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SOLUTE DISPERSION IN THE NEARSHORE DUE TO OBLIQUE WAVES 

Soroush Abolfathi1 and Jonathan Pearson2 

An experimental study has been conducted in a large scale basin at Danish Hydraulic Institute (DHI). Simultaneous 
measurements of hydrodynamics using Laser Doppler Anemometry (LDA) and fluorescent tracer studies were undertaken within 

the surfzone under a regular wave condition with waves approaching the shore at 20. Through a series of hydrodynamic and 

tracer measurements and their comparison with the existing theoretical values, this study quantifies the physical processes and 
their integrated effects on a solute tracer in the nearshore zone subject to combined waves and the induced longshore currents. A 

theoretical dispersion model has been developed, adopting both experimental and theoretical velocimetry approaches. The results 

of theoretical model have been compared to the tracer data. Using the results from this study together with all known previous 
studies of dispersion measurements within the surfzone, good agreement exists. 

Keywords: Coastal Mixing, Surfzone, Oblique Waves, Pollution 

INTRODUCTION 

In the UK, a small, but significant number of coastal waters fail to satisfy the minimum standard 

for Faecal Indicator Organisms. Around 10% of UK beaches (which are routinely tested) are predicted 

to fail the revised Bathing Water Directive standards, and another 12% are predicted to be classified as 

sufficient. Near-shore coastal waters receive pollutant loading through both the shoreline 

(predominately diffused pollution from farmland and urban areas) and seaward boundaries (sewer 

outfalls). From the seaward boundary, pollutant loading is transported landward towards the surfzone 

by the so-called Stokes drift effect (Stokes, 1847). From the shoreline boundary, runoff pollution, 

which can contain Faecal Indicator Organisms and human viruses (Grant et al, 2005) can drain into the 

surfzone. Consequently, these pathogens can congregate in the nearshore region, where the water 

quality can affect the health of the general public. The problem is particularly acute following rainfall 

storm events. Air masses pushed by wind cause frontal and orographic rainfall, which is predominant 

in the UK. In coastal waters, these winds also generate wave activity; hence larger wave activity 

normally occurs during and after storm events. Therefore, it is very essential to understand the mixing 

processes due to the effect of wave activities in the nearshore region. Although many efforts has been 

made during the past decades to study different aspects of mixing yet little new information is available 

about the mixing under wave and current activities in the coastal zone.   

 Water quality numerical models used to aid management decisions are usually 2D depth averaged, 

exclude wave processes and require as input, a value for the dispersion coefficient. Predicting 

dispersion coefficients in this complex three-dimensional flow field is difficult and is caused by the 

interaction of the periodic orbital motions of the waves, the variable depth, longshore current induced 

vertical and lateral shear effects, the effects of Stokes drift and the bed and free surface boundary 

sources of turbulence. 

PREVIOUS WORK 

In riverine flows the analogy of turbulent mixing processes to Fickian diffusion has been made by 

several researchers. Reviews of this field are provided in Fischer et al. (1979) and more recently, 

Rutherford (1994). The depth averaged advective-dispersion equation given by Rutherford (1994) 
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Where;  

x, y = longitudinal and transverse directions, 

ud, vd = depth averaged longitudinal and transverse velocities, 

d = depth of flow, 

cd = depth averaged concentration, 

ex, ey = diffusion coefficients in the x and y directions, 

x = the longitudinal dispersion coefficient which accounts for the effects of the vertical 

variations in the longitudinal velocity, 

&    y = the transverse dispersion coefficient which accounts for the effects of the vertical variations 

in the transverse velocity, 
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This equation shows how both turbulent diffusion processes and dispersion, due to the spatial 

averaging of velocities, influence the spreading of a conservative tracer. Molecular diffusion is 

assumed to be negligible. For a continuous line source in unbounded flow where the transverse 

dispersion is dominant, the concentration distribution may be described as 
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Where, Q is the mass inflow rate per unit length. Fischer (1967) utilized this result to estimate 

values of transverse diffusion coefficients from measurements of transverse concentration distributions. 

