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 
Abstract— The paper introduces MercuryLive, a platform to 

enable home monitoring of patients with Parkinson’s disease 
(PD) using wearable sensors. MercuryLive contains three tiers: a 
resource-aware data collection engine that relies upon wearable 
sensors, web services for live streaming and storage of sensor 
data, and a web-based GUI client with video conferencing 
capability. Besides, the platform has the capability of analyzing 
sensor (i.e. accelerometer) data to reliably estimate clinical scores 
capturing the severity of tremor, bradykinesia, and dyskinesia. 
Testing results showed an average data latency of less than 
400 ms, video latency of about 200 ms and video frame rate of 
about 13 fps when 800 kbps of bandwidth were available and we 
used a 40% video compression, and data feature upload 
requiring 1 min of extra time following a 10 min interactive 
session. These results indicate that the proposed platform is 
suitable to monitor patients with PD to facilitate the titration of 
medications in the late stages of the disease. 

 
Index Terms—Wearable Sensors, Body Sensor Network, 

Parkinson’s disease, Home Monitoring, Telemedicine 
 

I. INTRODUCTION 

ARKINSON’S disease (PD) affects more than 500,000 US 
residents. The main motor features of PD are tremor, 

bradykinesia, rigidity, and impairment of postural balance [1]. 
Current therapies are effective in managing Parkinsonian 
symptoms in the early stages of the disease. However, in late 
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stage PD, patients develop motor complications, namely the 
abrupt loss of the efficacy of medications at the end of a 
dosing interval and involuntary hyperkinetic movements 
referred to as dyskinesia [2]. Monitoring changes in the 
severity of symptoms and motor complications (referred to as 
motor fluctuations) could facilitate the titration of 
medications, an aspect of the clinical management of patients 
with PD that becomes challenging as the disease progresses. 

In clinical practice, information about the severity of motor 
fluctuations is obtained via self reports and diaries. These 
methods are subject to perceptual and recall bias. Direct 
observation by a PD specialist is impractical because motor 
fluctuations cover the time span of several hours between 
medication dosages. Wearable systems have the potential to 
provide a tool to address the shortcomings of existing 
approaches. Wearable systems have been used to gather data 
from a variety of different patient populations [3]. Our team 
and others [4-7] have shown that wearable units equipped 
with accelerometers can be used to track the severity of 
symptoms and motor complications in patients with PD. 

The translation of these experimental results into clinical 
practice requires 1) the development of a system with 
wearable sensors that allow one to carefully manage resources 
such as battery life and processing power to achieve 
monitoring over several days and 2) the implementation of a 
web application to provide remote access to data collected 
using the wearable units. Recent research has shown that, by 
carefully managing system resources dynamically, wearable 
wireless units can collect data for several days without 
recharging their batteries [8-9]. However, wearable sensors 
with such capability have never been combined before with 
software to remotely control the collection of data. 

In this manuscript, we present a system called MercuryLive 
that provides an integrated platform to enable access to data 
gathered using wearable sensors via a web application. The 
system provides clinicians with a means to interact remotely 
with patients in the home setting, to configure the sensor 
nodes for the application at hand, and to record annotated 
data. We are currently deploying the system. In the paper, we 
present preliminary data suggesting that MercuryLive is 
suitable for use in clinical practice. Collecting data in the 
home setting using MercuryLive would allow clinicians to 
improve quality of care and reduce its costs in patients with 
PD. 

A Web-Based System for Home Monitoring of 
Patients with Parkinson’s Disease Using 

Wearable Sensors 
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II. SYSTEM DESCRIPTION 

Figure 1 shows the general architecture of MercuryLive. 
The platform includes software services running at three tiers: 
central server, patient’s hosts, and clinician’s hosts. In the 
following, we describe the services implemented at each tier. 

 

 

A. Central Server 

A central portal server provides a secure central location for 
coordinating data collection and video conferencing services. 
The portal server resides in a secure healthcare provider data 
center and allows access only over securely encrypted 
services, including SSL, SSH, and VPN. Using secure 
channels, both patients’ and clinicians’ software clients cab 
access the database, web server, video conferencing service 
and a live data forwarding service to perform background data 
logging and live interactive sessions. 

Three network services run on the central server. The 
web/database server provides data storage and access control 
to the patient data. A live video streaming service, provided 
by open source Red5 server, runs on the central server. A third 
daemon that runs on the central server is a live data 
forwarding daemon. This daemon forwards a decimated 
version of a patient’s live data stream to the clinician’s web 
GUI. 

