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Abstract

The work described in this thesis is concerned with self-localisation (automated estimation of sensor

locations) and source-localisation (location of a target) using Wireless Sensor Networks (WSNs). The

motivation for the research in this thesis is the on-line localisation of marmots from their alarm calls. The

application requires accurate 3D self-localisation (within a small percentage of sensor spacing) as well

as timely operation. Further challenges are added by the high data-rate involved: sensor nodes acquire

data at a rate that is greater than the available network bandwidth. This data cannot be streamed over

a multi-hop network, implying a need for data reduction through in-network event detection and local

data compression or filtering techniques.

The research approach adopted in this thesis combined simulation, emulation and real-life experi-

mentation. Real-life deployment and experimentation highlighted problems that could not be predicted

in controlled experiments or simulation. Emulation used data gathered from controlled, real-life exper-

imentation to simulate proposed system refinements; this was sufficient to provide a proof-of-concept

validation for some of the concepts developed. Simulation allowed the understanding of underlying theo-

retical behaviour without involving the complex environmental effects caused by real-life experimentation.

This thesis details contributions in two distinct aspects of localisation: acoustic ranging and end-to-

end deployable acoustic source localisation systems. With regard to acoustic ranging and 3D localisation,

two WSN platforms were evaluated: one commercially available, but heavily constrained (Mica2) and one

custom-built for accurate localisation (Embedded Networked Sensing Box (ENSBox)). A new proof of

concept platform for acoustic sensing (based on the Gumstix single-board computer) was developed by the

author (including the implementation of a ranging mechanism), based on experiences with the platforms

above. Furthermore, the literature was found to lack a specific procedure for evaluation and comparison

of self-localisation algorithms from theoretical conception to real-life testing. Therefore, an evaluation

cycle for self-localisation algorithms that encompassed simulation, emulation and real-life deployment

was developed.

With respect to source localisation, a hardware and software platform named VoxNet was designed

and implemented. This was the result of a collaboration between the author and researchers at UCLA

and MIT, as part of the first iteration of the National Science Foundation-funded VoxNet project. The

author contributed to the software development and in-situ deployment of VoxNet, as well as leading the

experimentation and data analysis resulting from the first deployment.

Following in-situ deployment experiences, two strategies to improve end-to-end system timeliness were

developed by the author: The first, Lazy Grouping, was a centralised algorithm that performed on-line

grouping of event data and facilitated its collection from the network. The second strategy led to the

development of Adaptation policies, allowing nodes in the network to evaluate whether to process

data locally based on previous data transfers. Through simulation based on realistic data traces, Lazy

Grouping was observed to reduce end-to-end system latency significantly by reducing the amount of

data that nodes send (whilst maintaining all other functional characteristics). The Adaptation policies

v



implemented delivered correct choices on whether to process locally 70–97% of the time in scenarios

derived from in-situ data traces, hence improving the system timeliness by choosing the fastest processing

path.

This research furthers the state of the art with respect to high data-rate sensing systems, and the

evaluation of real-life Wireless sensor network (WSN) systems, both important aspects to the development

of this field of research.
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Nomenclature

δ the uncertainty factor for grouping detections

ℓ(d) the time taken to transfer a raw detection from node to sink

ℓ̂1(d) goodput based estimator to predict ℓ(d)

ℓ̂2(d) pseudo-goodput based estimator to predict ℓ(d)

t̂ ToF estimate

x̂ estimated distance between nodes

ν number of dimensions

φ zenith (degrees)

τ empirically observed ETX threshold for adaptation

θ azimuth (degrees)

a Number of anchors in a network

B local buffer that a node maintains of raw detections draw

C largest difference in a given axis between all nodes in a network

c list of all X,Y,Z coordinates of nodes in a network

c(E) the current ETX value for a node

Cr the scaled resolution of the localisation search space

d event detection triggered by a node

ddet global network time detection was triggered (part of d)

Di the amount of data sent (number of hops · detection size)

dns or di unique global identifier of a detection

draw raw data of detection (part of d)

f frequency (Hz)

Fmax highest frequency that can be detected without spatial aliasing (Hz)

fs sampling frequency
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G list of all groups of detection events, maintained by the sink

g a group within G

gcurr the most recent group created by the sink

h number of hops a node is from the sink

I(d) the node id related to a detection di

I(g) the id related to a given group created at the sink

J AML result vector

K distance between speaker and microphone

l the watchdog timeout value

l(gi) the latency to gather data from all nodes in a group

m(g) the mean timestamp of all detections currently in the group

Mi,err accuracy of latency estimates made by ℓ̂(d)

n number of nodes in the network

n(G) the number of groups in G

n(g) the number of detections currently in group g

n(qaml) the number of raw detections in the local AML processing queue

n(qsend) the number of raw detections in the sending queue

qi time a detection spends on a node’s message queue

R reply message sent to the sink in response to a data request

rij range estimate made by node i to node j

S Samples

s sequence number for detection

s(draw) size of raw detection data, in KB

t time

T (d) the detection timestamp related to a detection di

tA time between sending and receiving ranging signals for node A

x



tB time between sending and receiving ranging signals for node B

taml empircally observed time to process the AML algorithm locally

ti time taken to transfer a raw detection message from node to sink

tq,a arrival time of timesync query packet

tq,s sending time of timesync query packet

tr,a arrival time of timesync reply packet

tr,s sending time of timesync arrival packet

u uncertainty value

v speed

vs speed of sound

W Wire transmission time between gateway and control console

wg the watchdog timer associated with a given group g

x distance
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Chapter 1

Introduction

Wireless Sensor Networks (WSN)s are composed of embedded devices called sensor nodes that are

equipped with wireless radios and one or more sensors.

Sensor nodes can be deployed—that is, placed over some physical area where they can automatically

acquire data from their sensors about a given physical phenomena (for example, temperature or humidity).

A sensor node can process this data and wirelessly transmit it to a central processing point for further

analysis. Typically, sensor nodes are physically small and are resource-constrained by being battery

powered, having only a small amount of memory and limited local processing capability.

The promise of using WSNs for sensing lies in the deployment of sensor nodes in large numbers over

an environment, particularly in places which are difficult to reach with larger sensing devices that require

connection to a mains power supply. Furthermore, providing a larger number of measurement points over

a space enables the analysis of physical phenomena at high spatial and temporal density.

There are many applications which can make use of the spatially distributed nature of WSNs: in

structural health monitoring, vibration data can be gathered from many points in a building to deter-

mine potential structural faults. In agricultural monitoring, temperature and soil moisture data can be

continuously gathered by nodes over a field of crops to determine areas which are too dry or moist, too

hot or cold.

An important notion for both of these applications and many others is location. When physical

measurements are made by many nodes over an area, it is of interest to understand how these values

change not only over time (at each node), but also space (across the whole network). This might take

the form of a time-lapse 2D or 3D visualisation of the area that the nodes are deployed in, where the

different sensed values can be displayed to help understand the spatial and variation over time.

To enable the spatial analysis of the data gathered by a WSN, it is necessary to determine the physical

locations of each node in the network. The procedure of determining physical position is called localisation.

Position could be assigned manually by taking Global Positioning System (GPS) measurements, or relative

distance/angle measurements between sensor nodes. However, this process is time consuming, and prone

to error and inaccuracy (based on the accuracy of the measurement tool and the skill of the person

operating it). Automating the localisation process within the WSN should reduce deployment time and

eliminate human-related error.

There are two types of automated localisation that are relevant for WSNs: self-localisation, where

nodes in the network collaborate to estimate their relative positions, and source-localisation, where nodes

in the network detect and estimate the location of some other target, such as an animal or a vehicle.

This thesis is concerned with both self- and source-localisation. The motivating application studied
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CHAPTER 1. INTRODUCTION

in this thesis is the distributed, on-line localisation of an animal in its natural habitat. This application

motivates the need for automated self-localisation as it requires that sensor node positions are determined

accurately in 3D. Any error in node position will translate to error in the position estimate of the animal.

1.1 Research justification

The dominant theme that runs through all of the work in this thesis is that of real-life applications. It

is the author’s strongly held opinion that the development of a sensor network must be motivated by an

application that provides realistic requirements. This thesis is focused on the design, implementation and

evaluation of WSN systems that can be used for real applications. In particular, this thesis is focused on

WSN systems which support high data-rate applications, where data is being sampled by sensor nodes

at 100 Hertz (Hz) or more, necessitating in-network processing. As noted in the previous section, the

motivating application considered in this thesis is acoustic localisation. Localisation is a strong example

of a compelling and challenging WSN application and acoustics are a good example of a high-data rate

phenomena. These two aspects (source-localisation and high data-rate systems) are discussed in more

detail in the rest of this section.

1.1.1 Source-localisation

In general, the goal of source localisation is to estimate the location of an unknown target, based on

characteristic signals that it produces (either an acoustic or electromagnetic signal).

The specific source localisation application in this thesis is acoustic source localisation of marmots

(a small rodent) in their natural habitat. This application is useful for biologists studying bio-acoustic

data, where animals’ calls are used to study their behaviour. Using a WSN-based source localisation

system is desirable because of the increased density of measurements, and the potential to automate the

localisation process so that it can be performed in-situ, in real-time. When performed in real-time (or

on-line), WSN-based marmot position estimates can be used to help the user take photographs of the

calling animals to augment observations, either in a manual (the scientist takes the photo) or automated

fashion (cameras are actuated to the estimated position). If the WSN can perform some form of data

processing within the network, then the time taken to determine position estimates could be reduced

(compared to performing the localisation at a central point). Furthermore, marmot localisation is the

first stage in enabling automated census of marmots, where individuals can be identified, classified and

counted. Automation of this process is an even more complex, but potentially enabling research tool for

scientists in the field.

1.1.2 Acoustics in high data-rate systems

High data rate sensing applications, particularly those associated with acoustics are compelling for WSN

research because sensor data is being generated at such high rates that it cannot be streamed to a central

point for further processing. Therefore, some of the processing for the application must be carried out

by the sensor nodes. This represents a smarter use of sensing than is commonly seen in current real-life

WSN research, where data is typically sensed within the network at low sample rates (less than 1 Hz)

and forwarded through the network to a central point, where it is processed.

Acoustics in the higher part of the audible frequency spectrum (which ranges from 20 Hz to 20 Kilo-
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hertz (kHz)) require data sampling on the order of kHz, representing a particularly high data-rate phenom-

ena. Animal calls, and marmot calls in particular are good examples of this type of acoustic phenomena.

On-node processing and distributed collaboration are two desirable features of WSNs in theoretical

research and the motivating application provides a compelling reason for these techniques to be imple-

mented in a real WSN.

1.2 Approach to research

This thesis takes the view that because WSNs are intended to be deployed in real physical environments

to monitor real phenomena, they must be deployed and tested in-situ.

Simulations of WSN systems must model the effects of physical phenomena, either the environment or

the phenomena of interest. For acoustics and radio signals, it is particularly difficult to model behaviour

purely in simulation. Whilst this may be adequate to verify theoretical algorithmic performance, it only

represents a partial validation of a system because it is practically impossible to predict all possible

failure conditions for a system without testing it in a real environment. For example, several important

observations leading to essential system improvements are made in Chapter 5, as an outcome of in-situ

deployment experience and close familiarity with the specific application. These observations and their

effects on the system’s operation would have been difficult or impossible to imagine in the context of

purely simulated experiments.

Consequently, the findings in this thesis are the result of several experimental approaches: in-situ

operation and experimentation, controlled indoor and outdoor experimentation, and simulations using

real data traces. This approach to research provides a clear and complete understanding of the crucial

issues raised by designing, building, deploying, and using WSNs.

In Chapter 3, controlled, indoor and outdoor experimentation was carried out with respect to several

ranging mechanisms and localisation algorithms. This was necessary to understand the relative perfor-

mance of both ranging mechanisms and localisation algorithms in realistic environments. In addition,

simulation of sensor localisation was performed to understand and isolate the effects of varying ranging

precision and Geometric Dilution of Precision (GDoP). Simulation was sufficient to provide a theoreti-

cal understanding of precision and GDoP effects and how they affect the design parameters involved in

ranging mechanism and localisation algorithm selection.

In Chapter 4, controlled indoor experimentation was performed to benchmark key components of

two implemented source localisation systems. This was sufficient to allow for comparative performance

measurement between them.

In Chapter 5, in-situ deployment and operation of the implemented system was used to identify usage

problems and failure modes that could not be determined in controlled experimentation, as well as areas

for improvement.

In Chapters 6 and 7, network transmission data was gathered through controlled, in-situ experimen-

tation and used in proof-of-concept simulations to improve the network latency aspect of acoustic source

localisation in a WSN. Controlled, in-situ experimentation was necessary to provide data traces that had

environmental effects which are complex to simulate using theoretical models. Simulation using controlled

data traces was sufficient to provide proof-of-concept validation that could be readily extended to real
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deployment.

1.3 Research questions

This thesis aims to answer the following questions with respect to acoustic self- and source-localisation

for high data rate sensing systems:

1. Can a class of WSN applications be identified which require 3D self-localisation?

2. Does the performance of existing 2D self-localisation algorithms change for these applications?

3. Are there design trade-offs which can ensure adequate 3D self-localisation performance for a given

application? (The design trade-offs of interest are equipment requirements and cost, and processing

complexity with respect to the software algorithms and hardware platforms chosen).

4. How is the design and integration of an acoustic marmot localisation system affected by real-time,

interactive requirements?

5. What are the user and deployment related challenges to be overcome to ensure adoption of an

end-to-end marmot localisation system?

6. How can in-network processing capabilities aid the robustness and timeliness of on-line acoustic

localisation?

7. Are there data processing approaches used in the developed system that are shared by a class of

on-line, high data rate WSN systems?

It should be noted that this work does not aim to provide a generalised approach to wireless sensing.

(For example, low power and scalability factors are not explicitly examined in this work.)

1.4 Research contributions

Increasingly in WSN research, scientific progress is coming from multidisciplinary teams rather than

individuals and this work is no exception. An outcome of this trend is that it becomes somewhat

difficult to establish what the contribution of the individual is both scientifically and towards the goals

of the group. Nevertheless, in addition to contributing to the success of various projects, including most

notably VoxNet (a project to develop hardware and software for a distributed acoustic sensing platform)

and Wavescope (a streaming-data processing engine for high data rate sensing applications), the central

contributions of this thesis are as follows:

• The establishment and justification of an evaluation cycle for self-localisation algorithms based on

simulation, emulation and deployment (Chapter 2).

• Experimental characterisation and evaluation of three acoustic ranging techniques and two localisa-

tion algorithms on platforms with varying computational capabilities, in both indoor and outdoor

environments (Chapter 3).
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• Implementation and evaluation of a proof-of-concept platform for acoustic ranging, including hard-

ware and software integration and implementation of a suitable ranging algorithm (Chapter 3).

• Two designed, implemented and deployed iterations of an end-to-end, on-line, marmot localisation

system. This included in-situ deployment and micro-benchmarks of application specific and general

aspects of the system: on-node processing, on-node data archiving, data transfer reliability (Chapter

4).

• The identification and analysis of deployment-related systems issues that are not easily resolved

without in-situ operation (Chapter 5).

• The design, implementation and proof-of-concept evaluation of two refinements that increase robust-

ness and timeliness of the marmot localisation system—Adaptation and Lazy Grouping (Chapters

6 and 7).

The initial source-localisation work described in Chapter 4 in this thesis was produced as part of a

collaboration on the acoustic sensing project at Centre for Embedded Networked Sensing (CENS) and

the VoxNet project (at UCLA and MIT). A full description of the author’s contributions to the project

is provided in Section 1.5.1 and is also noted in each chapter where relevant. It should be noted that

the actual VoxNet deployment described in Chapter 5 was a team effort, although the network testing,

implementation and experimentation was solely performed by the author. Chapters 5, 6 and 7 represent

work that furthers the initial source localisation application—this work is solely the contribution of the

author and was developed beyond the collaborative effort of VoxNet.

1.5 Thesis structure

This thesis is organised as follows: Chapter 2 establishes the state of the art in localisation techniques,

with particular emphasis on WSNs. Chapter 3 examines acoustic, range-based self-localisation with

platforms of varying computational capability through in-situ experimentation and simulation. Chapter

4 provides the design and implementation of two iterations of an on-line acoustic localisation system that

is used to localise marmots. Chapter 5 describes the deployment of the acoustic localisation system in-situ

and discusses the challenges towards non-expert adoption of the system. Chapter 6 identifies latency of

data transmission as a key problem in the on-line localisation system and presents two approaches to

reducing this latency: Lazy Grouping and Adaptation. Lazy Grouping is evaluated during this chapter.