From a continuous point source injection in wide channels, the transverse mixing coefficient was 

obtained from 
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Where the spatial variance, y  of the transverse concentration distribution cd(y) is given by 
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Where  is the position of the centroid of the distribution. This technique provides an estimate of 

the transverse diffusion coefficient which although termed a diffusion coefficient, includes all the 

effects present within the flow which contribute to the observed spreading of the tracer plume. It 

perhaps more correctly should be termed a transverse dispersion coefficient, as secondary flows are 

rarely absent. 

There have been comparatively few experimental studies to investigate aspects of mixing under 

waves in the coastal zone. Some site specific field studies have been undertaken, however, the 

contribution to mixing due to wave activity is difficult to interpret as all the associated parameters 

responsible for the transport processes were not measured.  

Tracer Studies: Inman et al. (1971) referred to the studies of Harris et al. (1963) who undertook a 

series of experiments in both the field and laboratory to investigate the mixing of a solute when 

released into the surf zone. Both field and laboratory-based experiments produced results which 

suggested that the mixing across the surf zone is proportional to H
2
/T, where H is the crest to trough 

wave height and T is the wave period.  

In the nearshore zone, where water depths are small, wave processes dominate the mixing of 

soluble pollutants. Pearson et al, (2002) quantified the on-offshore dispersion for monochromatic 

waves of different heights and of fixed period, in non-breaking wave regions, just seawards of the 

breaker point. Based on this work, a technique to predict the magnitude of the dispersion coefficients 

was suggested. A full-scale fieldwork experimental study of surfzone dye dispersion on a plain 1:50 

sandy beach was reported by Clark et al. (2010). Three potential theoretical mechanisms for on-off 

shore tracer dispersion in the surf zone were examined, breaking wave induced dispersion, and 

undertow shear induced dispersion [developed by Pearson et al (2009)] were both shown to have 

correlations to the measured values (undertow shear, 94% correlation). 2D horizontal rotational 

velocities (surfzone eddies) were found to be the primary contributor to the overall measured mixing. 

Hydrodynamic Studies: The pioneering works of Longuet-Higgins (1960, 1964) [radiation stress] still 

form the basis of many theoretical applications of near-shore hydrodynamics to this day. In terms of 

measurements, much of the early work focused on phase-averaged velocities (e.g. Hansen & Svendsen 

(1984), Cox et al (1995), Svendsen (1986)) following the quantitative analysis of undertow by Dyhr-

Nielsen & Sorensen (1970). Early measurements by Stive (1984) and Nadaoka & Kondah (1982) using 

Laser Doppler Anemometry (LDA) techniques in the surfzone produced significant data sets. Ting & 

Kirby (1994, 1995, 1996) demonstrated that the turbulent kinetic energy generated around the breaker 

or plunge point, is transported seaward under a spilling breaker, but landward under a plunging breaker. 

Svendsen (1987) adopted the analysis of Prandtl (1952) to suggest that the turbulence generated 

mixing in the surfzone was dominated by the breaking wave. Svendsen (1987) summarized a number 

of detailed velocity measurement studies, which determined the on-off shore variation of eddy viscosity 
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both in the surfzone and seawards of the breaker point.  He proposed that the length scale (  ) of the 

eddies were closely related to the water depth (d) and suggested that under laboratory conditions, the 

variation of eddy viscosity (  ) across the surfzone generated by the breaking wave could be 

characterized by the empirical relationship;      √  , where M is a constant which lies in the range 

0.01< M <0.03, d is the water depth, and g is the acceleration due to gravity.  

A Simplified Mixing Mechanism: Using Svendsen‟s (1994) methodology, the turbulent diffusion can 

be estimated by ez = ey =     √  . In the surfzone, Pearson et al (2009) adopted the above analogy 

to describe a theoretical advection-dispersion transport process for on-off shore mixing generated by 

undertow shear dispersion driven by the vertical variation in on-off shore velocity in the surfzone. 

