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Abstract 

Tooling condition monitoring and prognosis has been researched and developed extensively 

considering its importance of supporting manufacturing systems. An effective system for tooling 

condition monitoring and prognosis can ensure good product quality, minimisation of tooling 

failure and optimisation of production cost. However, due to the complex mechanism in 

manufacturing processes, the tooling condition depends on different factors (i.e., machining 

parameters and tooling/product materials). Therefore, the conventional experiment-based 

methods are expensive, time-consuming, and less effective. In recent years, the industrial Internet 

of Things (IoT) related technologies and the state-the-art artificial intelligence algorithms (e.g., 

deep learning algorithms) have been increasingly applied to manufacturing applications for 

mining valuable information from massive amounts of data, thus making complex manufacturing 

processes easier to be understood and improved. Therefore, in this thesis, based on multiple 

sensors and deep learning algorithms, a series of novel and systematic methods for tooling 

condition monitoring and prognosis for a machining system are proposed. The aim of this research 

is to enhance the overall performance of tooling condition monitoring and prognosis in terms of 

computational efficiency, prediction accuracy and system robustness.  

This research covers the two primary indicators for tool condition monitoring and prognosis, 

that is, tool wear identification and tool remaining useful life (RUL) prediction. For tool wear 

identification, in this research, based on multi-sensor signals, a new method, i.e., recursive feature 

elimination and cross-validation (RFECV), is designed to optimise feature selection and fusion. 

In the process of RFECV, a support vector machine (SVM)-based classifier is used to recursively 

evaluate the contributions of different feature subsets to the classification of the tool wear for 

optimal feature selection. Dimensionality reduction on the selected features is further 

implemented via the isometric mapping (Isomap) method. Finally, a concise and robust 1D 

convolutional neural network (CNN) model is devised to perform tool wear identification using 

the newly generated features from the Isomap. 

To improve accuracy and expedite computational efficiency for predicting the RUL of cutting 

tools for a machining system, a novel methodology is designed. The methodology integrates 

strategies of signal partition and deep learning algorithms for effectively processing and analysing 

multi-sourced sensor signals collected throughout the lifecycle of a cutting tool. In more detail, 

the methodology consists of two subsystems: (i) a Hurst exponent-based method is developed to 

effectively partition multi-sourced signals along with the tool wear evolution; (ii) a hybrid CNN-

LSTM (convolutional neural networks-long short-term memory) algorithm is developed to 
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combine feature extraction, fusion and regression in a systematic means to facilitate the prediction 

based on segmented signals. 

In order to  meet the needs  of small and medium-sized enterprises (SMEs), in this work, an 

economical, three-level, and multi-sensor-based monitoring and prognosis system is designed. In 

the system, a wireless acquisition platform collects multi-sensor signals. To expedite 

computational efficiency and minimise data traffic, an edge computing (EC)-based gateway is 

embedded as an extended Kalman filter for signal denoising, performing the conversion of the 

time-series data format to reduce the high latency of transmission. A hybrid CNN-RF (random 

forest) model is devised to achieve real-time tool wear identifications. Furthermore, based on the 

received signal image, the system can conduct RUL prediction based on an integrated multi-

channel CNN-LSTM model at the cloud computing end. 

Two open-source experimental datasets and a workshop deployment case were used to verify 

the practicability and reliability of the methods and systems proposed in this research. Regard to 

the method for tool wear identification, it was verified that the prediction of the selected feature 

subsets achieved the best prediction accuracy. Moreover, the proposed RFECV-SVM approach 

was proved to be superior to other machine learning models on feature selection. For the tool 

RUL prediction, the data partition method was developed for assigning the signal data 

corresponding to each tool wear stage, and case studies were used to compare the designed hybrid 

deep learning algorithm with some other main-stream algorithms, such as CNN, LSTM, DNN 

(deep artificial neural network) and PCA (principal component analysis), under the conditions of 

partitioned and un-partitioned signals. The conducted performance comparison showed that, the 

methods proposed in this research is essentially better than those of the comparative algorithms. 

In addition, the developed EC-enabled tool prognosis system was validated that it can provide a 

comprehensive and satisfactory diagnosis result, in terms of tool wear identification and tool RUL 

prediction. The EC effectively reduced the amount of data, improved transmission efficiency and 

enhance the data privacy of the conventional IoT system. The proposed system was proved to be 

effective, flexible and affordable. 
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Chapter 1. Introduction 

1.1 Research background 

To leverage the rapid technical progresses of information technology, automation and artificial 

intelligence, some major economies in the world have proposed new industrial strategies, such as 

Germany’s Industry 4.0 (Kagermann et al. 2013), Made in China 2025 (State Council of China 

2015) and USA Advances Manufacturing Partnership (Rafael et al. 2014), to transfer existing 

manufacturing paradigms to more automated and agile manufacturing, across the entire layers of 

factories. 

Monitoring and control of manufacturing processes is a crucial task for smart manufacturing. 

In the process, the status of machining cutting tools is considered an essential factor to decide 

workpiece quality, tooling life, productivity and energy consumption in manufacturing. 

According to Zhou and Xue (2018), 7-20% downtime of the CNC machine is caused by tool 

failure, 3-12% total cost of entire machining processes are wasted on replacing the cutting tools, 

and there are only 50-80% cutting tool life has been effectively used. Early detection of tool 

anomalies can significantly help reduce frequent downtime for tool changes, cut down costs, and 

ensure the quality of products. The tool wear identification and tool remaining useful life (RUL) 

prediction are both vital research areas that have been actively investigated in recent years (Xu et 

al. 2018). 

So far, two approaches have been widely used to implement the wear status identification and 

RUL prediction of a cutting tool, that is, experience-based and data-based. An experience-based 

model is a traditional method that requires to record a large amount of machining cycles in order 

to summarise the law of tool wear (Benkedjouh et al. 2013). Nevertheless, it is difficult to build 

up a mathematical model for cutting tool monitoring in real-time. As a well-established tool wear 

evaluation theory, the Tayler’s equation shows that, processing parameters, such as cutting speed 

and feed rate influences the cutting tool status to a large extent during machining processes 

(McParland et al. 2016). In reality, apart from the above factors, a machining process unavoidably 

involves many other factors, which affect the tool condition stochastically. Some of these factors 

are difficult to be measured directly.  

Thanks to the advances in information technologies, data-based models for tool wear 

monitoring and prognosis have been increasingly researched in recent years. The models have 

demonstrated great potentials in supporting applications by providing the more dynamic and 

effective interpretation of a cutting tool’s status based on condition monitoring signals. A research 

carried out by the Kennametal Company in the United States (Zhou and Xue 2018) showed that 
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a CNC system provided with a tool condition monitoring (TCM) system could lay aside up to 30% 

of the machining cost caused by insufficient use of the cutting tool, and avoid low surface quality 

and dimensional errors of workpieces that due to an excessively worn cutting tool. However, to 

better use data-based models, research needs to be conducted further. 

In practical, multiple sensors offset the shortage of a single signal on the tool status monitoring. 

However, the massive data collected from different sensors deployed on a machine tool system 

may contain duplicate information and noises, which will hugely prolong the processing time and 

increase the system complexity. Therefore, it is prominent to design a data-based system to 

leverage the rich information from multi-sensors as well as identifying unwanted data for removal, 

thereby enhancing the processing efficiency and increasing the accuracy of decision-making.  

To develop an efficient monitoring and prognosis system for cutting tool conditions, research 

should not just concentrate on sensor signal processing, but a suitable reasoning algorithm is also 

crucial. Commonly used algorithms for tool conditions are based on machine learning algorithms, 

such as fuzzy logic (Rajamani et al. 2018), support vector machine (SVM, Pandiyan et al. 2018), 

artificial neural networks (ANN, Shankar et al. 2019) and so on. On the other hand, although such 

a machine learning algorithm provides a computing environment for the construction of the 

relationship between sensor signals and variables for decision making (e.g., classification, 

regression, clustering), it still faces the challenge to mining hidden information and features from 

data (Schmidt et al. 2019). With the quick progress of deep learning algorithms and their 

successful applications in various engineering problems, intelligent algorithms on tool conditions 

should no longer be limited to the traditional machine learning algorithms. It is imperative to 

explore how to effectively use deep learning algorithms, such as the deep neural network (DNN), 

convolutional neural network (CNN) and long short-term memory (LSTM), to support tool 

condition monitoring-based prognosis. 

Furthermore, it also needs to design an appropriate IoT (internet of things) system to integrate 

the above technologies/models and achieve an optimal system performance. A traditional IoT 

system for TCM means to collect condition monitoring data through sensors, and then 

synchronise at a cloud computing (CC) centre (Motlagh et al. 2020). There are some commercial 

TCM systems available on the market (e.g., systems from Montronix, Nordmann, Prometec and 

Marposs) (Sheng 2012). And the systems of Brankamp and Kistler claimed to have the tool 

condition monitoring capabilities to some extends (Mandal 2014). However, the primary function 

of these systems is for data acquisition rather than tool wear identification or tool RUL prediction. 

Moreover, the cost of implementing these systems is expensive and less customisable for SMEs. 

Meanwhile, cloud centres are popularly used for data processing and storage in the system, 

making data transmission heavy (Khan et al. 2017). Edge computing (EC) has been recently 
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introduced to complement a cloud enabled IoT system to balance local and centric processing. 

Edge computing refers to a distributed network edge server that is additionally deployed on the 

basis of the traditional cloud computing architecture. It obtains corresponding data from the data 

terminal and realises the downstream processing of the cloud server with specific performance 

and computing resources (Lin et al. 2020, Zhang et al. 2021). It is promising to provide a timely 

response at the local end, decrease the amount of data delivered to the cloud platform and improve 

information safety and privacy (Chen and Ran 2019). Thus, it is necessary to design an edge-

cloud system to integrate monitoring and prognosis methods to achieve integrated functions and 

overall system optimisation. 

1.2 Research challenges   

In view of the above industrial needs, related research gaps still exist. In this work, 

investigations will be carried out from the following aspects. 

Sensor signal fusion. To enhance the accuracy of cutting tool monitoring and prognosis, 

multi-sensor based methods are in active development (Arcady et al. 2018). To facilitate decision 

making, data fusion technologies have been investigated to handle various signals and eliminate 

redundant signals. Data fusion could be categorised as data-level fusion, feature-level fusion and 

decision-level fusion (Beddar-Wiesing and Bieshaar 2020). However, raw sensor signals usually 

contain plenty of unorganised information collected during signal acquisition processes. Although 

there are some methods have been designed for raw signal denoising and pre-processing, for 

instance, wavelet transform (Mitiche et al. 2017), Welch’s method (Ferguson et al. 2018), low-

pass filter (Zhou et al. 2019), correlated information and features in correspondence with a cutting 

tool status are still difficult to extract from the raw data based on these methods (Aguileta et al. 

2019). Thus, to address the above issues, in this research, a suitable fusion strategy for tool status 

monitoring and prognosis based on multi-sensor signals will be developed. 

Optimal feature selection. If there are plenty of features extracted from multi-sensor signals 

not associated with tool wear, it is difficult to design an appropriate algorithm for accurate 

classification or prediction (prognosis). Feature selection has been explored by many researchers 

in order to reduce feature dimensions and discard redundant features in some applications (Mares 

et al. 2016, Kaddar et al. 2019 and Chen et al. 2019). However, in the tool condition monitoring 

related fields, the relevant research is rare. Meanwhile, it is challenging to reveal the relationship 

between extracted features and the cutting tool status by using existing feature selection methods, 

such as KPCA (kernel principal component analysis), LLE (local linear embedding) and mRMR 

5 



 

 

  

 

  

  

   

 

  

 

   

 

  

  

 

 

   

 

  

  

 

 

  

 

   

  

 

 

 

(minimum redundancy maximum relevance). Therefore, in this work, the relevant investigation 

will be conducted. 

Tool RUL prediction. Besides the tool wear identification, the prediction of tool RUL through 

regression analysis is also of great significance to improve production cost-saving and 

productivity. However, this technology is still in infancy as only a few of research on tool life 

prediction has been carried out. The cutting tool RUL prediction relies on the prediction of the 

flank wear during an entire life cycle of machining, which is usually partitioned into three regions: 

initial wear, stable wear and severe wear. Different tool wear conditions and stages will lead to 

the imbalanced distribution of collected signals for corresponding stages, which may bias the 

prediction results and increase prediction errors (Zhang et al. 2020). To minimise the inaccurate 

prediction in this situation, divide the signals into reasonable fragments between each wear stages 

will produce a promoting effect. Though some works have been carried out in the aspect (Zong 

et al. 2013; Qian et al. 2014; Rodriguez et al. 2014; Ali et al. 2015; Wang et al. 2016; Guo et al. 

2016; Leevy et al. 2018; Mao et al. 2018; Low et al. 2018; Opałka et al. 2018), none of these 

proposed approaches provides effective signal partition method, which should be researched 

further in this work. 

Intelligent algorithm design. Conventionally, the ANN, fuzzy inference system or SVM have 

been employed to support tool status monitoring, while their performances are not satisfactory in 

processing massive data. Active research works have been undertaken to develop intelligent 

algorithms for tool status monitoring and prognosis using machine learning algorithms (Dutta et 

al. 2016; Patra et al. 2017; Corne et al. 2017; Cuka and Kim 2017; Yuan et al. 2018; Kong et al. 

2019; Cao et al. 2019). In the last few years, deep learning algorithms have been applied as they 

are capable to effectively and automatically draw features from datasets, and CNN and LSTM are 

ones of the most popular algorithms (Song et al. 2017; Núñez et al. 2018; Fawaz et al. 2019; Kong 

et al. 2019, Zang et al. 2020; Zhu et al. 2020; Zhang et al. 2020). To leverage the merits of the 

algorithms and overcome their weakness, hybrid deep learning algorithms are in an active 

investigation. Due to the complexity of cutting tool prognosis and the industrial requirements for 

high accuracy and efficiency, it is necessary to design effective hybrid deep learning algorithms 

to provide a reliable prediction. 

IoT system architecture design. In order to promote the execution of Industry 4.0, 

manufactories have integrating cutting-edge information technologies in the production lines to 

sustain the competitiveness in the world market. With the advance of IoT technology and cloud 

centres, some low-cost cloud server enabled IoT-based TCM systems were developed in the 

laboratories (e.g. Mourtzis et al. 2016, Caggiano 2018). However, with that the number of sensors 
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attached to the facilities has remarkably increased, the amount of collected data has been 

exponentially growing, which leads to the massive growth of transmission bandwidths, data 

transmission power consumption, storage space and computation resource requirements for cloud 

servers (Tabassam 2017). That is, the current cloud-enabled IoT architecture cannot sufficiently 

meet industrial requirements, in terms of the bandwidth insufficiency, inevitable network delay, 

the high expense of big data transmission and lack of data security mechanism. To address the 

issue, edge computing-enabled data processing frameworks have been actively designed and 

applied, also including the areas of machine condition monitoring (Qiao et al. 2020; Lou et al. 

2020; Setz and Aiello 2020; Gia et al. 2020; Rasheed et al. 2020). To leverage the advantage of 

edge computing, in this research, edge computing will be integrated cloud computing as an IoT 

architecture to better tool condition monitoring and prognosis. 

1.3 Research aims and objectives  

The overall goal of the work exhibited in this thesis is to develop a tool status monitoring and 

prognosis system based on multi-sensor signals and deep learning algorithms, for achieving 

satisfactory accuracy and computational efficiency on the tool condition monitoring to meet 

industrial especially SMEs’ needs. The aim will be achieved by addressing the following 

objectives: 

 To conduct a thorough literature survey in the field of tool condition monitoring, 

classification and prognosis, which contains the multi-sensor signal fusion technology, 

signal partition, deep learning algorithms and edge computing-based monitoring system. 

 To develop optimal feature selection and fusion methods to optimise and synchronise 

features based on signals under different domains, and to improve the accuracy and 

computational efficiency of tool wear identification. 

 To develop an effective strategy to segment a large volume of signals to facilitate the 

deep learning-based signal processing, thereby balancing the signal feature distribution 

in various tool wear stages, and further improving the performance of the deep learning 

algorithms in tool condition monitoring and prognosis.  

 To design appropriate hybrid deep learning algorithms to fuse signals and their inherent 

features effectively in supporting more accurate prediction on cutting tool conditions, 

by leveraging the strengths of individual deep learning algorithms.  

 To develop an affordable and flexible multi-sensor monitoring system that is configured 

with edge/cloud-based architectures for wider applicability, and integrate the above 

methods and algorithms to provide a more precise and dependable result for tool 

condition monitoring, identification and prognosis. 
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1.4 Research datasets 

In order to verify the performance of the proposed systems in term of the tool wear 

identification, the tool RUL prediction, and the portable IoT monitoring prognosis, datasets that 

acquired from actual manufacturing experiments were employed. Two of the datasets are from 

the publicly available experimental dataset: NASA milling dataset (Agogino and Goebel 2007) 

and PHM Society Conference Data Challenge (PHMSociety 2010), and another was collected 

from an industrial workshop. The details of these datasets are given in later chapters. In addition, 

relevant comparative analysis was conducted to evaluate the advancement of the proposed 

technologies. On the other hand, the processing and analysis of signal data, the prediction and 

decision-making of the results are all based on powerful software that conducted on personal 

computers, including MATLAB, Apache Spark (python programming language based), 

TensorFlow and so on. 

1.5 Research contribution 

This thesis focuses on the aim and objectives of the study and obtains the following 

contributions. 

1. Presented a thorough review of up-to-date developments in tool status monitoring, 

classification and prognosis-related technologies. 

2. Developed a novel feature fusion system that integrates the function of sensor signal 

denoising, optimal feature selection and feature dimensionality minimisation, to obtain 

effective feature subset with the optimal number of features for different signals under 

complex cutting operations, thereby maintaining the minimal correlation between 

features, and promoting the effectiveness of tool wear identification with a lower 

overfitting risk. 

3. Designed a 1D-CNN model to build an accurate data-driven prediction model for 

processing features in an efficient means. 

4. Developed a novel systematic methodology to integrate strategies of signal partition 

based on Hurst exponent and hybrid CNN-LSTM algorithms, for effectively processing 

and analysing multi-sourced sensor signals throughout the lifecycle of a cutting tool. 

5. Devised a portable and cost-effective edge computing-enabled wireless system to detect 

tool wear and predict tool life with customisable configuration architectures. 

6. Validated the proposed systems based on different datasets including those from actual 

industrial cases, to confirm that the systems are effective in identifying tool wear status 

and predicting tool RUL in satisfactory accuracy and computational efficiency. 
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7. Conducted detailed comparisons between the proposed systems and other main-stream 

algorithms to demonstrate the superior performance of the research. 

1.6 Publication arising from the thesis 

Zhang, X.Y., Lu, X., Wang, S., Wang, W., and Li, W.D. (2018) “A Multi-Sensor Based Online 

Tool Condition Monitoring System for Milling Process”. Procedia CIRP 72, 1136–1141, Sweden. 

Zhang, X.Y., Lu, X., Li, W.D., and Wang, S. (2020) “Prediction of the Remaining Useful Life 

of a Cutting Tool Using the Hurst Exponent and CNN-LSTM”. The International Journal of 

Advanced Manufacturing Technology. (accepted) 

Zhang, X.Y., Lu, X., Li, W.D., and Wang, S. (2020) “Prediction and Optimisation for 

Remaining Useful Life of a Cutting Tool”. Accepted as a chapter for Data Driven Smart 

Manufacturing Technologies and Applications (Springer). 

Zhang, X.Y., Lu, X., Li, W.D., and Wang, S. (2020) “Feature Selection and Optimisation for 

Tool Wear Identidication”. The Journal of Computers & Industrial Engineering (Submitted). 

Zhang, X.Y., Lu, X., Li, W.D., and Wang, S. (2021) “An Edge Computing Based Architecture 

for Tool condition prognosis”. The International Conference of Manufacturing Research, Derby. 

1.7 Thesis structure 

The above content introduces the research background, motivation and purpose of this 

research. The remaining chapter of the thesis is organised as follows. 

Chapter 2 investigates the literature referring to the tool status diagnosis, as well as some 

related concepts and theories, including the tool condition monitoring system, existing 

technologies of data processing, partition and data fusion, the up-to-date application of deep 

learning algorithms in the field of machinery monitoring and the development of data acquisition 

platform. 

Chapter 3 proposes a method for tool wear classification based on multi-sensor fusion and 

the 1D CNN model. The designs of signal pre-processing, feature extraction, feature selection, 

feature fusion, and the CNN model, are presented. Comparisons and analyses are given. 
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Chapter 4 proposes a tool RUL prediction method based on a series of signal processing and 

a hybrid CNN-LSTM model. Moreover, the performance evaluation by comparing the proposed 

method with other competitive algorithms are carried out. 

Chapter 5 constructs an affordable multi-sensor IoT monitoring system for the tool status 

prognosis. The architecture design and integration with intelligent algorithms to support decision 

making on tool conditions are detailed. Benchmark assessment with other prevalent methods is 

presented. 

Chapter 6 summarises the deliverables of the entire research and discusses the potential future 

possibilities of the study. 
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Chapter 2. Literature review 

2.1 Introduction 

The high precision and the low consumption manufacturing have motivated researchers to 

investigate the improvement of the tool condition prognosis system regards the tool wear 

identification and the tool RUL prediction. In particular, the effective sensor signal processing, 

data fusion and the application of deep learning algorithms have achieved initial results in the 

field of machinery monitoring. Moreover, along with the increasing development of intelligent 

IoT technology, research related to the robust and flexible monitoring system has also shown its 

necessity, in the aspect of sensor monitoring system architecture, diagnostic algorithm, etc.   

In this chapter, the survey of sensor signal processing technologies, data fusion strategies and 

deep learning algorithm of the previous tool status prognosis research is presented. Meanwhile, 

the sensor monitoring platform development and the EC application also included. Together they 

constitute the primary basis and starting point of this work. 

2.2 Tool condition monitoring (TCM)  

In the manufacturing industry, the cutting tool failure will increase the maintenance cost and 

time, even reduces productivity. TCM systems have become a promising approach to reduce the 

occurrence of unwanted situations significantly. Balsamo et al. (2016) investigated the 

catastrophic tool failure detection through the multi-sensor monitoring system, the signal data of 

vibration and AE (acoustic emission) sensor was segmented into the different samples, then the 

features of each sample were extracted to indicate the tool fails. The presented system could 

remind the tool failure, but the absence of the feature selection and the decision-making model 

led to the detection delay and low accuracy. Rizal et al. (2017) proposed a tool wear detection 

system with multi-sensor signals, in terms of cutting force, vibration and temperature. The signal 

feature was input into the Mahalanobis-Taguchi system to implement the tool wear classification 

and detection, after the feature extraction in time- and frequency-domain. The experiment 

validation achieves 88% detection accuracy, however, the correlation between each feature and 

their contribution to the tool wear is not considered.  

With the growing potential of multi-sensor signals in tool status monitoring, most studies have 

realised that the signal feature reflects more excellent value than the original signals, and the 

selection of the extracted feature could achieve higher monitoring performance. Caggiano (2018) 

have collected the cutting force, vibration and AE signal during the cutting process of Ti alloy. 
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After extracting the signal feature, he applied the PCA to estimate the reasonable signal feature 

for dimensionality reduction. Finally, the proposed tool status prediction system diagnosed the 

tool condition through ANN. By adopting the ANN with PCA on different sensor signals, the 

selected feature in this system is helpful for tool status monitoring and tool replacement. However, 

the feature in the different signal domain is lack of consideration, which leads to information 

insufficiency. Moreover, the PCA is unable to reveal valuable information of the nonlinear sensor 

signal, the redundant signal amount in the subsequent processing is bound to increase. Besides, 

Krishnakumar et al. (2018) developed a feature-level fusion classification system of tool status, 

and the decision tree has been adopted for the dominant feature selection and feature fusion of 

AE and vibration signal. Then, the decision tree, SVM, ANN and NB (naive Bayes) assessed both 

the fused and non-fused feature subsets, and the combination of fused feature subset and ANN 

model produces the highest classification efficiency. The signal fusion method they have 

proposed shows the effectiveness of the tool status monitoring, whereas, the optimal feature 

selection is not conducted based on different signals, thus, the prediction performance is limited. 

CNN attracts many considerations, because of its efficient and precise performance. Although 

CNN often used in image processing field, it has emerged in recent research for tool status 

prediction system. Terrazas et al. (2018) captured the force signal of dry milling for the tool status 

prediction, these signals were converted to 2D image format by Gramian angular summation 

fields (GASF), which is symmetry matrix, then directly trained with CNN model. Aghazadeh et 

al. (2018) developed a tool status recognition system with a CNN model, the feature of force and 

vibration sensor signal was extracted by wavelet transform, and the training result of the Bayesian 

network, SVM, KNN (K-nearest neighbours) regression model and CNN model showed that the 

CNN obtained the highest performance. Gouarir et al. (2018) explored the tool wear prediction 

with three-axis vibration signals, and a CNN-based prediction system was proposed. The 

reconstructed image format data of the original signal directly input into the 2D CNN model 

without signal denoising and feature selection. Finally, only a general prediction accuracy was 

achieved. Huang et al. (2019) introduced a CNN prediction system integrated with multi-sensor 

fusion. The statistical features of the signal were extracted from the time-domain, frequency-

domain and time-frequency-domain. The verification of force and vibration signal shows that the 

performance of the CNN model is significantly superior to the SVM model. The above studies 

are summarised in Table 1. 
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Table 1. The literature of tool condition monitoring 

Sensor Signal Feature selection Prediction model Reference 

AE, ×
vibration 

Balsamo et al. 
Signal segmentation 

(2016) 

Cutting force, 
vibration, × 

temperature 

Rizal et al.
Mahalanobis-Taguchi 

(2017) 

ting force, AE,Cut
PCA

vibration 
ANN Caggiano (2018) 

AE, vibration Decision tree 
Krishnakumar et

ANN 
al. (2018) 

Force GASF 
Terrazas et al. 

2D CNN 
(2018) 

Force, vibration wavelet transform 
Aghazadeh et al.

2D CNN 
(2018) 

Vibration × Gouarir et al.
2D CNN 

(2018) 

× Huang et al.
2D CNNForce, vibration 

(2019) 

2.3 Cutting tool RUL prediction 

Flank wear occurs on the surface of the cutting tool that contact with the workpiece and caused 

by abrasive wear. As the most common form of tool wear, flank wear can provide a more reliable 

RUL estimation (Zhang et al. 2016). In addition, the cutting tool life is not an absolute concept 

but depends on the choice of different tool life indicators. The life of cutting tools can usually be 

expressed by the following indicators (Jacso, Matyasi and Szalay 2019): 

 Cutting tool effective machining time.  

 The number of parts processed during tool operation. 

 The total length of the cutting path of the tool during tool operation. 

 The total surface area of the workpiece processed during tool operation. 

Moreover, many inconsistent factors affect and restrict the life of cutting tools. For example, 

in the finishing process, surface quality and dimensional accuracy are the most important, and in 

the roughing process, excessive cutting force and vibration are the limiting factors (Yousefi and 

Zohoor 2019). Therefore, it is not enough to evaluate tool life based on the existing empirical 

formula, which is too subjective and ignores the actual environmental factors during machining. 
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In recent years, many studies of the monitoring system that incorporated with sensor data have 

focused on the establishment of a cutting tool RUL model. 

Karam et al. (2016) studied the multi-sensor online tool RUL assessment method based on 

signal processing, feature extraction and ANN. The cutting force, vibration and AE signals were 

processed and analysed for feature extraction, these features then were input into ANN for tool 

life prediction. Zhang et al. (2016) collected three-axis vibration signals during milling and 

selected their critical features according to the Pearson correlation coefficient (PCC). Then, 

adopted neural-fuzzy network (NFN) to conduct the prediction of tool wear and the RUL. 

Nevertheless, this study only focuses on a single sensor, the accuracy is not guaranteed. Yu et al. 

(2017) proposed a new method of tool wear diagnosis based on hidden Markov model (HMM). 

The root mean square (RMS) of the vibration signal was used as a health indicator to construct 

multiple HMM in a weighted manner for the prediction, and the tool wear has been divided into 

discrete wear region by HMM for better observe the tool wear evolution. Experimental results 

show that the weighted HMM provides satisfactory prediction of the RUL. However, a single 

signal source and the complex model become obstacles to practical application. Wu et al. (2018) 

proposed a cutting tool RUL prediction system based on multi-sensor fusion. The statistical 

features of vibration, AE and current signals were extracted from time and frequency-domain. In 

consideration of the relationship between time-varying signal and the cutting tool wear, these 

features were manually segmented, then, the correlation analysis, monotonicity analysis and 

residual analysis methods were adopted for feature selection. Next, an adaptive network-based 

fuzzy inference system (ANFIS) was used for achieving feature fusion, finally, the RUL 

prediction was conducted by polynomial curve fitting method. The results display that the 

introduced scheme is feasible and has good prediction performance. However, the generalisation 

of the proposed model is limited because parameters in the prediction model are set based on 

experience. Yang et al. (2019) established a prediction model of tool RUL based on trajectory 

similarity-based prediction (TSBP) and the differential evolution support vector regression (DE-

SVR) algorithm. The most representative features of collected cutting force signal were extracted 

in time-domain, frequency-domain and time-frequency-domain. After the correlation 

investigation, the selected features were import into the proposed model for prediction. The 

integrated prediction model has been proved to be effective in predicting tool RUL. An et al. 

(2020) proposed a model that combines a CNN and stacked bi-directional and uni-directional 

LSTM (SBULSTM) networks for cutting tool RUL prediction. CNN extracted signal features for 

dimensionality reduction, and then SBULSTM trained these features and achieved the purpose of 

prediction. In order to verify the integrated model, a machining experiment of vibration and 

current signals have been adopted. Although the model is proved feasible to be used to monitor 

tool status and predict the RUL, since the model contains many layers and the structure is complex, 
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there is still a distance for its application in the real environment. These literatures are summarised 

in Table 2. 

Table 2. The literature of cutting tool RUL prediction 

Sensor signal 

Vibration, 
cutting force, 

AE 

RUL prediction 
method 

ANN 

Data partition 

× 

Reference 

Karam et al. (2016) 

Vibration in 
three-axis 

NFN × Zhang et al. (2016) 

Vibration HMM HMM Yu et al. (2017) 

Vibration, current, 
AE, 

Cutting force 

ANFIS 

TSBP+ DE-SVR 

Manually 
segmentation 

RMS, AV, 
standard deviation 

Wu et al. (2018) 

Yang et al. (2019) 

Vibration, current CNN+LSTM 
Tool wear region 

threshold 
An et al. (2020) 

2.4 Sensor signal processing technology 

2.4.1 Feature extraction and feature selection 

The development of intelligent tool condition prediction models has  led  to a surge in  the  

amount of data in data mining tasks, and high-dimensional data often harms learning models. The 

use of effective signal features outperforms the combination of excellent models and inferior 

features even in poor training models (Khan et al. 2019). Feature extraction and feature selection 

are widely adopted methods, which aim to obtain valuable features from original feature set 

according to specific evaluation criteria. Although, the independent employment of these two 

methods is feasible, their combined application will improve the prediction performance 

significantly that has been proved in many TCM related studies (Chen et al. 2019, Mohanraj et al. 