Chapter 7 evaluates Adaptation through simulation using experimentally gathered network data and

presents a framework for an adaptive localisation system. Chapter 8 presents future work and concludes

on the work in this thesis.

Figure 1.1 shows the structure of the thesis. This thesis has two distinct, but inter-related paths,

self-localisation and source-localisation. They are indicated on the graph, and the relation between the

chapters is clearly marked. The casual reader may be more interested in self-localisation than source-

localisation. In this case, the relevant parts that should be read are chapters 2 and 3, as they provide

an overview of the self-localisation problem and state of the art with respect to realistic solutions; the

experimental work reflects this position.
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Figure 1.1: The structure of this thesis.

For readers more interested in source-localisation, Chapters 2, 4 and 5 provide a foundation in the

signal processing principles for source localisation, its challenges, and the design and deployment of end-

to-end systems to support it. Chapters 6 and 7 provide strategies to improve the timeliness and robustness

of a self-localisation system based on the work in Chapters 4 and 5.

1.5.1 Acknowledgement of collaborative work

This section details the author’s specific contributions to the collaborative efforts that formed part of this

thesis.

Chapters 4 and 5 include work that was completed as part of collaborative work on acoustic source

localisation at the CENS at the University of California, Los Angeles, from January 2007 to January

2008. The work presented in Chapters 4 and 5 are a result of the author’s contributions to VoxNet and

the CENS acoustic project. The author has contributed to both developmentally and experimentally.

Before the author began collaboration with the CENS acoustic project and subsequently VoxNet,

the acoustic sensing platforms (Acoustic ENSBox) and the EmStar software framework already existed.

The CENS acoustic project has been ongoing since 2002 (or thereabouts), and has seen the development

of two iterations of the Acoustic ENSBox platform. This project has been a collaboration between

several departments at UCLA (through CENS), namely Computer Science, Electrical Engineering and

Evolutionary Biology. CENS’ EmStar project has been running in parallel with this effort (although
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seperately funded).

The work presented in the first half of Chapter 4 is related specifically to the CENS acoustic project.

In the demonstration source localisation system presented in Chapter 4, the author integrated several

pre-written components so they would function as a coherent end-to-end system. This included the

development of an on-node application (integrating an on-line event detector and a TCP-based networking

component), and a server application to receive data from nodes and perform data fusion for position

estimation (according to a reference Matlab implementation). The author also wrote a visualiser to

display the results of position estimation.

The VoxNet project, a collaboration between UCLA Computer Scence, Electrical Engineering and

Evolutionary Biology and MIT Computer Science was awarded funding (and was named VoxNet) in

early 2008. This was towards the end of the author’s collaboration with CENS. Therefore, with respect

to VoxNet, the work presented in the second half of Chapter 4 and 5 of this thesis represents a proof of

concept, first version of the VoxNet software platform.

The main co-workers on VoxNet were Lewis Girod and Ryan Newton. The design of VoxNet and

intended interaction model presented in Chapter 4 was based on discussions between Lewis Girod and

the author. The original design for VoxNet came from Lewis Girod. Lewis Girod also wrote the original

publish/subscribe networking library used in Chapters 4 and 5, which was tested and further developed

by the author (also documented in Chapters 4 and 5). VoxNet makes use of the Wavescope project at

MIT, namely the Wavescope stream processing engine. Both Wavescope and Wavescript, the compiler

for the Wavescope engine is developed and maintained by Ryan Newton and Lewis Girod, and the author

of this thesis makes no claims to development of either the language or the compiler.

In the VoxNet system presented in Chapter 4, the author was responsible for the development and

evaluation of key system components, specifically the real-time data recording functionality (spill to disk),

an interactive system shell to send commands to nodes and receive status updates (the WaveScope Shell),

a file dissemination protocol and a proof-of-concept data stream visualiser. The author also developed a

framework for experimental data gathering, built into the WaveScope shell. This framework was used by

the author to carry out several data gathering experiments, both in-situ, and in controlled experiments.

Some of the experimentally generated results were further used in Chapters 6 and 7 as data traces to

evaluate the performance of the self-organising algorithms. The Dynamic Source Routing (DSR) multi-

hop routing component used in VoxNet was implemented by Thanos Stathopoulos as part of his 2006

thesis entitled Exploiting Heterogeneity for Routing in Wireless Sensor Networks (Stathopoulos 2006).

The author was responsible for integrating the software and providing code changes to support VoxNet

directly gaining access to DSR internals (such as current routes and link quality estimates).
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Chapter 2

Literature review

This thesis is motivated by WSNs that are built to address real-life problems, specifically localisation.

To appreciate the state of the art with respect to localisation and also real-life deployment of localisation

related systems, it is important to understand the recent history of WSNs. Section 2.1 discusses WSNs

from a historical perspective and pinpoints the reasons why real-life research has not mirrored theoretical

work. In Section 2.2, this difference is described by three different views on the WSN design space: the

application-centric, the device-centric and the network-centric. The implication of high data-rate systems

with respect to these views on the WSN design space is considered in Section 2.3.

Subsequently, the localisation problem is considered in detail. Section 2.4 provides an overview of the

localisation process, followed by four sections concentrating on its specifics: range and angle estimation

(Section 2.5), signal detection techniques and challenges (Section 2.6), self-localisation algorithms (Sec-

tion 2.7) and source-localisation algorithms (Section 2.8). Section 2.9 presents the author’s contribution

to localisation algorithm evaluation by means of a comprehensive discussion of localisation algorithm

performance metrics and the proposal of an approach to the evaluation of localisation algorithms.

2.1 Wireless Sensor Networks

Early visions of WSNs in the late 1990s followed the Smart Dust (Warneke et al. 2001) concept, where

thousands or millions of microscopic sensor nodes (or motes) could be scattered like dust over an area, to

sense particular phenomena. Although the nodes were evisaged to be individually resource constrained,

the network would be computationally powerful through distributed, collaborative processing. These

devices would be so cheap that they could be discarded if broken, and failures of individual nodes would

be tolerated by the network, which would heal itself, by re-routing communication links between devices

in the event of failures. The Smart Dust project at the University of California at Berkeley (UCB)

ended in 2001, having provided proof of concept hardware and demonstrations of sub-centimetre sensing

devices. It did not, however, provide any complete, or commercially viable solutions to any specific

sensing applications. The proof-of-concept nodes created were not fully functional, although they did

motivate the creation of the RENE mote (Hill 2003), which was part of a successful controlled vehicle

tracking demonstration using a WSN.

Smart Dust left a legacy of parameters deemed important for WSN design and development: a need

to focus on distribution of processing, network scalability, miniaturisation and power conservation in

homogeneous WSNs. In the years following Smart Dust, many theoretical algorithms and protocols to

support hundreds or thousands of networked sensor nodes have been (and continue to be) developed,

to prepare for future large-scale deployments. Areas of particular theoretical interest have been ad-hoc
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multi-hop network formation and routing, Media Access Control (MAC) schemes, energy management

for node and network lifetime, fault tolerance, data collection and middleware to support distributed

processing.

Areas of engineering interest have been primarily focused on the development of severely constrained,

general-purpose hardware platforms, usually consisting of 8 or 16-bit low power micro-controllers, low

data rate radios up to 250 Kilobits per second (kbps) and Kilobyte (kB) of RAM and program memory.

The earliest generations of these platforms were developed at UCB (Hill 2003, Polastre et al. 2005).

A problem throughout the history of WSNs however, has been realistic deployment. There is far

more research on the theoretical aspects of large-scale wireless sensing than realistic in-situ deployments

of sensor networks. Three reasons for this are:

1. Motivating applications: WSNs need applications to drive development and real deployment

of systems, and to provide requirements and constraints. It is not only difficult to invent such

constraints and requirements for systems development, but also problematic, as this approach could

lead to systems that can only be used in controlled environments and provide limited suitability.

2. Cost: sensing hardware and platforms are expensive, so even deploying tens of devices can be

prohibitive. Furthermore, costs surrounding deployment and maintenance often far outweigh the

price of sensors and sensor nodes.

3. Expertise: WSN systems development requires embedded development and engineering skills in

addition to software systems design skills. This is particularly troublesome when Commercial Off

The Shelf (COTS) solutions do not exist for the motivating application and the research team

consists mainly of computer scientists, rather than engineers.

More often than not, real-life deployments tend to invalidate assumptions made by theoretical studies.

This leads to a situation where little theoretical work can cross-pollinate to real-life, as Raman & Che-

brolu (2008) observed in a critique of the current state of the art in sensor networks. As an example, the

process of WSN deployment is often an unanticipated aspect of theoretical work, yet deploying systems

and making them work in real-life is a key point of evaluation of a WSN system.

2.1.1 Application domains

Generically, the commonly accepted benefits of WSNs to any given application domain are: (1) deploy-

ment of many devices gives a greater spatial resolution of measurements, (2) wireless communication

removes the need for heavy, cumbersome cabling and (3) battery power removes the need for wired power

supplies. The potential to harness wireless embedded sensing is relevant to a huge variety of application

domains, for example:

• Medical: in-hospital monitoring of patient vital signs and location (Malan et al. 2004), posture

monitoring (Wu et al. 2008), predictive health care, in-home monitoring for the elderly (Virone

et al. 2007)

• Scientific: answering scientific research questions and helping improve existing models of phenom-

ena in areas such as seismology (Lukac et al. 2009), biology (Pon et al. 2005), and ecology (Allen
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Figure 2.1: WSNs help support application goals to a greater or lesser extent. This figure shows the
link between application flow and the increase in complexity for WSNs as they encapsulate more of the
application goals.

et al. 2008)

• Military: battlefield detection and tracking (Arora et al. 2005), sniper localisation (Simon et al.

2004), border protection monitoring (Wittenburg et al. 2007)

• Agricultural: crop monitoring (Langendoen et al. 2006), smart cattle fences (Wark et al. 2007)

• Industrial: structural health monitoring (Xu et al. 2004), energy usage analysis, process con-

trol (Khakpour & Shenassa 2008)

• Home: Automated ambient temperature and lighting control (Haenselmann et al. 2007), personal

energy usage monitoring (Kim et al. 2008)

• Emergency services: fire detection (Lim et al. 2007), fire fighter safety (Wilson et al. 2007),

disaster response (May et al. 2007)

• Urban sensing: collaborative sensing and data sharing with respect to the urban environment (Burke

et al. 2006)

In each of these applications, WSNs can either enhance the performance of existing solutions, or enable

new approaches and processing which were previously impossible (or not apparent). The above represent

real motivations to develop and deploy sensor networks.

2.1.2 From dumb to smart sensing

Any application that might make use of a WSN can be broken down into a continuous chain of events: (1)

data gathering, (2) data processing, (3) inference/observation, (4) potential action; this chain is shown

in Figure 2.1.

The most basic use of a WSN within an application is to gather data and report it back to some data

sink for further analysis. This type of network is commonly known as a sense and send network. Sensor

nodes in this type of network are dumb in that the sensor nodes are not required to process any of the
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values they sense, but merely to forward them to the data sink. The rest of the application goals are met

outside of the WSN.

More complex uses of WSNs in applications may push some, or all, of the processing, information

inference and actuation to be made in the network. This is smart sensing, where the network is trusted

to make decisions and inferences based on data it acquires. The complexity of WSNs increases with the

transition from dumb to smart sensing, as shown in Figure 2.1.

The logical aim of smart sensing is to fully automate an application, such that it does not require

human interaction (except to view the information produced)—this is colloquially termed closing the loop.

The added complexity of closing the loop depends on how rigid the application’s goals are. For clearly

defined applications, closing the loop becomes a case of implementation of the specific requirements. Of

course, this is not trivial in itself, and provides potential for many novel approaches.

In contrast, many scientific applications are of exploratory nature—the phenomena being sensed is not

well understood, making it difficult to provide clear goals for automation. In these cases, an iterative or

staged approach may be applied: initially, all raw data is gathered, such that the domain expert (such as

biologist, ecologist, seismologist) can process it and make observations. Subsequently, the domain expert’s

inference can be transferred to the sensing nodes, allowing them to provide higher level observations about

the phenomena. Exploratory research represents the most complex edge of WSN research: goals are not

always clearly defined or understood, and there is a need for the complexity of WSNs to grow as the

scientific understanding grows. As scientific understanding grows, the abstraction level of inferences made

by WSNs can increase, in turn enabling higher level analysis by the user. In this sense, the WSN becomes

an interactive tool for the scientist to use to further understand phenomena under observation (Allen

et al. 2008).

2.2 The WSN design space

Twelve qualitative metrics were presented by Romer (2005) to describe the design space of existing,

deployed WSN applications. The metrics also help to identify broad differences or commonalities between

existing and future WSN applications. These metrics can be categorised into sensor node- and sensor

network-specific properties:

• Sensor Node properties: mobility, size, cost, power source, communication modality

• Sensor Network properties: heterogeneity, deployment process, communication topology, cov-

erage, connectivity, expected lifetime.

The author proposes that there are three views on this design space described by these metrics which

can drastically affect (in some cases over-complicate) the development process for WSN systems. These

views are: application-centric, network-centric and device-centric.

The application-centric view maintains it is the application’s requirements that indicate the software

and hardware functionality which is required to be developed. Therefore, network and middleware pro-

tocols are designed and implemented as they are needed; the services and protocols which are generically

useful will therefore emerge as the number of realistic deployments of WSNs increases. An example

drawn from the literature is the Flooding Time Synchronisation Protocol (FTSP) which was originally
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developed as part of a sniper localisation system (Ledeczi et al. 2005). This approach has gone on to be

the de-facto time synchronisation mechanism in mote-based WSN research, and is integrated into TinyOS

2.x (the most recent version as of writing) as a default service.

The network-centric view focuses on designing generic components for building sensor networks as a

first principle, so that arbitrary applications at arbitrary scales can be accommodated. Examples include

MAC protocols, multi-hop routing protocols, data collection and dissemination protocols. Network-

centric research forms the basis of the early period of WSN research (from the late 90s to early 00s), as

researchers tried to prepare for the reality of cheap devices that could be deployed in their thousands.

The device-centric view builds WSN design choices around an existing hardware platform. This means

the platform dictates the extent to which the applications goals can be met, as well as the types of pro-

tocols which can be implemented on the device. Many WSN platforms created since Smart Dust, such

as the Mica2 and Telos, were optimised for size (miniaturisation) and low energy usage. This comes at

the cost of low bandwidth radios, minimal RAM and Flash memory, and low processing power (micro-

controllers instead of microprocessors). The device-centric view has heavily biased the approach that is

taken in deploying WSNs. By virtue of commercial availability presently, for example highly constrained

sensing devices like the Telos have been adopted as the de-facto general-purpose WSN platforms. Conse-

quently, real-life application functionality is to be fitted to the capabilities of an unreasonably constrained

platform, forcing early optimisation of software and providing limited capability for prototyping software

before or during deployment.

As previously mentioned, these are all views on the same WSN design space, however the network-

and device-centric views impose restrictions which limit their usefulness. The device-centric forces opti-

misation before applications are fully realised, due to device constraints. The network-centric view tries

to produce generic answers without fully understanding the differences between applications that prevent

generality. Both approaches carry an implication that the applications must be fitted to the device, or

that a generic enough set of protocols or approach will be sufficient to describe any possible application.

It is the author’s expert opinion that in order to understand the realistic benefits of WSNs for a par-

ticular domain, it is important to adopt an application-centric view. In application-centric development,

the requirements of the application are the over-riding priority. These requirements do not necessarily

have to be met using a specific approach: it is far more important to provide a working system that

meets the application goals than treating in-network or distributed processing as first principles. Part of

enabling wider adoption of WSNs is about being able to provide meaningful results. After application

needs have been met, the system and platforms can be optimised to meet other criteria in the design

space, such as size and energy consumption.