Using suitable estimates for the turbulent diffusion (diffusion the same in all directions) and on-off 

shore wave-induced velocity, a theoretical approximation to the overall mixing within the surfzone was 

obtained. They showed that the on-off shore mixing (ensuring that the lengths and times are measured 

in meters and seconds) could be given by:  
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Where, Dy is the depth averaged on-off shore dispersion coefficient in the surfzone, g is 

acceleration due to gravity,  is the breaker index and Hb is the wave height at breaking.    

 

 
Figure 1. Comparison of previous experimental on-off shore dispersion studies in the surfzone 

 

Figure (1) shows the relationship between   
   and the measured on-off shore dispersion (Dy) 

[Equation (3)]. As the experimental studies are from a number of sources, both within the laboratory 

and within the field, for simplicity, it has been assumed that the breaker index can be characterised by 

the commonly adopted value of        [Galvin (1972)]. This result suggests that theoretical on-off 

shore mixing within in the surfzone is a function of   
   . 
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LABORATORY STUDY OF OBLIQUE WAVES IN THE NEARSHORE  

 
Figure 2. Plan view of experimental facility 

 

The experimental work was undertaken in the shallow water basin at DHI, Denmark [Figure 2]. In 

this study mixing of buoyant pollutant in the nearshore region has been investigated from both Eularian 

and Lagrangian perspective. Detailed hydrodynamic measurements in the nearshore region performed 

by using Laser Doppler Anemometry (LDA). Fluorometric study has been carried out by use of 

Rhodamine Water Tracing Dye.  The measurement section measured 18m x 8m, with an offshore water 

depth of 0.5m. The bed of the facility consisted of concrete screed with an assumed roughness element 

1mm high. The facility is equipped with an absorbing piston-type wave-maker and all experiments 

were performed on a 1:20 plain beach, with waves approaching the shore at 20. A regular wave 

[Ho=0.1, T=1.85s] was generated and after significant endeavours, the facility was finely tuned by re-

circulating the longshore current at the down-stream end of the facility and re-introducing the flow at 

the up-stream end of the facility. A Mike 21 computational model was used in the experimental design 

to assist in determining the re-circulation discharge, and appropriate outlet weir conditions [Figure 3].  

 

 
 

Figure 3. A Mike 21 computational model to assist in the experimental design 

 

Hydrodynamic Measurements: The velocity field in the surfzone and seaward of the breaker point for 

plunging breaking waves were investigated from a Eularian point of view by using Laser Doppler 

Anemometry (LDA). The turbulence structure within the nearshore region has been determined by 

studying two dimensional velocity field, which was obtained from hydrodynamic measurements in the 

vertical plane from 120 consequent monochromatic waves that were measured at various cross-shore 

locations in the nearshore region.  

Wave height measurements were simultaneously undertaken across the basin at 0.5m intervals to 

determine the wave characteristics in the region of the dye plume. The wave conditions were logged 

continuously throughout the duration of both the concentration and velocity data collection periods. 

Sixteen wave monitor modules connected to twin wire wave probes were utilized to measure the water 

surface elevation at selected locations within the facility. The voltage output from the modules was 

logged by the data acquisition system. The wave probes were re-zeroed and calibrated over 4 points 
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[usually (0,+100,-100,0)m] each day by driving the probe up or down. The output voltage from a wave 

probe monitor is directly proportional to the probes depth of immersion.   

For this study the region near to the paddles has been termed „offshore‟, although due to the water 

depth (d=0.50m), the waves are in the transitional region. The „offshore‟ wave steepness, Sop has been 

determined using the inshore wave celerity given by√  . 

