, testing

setup

1 Introduction

Traditional aircraft structures have been assembled by riveting or bolting. This joining process

leads to built-up structures, in which propagating cracks can be retarded or even arrested by intact

structural members. Integral metallic structures, which may be fabricated by high speed machining

or welding processes offer the benefit of reduced structural weight and reduced manufacturing cost;

hence are very attractive. However, they inherently lack of fail-safety capability due to continuous

crack growth path. Therefore their fatigue crack growth behaviour has to be thoroughly studied

before this type of innovative design concept may be used in aircraft structures. Several studies
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have been performed in this context, e.g. [1–5]. Most of the work published concerning fatigue

crack propagation in lightweight structures, e.g. skin-stringer panels [5–7], have only considered the

unidirectional load case. However, aircraft skin panels, especially the fuselage shells, are subjected

to complex loads acting in two orthogonal directions.

Hannon and Tiernan have presented several approaches for biaxial testing systems and specimen

designs, mostly for the static load experiments [8]. Most of these techniques may be adapted for

fatigue tests. Test machine designs of different complexity have been developed, from the adaptation

of uniaxial testing machines to tailor made multiaxial testing systems. Atkins et al. presented a

special fixture that creates a biaxial stress field in cruciform specimens by using a standard uniaxial

testing machine with different biaxiality ratios [9]. A similar approach was also used by Abu-Farha

et al. [10] who studied various geometries for static biaxial load tests at elevated temperature.

Biaxial fatigue resistance of polymeric plates was studied using a special fixture, which transforms

the uniaxial compressive loads from a standard testing machine into biaxial tensile loads [11]. A

similar system that adapts uniaxial testing machines for biaxial experiments was developed by

Bhatnagar et al. [12]. This system is capable of applying any load relation between the two

axes. It should be noted that with this kind of test setup the ratio between both axes is constant

during the entire test, which may not be desirable. Therefore testing equipment with multiple and

independently controlled loading devices can provide a more versatile setup. Some testing machines

are commercially available and have been used successfully, e.g. for the thermoelastic approach for

determining the stress intensity factor in a biaxial stress field [13], whereas some researchers used

tailor made equipment [14]. In the present study the equipment was custom made by company

Instron [15], and controlled by several interconnected servo-hydraulic controllers. Comparable

systems with four independent actuators have already been used successfully before [16–18].

Specimen design is also challenging. Since no standard geometry exists yet, comparison of results
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and extraction of data from different laboratories is difficult [8]. Dalle-Donne et al. have shown

different biaxial specimen designs [19]. Smits et al. showed the advantages of using four actuators for

cruciform specimens [20] and compared the geometries of small scale specimens made of composite

material. They concluded that by reducing the thickness in the central gauge region and using

a fillet between two adjacent arms, failure should be more likely to occur in the specimen centre

region. While most of the cruciform specimens are made of thin sheets, Bass et al. showed a biaxial

specimen with a thickness of over 100 mm for a research related to nuclear reactor pressure vessels

[21]. Numerical models have been used to improve the specimen designs, e.g. [22–24].

Another challenge is the load transfer efficiency, so that applied load in one direction is transferred

to the specimens centre gauge section as much as possible, generating minimum resistance in the

perpendicular direction. The most commonly used cruciform specimens do have a square central

gauge zone. To help the uniform load transfer (load diffusion), two types of specimens have been

used. One type has reduced thickness in the central gauge section, and the other introduces a

number of slots in the loading arms of the specimen [8, 25, 26]. A detailed study using photoelastic

measurement was performed by Pisarenko et al. concerning the number of slots necessary for

the load transfer [27]. They found that larger number of slots have resulted in much improved

stress distribution in the specimen centre. Some researchers combine both types in their specimens

[28, 29], as shown in Figure 1.

Design studies of the load-diffusion slots in the loading arms of cruciform specimens have been

performed. For example, an odd number of slots is found to work better in reducing the local

stresses [30]. A detailed finite element analysis (FEA) confirms that adding slots can improve the

stress uniformity and increase the stress level closer to the intended loading level in the centre

region [31]. This study also shows that the slots’ width and number have significant influence,

whereas the slots’ length and location have little effect .
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Figure 1: A cruciform specimen with reduced thickness in central test region and load

diffusion slots [28]

5



The present work is also motivated by the increasing application of the third generation aluminium-

lithium alloys in the aerospace industry and new joining technologies such as advanced solid state

welding processes. Development in this front is partly driven by the demand in structure weight

reduction and stiffness increase [32]. Up to its solubility limit of 4.2% [32], each weight percentage

lithium reduces the aluminium alloy density by approximately 3% and increases its elastic modulus

by 5% [33]. Precipitation hardening of aluminium lithium is achieved by artificial ageing after

solution heat treatment [34].