In spite of the disparity between theoretical and practical sensor network research, many real-life

application-motivated deployments have been successful. Additionally, commercial, industrially-motivated

products have been created. However, both research deployments and commercial platforms tend to con-

centrate on sense and send, leaving most of the application logic at the sink. This is largely due to the

limitations of the devices being used. Real-life WSN work relating to smart sensing is discussed below,

as well as sample commercial dumb sensing products.
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Commercial sensing

Commercial, industrial oriented WSN products tend to follow a sense and send model in gathering data

about low-frequency phenomena (such as temperature or humidity). This data is usually made available

in an on-line fashion for the user, via a web interface, with appropriate visualisations (graphs, etc). The

data is most likely archived into a database for later analysis. Sensor networks in this area tend to optimise

against reliability for routing and data transport, and long network lifetime through low power usage.

Commercial products tend to vary in which communication standards they adhere to and sensor node

extensibility (such as adding new sensors). Some emerging standards exist for lower level communication,

such as the IEEE 802.15.4 standard which defines the MAC and PHY layers. Other standards, such

as WirelessHART, ZigBee and 6Lowpan sit on top of the 802.15.4 layers and provide ad-hoc network

formation, routing and reliable data transfer. Example companies that produce industry-oriented WSNs

are Archrock (Anonymous 2008a), Dust Networks (Anonymous 2009c), Sentilla (Anonymous 2009g) and

Sensinode (Anonymous 2008d). CrossBow (Anonymous 2009b) are the main provider for the most widely

used research-developed sensing platforms, such as IRIS, Imote2, MicaZ, Mica2, Cricket and TelosB.

Smart sensing

Whilst the dumb sensing approach of sense and send logic is most prevalent in real-life deployed WSNs,

there are several examples where sensor nodes perform local data processing or filtering. This approach

to sensing is smart in that the sensor nodes have some degree of intelligence toward the data they are

sampling. However, they tend to be limited by resource constraints imposed by the sensing devices.

For example, TinyDB (Madden et al. 2005) allows nodes to respond to continuous SQL-style queries

to enable more complex data-extraction from a WSN than sense and send. The Tenet (Gnawali et al.

2006) architecture for sensor networks, and before it the Sensor Network Application Construction Kit

(SNACK) (Greenstein et al. 2004) take a tiered approach to WSN building, making sensor nodes the

lowest class of device, and adding multiple microserver class platforms that have a Linux based Operating

System (OS), a 32-bit Central Processing Unit (CPU) and Megabyte (MB)s of RAM to form a backbone

of communication over the network (and to a sink). This approach provides a reconfigurable sensing

framework by defining a clear set of tasks that a sensor node could be expected to perform and pushing

more complex application logic to the microserver.

2.2.1 Implications of real-life sensing

The process of moving WSNs out of simulation and lab experimentation into realistic deployment is

complex, and brings with it many challenges, hence the relatively slow progression of deployments. Some

specific challenges are: deployment cost and effort, deployment environment, the influence of high data-

rate applications, and user interaction. The remainder of Section 2.2 discusses these aspects in more

detail.

Deployment cost and effort

The cost of a deployed WSN is not just the price of the sensor nodes and sensors. The cost of physically

deploying sensors should also be taken into account: tools, mounting posts, equipment testing and

calibration, on-site security measures and manual labour are among the expenses. Sensors and sometimes
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sensor nodes may have to be buried into the ground, or have special platforms erected on which to be

placed. In some cases, the cost of preparing a site for deployment may be higher than the cost of the

hardware being deployed. Additionally, long-term WSNs deployed in outdoor environments will require

maintenance. Examples include battery replacement, repair of sensors/sensor nodes and obstruction

mitigation (for example, cutting back of tree or plant growth that might cover solar panels). Moreover,

packaging and security of sensors is important as sensor nodes need shielding from extreme conditions,

and protection against being stolen or tampered with. Connectors between sensor and sensor node may

easily break, and so must be made robust.

All of the above are costs and challenges which are not immediately obvious when applications are

developed for evaluation in the laboratory environment or through simulation. For this reason, they tend

to be missed or trivialised in many works.

Deployment environment

Deployment of nodes is a time-consuming and sometimes delicate task. The environment in which a

WSN is deployed (dictated by the application) may have many obstacles which absorb, obstruct and

reflect signals of interest. This may affect the quality of wireless links, or the quality of data being sensed

by sensor nodes. As mentioned previously, the environment may change over time, for example in terms

of weather conditions and foliage/obstruction growth. Wireless communication is unreliable in general

and environmental effects can cause unpredictable communication problems. This may lead to missed

deadlines or a perceived lack of responsiveness in WSN systems that require real-time feedback.

High data rate applications

Some applications require data to be gathered at hundreds to tens of thousands of samples a second.

These types of applications cannot be developed as sense and send applications, because the volume of

data is too high. This implies that nodes must perform local data filtering and computation.

This class of applications cannot be easily-described by frameworks that assume low data rates and

low duty cycles (where nodes sleep to conserve energy). The requirements of high data-rate applications

are difficult to meet with resource constrained platforms as they tend to be optimised for reduced energy

consumption (thus low rate sampling), and require optimised data processing implementation (such as

fixed point or integer arithmetic). Limited memory and processing resources make prototyping next to

impossible without including customised hardware. This problem is discussed in more detail in Section 2.3.

Interaction and the non specialist user

Ideally, WSN systems will be deployed by non-experts (that is, non-engineers or non-computer scientist’s).

These users should only be concerned with the application level details of the system: what the data

and information that is coming out of the system looks like. Users should not have to care about issues

related to the network level: it should be assumed that the system is robust enough at a network level

to be able to deal with network formation, reconfiguration and data transfer in a way that is abstracted

from the user.

For the non-expert WSNs need to be easily deployed and initialised and provide suitable means to

allow interaction (to understand the state of the system) whilst the system is running. Many scientific
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deployments will likely be attended in the first instance. In these cases, the scientist may want to use

the network as an exploratory tool. The WSN should be able to support this: particularly tuning and

reconfiguration of software that is running.

2.2.2 Summary

Section 2.2 discussed the gap between theoretical and real-life WSN research, caused by both the difficulty

in building real WSN systems and a device or network-centric view of the WSN design space, rather than

an application-centric view. Device and network-centric views come from the early visions of WSNs as

Smart Dust, and the resource-constrained sensing platforms created alongside this. Many solutions to

WSN application currently begin and end with dumb sensing. The use of a WSN as a scientific tool,

in research applications is a strong motivator for smarter, more intelligent sensing. When systems are

sensing high data rate phenomena, and scientists are in attendance of deployments, there are greater

requirements on in-network processing and timely presentation of results to enable interaction. This is

dicussed further in Section 2.3.

2.3 High data-rate systems and frameworks

High data rate sensing systems are those which sample a phenomena and thus generate data at 100 Hz or

more (Werner-Allen et al. 2008). Phenomena that require high sampling rates tend to be high frequency

phenomena. This is due to the Nyquist sampling rule: to correctly represent a signal of F Hertz, it must

be sampled at least 2F . Therefore, a phenomena of 100 Hz signal must be sampled at 200 Hz, and so

on. Examples of high data-rate phenomena that have been proposed to be sensed using WSNs are:

• Audible acoustics applications: gunshot (Ledeczi et al. 2005) and animal classification and locali-

sation (Ali et al. 2007). Sampling rates are typically in the range of 1 kHz—48kHz.

• Water pressure applications: transient monitoring in water distribution pipes (Stoianov et al. 2007).

Sampling rates are typically from 1 Hz-2 kHz, depending on transient frequencies.

• Seismic/vibration applications: earthquake monitoring (Lukac et al. 2009) and volcano monitoring

and event detection (Werner-Allen et al. 2006) and structural health monitoring (Chintalapudi

et al. 2006). Sampling rates are on the order of 100 Hz-200 Hz.

Several systems which expressly deal with the problem of sensing high data-rate phenomena with

wireless sensing networks have been proposed. In Section 2.3, some of these high data-rate systems and

frameworks are described. Characteristic of all high data-rate sensing systems is that the sensing nodes

generate more data than they can send in real-time to a higher network tier or central controller. The

systems and projects surveyed are: VanGo (Greenstein et al. 2006), Lance (Werner-Allen et al. 2008),

Sniper localisation (Ledeczi et al. 2005), Toad monitoring (Hu et al. 2005), Wisden (Xu et al. 2004) and

NetSHM (Chintalapudi et al. 2006).

In all the applications above, there is either an implicit or explicit notion of timeliness. Most of

the above applications have a conceptual model whereby the user attends the deployment and requires

feedback from the sensor network: in VanGo, the sensor network provides data for the user so that
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they may interactively tune the filtering parameters currently running on sensor nodes, in NetSHM

and Wisden, the user wants quick feedback on any interesting structural vibrations as they occur. The

operation of WSN systems that provide timely results to the user are of interest to the work in this thesis,

especially the processing techniques used to gather and filter data for sending.

There are however, other high data rate WSN systems that do not aim to provide on-line feedback

to the user. An example of this is EnviroMic (Luo et al. 2007), which aims to record a single stream of

audio over severally spatially distributed nodes. These types of system are not considered further.

2.3.1 Gunshot localisation and classification

Ledeczi et al. and Volgyesi et al.’s work on real-time gunshot localisation and classification applications

using WSNs (2005, 2007) dealt with the problem of high data rate transfer by implementing on-node

processing using custom-made hardware. Given that the application requirements are so clearly-defined,

the approach taken by the solution is highly optimised: classification and localisation are specifically

tuned for gunshot characteristics. Raw acoustic data analysis is not necessary for the application, whose

main constraint is providing the estimated location of the target and weapon type as fast as possible.

On-node processing is enabled by custom Field Programmable Gate Array (FPGA) based hardware.

2.3.2 Toad monitoring

The toad monitoring application is motivated by a need for automatic recognition of vocalisations for

frog and toad census (Hu et al. 2005). The application specific goal of the work is similar to that of the

gunshot localisation application: not all data needs to be extracted from the network, only the high-level

inference (existence of cane-toads) need be reported to the user. There are two prototypes presented:

a stargate only system, and a hybrid stargate and mote system. The stargate is a microserver class

platform, equipped with a 32-bit ARM-based microprocessor.

In the stargate-only system, a raw audio stream is sampled at 22 kHz and event detection and

classification is performed on windows of data to detect and classify toads or frogs in real-time. In the

hybrid system, motes cannot perform the necessary classification operations or stream back the raw data

in real-time. Their role is therefore limited to sampling and compressing windows of raw audio, sending

them back to the stargate.

The compression scheme that runs on the nodes destructively gates the raw audio data being sampled,

such that any periods of audio below a certain amplitude threshold are replaced by a single code and

number of samples. Motes are required to sample at 10 kHz in a non-continuous cycle: sample for 15

seconds, compress data and send to sink (30 seconds). To address the problem of only being able to

sample 15 out of every 45 seconds of data, a scheduling algorithm is suggested, where physically close

motes are alternately tasked between sampling and sending data.

2.3.3 VanGo

VanGo (Greenstein et al. 2006) is a system which is designed to capture high frequency phenomena

(sample rates in kHz) using mote devices which are constrained not only by processing capability, but

also network communication bandwidth. The target platform for VanGo is the TMote sky (or TelosB)

platform. VanGo is designed around an interactive model where data is sent from sensor nodes to a
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microserver or sink for further analysis. The user at the sink can experiment with and tune the application

on the nodes at run-time. VanGo is evaluated with two different applications: one for acoustic data

monitoring and tuning, and one for the analysis of electromagnetic activity in the brains of rats.

A VanGo program is composed as a chain of linear filters, which consume and produce windows

of audio data. VanGo has a library of classification, measurement, compression and transformation

filters which were developed for the two motivating applications. Generic filters include: amplitude and

frequency gates, a Finite Impulse Response (FIR) filter and acoustic compression filter (ADPCM). There

also exists an application-specific spike-detector filter which can detect and compress neuron spikes for

the electrophysiological application also exists.

VanGo limits node operations to time domain filters in the following categories: classifiers, transfor-

mation and compression algorithms and measurements. This is because more complex signal processing

operations cannot be performed in real-time (such as the Fast Fourier Transform, which is observed to

run at 1/8th the speed of real-time in one example).

2.3.4 Wisden

Wisden (Xu et al. 2004) is an application-specific system for collection of structural health monitoring

(SHM) data. It is the forerunner of NetSHM (Chintalapudi et al. 2006). The motivating application

is the monitoring of structural vibrations using motes equipped with accelerometers in order to identify

interesting events. The goal of motes in the Wisden network is to detect vibration events of interest, then

sample and compress data before sending back to a central point.

The event detection approach is based on an energy thresholding algorithm. When an event occurs,

the data is compressed and sent to a sink for further analysis. Wisden uses two lossy data compression

techniques: wavelet analysis and Run-Loss Encoding (RLE), where continuous values within a range are

replaced with a single code and number of samples. In experimental evaluation, the Wisden system was

shown to have large latency: in a ten node network, it took 5 minutes to gather 20 seconds worth of

seismic data corresponding to an event. This time lag was noted to be adequate for SHM application

purposes.

2.3.5 Lance

Lance (Werner-Allen et al. 2008) is a framework for high frequency data collection. The motivating

application for Lance’s design was data collection from a sensor network monitoring seismic events around

volcanoes. Specifically, the system aims to maximise the network lifetime by extracting only important

data from nodes in the network, rather than gathering all of the data. Of all of the systems presented

in Section 2.3, Lance is purposely the most generic: it defines a formal framework for high data-rate

collection applications.

A Lance data collection system is built around a network of motes and a single data sink. The basic

application flow is as follows: sensor nodes sample raw data into evenly-sized windows, referred to as

Application Data Units (ADUs). These ADUs are stored locally in flash memory, where they can be

indexed and retrieved upon request from the sink. For each ADU that it samples, a node computes

a summary using a pre-defined summarisation function which it sends to the sink. The summarisation

function is user-defined, and related to the application: an example is computing the mean of the samples
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in the ADU.

At the sink, the summaries received by each node in the network are passed through a linear chain

of policy modules. The policy modules assign value to ADUs, based on the content of the summaries

provided by nodes. An example policy might be: all ADU summaries over a given threshold are valuable.

Each policy module modifies the value associated with a summary before passing it to the next policy

module.

The output of the linear chain of policy modules goes to an optimiser module, which based on their

value and the current energy profile of the network, decides the ADUs that should be scheduled for

collection from given nodes in the network. The goal of the optimiser (and thus Lance) is to: download

the set of ADUs which maximise the total value, subject to the lifetime target (Werner-Allen et al. 2008).

2.3.6 Summary

In all of the high-data rate systems discussed in Section 2.3, there are device-centric constraints imposed

by the capability of the WSN platforms used (typically Mica2 or Telos). This causes a tension between

the application requirements which the WSN researchers are trying to meet and the devices which are

available to perform the processing. Based on the systems discussed above, the main issue for high

data-rate sensing is that devices cannot send the all the raw data they sample (in a timely manner),

but in many cases they cannot perform the processing required to filter it either. One means to relieve

this tension is by adding hardware specific support to the devices to make the platforms more powerful.

This was done by Ledeczi et al. (2005) in the gunshot localisation application, where an FPGA board

is attached as a custom add-on board to the mote device, effectively treating the mote as a smart, time

synchronised radio. The other two approaches to resolve the tension are to either compress the data using

some lossy or lossless mechanism, or decide which data is useful and send only that. VanGo and Wisden

supports both of these approaches: VanGo allows local filtering and data compression, whilst Wisden

detects events and then compresses them before sending. Other systems choose one approach or the

other: the gunshot localisation application, Wisden and Lance only send useful data, whereas the toad

monitoring application chooses lossy compression of signals. However, the extent to which data can be

filtered and transformed is severely limited by the devices being used. For example, VanGo asserts that

only optimised time domain filters may be used on the node in order to maintain real-time functionality.

Similarly, because the toad monitoring application cannot perform classification on the nodes, it resorts

to data compression, meaning the node can only non-continuously process 15 seconds of data out of every

45 seconds.

Some applications may not be able to deal with compressed signals, especially if signal processing

operations are going to be performed after the data has been received.

Given the above problems, it is not clear that the device-centric approach to the high data-rate WSN

design space is justified in the context of real-life applications: the toad monitoring application runs

perfectly on stargate class nodes, and the addition of Mica2 motes seem to drastically reduce the quality

of the sensing that can be performed. Wisden justifies the use of mote class devices by virtue of their

form factor, not only in terms of the device, but also their packaging (and potential associated battery

size).
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It is apparent that within the wide class of high data-rate applications, there is a subtle difference

between the needs of different phenomena: acoustic applications tend to have higher data rates (order of

kHz), and as such have memory, processing and timeliness needs which are more stringent.