2019, Plaza et al. 2019). 

Since the purpose of feature selection is to obtain a feature set with representative information, 

and the collected massive data of sensors in TCM system is non-stationary and time-varying that 

cannot be directly adopted as the feature set. It is necessary to extract the signal features with 

obvious practical and statistical significance, which are corresponding to the dependent variables, 

to boost the efficiency and accuracy of tool status recognition. Moreover, in the sensor signal 
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processing research of the TCM, tool wear leads to the change of amplitude and fluctuation 

characteristic of the signal, and the statistical features can better reveal the inherent attributes of 

the data. Therefore, the statistical features have become a popular choice for feature extraction to 

capture the tool wear status (Feng et al. 2019). Prevalently utilised statistical feature, such as the 

standard deviation is a measure of the power of a sensor signal and effectively represents the 

performance of the cutting tool. The kurtosis, which indicates the sharpness or flatness of the 

signal (Niu et al. 2019), establishes the relationship with the condition of the cutting tool through 

the change of peak value. Skewness defines the degree of asymmetry around the mean of the 

distribution, which is affected by cutting conditions and tool wear. For the maximum and 

minimum value, they reflect the fluctuation of the signal amplitude to predict the tool wear 

(Madhusudana et al. 2016). The statistical features that have been adopted in recent research based 

on multi-sensor TCM are summarised as Table 3. 

Table 3. The literature of feature extraction 

Sensor Signal Extracted feature Reference 

Cutting force, AE, 
Vibration 

Mean, RMS, Kurtosis, Variance 
Wang et al. 
(2015) 

Cutting force, 
Vibration 

Mean, Maximum, Peak to peak, RMS, Variance, 
Impulse factor, Kurtosis factor, Margin factor, 
Shape factor, Crest factor, Skewness factor 

Liu et al. 
(2015） 

Cutting force, AE, Maximum, Peak to peak, RMS, Skewness, Kurtosis, Wang et al. 
Vibration Variance (2016) 

Cutting force, AE, 
Vibration 

Mean, Standard deviation, Peak to peak, RMS, 
Skewness, Kurtosis, Impulse factor, Margin factor, 
Shape factor, Crest factor 

Yang et al. 
(2016) 

Cutting force, AE, Maximum, Peak to peak, RMS, Skewness, Kurtosis, Wang et al. 
Vibration Variance (2017) 

Cutting force, 
Vibration, Tool tip 
temperature 

Mean, Standard deviation, RMS, Skewness, 
Kurtosis, Variance 

Rizal et al. 
(2017) 

Cutting force, AE, 
Vibration 

Mean, Skewness, Kurtosis, Variance 
Caggiano 
(2018) 

Cutting force, AE, 
Vibration 

Mean, Standard deviation, RMS, Kurtosis Factor, 
Margin factor, Shape factor, Crest Factor, Skewness 
Factor 

Zhou and 
Xue (2018) 

Torque,Thrust Mean, Maximum, Minimum, Standard deviation, Duo et al. 
force RMS, Skewness, Kurtosis, Variance (2019) 

Mean, Standard deviation, Peak to peak, RMS, 
Current, Skewness, Kurtosis, Mean absolute deviation Lee, et al. 
AE, Vibration (MAD), Median, Variance, Impulse Factor, Margin (2019) 

Factor, Crest Factor 
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Furthermore, as an essential part of data fusion technology, feature selection can eliminate 

redundant or irrelevant features, especially for extensive multi-source high-dimensional data. 

Without the elimination, the prediction algorithm will incorrectly build the connection between 

redundant features and response variables, which increases the prediction error. On the other hand, 

the feature selection reduces the feature dimensionality, and it is conducive to the interpretability 

and computational feasibility of the learning model. Meanwhile, a limited number of features 

helps avoid overfitting (Benjamin et al. 2018). The advantages of feature selection can be 

summarised as follows: 

 Reduce the dimensionality of the feature set to ensure data storage demands. 

 Remove redundant, irrelevant or noisy data. 

 Accelerate the computing time of learning algorithms of data analysis tasks. 

 Enhance data quality, and thus improves the performance and prediction precision of 

the learning model. 

In view of the significant superiority of feature selection in boosting the prediction model 

performance, this technology has been applied in many fields related to data processing. The filter 

method and wrapper method are two types of feature selection mainly used in the field of TCM, 

the advantages and disadvantages of these two methods are summarised as Table 4.  

Table 4. Pros and cons of filter method and wrapper method 

Advantage Disadvantage 

 Dependencies 
between features are 

 Simple and faster not considered
Filter method 

computing  Low accuracy based 
on the statistical 
indicators 

 Evaluate feature subset 
number with cross 
validation  Large amount of

Wrapper method 
 The use of classifiers computation 

has achieved higher 
accuracy 

The filtering method sorts all the features according to the relationship between the original 

features and the dependent variables, then selects the representative features through the manually 

set threshold (Hira and Gillies 2015). This method is independent of classifiers and uses statistical 

indicators to score and filter each feature, which focuses on data itself and retain low 

computational complexity. However, the weakness of the filtering method is that, it only 
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considers individual feature and ignores possible interactions between features. Such 

consequences may result in the acquisition of many highly relevant features, while high redundant 

information will make classification and prediction performance worse (Chang et al. 2019). In 

contrast, the wrapper method adopts an estimator to evaluate the potential subsets with different 

features sequentially, and ultimately obtain the best feature subset. The performance of the 

wrapper method is more dependable than the filtering method in that, the wrapper method assesses 

the feature subset through learning algorithms which their higher accuracy helps to find the 

optimal feature subset (Mao and Yang 2019). The research of popular feature selection algorithms 

of the above two methods in the TCM area is summarised as Table 5. 

Table 5. The literature of feature selection 

Feature 
selection type 

Algorithm Sensor Signal Reference 

PCC 

Vibration 

Current 

Zhang et al. (2016) 

Neef et al. (2018) 

mRMR Cutting force 
Wang, Yang and Guo 

(2013) 

Filter method 
ANOVA Vibration, Cutting force Mali et al. (2017) 

Fisher’s 
discriminant 

ratio 
(FDR) 

Cutting force, Vibration, 
AE 

Sound, Voltage 

Vibration, Cutting force 

Geramifard et al. (2012) 

Zhang et al. (2015) 

Chen et al. (2018) 

Entropic 
measure 

Vibration Painuli et al. (2014) 

Wrapper 
method 

Genetic 
algorithm 

Cutting force, Vibration, 
AE 

Cutting force, Vibration, 
AE 

Zhou and Xue (2018) 

Pandiyan et al. (2018) 

Stepwise 
selection 

Vibration 
Simon and Deivanathan 

(2019) 

Decision 
tree 

Vibration Madhusudana et al. (2019) 

It is worth to notice, based on the literature in earlier years that the filter method was used, 

Zhang et al. (2016) mentioned that the PCC only constructs linear correlation between features 
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and tool wear because of its uncertain assumptions. In the research of the tool wear status 

classification, Xie et al. (2019) found that the features selected by FDR only reflect severe wear, 

and not sensitive to other wear states. Nevertheless, the wrapper method is gradually employed 

and becoming a more enthusiastic choice for researchers.  

Regarding the feature selection algorithms belonging to the wrapper method, recursive feature 

elimination (RFE) is the most effective one. The RFE algorithm offers significant advantages for 

nonlinear classification problems because it can perform group prediction analysis on multi-

dimensional features and then control the selection of feature subsets (Khaire and Dhanalakshmi 

2019). The concept of RFE is to perform repetitive training with a learning classifier. In each 

round of training, the worst feature will be deleted according to importance ranking, and then the 

remaining features will be trained for the next round. This recursion continues until all features 

have been processed (Chatterjee et al. 2019), and the feature that is finally eliminated is 

considered the most relevant to the response variable. 

For RFE feature selection, there are more than one classifier can be selected (Pes 2019). The 

SVM is a powerful tool for prediction models and classifiers. Its main idea is to mapping samples 

into higher-dimensional feature spaces, then the decision plane separate elements into different 

classes. Additionally, SVM can handle a large amount of data and provides excellent performance 

for nonlinear decision making (Nalepa and Kawulok 2019). In the study of feature selection 

methods, various classifiers, including SVM, have been verified. Lee et al. (2012) performed the 

comparison of four feature selection methods for colonic lesions monitoring, in terms of the filter 

method and wrapper method. The results show that the SVM is superior to the gradient boosting 

machine, random forest (RF), and linear discriminant analysis. Lai et al. (2017) tested three 

feature selection methods based on temporal lobe epilepsy magnetic resonance image 

classification, namely t-test filtering, sparse-constrained dimensionality reduction model, and 

RFE-SVM. SVM shows significant performance among these three methods. Moreover, Huang 

et al. (2017) reviewed the progress of SVM-based monitoring in cancer genome research, and 

they mentioned that SVM stands out from numerous methods in feature selection. Wu and Faisal 

(2019) proposed a study on the feature selection of breast cancer data based on RFE-SVM, and 

the proposed method achieved the prediction accuracy of 97.19%. Different from the above 

literature, SVM is more often used as decision-making model in recent research related to TCM 

(Sun et al. 2019, Niu et al. 2019, Zhou et al. 2020), not being valued at the feature selection level. 

2.4.2 Feature selection with deep learning 

Feature selection as an effective data processing method is often incorporated with machine 

learning models to perform decision-making. Research based on deep learning algorithms usually 
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skip the feature selection directly (Li et al. 2018, Luo et al. 2019). Without feature selection, the 

random perturbations of the input will significantly affect the performance of deep learning 

models (Ghorbani et al. 2018). Recent related studies have shown that feature selection 

technology promotes the performance of deep learning prediction models.  

Lu et al. (2018) proposed a system that integrates feature selection and DNN, this system was 

applied to real data experiments, in terms of identifying drug resistance, identifying nutrient intake 

and body mass index, the validation results display that the proposed framework was two times 

more efficient than the framework without feature selection. Based on the study of ovarian cancer 

and breast cancer image classification, Chen et al. (2019) evaluated the influence of feature 

selection technology on the performance of three deep learning models of CNN, DBN (deep belief 

network) and RNN (recurrent neural network). First, an experimental verified their hypothesis, 

which the addition of feature selection effectively improves the accuracy of deep learning 

prediction. Secondly, they compared 11 feature selection algorithms, such as t-test, chi-squared 

test and RF, etc., among them, REF-SVM achieved the best prediction accuracy.  

Not only in biomedicine area, but there is also research in the combination of feature selection 

and deep learning networks in the area of machinery diagnostics. Maurya et al. (2019) proposed 

a fusion model of feature selection and DNN, based on three datasets: AE dataset collected in 

reciprocating air compressors, vibration signal collected from groove ball bearings and the dataset 

of steel plate fault, they verified three feature selection methods: RF, radial basis function SVM 

and linear SVM separately. Finally, the prediction results of DNN show that the scheme using 

feature selection for machine condition prediction has a considerable improvement in 

performance. 

Although numerous research works have focused on the feature selection, the scenario of 

feature selection in combination with deep learning algorithm in the field of TCM has been paid 

less attention; research has more focused on the field of biomedicine, relatively. Chen et al. (2019) 

concluded that, within 195 authoritative biomedical papers that related to deep learning models 

in recent years, 36 have matched with feature selection. Therefore, similar research is worthwhile 

in the direction of TCM. 

2.4.3 Hurst exponent 

In multi-sensor signal based prediction, a reasonable prediction not only depends on an 

appropriate learning model, but the form of input signals will have a significant impact. Hurst 

exponent is an index used to estimate the fractal characteristics of time-series signals, and it is 

capable to effectively segment sensor signals to improve the quality of the data. Hurst exponent 
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was developed by British hydrologist H. E. Hurst (1900-1978) based on the rescaled range (R/S) 

analysis method, and the initial purpose was to study the correlation between the flood of the river 

Nile and the drought process (Luo and Huang 2018). With continuous improvement, the Hurst 

exponent is extensively applied to determine the long-term memory of time-series data, which is 

the varying degree of the time-series data within the time span (Knight and Nunes 2018). 

Thanks to effectively distinguish the random signals and cross-correlated signals, Hurst 

exponent has been successfully used in the chaotic fractal analysis of capital markets (Ramos-

Requena et al. 2017, Kroha and Skoula 2018), Internet traffic analysis (Dymora and Mazurek 

2019), seismic signal analysis (Zhang et al. 2015, Ortiz et al. 2016, Sarlis et al. 2018), pathological 

index analysis (Jing et al. 2017, Marusina et al. 2017, Dong et al. 2018), etc. Focus on the 

machinery condition monitoring and prediction field, Vela-Martínez et al. (2009) adopted Hurst 

exponent to monitor the instability of vibration in cutting tools. By verifying the acceleration 

signal during the milling process, the results were consistent with the theoretical cutting stability 

under different machining conditions. Hurst exponent was used as an index of cutting stability in 

their study, and it has been proven to be effective in confirming the fractal change of the sensor 

signal, which refers to the large degree self-similarity of the signal. In addition, Sun and Zhao 

(2011) proposed a monitoring system of cutting tool wear based on cutting surface texture images 

processed by the Hurst exponent. The Hurst exponent was extracted from the cutting images 

captured in the cutting experiment. The experiment shows that the Hurst exponent keeps 

decreasing with the tool wear, which indicates the signal trend is predictable and Hurst exponent 

shows a good expression ability to judge the tool wear process. The research of Lin and Chen 

(2014) applied the crossover properties for fault diagnosis, and proposed a nonlinear data feature 

extraction method to diagnose rotating machinery faults. First, the detrended fluctuation analysis 

was adopted to assess the vibration signal from a rotating machine. Then, these signal curves were 

divided into several different scaling regions by the Hurst exponent. Finally, the Hurst exponent 

values corresponding to the signal segment curves were used as features, to realise the evaluation 

with the real defective rotating machinery. The vibration datasets of an actual gearbox and rolling 

bearing were used to validate the effectiveness of the proposed scheme. The result shows that the 

method performs well in identifying the fault types of rotating machineries. Guan et al. (2018) 

proposed a method of monitoring tool wear condition based on multifractal de-trended fluctuation 

analysis and least squares SVM. The proposed method first analysed the fractal spectrum of the 

AE signal by the Hurst exponent, to characterize the fluctuation of the signal under different wear 

conditions, and then constructed the clustering feature of the tool wear. Finally, the prediction of 

tool wear was executed by SVM and reached a satisfying accuracy. They concluded that the Hurst 

exponent can be used to characterize the characteristics of tool wear by clearly distinguishing tool 

wear stages. Mohanty et al. (2018) constructed a bearing fault prediction model using vibration 
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and AE signals. The model first applied variational mode decomposition and empirical mode 

decompositions (EMD) to decompose the vibration and AE signal in the frequency spectrum, and 

then adopted the correlation coefficient and Hurst exponent to determine the bearing fault from 

the decomposed signal. The model has been verified in cases with different speeds, and the 

proposed method shows great potential in detecting bearing failures. The above literature related 

to Hurst exponent is concluded in Table 6. 

Table 6. The literature of Hurst exponent in machinery aspect 

Prediction object Prediction signal Reference 

Tool wear 

Tool wear 

Rotating machinery fault 

Vibration 

Workpiece surface 
texture image 

Vibration 

Vela-Martínez et al. (2009) 

Sun and Zhao (2011) 

Lin and Chen (2014) 

Tool wear AE Guan et al. (2018) 

Bearing fault Vibration, AE Mohanty, Gupta and Raju (2018) 

According to the relevant literature of the Hurst exponent, it has already displayed its maturity 

and reliability of data analysis in various fields. However, the utilisation of the Hurst exponent in 

machinery condition monitoring is still reserved, which is worthwhile to explore rely on its 

following advantages (Kristoufek 2010, Oral and Unal 2019): 

 Hurst exponent is capable of finding the self-similarity and long-term memory of signal 

sequences with time, without assuming the distribution characteristics of time series. 

 Hurst exponent reflects the self-similarity degree of data based on the statistical features. 

It is easy to execute, can be realised simply with programming, the computing speed is 

fast and not susceptible to the influence of time scale. Thus, it has good scalability and 

robustness. 

 Hurst exponent has been verified for a long time and more reliable than other methods. 

2.4.4 1D-to-2D signal format conversion 

Inspired by plenty of successful cases of CNN in the image recognition, many researchers 

have adopted the data processing strategy of converting 1D time-series data to 2D form in the 

application of machine state diagnosis based on sensor signals. Li et al. (2017) developed a CNN-

based bearing diagnosis method, which constructed the image input with the RMS of vibration 

frequency-domain data. Tra et al. (2018) adopted the same signal format conversion method based 
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on AE signals, and obtained notable results in bearing diagnosis. Ding and He (2018) proposed a 

scheme of employing the WPT (wavelet packet transform) to convert vibration signals into a 2D 

time-frequency-domain image to realise bearing fault diagnosis. The proposed system performs 

better in the evaluation compared with other feature extraction methods. However, they only used 

a single signal source. Chen et al. (2019) proposed a recognition system of planetary gear state, 

which directly spliced vibration signals from different monitoring positions into a 2D matrix to 

perform diagnosis on a CNN model. The verification results display that the classification 

accuracy of this system is improved compared to the unconverted 1D signal. Nevertheless, the 

diagnostic information provided by a single sensor signal in the research still insufficient. 

Similarly, Yang et al. (2019) constructed a fault diagnosis system for reciprocating compressors, 

and three-axis vibration signals were merged into a 2D matrix as the input of a CNN model. Wang 

et al. (2019) proposed a method for diagnosing rolling bearings based on vibration signals. The 

collected signals were converted into a pixel matrix to generate a 2D grey image. The final 

prediction accuracy of CNN model reached nearly 100%. This robust and concise method was 

also used in the diagnosis of wind power system and centrifugal pump. Cao et al. (2019) proposed 

a tool status recognition system. Before the CNN-based diagnosis, the only input signal of the 

system, spindle vibration signal, was converted into frequency-domain through derived wavelet 

frames, and then these data were stacked into 2D form. This method provides higher recognition 

accuracy than the use of raw data.  

2.4.5 Data fusion in deep learning algorithms 

Deep learning is emerging as a vital technology of IoT application systems. It shows better 

performance at the scale of large data amount and makes EC more intelligent and efficient. 

Moreover, the use of data fusion will further maximise the accuracy of deep learning when 

processing multi-sensor data from a wireless sensor network (WSN). In addition to the area of 

smart city (Meng et al. 2017, Cao et al. 2020), the radar recognition (Jia et al. 2019, Zhou et al. 

2019), medical image (Li et al. 2020) and so on, the system architecture that incorporates deep 

learning and data fusion has also played an advantage in the field of industrial monitoring and 

diagnosis. 

Zhang et al. (2017) presented a condition monitoring system of ball screw relied on DBN and 

multi-sensor data fusion. First, raw data from multiple accelerometers were converted to 

frequency-domain, and the frequency spectrum of the signals was fused with a parallel  

superposition method. Then, a DBN learning model was built according to the fused frequency-

domain features. The dataset of a real ball screw degradation experiment was used to conduct 
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comparative assessment between the fused and unfused signals. The result displays that the 

proposed system provides satisfied recognition accuracy.  

Chen and Jahanshahi (2018) proposed a CNN-based deep learning framework to monitor 

cracks in the metal surface of nuclear power plant reactors, in which Naivebayes was employed 

to perform data fusion on each video frame that captured per second, and then CNN was 

developed to use this fusion information to detect cracks. Collected actual video samples was 

adopted to evaluate the effectiveness of the proposed system, this deep learning model achieves 

an accuracy of 98.3%, and the response is rapid compared to the SVM-based method.  

Yao et al. (2018) presented a deep learning method of gear failure identification. The model 

first extracted the features of acoustic signals under time-domain and frequency-domain, and 

these features were merged through matrix combination, then the gear failure was detected 

through the established CNN model. The experimental results of the two datasets show that the 

identification accuracy of the proposed model reaches 98.5% and 96.5%, respectively, and its 

performance is higher than traditional fault diagnosis methods. 

Chen et al. (2019) proposed a health monitoring model for the two-stage planetary gearbox. 

In this method, the raw vibration signals of horizontal axis and vertical axis were combined, and 

then features of combined data were automatically extracted by CNN to complete the final fault 

diagnosis. The CNN-based method was compared with SVM and back-propagation neural 

networks with a real dataset. The result presents that the classification precision of the proposed 

model reaches 90%, which is much higher than other methods.  

Shi  et al. (2019) proposed a deep learning  framework of  tool condition monitoring for the 

ultra-precision machining tool. The model applied multiple sparse autoencoders to achieve feature 

fusion, and to build the relationship between the features of sensor signals and tool status. The 

vibration signals from experiments in real factories were adopted to validate the proposed model. 

The result reveals that the method integrated data fusion is more accurate and robust than the 

standard deep learning method, and the classification accuracy of ultra-precision machining 

cutting tool is more than 96%. However, this method has certain limitations for different tool 

objects. 

Liu et al. (2019) proposed an ensemble 1D CNN bearing fault diagnosis model. First, the raw 

data from sensors was converted to frequency-domain, and the frequency spectrum of the signal 

was then input into sub-CNN model for false identification. Finally, the SVM merged the result 

of the multi-CNN models and output the integrated results. The datasets of two real bearing test 
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experiments were used to verify the performance of the model. The result shows that the proposed 

method provides higher recognition accuracy and avoids the information discarding.  

He et al. (2020) presented a rotating machine condition diagnosis strategy relied on vibration 

signals and CNN. The vibration signals from each acquisition point were input into multi-channel 

CNN models to perform the identification of different faulty types, and then the decision was 

fused by the majority voting for the complete result. The validation of this method was based on 

a real dataset, and the result shows that this method is advantageous in faulty status recognition.  

Driven by big data, Zhu, Li and Zhang (2020) proposed a system of intelligent TCM. In this 

framework, the signal features of various sensors were extracted, and then the generated features 

were combined as a new feature set to achieve the fusion. Finally, the deep learning prediction 

model composed of RNN and CNN realised the tool life prediction based on the feature set. The 

system was verified through a case experiment dataset of cutting force, vibration, AE signals and 

tool wear images, the result shows that the proposed multi-signal fusion and deep learning method 

significantly improve the tool wear recognition accuracy and the performance of intelligent TCM 

system. 

Wu et al. (2020) put forward a RUL prediction method relied on deep LSTM and multiple 

sensor signals. The model simultaneously combines the ability of sensor signal fusion and 

prediction. Two turbine engine datasets were used to verify the presented method, and the result 

shows that the method adaptively estimate the engine RUL based on the acquired data of 100 

sensors, the prediction accuracy is satisfactory. The above works are summarised in Table 7. 
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Table 7. The summary of relevant studies in data fusion and deep learning 

Fusion method 
Deep learning 

algorithm 
Collected 

Signal 
Prediction 

object 
Reference 

Parallel 
superposition 

DBN Vibration 
Ball screw 
condition 

Zhang et al. 
(2017) 

Naivebayes 

Matrix 
combination 

CNN 

Sparse 
autoencoders 

CNN 

CNN 

CNN 

Multiple sparse 
autoencoders 

Image 

Acoustic 

Vibration 

Vibration 

Cracks in the 
metal surface 

Gear failure 

Two-stage 
planetary 
gearbox 

Tool condition 

Chen and 
Jahanshahi 

(2018) 

Yao et al. 
(2018) 

Chen et al. 
(2019) 

Shi et al. (2019) 

SVM CNN 
Vibration, 

current 
Bearing fault Liu et al. (2019) 

Majority voting CNN Vibration 
Rotating 
machine 
condition 

He et al. (2020) 

Data mergence RNN + CNN 
Force, 

vibration, AE 
Tool condition 

Zhu, Li and 
Zhang (2020) 

LSTM LSTM 100 sensors 
Turbine engine 

RUL 
Wu et al. (2020) 

2.5 Deep learning algorithms  

2.5.1 CNN 

As a deep network, CNN is widely recognized for its convolution layers. Besides, CNN also 

involves pooling layers, fully connected layers and flatten layers. CNN was first proposed by 

LeCun et al. (1998) for image processing, and it has shown its ability to solve complex cases in 

various applications, such as computer vision (Fang et al. 2019, Xu et al. 2020) and speech 

processing (Amin et al. 2019, Fujimura et al. 2020), since it can maximise the retention of raw 

data information. Benefiting from the shared weights and pooling functions of CNN, high 

dimensional signal can be directly used to obtain excellent training result within an acceptable 

time cost (Yamashita et al. 2018). Over the years, the CNN model has been effectively employed 

in machinery fault monitoring and diagnosis. 
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A bearing fault state monitoring model based on CNN was proposed by Janssens et al. (2016). 

Taking the vibration signal as input date, they compared the performance of the feature selection 

process on a CNN model, and it shows that the classification accuracy with performing feature 

selection is improved. However, the use of only one sensor signal increase the possibility of 

misclassification. Liu et al. (2017) presented an intelligent motor fault diagnosis system based on 

CNN. This system used the dislocated time-series CNN to shift the input original signals to extract 

signal features continuously. By applying the vibration signals as an indicator for the validation, 

the result shows that the diagnostic framework could provide a stable prediction for motor fault. 

To realise the fault diagnosis of aero-engine sensors, Li and Qu (2018) put forward a CNN 

diagnosis model. In this model, PCA reduced the dimensionality of the simulated sensor signal, 

and then a CNN model was constructed to execute the prediction. Through the comparative 

analysis of simulation experiments, it implies that this method can achieve satisfactory accuracy 

in aero-engine sensor fault diagnosis. Huang et al. (2019) proposed a CNN-based multi-domain 

prediction method of tool wear. The features of cutting force and vibration signals in time-domain, 

frequency-domain and time-frequency-domain were extracted as indicators, to establish the 

relationship with tool wear on the CNN model. The experimental result presents that the 

prediction precision of the proposed model is significantly higher than other methods. However, 

the signal features in this method are still manually extracted based on prior knowledge, the real-

time performance of the model is limited. Martinez-Arellano et al. (2019) applied the GASF to 

encoding original multi-sensor signals as images, and attached the images to a CNN model to 

realise tool wear classification and achieved a considerable classification accuracy. This method 

avoids the manual extraction of signal statistical features, ensures the integrity of data information, 

and more suitable for the processing of big data. However, the complexity and professional 

knowledge demand become the limitation of this model for practical use. The summary of the 

above literature is shown in Table 8. 

Table 8. The literature of CNN in machinery prediction aspect 

Prediction object Prediction signal Reference 

Bearing fault Vibration Janssens et al. (2016) 

Motor fault Vibration Liu et al. (2017) 

Aero-engine sensors Simulated sensor Li and Qu (2018) 

Tool wear Cutting force, vibration Huang et al. (2019) 

Tool wear Cutting force, vibration, AE 
Martinez-Arellano, Terrazas and 

Ratchev (2019) 
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2.5.2 CNN architecture 

According to the different dimensionality of the input variables, CNN is commonly classified into 

1D and 2D structures, which the 1D CNN principally used for time-series processing, and 2D 

CNN is more suitable for image perception (Yamashita et al. 2018).  In the field of  machinery  

condition prognosis, to process the machinery time-series signal with 1D CNN is appropriate, it 

better utilises the characteristic of CNN in automatic feature extraction (Kiranyaz et al. 2019). 

Thanks to the potential of all aspects of 1D CNN in processing sensor signals, it has appeared in 

many research in the field of machinery monitoring based on multi-sensor signals (e.g. Jing et al. 

2017, Zhao et al. 2019 and Li et al. 2020). 1D CNN has advantages in the following aspects 

(Kiranyaz et al. 2019): 

 1D CNN is array operation instead of matrix operation. Thus, the configuration is concise 

and compact, and the complexity of computation is low. 

 The shallow-architecture of 1D CNN network contains a small number of neurons and 

layers, which is easier to train and implement. 

 1D CNN is achievable on standard computer CPU (central processing unit), it does not 

require high performance and particular hardware configuration. 

 1D CNN is suitable for real-time and low-cost applications, because of the low 

computational demand. 

On the other hand, according to specific needs, 2D CNN is also applied to process sensor 

signal and brings positive effects on the accuracy improvement of the prediction. For instance, in 

the work of (Janssens et al. 2016, Sun et al. 2017 and Martínez-Arellano et al. 2019), they 

converted sensor signal into image format for matching the use of 2D CNN, which is a necessary 

operation for 2D CNN to process time-series data (Fawaz et al. 2019). However, the similarity 

drawback of these studies is that they adopted the format conversion scheme only on a single 

sensor signal. 

2.5.3 LSTM 

Among the field of deep learning, in addition to feed-forward neural nets like CNN that 

perform well on the continue nonlinear data, the feedback neural network, which redistributes 

weights by feeding back information from the output layer to each layer to reduce the final 

prediction error (Herzog et al. 2020), is proposed to analyse the logic sequence between the input 

data with different lengths and time correlation. As the most representative feed-back neural, 

LSTM has become a promising method to handle the long-term signal, which was first proposed 

by Hochreiter and Schmidhuber (1997). It should be mentioned that LSTM is a unique structure 

28 



 

 

 

 

 

   

 

 

  

 

 

 

 

      

 

 

 

  

 

 

  

 

   

  

   

    

 

  

 

 

of RNN. The RNN establishes a connection between input samples. However, the problem of 

gradient disappearance during model training limits the performance of RNN, that not capable of 

maintaining long-term dependence within sensor data. Therefore, the forget gate has been 

introduced in LSTM to improve the problem of RNN, the forget gate decide whether to discard 

non-essential information and reduce the negative impact on subsequent predictions. Considering 

that LSTM can directly capture the dependence and nonlinear relationship in time-series data 

without the need of additional manual intervention, it has been applied and achieved success in 

some areas including image recognition, text recognition and activity recognition (Mikolov and 

Zweig 2013, Stollenga et al. 2015, Qin et al. 2017, Xu et al. 2017). At the same time, due to the 

inherent time sequence properties of sensor signals, LSTM has also been widely used in the 

machine monitoring area. 

Zhao et al. (2016) studied the performance of LSTM-based machine health monitoring system. 

In the study, the cutting force, vibration and AE signals were adopted to map cutting tool status, 

and the performance of single-layer and multi-layer LSTMs were verified, respectively. The 

experimental result proves that LSTM is superior in machine health monitoring. In order to 

monitor the mechanical state of motor shafts, Chen et al. (2017) proposed an LSTM prediction 

model of motor bearing state. The stable values of vibration signals were obtained through EMD 

and used for prediction. Compared with the results of SVR, LSTM achieves higher accuracy of 

the machine state prediction. Wang et al. (2018) constructed a fault diagnosis framework based 

on LSTM. The research took gear failure as the experimental object, and adopted the vibration 

signals as input for prediction. The performance of the proposed LSTM method has better 

classification effect than SVM and RNN, the prediction accuracy increases to 99.80%. Lei et al. 