Damage tolerant alloys, such as AA2198, have been developed for the commercial aircraft market

that requires a combination of high specific strength, excellent damage tolerance and reduced weight

[35]. Comparing to prior generations of Al-Li alloys, the lithium percentage in AA2198 is reduced,

slightly reducing elastic modulus and increasing density, but the higher Cu concentration makes

up for these losses contributing to a higher strength, thermal stability and toughness. Especially

in the T8 heat-treatment condition good damage tolerance properties are found [35].

It should be noted that the alloy AA2198 is characterised by a relatively large anisotropy in me-

chanical and microstructural properties between the material rolling and the transversal directions.

Cavaliere et al. studied the influence of this anisotropy on tensile and fatigue properties of 4 mm

thick AA2198-T851 welded butt-joints. Longer fatigue life was found for base material loaded

longitudinally to the rolling direction. However, this difference was not noticeable for the welded

samples, probably due to the microstructural changes caused by the friction stir welding process

[36, 37].

The friction stir welding (FSW) process was developed and patented by the TWI in 1991 [38] as

a novel solid-state joining process with the ability to weld high strength aluminium alloys that are

difficult to weld by fusion welding techniques. FSW can also join dissimilar materials [39].

Friction Stir Welding is a promising technique to solve the challenge of welding the AA2XXX series
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high strength alloys, which were very difficult to weld by traditional welding processes [40]. FSW

also has the ability to join different thicknesses and has other advantages like a low number of

defects and lower distortion. Therefore it is already in use in the aerospace [41] and automotive

industries for joining high strength aluminium alloys, providing clean and consistently high joint

strengths.

This paper presents an investigation of fatigue crack propagation behaviour in a cruciform specimen

subjected to a biaxial stress field. The specimen was made of an aerospace grade aluminium-lithium

alloy AA2198-T8 joined by the FSW process.

2 Equipment

2.1 Test rig and setup for biaxial loading

Figure 2(a) shows the triaxial servo-hydraulic testing machine, which was originally developed by

Schenck, later acquired by Instron Structural Testing Systems (IST). This triaxial testing machine is

equipped with six 1 MN servo controlled hydraulic cylinders, which can be controlled simultaneously

and independently. Only four of them were used in the modal control in the present work. This

control scheme is a combination of force and displacement control, which guarantees the required

load while maintaining the specimen centred in the loading rig. Figure 2 shows photographs of the

setup that was used in this experiment. Figures 2(b) and 2(c) show the specimen being mounted

inside the test rig unloaded when the zero level was set for strain measurement. The alignment

of the specimen is guaranteed by a combination of the adjustable clamps mounted on the rigid

cylinders and of the adopted clamping procedure aiming at reducing potential misalignments.

Parameters for the servo-hydraulic controller are listed in Table 1. Apart from the standard pro-

portional (P), integral (I) and derivative (D) parts of the control algorithm a time delay (L) is
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(a) Instron triaxial testing machine used in this study

(b) Unclamped specimen at unloaded initial state

(view a)

(c) Mounted specimen (view b)

Figure 2: Photos of the experimental setup
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Table 1: PIDL values for the Instron servo-hydraulic modal controllers

P [dB] I [/s] D [ms] L [ms]

X-axis sum 4 0.6 0 75

Y-axis sum 4 0.6 0 0

X-axis difference 5 0.2 0 0

Y-axis difference 5 0.2 0 0

added in order to guarantee the required relation between all cylinders. Using the selected values,

the required phase shift of 0◦ was achieved at a loading frequency of 4 Hz.

Before experiments were started, the uncertainty from the unloaded load cells was measured in

order to gain insight into the best possible force control values. The maximum uncertainty from

both axes obtained for all specimens with the hydraulic system turned off was determined to be

0.08 to 0.22 kN on the X-axis and 0.05 to 0.26 kN on the Y-axis for all specimens. No higher

accuracy should be expected from this setup. It should be kept in mind that the load cells have a

capacity of 1000 kN, which means that 0.1 kN is equivalent to a voltage drop of only 1 µV . This

uncertainty was verified during the experiments and seemed not to influence the experiments. The

uncertainty is influenced by various factors and cannot be controlled completely in such a complex

setup.