The device and network-centric views have far-reaching consequences not just for the general WSN

design space, but specifically for the design space associated with localisation in WSNs. Examples of

this with reference to theoretical and practical localisation will be seen throughout the remainder of this

chapter.

2.4 Localisation in WSNs

In a physical context, localisation is the process of determining the position of a target based on infor-

mation that can be gathered about it by observers. Specifically in WSN systems, localisation holds a

dual role: firstly, determining the physical positions of nodes in the network (node-localisation) and sec-

ondly, determining positions of other phenomena of interest relative to the network (source localisation).

Self-localisation, where node-localisation is carried out by nodes in the network is especially important

for ad-hoc networks where the positions of each node in the network cannot be manually acquired. This

may occur because of limited time during deployment, or because de-facto position estimation hardware

does not function correctly in the environment (for example, GPS receivers). Source localisation has

application in a variety of areas, many of which are complementary to the advantages wireless networked

sensing offers. For example: animal localisation and tracking (for ecological research), person tracking

and service proximity (in office or medical environments), asset tracking (in warehouses), gunshot local-

isation or vehicular tracking (in battlefield environments), speaker localisation (as part of smart offices

or for lectures and presentations), smart fences (for border monitoring/enforcement) and seismic event

localisation (for earthquakes). In any of these examples, a network of devices, either scattered or installed

into an infrastructure provide a compelling way to monitor phenomena and detect events.

The localisation process can be thought of as cooperative or passive (Savvides et al. 2004). When

targets assist observers in the localisation process (for example by exchanging data or responding to

messages), it is cooperative. Self-localisation is the most distinct example of cooperative localisation.

When targets do not assist in the localisation process, they are passive—this style of localisation is more

often associated with localisation of external sources, such as animals or vehicles. In general, a localisation

algorithm transforms the input data (ranges, angles, known positions) into relative or absolute position

estimates of one or more unknown signal sources. The input data provided to a localisation algorithm

component will typically be the ranges and bearing estimates made by each node in the network, as well

as any pre-determined node positions.

The high-level localisation process is shown in Figure 2.2. Observers sense data about a target,

which along with the observers’ positions are used as input to a localisation algorithm. The localisation

algorithm produces an estimate of the position of the target. The type of data that is sensed about a

target will vary depending on the context of the localisation. It could be electromagnetic signals which are

being bounced off a target by an observer (as in RADAR), or it could be acoustic signals emitted by the

target and detected by the observers (for example, a calling bird). In both self and source localisation in

WSNs, the observers are sensor nodes, equipped with sensors enabling them to sense the signals emitted
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Figure 2.2: The localisation process. Input data of ranges, angles and prior positional knowledge of
observers can be used as input to a localisation algorithm. The positional output may be used for input
to a further iteration of a localisation algorithm.

by targets (for example microphones or hydrophones). In self localisation, the targets are also sensor

nodes, but in source localisation, the target is external to the network.

2.5 Range and angle estimation

The first part of the localisation process involves gathering observation data about targets, which can be

used as input to the localisation algorithm. These observations are usually made by estimating spatial

or angular separation between observer and target. Therefore, most approaches can be categorised as

either distance or angle based. Typically, the target will emit or reflect some characteristic signal which

can be detected by the observer and used to estimate the distance or angle between them. These signals

will most likely be electromagnetic or acoustic. Signals in the visible spectrum which can be sensed in

two dimensions (images) by cameras are not considered in this chapter. The interested reader is directed

to Barton-Sweeney et al. (2006), which describes the technique of estimating distance between devices

using epipoles.

The purpose of Section 2.5 is to highlight the various methods of range and angle estimation which have

been presented in the literature for both self and source localisation. From this, the relative complexities

and benefits can be understood. A taxonomy of different approaches to range and angle estimation

is shown in Figure 2.3. For range estimation, techniques are based on either the speed of a signal’s

propagation, its strength at the observer, the interference between signal or the average communication

radius of the signal. For angle estimation, approaches are based either on a closed-form combination

of Time difference of arrival (TDoA) and Least Squares (LS) Maximum Likelihood (ML). Connectivity

and interferometry approaches can only be used in a self-localisation context, whereas all the other range

and angle approaches can be used in both a self-localisation and localisation context. Connectivity-based

approaches are not considered in this thesis: they provide only a coarse estimate of range that is not

applicable to many real-world applications, and certainly not any which require accurate self-localisation.
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Range

ToF RSS Interferometry Connectivity

Angle

TDoA & LS ML

Figure 2.3: A taxonomy of the different range and angle estimation techniques.

Figure 2.4: The ranging and angle estimation processing pipeline.

For mechanisms which involve measuring either the propagation strength, speed or interference pattern

of a signal to estimate distance or angle, there is a basic processing pipeline: (1) a signal is emitted, (2)

this signal is detected and (3) the signal is processed to produce a distance or angle measurement. This

pipeline is shown in Figure 2.4.

The performance of these mechanisms are quantified by three metrics: accuracy, precision and oper-

ational range. Accuracy describes how the estimate matches the true quantity (such as range, angle or

position), and precision describes the width of the residual error distribution observed through repeated

estimates. A high accuracy ranging mechanism will give a close match between the estimated and true

distance between two devices (or the true distance with a systematic bias). The quantification or classi-

fication of accuracy (i.e. how accurate) is relative to the requirements of the measurement. For example,

centimetre-accurate distance estimation between two devices that are several hundred metres apart could

represent a high accuracy, but a low accuracy if the devices are only several centimetres apart.

The measurement of precision assumes that the estimation mechanism exhibits a normal distribution

of error given repeated measurements; therefore taking the mean of multiple samples will give a more

accurate estimate. A high precision estimation mechanism will require fewer samples than a low precision

estimation mechanism to be taken between target and observer to ensure that the sample mean is close

to the actual mean of the estimate distribution. Precision can be quantified using the standard deviation

of the estimation mechanism: if the standard deviation is low, then the width of the distribution of

residual error is narrow, implying a higher precision. As previously with accuracy, the measurement of

high precision is relative to the actual quantities being measured.

Operational range describes the distance over which the ranging implementation can be used. Ob-

viously, this depends on the environment in which ranging takes place, but has an effect on the density

at which sensor nodes can be deployed, for example. Of course, it is possible that both accuracy and

precision can change over distance. It is convenient to classify both the degree of accuracy and precision

of an estimation mechanism relative to the average spacing of devices or the mechanism’s maximum

operational range (angle or distance).

22



CHAPTER 2. LITERATURE REVIEW

(a) Relative Time of Arrival (b) Time of Arrival

(c) Two Way Ranging (d) Round Trip Time

(e) Time Difference of Arrival

Figure 2.5: The five different approaches to ToF estimation.

In the rest of Section 2.5, Time of flight (ToF), Received Signal Strength (RSS), interferometry and

Angle of Arrival (AoA) approaches are considered.

2.5.1 Time of Flight estimation

Time of flight (ToF) approaches estimate the distance d between target and observer by measuring how

long a signal with known propagation speed v takes to travel between them. This is expressed as

x = vt (2.1)

where t is the time taken. Both electromagnetic and acoustic signals can be used to infer separation;

commonly used signals are Radio Frequency (RF), ultrasonic and audible (wideband) acoustic. These

are discussed further in Section 2.6.5.

There are five different methods to estimate ToF: Relative time of arrival (RToA), Time of arrival

(ToA), Two-way ranging (TWR), Round trip time (RTT) and TDoA. These methods are differentiated

by (1) whether they require cooperation between observer and target, and (2) how cooperating stations

are synchronised. Each of these approaches are now discussed in more detail.

Relative Time of Arrival

The Relative time of arrival (RToA) approach uses the relative difference in propagation of two signals in

order to measure the distance. Typically, this means that a radio and acoustic signal are sent from the

target at the same time. Because the radio and acoustic signals propagate at different speeds (speed of
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light and sound respectively), they will arrive at the listener at different times (the radio signal is treated

as arriving instantaneously). The listener must detect the arrival times of both the radio and acoustic

signals and use the difference between them to calculate the distance between itself and the sender. RToA

is implicitly synchronised at the sender, by assuming that both signals are sent at ts = 0.

The accuracy of the ToF estimate is affected by (1) how accurately the observer can detect the RToA

of the signals and (2) how accurately the target can send both signals at the same time (or at some

known offset from one another). The RToA approach is common in constrained embedded systems. For

example, the PushPin lateration system (Broxton 2005) uses a pinger which generates both ultrasonic

and light events at the same time; Calamari (Whitehouse 2002), Resilient Localisation (Kwon et al. 2005)

and (Simon et al. 2004) all use acoustic and RF signals on the Mica2 platform.

Time of Arrival

In the Time of arrival (ToA) approach, both target and observer are synchronised to a common time-

frame. The target sends a signal, identifying the time it was sent, and the receiver records exactly when

the signal arrives. The ToF is then calculated by subtracting the send time from the receive time. The

accuracy of the ToF estimate is affected by (1) how accurately the observer can detect the ToA of the

signal and (2) how accurately the two devices are synchronised. The higher the frequency of the signal

to be detected, the more accurately the devices must be synchronised, and the more the observer must

sample the channel that the signal is being sent on (to detect its ToA). For example, given that an RF

signal will propagate at the speed of light, a ToA detection error of 1ns equates to a range estimate error

of 30cm. If the ranging accuracy required is around a metre, synchronisation between the two nodes must

be at least within 3ns (Savvides et al. 2004).

The most well-known implementation of the ToA approach is the Global Positioning System (GPS).

Each satellite transmits a coded radio signal which is picked up by the GPS receiver, which simultaneously

replicates the signal itself. GPS receiver clocks become highly accurate by locking-on to the satellites

high accuracy signals. The physical distance between the two is worked out by calculating the phase

difference between the signal the GPS receiver is creating and the signal which is being received by the

satellite, and multiplying it by the speed of light.

Two Way Ranging

Two-way ranging (TWR) is a cooperative ranging mechanism, where one node emits a signal and the

other node replies with a signal. The target keeps a track of how long it took from sending its own signal

to receiving the reply (tA), and the observer keeps track of how long it took from receiving the first signal

to sending its reply (tB). The ToF t̂ is then inferred by

t̂ =
1

2
(tB − tA) (2.2)

The accuracy of the ToF estimate is affected by how accurately the observer and target can detect

ToA of their signals. There are two examples of this approach in the WSN literature: the BeepBeep (Peng

et al. 2007) and Two-Way Time Transfer (TWTT) (Lanzisera et al. 2006, Lanzisera & Pister 2008).
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Round Trip Time

In Round trip time (RTT) distance estimation, a signal is bounced off the target by the observer. The

time taken for the signal to return to the observer divided by two gives the ToF. This approach does not

require target cooperation, and is not based on any monitoring any signals the target emits. The main

challenges associated with the approach (and its accuracy) are related to the observer’s ability to detect

the reflected signal, which may be weak due to environmental effects, and also subject to multi-path and

reverberation effects.

There are several well-known implementations of RTT in current usage: ground RADAR (for tracking

aircraft, for example), air plane altimeters (Anonymous 2009a), as well as proximity sensors, and domestic

laser (Anonymous 2009d) or ultrasonic range-finders (Anonymous 2009e).

Time Difference of Arrival

Time difference of arrival (TDoA) estimates distance by measuring the difference in arrival time of a

signal at spatially diverse sensors. Figure 2.5(e) on page 23 shows a signal emitted at t0 passing through

a sensor network, arriving at each sensor node at times t1, t2 and t3 respectively. The relative ToFs

between each of the sensors can be determined and then used to estimate the distance between them.

The sending time of the signal does not need to be known, as it is only the relative difference in arrival

time which is required to estimate relative distance. Although the example in Figure 2.5(e) on page 23

shows a signal arriving at different sensor nodes, it is also common for TDoA techniques to be used on

an array of sensors co-located on a single device. For example, an array of microphones connected to a

single data acquisition board. In this case, the spacing between the sensors is already known, and so can

be used to estimate the AoA. This is discussed further in Section 2.5.4 on the following page.

A requirement on TDoA is that the channels being compared are synchronised to the same time frame.

In cases where sensors are physically connected to the same channel, time synchronisation is implicit,

but in other cases a suitable time synchronisation mechanism must be employed. Therefore, the overall

accuracy of TDoA estimates between nodes is affected by (1) how accurately each observer can detect

the arrival time of the signal and (2) how accurately time-synchronised the sensors are. Thunder (Zhang

et al. 2007) uses acoustic signals emitted from a mobile speaker to create events in a time-synchronised

mote network.

Summary

Each of these approaches to ToF estimation have different requirements on target and observer in the

manner that devices are synchronised. The method that is most commonly used for constrained WSN

devices is RToA, although when suitable time-synchronisation is available, ToA approaches using acoustic

signals are feasible (Girod 2005). TWR represents a compelling way to estimate range with little or no

inter-node synchronisation, at least for acoustic methods (Peng et al. 2007). TDoA is a non-cooperative

approach to ToF estimation, which is suitable when nodes cannot generate their own signals and must

rely on an external device to do it (Zhang et al. 2007).
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2.5.2 Received Signal Strength/Signal Energy

Range estimation approaches based on received signal strength or energy take advantage of the fact that

an emitted signal spreads over a greater area the further it gets from its source. This means the intensity

of the energy becomes reduced with distance, as it is covering a greater area. The inverse-square law

dictates that the strength (or energy) of a signal is inversely proportional to the square of the distance

from the source of the signal (this law is true for both electromagnetic and acoustic signals). The strength

of a signal measured by an observer can therefore be used to estimate the distance to the target (or signal

source), given sufficient reference information by which to calibrate measurements. Reference information

may be the strength that the signal was originally emitted at, or a priori reference measurements.

On many WSN platforms, the instantaneous Received Signal Strength (RSS) for radio communications

is made available in a hardware register, which can be read and used in software. Because the transmission

strength at the sending device is also known, the distance between observer and target (in this case sender

and receiver) can be calculated. The approach of using RSS for distance estimation is highly desirable in

self-localisation, because it can be gathered using hardware which is already required for communication.

As a result, several theoretical works in localisation assume distance estimation by RSS.

In real-world environments however, RF signals are highly affected by problems such as multi-path,

shadowing and channel fading (Patwari et al. 2005). Empirically, Received Signal Strength Indicator

(RSSI) has been found to be an inaccurate indicator of distance (Whitehouse 2002, Lymberopoulos

et al. 2006). The Mica2 and Telos WSN platforms were used in the experimentation of both works above.

Section 2.6.4 on page 32 discusses the specific effects of interference on signal propagation (both acoustic

and electromagnetic).

2.5.3 Interferometry

Interferometry can be used to estimate distance between targets and observers based on interference of

signals they emit. The interferometry approach requires that two cooperating devices emit signals at

slightly different frequencies. The composite waveform produced has a low beat frequency interference

pattern, which can be used to infer the distance between them. An interferometric ranging system was

implemented in (Maroti et al. 2005), using RF communication between Mica2 motes. The interference

patterns of two transmitting devices were observed by two other devices. In this case, the relative

phase offset between two receivers depended on the four distances between the two transmitters and two

receivers. In measuring the phase offset at different carrier frequencies, the linear combination of the four

distances was calculated. In an ideal scenario, range estimates were shown to have as little as 3cm error

at ranges up to 160m. However, it has been observed that interferometry is highly likely to be affected

by multi-path conditions present in many obstructed environments (Girod 2005).

2.5.4 Angle of Arrival

Angle of Arrival (AoA) (AoA) is an estimate of the angle at which a signal of interest arrived at an

observer. Like range estimates, AoA estimates form the basis of data to be used as input into localisation

algorithms. The AoA is described by one parameter in two dimensions: the azimuth (θ), which is typically

measured in degrees or radians. In three dimensions, the AoA is really a Direction of arrival (DoA), and
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Figure 2.6: This diagram shows the relationship between azimuth θ and zenith φ angles with respect
to a sensing array’s geometry and an unknown sound source. Angles are derived from the centre of the
sensing array, which is assumed to be (0,0,0). Note that the sensing array could be a set of co-located
sensor nodes, or a single node with multiple sensors.

is described by the azimuth and zenith (θ and φ, both measured in radians or degrees). Figure 2.6 shows

both azimuth and zenith with respect to the central point of a sensing array’s geometry (which could be

several sensor nodes, or a single node with multiple sensors).