Fluorometric Measurements: A constant head injection of Rhodamine WT dye was introduced to the 

basin from a small brass tube at approximately mid depth, at various distances from the shoreline. The 

subsequent spreading of the tracer was then recorded by pumping one liter samples into sterilized 

containers for later analysis. The facility has a re-circulating flow system which causes the continual 

build-up of background dye concentrations. Hence, to minimize the temporal build-up during testing, 

ten discrete samples were collected simultaneously with their sample tubes placed at approximately 

mid depth and spaced at an on-offshore distance of 50mm apart. To eliminate additional mixing 

generated by extracting the samples within the facility, the flow rate of the pumps were adjusted so that 

the velocity at the inlet of the pipe matched the longshore current velocity. The ten samples took 

approximately two minutes to collect, and the array of tubes was stepped across the plume at half-metre 

intervals. An additional background sample was collected upstream of the injection point whilst 

collecting the 10 discrete samples. Approximately 70 samples were collected for each on-offshore 

section.  

 
RESULTS 

In this section the results of hydrodynamic and tracer measurements for the case of monochromatic 

oblique waves inside the surfzone are presented. Hydrodynamic data has been adopted to quantify the 

turbulent kinetic energy (TKE) and determine turbulent diffusion coefficient. The shear dispersion 

coefficient obtained by employing the vertical velocity profile and the eddy viscosity value. 

Fluorometric data has been analyzed by using Taylor‟s (1953) analogy. The results of hydrodynamic 

model have been compared to the dye tracer measurements. 

Hydrodynamic Data: Mixing processes in the nearshore region has been investigated from a Eularian 

perspective by use of the hydrodynamic data obtained from detailed LDA measurements across the 

nearshore. An analytical model has been developed based on hydrodynamic data to quantify the 

advective-dispersive mechanisms inside the surfzone.  

From the Fickian advection-diffusion equation the total on-offshore mixing coefficient (   ) inside 

the surfzone can be written as a summation of turbulent diffusion (  ) and shear dispersion (  ) 

[equation 6]. Surface generated turbulence due to the wave breaking phenomena inside the surfzone is 

the major contributor to the turbulent diffusion and combination of bed generated turbulence; non-

uniform wave period and secondary velocity profile over the depth are bestowing shear dispersion in 

the nearshore region.  
 

                                        (6) 

 

In the first step, an attempt has been made to detect and remove the spikes in the LDA datasets 

using Acceleration Theresholding Method (Goring & Nikora, 2002). Spikes in LDA data are common 

problem that need to be dealt with carefully. Spikes are usually due to aliasing of Doppler signals as 

well as the air entrainment into the probe as a result of wave breaking phenomena inside the surfzone 

and bubble generation due to intensive turbulence dissipation.  

Diffusivity inside the surfzone has been calculated based on hydrodynamic data by adopting 

Svendsen & Putrevu (1994) methodology, which relates eddy viscosity (  ) to Turbulent Kinetic 

Energy ( ) and characteristic length scale of turbulence (  ).  

 

     √                                 (7) 
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Figure 4. Comparison between TKE estimated in DHI experiment with Nadaoka & Kondoh (1982) 

 

Turbulent Kinetic Energy has been determined following the spectral analysis procedures. Figure 

(4) compares the vertical structure of TKE determined from hydrodynamic data with Nadaoka & 

Kondoh (1982) measurements of monochromatic waves on 1/20 beach slope. ζ is the distance from the 

bottom bed and d is the local mean water depth. The position of each set of measurements is indicated 

by the value of do/doB where do is the undisturbed local water depth and subscript B indicates the 

breaking condition. The results show good agreement with the existing experimental data.  

The eddy viscosity obtained based on equation (7) and by adopting the depth-averaged turbulent 

kinetic energy and taking the characteristic length-scale as Svendsen & Putrevu (1994) suggestion. For 

the case of Ho=0.10m, T=1.85s regular wave condition at a 20 approach, the eddy viscosity at 1.0m 

from the shoreline determined as               . Comparison of    calculated for this study with the 

theoretical relation proposed by Svendsen & Putrevu (1994) for the case of waves inside the surfzone, 

shows that the turbulent diffusion coefficient determined in this study is in-line with the existing data.  