Strain measurements were performed during the complete clamping process in order to guarantee

that all information regarding each of the specimens is conveniently registered. The data were

used to calibrate the numerical models, which do not simulate the initially distorted shape of the

specimens due to the fabrication process.
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2.2 Crack measurement device

Crack measurement was performed using an optical microscope, as shown in Figure 3. A charge

coupled device (CCD) camera is connected to a Zeiss optical microscope with a Zeiss fibre optics

light source. The crack tip was detected by the operator on a connected monitor. Prior experience

of the author with automatically detected crack tips [42] lead to the decision to use manual crack

tip detection in such a complex setup. This permits a good identification of the crack tip location.

In order to define the crack tip position in the global coordinate system of the specimen, digital

scales were attached to a table in the X and Y directions, see Figure 3(a). Using these scales the

microscope can achieve accuracies better than 0.5mm, where the crack tip position was recorded

with an accuracy of 0.1mm. Figure 3(b) shows the initial EDM notch of a specimen as an example.

There was a further cut at the notch root by a very thin razor blade for easier fatigue crack

initiation.

(a) Digital scales used for positioning the

microscope exactly below the crack tip.

(b) Initial notch root as seen through the

microscope.

Figure 3: Crack tip detection and crack length measurement.
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3 Experimental setup and testing procedure

3.1 Specimen design

The cruciform specimen geometry was based on the review of some existing designs [8, 10, 20, 43].

In previous projects, a slot design in the loading arms was successfully used [43]. An example

specimen for static tensile load test is shown in Figure 4. The radius of the fillet between two

adjacent loading arms was 3 mm in this case.

Figure 4: Photo of a HZG test sample for static tensile loading test with load-diffusion

slots [43]

For the purpose of this study, i.e. testing under cyclic loads, the basic geometry shown in Figure

4 was revised based on the following concerns. First, for preventing cracks from initiating at the

round fillets between two adjacent loading arms, the radius must be large enough to reduce the

stress concentration effect. FEA (finite elements analysis) will also reveal whether enlarged radii

will lead to the “cross-loading” effect between the loading arms. Second, since cyclic loads could

cause fatigue failure at the small radius of the slots, these fatigue load specimens do not contain

the load-diffusion slots.
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Specimen design was based on FEA [31]. The numerical model has very fine mesh around the

fillet curvature in order to capture the stress concentration accurately. Since cyclic loads could

also cause fatigue failure at the small radius of the slots, test specimens planned for fatigue testing

do not contain these slots. Selected fillet radii (r) were modelled. Calculated stress contour maps

are shown in Figures 5 for r = 3 and 12 mm. It shows that the stress concentration factor (Kt)

is significantly reduced with the higher radius. To minimise the risk of crack initiation from the

corner fillet, r = 20 mm was selected for the final specimen design, where the Kt calculated by the

finite element method is 3.2 [31].

(a) Fillet radius 3 mm; Kt = 7.2 (b) Fillet radius 12 mm; Kt = 3.9

Figure 5: Von Mises stresses calculated by the finite element method for fillet radius (a)

3 mm and (b) 12 mm at applied biaxial stress of 100 MPa : 100 MPa. Stress concentration

factor Kt = maximum von Mises stress / applied uniaxial stress in y-axis

Using the S-N curve of the AA2198-T8 aluminium alloy, the lower and upper bounds of fatigue

crack initiation life were estimated at 1×106 to 6×106 cycles. This estimated fatigue life at a

point located in the fillet is sufficiently longer than the cycle numbers required for fatigue crack

propagation from a 40 mm pre-crack length to failure, which is the subject of this research. Fatigue
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crack growth life was evaluated to be in the order of 105 [31]. Since the aim of the research reported

in this and another related paper [44] is about crack propagation, radius r = 20 mm was chosen

for the testing specimens.

Figure 6 shows a sketch of the specimens for a detailed coordinate system definition and the

locations of strain gauges used for strain measurement on the two surfaces of the specimen. The

notch is on the geometrical centre with the initial length of 2a0 = 40 mm. However, the weld is

off-set from the centre in oder to set the crack on the welding retreating side, which is believed to

have the poorest properties [3].