To avoid confusion, AoA and DoA are used synonymously throughout this chapter, regardless of the

dimensionality considered. It is important to note that unlike range estimates, angle estimates are made

relatively to the orientation of the observing device. This means that in order to translate these relative

angle estimates to a global frame of reference (that is, the whole sensor network), the relative orientations

of nodes in the network must be known.

Localisation algorithms can make use of angle estimates when range information is not available, or

potentially highly inaccurate. A good example of this is source localisation where the time of arrival of a

signal is difficult to detect (due to the complexity of a given signal), and lacks coherency (this is discussed

further in Section 2.6.4 on page 33). Angle and range estimates can be used together in self-localisation

algorithms to help remove outliers and reduce density requirements of network deployments (Girod 2005).

This thesis makes use of, but does not innovate in, localisation based on DoA estimates. Therefore

it is important to describe these techniques, but it is not necessary to go into great mathematical detail

except where relevant.

In general, approaches to angle of arrival estimation are based on either Maximum Likelihood (ML)

or TDoA and Linear Least Squares (LS) estimation. These approaches are detailed below.
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TDoA and LS

Section 2.5.1 showed that TDoA could be used to estimate the relative distances between sensor nodes

(or several co-located sensors on a node) by finding the difference in arrival times between a signal which

all nodes detected. When the relative positions of all sensor nodes (or co-located sensors) is known, the

TDoA values can be used to estimate the AoA relative to the centroid of the geometric shape created by

the positions of the sensors. This is done by using the relative TDoAs and known positions of the sensors

as input to a closed-form Least Squares (LS) system. The system is solved for the unknown AoA relative

to the known geometry of the sensors.

LS is a commonly used approach for solving closed form, linearised equations because there are well-

known approaches to pose the and solve the problem using matrix notation and manipulation techniques.

Least Squares is discussed more thoroughly in Section 2.7.1 with respect to lateration.

The accuracy of a TDoA/LS approach is limited by how accurately the arrival time of the signal can

be estimated at each sensor. Approaches to signal detection are discussed in Section 2.6. The software

to support self-localisation on the Acoustic ENSBox platform (equipped with a tetrahedral array of four

co-located microphones) was implemented an acoustic Angle of Arrival algorithm in 3D using a TDoA/LS

approach (Girod 2005). AoA was resolved with a ±2 degree azimuthal accuracy (with standard deviation

of 0.96 degrees). Another approach is presented in Yao et al. (1998).

The TDoA and LS method of calculating AoA is a two-step method, as it firstly calculates the relative

arrival times between all the sensors, and secondly solves a system of equations using a LS approach to

find the AoA (for azimuth and potentially zenith). The Maximum Likelihood approach to AoA estimation

however operates in a single step, directly on the raw sensor data. This distinction is important when

considering multiple targets.

Maximum Likelihood

Maximum Likelihood (ML) is a general statistical approach to fit a parametrised mathematical model

of data to empirical observations. ML attempts to find the most likely parameters for the mathematical

model given the input data. For AoA estimation, the ML approach essentially finds an estimate of the

AoA which is most likely given the input data. The model used by ML for signals sampled at each sensor

node (or co-located sensor) is of the actual signal plus a Gaussian noise component. It is assumed that

the noise component is uncorrelated, but that the signal component at each sensor is highly correlated.

The classical example of ML-based AoA estimation is the time-domain delay-and-sum beamforming

filter (Birchfield 2004). In this approach, a window of data from all sensor channels being used to estimate

DoA are iteratively delayed relative to one another, and summed at each iteration. This approach is also

called steering. The energy of the summed signal at each iteration can be calculated, and the point at

which maximum energy is found indicates the point at which the signals in each channel most match.

Since the relative delays correspond to an angle, once the maximum energy is found, so is the AoA

estimate.

It has been noted that the classical time-domain approach is not necessarily suitable for wideband

signals (such as audible acoustic signals), prompting frequency domain-based ML approaches (Chen

et al. 2002a). In actually implementing a frequency domain ML solution, it is necessary to apply the
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Figure 2.7: The data of an AML vector shown in a polar plot. Numbers around the outer circle represent
the angle of arrival, relative to the centre of microphone array on the sensor node. Inner circles represent
varying degrees of likelihood, scaled between 0 and 1. In addition to the main (most likely) beam at
around 65 degrees, this particular plot shows weaker side lobes which are indicative of spatial aliasing (at
135, 210 and 310 degrees respectively).

Discrete Fourier Transform (DFT) to convert into the frequency domain. This causes edge effects which

mean that an exact ML solution for finite length data does not exist. To address this, an approximation

of the ML called the Approximated maximum likelihood (AML) algorithm (Chen et al. 2002a).

When transformed into the frequency domain, the signal is binned into frequency bands. Between

each channel, the difference in phase information is a function of the DoA of the source. The AML

solution finds the largest magnitude of energy across all frequency bins and channels in an equivalently

to the delay and sum beamforming operation. The result of the AML algorithm is a likelihood vector

J , each element of which refers to a specific AoA. The value at each element is the likelihood, thus the

ML estimate is the maximum value of J . The likelihood vector is often presented as a polar plot, as in

Figure 2.7. Another example of a frequency-domain ML based AoA algorithm (for wide-band sources) is

the MUSIC algorithm (Tung et al. 1999).

Signal propagation and sensor geometry challenges

Assumptions about the propagation of signals and the geometric configuration of sensor nodes (or co-

located sensors) affect the accuracy of AoA measurements.

AoA algorithms make assumptions about the behaviour of signals as they propagate from the target (or

source). Unless explicitly specified, algorithms make a far-field assumption about the signal propagation.

The far field model of propagation assumes that the wavefront of the signal is planar, meaning it will

arrive at all sensors at the same angle. However, signals that are emitted close to the sensors follow the

near-field model of propagation, in which the wavefront is curved. This means that the wavefront of the
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signal will hit the microphones at different angles (and thus times) than would be expected for a planar

wavefront. This will cause inaccuracies in time-delay estimates which will lead to inaccuracies in AoA

estimates.

In addition to signal propagation assumptions, the accuracy to which the locations of sensor nodes

(or co-located sensors) are known will affect how accurately AoA can be determined. Additionally, if

sensor nodes or co-located sensors are placed too far apart, time-delay estimates may be inaccurate due

to lack of coherence of the emitted signal between sensors (this is discussed in detail in Section 2.6.4).

However, if the sensors are placed too closely together, a phenomena known as spatial aliasing occurs.

This happens when the frequencies whose wavelengths are greater than the separation between sensors

will be aliased to lower frequencies. According to (Ali et al. 2007), the highest frequency Fmax that can

be detected without aliasing is

Fmax = v/(2x) (2.3)

where x is the distance between sensors and v is signal propagation speed. This is analogous to the

Nyquist rate, which dictates that signals of frequency f must be sampled at 2f to avoid aliasing to lower

frequencies. The effects of spatial aliasing effectively limit the size of co-located sensor arrays, dependent

on the frequencies of interest of emitted signals.

2.5.5 Summary

Section 2.5 has presented the various techniques of range and angle estimation used in self and source

localisation in WSNs. Whilst there are many different ways to determine the distance and angle between

target and observer, most approaches are limited by the accuracy of the time synchronisation required,

and the ability to determine the start of the signal of interest.

2.6 Event detection

A significant contributor to the accuracy of a range or angle arrival estimatation technique is signal

detection. For ToF estimation, determining exactly when a signal is sent and received will directly

impact the range estimate. For AoA estimation, event detection indicates where the window of data

which is being used starts. How accurately emitted signals can be detected by an observer is affected by

how distinct the signal is against background noise and whether the observer has a prior knowledge of

the signal that is being emitted. Obstacles in the environment which block the path between target and

observer or cause interfering echoes can also cause difficulties, as well as atmospheric effects which affect

the propagation speed of signals.

Signal detection approaches are typically based on correlation or transient energy. Correlation tech-

niques rely on a prior knowledge of the signal to compare against: they are computationally complex, but

provide accurate results. Energy based approaches require less processing (making them more suitable for

real-time operation), but provide less accuracy when the signals being detected are not distinct against

background noise. Section 2.6 discusses signal detection techniques used in the literature, as well as some

of the factors which affect the accuracy of these detections.
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2.6.1 Correlation-based event detection

The classical approach to signal detection in a channel is that of a matched filter, where the sampled signal

is cross-correlated with a reference version of the signal. The output of the matched filter is the correlation

of the two signals as a function of time, showing the points at which the sampled signal best matches

the reference signal. The cross-correlation function must be analysed to determine where the where the

signals best correlate: this should theoretically be the onset of the received/sampled signal. This can be

used to determine the exact point in time (or samples) that the signal was received, relative to the time

sampling started. If this time can be correlated with a sending time for the signal, then the ToA of the

signal can be determined. A problem here is locating the point in the correlation function corresponding

to the ToA of the direct path of the signal, because this may not be the strongest correlation peak (due

to multi-path and reverberation). This problem is addressed by Girod (2005) by using accurate time

synchronisation between devices to focus the search into the expected part of the signal based on when it

was sent, thus increasing the likelihood that the local maxima of the correlation function corresponds to

the global maximum. Flanagan (2007) uses the Fast Fourier Transform (FFT) of the correlation function

to detect peaks. Alternatively, a peak-to-peak maximum approach is used by Peng et al. (2007).

The cross-correlation approach is computationally expensive, and requires two stages of computation

(correlation, then peak detection). This means that the approach is not ideal for performing in real-

time unless it is used with narrow band signals with a clearly-defined centre frequency, where the phase

information can be directly manipulated (wideband and narrowband signals are further discussed later

in Section 2.6). Because the cross-correlation approach requires a reference signal, it is not suitable when

the events that must be detected are not controlled: this is likely the case when ranging and localisation

is not co-operative.

2.6.2 Energy-based signal detection

Monitoring the energy of the signal in the channel in order to determine whether an event of interest

has occurred or not is a computationally efficient approach to signal (or event) detection. Unlike cross-

correlation, this approach is suitable for performing in real-time on many embedded devices, and is useful

when it is not suitable to cross-correlate with a reference signal (for example, one does not exist).

A smoothed, windowed average or instantaneous measurement of the energy in the channel is con-

stantly computed, and when this energy goes above a certain threshold, a detection is assumed. To make

sure that these detections are not false positives, consistency checks can be applied such as checking the

amount of time the signal spends above the threshold.

Transient acoustic signals (opposed to electromagnetic signals) with a large amount of energy at

their onset are readily detected using energy based techniques. The classic example here is a gunshot,

which produces a large, wide-band transient signal whose onset is easy to distinguish against background

noise. This approach has also proved successful with both bird (Trifa et al. 2007) and animal calls (Ali

et al. 2007), as well as gunshots (Ledeczi et al. 2005).

Some approaches use a static threshold on energy to compare against. This is not ideal for realistic

situations as the energy will vary based on how far away a sensor is, and how loud the signal is. Instead,

an adaptive approach to energy-based channel monitoring is more appropriate. The example drawn here
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is by Trifa et al. (2007). In this approach, the noise in the channel is constantly estimated using two

Exponentially Weighted Moving Average (EWMA) filters, for mean and variance, assuming the noise

in the channel is Gaussian. Any significant deviations from the estimate of noise level (computed from

a pre-determined threshold) are flagged as events of interest. To provide application specific filtering,

only the energy from pre-determined frequency bands are used in estimating noise or events. The energy

bands of interest are determined by the characteristics of the acoustic phenomena. The energy of the

signal is determined in the frequency domain, by taking the magnitude of the sum of the pre-determined

frequency bands of interest.

Several tuning parameters are provided to allow the event detector to be adapted to various types of

signal:

• Hysteresis period: how long to wait until re-estimation of noise occurs

• Initialisation period: amount of samples to consider in order to initialise the noise estimate.

• Adaption rate: rate of decay of the EWMAs (for signals with quick or slow onset)

• Frequency bands: the frequency bands to filter and subsequently identify the channel energy of

• Miscellaneous parameters: FFT size, samples per window (energy calculations), sample rate

Several factors effect the accuracy of event detection techniques. These are related either to the

environment in which the signals are being emitted, or how the signals are being emitted and detected.

The rest of Section 2.6 discusses these issues.

2.6.3 Sampling frequency

In the time domain, the frequency at which an observer is sampling a channel for the presence of a signal

provides a natural limit to the accuracy of ToA detection. The accuracy of estimates will be quantised

to the limits of the sampling (Lanzisera et al. 2006). However, it is possible to make use of the duality of

the time and frequency domains to interpolate signals, and thus process them with sub-sample accuracy.

This approach is taken by Girod (2005) in the ranging algorithm for the Acoustic ENSBox. Interpolation

is readily performed by padding a frequency domain signal with zeroes before converting it back to the

time domain. Not only is this method useful but it is vital when the natural sampling rate is not high

enough to provide the required accuracy of onset detection. This occurs when the signal propagation

speed is high (such as the speed of light for electromagnetic signals).

2.6.4 Environmental effects

As discussed in Section 2.5.2 on page 26, in an environment with no obstacles (free space), the energy of

a signal emitted by a target spreads out as it travels further from the source. However, this ideal model

of propagation is affected by the physical environment in which the signal is emitted. Signals attenuate

due to absorption from obstacles in the environment, or varying atmospheric conditions (such as relative

humidity).
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Reverberation

Obstacles in the environment reflect emitted signals, causing reverberation (echoes or multi-path) of the

signal which interfere with the original signal. Reflected signals can have a constructive or destructive

influence on the original signal, that is they may increase or decrease the strength of parts of the signal.

Reflected signals may interfere with the original signal and cause ambiguity in detecting its ToA. This is

because the strongest signal sensed may not correspond to the first (direct) path between observer and

receiver. This also provides significant potential error for multiple false detections when using energy

based approaches to event detection. This is a similar effect to non-line of sight (discussed below),

although it is difficult to differentiate between the two. Indoor environments are more reverberant than

outdoor environments, due to the amount of reflective surfaces present. The amount of energy that gets

reflected when a signal hits a surface can vary from 10-90% dependent on the material (Chen et al. 2002b).

In an outdoor open space, signals are free to propagate naturally, and grassy environments tend to absorb

rather than reflect signals, reducing significantly any multi-path effects. Because the space is open, any

reflections quickly lose energy over space (unlike confined, indoor spaces).

Non-Line of Sight

ToF ranging and AoA estimation rely on having line of sight between target and observer. This is

because the actual distance is the direct path between the two. If the direct path is blocked, the signals

the observer receives will be those which are the result of reflections, and thus took a longer path to

arrive. If these are used to estimate distance, the will provide over-estimates. However, non-line of sight

conditions are difficult to identify, as they will not affect the distribution of error in ranging estimates,

just provide a bias (Girod & Estrin 2001). Detection of NLoS is not a trivial problem, and in localisation

systems requires filtering at a level above data gathering in order to be resolved. For example, the self-

localisation algorithm used by the Acoustic ENSBox (Girod 2005) attempts to detect NLoS by dropping

range and angle estimates from nodes which are greater than 10% of the reverse path.

Temperature/humidity effects

The speed of sound increases as the square root of the absolute temperature. For acoustic waveforms,

the combination of relative humidity (RH) and temperature affect the speed of sound, and thus a signal’s

wavelength. This means that if a certain level of RH and temperature is assumed in computation, signals

may be out of phase. This can affect narrowband operations that operate directly on phase (Bohn 1988).

The effects of RH and temperature in combination can make around an 8% difference to the speed of

sound, when comparing 0% RH and temperature of 5◦C with 100% RH and 40◦C. RH also has an effect

on the absorption of sound in air, which can cause signal attenuation (the magnitude of which is relative

to the frequency of the signal). Compensation for these variables may reduce error in range estimation.