(2019) proposed a state monitoring model of wind turbines based on LSTM, that used the time-

series signals of displacement and vibration signals for fault diagnosis. Due to the adoption of 

LSTM, this method free from redundant signal processing. Finally, the verification of single-

sensor and multi-sensor data shows that the proposed method has obvious advantages. Elsheikh 

et al. (2019) presented a bidirectional LSTM structure for estimating RUL through observed 

sensor signals. By taking 26 time-series sensor signals of turbofan engine as input, the result of 

LSTM prediction displays that the proposed method is effective for RUL prediction based on 

random starting state. Sun et al. (2020) proposed a prediction model of cutting tool state relied on 

deep learning model for achieving timely tool replacement. The LSTM network predicted the 

value of flank wear based on historical data of cutting force, vibration and AE signals. The 

experimental research shows that the proposed method reliably predicted the cutting tool wear. 

The summary of the above research is given in Table 9. 
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Table 9. The literature of LSTM in machinery prediction aspect 

Prediction object 

Tool wear 

Motor bearing 

Gear failure 

Wind turbine 

Prediction signal 

Cutting force, vibration, AE 

Vibration 

Vibration 

Displacement, vibration 

Reference 

Zhao et al. (2016) 

Chen et al. (2017) 

Wang et al. (2018) 

Lei et al. (2019) 

Turbofan engine 26 time-series sensor signals Elsheikh et al. (2019) 

Cutting tool state Cutting force, vibration, AE Sun et al. (2020) 

2.5.4 Hybrid CNN-LSTM 

Contrasted with an individual CNN or LSTM model, the application of hybrid CNN-LSTM 

model is in the early stage. A small amount of existing relevant research mainly focusses on 

language, image recognition and video processing, etc. For instance, speech recognition (Sainath 

et al. 2015), action video recognition (Ullah et al. 2017, Zhu et al. 2020), traffic forecasting 

(Bogaerts et al. 2020), and residential energy consumption (Kim and Cho 2019).  

In the mechanical engineering area, as the result of the desire of integrating different deep 

learning algorithms to solve higher-level diagnosis, the combination utilisation of CNN and 

LSTM gradually entered the research scope. Gao et al. (2018) proposed a scheme for icing faults 

prediction of wind turbine blades based on CNN-LSTM model. The collected generator operating 

data was directly used to diagnose the icing state of the blades after a simple format transformation. 

The evaluation results display that the proposed CNN-LSTM model has achieved a better 

classification effect than other commonly used classification models, SVM, CNN and so on. He 

et al. (2019) proposed a combined model of CNN and LSTM for detecting the fault of rod 

pumping system. The model took the indicator images of the system as input, and relied on the 

advantages of both CNN and LSTM model to extract image features to achieve the fault category 

classification. Finally, by employing the dataset from an oil well, the performance of the proposed 

model and traditional machine learning prediction models (RF, linear regression, etc.) were 

evaluated, the results show that using the CNN-LSTM model to perform fault classification is 

more effective. In order to realise the prediction of turbofan engine RUL, Kong et al. (2019) 

proposed a scheme based on a hybrid CNN-LSTM model. First, multivariate data from the engine 

was processed through a polynomial regression method, to obtain a health index  of engine  
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degradation. Then, the index and dataset were fed into the established model, which performs 

spatial feature extraction and time-series feature extraction in sequence, and finally achieve the 

regression prediction. The effectiveness of the introduced model was verified using simulation 

data from NASA Commercial Modular Aero-Propulsion System. In addition, in the performance 

comparison with MLP (multilayer perceptron), SVR, CNN and LSTM models, the hybrid CNN-

LSTM model performs better. These literatures are summarised in Table 10. 

Table 10. The literature of CNN-LSTM in machinery prediction aspect 

Prediction object Prediction signal Reference 

Wind turbine blade icing faults Generator operating data Gao et al. (2018) 

Rod pumping system fault Indicator image He et al. (2019) 

Turbofan engine RUL 
Multivariate sensor data 

and parameters 
Kong et al. (2019) 

2.6 IoT network component 

2.6.1 Economic TCM 

Limited commercial TCM systems are useable, nevertheless, they are not popular in SME’s 

due to the high expense. Thus, the study of low-cost multi-sensor monitoring system appears in 

some fields in recent years, such as environment monitoring (Khoa and Takayama 2018, Bamodu 

et al. 2018, Intrieri et al. 2018), gear vibration (Wu et al. 2012), water quality detection (Alahi et 

al. 2018, Lambrou et al. 2014), human health monitoring (Garbhapu and Gopalan 2017, 

Harbouche et al. 2017) and so on. Although, the research of the development of economical 

machinery status monitoring system is rare in the field of tool conditions, it has not stopped. 

Lee (2006) built up a neural network-based TCM system that to decrease the breakdown of 

turning machine caused by tool wear, the cost-efficient vibration and AE sensors have been 

utilised in the system, and the general accuracy of tool condition prediction was implemented.  

Ghani et al. (2011) developed a low-cost tool wear monitoring system. The system collected 

cutting force signal by strain gauge sensors to detect and analyse the deflection of cutting tool 

corresponding to the tool wear. MATLAB was used as an online monitoring user interface. In the 

experiment, the Z-filter technique was applied to construct the relationship between the sensor 

signals and flank wear, then to achieve the prediction. The results indicate that the proposed 

monitoring system is effective and affordable to detect flank wear during machining. 
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Huang et al. (2016) developed a low-cost platform for measuring machine vibration using the 

ADXL001 MEMS accelerometer, they evaluated the effectiveness of the platform according to 

the ISO-16063-21 calibration method. Finally, a milling experiment was performed to verify the 

performance of the developed vibration monitoring platform and a platform using the PZT 

commercial accelerometer. By contrast, the proposed strategy is more suitable for machine tool 

state monitoring. 

Mail et al. (2017) developed a monitoring system of tool wear relied on the force and vibration 

sensors, they have validated the multi-sensor platform with a Taguchi experiment, the result 

shows that the vibration and force signals have a consistent correlation with the tool wear. They 

also emphasised that the multi-sensing method will ensure higher accuracy of tool wear 

monitoring. 

For the tool wear recognition, García-Ordás et al. (2018) presented an online portable and low-

cost vision system based on machine learning. The system obtained local texture features from 

multiple cutting tool edge regions to determine the degree of tool wear. The dataset of the edge 

profile images of the cutting tool has been used for validation, the result shows that the system is 

promising in automatic tool wear monitoring. 

Villalonga et al. (2019) proposed a visual framework for machine tool state monitoring, aimed 

at the management and diagnosis at factory level. Based on CC, this framework analysed variables 

such as temperature and time obtained from PLC (programmable logic controllers), CNC, and 

robot arms, achieved global status monitoring and decision-making. Moreover, the developed 

framework supports the use of low-cost platforms.  

To prevent the costly manufacturing of outdated CNC machine tools and to move toward 

Industry 4.0. Hesser and Markert (2019) proposed a programmable sensor monitoring platform 

to monitor the tool wear of CNC milling machines. In addition to adopting low-cost and all-in-

one sensor technology, the platform can exchange information via cloud servers. Furthermore, 

ANN was used to classify the tool wear. This study used an accelerometer to collect vibration 

signals from a milling experiment. The experiment proved that with the support of computational 

intelligence and big data, it is feasible to embed the old machine tools with a programmable sensor 

monitoring platform to integrate them into Industry 4.0. The above literature is summarised in 

Table 11. 
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Table 11. The literature of low-cost machinery condition monitoring platform 

Monitoring object Sensor signal Method Reference 

Tool wear Vibration and AE Neural network Lee (2006) 

Tool wear Cutting forces Z-filter Ghani et al. (2011) 

Machine tool 

Tool wear 

Tool wear 

Machine tool 

Tool wear 

Vibration 

Vibration, cutting 
force 

Texture image 

Temperature and 
time 

Vibration 

ISO-16063-21 
calibration method 

Taguchi 

SVM 

CC 

ANN 

Huang et al. (2016) 

Mail et al. (2017) 

García-Ordás et al. 
(2018) 

Villalonga et al. 
(2019) 

Hesser and Markert 
(2019) 

2.6.2 Edge computing 

The research of the National Cable and Telecommunications Association (NCTA) forecasted 

that there will be approximately 50.1 billion IoT devices connected to the Internet in the world by 

2020 (MohanJussi and Kangasharju 2017), it also poses challenges to the data analysis and 

security for centralised cloud servers. EC is therefore proposed to implement a distributed 

computing model, that migrates the sensor data processing from cloud sever to edge computing 

end, which performs local processing close to the data source without massive data uploading 

(Rehman et al. 2017), thereby, eliminating high network latency, improving the transmission 

efficiency and information security level. In the framework of traditional CC centre, cloud server 

can provide computing and storage services, however, EC is needed to enhance the IoT 

capabilities for large amounts of data. Although, their service goals are similar, EC is an extension 

of CC, not a substitute. Table 12 shows the difference between CC and EC (Dhingra et al. 2020, 

Ning et al. 2020). 
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Table 12. Comparison of cloud and edge computing 

Attribute Cloud computing Edge computing 

Computing type 

Deployment 

Task type 

Data position 

Centralized 

High cost 

Large-scale computing or 
data storage 

Computing centre only 

Distributed 

Low-cost 

Real-time processing 

Computing centre and  
EC devices 

Target user 

Information safety 

Internet user 

Low 

Internet user and local user 

High 

Compared with CC, EC combines the collaborative work of CC and EC to obtain a mutually 

serviceable computing framework, and it better supports the application of IoT. Its superiorities 

are highlighted in the following aspects (Tseng et al. 2018, Fan et al. 2018): 

 Accelerate the processing and transmission of sensor data, alleviate the network 

bandwidth pressure, and increase the response speed of user requests for services with 

lower network latency. 

 For manufacturing workshops or enterprises, the cost of configuring local EC is much 

less than building a more complex CC centre. 

 Even if the data terminal is temporarily disconnected from the CC centre, the entire 

system will maintain communication because of EC, and it ensures the robustness of the 

system. 

 The protection of information privacy is much improved. EC facilitates the client to 

conduct data differential treatment. 

As a promising technology, EC is actively being adopted in various applications to mitigate 

intensive computing and meet broadband needs. Such as smart firefighting (Wu et al. 2017), 

military domain (Ehala et al. 2017), driving behaviour monitoring (Azar et al. 2019), Epileptic 

EEG(electroencephalogram) (Hosseini et al. 2020), smart agriculture (Grady  et al. 2019,  

Bhargava et al. 2019) and vehicle auto navigation (Iqbal et al. 2018). Moreover, to address the 

low efficiency of conventional IoT in big data processing and transmission, EC prior performs 

data processing on the front end of the cloud server, to maximise the target state information. 

Various data processing methods have been employed on the EC end recently. Satija et al. (2017) 

introduced a filtering method for ECG (electrocardiogram) signals, which is based on discrete 
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Fourier transform (DFT) and signal turning point (TP). This method was implemented on the EC 

end that built with Android phone, and the system was verified by a real dataset. Pham et al. (2018) 

introduced a cloud-based home healthcare monitoring system. The system collected a variety of 

signals of wearable physiological sensor and motion sensor to realise the resident daily activities 

and health monitoring. Sensor data was first pre-processed through low-pass filtering and 

statistical feature extraction in an intelligent edge gateway, and then was sent to a private cloud 

for remote real-time assessment. Lai et al. (2019) proposed an affordable real-time prediction 

system of air quality, which is relied on the IoT and EC. Raspberry Pi was used as the edge device, 

it filtered the signal of six air pollutants (such as SO2, NO2) through the Kalman filter algorithm 

and to conduct short-term prediction. Then, the prediction results were uploaded to the cloud 

centre for storage and information feedback. The system has been verified with real air quality 

monitoring datasets, the results prove that EC improves the prediction accuracy and avoids the 

problem of transmission delay. 

In addition to being used more in the above fields, EC has gradually appeared at the factory 

level in the manufacturing filed. Wan et al. (2018) proposed an intelligent factory energy-sensing 

model incorporated with EC to realise the scheduling of multi-task equipments. The particle 

swarm optimisation (PSO) algorithm was directly applied on the Raspberry Pi  EC terminal, to  

establish the relationship between energy consumption and workloads. Although, the verified 

model can provide quick response to the production line, the scheduling result is not satisfactory 

since the lack of data processing. Li et al. (2018) presented a deep learning-based identification 

system for defective products on assembly lines. The system shared the shallow layer of CNN to 

the EC end, and then the compressed image data captured by the EC end was delivered to the 

deep layer CNN at the cloud end for final analysis. Simulation experiment proves that the 

proposed system is efficient and superior to some existing methods. However, the insufficient 

versatility of this method is a shortcoming. Liu et al. (2019) presented a strategy of EC to monitor 

the machine state. This method focuses on vibration signals, the WPT and two-dimensional 

discrete cosine transform (2D-DCT) were employed for signal filtering, and the perceptual 

hashing technology (PHT) was used to extract the signal information at the edge. The scheme was 

validated with two bearing wear datasets, their diagnosis accuracy has been improved. Zhao et al. 

(2020) proposed a system that adopted the IoT and EC technology to monitor manufacturing 

resources in workshop. The edge gateway in the workshop was based on Raspberry Pi, and it 

filtered the passively received manufacturing resource signals by the Kalman filter. Then, the 

supervised learning of genetic tracking (SLGT) method in the cloud server was applied based on 

the filtered signals to predict the manufacturing resources and estimate its location. The feasibility 

of the system was validated in a real air-conditioning manufacturing workshop. The above 

relevant research is given in Table 13. 
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Table 13. The literature of edge computing application 

Research 
object 

Measured 
information 

Edge 
processing 

Cloud 
server 

EC 
device 

Reference 

Human 
heart health 
monitoring 

ECG DFT, TP 
Not 

mentioned 
Android 
phone 

Satija et al. 
(2017) 

Health care 
monitoring 

Wearable 
sensor 

Low pass filter 
Feature 

extraction 

Remote 
assessment 

Not 
mentioned 

Pham et al. 
(2018) 

Air quality 
monitoring 

Six air 
pollutants 

Kalman filter 
Provide 

feedback 
Raspberry 

Pi 
Lai et al. 
(2019) 

Factory 
equipment 
scheduling 

Energy 
consumption 

PSO 
Not 

mentioned 
Raspberry 

Pi 
Wan et al. 

(2018) 

Defective 
product 

monitoring 
Image Shallow CNN Deep CNN 

Not 
mentioned 

Li et al. 
(2018) 

Bearing 
wear 

Vibration 
WPT, 2D-DCT, 

PHT 
Not 

mentioned 
Not 

mentioned 
Liu et al. 
(2019) 

Machining 
resource 

monitoring 

Processing 
Resource 

signal 
Kalman filter SLGT 

Raspberry 
Pi 

Zhao et al. 
(2020) 

Besides the literature summarised above, some studies directly integrate the collected data 

through edge gateway without performing any data processing methods (e.g. Wu et al. 2017, Chen 

et al. 2018 and Verderame et al. 2019), or executing simple manual data pre-processing at the EC 

end to fill missing values and remove redundant values, etc. (e.g. Cao et al. 2017 and Greco et al. 

2019). Moreover, some research employed complex approaches such as machine learning on the 

EC end for data pre-processing of the IoT system but does not consider the feasibility of device 

performance in actual applications (e.g. Queralta et al. 2019 and Uddin et al. 2019). Obviously, 

these methods do not apply to the proposed system in this work. 

2.7 Summary 

This chapter systematically reviews the technology of TCM, and closely focuses on the 

research direction of this work. Based on the relevant research, there are still shortcomings and 

challenges to be improved: 
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 Although some TCM systems achieve the prediction of tool status in different extent with 

several feature fusion and prediction algorithms, in consideration of the feature selection 

aspect, the optimal size of the feature subsets is not earned widespread attention. On the 

other hand, most systems are developed in the specific-designed processing scenario, 

which not provide comprehensive and scalable strategies, they are difficult to be applied 

in actual industries. 

 Currently, more feature selection and fusion technologies are applied in collaboration 

with the machine learning model, ignoring the exploration of deep learning algorithms. 

In addition, the advantages of multi-sensor signals for TCM are self-evident, the research 

of the feature selection based on multi-source sensor signals is worth expanding. 

 There are some studies realised and implemented signal segmentation strategies, while, 

the promotion and reliability of these approaches have not been verified in tool RUL 

prediction. 

 The existing RUL prediction systems still have apparent defects. For example, there is 

great uncertainty in the sensor signal features to represent the cutting tool RUL. On the 

other hand, with the utilisation of industrial IoT, a huge volume of data will be generated 

during processing, the model based on machine learning algorithms not capable of 

processing high-dimensional input data.  

 Deep learning has been praised on diagnosis and prediction in various fields, but it has 

not been widely used in cutting tool RUL prediction. In addition, since the sensor signals 

from TCM systems are time-series, it is necessary to simultaneously extract the space 

features and time-sequence features via CNN and LSTM model.  

 To date, many types of sensor and signal processing technologies have been adopted in 

the field of TCM to establish economic platforms. However, most of the studies employ 

single sensor or visual monitoring devices, which is challenging to provide sufficient 

prognostic accuracy, and only a few studies have focused on the WSN of TCM. It reveals 

that a more robust and reliable multi-sensor monitoring platform for IoT system is in 

demand. 

 The growing popularity of EC crosses various fields, it demonstrates that the intervention 

of EC is feasible to prompt the existing IoT system into more intelligent paradigm. 

However, in the field of tool status diagnosis, there is a small amount of research related 

to the EC-enabled system, it is in its infancy. 

 Simple processing methods and algorithms on EC end are inadequate in the face of the 

large amount of data generated by machine tools, it undoubtedly limits the application in 

actual workshop. 

 The 2D format conversion of sensor signals and the data fusion deep learning scheme 

both show advantages in enhancing the precision and dependability of machinery 
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condition monitoring system. However, there are still some deficiencies in the existing 

studies. Such as, the adopted signal 2D conversion method neglects to preserve the full-

scale information, and some of them are computationally intensive. Moreover, their 

applications in multi-sensor scenarios and TCM are rare. These circumstances stimulate 

the research motivation of exploring the signal format conversion and investigating the 

multi-sensor signal fusion enabled deep learning strategy in EC-IoT monitoring system. 
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Chapter 3. Multi-sensor Feature Fusion Tool Wear 

Identification 

3.1 Introduction 

From the machining mechanism perspective, the cutting tool wear is positively affected by 

various factors such as materials of cutting tools and workpieces, cutting forces, cutting heats and 

friction between cutting tool edges with workpiece surface, etc. (Vazquez et al. 2019). The multi-

sensor TCM has been widely used to characterize tool wear status, which benefits from these 

sensors are non-susceptible to the site environment (e.g. cutting fluid), its measurement does not 

interrupt the processing, easy installation and on-line monitoring feasibility (Bhuiyan and 

Choudhury 2014). To improve the prediction of low efficiency and low precision but high 

calculation occupancy rate, which caused by a large amount of data input, this chapter proposes 

a multi-sensor tool wear identification system based on a novel multi-layer feature fusion 

technology and 1D CNN prediction model. In this system, the features of the pre-processed sensor 

signals are extracted from time and frequency-domain, then, the RFECV-SVM (recursive feature 

elimination and cross-validation) sequentially executes the assessment of the high representative 

feature subset size and the importance sorting of the features, which corresponds to response 

variables, to obtain a feature subset with most effectiveness and minimum dimension. After that, 

the dimensionality of the feature subset is further reduced by the fusion of the Isomap. Finally, 

the optimal component features are fed into the 1D CNN model for the prediction performance 

evaluation. 

The remaining parts of the chapter are arranged as follows: Section 3.2 introduces the system 

design, and the methodology of the proposed system, in terms of signal pre-processing, feature 

extraction, feature selection and dimensionality reduction, meanwhile, the system implementation 

based on the real dataset are also described in this part. The prediction model development and 

the validation results of the system are present in section 3.3. The conclusion is in the final section. 

3.2 System methodology and implementation 

3.2.1 Overall framework of the methodology 

In this work, the methodology for predicting tool wear conditions is depicted in Figure 1. It 

consists of the following steps: 
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 Signal pre-processing: Signals from multiple sensors are pre-processed to eliminate 

noises from the signals for quality improvement; 

 Feature extraction: Features under the time and frequency-domains will be extracted 

from the pre-processed signals; 

 Selection of optimal features: Extracted features are sent to an RFECV (recursive 

feature elimination and cross-validation) process to identify optimal features and 

remove less important (relevant) features for predicting tool wear. Meanwhile, to further 

enhance the reliability and efficiency of the prediction, the selected features are fused 

by an Isomap-based method to reduce the dimensionality; 

 The optimal features are taken into a CNN model to accomplish tool wear identification. 

Feature extraction 

Current signal 

Vibration signal 

AE signal 

Time-domain feature 

Frequency-domain 
feature 

Decide optimal 
feature subset size 

RFECV-SVM 

Select feature 

Isometric mapping 
method 

CNN model 
training 

Tool status 
prediction 

S
ig

na
l p

re
 p

ro
ce

ss
in

g
H

am
pe

l f
il

te
r 

Feature selection 

Dimensional reduction Prediction model Database information 
Machining 
parameter 

Flank wear 
value 

Figure 1. The framework of the proposed methodology 

To better explain the methodology, a multi-sensor dataset for milling cutting tools (Agogino 

and Goebel 2007) are used as a case study. In the case study, three types of sensors, i.e., vibration 

sensor (the ENDEVCO model 720150), AE sensor (the WD model 925), and current sensor (the 

CTA model 213), were used to monitor cutting tool conditions. Figure 2 shows the experimental 

setup sketch, sensors were mounted on the Matsuura machining centre MC-510V. For the setup, 

two current sensors were used to monitor the AC (alternating current) and DC (direct current) 

signals of the machine. Two vibration sensors and two AE sensors were mounted on the 

workpiece table and the spindle of the machine, respectively. Moreover, a 70mm face milling tool, 

KC710, was adopted during the experiment. 
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Figure 2. Sensor mounting. 

Fifteen run-to-fail cutting cases were conducted in this experiment. The cutting parameters for 

the experiments, cutting speed, depth of cut, feed rate and material of the workpiece, are listed in 

Table 14. Each case contains a series of cutting runs, and a total of 164 cutting runs were recorded 

in the dataset. 

Table 14. Machining parameters in the experiment 

Case 
Cutting speed 

(m/min) 
Depth of cut 

(mm) 
Feed rate 
(mm/min) 

Workpiece 
material 

1 200 1.5 0.5 Cast iron 

2 200 0.75 0.5 Cast iron 

3 200 0.75 0.25 Cast iron 

4 200 1.5 0.25 Cast iron 

5 200 1.5 0.5 steel 

6 200 0.75 0.25 steel 

7 200 0.75 0.5 steel 

8 200 1.5 0.5 Cast iron 

9 200 1.5 0.25 Cast iron 

10 200 0.75 0.25 Cast iron 

11 200 0.75 0.5 Cast iron 

12 200 0.75 0.25 steel 

13 200 0.75 0.5 steel 

14 200 1.5 0.25 steel 

15 200 1.5 0.5 steel 
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After each run, the flank wear (Figure 3) of the cutting tool, which occurs at the surface of the 

tool flank and caused by the abrasion, was measured by a microscope. The measured flank wear 

of the adopted experimental dataset in this work is shown in Table 15. 

Flank wear 

Cutting tool 

Workpiece 

Flank surface 

Figure 3. Schematic of flank wear 

Table 15. Measured flank wears for experiments 

Run Case No. 

No. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Flank wear V (mm) 
1 0 0.08 0 0.08 0 0 0 0 0 0 0.05 0 0 0.08 0.05 

2 0.04 0.14 0.13 0.13 0.16 0.09 0.18 0.1 0.04 0.04 0.08 0.05 0.09 0.15 0.13 

3 0.07 0.14 0.13 0.2 0.29 0.13 0.3 0.14 0.08 0.07 0.1 0.1 0.17 0.28 0.24 

4 0.11 0.14 0.17 0.31 0.44 0.22 0.36 0.19 0.16 0.07 0.12 0.13 0.24 0.37 0.31 

5 0.16 0.15 0.19 0.35 0.53 0.24 0.44 0.27 0.25 0.08 0.17 0.17 0.3 0.48  0.4  

6 0.2 0.16 0.2 0.4 0.34 0.62 0.38 0.36 0.09 0.2 0.32 0.35 0.56 0.62 

7 0.24 0.18 0.23 0.49 0.46 0.47 0.43 0.1 0.24 0.38 0.6 0.7 

8 0.29 0.22 0.23 0.53 0.64 0.47 0.12 0.32 0.49 0.81 

9 0.28 0.26 0.26 0.81 0.53 0.16 0.36 0.56 1.14 

10 0.32 0.31 0.28 0.7 0.18 0.4 0.68 

11 0.38 0.38 0.33 0.2 0.45 0.83 

12 0.4 0.43 0.36 0.23 0.49 0.92 

13 0.43 0.48 0.44 0.26 0.58 1.07 

14 0.45 0.55 0.55 0.29 0.65 1.3 

15 0.5 0.31 1.53 

16 0.53  0.37  

17 0.54  0.4  

18 0.42  

19 0.47  

20 0.57  

21 0.65  

22 0.68  

23 0.76  
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According to the ISO3685:1993, in a metal cutting, the standard threshold for a uniform tool 

flank wear is 0.4mm, and the threshold for an irregular tool flank wear is 0.6mm. In the subsequent 

analysis of this work, the values of the flank wear are divided into the unworn set and worn set 

based on the flank wear threshold 0.4. 

3.2.2 Signal pre-processing 

During a monitoring process, sensor signals contain random spikes or outlier signals that affect 

the accuracy of the tool wear identification. The Hampel filter, which demonstrates good 

performance of removing spikes or outlier signals without affecting the entire signal dataset (Yao 

et al. 2019), is adopted to design a signal pre-processor for cleaning sensor signals. The computing 

processes are below. 

The median and the MAD (median absolute deviation) are important estimators of the Hampel 

filter. A set of signals is divided into multiple samples by a fixed size (2ܭ) window, and the 

median of the sample is obtained below: 

݉௄ ൌ ݉݁݀݅ܽ݊ሼݔ௜, … ݔ௜ା௄, …ݔ௜ାଶ௄ሽ (1) 

where ݉௄ is the median of a moving data window; ݔ௜ is a sensor signal in the signal set; ܭ is a 

positive integer called the half-width of the window. 

The absolute deviation of the signals on both sides of the median is calculated, and the scale 

estimator of MAD is given below: 

ܵ௄ ൌ ߙ  ∙ ݉݁݀݅ܽ݊ሺหݔ௝ െ ݉௄หሻ (2) 

where ܵ௄ is the scale estimator of MAD; ߙ is the unbiased estimator of a Gaussian distribution, 

and ߙ ൎ1.4826; ݆ ∈ ሾ݅, ݅  ൅  .ሿܭ2

Spikes or outlier signals could be judged based on Equation 3. That is, if the difference 

between a signal data ݔ௜ and the median ݉௄ is greater than ݐ ∙ ܵ௄, ݔ௜ is judged to be a spike or 

outlier signal and it should be replaced with the median.   

௜, |௫೔ି௠಼|ஸ௧∙ௌ಼ܪ௄ ൌ ൜݉
ݔ
௄,	 |௫೔ି௠಼|வ௧∙ௌ಼ 

(3) 

where ܪ௄ is the Hampel filter; ݐ  is the scale factor. 

Figure 4 shows the result of the Hampel filter applied to the vibration signals in the case study. 

In the original vibration signals under the 6th cutting cycle (shown in Figure 4(a)), some spikes 

can be observed. These spikes affect the accuracy of a prediction model. After the use  of the  
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Hampel filter, signal spikes can be eliminated in the original signals. The processed signals are 

depicted in Figure 4(b). 

a b 

Figure 4.Signal processing using the Hampel filter: (a) Original data with spikes; (b) Processed data 

3.2.3 Feature extraction 

It will be time-consuming and error-prone to predict tool wear directly based on sensor signals. 

Thus, feature extraction is considered as a practical method to decrease the complexity of the 

prediction process. In this work, to ensure training accuracy, features under time-domain and 

frequency-domain are defined and extracted. Some considerations for the process are below: 

According to Qin et al. (2019), statistic dimension features under time-domain might lead to a 

less accurate prediction accuracy as it could be affected by various manufacturing conditions, 

working loads and machine parameters. Instead, dimensionless features are more stable and 

sensitive to working conditions (Zhang et al. 2013; Sun et al. 2013; Hu et al. 2018), to compensate 

for the limits of dimension features. Hence, in this work, dimensionless and dimension features 

under time-domain are extracted to minimise the negative influence of working conditions and 

factors on prediction accuracy. 

In the acquisition process of sensor signals, apart from the signals generated by a cutting tool, 

it is inevitably to collect signals generated from other elements/factors, such as signals from some 

abnormal machining conditions (e.g., looseness at the cutting tool joint), signals from the 

workpiece holder, etc. These signals are generally in different frequency bands (Nastac 2018). 

According to Wang et al. (2014) and Krishnakumar et al. (2015), changes in tool wear conditions 

can be reflected using features extracted from a specific frequency band in the spectrum, rather 

than from the entire band. In order not to miss critical features related to tool wear conditions, the 

frequency-domain of each sensor is equally divided into the low, middle and high-frequency 

bands, and features are extracted under those domains for optimisation and fine-tuning. The block 

diagram of the signal feature extraction is shown in Figure 5. 
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Figure 5.The block diagram for signal feature extraction 

Feature extraction under the time-domain 

The time-domain refers to the change of signal amplitude along time (Herff and Krusienski 

2018). Signals used in this work were collected under time-domain. Take Case 10 shown in Table 

14 as an example, signals of the AE, vibration and current under time-domain are shown in Figure 

6. 
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Figure 6. Signals of the Case 10 under the time-domain 

It can be observed that, with the number of cuts increasing, the amplitude of the signals of 

current and AE rise. However, the vibration signal does not follow the same trend. As explained 

by Ahmada et al. (2015), machining causes the wear of cutting tools, the tool gradually becomes 

dull from the initial sharpness, and the contact region between the tool and workpiece is expanded 

during the process. Thus, the chatter of the cutting tool gets smaller, and the vibration amplitude 

drops. In addition, Bhuiyan and Choudhury (2013) drew a similar conclusion from the perspective 

of materials and cutting mechanism. As machining proceeds, the processing temperature and 

plastic deformation of the workpiece increase, resulting in reduced cutting force, which will 

eventually reduce the amplitude of the vibration signals as well. Moreover, plastic deformation is 

difficult to be detected by the vibration sensor in some cases, and the AE sensor is a better option. 

It is also considered as a reason that signals from multiple sensors are essential to be employed to 

reflect the overall machining trends and tool wear in a more comprehensive means. Signals for 

the rest cases display a similar trend presented above. 

In this work, under time-domain, 11 dimension features and 6 dimensionless features are 

extracted from the signals of each sensor (Table 16). In total, there are 102 features under time-

domain for all sensor signals (i.e., 17 features for each of the 6 sensors respectively). 
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Table 16. Features under the time-domain (Zhou and Xue 2018). 