B. Patient’s Host 

The patient’s host runs Mercury, a body sensor network 
(BSN) platform developed by our team [8] that is based on the 
SHIMMER sensor [10]. Mercury provides clinicians with the 
ability to adjust remotely different parameters of the sensor 
nodes (e.g. number of recorded sensor channels, sampling 
rate, and data features estimated on the node). Clinicians can 
set a desired battery life and Mercury adjusts how system 
resources are used to achieve the target battery life. This 
requires tuning sensor operations based on power 
consumption. As sensor data is being collected, a data 
uploading daemon runs in the background to connect to the 
central server and upload sensor data opportunistically. A 

web-based Flash video conferencing client running on the 
patient’s host provides live video interaction features. During 
an active video session, the Mercury sensor network streams 
decimated raw signals through the live data forwarding 
services at the central server. 

We implemented several techniques to improve the 
robustness of Mercury and prevent data loss. First, the 
firmware running on the SHIMMER sensors periodically 
stores checkpoint states to a specific sector of the Flash 
storage. When the sensors encounter software errors that crash 
the firmware, a watchdog timer will reboot the node. Once the 
node boots up, the firmware loads the previously stored 
checkpoint information from the Flash and resumes data 
collection. Data during the rebooting process is lost. When 
such failure happens, a SHIMMER sensor can recover within 
10 s. The data uploading daemon may encounter loss of 
Internet connection to the central server. When that happens, 
the data uploading daemon will attempt to reconnect to the 
server periodically. Such a connection problem will delay the 
data uploading to the database but will not cause data loss. 

C. Clinician’s Host 

Besides collecting, storing and securely providing patient 
data, our system also supports live video communication 
capability between clinicians and patients. Using the video 
interaction feature, clinicians can remotely conduct supervised 
data collection sessions. Clinicians can access the patient data 
and choose to speak to patients using the video conferencing 
service if needed. Figure 2 shows the web-based GUI for 
clinicians to conduct supervised data collection sessions and 
view data in real-time. To provide a user-friendly interface, 
we implemented a cross platform web-application which runs 
as a Flash plug-in. This application contains a GUI to display 
live decimated accelerometer data alongside the video session 
to allow clinicians to perform spot checks. Clinicians can also 
annotate events using integrated annotation tools. Finally, 
using MercuryLive, clinicians can access and download data. 

 

 

 
Fig. 2. A screenshot of the MercuryLive GUI as seen by the clinician. 

Internet

Web/Database server
RTMP Video server
Data forwarding daemon 

Patient Home Network

Central Server

Mercury BSN daemon
RTMP video Client
Data uploading daemon

Clinician Office Network

RTMP video client
Live data viewer
Mercury BSN control panel

 
Fig. 1. A schematic representation of the MercuryLive system 
architecture. 
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III. SYSTEM CHARACTERIZATION 

A. Command Latency 

Command latency is the time between when a command is 
issued on the clinician’s host and when it is received and 
acknowledged at the patient’s host. Commands are issued by 
the clinician’s host to reconfigure the BSN (e.g. change in 
data sampling rate). Three services contribute to the total 
command latency value: the clinician’s GUI, the data 
forwarding daemon, and the Mercury BSN daemon. 
Simulations were performed to quantify the command 
latencies introduced by each service. A latency of 
approximately 620 ± 240 ms was introduced by the Mercury 
BSN daemon, whereas latencies lower than 10 ± 5 ms were 
introduced by the clinician’s GUI and the data forwarding 
daemon. It is worth emphasizing that the Mercury BSN 
daemon needs to communicate with each sensor node, execute 
the command, and send back an acknowledgment. The 
Mercury BSN daemon latency was derived for a system with 
9 sensor nodes. In a clinical scenario, we anticipate that fewer 
sensor nodes would be needed and thus the latency would be 
lower. 

B. Data and Video Latency 

Data latency is the delay in the live streaming of the 
decimated version (from 100 Hz to 10 Hz) of the sensor data. 
Estimates derived over a 10 min period (with 9 sensor nodes) 
showed a data latency of 373 + 182 ms/packet 
(30 samples/packet). The latency time was estimated as the 
time between when a sensor sends a packet to the time when 
the packet is received by the clinician’s host for display. 
Fewer sensors would lead to a reduction in back-off times, 
which would result in a lower latency value. Back-off time is 
the time a sensor waits before sending a packet if a collision 
occurs. 

Video latency is the time between when a frame is 
generated at the patient’s end and when it appears at the 
clinician’s end. We measured the video latency of our system 
using vDelay [11]. vDelay is based on transmitting EAN-8 
barcodes with an embedded timestamp. At the receiving end, 
the timestamp is decoded and compared with the local clock. 
To test the effect of different bandwidth conditions, we used 
Traffic Shaper XP [12]. The software was used to determine 

how video latency and frame rate are affected by bandwidth 
conditions. We simulated different video compression values. 