Advective shear dispersion in the nearshore region is mainly due to bed frictional effects from the 

oscillatory wave motions (Dζ), bottom friction on tidal currents, wind driven currents and secondary 

velocity profile (DΦ). Hence the total dispersion coefficient in the on-offshore direction can be given 

by:  

                                       (8) 

 

The dispersive shear mechanisms are generally more significant contributors to the overall mixing 

compared to turbulent diffusion alone. In this paper advective shear dispersion has been investigated 

with extracting the vertical variation of on-off shore velocity from the hydrodynamic data collected 

across the surfzone. The shear dispersion coefficient Dx determined from hydrodynamic data using the 

method of Zones, originally proposed by Chikwendu (1986). N-zone model divides the two-

dimensional flow in the surfzone into N zones of parallel flow with the thickness tj, the average 

velocities uj and longitudinal diffusivities Dxj, where j= 1, 2, …, N. Figure (5) is a schematic sketch of 

N-zone model. Each zone is assumed to be well-mixed with the concentrations c1 to cN and the shear 

dispersion coefficient can be obtained from advection-diffusion equation by dividing it into N coupled 

dispersion equations: 

 

           
                 (     )       (9) 

. . . 

           
             (   )   (       )    (   )  (       ) 

 

           
             (   )    (       ) 

 

The system of equations introduced in (9) can be analyzed through use of large-time exponent and 

Fourier transformation, hence the longitudinal dispersivity can be written at large times: 
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                                                                                                                           (10) 

 

In this paper a modified N-zones model with varying eddy viscosity and phase-averaged velocity 

for each layer has been employed to determine the shear dispersion coefficient (Dx). For the case of 

monochromatic waves with Sop=3.5% a shear dispersion coefficient (Dx) of 0.0148 m
2
/s was obtained 

at 1.0 m from SWL. Therefore, total on-off shore mixing coefficient of 0.015 m
2
/s achieved based on 

equation (6). In the following section the on-off shore mixing coefficient based on tracer studies will be 

determined and the results will be comparing to the analytical model described in this part.  

  

Zone 1

Zone 2

t1

t2

u1

u2

u3
Zone 3 t3

Zone NtN

uN

uN-1

tN-1 Zone N-1

.

.

.

y = 0 

y = h 

 
Figure 5. Schematic sketch of N-Zones dispersion model in the nearshore 

 

 

Tracer Data: The longshore current profile over the measurement section is shown in Figure (6) for the 

Ho=0.10m, T=1.85s regular wave condition at a 20 approach. The facility has a horizontal bed in the 

longitudinal direction, thus it was not possible to produce longitudinally uniform flow. Further study of 

Figure (6) shows that the velocity appears to vary by approximately 5% over the 8m control section of 

the facility. Additionally, it is evident that there is an up-stream recirculation in the system (outside the 

measurement section), which couldn‟t be eliminated during set-up of the facility.  
 

 
Figure 6. Longshore velocity distribution over measurement section 
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Figure (7) shows the resultant above background concentration profiles for the Ho=0.1, T=1.85s 

wave condition. The spatial variance (  
 ) of each concentration profile has been determined, and 

results are shown in Figure (8). Over the width of the plume the velocity distribution varies [Figure 

(6)], Equation (3) does not account for a variation in the longitudinal velocity and hence the validity in 

this case may be questionable. Nevertheless, results presented in Figure (8), demonstrate that the 

increase in on-off shore variance with distance, although showing some small scatter, is approximately 

linear.  

 
 

 
Figure 7. Above background transverse concentration profiles for Ho=0.1, T=1.85s wave condition 

 

 

Employing the concept of Taylor‟s (1953) turbulent diffusion analogy (Equation 3), an estimate of 

the transverse mixing coefficient Dy, combining both diffusion and dispersion or differential advection 

processes can be obtained. The spatial variance (  
 ) of each concentration profile has been determined, 

which results in a transverse mixing coefficient of 0.0119 m
2
/s. Comparison of this mixing coefficient 

from tracer data with the theoretical model based on hydrodynamic data (Exx =0.0150 m
2
/s) shows that 

the result is in-line with expectations.   