Time-domain 
Dimensional Feature Dimensionless Feature 

Feature Formula Feature Formula 

Mean 

Max 

Min 

Standard deviation 

Peak to peak 

Root mean square(RMS) 

Skewness 

Kurtosis 

Mean absolute deviation 

Median 

Variance 

݊

ܶ݉  ൌ ݊
1
෍݅ݔ
݅ൌ1 

ܶ݉ ൌ ݔܽ maxሺ݅ݔሻ 

ܶ݉ ݅݊ ൌ minሺ݅ݔሻ 

݊

ൌ ඩ ݀ݐݏܶ
1
݊ 
෍ሺ݅ݔ െ  ሻ2ߤ

݅ൌ1 

݉ܶ| ൌ ݇ܽ݁ܶ݌ ݉ܶ| െ | ݔܽ ݅݊ | 

݊ 

2
ൌ ඩ ݏ݉ݎܶ

1
݊
෍݅ݔ
݅ൌ1 

݊
݅ൌ1ሺ݅ݔ െ ሻ3ߤ

 ൌ ݁݇ݏܶ
∑

ሺ݊ െ 1ሻ  ݀ݐݏܶ
3 

݊
݅ൌ1ሺ݅ݔ െ ሻ4ߤ

ܶ݇  ൌ ݎݑ
∑

ሺ݊ െ 1ሻ  ݀ݐݏܶ
4 

݊

ܶ݉ ܽ݀ ൌ ݊
1
෍ሺݔ െ ሻߤ  ݅

݅ൌ1 

ܶ݉ ݁݀ ൌ ൅1݊ݔ (odd dataset) 
2

െ݊ݔ൅2
2 (even dataset) ܶ݉ ݁݀ ൌ 

݊ݔ
2 

2 

ሺݔ െ ሻ2ߤ
 ൌ ݎܽݒܶ

∑݊݅ൌ1 

݊
݅ 

Impulse factor 

Kurtosis factor 

Margin factor 

Shape factor 

Crest factor 

Skewness factor 

|ܶ݉ ݅ܶ| ݔܽ ݂ ൌ 
 ߤ

 ൌ ݂ܭܶ
ܶ݇  ݎݑ

 ݏ݉ݎܶ
4 

|ܶ݉ ݉ܶ| ݔܽ ݂ ൌ 
 ݎܶ

ݏ݉ݎܶ ൌ ݂ݏܶ

 ߤ

|ܶ݉ ܿܶ| ݔܽ ݂ ൌ 
 ݏ݉ݎܶ

 ൌ ݂݁݇ݏܶ
ܶ݇  ݎݑ

 ݏ݉ݎܶ
3 

In the table, ௥ܶ ൌ ቀ
ଵ 

ඥ|ݔ |ቁ
ଶ 

is the root value; ߤ ൌ  
௡

ଵ ∑ ݔ| |  is the absolute mean value; ݔ  is a signal, 
௡ 
∑௡
௜ୀଵ ௜

௡
௜ୀଵ ௜ ௜

i=1, 2, 3 ... n; n is the signal number. 

Frequency-domain processing 

Various uncertain factors may distort features under time-domain even after the denoising 

process on the signals, so that features only extracted under time-domain could be challenging to 

reflect tool wear properly. In this chapter, the power spectral density (PSD)-based method is 

designed for feature extraction under frequency-domain. PSD is a Fourier transformation of the 

autocorrelation function and describes the power of signals at different frequencies (Pappachan 

et al. 2017). The advantages of using PSD to analyse the frequency-domain are summarised as 

follows (Minbashi et al. 2016; Lee and Eun 2016; Xu et al. 2020): 

 The irregularity of signals by the wavelength and amplitude can be displayed; 

 Frequency distribution hidden in random signal noises can be revealed; 
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 Signal power caused by random changes can be minimised; 

 PSD can help reduce spectrum leakage, prevent the signal from being disregarded, and 

avoid signals are mistakenly considered as a repeated period. 

PSD can be obtained below: 

ேିଵ 

ሺ݇ሻ ൌܨ ෍  ݂ ሺݐሻ݁ିଶగ௜்ఠ (4)
்ୀ଴ 

ሺ݇ሻ|ଶܨ|
ܲሺ݇ሻ ൌ	 lim (5)

்→ஶ ܶ 

where ݂ሺݐሻ is a time-series signal; ݅ is the imaginary unit and ݅ ൌ  √െ1; ܶ is the time and ܶ ൌ  

ሼ0,⋯ ,ܰ  െ 1ሽ; ߱ is the angular frequency; ݇ is the spatial frequency, ܨሺ݇ሻ is the Fast Fourier  

transformation; ܲሺ݇ሻ is the PSD. 

Abnormal behaviours of an object occur close to the natural frequency of the object (Chen et 

al. 2019). For a cutting tool, it will be more effective to capture features near the natural frequency 

of the tool for tool wear estimation. Features that are related to tool wear could be found in the 

sensitive frequency band of PSD. To promote the analysis, the frequency bands of sensor signals 

are divided into a low-frequency band (0-40 Hz), a middle-frequency band (40-80 Hz) and a high-

frequency band (100-125 Hz). 

The effect of using PSD is illustrated in Figure 7, where the PSD of the AE signals on the 

spindle for Case 11 is displayed. The graph is composed of three axes, i.e., frequency, flank wear 

and PSD. It shows that dominant frequencies happen in the low and middle-frequency bands. 

Moreover, the figure presents that the amplitude of each frequency band increases with the 

process of tool wear exacerbation. In particular, the PSD increment around 80Hz of the middle-

frequency band is more intensive as the tool deterioration than that in the low-frequency band. It 

may attribute that the frequency of 80 Hz embodies the natural frequency of the system consisting 

of the cutting tool and workpiece. The increasingly severe friction between the two is reflected 

by the PSD. 

48 



 

 

 

 

 

 

 

 

  

 

     

  

 

  

 

 

  

  

 	  

 	  

 

   

  

Figure 7. The PSD of the AE signals on the spindle 

In this work, six features from the signals of each sensor are extracted for each frequency band. 

In total, 108 features are extracted for the six sensor signals under the three frequency bands. The 

related information is shown in Table 17. 

Table 17. Features under the frequency-domain (Wang et al. 2015). 

Frequency-domain 
Feature Formula 

݊ 

Mean ݂݉  ൌ 
1
݊
෍݅݌
݅ൌ1 

Max ݂݉ ൌ ݔܽ maxሺ݅݌ሻ 

Min ݂݉ ݅݊ ൌ minሺ݅݌ሻ 

Root mean square ݂ݏ݉ݎ ൌ ඨ
∑݊݅ൌ1 ݂݅

݅݌2
∑݊݅ൌ1 ݅݌ 

∑

݊
݅ൌ1  ݂ ݂݂ Frequency center݅݌݅ ܿ ൌ

∑ 
݊
݅ൌ1 ݅݌ 

ൌ ඨ ݒݎ݂
∑݊݅ൌ1 ሺ

∑
݂݅  െ ݂݉ ሻ2݅݌Root variance frequency ݊
݅ൌ1 ݅݌ 

In the table, ݌௜ is the power spectrum, i=1, 2, 3 … n; ௜݂ is the frequency value; n is the spectrum line. 

By performing the feature extraction, a total of 210 features are obtained from time and 

frequency-domains for the signals of the vibration, AE and current. Taking the features of the AE 

signals on the spindle for Case 10 as an example, some extracted features and flank wear 

measurement values are shown in Figure 8. It could be observed that the extracted features, such 

as mean and kurtosis under time-domain and RMS under middle-frequency-domain, are 
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consistent with the trend of tool wear, while others do not follow this trend. It reveals that features 

deviated from the trend of tool wear need to be identified and removed to improve prediction 

accuracy. 

b 

Figure 8. (a) Extracted features of the AE signals on the spindle, (b) Flank wear 

Furthermore, to assess the effectiveness of the method proposed in  this work, the PCC  is  

adopted to analyse the linear relationship of the extracted features. The feasibility and necessity 

of this evaluation are that the quality of the input features has a direct impact on the prediction 

result. The correlation between features should be the smallest. Otherwise, a strong correlation 

will cause the CNN model to be biased when assigning weights. At the same time, these features 

with a high correlation will take additional calculations (Chicco and Rovelli 2019). The PCC is 

the value between [-1, 1] and can be calculated by the following equation: 

௔ܲ,௕ ൌ 
ܾ ,ሺܽݒ݋ܥ ሻ ∑௡௜ୀଵ ሺܽ௜ െ തܽሻሺܾ௜ െ തܾሻ

ൌ
௕ (6)ߪ௔ߪ

ඥ∑௡௜ୀଵ ሺܽ௜ െ തܽሻଶ ∙ ට∑௡௜ୀଵ ሺܾ௜ െ തܾሻଶ 
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where, ௔ܲ,௕ denotes the Pearson coefficient; ݒ݋ܥሺ∙ሻ  denotes the covariance; σ denotes the 

standard deviation; ܽ௜, ܾ௜ denotes the samples of each feature; ܽ,ഥ തܾ denotes the mean value of each 

feature. 

According to the coefficient value, the association between two features presents the positive 

or negative state, and a large value means a high correlation. Based on the features extracted 

above, their correlation matrix is shown in Figure 9. 

Figure 9. The correlation matrix of the extracted features 

Figure 9 expresses the Pearson coefficients of the extracted 210 features by the shade of the 

colour. Based on the analysis, to obtain more efficient results for tool wear identification, feature 

selection, which to eliminate redundant or less relevant features, is a necessary process. 

3.2.4 Selection of optimal feature 

For extracted features, some features could be less important (relevant) to cutting tool 

conditions. It is worth identifying and removing those features to maintain the highest prediction 

accuracy. Moreover, the bigger the number of features, the more complex the prediction model 

may become, which will lead to lower computational efficiency. 
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In this work, the RFECV process is designed to select optimal features. On the basis of an 

SVM classifier, REFCV will work on a complete set of features to eliminate the least relevant 

feature recursively. That is, based on the importance score evaluations of features on tool wear 

conditions, REFCV is conducted to eliminate the least important feature in each iteration, to 

identify the optimal size of features for the highest accuracy of tool wear identification. Major 

steps of the SVMCV process is depicted below: 

1. In view of the fact that a set of N features (a feature is denoted as xi (i=1,…,N)) extracted 

from sensor signals could be in different ranges, a normalisation process is performed based 

on the Nadir and Utopia points to facilitate the following computations. The Utopia point

 ௎ provides the lower bound of the features, and the Nadir point zே provides the upperݖ

bound of the features. The normalisation process for each feature xi (the normalised feature 

is denoted as ݔ௜
ᇱ) is below: 

௜ݔ
ᇱ ൌ ሺݔ௜ െ ே െݖ௎ሻ/ሺݖ  ௎ሻ (7)ݖ

2. The set of normalised features are segmented into a training sub-set and a validation sub-

set randomly according to an approximate 7/3 ratio for M times. Each randomly generated 

group is denoted as Gk (k=1,…,M). In each group Gk, a feature in the training sub-set in the 

group is represented as Tk,t  (t=1,…,p) and a feature in the validation sub-set is Vk,v 

(v=1,…,q), where p and q are the numbers of features in the training and validation sub-

sets respectively. Figure 10 shows a schematic diagram of this step. 

Figure 10. The schematic for the step 2 

3. For each group Gj, the SVM classifier is used to conduct a binary classification process for 

tool wear (unworn or worn) based on its training and validation sub-sets according to the 

following procedures. 
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In the process, the SVM classifier distinguishes the unworn and worn statuses of features in 

the training sub-set through a hyperplane, and an optimal hyperplane will be achieved after the 

training. The maximum distance between features and the optimal hyperplane implies the lowest 

classification error (Nanda et al. 2018). In general, a hyperplane could be defined below: 

௣

ݕ ൌ  ෍ݓ௜ ∗ ௜ݔ
ᇱ ൅ ܾ  (8)

௜ୀଵ 

where y represents the state of tool wear category (ݕ ൌ 1 means tool is worn, and y ൌ െ1 means 

tool is unworn), ݔ௜
ᇱ is a feature, ݓ௜  denotes a weight vector for the feature, and b is a constant of 

bias. 

For the binary classification in this work, the plane for the two categories meets the condition 

of ܪ଴:ݓ௜ ∗ ௜ݔ
ᇱ ൅ ܾ  ൒  1 and ܪଵ:ݓ௜ ∗ ௜ݔ

ᇱ ൅ ܾ  ൑  െ1, which can be summarised as ݕ ∗ ሺݓ௜ ∗ ௜ݔ
ᇱ ൅ 

ܾሻ ൒ 1. In addition, the solution of an optimal hyperplane that separates the categories with 

maximum distance is defined as ሺݓ௜ ∗ ௜ݔ
ᇱ ൅ ܾሻ/‖ݓ‖. Thus, the problem can be transformed into 

the problem of max 
ଵ

‖
 , which is equal to the following problem: 

‖௪೔

min 
1
2 
 ௜‖ଶݓ‖

௣ (9) 

ᇱݐ݆ܾܿ݁ݑݏ y	:݋ݐ ∗ ሺ෍ݓ௜ ∗ ௜ݔ ൅ ܾሻ ൒ 1  
௜ୀଵ 

In order to solve the above problem with inequality constraints, the SVM classifier further 

adopts a Lagrangian multiplier to transform the problem into an unconstrained form. At the same 

time, to eliminate the influence of nonlinear input features in the training process and improve the 

identification accuracy, the Gaussian kernel function ܭሺݔ௜
ᇱ, ௝ݔ

ᇱሻ is employed to conduct feature 

mapping. In combining the above aspects, the optimisation problem for the SVM classifier is 

given below: 
௣ ௣ 

ᇱ ᇱmin
1
2
ሺ෍ ߙ ∙ ߙ ∙ ݕ ∙ ௝ݕ ∙ ݔሺܭ , ௝ሻݔ െ෍ߙ ሻ௜ ௝ ௜ ௜ ௜

௜,௝ୀଵ ௜	 ୀଵ (10) 

ேݐ݆ܾܿ݁ݑݏ ௜ߙ ୀଵ	௜∑ 	:݋ݐ ∙ ௜ݕ ൌ 0, 0 ൏ ௜ ൏ߙ ,ൌ 1 ݅ ,ܥ 2, 3 ⋯ܰ 

where ߙ௜,  ௝ are the vectors for Lagrange multipliers, which correspond to a training sampleߙ

௜ݔ)
ᇱ ݕ௜); ݔ௜

ᇱ, ௝ݔ
ᇱ are different features; ݕ௜, ݕ௝ are different states of tool wear; ܭሺݔ௜

ᇱ, ௝ݔ
ᇱሻ denotes the 
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kernel function, which indicates the mapping function for (ݔ௜
ᇱ 	,  ,is the penalty coefficient 	ܥ ;(௜ݕ

which is the tolerance for errors. 

After the optimisation problem is solved, the weights of each feature are determined as 

Equation 11, and the average value of these weights is the weight of the SVM model trained by 

the training sub-set.  

ே

ݓ ൌ  ෍ߙ௜ ∙ ∙ ௜ݕ ௜ሻ (11)ݔሺܭ
௜ୀଵ 

Furthermore, based on the trained SVM model, the decision-making function of judging the 

status categories of the tool wear according to the new features can be represented below:  

ே

݂ሺݔሻ ൌ ∙ ௜ߙሺ෍݊݃݅ݏ ∙ ௜ݕ ,ݔሺܭ ௜ሻݔ ൅ ܾሻ  (12)
௜ୀଵ 

where ݂ሺݔሻ denotes category of the tool wear, 	∈ ሼ൅1, െ1ሽ; ݔ denotes a new feature. 

After classifying the features using the validation sub-set through the SVM classifier, the 

identification accuracy is assessed by the confusion matrix. There are four possible results 

generated from an identification accuracy, i.e., true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN). These four outcomes can be defined in the proposed 

system below: 

 TP: The input signal feature indicates the cutting tool is unworn, and the cutting tool actual 

unworn. 

 TN: The input signal feature indicates the cutting tool is worn, and the cutting tool actual 

worn. 

 FP: The input signal feature indicates the cutting tool is worn, and the cutting tool actual 

unworn. 

 FN: The input signal feature indicates the cutting tool is unworn, and the cutting tool actual 

worn. 

The identification accuracy of the validation sub-sets can be assessed using Equation 13, which 

represents the proportion of the correct identification in the total identification.  

ܶܲ ൅ ܶܰ
Accuracy ൌ (13)

ܶܲ  ൅ ܶܰ  ൅ ܲܨ ൅ ܰܨ  
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4. After each Gk (k=1,…,M) is processed according to Step 3, their average accuracy is used 

as the prediction accuracy of the feature subset with the size N (i.e., 
ଵ ெ ሺAccuracyሻ).
ெ 
∑௜ୀଵ 

Moreover, according to the calculated weight in Equation 11 and the importance ranking 

criterion of the SVM, ܥ௜ ൌ ௜ଶݓ ௜ܥ )   denotes the importance score of Feature i), the 

importance of each feature in the size N can be ranked. 

5. The feature with the least importance is discarded so that the number of features becomes 

N-1. The above Steps 1-4 are recursively repeated until all features are eliminated. During 

the process, the sets of features are denoted as SN, SN-1,…, S1. 

6. For SN, SN-1,…, S1, their (average) prediction accuracies are ranked. The number of features 

in the set with the highest prediction accuracy is determined as the optimal number of the 

feature selection. According to the importance score and the optimal number of the features, 

optimal features are selected. The flowchart of the proposed methods is shown in Figure 

11. 

Figure 11. The flowchart of the RFECV feature selection 

According to the above process of RFECV, the best feature subset of each sensor signal is 

selected. Taking the AE signal on the spindle as an example, the prediction accuracy of the feature 

subsets of different size under time and frequency-domains are shown in Figure 12 and Figure 13, 

respectively. 

Figure 12. The classification accuracy based on time-domain features for the AE signals on the spindle 
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Figure 13. The classification accuracy based on frequency-domain features for the AE signals on the spindle 

From Figure 12, the highest classification accuracy for the AE signal on the spindle is achieved 

by the number of features of 3. The optimal feature subset size of other signals under time-domain 

and frequency-domain are selected by the same method. 

The contribution degree of each feature to the tool wear identification is sorted as shown in 

Figure 14 and Figure 15, and the features corresponding to the optimal size of the feature set can 

be selected. 

Figure 14. Importance ranking of features under the time-domain for AE signals on the spindle 

56 



 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  
  

 

  
  

  

 
 

  

   

Figure 15. Importance ranking of features under the frequency-domain for the AE signals on the spindle 

These scores indicate the importance of each feature to the tool wear status. It could be seen, 

under time-domain, the most relevant feature of AE signals on the spindle to the tool wear is mean, 

followed by RMS and median. The same information can be gained from different frequency 

bands in frequency-domain. At this point, the optimal feature selection for all signals is 

accomplished. There are 41 features under time-domain and 69 under frequency-domain are 

selected, as shown in Table 18 and Table 19. 

Table 18. Optimal features under the time-domain 

Time-domain 
Signal Feature number Feature 

AE_T 5 RMS, Mean, Median, Standard deviation, Maximum 

AE_S 3 Mean, RMS, Median 

AC 10 
Kurtosis factor, Impulse factor, Mean, Variance, Standard deviation, 
RMS, Crest factor, Minimum, Peak to peak, Mean absolute deviation 

DC 10 
Mean, RMS, Maximum, Median, Minimum, Kurtosis factor, 
Variance, Peak to peak, Skewness factor, Standard deviation 

V_table 7 
Shape factor, Kurtosis, Variance, Standard deviation, 
Skewness, Mean absolute deviation, Margin factor 

V_spindle 6 Kurtosis factor, Variance, RMS, Mean, Median, Shape factor 
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Table 19. Optimal features under the frequency-domain 

Frequency-domain 
Low-band Mid-band High-band 

Feature Feature Feature 
Signal Feature Feature Feature 

number number number 

Max., Root variance 
Max.  

AE_T 2 2 RMS, Root variance 4 RMS, Frequency 
Frequency center 

center 

RMS, Max., 
RMS, Root variance, Frequency center, 

AE_S 2 RMS, Root variance 3 6
Frequency center Root variance, Mean, 

Min. 

RMS, Mean, Max., 
Frequency center, Mean, Min., Max., 

AC 4 4 6 Min., Root variance, 
Max., Mean, RMS RMS 

Frequency center, 

Mean, Max., RMS, 
Frequency center Frequency center, 

DC 4 5 Frequency center, 4
RMS, Mean, Max. RMS, Variance, Max. 

Root variance 

Frequency center, Frequency center, Frequency center, 
V_table 3 3 3

RMS, Root variance RMS, Root variance RMS, Root  variance 

RMS, Root  variance, 
Frequency center, 

Min., Max., Mean, Mean, Max., 
V_spindle 5 Max., Mean, RMS, 4 5

Root variance Frequency center 
Root variance 

After the above process, the Pearson coefficient calculation based on the selected optimal 

features is carried out. Figure 16 displays the correlation matrix of the selected 110 features. The 

results show that, compared with Figure 9, the correlation of the features is reduced to some extent. 

That is, the average correlation is 0.23, which is much smaller than 0.47 of the extracted features. 

However, the correlations between some features still not eliminated in the above feature selection 

process. To further enhance the performance of the prediction model and simplify the subsequent 

training, these optimal features need to be further reduced. This process will be implemented by 

the dimensionality reduction based on Isomap in the following subsection. 
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Figure 16. The correlation matrix of optimal features 

3.2.5 Dimensionality reduction 

In this work, selected features are further fused by a manifold learning dimensionality 

reduction method. Generally, the PCA is one of the most prevalent methods for data 

dimensionality reduction. PCA can transform features into uncorrelated values and reserve 

original information (Rad et al. 2014). However, a critical limit of PCA is that it is not suitable 

for data with nonlinear correlations, especially for high-dimension variables (Sahu and Nayak 

2018; Caggiano et al. 2018; Kong et al. 2019). To address this issue, Isomap is employed in this 

chapter. According to Wang et al. (2017), Isomap extends the measurement of the 

multidimensional scale that hugely enhances the computing efficiency, global optimisation and 

information retention. Following the basic principle of the dimensionality reduction, the nonlinear 

dimensionality reduction is realised using Isomap through mapping high-dimensional data into a 

lower-dimensional space. It is also remarkable that, Isomap introduces geodesic distance in the 

calculation of the shortest distance instead of the Euclidean distance, which is the metric of the 

multidimensional scaling (MDS) algorithm.  

To better explain Isomap, it is necessary to explain the core idea of MDS, which is to maintain 

the sample distance in a low-dimensional space the same as in the original high-dimensional space. 
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It refers to obtain the Euclidean distance matrix D between m samples in the original ݀ -

dimensional space. The element ݀௜௝  in the matrix represents the distance between samples ݔ௜ 

and ݔ௝ (e.g., features). To achieve dimensionality reduction, the Euclidean distance between the 

newly obtained samples in the ݀ᇱ-the dimensional space Z ought to equal to the distance in the 

original space, that is, ฮ ௜ܼ െ ௝ܼฮ ൌ  ݀ ௜௝. 

However, in the real situation, data that requires dimensionality reduction is usually nonlinear. 

It is not feasible to use the Euclidean distance to map the distance between sample points. Thus, 

the Isomap method introduces the geodesic distance to represent the actual distance between 

sample points, and the shortest distance matrix of the n-dimensional features is embedded into a 

low-dimensional space, as well as reserving the nonlinear characteristic of the original data. 

In addition to effectively achieving nonlinear dimensionality reduction, the Isomap can also 

simultaneously implement the fusion of features from the different sensor signals, by mapping 

the features to a shared low-dimensional space, and then the original features can be fused in this 

space (Hu et al. 2019). This shared space is the space after dimensionality reduction, which retains 

the shortest distance between the features in the original space. In addition, each column in the 

shortest distance matrix finally obtained by the Isomap is a new representative component 

generated after dimensionality reduction. 

Based on the above principle, Isomap-based dimensionality reduction could be executed as 

follows: 

1. Isomap composes a manifold with the m-dimension matrix D, which is formed by the 

selected features. It then determines the neighbour point of each feature on the manifold, 

and connects these neighbour points to form a neighbour graph. Such a neighbour graph is 

shown in Figure 17. 

Figure 17. A neighbour graph 
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As shown in Figure 17 (A), the black line embodies the Euclidean distance between any 

two points. Obviously, it cannot represent the actual distance. And the red line indicates 

the actual distance between any two points along the manifold. 

2. Calculating the geodesic distance between pairs of points in the neighbour graph to gain 

the shortest distance between any two points. This shortest distance matrix ܦ௜௝ ൌ ሼ݀ሺ݅,  ݆ሻሽ  

could be obtained by the Dijkstra's algorithm and Floyd–Warshall algorithm, where ݀ is 

the shortest distance for any two points, ݅	 is the sample (feature), and ݆ is its neighbour 

point. The shortest distance here denotes the newly generated feature vector based on the 

original feature set after the dimensionality reduction, and the feature vectors referred to as 

representative component in this work. As Figure 17 (B), the blue line is the shortest 

geodesic distance between the two points, and it is similar to the actual distance and can be 

used as an alternative. 

3. Then, take D௜௝ as input to execute the MDS algorithm, to compute the inner product matrix 

B by applying the central matrix to D:  
௠ ௠ ௠ ௠

ܤ ൌ െ  
1
2
ሺ݀௜௝

ଶ െ
݉
1
෍݀௜௝

ଶ െ
݉
1
෍݀௜௝

ଶ െ
݉
1
ଶ෍	 ෍݀௜௝

ଶ ሻ (14)
௜ୀଵ ௝ୀଵ ௜ୀଵ ௝ୀଵ 

where, ݀௜௝ is the element in D௜௝, represent the distance between sample i and j. 

4. The lower-dimensional data matrix ܼ , which remains the most information of original 

feature set manifold and each column represents a new component feature, can be obtained 

by: 

ܼ ൌ  ⋁்⋀
ଵ
ଶ (15) 

where, ⋁ is the eigenvector matrix of B, ⋀ is the diagonal matrix of eigenvalues of B. 

5. According to the result of the cumulative variance, the different number of representative 

components are evaluated, and the component dimensionality with the largest variance is 

selected as the new feature set produced by the dimensionality reduction. 

To avoid the overfitting problem caused by the CNN model training on a high-dimensional 

space and to improve computational efficiency, the Isomap method demonstrated above is 

adopted for the dimensionality reduction on the optimal feature set. According to the obtained 

shortest distance matrix, it is necessary to estimate the minimal number of components, which is 

the number of columns of the matrix, to describe the optimal feature set achieved earlier. With 

this aim, the cumulative variance sequentially accumulates the variances of each component to 

evaluate the proportion of the original information contained in the different dimensional features, 
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and this is the typical evaluation method for the dimensionality reduction (Mahecha et al. 2007). 

As shown in Figure 18, after the cumulative variance calculation, the first 10 components contain 

about 90% of the variance. That is, 90% of the raw information is preserved. When the number 

of components reaches 40, it can be used to describe nearly 100% of the information. Therefore, 

40 components are finally employed as the latest features in the subsequent CNN model training. 

Figure 18. Cumulative variance of Isomap 

In addition, with the obtained representative components, Figure 19 shows the correlation 

matrix of these 40 components. The correlation between these components has been greatly 

reduced, and their average correlation coefficient is only 0.025. Therefore, these components as 

a new feature subset are expected to bring higher performance to tool wear identification. 

Figure 19. Correlation matrix of Isomap components 
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3.3 Prediction performance evaluation 

3.3.1 Proposed system assessment 

1D-CNN is adopted in the proposed system for tool wear identification. The basic architecture 

of the CNN model involves convolutional layers, pooling-layers and a fully connected layer. The 

convolution layer consists of trainable filters, and the filter will slide over the elements of the 

input data to generate a frame of the feature map in the next pooling layer. The depth of the 

convolution layer is the kernel number, which is defined based on the input data. A proper kernel 

size will increase the nonlinearity of the CNN model, and ensure the model to be suitable in 

processing complex data. While, a too-large kernel may affect computing efficiency and consume 

more memory (Soudani and Barhoumi 2019). A pooling layer after the convolution layer is 

adopted to reduce the dimension of input data and enhance the effectiveness of automatic feature 

extraction. The small size of a pooling layer window is often used considering a large size may 

cause the loss of a great deal of useful information (Yu et al. 2018). As the last component of the 

CNN model, a fully connected layer is employed for classification or regression on the features 

obtained from the previous convolution and pooling layers. Softmax is selected as an activation 

function in the fully connected layer. As summarised by Nwankpa et al. (2018), almost all of the 

fully connected layers of various deep learning models prefer softmax. 

For the purpose of strengthening the performance of the CNN model for practical applications, 

an activation function is applied in the model. Commonly used functions are sigmoid, hyperbolic 

tangent (tanh), and ReLU (rectified linear unit). However, due to a large amount of computation, 

the sigmoid function may lead to the gradient disappearance, resulting in information loss or 

termination of the training of the CNN model. As an extension of sigmoid, the tanh function 

improves computational efficiency, but the problem of the gradient disappearance remains to be 

unsolved. ReLU is the most widely employed activation function (Nair and Hinton 2010). It is 

characterised by its faster computational speed, which makes the CNN model easy to optimise 

and to alleviate the occurrence of over-fitting problems (Ramachandran et al. 2017). It is generally 

in better performance than that of sigmoid and tanh  for  the  CNN  model. Therefore, ReLu is 

adopted for each convolution layer in the CNN model. 

The following four feature sets were used for the validation of the CNN model for comparative 

analysis: 

 The set of extracted 210 features, 

 The set of optimal 110 features, 
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 The set of new generated 40 features (represented components) after the dimension 

reduction by Isomap, 

 The set that is merged by the newly generated 40 features and 3 machining parameters, 

which are depth of cut, feed rate and work-piece material (as numerous studies show that 

machining parameters have significant influences on the tool condition (Saini et al. 2012; 

Xu et al. 2017; Dadgari et al. 2018), it also plays a positive role in tool wear identification). 

The above four sets are fed into the 1D CNN model for the tool wear identification. The 

parameters and configuration of the CNN model are determined through trials and error 

comparisons. The fourth dataset input is used as an example. The kernel size of each convolution 

layer is 3. There is a max-pooling layer of size 2 after two convolution layers, which reduce the 

number of features and further the dimensionality for the next map. Before the next convolution 

layer, the dropout layer is applied to reduce interference between each sampling feature and 

prevent overfitting (Khodabandehlou et al. 2018). In the output layer, convoluted features are 

fully connected to be flattened to 80 neurons, then fully connected with the 32 neurons and 2 

outputs, respectively (Figure 20). 

Keras and Tensorflow are utilised to establish the CNN model. The CNN model is executed 

on the Apache spark, which is a cluster-computing framework (Bell 2014). 

Figure 20. CNN model architecture 

In the process of training and prediction, the architecture of the CNN model keeps unchanged 

to verify the performance of different subsets for the tool wear identification. The validation 

accuracy and validation loss are shown in Figure 21, it displays that the validation accuracy 
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increases along with the training accuracy until it reaches the optimum. Moreover, the validation 

accuracy of the four feature sets is summarised in Table 20. It provides the same outcome as 

Figure 21 that the accuracy of validation increases continuously with the adoption of feature 

selection and dimension reduction in sequence. The 4th feature set achieves the highest validation 

accuracy of 86%. Besides, it can be observed that the validation loss is reduced along with the 

training loss. However, it is not sustained in the first two feature sets, indicating that overfitting 

occurs. In general, the main reason for overfitting includes that the amount of data is too small, a 

large amount of noise information is included, and the prediction model is complex (Mehta et al. 