(a) engineering drawing (b) picture

Figure 6: Test specimen including the strain gauge positions. Note: gauges x2b and y2b

are on the specimen back side

3.2 Material

Mechanical properties obtained from tensile tests on AA2198-T8 are available for the base material

(BM) [45] and welded coupons (FSW) [46]. Bordesoules et al. have performed six tensile tests in the

longitudinal direction and the average value was calculated [46]. Main properties are summarized
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in Table 2, where various data sources are listed. Comparing to the base material properties, the

welded joint has attained 63% of the yield strength and 94% of the elastic modulus.

Table 2: Mechanical properties for AA2198, both parent material and FSW

base material measured by FSW joint

[45] [35] [36] [46]

Young’s modulus [GPa] 71 77 75

σy,0.2%[MPa] 450 470 436 285

σUTS [MPa] 499 510 491 406

Elongation [%] 15 12 16 14

3.3 Welding process

Friction Stir Welding was performed using a MTS iStir 5 welding machine using the following

welding parameters: downforce 8.5 kN, welding speed 500 mm/min, spindle rotation 1200 rpm and

0o tilt angle. The tool used for welding had a scroll shoulder with a diameter of 13 mm and the pin

was tapered from a diameter of 4.9 to 3.9 mm. The maximum pin length of 3 mm was adjusted

automatically to have a distance of 0.2 mm from the backing bar.

All specimens, except the fourth, were made of rolled aluminium plates with a thickness of 3.2

mm. For the fourth specimen, a 4 mm thick plate was used, and after welding, the specimen

was machined on the shoulder surface to the same thickness as the other three specimens. Two

specimens (BIAX1, BIAX3) were welded orthogonally to the rolling direction, and another two

(BIAX2, BIAX4) were welded parallel to the rolling direction. This was done to simulate both the

transversal and longitudinal welds of a fuselage barrel.
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3.4 Manufacturing induced distortion (and distortion control during testing)

A commercially available Pontos optical deformation measurement system from GOM mbH was

used for measuring the initial shape of all specimens. The measurement system was used slightly

outside of the recommended measurement volume due to the large specimen size, nevertheless a

pixel deviation between 0.013 and 0.04 was found during calibration for the different specimens.

In this context it should be noted that a value of up to 0.04 is acceptable for good measurement

results according to the measurement system manufacturer. The uncertainty of the measurements

was estimated to be below 0.1 mm. Furthermore, since all specimens were measured in the same

conditions, comparability is guaranteed. Figure 7 shows the specimen BIAX3 being prepared

for optical distortion measurement. The black and white markers used for the three-dimensional

coordinate determination by the stereo vision based system are clearly visible.

Figure 7: Specimen prepared for the out-of-plane distortion measurement by the optical

system

The first of the analysed specimens was illuminated by a 2000 W halogen studio light. All subse-

quent specimens were illuminated by a LED based lighting system developed for such measurement

tasks. This cold light source does provide a significantly friendlier working environment, without
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Table 3: Measured overall distortion levels

Specimen distortion comment

[mm]

BIAX1 24.9 rolling orthogonal to the weld

BIAX2 19.4 rolling parallel to the weld

BIAX3 25.0 rolling orthogonal to the weld

BIAX4 32.9 rolling parallel to the weld

(was completely machined

on the internal surface)

adversely affecting the measurement quality.

Schneider-Kreuznach lenses with a focal length of 50 mm and a maximum aperture of f/2.8 were

used with an aperture of f/11 to guarantee a sharp image throughout the whole measurement

volume.

The overall distortion was calculated by measuring the distance between two planes parallel to

the least squares best fit plane through the centroid which englobe all measured points, see Table

3. In this way it is possible to compare complex shape distortions quantitatively with low effort.

This information should however always be accompanied by a qualitative analysis of the measured

shapes. It should be mentioned that the specimens own weight can influence the measured shape

due to their small thickness, but in the current case all specimens were measured using the same

setup, therefore the comparability between the specimens can be maintained.

Figure 8 shows the measured out-of-plane distortion of the specimens. The distorted shapes of

the first three specimens (BIAX1, BIAX2, BIAX3) are almost identical, whereas BIAX4 differs by
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bending in the opposite direction.
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(a) Specimen BIAX3 (BIAX1 and BIAX2 had similar

deformed shapes)
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(b) Specimen BIAX4 (which was completely machined

on the top surface to obtain the same material thickness

as the other three specimens)

Figure 8: Measured out-of-plane distortion

Specimens welded orthogonally to the rolling direction (BIAX1, BIAX3) seemed to have a greater

overall distortion after machining. It should be remembered that the specimen BIAX4 has a

different shape distortion, which should not be considered for comparison. This is a result of

milling the internal face of the plate in order to reduce its thickness of 4 mm to the same thickness

of the other specimens before machining of the pockets, see Figure 8(b). It is most likely that

this additional distortion is due to the redistribution of the residual stresses existing in the parent

material when part of these residual stresses are relaxed [47].