Table 1 summarizes the results of our simulations. As the 
video compression increased, the video latency time decreased 
and the frame rate increased. A simulated available bandwidth 
of 800 kbps with a 40% video compression level provided 
acceptable latency values and frame rates. This result indicates 
that any home broadband Internet service with 1 Mbps two-
way bandwidth can easily support MercuryLive. It is worth 
emphasizing that bandwidth requirements for transmitting the 
decimated version of the sensor data (4 kbps), raw data 
sampled at 100 Hz (43 kbps), and data features derived from 
5 s segments of accelerometer data [7] (1 kbps) are all 
negligible compared to the bandwidth requirement associated 
with video conferencing. 

C. System Recovery Latency 

System recovery latency is the time required by the system 
to start functioning again after a system failure. With our 
current implementation, if a failure causes a sensor to reboot, 
the recovery time for its live data stream is about 13 s and the 
maximum full resolution data loss is about 63 s. Live data 
stream recovery is required when there is a network 
connection problem from the data uploading daemon to the 
data forwarding daemon on the central server. Factors that 
influence live stream recovery time are: real-time sample 
refresh period (10 s), watchdog timer (which checks for 
system failures every 1 s) and firmware boot delay (2 s). 
Maximum data loss (63 s) is determined by watchdog timer 
(1 s), firmware reboot (2 s), and a checkpoint mechanism that 
stores information such as amount of samples on flash and the 
battery charge. This mechanism is set to run every 60 s. After 
an Internet connection failure on the patient's host, the live 
stream will resume in about 1 s (after Internet connection is 
re-established) as the auto-reconnect timer is set to 1 s. 
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Fig.  3. A plot of the time required to upload 10 min worth of full 
resolution data (red) at 100 Hz and related features (blue) for 9 sensor 
nodes each sampling 3 axes of accelerometer data.

TABLE I 
MERCURYLIVE VIDEO LATENCY 

Latency (ms) 
Frame Rate (fps) 

Video Compression 

80% 40% none 
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80 2098 + 788 
4.7 + 2.1 

2930 + 795 
3.3 + 1.6 

4709 + 3494 
1.1 + 0.4 

800 235 + 30 
13.2 + 1.0 

209 + 22 
13.5 + 1.1 

556 + 211 
3.2 + 0.9 

Unlimited 229 + 27 
13.1 + 0.9 

225 + 33 
13.3 + 1.1 

511 + 68 
3.0 + 0.6 
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D. Data Upload Latency 

MercuryLive opportunistically uploads data from the sensor 
nodes to a database hosted at the central server. Due to 
bandwidth and battery life limitations, MercuryLive does not 
provide real-time access to the full resolution data. Instead, 
raw data and/or data features are logged to the onboard flash 
memory and uploaded to the central server when possible. 
Figure 3 shows the background uploading service progress 
over time during and after a 10 min interactive session. In this 
experiment, the full-resolution data is available on the 
MercuryLive portal about 80 min after the interactive session 
ends. Data features are available within 1 min from the end of 
the data collection. These numbers are for 9 active sensor 
nodes, with each node sampling 3 accelerometer channels at 
100 Hz. 

 

IV. PRELIMINARY DEPLOYMENT 

MercuryLive is currently undergoing testing in patients 
with PD in the home setting. During the tests, we are placing 
sensors on the patient and we are giving them a laptop (patient 
host) with a webcam to interact with a clinician who monitors 
the patient from a clinical site. The clinician instructs the 
patient to perform motor tasks from the Unified Parkinson’s 
Disease Rating Scale (UPDRS) [13]. Testing of the platform 
includes the use of algorithms [7] that estimate clinical scores 
capturing the severity of tremor, bradykinesia and dyskinesia 
based on the analysis of accelerometer data. An initial 
implementation of a GUI to display such results is shown in 
Figure 4. These results provide clinicians with information 
that can be used to adjust patients’ medication regimen. 

V. CONCLUSIONS 

To our knowledge, the one herein presented is the first 
platform to remotely monitor patients with PD in the home 
setting using wearable sensors. The system is an integrated 
platform that includes: 1) wearable sensors used to gather 
accelerometer data; and 2) a web-based application that allows 
for two-way communication between patient and clinician. 
Via the proposed platform, clinicians can access sensor data, 
upload feature datasets, and estimate UPDRS scores. The 
system is currently undergoing extensive field testing, but 
preliminary results support its suitability to monitor patients 
with PD in the home setting and to gather information to 
facilitate the titration of medication in late stage PD. Future 
work will be focused on exploring the use of mobile devices 
as a gateway to collect data. Furthermore, we plan to explore 
the use personal health records to store and display the results 
of the analyses of data gathered in the home setting. 
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Fig. 4. A representation of clinical scores to be provided to clinicians at 
the end of the monitoring period. 
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