2019). Since features are derived from the same raw dataset in this work, and the CNN model is 

unchanged, the small training loss of the last two sets proves that the proposed feature processing 

method effectively avoids overfitting by eliminating redundant information. 
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Figure 21. Accuracy and loss of the CNN model 

Table 20. Data size and test accuracy of different input datasets 

Input Data Data size Test accuracy 

Extracted feature subset (Figure 21. A, B) 164×210 68% 

Optimal feature subset (Figure 21. C, D) 164×110 70% 

Isomap Component (Figure 21. E, F) 164×40 79% 

Isomap Component and machining parameter (Figure 
21. G, H) 

164×43 86% 

3.3.2 Comparison of SVM-based feature selection with other models 

To verify the advantages of the presented feature selection method, comparative analyses 

between this method and other three prevalent machine learning algorithms, i.e., RF (Degenhardt 

et al. 2019), extra trees (ET) (Sharaff and Gupta 2019) and logistic regression (LR) (Kahya et al. 

2020), are conducted. RF consists of a large number of decision trees. It uses the bagging method 

to train samples and assign weights to each of them to build a classification or regression model. 

It is also the ensemble of a large number of decision trees. ET adopts different methods to train 

the model, which is to train all samples at once and randomly divide the nodes of a single decision. 
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In addition, LR utilises the sigmoid function to estimate the classification probability between the 

feature and the dependent variable, and builds a binary classification model depending on this. 

Based on the extracted feature in this work, three machine learning models, RF, ET, and LR 

are employed to perform the feature selection recursively. Thereby, the optimal number of 

features, the importance of each feature and corresponding optimal features are determined 

successively from 210 features. Figure 22 and Figure 23 show the partial results of the accuracy 

of the feature set of different size and feature importance ranking on the three models for the AE 

signals on the spindle (left side: time-domain, right side: frequency-domain). 

Figure 22. The classification accuracy of different feature sets determined by different models 
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Figure 23. Importance ranking of features by different learning models 

Different machine learning models have determined the different number of optimal features 

after performed the feature selection. The features selected under the time and frequency-domains 

are summarised in Table 21. It can be seen that, since the diverse performance of the three models, 

the evaluation results of the contribution of the size of the feature set and the features to the tool 

wear identification are not uniform. The number of extracted features is significantly reduced, 

and RF, ET and LR achieve the reduction of the data amount of 42%, 45% and 67%, respectively. 
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Table 21. The number of optimal feature selected by different learning models 

Random forest Extra trees Logistic regression 

Signals Time-
Frequency-

domain Time-
Frequency-

domain Time-
Frequency-

domain 
domain domain domain 

low mid high low mid high low mid high 

AE_S 14 2 4 4 6 4 3 3 2 3 3 1 

AE_T  5 3  3  4  5 2  2  4  5 2  2  1  

AC 10 4 4 6 10 4 4 6 6 4 1 1 

DC 10 4 5 4 11 4 5 4 10 4 1 1 

V_S 6 5 4 5 8 5 4 5 6 1 3 1 

V_T 7 3 3 3 7 3 3 3 6 1 3 1 

Total 122 115 69 

For the purpose of eliminating the high correlation between features and further fusing the 

features, Isomap-based dimensionality reduction is performed on the optimal feature sets of the 

three models. Figure 24 displays the cumulative variance calculation result of each model. 

Figure 24. Cumulative variance of Isomap for different learning models 

According to the cumulative variance, for RF, 45 representative components can effectively 

represent the source information of the selected optimal features close to 100%. To reach the same 

percentage, both ET and LR need 30 components. These newly generated features (components) 
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of RF, ET and LR model will be severally used for tool wear identification based on the proposed 

CNN model. Meanwhile, the feature selection with the RF, ET and LR achieved 78%, 85% and 

85% of the data compression on the extracted features, respectively. In this regard, the proposed 

RFECV-based feature processing reduces the data volume by 81%. ET and LR in the four models 

have a slightly better dimensionality reduction effect. 

Furthermore, Figure 25 shows the validation accuracy of the CNN model on three feature sets. 

Each feature sets contains the latest generated features (representative components) 

corresponding to the three comparative machine learning model, RF, ET and LR, and these feature 

sets were combined with the processing parameters as the input. It is found that, compared with 

the result in Figure 21, the prediction accuracy of features selected by RFECV-SVM is the highest, 

followed by RF is 77 %. The accuracy of ET and LR is only 74% and 72%. 

Figure 25. Validation accuracy with the feature subsets selected by different learning models 

Apparently, considering both dimensionality reduction and prediction performance, the 

feature processing method of the RFECV-based feature selection and Isomap dimensionality 

reduction in the proposed system shows advantages. The obtained feature set could 

comprehensively describe the original multi-sensor signal, and provide robust performance for 

the tool wear identification. 
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3.4 Summary 

In this chapter, a machining tool wear identification system has been developed based on 

multiple sensor signals. In order to reduce the data quantity and maximise the retention of data 

information, the proposed system applied the feature fusion technology, mainly includes optimal 

feature subset size selection, feature selection and dimensionality reduction. The multi-layer 

feature fusion model is developed based on the RFECV and Isomap method, to perform the deep 

processing and to eliminate the redundant signal of different sensors. With the support of feature 

selection and data fusion algorithm, this system emphasises the sensitivity of various sensor signal 

features to the tool wear, determines the optimal features of less correlation and ensures the 

accuracy of the subsequent prediction model. Moreover, to effectively alleviate the pressure of 

tool wear identification under multi-sensor signals and complex machining conditions, the system 

has employed the 1D CNN model to handle the classification task, and the simple structure 

generated the efficient prediction. In addition, the system executed the evaluation with a real 

dataset, which contains current, vibration and AE signals from actual machining. First of all, four 

feature subsets with the different number of features were obtained through the implementation 

of the proposed feature fusion method, they were then adopted as the input of the CNN model, 

and the result of the forecasting of tool wear is satisfactory, the optimal verification accuracy of 

86%, which is can be improved by employing more sensor data, is achieved by the feature subset 

that after feature selection and dimensionality reduction. Meanwhile, the feature set size is 

reduced by 81%. Furthermore, the proposed feature processing have been compared with RF, ET 

and LR model, in terms of data volume reduction and tool wear identification accuracy, it proves 

that the proposed feature fusion method has competitive advantages, and the tool wear 

identification accuracy is guaranteed on the premise that the input data size is minimised.  
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Chapter 4. Tool RUL Prediction using Signal Partition and 

Hybrid Deep Learning  

4.1 Introduction 

The increasing complex processing environment of the cutting tools and the development of 

intelligent manufacturing strategies have made high dimensionality data, mainly, the multi-source 

sensor signals, displays apparent advantages to the tool RUL prediction. In order to quantify tool 

wear and achieve high-precision tool RUL prediction through multiple sensor signals, this chapter 

proposed a multi-channel hybrid CNN-LSTM deep learning model, which combines deep feature 

extraction, layer-based feature fusion and sequence regression efficiently. For the sake of 

enhancing the prediction accuracy to meet the industrial requirements, an innovative signal 

partition method based on Hurst exponent is developed in this chapter. The introduced method 

gives an effective solution to solve the issue of the sensor signals unbalanced distribution in 

different tool wear stages. Furthermore, the evaluation of the proposed hybrid deep learning 

model has been conducted in a real milling experiment. Moreover, the performance of the 

proposed system has been compared with some popular integrated deep learning models and 

signal processing method to assess the effectiveness.  

The remaining part of the chapter is arranged as follows. The methodology of the proposed 

method is presented in Section 4.2. In the following Section 4.3 is the system validation result 

discussion. Finally, the summary is given in section 4.4. 
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4.2 Methodology and System Flow  

The workflow of the system and the methodology for the RUL prediction on cutting tools are 

shown in Figure 26. 

Multi-sensor 
signal 

Multi-sensor 
signal 

Hurst 
exponent 

Hurst 
exponent 

Hurst 
exponent 

Partitioned 
sensor signal 

Model 
Offline measured training 

flank wear 

Deep learning 
prediction model 

Flank wear 
prediction 

RUL 
prediction 

Figure 26. The flow and architecture of the presented system 

The system consists of two subsystems, i.e., the Hurst exponent-based data partition, and a 

hybrid CNN-LSTM algorithm for RUL prediction. In the system, three types of sensors are 

deployed to monitor the statuses of a cutting tool, i.e., vibration (V), cutting force (F) and AE. 

The signal partition method based on the Hurst exponent is employed to segment sensor data into 

small batches to minimise the impact of feature imbalances from the input data. The partitioned 

datasets are then sent to the CNN-LSTM algorithm for processing, where the RUL prediction on 

a cutting tool is generated. In the CNN-LSTM algorithm, each CNN model is designed as a 

channel to process one type of signals, and the extracted features from the signals are fused in a 

concatenated layer, and the synchronised signals are further sent to the LSTM as a regression 

layer for predicting tool wear and RUL. 
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4.2.1 Signal partition based on the Hurst exponent 

The input signals for the developed system are from multiple sensors. Multiple sensors V, F, 

and AE are mounted on a CNC machine. After a total k cuts are executed, each sensor collected 

N samples of data in each cut. The raw datasets ሼܯ௜|݅  ൌ  1, 2,⋯݇ሽ are organised to obtain the 

sub-datasets for each sensor. Then, the Hurst exponent is adopted for partition on the data of 

individual cut from each sensor to acquire the input for the CNN-LSTM algorithm. 

Signals from different sensors could have different impacts on the RUL prediction. The Hurst 

exponent is employed to process various sensor signals in order to establish accurate correlations 

between the signals and the prediction of tool wear. Key parameters of the Hurst exponent for 

sensor signals can be obtained using the following steps (Borys 2020): 

For each window size n between N, N/2, N/4, N/8…until ݊	 approaching 350, repeat Step 1 – 

Step 6: 

Step 1: Divide a given time-series of the sensor signal for each cut into M subseries of length 

n. Then calculate the mean value ( തܶ௠) of the ݉௧௛ subseries as follows: 

௡

തܶ௠ ൌ 
݊
1
෍ ௜ܶ,௠ (16)
௜ୀଵ 

where, ௜ܶ,௠ stands for the ݅௧௛ signal in the ݉௧௛ subseries and m = 1,2…M 

Step 2: Create mean adjusted series ܦ௠ of the sensor signal ௜ܶ,௠: 

௜,௠ ൌܦ ௜ܶ,௠ െ തܶ௠ ݂ݎ݋	݅ ൌ 1, 2…݊ (17) 

Step 3: Calculate the cumulative deviate series ܼ௠: 

௜. 

௝ܼ,௠ ൌ෍ܦ௜,௠ ݂ݎ݋ ݅ ൌ 1, 2…݊ (18)
௝ୀଵ 

Step 4: Calculate the range of ܴ௠: 

ܴ௠ ൌ max ሺ ଵܼ,௠, ଶܼ,௠, … , ܼ௡,௠ሻ െ min  ሺ  ܼଵ,௠, ଶܼ,௠, … , ܼ௡,௠ሻ (19) 

Step 5: Calculate the standard deviation, ܵ௠, by using the following: 

௡

ܵ௠ ൌ ඩ
݊
1
෍ሺ ௜ܶ,௠ െ തܶ௠ሻଶ (20)
௜ୀଵ 

Step 6: Calculate the rescaled range  ܴ௠/ܵ௠ and average over the all the M samples: 
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ெ

ܴ/ܵ ൌ 
ܯ
1
෍ ܴ௠/ܵ௠ (21)
௠ୀଵ 

Step 7: Finally, the Hurst exponent of the sensor signal of each cut is obtained by linear fitting 

the log values of the rescaled ranges ܴ/ܵ for all the window sizes n based on: 

logሺ
ܴ
ܵ
ሻ ൌ log ܥ  ൅ ܪ  ∙ log ݊  (22) 

where ܥ	 is a constant, ܪ	 is the Hurst exponent. 

The value of a Hurst exponent (i.e., H value) varies between 0 and 1, and it indicates the 

dependence of sensor signals on their past values (Lotfalinezhad and Maleki 2020). Based on the 

previous research, the following observations are made for various signals (e.g., V. F and AE in 

this chapter): 

a) When 0≤H<0.5, there is a negative correlation between the sensor signals and flank 

wear. A smaller H value implies that the signal fluctuation in this period changes more 

dramatically. 

b) When H=0.5, the corresponding signal presents the Brownian motion. It refers that the 

signal has no impact on future signals, and signal fluctuation will be completely random 

and unpredictable. 

c) When 0.5<H<1, the fluctuation of the signal shows a continuous positive correlation 

between the sensor signals and flank wear. The future trend will follow the changes of 

the present signal, and this type of serial signal is predictable. 

d) When H=1, time-series signals will be in a straight line, and there is no fluctuation and 

correlation. 

Within the lifecycle of a cutting tool, the value of a Hurst exponent is obtained from each 

signal by executing the above steps. The different values of the Hurst exponents will be used to 

establish the correlation between signals and various flank wear stages of a tool lifespan, which 

are normally divided into an initial region of rapid wear, a steady region of uniform wear and a 

severe region of dramatically increased wear. Accordingly, the sensor signals can be segmented 

based on the stages to facilitate the following prediction using a deep learning algorithm. 

4.2.2 A hybrid CNN-LSTM algorithm for prediction 

CNN has demonstrated exemplary performance at intelligent acquiring features from data and 

is immune to the frequency variation in the data. LSTM is more potent for time-series data 

learning. However, both algorithms present their restrictions when dealing with real-time data. 
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To leverage the superiority of both algorithms, in this chapter, a hybrid CNN-LSTM algorithm is 

designed for better prediction on tool life. It is capable of identifying the spatial and temporal 

relations in sensor signals. Based on the different types of signals, multiple CNN sub-models are 

constructed as pre-processors. The CNN sub-model parallelly extracts the features from each 

sensor node, and these features are then fused at a concatenate layer. Finally, the concatenated 

features from sensor signals are sent to the LSTM for prediction. The proposed CNN-LSTM 

model is illustrated in Figure 27. 

Figure 27. The architecture of the multiple channel hybrid CNN-LSTM model 

CNN design 

As introduced in the literature review chapter, CNN is one of the most potent deep learning 

models, offers the strength of extracting high-level dependency features automatically from input 

data. The learning ability and the training time of the CNN model are decided by its structure, 

especially the number of layers. Usually, a shallow structure cannot provide good processing 

performance, and meanwhile, an excessive deep CNN may be harmful to the time-sequential 

aspect of the data or cause overfitting (Chen et al. 2019, Zhu et al. 2020). 1D CNN better utilises 

its characteristic of automatic feature extraction and avoids the deviation. Moreover, based on the 

prediction model architecture established in this chapter, the subsequent regression prediction of 

LSTM seeks the time-series data as the input, rather than other formats, to preserve the temporal 

integrity of the sensor signal. 
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In the light of the advantages of 1D CNN, a 1D CNN structure is adopted in this chapter. In 

order to achieve a satisfactory prediction accuracy and efficiency in processing the sensor signals, 

the 1D CNN model with different numbers of convolution and pooling layers are evaluated to 

identify the most suitable architecture. The proposed model and several other models are 

summarised in Table 22. Based on the same input dataset (the exact dataset is described in Section 

4.3), the prediction accuracies of each 1D CNN model are shown in Figure 28. 

Table 22. The architecture of the adopted CNN models 

Layer 
Model 1st 2nd 3rd 1st 4th 2nd 

convolution convolution convolution pooling convolution pooling 

A ● - - ● - -

B ● - - ● ● ● 

C ● ● - ● - -

D ● ● ● ● - -

E ● ● ● ● ● ● 

Proposed ● ● - ● ● ● 

Figure 28. The prediction accuracies of the CNN models 

Based on the above results, it clearly shows that, within the six 1D CNN architectures, the best 

prediction accuracy was achieved by the model E, which is 75.6%. The accuracy of the proposed 

model of three convolutional layers and two pooling layers is 75.3%, which is slightly lower than 

that of the model E. However, model E with the six-layer structure requires much longer 

computing time. Thus, the proposed model provides the best trade-off in accuracy and efficiency 

performance among the six models. The exact configurations of the proposed model are shown 

in Figure 29. To process three types of sensor signals, i.e., V, F and AE, there are three such CNN 
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models arranged in parallel (i.e., the CNN models of 1, 2 and 3 for the signals of V, F and AE 

respectively). 

Figure 29. The architecture of the proposed CNN model 

Each partitioned sensor signal in a format of the matrix is fed into the CNN model through its 

input layer. For segmented sub-matrix for the inputs of the CNN models of 1, 2 and 3, they are 

below: 

(23) 

where, ݊, ݉ , ݁  denotes the number of signals of sensor A, B and C, respectively, ݀ denotes the 

number of cuts in the dataset after segmentation. 

The convolution layer of each CNN model convolutes the input matrix to generate the spatial 

feature map by the activation function, and it can be described as: 

Φ௟ ൌ ݂ሺconvሺ ௟ܺିଵ ∗ w௟ሻ ൅  b௟ሻሻ (24) 

where, the Φ௟ denotes the feature map of the ݈th convolution layer, ௟ܺିଵ denotes the generated 

feature map from ሺ݈ െ 1ሻ th layer, w௟  denotes the weight, b௟  denoted the bias, the 

convሺ∗ሻ denotes the convolution process. The ݂ሺ∙ሻ denotes the activation function. The ReLU is 
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selected as the activation function for each convolution layer in the proposed CNN model. The 

reason is that the ReLU increases the nonlinearity between layers, and only a small amount of 

computation is needed to alleviate the gradient vanishing problem (Carneiro et al. 2016). 

After the convolution layer, the pooling layer is applied to further reduce the feature 

dimensionality, the max-pooling function is selected for every pooling layer, which extracts the 

maximum feature value with a window of size 2, so as to retain the important feature information 

and improve training efficiency. The output feature map can be depicted as: 

Φ௞ ൌ w௞ ∙ maxሺΦ௟ሻ ൅ b௞ (25) 

where, the Φ௞ denotes the feature map of kth pooling layer, w௞ denotes the weight, b௞ is the bias, 

max ሺ∙ሻ denotes the max-pooling function. 

Finally, the flatten layer is connected to the last pooling layer, to complete the transition from 

the convolution layer to the next layer base model by converting the generated features into a one-

dimensional array. And the size of the output array equals the number of the cuts ݀. 

So far, the signal features extracted by the CNN model eliminates the interference between the 

heterogeneous sensors, and these features can be fused without complicated operations. Therefore, 

the concatenation layer is applied to be responsible for the feature fusion after the multi-channel 

CNN models. As the element number of each feature vector is ݀, the feature fusion can be 

depicted as: 

(26) 

where, ܽᇱ , ܾᇱand ܿᇱ denotes the feature of different sensor generated from the CNN models. 

LSTM 

The focus of LSTM in this work is to obtain the time sequence information of extracted 

features to achieve prediction. Once the data features of each CNN model have been merged at 

the concatenated layer, the generated column-wise array will be the input of the LSTM model, 

which can be expressed as 	ܺ ൌ ௜,௝൧ݔൣ , where ݔ  denotes the feature value, ݅  ൌ ሼ1, 2,⋯݀ሽ , j 
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denotes different signals. A multi-layer LSTM uses ܺ as input data, and each layer contains an 

LSTM cell (Figure 30). 

Input gate 

Input 
( ) 

Output gate 

Output 
( ) 

Memory cell 

Forget gate 

Figure 30. The LSTM cell in this work 

For the current time-step ݐ, the output ݄௧, which indicates the predicted flank wear value, and 

the memory state ܿ௧ of LSTM cell are decided by the new input ݔ௧, the output ݄௧ିଵ and memory 

state ܿ௧ିଵ of the last time step 	ݐ െ 1. Based on the input array ܺ, which contains ݀ time-steps and 

݆	 features in each time-step, the LSTM network will recursively obtain the comprehensive 

information from each time-step and provide corresponding predictions. 

During the process, the forget gate ௧݂ of the LSTM cell decides how many information of ܿ௧ିଵ 

should be forgotten according to the sigmoid activation function, and thus create the new feature 

data as candidate value. Then the candidate value is fed into the input gate ݅௧  to update the 

memory cell state. Finally, the prediction value ݄௧ of the LSTM cell at the time-step ݐ can be 

calculated based on the updated cell state, which is from ௧ܿ and controlled by the output gate ݋௧. 

The above gate and cell can be obtained as follows:  

௧݂ ൌ ሺߪ ௙ܹݔ௧ ൅ ௙ܷ݄௧ିଵ ൅ ௙ܾሻ (27) 

݅௧ ൌ ሺߪ ௜ܹݔ௧ ൅ ௜ܷ݄௧ିଵ ൅ ܾ௜ሻ (28) 

௧ ൌ݋ ሺߪ ௢ܹݔ௧ ൅ ܷ௢݄௧ିଵ ൅ ܾ௢ሻ (29) 

ܿ௧ ൌ ௧݂ ⊙ ܿ௧ିଵ ൅ ݅௧ ⊙ tanhሺ ௖ܹݔ௧ ൅ ௖ܷ݄௧ିଵ ൅ ܾ௖ሻ (30) 

݄௧ ൌ ௧݋ ⊙ tanh ܿ௧ (31) 
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where, ߪ	is the sigmoid activation function; ⊙	is the Hadamard product; ܹ	and ܷ are variable 

weights and ܾ	is the bias. 

Multiple LSTM cells are connected to form an LSTM network in time order, to predict the 

time sequence output (flank wear), that is ሼ݄ଵ, ݄ଶ,⋯݄ௗሽ. And the number of the LSTM cell 

depends on the number of the feature in each signal received from the concatenation layer. The 

architecture of the LSTM model is shown in Figure 31. 

Figure 31. The LSTM architecture in this work 

Since the input data is partitioned via Hurst exponent into sub-datasets in this chapter, the 

model training based on size-reduced sub-datasets may increase the possibility of overfitting. 

Therefore, inhibiting the overfitting of the proposed hybrid model is necessary to further improve 

the prediction performance. As the dropout is one of the most popular and efficient regularisation 

technologies used to prevent the overfitting, it has been employed in the LSTM model. Dropout 

randomly discards the hidden neuron with the setting dropout rate, and the remaining neuron is 

trained via backpropagation to obtain the new weight and bias (Liu et al. 2020). It can be described 

as: 

௜ܵ ൌ෍෍ݓ௜௝݌௝ ௝ܵ (32)
௝ 

where, the ௜ܵ denotes the output of ݅th layer after the dropout, ௝ܵ denotes the output of the ݆th layer 

(the previous layer), ݓ denotes the weight, ݌ denotes the dropout rate, which is set to 0.5 in this 

chapter to maximise the regularisation.  
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Furthermore, in the last output layer of the hybrid model, the linear activation function is 

adopted to implement the regression prediction. For the prediction evaluation of the proposed 

hybrid CNN-LSTM model, the mean absolute error (MAE) is used as the  criteria, which  

quantifies the absolute error between the prediction and actual values (Bhinge et al. 2017). It can 

be expressed as:  
௡

MAE ൌ	 
݊
1
෍|ݕ෤ െ (33) |ݕ
௜ୀଵ 

where, ݊ is the training sample size; ݕ	෥ is the prediction value; ݕ is the actual value. 

4.3 Case study and Methodology Validation 

4.3.1 Experimental setup 

To validate the methodologies, the dataset from the 2010 PHM Society Conference Data 

Challenge was adopted here (PHMSociety 2010). The dataset includes signals from cutting force 

sensors, vibration sensors and AE sensors that were collected in the process of dry milling on a 

high-speed CNC machine Roders Tech RFM760. In the experiment, a stainless-steel workpiece 

was machined using six 3-flute ball nose tungsten carbide cutters, and the corresponding sensor 

signals for the six cutting tools C1, C2, C3, C4, C5 and C6 were recorded. Every cutting tool was 

cut from new until significant wear, and a total of 315 cutting cycles were performed for each tool 

under the same machining parameters. In addition, three types of sensors are mounted on the 

workpiece and the machining table respectively, in terms of dynamometers, accelerometers and 

an AE sensor. Figure 32 shows the schematic of the experiment. 

Figure 32. The schematic of the experiment 

During the machining process, three Kistler quartz 3-component platform dynamometers, 

three Kistler piezo accelerometers and a Kistler AE sensor were used. These seven signal channels 

are shown in Table 23. A cutting tool processed the workpiece surface line-by-line along the X-

axis with the axial depth of 0.2 mm, radial depth of 0.125 mm and cutting length of 108 mm per 
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cut until the entire surface was removed. The spindle speed was maintained at 10,400 RPM, and 

the feed rate was 1,555 mm/min. Moreover, after each cut, the cutting tools C1, C4 and C6 were 

placed under a LEICA MZ12 microscope to measure the flank wear of each flute, and three 

datasets that combined with sensor signals and flank wear of cutting tool C1, C4 and C6 were 

employed in this work. The dataset size of a single cutting tool is approximately 3.2 GB. 

Table 23. Sensor signal of the dataset 

Sensor type Signal sources 

Kistler quartz dynamometer 
Force (N) in the X-axis, Force (N) in the Y-

axis, Force (N) in the Z-axis 

Kistler piezo accelerometers 
Vibration (g) in the X-axis, Vibration (g) in 

the Y-axis, Vibration (g) in the Z-axis 

Kistler AE sensor AE-RMS (V) 

4.3.2 Signal partition based on the Hurst exponent 

Based on the datasets of the acquired sensor signal, the validation of the proposed system is 

implemented on a 3.60 GHz Intel (R) Core (TM) i7-7700 CPU processor (with 8.00 GB of RAM), 

in which, the data processing and the computation of the deep learning algorithm are executed on 

the Keras framework and Tensorflow, respectively. 

As aforementioned, 315 cuts were performed using the cutting tools C1, C4 and C6, 

respectively. Taking C4 as an example for analysis, the dynamometer signals on the X-axis, 

vibration signal on the X-axis and the AE sensor signals for the 1st cut 150th cut (intermediate cut) 

and the last (315th) cut are plotted in Figure 33. It can be observed that the amplitude of the three 

sensor signals grows along with the machining process, indicating that the signals exhibit an 

excellent association with tool wear deterioration. Thus, these sensor signals are feasible to 

establish the prediction. 
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Figure 33. Sensor signals for the 1st, 150th and 315th cut by the cutting tool C4 

In correspondence with each cut, the flank wear of three flutes on the cutting tool was 

measured during the experiment. The flank wears of the cutting tool C4 are shown in Figure 34. 

According to the recommendation of the ISO 8688-2 (1989), the cutting tool life criterion is 

commonly predetermined by the average wear value of all flutes. Therefore, the average flank 

wears of the cutting tools C1, C4 and C6 were used for training the prediction model presented in 

this chapter. 

Figure 34. The flank wear of the cutting tool C4 
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Tool wear involves different stages. Sensor signals over each stage are usually uneven, which 

may cause the wear prediction inaccurate. Moreover, as discussed earlier, due to the changing 

features of tool wear in the different stages, it is difficult for the prediction algorithm to effectively 

estimate different wear trends of tool wear during these stages. In this work, the Hurst exponent 

is used as an index to judge the fluctuations of sensor signals, and then the signals are segmented 

to correspond to the stages of flank wear. For the cutting tool C4, the Hurst exponent of three 

types of sensor signals is calculated for the 315 cuts. The Hurst exponents of the vibration signals 

in the X-axis, the cutting force signals in the X-axis and the AE signal are shown in Figure 35. 

Furthermore, to better represent the convergence and visualisation effect of the results, a cubic 

curve, which is a regression analysis method that preserves data characteristics and reduces data 

turbulence without changing the data, was applied to fit the Hurst exponent. 

Figure 35. The Hurst exponent of the sensor signals (V, F and AE) for the cutting tool C4 

From Figure 35, the Hurst exponents (the H values) of V, F and AE are all roughly between 

0.5 and 1. It means that these sensor signals present the persistent behaviours along with the tool 

wear, and it is feasible to conduct prediction. 

For the vibration signals, some observations are below: 

 The H value of the cutting tool is the biggest at the beginning of machining, which is 

close to 0.85, implying that the signal has obvious regularity; 

85 



 

 

 

   

      

  

    

 

 

    

   

  

  

  

 

      

 

  

   

   

  

 

 

  

  

 As the machining progresses, the H values are higher than 0.6 before the 20th cut, so that 

the correlation between the vibration signal and the tool wear is still strong at this time. 

From the 20th cut to the 205th cut, the H values decrease to between 0.5 and 0.6, which 

indicates that the long-term memory of the signal is lower than its previous tool wear 

stage; 

 After the 205th cut, the H values progressively approach to or even are lower than 0.5, 

meaning that the signals exhibit a trend of the Brownian motion. That is, the probability 

of negative correlation between the signal and the tool wear is increased; 

 After the 315th cut,  the  H values are bound to drop below 0.5, so that the signal will 

completely show a negative correlation, and the cutting tool exceeds its health lifespan 

and the tool wear displays unpredictability. 

 Overall, the fractal of the H values trend of the vibration signal has a significant 

correspondence with the different stages of tool wear, and the change of the H values are 

sensitive. Thus, the vibration signal displays the most significant potential among the 

three signals for signal partition. 

For the signals of the cutting force and AE, here are some observations: 

 Along with the machining process until the 315th cut, the H values both show a decreased 

trend, which corresponds to the tool wear. Moreover, the H values are both greater than 

0.5, it represents these sensor signals exhibit persistent behaviours and are positively 

correlated with the tool wear, thereby revealing that prediction of tool wear based on the 

cutting force and AE signals are also feasible; 

 Despite this, it should be noted, the Hurst exponent trend of these signals are not as clear 

as the vibration signal in performing partition on the signals; This may be interpreted as: 

due to the acquisition frequency of the cutting force and AE signal is lower than that of 

the vibration signal, the collected noise signal that generated by excessive tool wear is 

insufficient. Moreover, the cutting temperature gradually increases with the progress of 

machining, so that it will soften the material and reduce the cutting force resistance (Xu 

et al. 2018). And also the AE sensor is prone to be affected by the mechanical noise from 

the background environment (Rusinek and Borowieca 2015); 

 Therefore, the signals of the three sensors are partitioned uniformly according to the Hurst 

exponents of the vibration signals in this work. All the signals were applied as the data 

sources for subsequent deep learning algorithm for the information compensation and 

purposes of prediction. 
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Accordingly, the above observations on signal changes are correlated with the stages of tool 

wear. For instance, for the cutting tool C4, it consists of the initial stage (1st – 19th cut), steady 

wear stage (20th – 204th cut), and severe wear stage (205th – 315th) as shown in Figure 36. The 

signal segmentations of three cutting tools are summarised in Table 24. 

Figure 36. The stages of flank wear for the cutting tool C4 

Table 24. Signal segmentation of each cutting tool 

Cutting 
tool Initial wear region 

Tool wear stages 

Steady wear region Severe wear region 

C1 1 to 49 50 to 139 140 to 315 

C4 1 to 19 20 to 204 205 to 315 

C6 1 to 14 15 to 179 180 to 315 

Through the Hurst exponent, the segmentations of sensor data that correspond to different tool 

wear stages are identified. In this chapter, three cutting tools, i.e., C1, C4 and C6, were used. To 

further improve the accuracy of prediction, the segmented sensor data were pair-wisely combined 

as the input dataset. For example, the sensor signal and flank wear of C1 and C4 were combined 

as a training dataset (denoted as C1C4), and the sensor signal and flank wear of C6 was treated 

as the validation dataset at the same time (refer to Table 25). 