The specimens were distorted due to the welding and machining processes, but were forced to an

almost flat shape during clamping on the test machine. This means that, even before applying

the external loads, initial strains are built up in the specimen, which are partially caused by the

flattening forces acting on the distorted specimen. These initial strains may be significant if the

initial distortion is significant, and should therefore be considered in numerical simulations. Table 4
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Table 4: Clamping force induced initial strains (units: µε)

Specimen εx1 εx2 εx3 εx4 εx2 ext. εy1 εy2 εy3 εy4 εy2 ext.

BIAX1 61 216 23 -172 101 609 476 596 270 -93

BIAX2 15 114 135 -171 95 540 446 489 343 -55

BIAX3 -49 -119 59 -338 -54 575 498 462 387 -182

BIAX4 147 -262 204 570 207 -209 -110 -161 -476 491

shows the measured strains due to the clamping force after reaching the load level of 4 kN (nominal

zero load level before applying mechanical loads). Strain values of almost 600 µε are recorded on

the specimen surface due to the initial distortion, and big differences among these specimens are

found. In order to be able to compare the measured data with the numerical models that do not

model the control of the initial distortion, after measuring the distortion-induced initial strains, all

strain gauges were set to zero at the initial load of 4 kN.

3.5 Static load testing of the setup (and calibration)

Static load testing was performed in order to verify the numerical models, and to ensure that all

specimens had similar initial conditions. Various load combinations between the X and Y axes were

performed. In the first and second load scenarios (A, B), only the Y or X load axis was loaded up

to the maximum load of 40 kN, leaving the other axis at the 4 kN minimum load. In the third test

(C), both load axes were loaded up to the maximum fatigue load of 40 kN. In the forth test (D),

only half of the maximum load was applied to the X axis, while the Y axis was fully loaded. Only

the test D result is reported in this paper.

Different approaches have been used for measuring strains on biaxial specimens. Ramault et al.

has compared electronic speckle pattern interferometry, digital image correlation (DIC) and the
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traditional strain gauges [48]. DIC gives the most comprehensive information of the strain distri-

bution on small specimens. In the current case, the larger specimen size and the difficulty to access

it inside of the testing rig, have led to the use of strain gauges as a viable alternative. Since strain

gauges are able to measure local strains very accurately only in one direction, the sensor locations

shown in Figure 6 were chosen in order to acquire the required distribution for the present case.

HBM strain gauges with a nominal resistance of 350 Ω and a gauge length of 3 and 6 mm were

used.

Before the static loading experiment, the specimens were loaded up to 10 kN three times and

afterwards the strain gauges were set to zero at a load of 4 kN. At this load the specimens were

flat inside the testing rig.

Strain distribution versus the applied load is shown in Figure 9 for the first specimen. The Y

axis was loaded up to the maximum load of 40 kN in 5 kN incremental steps, and the X axis was

simultaneously loaded up to 50% of the maximum load in the same incremental steps.
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Figure 9: Strain distribution with applied load (specimen BIAX1, load scenario D)

Strain readings were linear with the increasing load, further validating the clamping setup and
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general quality of the testing setup. The strain in X direction begins at negative values, since the

strain gauges were balanced at a load of 4 kN, but loading scenario “D” includes lower values in X

direction. This static loading data were used to validate the finite element model which is reported

in a separate paper [44]. Additionally this measured data demonstrated that all specimens were

tested under the same loading conditions and that the clamping of each of the specimens has lead

to similar initial load levels in the specimens. The stress in the central testing area was shown to

be uniform and represents the required stress biaxiality.

3.6 Fatigue loading scenario

Due to manufacturing considerations, aluminium panels are much longer in the rolling direction

than in the transverse direction. Fuselage panels are manufactured, with very few exceptions, with

the rolling direction oriented in the aircraft flight direction, since in this way longer panels can be

produced and the number of circumferential joints can be reduced.