Dye concentration measurements were confined to the surfzone region with an injection points at y 

= 1.0m from the shore-line. At this location, estimates of wave set-up ( ) and set-down for the tested 

conditions are small relative to the water depth, and have been neglected in further calculations. An 

important feature of surfzone hydrodynamics which influence the resultant wave-induced velocity is 

the depth of water below the wave trough level [dtr]. According to DeVriend & Stive (1987) and 

Svendsen (1987), the depth can be approximated by    (   ). Due to the nature of the waves in the 

surfzone, all LDA measurements were performed below the wave trough level, hence only the 

undertow velocities were recorded and analyzed.   
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Figure 8. Relationship between the variance of the transverse concentration and longitudinal distance 

 

 

Development of Theoretical Model: To test the validity of a 2-layered advective-dispersive 

mechanism generated by the bore of the breaking wave, the measured velocities were compared with 

the theoretical depth mean velocities within the bore of the breaking wave. For simplicity wave 

transformations have been neglected, and the „offshore‟ wave heights measured towards the paddle 

have been adopted as the incident wave condition at the breaker point, and these velocity profiles have 

been combined with estimates of turbulent mixing [Svendsen & Putrevu (1994)] and integrated to 

establish an overall- depth averaged dispersion coefficient. 

A literature review has indicated that the only known experimental studies which incorporate the 

overall on-off shore mixing within the surfzone were studies undertaken by Harris et al.(1963), Inman 

et al.(1971), Tanaka et al.(1980), Pearson et al. (2009), and Clarke et al. (2010). Figure (9) shows the 

relationship between measured on-off shore dispersion (Dy) using tracer studies, and the predicted on-

off shore dispersion identified within this study. As the experimental studies are from a number of 

sources, both within the laboratory and within the field, for simplicity, it has been assumed that the 

breaker index can be characterised by the commonly adopted value of γ=0.78 [Galvin (1972)].  For 

steeper sloping beaches (<1:50) it has been assumed that             √  ; and for gentle sloping 

beaches, it has been assumed             √  . Using these assumptions, a theoretical on-off shore 

mixing has been estimated using equation (5) and is shown Figure. (9). The new measured results from 

this present study have been included, and the wave height at the breaker point (Hb) has been adopted 

for all calculations. For clarity the 45 degree line is also shown. It is noticeable that the measured and 

theoretically predicted depth averaged dispersion coefficients are strongly correlated, with a coefficient 

of 94%. This suggests that the prediction method described within this study is not only applicable in 

both laboratory and field based studies, but is also demonstrates that the vertical variation on-off shore 

velocities are important in nearshore mixing problems within the surfzone.  
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Figure 9. Comparison of previous experimental on-off shore dispersion studies in the surfzone 

 

 
CONCLUSION 

Within the surfzone, a theoretical advection-dispersion mixing mechanism has been identified. It 

has been shown by using suitable estimates for the turbulent diffusion and on-off shore wave-induced 

velocity that a reasonable approximation to the measured solute transport processes can be obtained. 

When the results of previous studies are compared to new measured results, it has been shown that the 

mixing coefficient obtained follows the general trend of results from the previous studies. It appears 

that a simplified two-dimensional on-off shore mixing model derived in this study can be used for both 

laboratory and field studies.  It is noticeable that the measured dispersion coefficient from this present 

study is consistent with predicted results.  

A dispersion model has been developed based on hydrodynamic data. Turbulent diffusion and 

shear dispersion have been quantified for the case of regular oblique waves. The total mixing 

coefficient obtained from hydrodynamic model is in-line with the tracer data and the existing 

theoretical model. For the condition investigated (at given location within surfzone), it has been shown 

that the shear dispersion is the dominant source of mixing 

Through theoretical approximations, it has been demonstrated that within the surfzone, the on-off 

shore mixing is highly correlated by the effects of the on-off shore velocity, however additional mixing 

may still be generated by 2D horizontal rotational velocities described by Clark et al. (2010), as the 

measured mixing was consistently higher than the predicted mixing using the on-off shore shear 

dispersion mechanism described within this study.  
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