4.3.3 Performance evaluation on the Hurst exponent and CNN-LSTM algorithm 

To evaluate the performance of the Hurst exponent-based partition, un-segmented signals (raw 

signals of each sensor) were used to perform prediction on flank wear based on the designed 

CNN-LSTM algorithm. The prediction accuracy of each dataset in this work is obtained by its 

corresponding validation set. And the prediction curves for the sensor signals based on the CNN-

LSTM algorithm are shown in Figure 37. 
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Figure 37. Prediction curves of the sensor signals based on the CNN-LSTM model 

From the results, prediction accuracies are not satisfactory. It is expected to improve the 

prediction performance by adopting partitioned dataset according to the Hurst exponent. To do 

that, the sensor signals of the three cutting tools were divided into three groups according to the 

three stages of tool wear, and these signals were combined with corresponding flank wear values 

to form the new datasets. Figure 38 shows the prediction results for the signals of C1C4 based on 

the Hurst exponent. 
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Figure 38. Prediction results based on the partitioned signals for C1C4 

For C1C4, the prediction accuracies in the initial, the steady and the severe wear regions were 

90.7%, 89.8% and 83.8%, respectively. The integrated prediction accuracy increased to 88.1% in 

comparison with 77.9% for the un-partitioned signals. The same experiments were conducted for 

the other datasets. As summarised in Table 25, for C1C4, C1C6, and C4C6, the accuracies using 

the Hurst exponent were improved by 10.1%, 10.4% and 14.5%, respectively. 

Table 25. Comparisons of prediction accuracy for partitioned and un-partitioned datasets 

Dataset Test 

Initial stage 

Prediction accuracy 

Partitioned dataset 

Steady Severe 
Integrated

stage stage 

Un-partitioned 
dataset 

C1C4 C6 90.7% 89.8% 83.8% 88.1% 77.9% 

C1C6 C4 87.4% 88.6% 87% 86.0% 75.6% 

C4C6 C1 89% 87.8% 86.3% 87.7% 73.2% 

Furthermore, to evaluate the performance superiority of the developed system, the CNN-

LSTM algorithm was compared with other hybrid deep learning models, which are CNN-CNN 

(Cheng et al. 2020), LSTM-LSTM (Choi and Lee 2018) and DNN-DNN (Zhang et al. 2019). To 

achieve a reasonable comparison result, the architectures and parameter of individual CNN and 

LSTM remained the same as the developed CNN-LSTM algorithm presented in Section 4.2. For 

the DNN model, it was designed to have one input layer, one output layer and three hidden layers, 

in which the number of neurons in the input layer is set to equal to the sample number of sensor 

signals, each hidden layer is set as twice the number of input signal after multiple tests, and the 

number of neurons in the output layer depends on the number of flank wear values. The structure 

of the DNN is shown in Figure 39. 
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Figure 39. The architecture of the DNN model 

The overall sensor signal dataset and the partitioned signal dataset were adopted to execute the 

prediction on the CNN-CNN, LSTM-LSTM and DNN-DNN respectively. Taking the dataset 

C1C4 as an example, the prediction results are presented in Figure 40 (un-partitioned signals) and 

Figure 41 (partitioned signals). 

Figure 40. Prediction using the un-partitioned dataset C1C4 
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Figure 41. Prediction using the partitioned dataset C1C4 

The integrated result above of the dataset C1C4 is obtained after the prediction based on the 

corresponding sub-dataset of the tool wear initial, steady and severe stage. Figure 42 shows 

several representative fitting results of the individual sub-datasets, which covers different dataset, 

wear stage and deep learning model, and the prediction precision of the three ensemble models 

on the partitioned sub-datasets and the overall datasets is summarised in Table 26.  

Figure 42. Curve fitting of the partitioned datasets on prediction models 
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Table 26. Prediction precision of CNN, LSTM and DNN model 

Prediction accuracy 

Model Dataset 
Initial 

region 

Partitioned signals 

Steady Severe 

region region 

Integrated 

accuracy 

Un-partitioned 

signals 

C1C4 91.4% 71.6% 81.2% 79.4% 73.1% 

CNN-CNN C1C6 70.4% 79.5% 74.5% 76.9% 70.2% 

C4C6 81.1% 87.1% 67.7% 78.1% 70.8% 

C1C4 80% 79.3% 74.3% 77.4% 71.5% 

LSTM-LSTM C1C6 84% 78.4% 72.1% 75.5% 60.6% 

C4C6 80.7% 90% 71.4% 78% 65.4% 

C1C4 76.1% 81.9% 73.4% 77.9% 69% 

DNN-DNN C1C6 76.8% 72.1% 70.3% 71.6% 69.5% 

C4C6 72.7% 83.6% 70.7% 74.5% 63.9% 

By comparing the results of Table 25 and Table 26, it is evident that, even if the un-partitioned 

datasets were adopted as the input, the prediction accuracy of the CNN-LSTM algorithm was 

better than those of other deep learning algorithms, which the average accuracy of the CNN-

LSTM algorithm is 75.6%, while those of the CNN-CNN, LSTM-LSTM and DNN-DNN 

algorithms were 71.3%, 65.8% and 67.4%, respectively. It benefits from the proposed hybrid 

model that integrates the advantages of the automatic feature extraction of CNN and the time-

series data sequence learning of LSTM. Moreover, from the perspective of employing the 

partitioned dataset, the accuracies of the four algorithms were all improved to some extents. The 

CNN-LSTM algorithm achieved the best average performance of 87.3%, followed by the CNN-

CNN algorithm of 78.1%. Such a result proves again that, the proposed data partition strategy of 

the Hurst exponent is effective, which the segmented sensor data is beneficial for optimising the 

prediction. 

Computing efficiency is also a vital factor to investigate. In this chapter, the cumulative 

calculations of the computing time cost were carried out for the deep learning algorithms. The 

time usage of each prediction model to compute un-partitioned datasets and partitioned datasets 

are shown in Figure 43. 
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Figure 43. Time consumption of the different prediction algorithms 

From the aspect of model training time consumption, it can be observed that whether the un-

partitioned or the partitioned data as the input for training, the proposed CNN-LSTM model 

consumes the minimum computing time among all four algorithms. The average time for the 

CNN-LSTM algorithm was approximate 0.33h, the average time cost of the CNN-CNN model 

was the closest to the CNN-LSTM algorithm, about 0.52h. The DNN-DNN and LSTM-LSTM 

algorithms consume 80% and 67% more time than the CNN-LSTM algorithm, respectively. In 

view of the CNN-LSTM model being outstanding in the prediction precision and efficiency, it 

can be considered a powerful and promising deep learning scheme for the cutting tool RUL 

regression prediction. 

4.3.4 Comparison of the Hurst exponent with other methods 

Furthermore, to effectively investigate the adaptability of the Hurst exponent-based signal 

partition method, the performance comparison between the proposed method and other prevalent 

signal processing approaches were executed. These approaches are domain-feature extraction 

(Huang et al. 2020) and PCA dimensionality reduction (Lee et al. 2020). 

The signal processing of the prediction task is responsible for eliminating unwanted data from 

massive sensor signals, for improving the efficiency and accuracy of the prediction model with 

lower volume and valuable data. For the domain-feature extraction, the features of the signals 

adopted in this chapter were extracted under the time-domain, frequency-domain and time-

frequency-domain. Under the time-domain, statistical features are usually extracted to reflect the 

change of signal properties over time. And, as another indispensable feature extraction method, 

the frequency-domain signal is able to present the signal change rate and provide the spectral 

feature for hidden information revealing (Herff and Krusienski 2018). The fast Fourier transform 

(FFT) is the most common frequency-domain transformation. It is employed to convert the sensor 
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signals of each cut cycle in this work. The FFT of the X-axis vibration signal of the 1st cut of the 

cutting tool C1 is shown in Figure 44. Moreover, facing the nonlinear sensor signal, the time-

frequency-domain signal outperforms the methods to process signals under the time-domain and 

frequency-domain by capturing useful features, since it is conducive to explore the feature in 

transient and localized components. In this chapter, the continuous wavelet transform (CWT) is 

applied to transform each sensor signal to the time-frequency-domain, which is a powerful 

method to represent the sensor signal into a two-dimensional plane (Lee et al. 2017). The CWT 

result of vibration signals of the 1st cut for C1 in the X-axis is shown in Figure 45. 

Figure 44. FFT spectrum of the X-axis vibration signal of 1st cut of the cutting tool C1 

Figure 45. The CWT plot of the X-axis vibration signal of the 1st cutting for the cutting tool C1 

After the conversion of the frequency-domain and time-frequency-domain for sensor signals 

of the 315 cuts of each cutting tool, including the time-domain, several widely employed features 

are extracted in every domain. It is noteworthy that the feature extraction in the time-frequency-

domain is based on a different scale, which is divided according to the sampling rate of the 

adopted dataset. Table 27 summarises the extracted features of the three domains in this chapter. 
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Table 27. Extracted feature from the different domain 

Domain 

Time-domain Frequency-domain Time-frequency-domain 

Mean 0-10000 Hz 

Standard deviation Frequency centre Mean10000-20000 Hz 

Skewness Median frequency 20000-30000 Hz Standard deviation 
Kurtosis Root variance 

30000-40000 Hz 
Maximum frequency Variance 

Peak to peak 40000-50000 Hz 

The validation dataset in this chapter contains 7 sensor signals for the 315 cut cycles of 3 

cutting tools. Finally, there are 158,760 features obtained from the raw sensor signal by the above 

feature extraction mentioned. Then, the generated features of each cutting tool are gathered as a 

new input dataset, and they are adopted to perform the flank wear prediction on the CNN-LSTM 

algorithm, the fitting result is shown in Figure 46. 

Figure 46. Fitting results of the domain feature input by the CNN-LSTM algorithm 

Besides the domain-feature extraction, the signal processing based on the PCA is a prevailing 

approach for dimensionality reduction of the multi-sensor signal. It is capable of compressing the 
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signal dimension without discarding primary information by mapping the raw sensor signal into 

a feature space with representative components (Li et al. 2017). For the dimensionality reduction 

of the sensor signal by PCA, the number of components is necessary to be determined initially 

via the cumulative sum of explained variances, which provides the proportion of the retain 

information of the different number of components. Taking cutting tool C1 as an example, the 

cumulative sum of explained variances of the sensor signal in the 1st cut is shown in Figure 47. 

Figure 47. The PCA cumulative variance plot for the 1st cutting of the cutting tool C1 

From the above figure, it is found that five components generated by the PCA could remain 

over 90% original sensor signal information, which is the same outcome of the other two cutting 

tools. Thus, these five components are adopted to replace the raw sensor signals of every cutting 

tool, each component includes the same number of data as the original sensor signal. Then, the 

flank wear prediction based on the five components was executed by the CNN-LSTM algorithm. 

And the input strategy is pair-wise concatenated as well. Figure 48 shows the prediction result.  

Figure 48. The fitting results of the PCA component input on the CNN-LSTM algorithm 
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Based on the described approach of the domain feature extraction and the PCA dimensionality 

reduction, the corresponding flank wear prediction result on the hybrid CNN-LSTM model are 

detailed in Table 28. Figure 49 shows the total processing time consumption of the sensor signals 

of the three datasets using these two methods and the proposed Hurst exponent method, as well 

as the cumulative time for their subsequent predictions. 

Table 28. Prediction results of the different data processing methods 

Data processing 
method 

Input 
dataset 

Prediction 
accuracy 

Average 
accuracy 

Domain feature 
extraction 

C1C4 

C1C6 

C4C6 

84% 

79.8% 

85.8% 

83.2% 

PCA dimensionality 
reduction 

C1C4 

C1C6 

C4C6 

83% 

72.7% 

79.2% 

78.3% 

Figure 49. Time consumption of different data processing methods 

By comparing the result of Table 25 and Table 28, it is apparent that the prediction accuracy 

for tool wear based on the dataset partitioned through the proposed Hurst exponent method was 

higher than applying the domain feature extraction and the PCA dimensionality reduction. 

Separately, the feature extraction in the three domains achieved the data volume decreasing to a 

great extent. Due to the elimination of redundant signals, its precision was closer to the Hurst 

exponent-based partition method and the model calculation time was also significantly 

compressed. However, the domain conversion and feature extraction consumed a large amount 

of time, which were 50% and 94% higher than those of the Hurst exponent method and the PCA 

dimensionality reduction, respectively. It is an obvious obstacle to practical applications. On the 
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other hand, PCA showed the benefit of the computational time-cost saving, by condensing the 

raw sensor signal into five new representative components, an approximate 30% dimensionality 

reduction was implemented. Nevertheless, the prediction accuracy is sacrificed to reach this 

dimensionality reduction, and it is foreseen that the optimal components of the PCA will appear 

more deviation along with the increasing of the signal volume. According to these assessments, 

the introduced Hurst exponent-based signal partition displays a more robust ability than the other 

two prevalent data processing approaches. Its effectiveness for the flank wear prediction could be 

illustrated as that the Hurst exponent partition method simplifies the system frame with its non-

complex computation, and helps accomplish the satisfying performance of the deep learning 

algorithm on the premise of not discarding the signal information. 

4.3.5 RUL prediction 

After determining the superiority of the Hurst exponent partition method for the flank wear 

prediction, as the most ordinarily used tool life criteria, the flank wear further defines the cutting 

tool RUL based on the above prediction results. In general, the threshold of tool wear and tool 

life is dependent on the application scenario and demand. Based on the dataset employed in this 

chapter, the life of each cutting tool is defined as 315 cycles, and the remaining processable cycle 

is used to indicate the RUL. Thereby, the linear inverse relationship between the processed cycle 

and the remaining processing cycle can be established intuitively, similar to the work of (Mao et 

al. 2018; Li and Liu 2019). Besides, the degradation of the actual remaining processable cycle is 

caused by the tool wear (measured flank wear). Therefore, the predicted remaining processable 

cycle can be further calculated with the predicted flank wear as follows: 

௜ ∙ RUL௔
௜

RUL௣
௜ ൌ 

௣ݓ
 ௔௜ݓ

(34) 

where, RUL௔ denotes the assigned actual remaining processable cycle, which is ሼ315, 314, ⋯ ,1ሽ. 

  denotes the	௔ denotes the actual measured flank wear, ݅ݓ ,௣ denotes the predicted flank wearݓ

number of the cuts. 

A polynomial regression fitting model is then constructed for the RUL prediction of the cutting 

tools based on the sample data obtained by Equation 34 and the predicted flank wear. The 

regression function can be described as: 

௞
ሻݓሺܨ ൌ෍ ௝ܾ ∙ ௞ (35)ݓ

௝ୀ଴ 
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where, ܨ	 denotes the RUL of a cutting tool, ݓ	 denotes the flank wear, ௝ܾ denotes the regression 

coefficients. 

Figure 50 shows the comparison of the RUL prediction results of the partitioned and the un-

partitioned datasets. And the RUL polynomial regression result of the partitioned datasets is 

depicted in Figure 51. 

Figure 50. Predicted RUL and actual RUL of 3 cutting tools using partitioned and un-partitioned datasets 
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Figure 51. Polynomial regression of the RUL of 3 cutting tools using partitioned datasets 

It can be observed from Figure 50 that the predicted value of the RUL varies round the actual 

value, the overall trend persists unchanged. 

Throughout the entire machining process, the predicted value always shows fluctuations near 

the actual value, the relative error is large at the beginning of the machining, and the predicted 

value of the tool life closely resembles the actual value during the subsequent machining. 

With the tool wear deteriorates, the remaining machining cycle gets easier to estimate. From 

the perspective of the segmented dataset C1C4, it can be noticed that between the 1st cut and the 

91st cut, the predicted cutting tool RUL fluctuates greatly and has certain errors. However, as the 

cutting continues until reaching the end of its life cycle (the 315th cutting cycles), the predicted 

value begins to approach the real value, and the prediction accuracy is guaranteed. In contrast, the 

prediction error of the un-partitioned dataset is still huge, in specific, the RUL of the cutting tool 

is underestimated in the interval from the 1st cut to  the  20th cut, which may lead to early 

replacement of the cutting tool, and results in undesired waste. 

After the 20th cut, the remaining life of the tool has been overestimated, which will cause the 

poor quality of the workpiece surface. Moreover, the prediction error of the undivided C1C6 
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dataset is more obvious that reaches the highest of 74%, and the undivided C4C6 dataset shows 

the overestimation in a long duration. 

Additionally, the polynomial regression in Figure 51 displays that the model effectively fits 

the flank wear and the RUL, it can prove that the model has an excellent performance in RUL 

prediction. The accuracy of each prediction is assessed via the coefficient of determination (ܴଶ), 

which evaluates the extent of the model interpret and predict the result, the  ܴ ଶ value of 0.893, 

0.898 and 0.856 are achieved by dataset C1C4, C1C6 and C4C6, respectively. 

In the view of all results displayed above, the prediction accuracy of the dataset that partitioned 

by Hurst exponent presents significant improvement than that of the unsegmented dataset, and it 

illustrates the cutting tool RUL prediction system proposed in this chapter has the potential and 

superior performance. 

4.4 Summary 

For the improvement of the prediction efficiency of the cutting tool RUL under the 

manufacturing environment of big data. This chapter presents a new methodology integrating the 

Hurst exponent and the hybrid CNN-LSTM algorithm in a systematic means. In this work, a Hurst 

exponent-based scheme is developed to partition the signals of vibration, cutting force and AE 

collected along the lifecycles of a set of cutting tools. A hybrid CNN-LSTM algorithm is then 

designed to combine feature extraction, fusion and regression based on the multi-sourced and 

segmented signals to predict the flank wear and RUL of cutting tools. A case study with a set of 

complex sensor signals was used to validate the developed methodology. To depict the 

performance of the proposed system, a set of benchmarks with comparative algorithms, including 

CNN, LSTM, DNN, was conducted under the conditions of partitioned and un-partitioned signals. 

Additionally, the proposed CNN-LSTM algorithm has also executed the prediction based on the 

dataset that processed by the feature extraction (in the time, frequency and time-frequency-

domain) and PCA dimensionally reduction. Results showed that, based on the case study in this 

chapter, the prediction accuracy of the proposed method reaches 87.3%, which are significantly 

superior to other benchmarking algorithms. Analyses of the results and observations were given 

in detail. 
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Chapter 5. EC enabled Multi-sensor Tool Prognosis IoT 

System 

5.1 Introduction 

In order to improve the real-time processing ability and the data security along with reducing 

data bandwidth of cloud-enabled IoT system, a comprehensive real-time tool condition prognosis 

system based on the EC has been proposed in this chapter. This system interrelates with two 

modules, namely hardware and software. For hardware, an IoT monitoring platform is primarily 

built based on WSN, which using cost-efficient and highly openness devices in terms of sensors 

and microcontroller for the multiple sensor signal collection, and the platform has robust 

scalability and versatility to integrate different sensors easily. Moreover, in addition to 

communicating with the signal acquisition platform and delivery data to the CC centre, the EC 

configured in the proposed IoT platform is also responsible for providing stable and affordable-

device-applicable methods for the signal data processing, regards to the signal denoising and the 

signal compression that converts the multi-sensor data into the 2D format. Meanwhile, the EC 

end executes the real-time tool wear identification with a hybrid 2D CNN-RF deep learning model 

by adopting the decision-level fusion strategy. Furthermore, in light of the greyscale image 

converted from the multi-sensor signals, the stacked CNN model deployed at the cloud server 

cooperates with LSTM, to perform tool RUL prediction using historical and future data. The 

proposed system provides the desired performance in line with the big data environment and it 

has been validated by a real machining experiment. 

The remaining part of the chapter is arranged as follows. In section 5.2, the framework of the 

sensor acquisition platform and working principles of sensors will be explained. Section 5.3 

shows the design and procedure of machining experiment to validate the proposed monitoring 

platform, followed by the analysis of collected data in Section 5.4. Then, section 5.5 presents the 

IoT monitoring system development, in terms of EC enabled system, signal processing 

technologies and the prognosis models. Section 5.6 is the experimental validation of the proposed 

EC based IoT prognosis system, and the result analysis. The summary is in Section 5.7. 

5.2 The multi-sensor signal acquisition platform 

For the purpose of meeting the needs of the industrial for low-cost, flexible and easily 

implementable monitoring system, a multi-sensor equip-able signal collection platform has been 
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developed based on the Arduino board, which is an open-source micro-control platform cost only 

US $25, and can be combined with a variety of sensors or devices (Lockridge et al. 2016). 

The Arduino board that is selected as the microcontroller for the signal acquisition platform 

is not only because its reasonable price, also it has a simple programming environment (C/C++ 

language integrated development environment), which offers the high degree of freedom and 

expandability. Moreover, the standardized port of the Arduino board has laid the foundation for 

its optimized development, and the large-scale user communities and applications in various 

fields also benefit from the open-source features of Arduino (Fatehnia et al. 2016). In the proposed 

platform, a typical board Uno of Arduino is adopted, it equips with various types of connection 

ports, including digital input and output, UART TTL (5V) serial communication, PWM output 

and analogue input (Karami et al. 2018). Moreover, the 5 V and 3.3 V output can be provided by 

the board for the necessary power supply voltage of sensors. In addition, the Arduino Uno does 

not require the specific operating system and is compatible with many shields (extension board) 

to implement corresponding extra functions, like Wi-Fi shield. 

Furthermore, to enhance the flexibility and reduce the implementation cost, a wireless 

communication solution is considered in this platform. Besides, a local database has been 

developed to host and store the multiple sensor data, and the Apache Spark framework is adopted 

to organize acquired numerous data and to support further data processing and analysis. For the 

ability evaluation of the platform, three types of sensors have been selected to monitor vibration, 

cutting force and energy consumption profiles of a CNC milling machine. The framework of the 

monitoring platform is depicted in Figure 52. 

Figure 52. The monitoring platform framework 
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5.2.1 Vibration sensor 

The friction and contact between the cutting tool and the workpiece lead to different tool 

conditions such as tool wear, and the most direct manifestation of this interaction is vibration. 

Therefore, the measurement of the vibration signal has become an essential task for TCM.  

The vibration sensor collects the vibration signal of the cutting tool, and converts the non-

electrical vibration signal into an electrical signal through physical action (Ostasevicius et al. 

2015). According to the different principles of vibration sensors, it can be divided into six types. 

Table 29 shows their advantages and disadvantages (Chaurasiya 2012). 

Table 29. The advantages and disadvantages of different vibration sensor types 

Advantages Disadvantages 

inductive 
sensor 

Simple structure, 
Non-contact measurement, 

Low sensitivity, 
Limited by the detected metal material, 

Piezoelectric 
Sensors 

Wide frequency bandwidth, 
Simple structure, 
Light weight, 

High resonant frequency, 
High output impedance, 
Weak output signal, 
Easy to be interfered by environment, 

Magnetic 
Sensors 

Large output signal,  
Strong anti-interference ability, 

Complex structure, 
Expensive, 

Capacitive 
Sensor 

High resolution, 
Wide measurement range, 
High precision, 
Short response time,  
Suitable for online, 
Non-contact measurement, 

High output impedance, 
Affected by electromagnetic fields, 

optical fiber 
sensor 

Light weight, small size, 
Short response time, 

Complex structure, expensive, 
Requires precise installation technology, 

Photoelectric 
Sensor 

High resolution, 
Short response time, 
Non-contact measurement, 

Limited measurement range, 
Susceptible to environmental, 
Difficult for industrial applications, 

The comparison of the above table clearly shows the vibration sensors of different principles 

have their own characteristics, the capacitive vibration sensor is a more feasible option for the 

affordable signal acquisition platform application with its obvious advantages. Therefore, the 

developed platform adopted the capacitive three-axis accelerometer MMA7361 (specification 

shown in Table 30) for vibration signal acquisition. This sensor is a breakthrough for three-axis 
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accelerometer with low power and reasonable price, which is more compatible with the Arduino 

Uno board to provide a stable measurement.  

In practical, the acceleration measurement of MMA7361 is based on the principle  of  

capacitance, which makes it simple and requires only a single chip to measure the acceleration of 

triaxle, the acceleration fluctuation reflected via the displacement change of the central mass of 

the chip between the fixed beams of the capacitance. The formula for the MMA7361 to convert 

the ADC input value to the acceleration is depicted as follows (Open Energy Monitor 2020): 

adc_ input ref _ v 
 v01023 (36)

Acc  
sen. 

where, ܿܿܣ denotes the acceleration of each axial, ܽ݀ܿ_݅݊ݐݑ݌ denotes the raw value from the 

accelerometer, ݒ_݂݁ݎ denotes the voltage of sensor supply, ݒ௢  denotes the voltage at 0 

acceleration, ݊݁ݏ. denotes the sensitivity of the accelerometer. 

Table 30. Specification of the 3-axis accelerometer MMA7361 

Bandwidth Response 400 Hz 

Selectable Sensitivity ±1.5g, ±6g 

Sensitivity 800 mV/g @ 1.5g 

Operating voltage 5 / 3.3 Volts 

Current Consumption: 400 μA 

Furthermore, the calibration of the accelerometer may be necessary before the monitoring 

started. Based on the MMA7361, the calibration follows the principle: the output values of the X- 

and Y-axis should be 0 because the accelerometer is stationary; the output value of the Z-axis is 

100 that means the acceleration equal to the gravity acceleration (as the unit of the output value 

is 	g ൈ 10ିଶ, and g is the acceleration of gravity).  

5.2.2 Current sensor 

In many monitoring systems, the motor power is considered to be one of the most suitable 

signals for workshop applications (Ziegler et al. 2009), its principle is not complicated and the 

monitoring process does not require the machine shutdown. Thus, as the signal source of the 

power, the importance of current sensors is reflected in condition monitoring. There are three 

types of current measurement technologies based on different fundamental principles. For 

example, shunt and PCB Trace Resistance are developed from Ohm's Law, Faraday's Law of 
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induction is the fundamental of current transformer and Rogowski coil, and Hall Effect sensor is 

based on the magnetic field. The advantages and disadvantages of commonly used current sensors 

corresponding to these technologies are summarised in Table 31 (Costa et al. 2015). 

Table 31. Pros and cons of different current sensors 

Sensor Sensor type       Advantage Disadvantage 

YHDC SCT013 

Current 
transformer 

• 

• 
• 

High accuracy with wide 
dynamic range and high 
frequencies 
Low cost 
Non-contact sensor 

• Measure AC only 

• Able to measure high 
current, with low power 
consumption 

TIDA-03040 

Shunt 
• 
• 

Low resistance 
Low inductance winding 

• 

• 

Suitable for the low 
current 
Need connect to the 
circuit under test 

• Thermal drift 

AG003-01E 

PCB Trace 
Resistance 

• 
• 
• 

Low cost 
Space saving 
Low resistance 

• Need connect to the 
circuit under test 

553-2177-ND 

Rogowski 
coil 

• 
• 

Low cost 
Non-contact sensor 

• 

• 

Output signal weak, 
amplifier is needed 
Sensitivity to 
magnetic fields 

US5881 

Hall-effect 
sensors 

• Non-contact sensor 

• 

• 

Sensitivity to 
magnetic fields 
Signal conditioning 
needed 

Through the comparison above, it could be noticed that shunt and PCB trace resistance not 

able to apply for the TCM system, because they demand direct contact with the circuit under test. 

Moreover, Rogowski coil and Hall-effect sensors are sensitive to surrounding magnetic fields, 

which is not adaptable in the industrial environment and the collection stability could not 

guarantee. All things considered, the current transformer is the best choice of the current signal 

collection for the proposed signal acquisition platform. 
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As a typical current transformer, YHDC SCT013 (specification in Table 32) is a widely 

employed current measurement sensor, which is based on the principle of electromagnetic 

induction, the current passes through the core magnetic field of YHDC sensor, cutting the 

magnetic induction line, and then current in the winding of YHDC have been generated. Due to 

the YHDC current sensor describes the average strength of the current, the current direction could 

be ignored (NXP 2019). Given that the voltage of the machine tool is stable and around 230 volts, 

the measured power value can be calculated as: 

ܲ ൌ 230 ൈ ܫோெௌ (37) 

Table 32. Specification of the YHDC current sensor 

Input current Output voltage Turn ratio Work temperature 

0-100A 0-50mV 100A:0.05A -25℃～+70℃ 

5.2.3 Piezoelectric sensor 

With the purpose of the cutting force measurement, two piezoelectric sensors (specification in 

Table 33) have been integrated into the proposed platform, as the piezoelectric effect reflects the 

change in force through the change of the output charge.  

Table 33. Specification of the piezoelectric sensor 

Resonant 
frequency 

Insulation 
resistance 

Maximum input 
voltage 

Operating 
temperature range 

6.5±0.7KHz 100MΩ 30Vp-p -20℃ to +70℃ 

5.3 Design of experiment for the acquisition platform 

To assess the capability of the developed platform, an experiment has been designed to 

monitor the cutting tool status of the milling process by the accelerometer, piezoelectric sensor 

and current sensor. The acquired data are evaluated according to the Taylor’s equation 

(Karandikar et al. 2013), which is a typical empirical formula for tool life prediction. The general 

form of the Taylor’s equation is expressed as: 

௖ܸܶ௡ ൈ ܽ௣ ௙ܸ ൌ ܥ  (38) 

where ௖ܸ  denotes the cutting speed, T is the tool life in Minutes, n denotes an exponent that 

depends on the specific tool level and used materials, determines the slope of the tool life curve. 
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ܽ௣ denotes the depth of cut, ௙ܸ is the feed rate, and C is a constant that depends on the machine 

and workpiece material. 

According to the Taylor’s equation, the cutting speed ( ௖ܸ), feed rate ( ௙ܸ) and depth of cutting 

(ܽ௣), which are highly related to the tool life, have been considered in this experiment. Based on 

the recommend values of milling spindle speed and feed in (Sandvik 2017), the experimental 

parameters employed in this work are listed in Table 34.  

Table 34. Cutting parameters 

No. Spindle speed N (RPM) Feed ࢌ  (mm/tooth) 

1 2000 0.0127 
2 2500 0.0203 
3 3500 0.0254 
4 4500 0.0508 

Moreover, for the milling process, the cutting speed ௖ܸ in m/min can be expressed as Equation 

39, and the feed rate ௙ܸ in mm/min can be calculated as Equation 40. 

௖ܸ ൌ 
ܰܦߨ

(39)
1000

௙ܸ ൌ ܼܰ ௭݂ (40) 

where, D denotes the tool diameter (mm, the value is 12 in this experiment), N denotes the spindle 

speed (RPM), ܼ denotes the number of cutter flutes (Z=4 in this experiment), ௭݂ denotes the feed 

(mm/tooth). 