Therefore specimens welded orthogonally to the rolling direction mimic the circumferential joints,

whereas specimens welded parallel to the rolling direction simulate the longitudinal joints. Load

ratio 1:1 represents the upper fuselage panel under the bending and cabin pressurisation loads. The

maximum applied stress of 100 MPa was defined for research. It was chosen to test the effect of

initial cracks in the thermo mechanical process zone of the welds in joint direction, since this had

previously been considered the most relevant situation.

Therefore the fatigue load was defined by sinusoidal loads with a maximum load of 40 kN (corre-

sponding to 100 MPa) and minimum load of 4 kN (at load ratio R = 0.1). The loading in both

directions, X and Y, was applied without phase-shift.
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4 Results

4.1 Fatigue crack growth life

Figure 10 shows the test measured crack length vs. numbers of cycles of all specimens. All crack

length measurements were taken with the maximum load of 40 kN applied to the Y-axis and the

minimum load of 4 kN applied to the X-axis. In order to be able to compare the results more

accurately, the results are plotted for a initial notch a0 = 21mm, which means that the initial load

cycles for developing a crack from the notch root to the initial crack size were not considered. Note

“a” is half crack length.
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Figure 10: Crack growth lives for all four specimens
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4.2 Crack growth path

Figure 11 and 12 show test measured crack growth trajectories. The initial notch (2a0) as shown

in Figure 11 was aligned orthogonally to the rolling direction, placed in the weld transition zone

at the retreating side. It can be seen that the crack propagation had significantly deviated from

the centre line. Crack growth was not symmetric about the notch. In contrast to this behaviour,

cracks shown in Figure 12 grew symmetrically and also well aligned with the initial notch. In these

specimens (BIAX2, BIAX4), the initial notch was also parallel to the material rolling direction.

The difference between the results of a crack growing either in parallel or perpendicular directions to

the material rolling directions is apparent. Specimens welded orthogonally to the rolling direction

had asymmetrical fatigue crack growth behaviour compared to the specimens welded parallel to

this direction.

5 Discussion

Figure 11 clearly shows that the crack growth rate was slower on the side where the crack tip

entered the welded material and propagated towards the weld nugget, which was also reported

by Richter-Trummer et al. for other materials [2], and also partially observed in the same alloy

AA2198 by uniaxial load tests [3, 49, 50]. In this case, residual stress arising from the welding

process may have affected the results. Since the simpler specimen is comparable to the cruciform

specimens tested in the present work in terms of the welding orientation and crack path in the

weld, similar crack growth behaviour may be expected.

Figure 13 shows fatigue crack growth rates in M(T) specimens that were also made of the AA2198

alloy; both parent material and welded butt joint that is perpendicular to the load direction. It

shows that crack growth rates in the weld nugget are slower than that in the parent material.
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(d) specimen BIAX3 - detail of the crack path

Figure 11: Measured crack growth trajectories in specimens with welding pass orthogonal

to the rolling direction
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Figure 12: Measured crack growth trajectories in specimens with welding pass parallel

to the rolling direction
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Figure 13: Fatigue crack growth rates comparison between welded and base material [49]

This result helps to explain the lower crack growth rate on the side that the crack has entered

the weld zone. However, these M(T) specimen test results do not explain the difference in crack

trajectory that is related to the material rolling direction. Material inherent anisotropy may be

a factor. In this research, just one crack scenario was chosen, having the crack initiating in the

thermo-mechanical affected zone (TMAZ) and propagating parallel to the weld. Another scenario

is having a crack propagating perpendicular to the weld, which was not studied in this work.

6 Conclusions

Fatigue crack growth tests under biaxial loads have been performed for cruciform specimens made

of Al-Li alloy AA2198-T851 containing a butt joint fabricated by the friction stir welding process.

The initial notch location was in the thermo-mechanical affected zone on the retreating side of the

friction stir weld. Biaxial load ratio was kept at 1:1. Following conclusions can be drawn:

1. Test setup and experimental procedures developed in this research are suitable for testing

26



thin-walled cruciform specimens.

2. Fatigue crack has a tendency of resisting entering the weld material and the preferred crack

growth path in the present case was the material rolling direction; consequently, crack growth

behaviour is different in specimens with weld parallel or transversal to the rolling direction.

3. Crack growth path was symmetric in the specimens with weld parallel to the material rolling

direction.

4. Specimens welded orthogonally to the material rolling direction, with the crack growing par-

allel to the weld, exhibited a shorter fatigue life than specimens welded parallel to the rolling

direction.
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