Signal coherence

Previously in Chapter 2, the spacing of sensors has been discussed for TDoA and AoA in both sensor

nodes and co-located sensors on a single node. The limit on how closely sensors could be placed together

(based on expected frequency of signals being detected) was discussed in Section 2.5.4 on page 29. When

sensors are placed too far apart, the signals that they sample and detect may lack coherence, that is they
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have become dissimilar due to propagation. Coherence describes how correlated two signals are with

respect to their frequency components (Ash & Moses 2005). This will have has an effect on the quality

of cross-correlations (for time lags) for AoA estimation of unknown sources, where a reference signal is

not defined. In these cases, widely separated sensors may experience low correlation when determining

TDoA. This in effect means that for signals which do not have an easily identifiable onset (in terms of

energy), TDoA may be an unreliable way of estimating location. Experiments with different Pseudo-

random noise (PN) chirps found that both signal coherence and signal power degrade with distance, but

at different rates for different signal frequencies (Ash & Moses 2005).

2.6.5 Signal types and detection complexities

The type and bandwidth of a signal affects how easy it is to perform event detection. The bandwidth

of a signal is measured by the ratio of its highest to lowest frequency components (Chen et al. 2002b).

RF signals are considered narrowband because the bandwidths they operate in are generally narrow. For

example, the ISM 2.4 Gigahertz (GHz) band goes from 2.4-2.4835 GHz, a ratio of 1.03. When signals

are narrowband, their nominal wavelength is clearly defined, meaning relative time delays are easily

computed using just phase information (Chen et al. 2002b). An exception in this case is Ultra-WideBand

(UWB), a communication which uses pulses of sub-nanosecond duration, enabling generation of radio

signals which are broadly spread in the frequency domain. They also have no centre or carrier frequency.

This spread of frequency components can make the signal more resistant to the effects of multi-path, and

can feasibly allow centimetre accuracy in ranging (Patwari et al. 2005).

In general, audio waveforms are considered wideband (bandwidth between 30 Hz—15 kHz, a ratio

of 500), as well as seismic waveforms. This means that they do not have a characteristic nominal fre-

quency, and thus relative phase cannot be manipulated as readily, requiring correlation techniques (Chen

et al. 2002b). Therefore, the detection of wideband signals are more difficult than active ones because

assumptions cannot be made about their specific phase. This is because an arbitrary characteristic signal

may be complex, and difficult to detect, and the channel must always be monitored for its presence.

On the other hand, actively emitted signals can be specially modulated, and their detection coordinated

between emitter and receiver.

2.6.6 Resilience to noise

When the emitted signal can be chosen, techniques to improve a signal’s resilience to noise can increase

the operational range and accuracy of range and angle estimation. An important factor in choosing

the type of signal is that it has good auto-correlation qualities. This increase resilience to interference.

Reference signals can be created using Pseudo-random noise (PN) sequences (Ash & Moses 2005) from

−1,+1, given that PN sequences have strong auto-correlation properties. The reference signal can then

be modulated onto the channel (RF or acoustic for example) at the desired carrier frequency. Several

authors have used PN sequences to generate reference signals with good auto-correlation properties (Ash

& Moses 2005, Girod 2005). Experiments have used different centre frequencies, time durations and

bandwidths for chirps and found that longer sequences provide smaller error in time delay estimation (Ash

& Moses 2005).

Another approach to a reference signal with good auto-correlation properties is the choice of a linear
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frequency chirp. With linear frequency chirps, the signal is transmitted at a constant amplitude, but

increases in frequency over time (Peng et al. 2007, Flanagan 2007). The starting and ending frequencies

can be arbitrarily band limited. With both PN and linear frequency chirps, Signal to Noise Ratio (SNR)

is improved by increasing the length of the signal (Ash & Moses 2005).

When trying to detect or correlate wideband signals, it is convenient to assume a Gaussian noise

component which is related to the signal. In Section 2.5.4, beamforming used summation to determine

the AoA by finding the angle at which the signal energy was highest. The beamforming approach

is normally used to increase the Signal to Noise Ratio (SNR). Similar approaches have been used to

increase SNR of signals for ToF estimation in the presence of noise (Simon et al. 2004, Kwon et al. 2005).

2.6.7 Discussion

Section 2.5 discussed techniques for range and angle estimation, and up to this point Section 2.6 has

discussed the challenges which are present in implementing any of these techniques. As has been described

throughout this chapter, many ranging systems have been implemented for a variety of applications in

WSNs.

In cooperative ranging and angle estimation algorithms, the choice is between the use of electromag-

netic or acoustic signals. As has been previously discussed, the use of purely electromagnetic signals to

determine distance is sensitive to error. In terms of implementation ease, acoustic signals are clearly

more desirable for range and angle estimation.

Many ranging systems that have been implemented in the literature use ultrasonic acoustics to provide

range and sometimes angle estimation (Priyantha et al. 2001). The choice of ultrasonic acoustics is often

motivated by application requirements: ultrasound is not audible, and transducers can achieve high

accuracy at short ranges (order of centimetres at 10-20 metres). Such examples tend to be demonstrated

with indoor location/self-localisation systems, such as the ad-hoc localisation system AHLoS (Savarese

& Rabaey 2001), the Active Bats localisation system (Ward et al. 1997) and the Cricket location support

system (Priyantha et al. 2000). Whilst useful indoors, ultrasonic ranging has a limited operational range,

and is readily blocked by obstructions (Girod 2005). As the centre frequency becomes higher, ultrasound

signals become increasingly directional (unlike audible acoustic signals), although this is partly dependent

on the transducer design (Priyantha et al. 2005).

Acoustic signals have been used on a variety of different WSN hardware in the literature, from the

heavily constrained Mica2 platform (Girod & Estrin 2001, Whitehouse 2002, Zhang et al. 2007, Kwon

et al. 2005, Simon et al. 2004) to the resource-rich Acoustic ENSBox platform (Girod et al. 2006). It has

been noted that audible acoustic signals are suited to obstructed environments, as they are wideband,

and thus provide a greater acoustic spectrum with which to perform coding techniques on (Girod 2005).

Furthermore, the hardware requirements are minimal for acoustic ranging: all that is required is a

microphone and speaker with which to range (in addition to a wireless radio for communication).

2.7 Self-localisation algorithms

Section 2.7 discusses self-localisation algorithms presented in the literature. As previously described in

Figure 2.2 on page 21, localisation algorithms essentially have as inputs a combination of range and angle
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data and prior positional knowledge (if any) and provide as output positions of the unknown targets.

In self-localisation, the localisation problem is with regard to the nodes in the WSN estimating their

own relative positions in an automated manner, meaning that the nodes are both targets and observers.

Similarly with the general WSN design space discussion in Section 2.2, for localisation algorithms, there

are many competing parameters in their design and evaluation space, which can be examined in an

application-centric, device-centric or network-centric context.

In a network-centric view of the parameter space, desirable localisation algorithms would be easily

distributed throughout the network to enable arbitrary scalability, for example. Examples of such al-

gorithms can be found in theoretical works that have only been evaluated in simulation (Langendoen

& Reijers 2003, Savarese & Rabaey 2001, Capkun et al. 2001). In these works, the effects of complex,

realistic environments are often ignored, or treated naively.

A device-centric view of the parameter space limits the performance and constrains the parameters

of the localisation algorithm to accommodate the limitations of the platform. Self-localisation solutions

in this context exploits the given WSN platform and use its capabilities.

Examples of this can be seen in proof-of-concept, or emulated localisation systems (Savvides et al.

2001, Savvides et al. 2003, Whitehouse et al. 2004, Whitehouse & Culler 2006, Moore et al. 2004). In

some cases, the physical sensor network is only used to gather data which is then further used within

emulated systems. By and large, approaching localisation from a device-centric view limits the complex

processing which can be accommodated as nodes cannot perform it. Processing is commonly pushed to

the sink, which is not generally desirable (at least with respect to scalability) in the network-centric view.

An application-centric view of the parameter space considers the requirements of the application and

deployment as the primary motivator for deriving the localisation solution. The foremost design goal is

for the localisation mechanism to meet the needs of the application.

In the rest of Section 2.7, the state of the art with respect to self-localisation is discussed, with

emphasis on the constraints that certain algorithms impose and the performance of real-life solutions.

The approaches that show most promise for realistic self-localisation apply strong constraints to how

input data is used in the localisation algorithm. The best examples are based around rigidity the-

ory (Mautz et al. 2007, Moore et al. 2004, Priyantha et al. 2001). Real localisation scenarios must deal

with potentially large, unpredictable and uncorrelated amounts of error in range and angle measurement.

Ambiguities caused by Non-line of sight (NLOS) effects and reverberation can further complicate real-

istic self-localisation. In Section 2.7.1, one of the most-well known localisation algorithms, lateration is

introduced. This is followed by the role of anchors (or reference positions), multi-hop localisation, an-

chor dependent localisation algorithms, distributing processing in localisation algorithms and range only

localisation algorithms.

2.7.1 Lateration

Lateration is the canonical anchor-based self-localisation algorithm. Many self-localisation algorithms

from the literature use lateration as a basis for localisation, hence will be discussed before any other

localisation algorithms.

To estimate the position of a target in 2D, three anchors with corresponding distance estimates r1, r2
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Figure 2.8: A graphical representation of lateration. The three measurements r1,r2 and r3 made by nodes
at (x1, y1), (x2, y2) and (x3, y3), intersect at the position (x, y) which denotes the position of the unknown
target. Lateration is the process of estimating either the 2D or 3D position of an unknown target using
several known reference points (at least three in 2D and four in 3D) and the estimated distances from
these reference points to the target.

and r3 are required. The target is located at the intersection of three circles with radii r1, r2 and r3, as

shown in Figure 2.8. To estimate the position of a target in 3D, four anchors with corresponding distance

estimates are required. The target is now located at the intersection of three spheres.

Mathematically, the intersection problem is solved by linearising a system of distance equations and

solving for two or three unknowns (the x, y and z coordinates) using the linear least squares approach.

Assume a anchors, where the i−th anchor’s coordinates are xi, yi, zi, and each anchor has a corresponding

distance estimate ri to an unknown target, with coordinates x, y, z. Also assume that a > ν, where ν is

the number of dimensions (or unknowns) that the position is being resolved in. From this, the following

system of equations can be formed

r1 =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

r2 =
√

(x2 − x)2 + (y2 − y)2 + (z1 − z)2

...

ra =
√

(xa − x)2 + (ya − y)2 + (za − z)2 (2.4)

These equations can be linearised and reordered, giving a system of linear equations of the form:

37



CHAPTER 2. LITERATURE REVIEW

Ax = b (2.5)

Where A, x and b are
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These equations can subsequently be solved using a standard least squares approach, giving x̂ as the

coordinates of the unknown:

x̂ = (AT A)−1AT b (2.6)

Where T is the matrix transpose, and A−1 is the pseudo-inverse of A. If a > (u+1), then the system

of equations is overdetermined. Using the least squares approach will find the solution which minimises

the residual error. This approach will fail if there is no variation in one of the axes. For example, all

anchors are co-linear in 2D, or planar in 3D. The above examples assume that all distance measurements

between anchors and the unknown target contain no error—this is not an entirely realistic scenario, as

distance estimates will always contain some amount of error. The magnitude of final position error will

be a combination of the magnitude of the individual distance errors and the geometry of the anchor

nodes (Priyantha et al. 2005).

Geometric Dilution of Precision

The contribution of the geometry of the anchor nodes to the error in a position estimate is known as the

GDoP. A GDoP metric is used in GPS systems to describe the geometric strength of GPS satellites current

positions with respect to the target. The biggest effect of error due to GDoP occurs when positions of

anchor nodes are geographically close together, such that the variation of their angles to the unknown

target is small.

The computation for GDoP is as follows (Dana 1994): Assuming the range identity for r as in
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Equation 2.4, then matrix A is formed by

A =
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
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



(2.7)

and the matrix Q is given by

Q =
(

AT A
)

−1
(2.8)

The GDoP is given by

GDoP =
√

Q(0, 0) + Q(1, 1) + Q(2, 2) + Q(3, 3) (2.9)

This GDoP calculation can be used in conjunction with lateration for example, to understand the quality

of the reference positions with respect to the target in the self-localisation algorithm. GDoP is considered

with respect to lateration in Chapter 3 in detail.

Map-stitching for distributed computation

Distributing a localisation algorithm throughout a network is a desirable feature for scalable wireless

sensor networks. A common approach for this is map stitching. In map stitching, local groups of localised

nodes are stitched together to make a map of the overall network. The stitching is performed by finding

the set of nodes that two clusters have in common and computes a rotation, translation and reflection

which best aligns them (Shang & Ruml 2004, Moore et al. 2004, Capkun et al. 2001). The problem with

map stitching is that position error in one group will propagate through other groups, and throughout

the network, necessitating a global refinement stage (Whitehouse et al. 2004, Kwon & Song 2008). Most

algorithms have only been proposed in principle and evaluated in simulation (Shang & Ruml 2004, Capkun

et al. 2001). In practical evaluations (Moore et al. 2004, Kwon et al. 2005, Whitehouse et al. 2004), the

refinement stage is often performed at a central location due to local processing constraints of the sensing

platforms used.

The rest of Section 2.7 examines the different approaches taken in the literature with respect to

self-localisation, starting with anchor-based localisation (both single and multi-hop), followed by self-

localisation algorithms which are not anchor-dependent.

2.7.2 Single-hop, anchor-based self-localisation

A large sub-class of localisation algorithms in the literature are anchor-dependent, meaning they require

a presence of known positions in the network in order for any nodes to be localised. The GPS-Less

localisation algorithm (Bulusu et al. 2000) assumes that an arrangement of anchor nodes with overlap-

ping communication regions is present in the WSN. Perfect spherical radio communication and identical

transmission range for every sensor node are also assumed. Each anchor node constantly broadcasts its

position, and sensor nodes listen for these broadcasts, calculating their positions as the centroid of all

of the anchor nodes it has connectivity with. A proof-of-concept implementation using the localisation

algorithm was demonstrated to have an accuracy on the order of metres (1.83m average error), but re-
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quired a high density of anchors, and was not suitable for indoor operation. In the APIT localisation

algorithm (He et al. 2003), each node estimates its position by placing itself at the centroid of all anchors

it can communicate with. Signal strength is used to determine whether a node is nearer or further from

one anchor or another. As with GPS-Less, this approach requires a large density of anchor nodes, however

this approach was only evaluated in principle.

2.7.3 Multi-hop, anchor-based self-localisation

A quirk of theoretical WSN-based self-localisation research is the multi-hop localisation algorithm, or

topological algorithm (Mautz et al. 2007). This particular problem is entirely network and device-centric

in its origins and subsequent evaluation. The generic problem scenario is as follows: where a network of

sensor nodes is deployed, some percentage of which either already know their position a priori (via on-

board GPS, or manual surveying, for example). Other nodes in the network do not know their position,

but have some way of estimating distance between one another. Nodes aim to try and perform lateration

with anchor nodes to determine their position, however, they may not be in direct ranging distance with

anchors. Therefore, nodes must estimate their distance to at least three anchors (for 2D) in order to

determine their position. These algorithms are intended to be distributed (each node collaborates with

other nodes to determine position).

The Ad-hoc Positioning System (APS) (Niculescu & Nath 2001) is probably the most indicative

example of the multi-hop WSN localisation algorithm. Nodes estimate their distance to three anchors,

then use these measurements to determine their position through lateration. If a node does not have

a direct ranging link with an anchor, it must estimate the distance using the shortest path. Other

well-known examples are N-hop multilateration (Savvides et al. 2001, Savvides et al. 2003), Robust

positioning (Savarese et al. 2002) and Amorphous computing (Nagpal et al. 2003). Each have

different techniques to bound error induced by shortest path estimation, and N-hop multilateration uses

a bounding box computation to provide position estimates.

A problem with multi-hop localisation algorithms is that they are by definition coarse grained. When

nodes try to infer distance from a shortest path metric, the accuracy of these measurements are going to

be compromised at best, and hopelessly inaccurate at worst. Whitehouse (Whitehouse & Culler 2006)

compares the performance of APS using simulated data to its performance using empirically observed

ultrasonic ranging data. It is found that the median localisation error is nearly 3m in deployments

spanning a 18m grid.