In line with the 4 different parameters of spindle speed and feed, 16 machining parameter 

combinations have been designed through the Taguchi method, shown in Table 35. In order to 

achieve a good surface quality, the depth of cut has been carefully designed based on the classical 

method provided in (Uddeholm 2007). 
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Table 35. Experimental processing parameters 

No. 
Spindle speed Cutting speed ࢉࢂ Feed rate ࢌࢂ Depth of Width of cut 
N (RPM) (m/min) (mm/min) cut ࢖ࢇ(mm) (mm) 

1 2000 75 102 1.5 12 

2 2000 75 203 2 12 

3 2000 75 356 2.5 12 

4 2000 75 914 3 12 

5 2500 94 102 2 12 

6 2500 94 203 1.5 12 

7 2500 94 356 3 12 

8 2500 94 914 2.5 12 

9 3500 132 102 2.5 12 

10 3500 132 203 3 12 

11 3500 132 356 1.5 12 

12 3500 132 914 2 12 

13 4500 170 102 3 12 

14 4500 170 203 2.5 12 

15 4500 170 356 2 12 

16 4500 170 914 1.5 12 

Figure 53 shows the deployment of the proposed platform. All the experiments have been 

carried out on an SYIL X4 CNC machine by using 4 flutes 12mm HSS milling cutter to machine 

aluminium blocks. 

Milling cutter 
Aluminium 

block 

Piezo sensor 
mounting 

SYIL X4 
CNC machine 

Current sensor 
mounting 

Accelerometer 
mounting 

Data local 
saving and real 
time plotting 

Signal acquisition 
devices 

Figure 53. The system deployment of machining process monitoring 
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5.4 Result analysis of the acquisition platform 

As shown in Figure 54, 16 slots have been machined with different parameters on 3 aluminium 

blocks, respectively. Throughout the experiment process, 62023 signal samples of 8 different 

sensors signal are acquired from 2 piezoelectric sensors, a 3-axis accelerometer, and 3 current 

sensors. All data have been collected by the monitoring platform steadily and stored in the 

developed data database. 

Figure 54. The workpiece after machining 

5.4.1 Signal analysis based on process monitoring 

The overall power and 3-axis acceleration signal captured during the experiment process are 

plotted in Figure 55 (a) and Figure 56 (a), respectively. From the power graph, it is noted that the 

highest value of power occurs at the initial stage (highlighted in the red box) of the machining, 

which is close to 3500W. The lowest power appears at the standby stage that is about 230W. From 

the time of 21:03:36 onwards, a stable and continuous processing phase starts, and the average 

power is 690W. For vibration signal in Figure 56(a), the acceleration values of X- and Y-axis in 

the initial stage are reached 0.1g and the Z-axis peak reaches nearly 6g. And the values in X- and 

Y-axis is about 0.05g in the continuous processing stage, and 0.4g in the Z-axis. Moreover, the 

values at the standby stage are 0g for X- and Y-axis and 1g for Z-axis, according to the calibration 

principle of the accelerometer described above, it can be judged that the accelerometer is 

stationary at this stage. As the signs of acceleration signal only represent the two opposite 

directions of acceleration, not the value, it can be observed that the trends of the power and 

acceleration graphs show substantial similarity. Thus, the system can be confirmed as able to 

collect signals to reflect the processing state. 
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Figure 55. (a) The power signal against time; (b) The enlarged failure zone (red box in (a)) 

Figure 56. (a) The acceleration signal against time; (b) The enlarged failure zone (red in (a)) 

In practical, the abnormal peak values of the power and acceleration captured during the initial 

stage are caused by a failure cutting, shown in Figure 57 (a), meanwhile, it also caused the obvious 

wear of the cutting tool (Figure 57 (b)). The collected signal in the fault processing phase is shown 

in Figure 55 (b) and Figure 56 (b). Compared with normal cutting, the failure cutting shows large 

fluctuations in power level, and the average power of the failure cutting is about 1288W, and the 
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energy consumption is 0.42kwh, which is 3.5 times bigger than the normal machining with the 

same parameter. In addition, the similar results can be seen from Figure 56 (b), the acceleration 

values in 3-axis change rapidly with larger amplitudes than the normal cutting, especially in Z-

axis, which displays good correlation with the power signal plotting. This phenomenon 

demonstrates that the vibration level of the cutter in the abnormal condition far stronger than that 

of the normal cutting, and it is in line with the statement by Ibrahim et al. (2017) that the increase 

of vibration signal amplitude implies the energy increment that generated by the tool flank wear. 

The potential of the proposed platform for the tool wear monitoring can be proved based on these 

observations. 

Figure 57. (a). Failed machining workpiece; (b). Worn cutting tool 

In the experiment, two piezoelectric sensors are mounted on both sides of the longitudinal 

workpiece holder, to acquire the relevant signals reflecting the cutting force. The results are 

depicted in Figure 58. By comparing with the power and acceleration signals, the fluctuation of 

the cutting force signal is not significant, and it under a low degree of correspondence with the 

actual machining situation. It may because the principle of the piezoelectric sensor is more 

suitable for the sudden increase force, not sensitive to continuous and small changes, and the 

mounting location may not efficient.  

Figure 58. The signal of the piezoelectric sensor against time 
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5.4.2 Signal analysis based on tool life 

According to the obtained data under normal machining condition, the 3-axis mean 

acceleration value and the power value of every slot have been averaged. The result is shown in 

Figure 59. It can be seen that, among the machining processes of the 16 slots, the maximum power 

appears at the machining of the 6th slot, it is about 1100W. The minimum value is close to 300W, 

which of the machining of the 3rd and 8th slot. For acceleration, the highest value reaches to 1.3g 

at the 4th machining and the minimum value is 0.3g at the 8th machining. Thus, the polyline trend 

can confirm again that the signals of the power and acceleration obtained by the system fit each 

other to a certain degree. 

Figure 59. The average value of power and acceleration for 16 slots 

In order to evaluate the correlation between the acquired signal and cutting tool life, after 

averaging the total acceleration and power values for each slot, the average values and parameter 

factors have been adopted to conduct the Taguchi analysis, since the Taguchi orthogonal method 

has been employed to design the parameter combination within cutting speed, feed rate and depth 

of cutting. The main effects plot for means is obtained as shown in Figure 60. It can be found out 

that the result is consistent with the finding of Taylor and other studies (Mukhopadhyay et al. 

2012). The cutting speed performs a significant effect both on the acceleration and power, 

followed by the feed rate and the depth of cutting. Thus, it presents that the data collected by the 

proposed system has the feasibility to establish the relationship between parameters and tool life. 
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Figure 60. Main effects plot for means of the acceleration and power signal 

Besides, to further assess the effectiveness of the sensor signal for revealing the tool lifetime. 

Figure 61 shows the power increment during the machining of the 16 slots. It can be noticed that 

the power increment graph is consistent with the curve of the Taylor tool wear in Figure 62. The 

rapidly increasing stage of power is within 5mins of machining start, which in the interval a 

(shown in Figure 61). It matches to the initial stage of the tool wear. Then the increment gets 

slower, which is in the interval b (shown in Figure 61), corresponding to the stable stage of tool 

wear. However, the accelerated stage of tool wear has not been reflected in the power increment 

graph, perhaps due to the processing time of the experiment is insufficient. Despite this, the trend 

of the power increment power is aligned with the Taylor curve. 

Figure 61. The superposition of the power signal 

Figure 62. Taylor tool wear curve (Eslamian 2014) 
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5.5 Architecture of EC-based tool prognosis system 

Based on the easy deployment and low-cost acquisition platform built above, the proposed EC 

enabled deep learning wireless cutting tool condition prognosis system is developed as shown in 

Figure 63. In order to realise the prompt tool wear identification and historical data-based tool 

RUL prediction under the circumstance of low network latency and big data processing, the 

system consists of three subsystems: 1) a wireless TCM system composed of multi-sensor nodes 

monitors the machine status in real-time during the machining processes. 2) An EC unit performs 

sensor signal denoising to smooth the collected sensor data, and the local data processing of 

converting the 1D sensor signal into 2D image format to reduce data transmission rate and 

enhance the data privacy. In addition, a portable deep learning model (CNN-RF model) has been 

embedded in this end to identify tool wear to meet real-time constrain. 3) A CC centre to manage 

and analyse data received from edge device through a hybrid deep learning model (hybrid CNN-

LSTM model) to implement the tool RUL prediction that in low real-time demand. 

Figure 63. The architecture of the proposed system 
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5.5.1 Wireless TCM system 

The framework of the EC-involved multi-signal acquisition platform is developed as Figure 

64. A typical board Uno of Arduino (Arduino 2016) and a Wi-Fi shied (ESP8266) have been 

adopted for signal acquisition and flexible communication. The robust and affordable current 

sensor (YHDC SCT013) and an accelerometer (MMA7361) have been chosen as the signal source 

of power and vibration, respectively, to monitor real-time machine status. 

Figure 64. Wireless tool monitoring platform: (a) current node; (b) vibration node 

5.5.2 Edge computing 

A low computation device, Raspberry Pi (Raspberry Pi 2020), has been employed as an edge 

device node in this work. The framework of the EC end is shown in Figure 65. Two data 

processing functions, signal de-nosing and signal-to-image conversion, have been deployed on 

the edge computing end to enhance data processing efficiency and strength the data security and 

privacy. Subsequently, the converted data is processed by a lightweight decision-fusion based 

deep learning algorithm, which has been embedded on the edge device for the timely tool wear 

identification. Meanwhile, the edge computing end sends the image format data to the cloud 

server for storage and tool life prediction.   
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Figure 65. The framework of the edge computing end 

Signal denoising  

Usually, the acquired sensor data from a harsh industrial environment is full of noises. This 

type of sensor data directly feed to a learning model will cause signal degradation. Thus, signal 

denoising process is the first function that needs to be considered for the data processing process. 

By comparing with other data denoising approaches, Kalman filter has been demonstrated to be 

a most potent and efficient tool for eliminating noises from signals based on the time-domain at 

a low computation load, because it requires low memory and the denoising can be completed on 

partial time-series rather than a large amount of lengthy data (Pollreisz and TaheriNejad 2019).  

The standard Kalman filter is limited to processing linear signals, which is inconsistent with 

the nonlinear environment of signal sources in the real world. Therefore, the extended Kalman 

filter (EKF) was proposed to process nonlinear signals in dynamic systems (Akram et al. 2019). 

The EKF has served in many signal denoising studies, e.g. ECG signal denoising (Gaamouri et 

al. 2019), robot localization (Ullah et al. 2020) and target tracking (Hashemi and Alfi 2019) to 

demonstrate an excellent signal denoise performance. In this chapter, the EKF has been selected 

and deployed at the edge device to process signal denoising. Figure 66 depicts the flow chart of 
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the EKF. First, the EKF performs the estimation phase based on the previous state of sensor 

signals at time step k-1, the estimated value ݔො௞
ି and the estimate covariance matrix ௞ܲ

ି thus can 

be calculated, then the estimated current state is linearized by the Jacobian matrix. Secondly, 

combined with the measured value ݖ௞ of the sensor signal and the Kalman gain ܭ௞ at current time 

step K, the estimated state will be updated, and the state of the current time step is redefined as 

 ො௞ and ௞ܲ, simultaneously, the ௞ܲ is used for the estimation of next time step. Finally, after theݔ

recursive execution, the updated sensor signal over the entire length of time is the denoised signal.  

Figure 66. Flow chart of the extended Kalman filter denoising 

Based on the EKF algorithm, the estimation signal samples ݔ௞  and the observation signal 

sample ݖ௞ collected by sensors can be calculated from Equation 41 and 42, respectively. 

௞ିଵሻݔ௞ ൌ ݂ሺݔ ൅ ߱௞ (41)

௞ ൌݖ ݄ሺݔ௞ሻ ൅  ௞ (42)ݒ

where ߱௞ denotes the process noise (e.g., from the manufacturing external environment) at time ݇, 

௞ିଵݔ ,௞ denotes the measurement noiseݒ  is previous sensor signal value, ݂ሺ∙ሻ denotes the 

nonlinear function of the transition matrix, that to calculate the estimation value according to the 

previous estimation, ݄ሺ∙ሻ denotes the nonlinear function of measurement matrix, which calculates 

the estimation measurement value according to the estimation value.   

In general, the process noise ߱௞ and measurement noise ݒ௞ are unrelated. As the measurement 

noise is determined by the sensor specifications, which is hard to enhance in this work. The 

parameters of the process noise will be adjusted to have a better filter performance. According to 

Equation 41 and 42, the better denoising performance can be obtained by optimising the estimated 

value ݔො௞ of the real signal ݔ௞ according to the measured sensor signal value ሼݖଵ, ⋯,ଶݖ  ௞ሽ. EKFݖ
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is a two-step recursive estimation, the first stage is the estimation, which estimates the current 

state based on the previous state estimation: 

ො௞ݔ
ି ൌ ݂ሺݔො௞ିଵሻ (43) 

௞ܲ
ି ൌ ܨ ∙ ௞ܲିଵ்ܨ ൅ ߱௞ (44) 

where, ݔො௞
ି is the priori estimate value at time k, ݔො௞ିଵ is the posteriori estimate value at time k-1, 

௞ܲ
ି is the priori estimate covariance matrix at time k (measures the estimation accuracy), F 

denotes the state transition matrix, ௞ܲିଵ  is the posteriori covariance matrix at time k. It is 

்necessary to be given is, ௞ܲ
ି ൌ ሾ݁௞ܧ

ି݁௞
ି்ሿ, ௞ܲିଵ ൌ  ,ሾ∙ሿ denotes the average valueܧ ,ሾ݁௞ିଵ݁௞ିଵሿܧ

and ݁௞
ିand ݁௞ିଵ are the priori estimate error and posteriori estimate error, respectively, which 

݁௞
ି ൌ ௞ݔ െ ො௞ݔ

ି , ݁௞ିଵ ൌ ௞ିଵ െݔ  .ො௞ିଵݔ

For a nonlinear sensor signal in this chapter, EKF calculates F by successively using the 

Jacobian matrix and first-order Taylor series to complete the linearization of the estimated value 

(Lin et al. 2020). The obtained F depicted as: 

ܨ ൌ
߲݂

(45)
ݔ߲
ฬ ݔො௞ିଵ 

Next, in the second update stage of EKF, the filter optimizes the observed signal values of the 

current state to achieve a more precise actual value estimation. The Kalman gain ܭ௞ is used to 

give the relative weight of the measured signal value and the current state estimate value, to 

achieve the optimal estimate (Gamse 2017), its mathematical expression, the updated predicted 

value and covariance matrix can be expressed as: 

௞ܲ
ି 

௞ ൌܭ ௞ܲ
ିሺ ௞ܲ

ି ൅ ௞ሻିଵ ൌ (46)ݒ
ሺ ௞ܲ

ି ൅  ௞ሻିଵݒ

ො௞ ൌݔ ො௞ݔ
ି ൅ ௞ െݖ௞ሺܭ ො௞ݔ

ିሻ (47) 

௞ܲ ൌ ሺ1 െ 	௞ሻܭ ௞ܲ
ି (48) 

The two stages of the EKF are carried out alternately until all the observed signal values are 

processed. In this process, Kalman gain will iterates to a stable value (Walia 2018), thereby, the 

optimal signal value estimation is accomplished. These estimated values are regarded as the signal 

after denoising. 
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Sensor signal conversion 

The commonly used approaches of signal feature processing in fault prognosis are statistical 

feature extraction, wavelet transform, etc. (Terrazas et al. 2018), but these methods highly rely on 

expert knowledge. Nowadays, deep learning is emerging as a vital technology of IoT application 

systems. It shows better performance at the scale of big data and assists the EC frame to be more 

intelligent and efficient. CNN is one of the most popular deep learning models for machine state 

prognosis, which have been explored recently because of its great advantage in extracting 

nonlinear representative information of source data. Inspired by many successful cases of CNN 

in the field of image recognition, the data processing method of converting one-dimensional time 

series data into a two-dimensional form showed its benefits. The strategy of converting the sensor 

signal into a 2D form is a simple and generalized operation method, and since the sensor signal 

is periodic, the converted 2D form will not change much along the vertical direction, more 

information in the original data can be retained (Allahbakhshi et al. 2019). Besides, relying on the 

powerful capacity of CNN to capture the features of two-dimensional data, this strategy is able to 

achieve high prediction accuracy. Furthermore, in the process of converting the 1D signal vector 

into a 2D form, the sensor signal is arranged and compressed into a 2D array. Comparing with 

the 1D time-series of the sensor signal, the 2D conversion effectively reduces the size of the 

source data by expressing the two dependent features of temporal and spatial in the form of the 

image at the same time (Yang et al. 2019). It has good adaptability for edge devices with limited 

memory, to meet more efficient data transmission in the IoT. On the other hand, while IoT-based 

CC lays the foundation for the application of big data, it also opens up opportunities for industrial 

information leakage, hence, it is necessary for data owners to assure that the information passed 

to the cloud server in a confidential form (Tariq et al. 2019). In line with this need, the image 

format conversion of the sensor signal performed at the edge end is enabled to adequately hide 

the original sensor signal through signal reshaping, standardization and pixelate without 

sacrificing valuable information. 

In order to simultaneously take advantage of the excellent performance of CNN in image 

feature mining and effectively compress signals to enhance data confidentiality without losing 

inherent information. The greyscale method, which can effectively provide comprehensive 2D 

information of the raw data and no parameter tuning required (Wen et al. 2017), has been 

innovatively used in this work to convert the 1D signal into the 2D format. 

The conversion steps can be described as: 

Step 1:  To clean the original  1D  sensor signal to ensure that the signal can be rooted and 

divided into the equal segment as the element of each row of the 2D matrix. During the 
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reciprocating cutting process of the cutting tool, short-term standby signals will appear due to 

repositioning or tool resetting. These signals have no effect on the classification of tool wear 

that can be eliminated from the signal. Therefore, a window of fixed size is set to delete the 

standby signal sample in the source signal, to retain the maximum number of rootable samples 

 .as a new signal sequence. The execution is shown in Figure 67 ܮ

Figure 67. Sensor signal cleaning 

Step 2: Based on the cleaned new sensor signal sequence, dividing the sequence into ܰ sub-

segments evenly, and each sub-segment contains ܰ elements. This process can be depicted as 

below. 

(49) 

where, a denotes the element in the signal sequence. 

Step 3: Arrange ܰ sub-segments into a 2D matrix with the dimension of 	ܰ ൈ ܰ, the elements 

in the matrix corresponding to the pixel of the grey-level image. The arrangement can be  

represented as: 
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(50) 

Step 4: To convert the generated matrix into greyscale pixel by normalizing the value to the 

pixel intensity range from 0 (black pixel) to 255 (white pixel). The normalization can be 

represented as: 

݅݊ሺܵሻ  
ܲሺ݅, ݆ ሻ ൌ ݀݊ݑ݋ݎ  ቆ  

ܵሺ݅, ݆ ሻ െܯ
݊ሺܵሻ  

ൈ 255ቇ (51)
݅ܯሺܵሻ െݔܽܯ

where, ݅  ൌ  1, 2,⋯ܰ,  ݆  ൌ  1, 2,⋯ܰ, ܵሺ݅, ݆ ሻ denotes the sensor signal value, ܲሺ݅, ݆ ሻ denotes the 

pixel intensity and r݀݊ݑ݋ሺ∙ሻ denotes the function that returns an integer. Comprehensively, 

the above process is demonstrated in Figure 68.   

Figure 68. The conversion of a 1D signal to a 2D greyscale image 

Tool wear identification 

CNN is superior to other algorithms in the image local feature extraction, which is benefit 

from its characteristics of the local receptive field, weight sharing and sub-sampling in the spatial 

domain (Alshazly et al. 2019). However, the performance and expansion flexibility of 2D CNN 

is still limited by the size of the input data (Kim et al. 2018, Kwak et al. 2019). In addition, once 
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the captured feature values are not sufficient, the classification accuracy output by the softmax 

activation function of CNN may not be optimal (Zhou et al. 2017). To make up for the deficiencies 

of CNN in such situations, the integration of CNN and machine learning classifiers has been 

emphasised in many studies to enhance classification accuracy (e.g. Wang et al. 2019, Agarap 

2019, Zhao and Liu 2019, Gallego et al. 2018). Compared to other prevalent machine learning 

algorithms, RF could provide excellent and consistent classification accuracy as it can maintain 

high execution efficiency by using all input samples as variables without requiring the 

intervention of parameter adjustments (Cao et al. 2013). According to (Fern´andez-Delgado et al. 

2014), RF showed the best classification results among 179 various classification approaches 

based on using UCI dataset. On the other hand, in essence, CNN shares the weight of each neuron, 

so that in the process of convolution, the weight of each feature value is constant, and RF works 

in a similar way, which every input vector will be used equally to construct a classification model 

(Richmond et al. 2015). It is precisely because of these advantages that the merged application of 

RF and CNN has achieved gratifying results in some studies. For example, cancer mutations 

prediction (Agajanian et al. 2019), transportation classification (Yazdizadeh et al. 2019), semantic 

segmentation (Zuo and Drummond 2017), image depth estimation (Roy and Todorovic 2016) and 

so on. It can be seen that the integration scheme of RF and CNN will be feasible and is expected 

to compensate for the low accuracy of the linear classifier that comes with CNN.  

In order to detect the tool wear in time for predictive maintenance, especially the failure modes 

such as tool deformation and abnormal wear, a lightweight hybrid CNN-RF deep learning model, 

which is capable of processing data on limited performance device with its simplified and 

effective structure, has been developed on the edge end to identify the tool wear status. Moreover, 

the decision-level fusion strategy has been adopted by the hybrid model, to merge the sub-decision 

of each sensor signal to achieve integrated decision-making, since this strategy has a high 

tolerance capability and will not cause interference (Roheda et al. 2018). Besides, decision-level 

fusion facilitates the predication model construction, which is easy to add other sensor signals 

into the existing system without making changes to the sub-CNN model of the remaining signals. 

The proposed system is depicted in Figure 69. The workflow of the identification scheme starts 

from the CNN base model, which extracts features from 2D images of different sensor signals 

and gives individual predictions about the probability of the image being correctly classified, and 

then RF model gathers these generated results perform the final decision-level prediction to 

predict tool wear status. 
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Figure 69. The architecture of decision-fusion based lightweight multi-channel CNN-RF model 

Multi-channel CNN model 

Nowadays, many mature and robust CNN architectures have emerged to demonstrate 

satisfactory performance on data analysing, for instance, LeNet-5 (Lecun et al. 1998), AlexNet 

(Krizhevsky et al. 2012), VGGNet (Simonyan and Zisserman 2015) and GoogLeNet (Szegedy et 

al. 2015). The utilisation of these architectures can effectively avoid the problems of low 

predictive performance caused by the deficiency of self-built models, and mostly, these successful 

architectures have been verified through various cases with numerous datasets. Among these 

successful CNN models, VGGNet and GoogLeNet both require huge computing memory and 

computing time, because they have complex 19 and 22 layers deep network architectures, which 

built for processing large-scale images (Bianco et al. 2018). LeNet-5 and AlexNet are considered 

as a simpler deep learning network. For LeNet-5, it includes two sets of convolutional and average 

pooling layers, a flatten layer, and two fully-connected layers. The results from (Elsaadouny et al. 

2020) showed that it could achieve high accuracy outcome with fewer parameters. Furthermore, 

LeNet-5 has been proofed to have a good performance in the area of machinery status monitoring 

(e.g. Rahman et al. 2019, Zhang et al. 2019 and Li et al. 2020). In order to design a lightweight 

deep learning model that can run effectively on an edge device, the proposed CNN base model of 

tool wear identification is developed on the basis of LeNet-5. Figure 70 displays the architectures 

of the developed CNN base model for image signals. 
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1st convolutional layer 2nd convolutional layer Flatten layer 

Output layer 

Signal image 1st average pooling layer 2nd average pooling layer Fully connected layer 

Feature map 
size: 28x28x32 

Feature map 
size: 14x14x32 Feature map 

size: 14x14x64 

Feature map 
size: 7x7x64 Feature map 

size: 3136 

Feature map 
size: 120 

Feature map 
Size: 84 

Figure 70. LeNet-5 based CNN model structure 

For the CNN configuration, the image feature map ሼݔ௞|݇ ൌ  1,2,⋯Nሽ of the sensor signal is 

used as input to predict the tool wear categories 	y ൌ ሺ0, 1ሻ. In the convolutional layer, the shared 

weight is used to map the input, which is the kernel, it is set as 3x3 in this layer. And the feature 

map output ܨ of the convolutional layer can be obtained as: 

ܨ ൌ෍  
௝
݂ሺݓ௜,௝ ∗ ௝ܺ ൅ ܾ௜ሻ (52) 

where, ݓ௜,௝ denotes the weight for the mapping from last layer ݆ to current layer ݅, ௝ܺ denotes the 

input from the last layer, ܾ௜ denotes the bias and ݂ሺ∙ሻ denotes the activation functions, which is 

ReLU in this model. 

To decrease the number of the features after the convolutional layer, the average-pooling is 

adopted in this model to lower the dimensional, it computes the average value in a certain size 

window, and then pass to the next layer (Banik et al. 2020), the kernel size of the average-pooling 

layer set as 2x2. On the other hand, the dropout is applied before the flatten layer to prevent the 

overfitting during the model training, which is a concise and effective regularization approach to 

weaken the sensitiveness of the CNN model to a specific neuron (Poernomo and Kang 2018). 

Before outputting the classification result, the features obtained through the processing of the 

convolutional layer and the average-pooling layer are input to the fully connected layer to 

complete the mapping from feature space to the label of tool wear. The output of the fully-

connected layer ܨ௙	 can be described as: 

∙ ௙ݓ௙ ൌ ݂ሺܨ ሺܨ௙ିଵሻ் ൅ ௙ܾሻ (53) 

where, ݓ௙ denotes the weight between current and previous fully-connected layer, ܨ௙ିଵ denotes 

the output of the previous layer, ௙ܾ denotes the bias, ݂ሺ∙ሻ denotes the ReLU activation functions. 
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Finally, the output layer of the CNN uses the sigmoid activation function to give the 

probability of classifying the image into a certain tool wear category, and there are two categories, 

namely worn and unworn. The result of the output layer can be described as: 

ܲ ൌ  ܵ ∙ ௟ݓሺ݀݅݋݉݃݅ ሺܨ௟ሻ் ൅ ܾ௟ሻ (54) 

where, ݓ௟ denotes the weight between the output layer and last layer, ܨ௟ denotes the output of the 

previous layer, ܾ௟ denotes the bias. 

RF-based decision-level fusion 

RF classifier is adopted in this work to fuse the sub-prediction result of the multi-CNN models, 

and output comprehensive decision. It is a combination of many decision trees, and effectively 

prevents the deviation of prediction results caused by a single decision tree (Zhou et al. 2020). In 

this chapter, the classification based on RF can include as: 

1. Combine the sub-decision of two CNN base models, S௔ ൌ ሼܺ௔ଵ, ܺ௔ଶ,⋯ܺ௔௡ሽ and S௕ ൌ 

ሼܺ௕ଵ, ܺ௕ଶ,⋯ܺ௕௡ሽ into a new dataset S ൌ  ሼS௔, 	  ܵ௕ሽ as the input of RF. Where, ܺ	 denotes the 

probability of the correct classification to the corresponding class, ݊ denotes the number of 

images. 

2. Based on the dataset S, use the bootstrapping of bagging method to resample S as a training 

dataset for the first decision tree in the RF model, and repeat this process ݊ times to obtain 

a training dataset of the same size as the dataset S. 

3. Randomly select ݉ samples from the training dataset, and meet the condition 	݉ ≪ ݊. Then, 

the ݉ samples are spilt one by one according to the information gain to form the subsequent 

decision trees. Information gain G is the entropy difference before and after the splitting of 

samples, and the splitting stops once the gain reaches zero (Prajwala 2015). The entropy 

before the splitting can be represented as:
௠

ሺBሻܧ ൌ െ෍ ௜݌  logଶ ௜ (55)݌
௜ୀଵ 

where, ݌௜ denotes the probability of sample selection. 

And the entropy after the splitting can be represented as: 

ሺAሻܧ ൌ െ෍  
௩ ܦ

ܦ
௜ ∙ ௜݌ logଶ ௜ (56)݌

௜ୀଵ 

where, ܦ	 denotes the number of samples in the training dataset, which is ݉. ܦ௜ denotes the 

number of the sample being split in the training dataset.  
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Therefore, the information gain can be obtained by: 

ܩ ൌ ሺBሻ െܧ   ሺAሻ (57)ܧ

4. Repeat step 2 and 3 until all decision trees in the RF model are established. 

5. After the above steps, the desired RF model is trained. The aggregation of error rates of 

each decision tree is the prediction accuracy, which is defined as: 

௠ ௠ ௠ ௠

G ൌ෍݌௜෍݌௝ ൌ෍ ௜ܲሺ1 െ ௜ሻ݌ ൌ 1 െ෍݌௜ଶ 
(58)

௜ୀଵ ௝ஷ௜ ௜ୀଵ ௜ୀଵ 

௠ ௠where, ∑௜ୀଵ ௜ and ∑௝ஷ௜݌  ௝  respectively represent the probability of correct and incorrect݌

classification of features. 

5.5.3 Cloud computing end 

CC comes with powerful strength in terms of extensive-scale data processing and storage. In 

order to fully diagnose the tool condition to guarantee the quality of the machined component and 

the processing efficiency of the workshop, a tool life prediction system is developed to run on the 

cloud server, to prevent the workpiece surface quality reduction caused by the cutting tool gradual 

deterioration. 

Based on the received greyscale image, the cloud end of the proposed system is responsible 

for the tool life prediction. In line with the same intention as the tool wear recognition of the EC 

end, 2D CNN is adopted as the algorithm for image processing at the cloud end. Moreover, after 

the images of different signals are processed in parallel by the corresponding multi-channel CNN 

model, the extracted feature values will be combined as the input of the subsequent LSTM based 

prediction model. This hybrid deep learning model greatly benefited from the superiority of CNN 

and LSTM algorithms, which is local feature extraction and long-term dependencies learning. 

Figure 71 illustrates the structure of the CNN-LSTM model. 

127 



 

 

 

 

 

    

 

  

  

  

 

  

Figure 71. The architecture of hybrid multi-channel CNN-LSTM model 

Multi-channel CNN model 

Different from the general computing performance of EC devices, cloud server has the ability 

to handle increasing computing workloads. Among the four mature CNN architecture mentioned 

in Section 5.5.2, AlexNet is capable of achieving higher performance on the CPU with its 

structure of five convolutional layers, with maximum pooling layers and followed by three fully-

connected layers (Krizhevsky et al. 2012), which is deeper than the LeNet5. In addition, AlexNet 

is considered as the inspiration of the deep learning extensive research because of its remarkable 

efficiency in processing the complex image (Lu et al. 2019, Shanthi and Sabeenian 2019). 

Moreover, AlexNet has appeared in many fields, for instance, organ classification (Igarashi et al. 

2020), object detection (Bonnard et al. 2020), handwritten recognition (K.O and Poruran 2020). 

In this work, the CNN base model at the cloud end is developed based on the AlexNet to 

implement the upper-level tool life prediction, and the parameters of each layer are consistent 

with the CNN model at the edge end, since the input are the same. The structure of the developed 

AlexNet-based CNN is shown in Figure 72.   
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Signal image 1st convolutional layer 2nd convolutional layer 

1st maxpooling layer 

Feature map 
size: 26x26x96 

Feature map 
size: 12x12x96 Feature map 

size: 12x12x256 

Feature map 

2nd maxpooling layer 3rd convolutional layer 

4th convolutional layer 5th convolutional layer 3rd maxpooling layer Flatten layer 

Fully connected layer 
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Figure 72. AlexNet based CNN model structure 

LSTM prediction model 

Thanks to its memory cells are competent to retain the temporal features, LSTM is superior in 

processing the data with time-series characteristic. The concatenated feature array ܺ௠,௡ ൌ  ௠,௡൧ݔൣ

of all the CNN sub-models, which ݔ stands for the feature value, ݉	 stands for the number of 

features, n stands for different signals, are adopted as the input of the LSTM model. The structure 

of the LSTM model in the proposed system is shown in Figure 73. 