A class of self-localisation algorithms attempt to localise a network by explicitly using only the range

measurements between nodes, rather than using anchors. In these algorithms, anchor positions are

only used to align the final results to a known coordinate system. These algorithms are either multi-

dimensional scaling based (Shang et al. 2003, Shang & Ruml 2004, Ji & Zha 2004, Kwon et al. 2005),

geometric consistency-based (Moore et al. 2004, Priyantha et al. 2003, Mautz et al. 2007), or refinement

based (Broxton 2005, Gotsman & Koren 2004, Priyantha et al. 2003). The rest of Section 2.7 discusses

range and angle based self-localisation algorithms that are not anchor-dependent.
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2.7.4 Multi-Dimensional Scaling based self-localisation

Several algorithms use a statistical method known as Multi-Dimensional Scaling (MDS) as the basis

for self-localisation algorithms (Shang et al. 2003, Shang & Ruml 2004, Ji & Zha 2004, Kwon et al.

2005). MDS is used to visualise the dissimilarity of data in multi-dimensional data sets. Given an input

dissimilarity matrix of data specifying the estimated distances between all nodes in the network (these

are the dissimilarities), MDS computes the relative coordinates of all nodes. Anchors can then be used

to translate the relative coordinate system into a global coordinate system (Shang et al. 2003), (Shang

& Ruml 2004).

The requirement that distances between all nodes is a problem, as in practise not all nodes will

be able to measure distance between one another. In MDS-MAP (Shang et al. 2003), a shortest-path

approach is used to approximate distances between nodes that did not make distance estimates. As with

topological approaches, this means networks with irregular topologies will have shortest paths that are

highly inaccurate in relation to the actual distance. To address this, an called Least Squares Scaling (LSS)

which tolerates a lack of pair-wise sensor measurements was proposed (Kwon et al. 2005). A distributed

version of the algorithm called MDS-MAP(P) has also been suggested (Shang & Ruml 2004). In this

algorithm, each sensor node makes a local map including itself and its neighbours and applies the MDS

technique to this map. These positions are then merged together in order to create a global map.

In general, MDS approaches have only been used in simulation studies. There are two notable examples

of real-life evaluation of MDS based approaches (Kwon et al. 2005, Whitehouse et al. 2004). LSS (Kwon

et al. 2005) was tested in a realistic, controlled experiment, where range data was gathered using an

acoustic ranging mechanism on Mica2 motes. Forty-five nodes were deployed in a uniform manner on a

60m by 60m grid. The algorithm yielded an average position error of 2.469m.

2.7.5 Graph theoretic and geometric based self-localisation

Graph theoretic approaches to self-localisation pose the problem as one of embedding vertices (nodes)

into a graph, based on the weights of the edges (distance estimates). The solution (in the graph theoretic

sense) to the self-localisation problem is to find a unique embedding of vertices in either two or three

dimensions that matches the edges (distance estimates). In order for a unique realisation of a graph to

be found, it must be globally rigid. Global rigidity ensures that if any of the vertices moves, then the

distances between them would not be the same (and thus is not valid for that set of measurements).

A robust quadrilateral is the smallest structure that can be globally rigid in two-dimensions. It

is a structure with four vertices (nodes) that has no ambiguity in terms of the relative positions of

each vertex (Moore et al. 2004). This is achieved with a minimum of six range estimates between the

four different nodes. A robust quintilateral is the smallest structure that can be globally rigid in three

dimensions (Mautz et al. 2007). It is made of five vertices, with at least ten different measurements

between nodes to ensure global rigidity.

Global rigidity properties alone are not enough to guarantee correct localisation. This is because

noisy measurements can cause ambiguities which yield an embedding of vertices which is incorrect when

compared to the ground truth, but is accurate when compared to the distance estimates that are given

as input data. These cause flip ambiguities, where the position of a node can be flipped from where it
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should be in the structure.

Different algorithms provide different ways of dealing with the ambiguity caused by noise in measure-

ment in both 2D and 3D. Both 2D and 3D versions of geometric rigidity-based algorithms perform tests

to estimate the rigidity of a structure before localising a node. The approach used by Moore et al. (2004)

involves dividing a quadrilateral into four triangles, and testing whether the smallest angle is above a

certain threshold. If it is not, this implies there may be flip ambiguities causing the position estimate to

be incorrect. If all of the triangles are robust, the quadrilateral is also robust. For 3D, Mautz et al. (2007)

proposes a volume test based on barycentric (rather than geometric) coordinates.

Both 2D and 3D algorithms follow a similar approach: local neighbourhoods of nodes form clusters

of robust quadrilaterals or quintilaterals based on their range measurements to one another, which can

then be stitched together using local map stitching to form a global map (as discussed in Section 2.7.1

on page 39). Unlocalised nodes can be iteratively added to rigid clusters if they can meet the rigidity

constraints.

Geometric-based approaches represent the most rigorous way to perform self-localisation: to avoid

ambiguity, structures must be rigid, which can only be guaranteed through density of measurements and

these measurements must be low noise (10% or less). The problem with these geometric approaches is

that to get the best localisation accuracy, nodes are required to have a large number of neighbours, which

is not always the case in sparsely populated networks. In order to obtain 100% localisation accuracy, it

is noted that nodes require a degree of 10.

In removing anchors from the self-localisation problem, difficulties arise in removing ambiguity due

to measurement noise. This is an important point to consider with respect to anchor-free localisation.

2.7.6 Refinement based self-localisation

Mass-spring optimisation approaches can be used to refine the results of self-localisation. In this approach,

a network of sensor nodes are vertices (or masses), which are connected by springs (or edges). The springs

have tension which exert force on the masses. Tension is a metric derived from the estimated distance

between two vertices and the current euclidean distance between them (that is, the current estimate

for the position). A metric for the overall tension on the network is also computed. The aim of the

optimisation is to minimise the overall tension on the network by changing positions of nodes so their

estimated distances best match the distances based on their current euclidean positions.

Like other non-linear optimisations, mass-spring optimisation is subject to false minima, where the

optimisation criteria is met, but at a local minima of the function. Several self-localisation algorithms

provide different techniques to determine an initial guess to a mass-spring optimisation. The Anchor

Free Localisation (AFL) algorithm (Priyantha et al. 2003) uses a connectivity algorithm to produce an

initial guess. The five nodes which best create a connected graph are chosen. The shortest hop-count

from each of these nodes is used to compute initial coordinates for all other nodes in the network. A

graph drawing technique called Spectral Graph Drawing (SGD) has also been used to provide an initial

guess (Broxton 2005, Gotsman & Koren 2004). Is is noted that this approach performs better than AFL

for providing an initial guess. One limitation of SGD is that it has only been demonstrated in 2D.
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2.7.7 Range and angle-based self-localisation

The multilateration algorithm which provides self-localisation in the Acoustic ENSBox system uses both

ranges and angles to estimate node locations (Girod 2005). The algorithm is carried out in a pseudo-

centralised manner—after initial range and angle estimation, all nodes report ranges to one arbitrarily

elected leader, who performs the localisation computation. The Acoustic ENSBox devices can estimate

both ToF ranges and AoA using acoustic methods. However, to support this the nodes have four mi-

crophones, which means that each node’s relative orientation must be estimated as well as its relative

position. However, using angles in combination with ranges allows the initial positions of nodes to be

guessed in 2D or 3D more readily: locations can be initially determined in a polar coordinate co-ordinate

system, relative to a specific node (which is usually the node that has the most range and angle measure-

ments with its neighbours, hence is most connected). These polar coordinates can be readily transformed

to Euclidean coordinates.

After initially estimating node orientations and positions, the self-localisation algorithm optimises the

positions using an iterative, interleaved, Non-linear least squares (NLLS) algorithm. The algorithm takes

an interleaved approach to estimation of position and orientation. Orientations are fixed, and used as part

of the constraints in building a linearised system of equations to estimate the relative positions of nodes

which is solved for each iteration of the algorithm. In between each NLLS iteration, node orientations

are re-estimated by averaging the error between observed DoA and angle based on the NLLS result. The

localisation algorithm is considered finished when residual error for different aspects (yaw, pitch, roll,

range) falls below an empirically determined threshold. This can mean that under constrained systems

do not converge.

The NLLS self-localisation algorithm works best when its system of equations is over-constrained (that

is, there are many range and angle measurements per node). This means that erroneous measurements can

be removed at certain points during the position estimation process through outlier rejection procedures.

These rejections are based on heuristics such as residual error between two nodes’ range estimates and

residual error between estimated position and estimated range.

The 3D self-localisation algorithm described here is evaluated in realistic conditions as part of Chapter

3, using the version 2 iteration of the Acoustic ENSBox platform.

2.7.8 Discussion

Section 2.7 has given an overview of self-localisation algorithms, including insight into the design space

viewpoints from which the algorithms were designed. Whilst the specific localisation algorithm chosen by

a designer has some bearing on the performance of the localisation accuracy, it is clear that for accurate

self-localisation, the quality and density of input data has the greatest effect on the resulting performance

of localisation. The first algorithms surveyed were single and multi-hop anchor-based algorithms. These

approaches approximate distance between node and anchor (typically using a shortest path approach) if

the distance cannot be directly estimated. This is an approach that can induce large amounts of error,

hence cannot yield high accuracy in general.

Another related assumption with anchor-based algorithms it that anchors do not have any positional

error associate with them. This is not always the case: GPS estimates can be inaccurate and human
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error can induce manual measurement. However, anchors provide a benefit to anchor-free algorithms in

aligning relative coordinate systems to actual geographic coordinates (if required). The addition of angles

to ranges in anchor-free localisation can provide a benefit, as shown by the Acoustic ENSBox localisation

algorithm, but this comes at the cost of the extra hardware required to gather DoA estimates. In general,

to ensure greatest accuracy in a localisation algorithm, it is important to gather quality ranging (and

angle) data, and be judicious in outlier filtering and geometric construction. Whilst geometric approaches

are strict on structural rigidity for node localisation, they can provide some guarantees about the quality

of the localisation that is being performed. However, the density at which measurements need to be made

may make range-only geometric approaches difficult for some systems.

Section 2.8 concentrates on algorithms which are specific to the source-localisation problem.

2.8 Source localisation algorithms

The main difference between self and source localisation is in the gathering of input data to submit to

the localisation algorithm. In self-localisation, it is assumed that the range and angle measurement data

is gathered in a coordinated, cooperative manner, where nodes can explicitly notify their neighbours that

they are about to emit ranging signals.

Conversely, in source localisation, the target does not explicitly identify itself, and events must be

gathered opportunistically by continuous event detection. As a result, deciding which observations made

by nodes across the network correspond to a given event from a given target can be a difficult problem,

especially given the issues discussed in Section 2.6 such as coherence, reverberation and NLoS. Moreover,

at each node, it is sometimes difficult to determine exactly when an event occurs, as discussed in Sec-

tion 2.6. Therefore, some source localisation approaches consider the grouping of event data to be a part

of the localisation process.

Some of the self-localisation algorithms described in Section 2.7 (such as lateration and the MDS algo-

rithms) are suitable to use directly for source localisation. However, Section 2.8 discusses two techniques

developed explicitly for source localisation: one based on AoA and one based on ToA/TDoA.

2.8.1 TDoA based source localisation

As previously mentioned in Section 2.6, localisation using TDoA or ToA data for complex wideband

signals is complicated by coherency across a network, as well as GDoP (which also affects angle-based

approaches). Balogh et al. (2005) propose two algorithms based on ToA and TDoA estimation for

localisation of snipers based on gunshots. The first algorithm is based on ToA estimates made by nodes

of a gunshot, and is generally applicable to ToA localisation. The second is specific to gunshots, using

the trajectory of the bullet passing through the network. Because of it general appeal, only the first

localisation algorithm is described here. Assuming a network of n nodes the ToA is used to estimate the

time of emission ti(x, y, z) of the signal of interest, using the following relationship:

ti(x, y, z) = ti −

√

(x − xi)2 + (y − yi)2 + (z − zi)2

vs

(2.10)

where vs is the speed of sound, ti is the time node i detected the given event and the assumed

position of the source/target is (x, y, z). Measurements from all nodes that have the same value within
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Figure 2.9: A pseudo-likelihood map, which shows the event space as a 2D grid. Each point in the grid
is assigned a likelihood value based on the fusion of individual nodes’ AML AoA vectors. The lighter the
shade, the more likely the sound source came from the area. There were six nodes contributing to this
localisation estimate, and each individual likelihood vector is plotted on this graph to aid understanding.

some uncertainty u for the time of emission are considered consistent with one another. The location of

the source is found by calculating the maximum of the consistency function, defined as:

Cτ (x, y, z) = max K(x, y, z, t, τ) (2.11)

where K(x, y, z, t, u) is the number of consistent measurements for a given position (x, y, z) with given time

t and uncertainty u. This requires the function space to be searched to find the global maxima relating

to the position. The authors note that exhaustively searching the event space is too time consuming,

and instead use a Generalised Bisection method (Hu et al. 2002), which provides in around one second

on average.

2.8.2 Pseudo Maximum Likelihood (ML) source localisation

The pseudo-maximum likelihood approach presented in (Ali et al. 2007) combines the likelihood vectors

produced from individual AoA ML estimates made by sensor nodes in order to find the most likely

position in a pre-defined event space of a given resolution. The algorithm is presented in 2D, as the AoA

measurements used in its evaluation were only azimuthal. Therefore, the event space is a 2D grid, aligned

to the coordinate system of the nodes in the WSN.

For each grid point in the search space, the relative angle between that point and each node in the

network is determined (based on the node’s position and relative orientation). This yields a relative angle
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from 0-360 for each node relative to each point. This relative angle is used to determine which of the

node’s likelihood values project onto that point in the event space. For example, assuming the relative

angle between a point in the search space and a node is 39◦. Then the 39th element in the likelihood

vector (i.e. the likelihood value at 39◦) is used from that node to project onto the given point in the event

space. For each point in the event space, the likelihood values from each node are summed to produce the

pseudo-likelihood value for that point. The position estimate is the point in the search space which has

the highest likelihood value. Assuming a network of n nodes, each with position and orientation (x, y, θ)

and ML AoA vector J = {l1..l360}, the source localisation algorithm is as follows:

• Define resolution and area of event space.

Define the event space as a padded square around the known positions of the nodes having side

length C (the largest distance between all nodes in cm). Scale the resolution Cr of the search space

so that each point corresponds to either 1 or 0.5m (Cr = C/100 or Cr = C/200).

• Scale AoA vector

Scale each node’s AoA vector Ji to between 0 and 1

Js
i =

Ji
∑n

k=1 Jk

(2.12)

where Js
i is the scaled vector.

• Compute likelihood

Calculate the relative angle θa,i between each point sx,y
r on the grid and each node’s (xi, yi) position

and orientation θi. The likelihood value for node i is given by indexing into Js
i , so that li = Js

i (θa,i).

The likelihood value for each point is given by adding together the likelihood values contributed by

each node.

The position estimate is then determined as the point with the largest likelihood in the search

space.

This algorithm effectively is an exhaustive search of the event space to find the point with maximum

likelihood. The visualisation of the likelihood across the event space is shown in Figure 2.9. Unlike

the TDoA consistency based approach above, this approach does not explicitly consider how the events

gathered are grouped together. This is because the TDoA consistency function is based on detection times,

but the AoA algorithm is based on processing that is performed after the detection. This approach is

suitable when the detection times cannot be estimated accurately, due to low SNR.

2.8.3 Summary

The performance of TDoA for source localisation is highly dependent on how accurately the start of an

event can be determined not only at one node, but across the whole network. The issues of coherence, re-

verberation, multi-path and NLoS cause great problems for TDoA techniques in general. However, Balogh

et al. (2005) were able to take advantage of the signal characteristics of gunshots to enable high accuracy.

For signals which do not have a wideband, high energy onset, TDoA determination will not be accurate.
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The TDoA and AoA approaches imply different levels of complexity. For a sensor node, it is easier

to determine the onset of a signal based on its ToA than to estimate the AoA, because the ToA requires

only one microphone (for example), and the AoA requires three co-located microphones for 2D (θ) and

four for 3D (θ,φ).

2.9 Evaluation of Localisation performance

Evaluating the performance of a localisation algorithm is important when comparing against other al-

gorithms, or when choosing an existing algorithm to best fit the requirements of a particular WSN

application. However, there is a lack of unification in the WSN field in terms of localisation algorithm

evaluation and comparison. In addition, no standard approach exists to take an algorithm through mod-

elling, simulation and emulation stages and into real deployment. As a result there is not a specific set of

criteria which quantify one algorithm as being better than another. Moreover, deciding what performance

criteria localisation algorithms are to be compared or evaluated against is important for the success of

the resulting implementation given that different applications will have differing needs.