Figure 73. The structure of LSTM model 

In each unit of the LSTM model, the output ݄௧ of the current time-step ݐ are determined by 

four gates, namely: 
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1. Input gate ݅௧, controls the input hidden state (output) ݄௧ିଵ of the previous time-step 	ݐ െ 1 

and new input data, which is the captured feature by the CNN model. ݅௧ can be described 

as: 

݅௧ ൌ ሺߪ ௜ܹݔ௧ ൅ ௜ܷ݄௧ିଵ ൅ ܾ௜ሻ (59) 

where, ߪ is the sigmoid activation function; W and U are variable weights and b is the bias. 

2. Forget gate ௧݂, decides the information of ݅௧ that to discard. It can be depicted as: 

௧݂ ൌ ൫ߪ ௙ܹݔ௧ ൅ ௙ܷ݄௧ିଵ ൅ ௙ܾ൯ (60) 

3. Memory gate ௧ܿ, calculates the new state of the LSTM unit based on the ݅௧ and ௧݂. It can be 

depicted as: 

ܿ௧ ൌ ௧݂ ⊙ ܿ௧ିଵ ൅ ݅௧ ⊙ tanhሺ ௖ܹݔ௧ ൅ ௖ܷ݄௧ିଵ ൅ ܾ௖ሻ (61) 

where, ⊙	is the Hadamard product. 

4. Output gate ݋௧, controls the hidden state ݄௧ for next time-step 	ݐ ൅ 1. It can be depicted as: 

௧ ൌ݋ ሺߪ ௢ܹݔ௧ ൅ ܷ௢݄௧ିଵ ൅ ܾ௢ሻ (62) 

During the execution of the LSTM, it recursively acquires the information from the input 

array ܺ௠,௡ in each time-step. The memory cell state of every LSTM unit is updated based on the 

information from the previous time-step ܿ௧ିଵ that filtered by the forget gate ௧݂, and meanwhile 

combine with the new fed in feature ݔ௧, the prediction result ݄௧ at the time-step ݐ can be calculated 

under the control of output gate ݋௧ as: 

ൌ ݐ݄ ݐ݋ ⊙ tanh  (63) ݐܿ

The fully-connected layer and linear regression layer are sequentially connected to the output 

gate of each LSTM unit. The generated features are fed into the fully-connected layer with the 

shape of a vector 	ܪ ൌ ሼ݄ଵ, ݄ଶ,⋯݄௟ሽ, h is the output of each LSTM unit, l is the last time-step. 

The output of the fully-connected layer is calculated as: 

ܨ ൌ  ෍  ReLUሺݓ௜ ∙ ℎ௜ ൅ ܾ௜ሻ (64)
௜ୀଵ 

where, ReLU  denotes the ReLU  activation functions, ݓ௜  and ܾ௜  are the weight and bias, 

respectively. 
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Finally, the regression prediction is realised by the linear layer. And the MAE is adopted to 

assess the prediction performance. It can be depicted as:  

௡

| |
௜ୀଵ 

MAE ൌ	 
݊
1
෍ ෤ݕ െ ݕ (65) 

where, ݊ is the training sample size; ݕ	෥ is the prediction value; ݕ is the actual value. 

5.6 Case study of the EC-based tool prognosis system 

5.6.1 Experiment detail 

The proposed EC-based TCM system was deployed on a manufacturing company in Shenzhen, 

China for the practical validation. The teeth machining of the ring synchronizer for 7-speed dual-

clutch transmission gearbox was performed on the JCMT JCS30 CNC machine tool according to 

the plan. The cutting tool used in this experiment is TENX 1604 XF (Kristen+Göhrmann 2019). 

The ring synchronizer and insert see Figure 74.  

Figure 74. The ring synchronizer and cutting tool insert 

The proposed TCM system is shown in Figure 75. The MMA7361 three-axis accelerometer 

and three YHDC SCT013 current sensors were installed on the tool holder and the machine three-

phase power supply, respectively, to monitor the vibration and power signals during the 

machining process. 
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Figure 75. Sensor deployment and edge computing device 

Moreover, in order to lower the randomness of the results, three groups of machining processes 

were carried out with the same machining parameters. The number of machined components is 

37, 29 and 39 in each group, details shown in Table 36. The machining time of each group is 

limited to half an hour, and thus the number of machining component is different. A new cutting 

tool is used at the beginning of each machining group. Based on the offline quality measurement 

of machined components, the total machined component number and the component number 

machined by the worn cutting tool are recorded as Table 36. 

Table 36. The condition of machined components  

EC end monitor 

Machining 
group number 

Quantity of machined 
component 

Machined component 
with worn tool 

1 37 26 to 37 

2 29 14 to 29 

3 39 11 to 39 

Due to the data confidentially agreement with the company, the technical information of the 

components, including machining parameters was not disclosed in this chapter. During the 

experiment, the flank wear of three cutting tool inserts was measured offline with metrology 

equipment, the measurement example is shown in Figure 76. The machined components were 
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evaluated with the precision according to the product requirements. The tool wear status can be 

determined according to it. 

Figure 76. SEM (Scanning Electron Microscope) photograph of the tool flank wear 

5.6.2 Result analysis 

The acquisition frequency of vibration and power signal during the machining is set at 4000Hz 

and 20Hz, respectively. The partially collected power signal and the X-axis vibration signal are 

shown in Figure 77. 

Figure 77. Acquired power and X-axis vibration signal 

EKF based signal denoising 

In order to reduce the deviation between the acquired signal and actual signal caused by the 

inevitably collected noises, the EKF is performed on the signals at the EC end to achieve the 
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purpose of denoising. Figure 78 shows the power and X-axis vibration signal of group 1 before 

and after the filtering. 

Figure 78. Original and filtered power and vibration signal 

After the processing of EKF, the noise of the original power and vibration signal is effectively 

filtered out. Meanwhile, the denoised signal maintains the morphological characteristics of the 

original signal, and thus ensures the reliability of subsequent signal processing.  

In order to better explain the denoised vibration signal has more significant advantages, the 

probability density function analysis of the original and filtered vibration signals is carried out. It 

reflects the probability of different signal amplitude, different vibration signals have different 

probability density curve shapes (Li et al. 2017), and the interference of noise information will 

directly lead to the changes of the probability density of the vibration signal. Furthermore, due to 

the influence of various unpredictable factors in the real scene during the manufacturing process, 

the vibration signal distribution is close to the normal distribution (Ge et al. 2018). Therefore, the 

normal distribution is used to characterize its probability density in this chapter, which bases on 

the mean value μ  and standard deviation σ  of the signal, and can be obtained by Pሺxሻ ൌ 

ଵ ሺ
ೣషഋ

మ
ఙ√ଶగ

݁ି
భ

഑ 
ሻమ 

, X is the signal sample (Liu and Chen 2019). Figure 79 shows the probability 

density of power and vibration signals before and after the denoising. 
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Figure 79. Probability density of the original and filtered vibration and power signal 

The variable that caused the change in the shape of the probability density curve in the above 

figure is the standard deviation of the sensor signals, which can be used to define the ‘bad’ degree 

of the noise. The smaller standard deviation produces a higher and thinner curve shape, and 

indicates that the signal is stable. For the original vibration signal, the probability of the signal 

will not deviate from the actual value is less than 10%, while the probability of the filtered 

vibration signal does not deviate is raised to 30%. Moreover, along with the impact of noise on 

the signal increases, the curve slides down and the possibility of non-deviation is reduced, it also 

shows that the noise deviation of the filtered signal is less than the original signal. And the result 

of the power signal shows the similar trend. 

Figure 80. FFT spectrum of the original and filtered vibration signal 

The frequency-domain is other standard description methods of signal denoising. FFT is used 

to observe the frequency component of the denoised vibration signal, as shown in Figure 80. On 

the whole, the frequency characteristics of the vibration signal can be imagined to be submerged 

by different noise frequencies, and the primary frequencies of the original signal and the denoised 
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signal are concentrated between 2000 Hz and 3000 Hz. Although the frequency waveform of the 

signal has changed after denoising, the basic shape remains, it implies that the noise is eliminated 

while the main characteristic information of the original signal is retained. In addition, as shown 

in the zoomed up area in the figure, even the noise with a small amplitude is eliminated. To sum 

up, the verification of the denoised vibration signal in the time and frequency-domains shows that 

the EKF is feasible and effective as a denoising approach in this work. 

Image conversion 

After the denoising processing on the EC end, the format conversion is conducted on the 

filtered vibration and power signal. Firstly, the signal of the two sensors is segmented in the unit 

of machining components. Thereby, the group 1 obtains 37 subsets of 3-axis vibration and power 

signals respectively, 29 subsets for group 2 and 39 subsets for group 3. The sensor signals for the 

10th component of machining group 1 are displayed in Figure 81. Secondly, the size of the subset 

in each group is adjusted to the same size according to the signal type by eliminating the invalid 

value in the signal subset, for the subsequent image format conversion. There are 784 values in 

each power subset, and 176400 values for the vibration signal. 

Figure 81. (a) Power signal segmentation, (b) X-axis vibration signal segmentation 

According to the format conversion method illustrated in the above section, the greyscale 

images of two signals are constructed, which the image size of the power and vibration signal is 

28x28 and 420x420, respectively. Figure 82 displays the obtained image samples of the three 

groups. 
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Figure 82. The images of different signals 

It is not difficult to observe from the above images that the image of the power and the 

vibration signal present different pattern, and as the machining proceeds, the images of the same 

signal also show the difference, it indicates the potential for the tool wear classification. 

Eventually, the greyscale image of each signal subsets was generated corresponding to the number 

of tool cuts in each group. In three groups, there are a total of 105 power signal images and 315 

vibration signal images were obtained, which also achieves the 89% data compression from 1D 

signal to 2D image (the average size of each power and vibration signal image is 1KB and 130KB), 

Figure 83 shows the comparison of the dataset size between the raw signal and signal image.  

Figure 83. Signal dataset size comparison before and after the image conversion 

Furthermore, as an EC device with limited computation capacity, the maximum memory of 

Raspberry Pi is 1G (Raspberry Pi 2020). In order to verify that this device can provide sufficient 

memory for data processing, the memory usage during the image conversion has been monitored. 
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The results show that the maximum memory usage of grey-level image batch conversion for 

power and vibration signal is: 256.1MiB (0.27GB) and 525.8MiB (0.55GB) (1MiB=0.001048GB, 

International Electrotechnical Commission 2010). In the light of the memory usage of the 

proposed image conversion not beyond the capacity of Raspberry Pi, this method is feasible to be 

applied for the EC end based on low-cost devices. For both power and vibration signal, the change 

of memory usage over time is shown in Figure 84. 

Figure 84. Memory usage of image conversion on power and vibration signal 

Front-end tool wear identification 

Based on the obtained signal images, the EC end executes the tool wear identification on the 

proposed CNN-RF model, and the performance of the model is evaluated in this section. At first, 

to evaluate the performance of each single CNN model, all images of three groups are input into 

the corresponding CNN base model according to different signals. Moreover, to ensure the 

rationality of evaluation, the power and vibration images of multiple same machining components 

are selected as the verification set, instead of a randomly generated. Figure 85 shows the 

performance evaluation result of the two CNN base models in multiple validation epoch cycles, 

which is the validation accuracy and validation loss. 
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Figure 85. The evaluation result of CNN base model for the power and signal image 

It can be found from the above figure, the prediction results of two CNN base models fit the 

training results to an acceptable degree in terms of accuracy and loss, which the classification 

accuracy and loss of power signal reach 70% and 0.54, and the accuracy and loss of the vibration 

signal achieve 85% and 0.27, respectively. It is evident that, the different signals have a different 

effect on the prediction performance, the accuracy of tool wear identification through vibration 

signal is higher than that by power signal. Nevertheless, the accuracy they provide is insufficient 

for timely tool status recognition at the EC end, and the fusion strategy is expected to further 

promote the identification performance. 

Next, the CNN-RF model adopts same validation set as above to perform the identification, 

and the RF classifier merges the output result of two CNN base models, which is the probability 

of each power image and vibration image correctly classified, for the final decision-making. The 

machining components selected for validation and the probability of the correct classification are 

shown in Table 37. 

139 



 

 

 

   

  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

   

 

   

 

 

  

 

Table 37. The probabilities of correct classification on power and vibration images 

Probability of correct classification Group and Actual wear 
component conditionPower image Vibration image  

Group1_12 0.598 0.503 

Group1_17 0.502 0.609 

Group1_18 0.675 0.428 

Group1_21 0.678 0.758 

Group2_2 

Group2_25 

0.268 

0.698 

0.325 

0.719 
Unworn 

Group2_26 0.448 0.818 

Group2_27 0.628 0.494 

Group3_3 0.394 0.639 

Group3_7 0.687 0.723 

Group1_27 0.809 0.700 

Group1_30 0.717 0.698 

Group2_9 0.299 0.679 

Group2_11 0.539 0.615 

Group2_14 

Group3_10 

0.452 

0.596 

0.589 

0.668 
Worn 

Group3_15 0.447 0.557 

Group3_21 0.751 0.792 

Group3_26 0.825 0.615 

Group3_29 0.718 0.758 

Take the probability value of two signal as predictor variables, and the actual tool wear 

category as the respond variables (‘1’ for tool worn, ‘0’ for tool unworn), the RF model executes 

the tool wear identification. The performance of the classification model is assessed by four 

evaluation parameters, which is accuracy, precision, recall and f1-score. In particular, suppose 

the tool unworn is a positive result and tool worn is a negative result. The accuracy represents the 

ratio between the correctly predicted tool wear value and the overall predicted value, and precision 

represents the ratio between the correct positive predicted value and the overall positive predicted 

value, recall represents the ratio between the correct positive predicted value and the total 

predicted value, and f1-score is the weighted average of precision and recall. Table 38 shows the 

classification performance of the 20 machining components. 
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Table 38. The evaluation result of RF model 

Accuracy Precision Recall F1-score 

90.62% 94.74% 90% 92.31% 

Based on all prediction results demonstrated above, it proves that the sensor data collected by 

the established wireless multi-sensor acquisition platform is reliable as a raw material for tool 

wear identification, and the integrity of the sensor signal information is still maintained to a large 

extent after the processing of the introduced image format conversion method. Additionally, the 

decision-level fusion scheme adopted at the EC end finally achieves an improvement in the 

classification accuracy to 90.62%, since this method compensates the information between sensor 

signals. 

Moreover, this chapter also monitors the memory usage of the CNN-RF model to perform tool 

wear classification on the validation set. The maximum usage is 334.3MiB, the proposed model 

consumes reasonable memory, it is promising that the well-trained CNN-RF model is unhindered 

to perform wear recognition at the EC end. The result is shown in Figure 86. 

Figure 86. Memory usage of the classification validation on CNN-RF model 

In order to further assess the superiority of the RF-integrated multi-channel CNN model, other 

four prevalent machine learning classifiers, SVM, MLP, KNN and NB classifier, are combined 

individually with the proposed CNN sub-model in this chapter for model performance comparison. 

SVM is a popular prediction algorithm. It transforms the input data into a high-dimensional space, 

and then obtains the maximum margin hyperplane according to the kernel function for achieving 

classification (Awad and Khanna 2015), it has an excellent performance in two-category 

classification projects (Cao et al. 2019). MLP is a simple feedforward artificial neural network. It 

has three-layers of one input layer, one hidden layer and one output layer. The activation function 

in each neuron is responsible for mapping the input data to the output layer. Although MLP has a 

certain degree of fault tolerance, the computation time is high (Shawky et al. 2020). KNN is an 
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efficient machine learning algorithm, which does not need to build a complete classification 

model. This method implements its classification based on the category of one or more samples 

nearest to the sample to be tested. If most of the adjacent samples belong to a certain category, 

the sample to be tested also belongs to this category (Wang et al. 2019). The NB classifier is a 

convenient probabilistic classifier. It assumes that the sample to be predicted is independent of 

each other, then the training sample set is used to create a probability model to predict the 

classification of new variables (Zhang and Sakhanenko 2019). 

The prediction models based on these above four classifiers were developed to perform the 

decision-level fusion classification on the generated greyscale images, the evaluation result, in 

terms of accuracy, precision, recall and f1-score are shown in Table 39. Figure 87 intuitively 

displays each evaluation result of different classifiers. 

Table 39. The evaluation results of machine learning classifiers 

Decision fusion 
classifier 

SVM 

Accuracy 

87.50% 

Evaluation parameter 

Precision Recall 

94.44% 85.00% 

F1-score 

89.47% 

MLP 87.50% 86.36% 95.00% 90.48% 

KNN 84.38% 85.71% 90.00% 87.80% 

NB classifier 81.25% 93.73% 75.00% 83.33% 

Figure 87. The evaluation accuracy of tool wear classification using different classifiers 

By comparing the classification evaluation results in Table 38 and Table 39, it can be observed 

that the evaluation parameters of all five machine learning classifiers have reached more than 

80%. Among them, RF has the best classification performance, the performance of SVM and 
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KNN is second only to RF, which the classification accuracy are both 87.5%. NB classifier shows 

the worst classification accuracy of 81.25%.  

Furthermore, to assess the efficiency of each classifier, the execution time during the 

classification based on the validation dataset has been monitored. The result is depicted in Figure 

88. 

Figure 88. The computational time of different classifiers 

It can be found from the above figure, among the five classifiers, MLP spends the highest time 

to perform classification on the validation dataset, reaching 1.8s, followed by SVM, which takes 

1.06s. The least time consumption belongs to KNN and NB, which are 0.6s and 0.5s, respectively. 

Perhaps it is because of their relatively rapid calculations that high accuracy cannot be provided. 

For RF, its time consumption is moderate, which is 15.5% and 29.5% higher than KNN and NB, 

but 60.6% and 33% lower than MLP and SVM.  

Comprehensively, by evaluating the classification accuracy and processing time of the above-

mentioned classifiers, the proposed RF integrated CNN model performs better, presents a 

satisfactory and accurate result tool wear identification, and at the same time with the acceptable 

time cost. 

Cloud-end prediction 

In addition to the described data processing, signal format conversion and front-end tool wear 

identification, the EC devices also responsible for transmitting the signal image to the CC terminal. 

Relying on the powerful computing and storage resources of the cloud server, these data will be 

appropriately stored and used for the training of the cutting tool RUL prediction model, and the 

database is constantly updated for further optimizing the prediction model. 

To verify the effectiveness of multi-channel CNN-LSTM model developed at the cloud end, 

the measured flank wears of each machining group are adopted as the tool life criterion in this 
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work. As the tool processing continues, the flank wear of three cutting tools has present the trend 

of sustained growth. Figure 89 shows the flank wear against the number of cuts of three cutting 

tools. 

Figure 89. The flank wear of three machining tools 

In view of the limited number of cuts have been performed in the case experiment in this 

chapter, the three machining groups are pair-wise combined as the training set and another group 

is the testing set, to improve the reliability of prediction result while ensuring model training 

performance. First, the images of the power signal and vibration signal in each generated 

validation set (consists of training and testing set) are separately used to conduct the flank wear 

prediction through the corresponding CNN base model. The prediction result is displayed in 

Figure 90. 
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Figure 90. Predicted and measured flank wear based on different signals of each verification set 

The above results demonstrate that the flank wear prediction based on the grey-level images 

of both sensor signal is effective, the prediction result curve is approximately fit to the actual 

flank wear curve. The average prediction accuracy of the power signal is 76.4%, and for vibration 

signal is 81.2%. The accuracy difference may because the acquisition frequency of the vibration 

signal is higher than the power signal. 

In addition, for the purpose of further improve the prediction accuracy and improve the 

judgment of the RUL, the proposed CNN-LSTM model has executed the prediction via the model-

based feature fusion strategy on the three validation sets. The prediction result is shown in Figure 

91. 

Figure 91. Predicted and measured flank wear based on CNN-LSTM model for different verification sets 
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The overall result displays that, benefit from the feature fusion of power and vibration signal 

and the long term sequence learning, the average prediction accuracy of the CNN-LSTM model 

reaches 90.2%, and about 15% and 10% higher than the single power signal and vibration signal. 

The prediction result comparison of the single CNN model and the proposed model are 

summarised in Table 40.   

Table 40. Prediction accuracy of single CNN model and CNN-LSTM model on different validation sets 

Validation set 

1 2 3 

Prediction accuracy Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Group 
2+3 

Group 1 
Group 
1+3 

Group 2 
Group 
1+2 

Group 3 

Single 
CNN 
model 

Power 
signal 

Vibration 
signal 

76.7% 

76.5% 

78.3% 

81.6% 

74.2% 

85.6% 

CNN-LSTM model 88.7% 91% 90.8% 

Finally, the cutting tool RUL can be characterised by Equation 66 based on the predicted flank 

wear, and the polynomial regression fitting model is employed to estimate the RUL of the cutting 

tools. The regression function can be described as Equation 67. 

∙ R௠R௣
௜ ൌ

௣ܨ
௜ ௜ 

(66)
௜ 

௞
௠ܨ

ܴሺܨሻ ൌ෍ ௝ܾ ∙ ௞ (67)ܨ
௝ୀ଴ 

where, R௠ denotes the assigned RUL based on the measured flank wear, ܨ௣ denotes the predicted 

flank wear, ܨெ denotes the measured flank wear, ݅	 denotes the number of the cuts, ܴ	 denotes the 

RUL of a cutting tool, ܨ	 denotes the flank wear, ௝ܾ denotes the regression coefficients. 

Based on the three validation sets adopted in this work, the RUL estimation result is displayed 

in Figure 92. It demonstrates that the estimated RUL well fit the assigned RUL, and the estimation 

accuracy is evaluated by the coefficient of determination (ܴଶ), which the three validation sets 

realise the precision of 90.6%, 92.4% and 96.7%, respectively. 
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Figure 92. Predicted RUL based on the three validation sets 

5.7 Summary 

The rapid development of the IoT continuously promote the popularization of concept and 

practical implementation of cloud manufacturing, this technological innovation also brings a 

series of challenges that need to be alleviated, in terms of the transmission and processing of big 

data, efficient decision making, etc., especially for SMEs. In this chapter, a tool condition 

prognosis system in terms of tool wear identification and tool RUL prediction was established, 

which integrates the plug-and-play multi-sensor wireless acquisition platform, EC and CC. The 

layers of the system are based on affordable and highly open devices, the communication between 

each layer is achieved through Wi-Fi, and the auxiliary functions that mobile access to real-time 

data is provided. The workflow can be briefly described like that, the multi-sensor signal captured 

by the WSN is first delivered to the EC end for data processing, i.e., extended Kalman filter 

denoising, signal compression by 2D format conversion, and then the real-time tool wear 

identification is executed on the EC end through a well-trained CNN-RF model. Next, depending 

on the stored past and future signal images of each sensor signal from the EC end, the cloud server 

performs the upper-level tool RUL prediction with a hybrid multi-channel CNN-LSTM model. 

The developed system was deployed in a real manufacturing environment for demonstration 

and verification, and satisfactory results have been achieved. The vibration and power signal of 

the tooth machining of the ring synchronizer has been collected stably, and then the signal 
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denoising and the signal format conversion have been effectively performed at the EC end, thus 

implement the data volume reduction of more than 89%. And, the format conversion only 

occupied about 50% memory capacity of the Raspberry Pi. Moreover, the tool wear identification 

performed by CNN-RF model at the EC end obtained the accuracy of 90.62%, and 35% of the 

memory capacity is consumed during the validation process. Besides, the RF is proved to perform 

best in comparison with SVM, MLP, KNN and NB classifier. Finally, based on the images 

delivered from the EC end, the designed CNN-LSTM model on the cloud server reached a global 

tool RUL prediction with an accuracy of 93.2%. It can be summarised that, for the intelligent EC-

based IoT system, which has not been widely studied in the industrial filed, the proposed system 

provides a solution that integrates multiple characteristics. 
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Chapter 6. Conclusion and Future work  

6.1 Thesis overview 

In order to perform predictive maintenance of machining tools with the big data resources that 

comply with the development trend of the industrial IoT, thereby improving machining accuracy, 

and control the costs and time consumption. The primary goal of this research is to develop the 

efficient and SMEs-suitable TCM and prognosis system in response to Industry 4.0, which fully 

covers two critical assessments of tool condition, namely tool wear identification and tool RUL 

prediction. Regarding the methodology of this research, a series of novel methods with high 

efficiency and strong applicability are proposed, that correspond to heterogeneous data processing, 

data fusion, deep learning and EC, which are the core technologies of the intelligent IoT paradigm. 

Besides, this study constructed an IoT monitoring platform to realise the deployment of the low-

cost multi-sensor prognosis system. In addition, the verification of the quantitative research based 

on real experimental data shows that the proposed methods and the established system meet the 

research objectives regard to tool wear identification and tool RUL prediction. 

6.2 Thesis contribution 

The research related to the sensor-based TCM is reviewed, and the necessary basic rationales 

involved in this research are introduced, which emphasises on sensor signal processing 

technology, application of deep learning network in the relevant monitoring field and the 

development of IoT monitoring system. It is found that from the literature, with the continuous 

upgrading of various technologies and the popularization of the intelligent industrial IoT concepts, 

the attention of efficient and economical monitoring systems and platforms is increasing rapidly. 

Both tool wear identification and tool RUL prediction have always been the interest of 

manufacturing research. Meanwhile, in the face of the influx of a large number of sensor signals, 

the data feature fusion, signal segmentation and other processing technologies are continuously 

improved and still demanded, to ensure more reliable prediction. In addition, deep learning that 

superior to the machine learning algorithms, are also emerged in the TCM field recently. By 

viewing plenty of existing works, the potential importance of continuing tool condition prognosis 

research is demonstrated, and remaining research gaps stimulate the motivation for this study. 

The tool wear identification system integrating feature selection and fusion was presented. The 

system adopted a novel multi-level feature processing technology, in terms of signal denoising, 

optimal feature selection and dimensionality reduction. Firstly, the features of the collected sensor 

signals under the time-domain and power spectrum were extracted comprehensively, and then the 
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optimal size of the feature subset was obtained after recursive verification by the proposed 

RFECV method. Secondly, the SVM ranked the importance of each feature to the tool wear 

category, and finally, an optimal feature subset was determined. In addition, the Isomap fusion 

method, which is suitable for nonlinear data, further reduced the dimensionality of the optimal 

feature subset, and generated new component feature subset. By evaluating the classification 

performance for feature subsets from each feature processing layer on the established 1D CNN 

model, the proposed feature processing method is proved capable to effectively eliminate the 

adverse effects of redundant sensor signals on the identification accuracy, and enhance the CNN 

processing performance by avoiding the subjective feature selection in existing related research. 

Moreover, the use of 1D CNN architecture also provides a concise scheme for deep learning, thus 

facilities to the efficiency of the tool wear identification. 

The multi-sensor data-driven tool RUL prediction system was proposed, which a Hurst 

exponent based signal partition methodology was developed and minimised the inaccurate tool 

RUL prediction caused by imbalance distribution of sensor signal. As the most common form of 

tool wear, flank wear during the tool life cycle was used in this work to quantify tool wear for 

RUL estimation. The multi-sensor signals collected during the entire tool life cycle were divided 

by Hurst exponent according to the fractal characteristics of different sensors, and then the signals 

were allocated to each stage of tool wear for segmented tool wear regression prediction. To 

enhance the prediction performance of tool RUL on the basis of a large amount of sensor signal, 

the CNN and LSTM algorithm have been ensemble as a hybrid model, and giving full play to 

their respective capabilities, namely the spatial feature capturing and time-series feature learning. 

Finally, based on an actual experimental verification, the proposed hybrid CNN-LSTM model 

demonstrated higher performance than other competitive deep learning models. Meanwhile, the 

Hurst exponent signal partitioning is also superior to other prevalent methods in the performance 

assessment of data processing. 

A multi-nodes EC enabled IoT monitoring system with customisable configuration 

architectures was developed based on a verified signal acquisition platform. This system accepts 

customisation for specific needs, supports multi-sensor signal port, different types of sensors thus 

can be easily integrated into the system, which provides a foundation for industrial big data 

sources, and greatly reduces the developing time of new platform. In addition, due to the use of 

portable and cost-effective devices, the EC terminal together with the WSN can be migrated to 

different scenarios and be effectively deployed in the workshop to better implement distributed 

monitoring. The EC end embedded at the middle layer of the system, is able to optimize data 

resources via the signal denoising, and overcomes the inefficiency and high latency of the 

transmission which are common in the IoT application by converting 1D time-series signal to 2D 
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format, besides, benefits from the lightweight CNN-RF model configured at the EC end, the tool 

wear identification close to the machining frontline can be realised. Furthermore, the proposed 

ensemble CNN-LSTM model configured at the CC end is conducive to the big data processing 

based on the historical signal images, and the employed multiple sensor fusion strategies notably 

improve the prediction accuracy of the tool RUL. 

6.3 Future work 

Based on real experiments data, this study verifies the superiority and feasibility of the 

proposed tool wear identification method, tool RUL prediction methods, as well as the IoT 

prognosis system. Predictable improvements around these research may focus on: 

 The state recognition scheme based on multi-layer feature processing, the RUL prediction 

scheme based on the signal partition, and the IoT prognosis system integrated with EC is 

not limited to cutting tool condition. They are low in complexity and easy to promote. 

Future applications in various fields are feasible, such as the prognosis of mechanical 

bearings and engine monitoring, etc. 

 In order to further improve the effectiveness and quality of signal features to represent 

the integrity of the original data and continuously enhance the prediction performance, it 

will be worth to explore the efficient feature selection strategy with the integrated and 

non-stepwise structure for multiple sensors. At the same time, to perform the feature pre-

processing that not only the correlation between features and tool status is considered, 

but also focus on features related to the site environment. 

 In addition to signal fluctuations, it is hoped to find other indicators to achieve more 

refined and accurate signal segmentation, so as to improve the prediction efficiency by 

using the signals of the severe wear region of the cutting tool, without having to consume 

computing resources on the signal of the cutting tool in a healthy state. 

 The performance of the model based on the deep learning algorithm depends on the model 

architecture to a certain extent. According to the different formats of the signal to be 

processed and the specific application scenario, the architecture optimisation of the deep 

learning model and the cooperation of different deep learning algorithms will be a crucial 

part of future work. 

 For the proposed IoT monitoring system, the efficient configuration of hardware 

equipment and the data processing technology at the EC end will be continuously 

explored. In addition, as 5G technology matures, it is expected to replace Wi-Fi 

communications with more robust connectivity and transmission speed. At the same time, 
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IoT network security in the industrial environment and the encryption of the data 

information at the EC end will also be focused. 
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Appendix A. Python code 

The python code of 1d CNN model: 
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The python code of CNN+LSTM model: 
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The python code of 2D CNN model: 
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