Since localisation algorithms are expected to be used in real applications, it is not conclusive to

verify their performance in simulation only. Localisation algorithms should be emulated (on test beds

or with empirical data sets) and subsequently implemented in hardware, in a realistic WSN deployment

environment, as a complete test of their performance.

Section 2.9 provides a contribution to self-localisation by proposing and an approach to evaluation for

self-localisation algorithms based on simulation, emulation and in-situ deployment.

Performance evaluation metrics are discussed in the context of three important criteria: localisation

accuracy, cost, and coverage. Because WSNs are typically constrained in terms of node/network lifetime

and per-node computational resources, addressing these constraints leads to trade-offs in the performance

of localisation algorithms. For example, if maximising localisation accuracy is the foremost priority,

specific hardware may have to be added to each sensor node, increasing node size, cost and weight.

Conversely, if the hardware available is already determined, then the application expectations with respect

to performance criteria (such as accuracy) must be adjusted accordingly.

2.9.1 Evaluation Criteria

The intuitive measure of localisation algorithm performance is accuracy: how accurately can the algorithm

estimate the positions of nodes compared to some known ground truth (and according to the granularity

required by the WSN application)? However, localisation algorithms are also subject to the general

constraints of wireless networked sensing. Therefore, a broader set of evaluation criteria for localisation

algorithms are needed, including: accuracy, cost, coverage, robustness and scalability. These criteria

reflect the constraints imposed on WSNs: computational limitation, power constraints, unit cost and

network scalability requirements. The criteria form a design space similar to that presented in Section 2.2

on page 12 for general WSN applications and deployments and are described below in more detail.

Scalability

A centralised localisation algorithm will typically aggregate all input data at a central, more capable sink

to carry out processing; this represents a single point of error, and a potential bottleneck for network
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communication. In contrast, a distributed localisation algorithms execution is shared throughout the

network with no reliance on a central sink. However, centralised algorithms are conceptually easier

to implement in cases where it is known that the network will be small and will not increase. By

comparison, distributed algorithms are more complex to develop and deploy, but may be advantageous

for the application if the network does not have a logical topology (i.e. a tree of nodes sending data to

a sink), and will need to support a large number of nodes (tens to hundreds). Theoretically, scalability

is an important general consideration. However, for a specific deployment it is likely that only a small

number of nodes would be deployed, so this is not necessarily an overriding realistic concern.

Accuracy

One may think that positional accuracy compared to ground truth is the over-riding goal of a good

localisation algorithm. On reflection, this is largely application-dependent—different WSN applications

will have different requirements on the resolution of the accuracy. Consider a tracking application—the

estimated positions of nodes in the network directly affect the accuracy of the tracking. The granularity

of the required accuracy may be a ratio of the inter-node spacing. For example, if the average node

spacing is 100m, up to 1m error may be acceptable. However, if the average node spacing is 0.5m, the

same error level is clearly unacceptable.

Resilience to error and noise

It is important to understand how well the localisation algorithm will perform without an accurate or

full set of input data. Evaluation should show how measurement noise, bias or uncorrelated error in the

input data affects the algorithms performance.

Coverage

Some algorithms may have problems localising the whole network if nodes do not have enough neigh-

bours (enough is specific to the details of the algorithm) in terms of connectivity or distance con-

straints/estimates. Coverage may relate to the physical network density: one may be more likely to

get 100% localisation coverage in a densely deployed network.

Cost

An algorithm which can minimise several cost constraints (such as power consumption, communication

cost or specialised hardware cost) is likely to be desirable if maximising network lifetime is a primary

deployment goal. For example, an algorithm may focus on minimising communication and complex

processing to reduce battery usage, but at the expense of the overall accuracy.

Discussion

The perfect localisation algorithm would provide suitably accurate results (relative to the scale require-

ments of the application), in a decentralised manner, with low communication and processing overhead,

whilst allowing incremental addition of nodes, and requiring zero anchor nodes (except for relating to a

global coordinate system). Deployment practise and expertise indicate that trade-offs are best resolved

when intimately related to the specifics of the class of applications that the particular WSN is deployed

to address. The quantitative measurements required to understand these trade-offs are described in
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Section 2.9.2.

In order to address quantitatively a localisation algorithm’s performance against the criteria described

in the Section 2.9.1, a set of metrics are available. In Section 2.9.2, metrics or common measures for

accuracy, cost and coverage are described.

2.9.2 Accuracy metrics

The aim of a localisation accuracy metric is to show how closely matched the ground truth and estimated

positions are. Accuracy is likely to be related to measurement noise, bias, accuracy and precision in the

input data provided to the localisation algorithm (as discussed in Section 2.5).

Globally, the positions determined by a localisation algorithm represent a geometrical layout of the

physical positions of the sensors. This layout must be compared to the ground truth, or known layout of

the sensors. It is important therefore that not only the error between the estimated and real position of

each node is minimised, but also that the geometric layout determined by the extent that the algorithm

matches the original geometric layout.

Mean absolute error

One way to describe localisation performance is to determine the residual error between the estimated

and actual node positions for every node in the network, sum them and average the result. This can be

calculated using the Mean Absolute Error (MAE) metric (Broxton 2005), which, for each of n nodes in

the network, calculates the residual between the node’s estimated (x̂, ŷ, ẑ) and actual (x, y, z) coordinates

MAE =

∑n

i=1

√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2

n
(2.13)

The resulting metric represents the average positional error in the network, aggregating individual residual

errors into one statistic. MAE is similar to Root Mean Square (RMS) error, a commonly used calculation

to measure the difference (or residual) between predicted and observed values. It has also been noted

that whilst the mean absolute error is important in some cases, it is also beneficial to know the Maxium

Error (MaxE) exhibited in the position estimation (Slijepcevic et al. 2002)

MaxE = max
1..n

√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (2.14)

GER

It is important for an accuracy metric to reflect not only the positional error in terms of distance, but

also in terms of the geometry of the localisation result. It is entirely possible that for a given localisation

result the average error metric is low, but the layout created by the algorithm does not correlate highly

with the physical layout of the network. This problem was addressed by defining the Global Energy Ratio

(GER) metric (Priyantha et al. 2001)

GER =
1

n(n − 1)/2

√

√

√

√

n
∑

i=1

n
∑

j=i+1

(

x̂ij − xij

xij

)2

(2.15)
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where the distance error between nodes is normalised by the known distance between the two nodes (xij),

making the error a percentage of the known distance.

BAR

The Boundary Alignment Ratio (BAR) metric (Efrat et al. 2006) is a measure of how closely the estimated

positions of nodes that sit on the boundary of the localised network match the actual positions. It

is in essence the sum-of-squares normalised error taken from matching the estimated boundary with

the actual boundary. BAR is used as the minimisation metric for the Iterative Closest Points (ICP)

algorithm (Zhang 1994) which matches estimated and actual boundary points. When the change in the

BAR metric is negligible, the best alignment possible has been determined. A similar technique is used to

compare the shape of a localised network, irrespective of translation, scale and rotation for the Acoustic

ENSBox localisation algorithm (Girod 2005). A four-step approach influenced by the Procrustes method

of characterising shape is defined and used to measure estimation fit with ground truth (Kendall 1989).

This is done by establishing a scaling factor between the real and estimated maps. The maps are then

translated and scaled relative to the origin, which is defined as the node closest to the centroid of the

estimated topology. The estimated topology is then rotated according the angular offsets between nodes,

and finally translated by the average distance between estimated and ground truth points. Average

error can now be taken using any of the metrics that have been previously described (MAE, GER).

Whilst both approaches take into account the shape of the network, BAR (Efrat et al. 2006) uses only

a subset of the nodes on the boundary to contribute towards the computation compared to all nodes in

the network (Girod 2005).

The previous accuracy metrics rely on prior knowledge of the actual node position and physical

network topology in order to evaluate the localisation quality and error. In realistic WSN deployments,

this information is not known, and so measurement of error should be determined relative to the available

information. Toward this aim, an average distance error metric is proposed (Girod 2005), termed the

Mean Range Residual (MRR) by the author

MRR =
2

n(n − 1)

n
∑

i,j,i<j

x̂ij −
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (2.16)

where the estimated distance between two nodes i and j is subtracted from the observed range between

them.

2.9.3 Cost metrics

Cost is an important trade-off against accuracy, and is often motivated by realistic application require-

ments (this is discussed in more detail in Section 2.9.5 on page 52). As such, cost metrics are typically

used to evaluate the trade-offs that are not addressed by positional error and coverage. Several common

metrics are described below, along with how they may be determined.

Anchor to node ratio

Minimising the number of anchors in the network is desirable from an equipment (cost, power usage) or

deployment point of view. For example, using anchors that can estimate position through the Global
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Positioning System (GPS) will require extra hardware which is both expensive and power-hungry, poten-

tially limiting the node lifetime. The anchor to node ratio is n/a, where n is the number of nodes in the

network and a is the number of anchors. This metric should be used to investigate the trade-off between

accuracy and increasing number of anchors used in the localisation algorithm evaluation.

Communication overhead and power consumption

Assuming that radio communication is a large consumer of power relative to the overall consumption of

a wireless sensor node, minimising communication overhead is paramount in maximising the potential

network lifetime. For example the average number of packets sent per node has been used as an evaluation

criteria between algorithms (Langendoen & Reijers 2003). It should be noted that radio communication is

not always the biggest consumer of power on a node, especially when micro-controller platforms perform

intensive tasks (McIntire 2003).

The proportion of available power that a node spends on localisation can affect its lifetime (and thus

the network lifetime). Power consumption will be a combination of the power used to perform local

operations and the power used to send and receive messages associated with localisation.

Algorithmic complexity

Standard notions of computational complexity in time and space (big O notation) are naturally useful as

comparison metrics for the relative cost of localisation algorithms. For example, as a network increases

in size, a localisation algorithm with O(n3) complexity is going to take a longer time to converge than an

O(n2) algorithm. The same is true for space complexity—algorithms which require less memory as they

scale may be preferable. This may motivate a trade-off between centralised and decentralised algorithms.

Convergence time

Measuring the time taken for both initial measurement gathering and localisation algorithm convergence

can both provide important comparison metrics. A network that takes a long time to localise may not

be as useful if the application requires rapid self-localisation for immediate processing related to node

positions, such as for the tracking of a moving target. If the localisation algorithm is based on non-linear

optimisation, there may also be a trade-off to be made between accuracy and convergence time—the

extra time taken and energy expended to get a slightly more accurate solution may not be beneficial.

2.9.4 Coverage metrics

Some self-localisation algorithms may not be able to localise all of the targets in the network because

of a requirement on node density or rigidity (as discussed in Section 2.7.5 on page 41). Coverage is a

measure of the percentage of nodes in the deployed network that can be successfully localised, regardless

of the localisation accuracy (which is described by previous metrics). However, density of deployment,

as well as placement of anchors can have effects on coverage results for different localisation algorithms.

The effects and their evaluation and are discussed in the following subsections.

Density

Density is measured by the average number of neighbours a node has, as in AFL (Priyantha et al. 2003)

and Robust Localisation (Moore et al. 2004). The average density can be used to determine the minimum
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neighbour density required for 100% localisation coverage, or for an acceptable level of accuracy. As some

localisation algorithms iteratively localise, geometrically significant nodes (i.e. nodes that might allow

others to be localised) may not themselves be localised. This could result in low a coverage percentage.

A density metric based on the physical area nodes are deployed over gives an indication of the average

spacing in three dimensional space. The author suggests the following metric, called Mean Density (MD)

which is calculated by

MD =
3

√

rdiff (X) · rdiff (Y ) · rdiff (Z)

n
(2.17)

where n is the number of nodes in the deployment, X,Y,Z are vectors of ground truth coordinates (for

3D) of all deployed nodes and rdiff (c) gives the largest absolute difference between coordinates in a given

axis

rdiff (c) = |max(ci) − min(ci)| (2.18)

Anchor placement

The position of anchors in the network may have a considerable impact on localisation error, especially if

the localisation algorithm assumes that anchors are uniformly or randomly positioned in fixed locations.

Assumptions about a pre-defined anchor placement scheme do not take into account environmental fac-

tors, terrain (that can affect placing of anchors), and signal propagation conditions, as well as optimal

anchor placement. The geometry of anchor nodes with respect to any un-localised nodes in the network

can have a varying effect on the accuracy of resulting position estimates.

2.9.5 Discussion

Accuracy, cost and coverage represent trade-offs for localisation algorithm performance. This is a con-

sequence of the need to optimise localisation algorithms toward a set of specific constraints, such as low

power operation, speed of localisation, scalability or maximum limit on positional error. A good under-

standing of trade-offs is important in the context of localisation, as it is in general for WSN application

design. For example, deploying a network with a large number of anchors is expensive, and requires a

large amount of careful placement, especially to guarantee coverage. However, in attempting to minimise

or remove entirely the need for anchors, a localisation algorithm may compromise its accuracy and sim-

plicity; anchor-free localisation algorithms are frequently centralised (even Robust Localisation (Moore

et al. 2004) requires a central phase), and framed as non-linear optimisation or minimisation prob-

lems (Girod et al. 2006, Gotsman & Koren 2004). These approaches may not be tractable to run directly

on resource constrained nodes.

It has been shown that accuracy metrics based on average position error may not capture the accuracy

of the layout geometry. This is especially true for anchor-free localisation algorithms. It has also been

shown that the cost of a localisation algorithm can take many forms, and can be highly dependent on

the application requirements the WSN is designed and deployed to address. Coverage is greatly affected

by placement of nodes in the network, be they anchors or regular nodes.
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2.10 A localisation algorithm development cycle

The development and evaluation of a localisation algorithm should be considered in its entirety—this

implies theoretical modelling and simulation as well as real-life validation of the algorithm. Each stage of

the development should characterise and validate a specific aspect of the algorithm. Simulation validates

how the algorithm can operate under controlled, simulated conditions—this verifies that the algorithm

functions correctly. Emulation verifies that the algorithm can work correctly using empirical data that

reveals conditions which are complex to simulate. Realistic validation shows that the algorithm can work

in target environments and with the hardware platforms which are being targeted to support it.

It has been proposed by Whitehouse that whilst simulation is different from real-world performance,

one would expect it to be indicative (within some error bound of empirical results) and decisive (an

algorithm which performs best in simulation should perform best in reality) (Whitehouse et al. 2004).

Therefore, when one is evaluating a localisation algorithm against others, one must make sure it per-

forms better in both simulation and realistic deployment. The verification and validation of a localisation

algorithm at each of the four stages (modelling, simulation, emulation and deployment) becomes more

expensive in terms of (at least) time and cost as we approach real-life deployment. The value of simu-

lation/emulation comes forth with respect to scalability and low cost of entry for researchers—there are

no embedded hardware requirements.

2.10.1 Simulation

Researchers can use simulation to simplify some of the difficulties of real deployment (time synchroni-

sation, for example) such that any algorithmic flaws can be isolated at an early stage. For this reason,

it is not sensible to try to start with in-situ deployment without simulation verification. Environments

such as Matlab (Anonymous 2009f), ns-2 (Breslau et al. 2000), OmNet++ (Varga 2001), Ptolemy (Eker

et al. 2003) and EmStar (Girod et al. 2007) would be used to simulate the performance of localisation

algorithms. Different simulation environments allow lesser or greater control over node and network pa-

rameters relevant to localisation. Simulators such as ns-2 and OmNet++ aim to provide the user with

accurate models of wireless propagation and protocol performance, providing a high level language in

which to implement simulations. Their wide academic use is desirable for consistency between institu-

tions in a way custom simulators cannot guarantee. Custom simulators can be designed in a variety

of languages (Java, C and its variants). Ptolemy provides a hugely powerful framework for modelling,

simulation and design of embedded systems using graphical techniques to create state machines, akin to

Matlabs Simulink. Development frameworks like EmStar allow researchers to develop end-to-end wireless

sensing systems, allowing the same code to be used for simulation, emulation and deployment. Hard-

ware specific simulators, such as TOSSIM (Levis et al. 2003) and AVRORA (Titzer et al. 2005) can be

used when accurate profiling is required (in power consumption analysis, for example). There also exist

localisation specific simulators, such as Silhouette (Whitehouse et al. 2004, Whitehouse & Culler 2006),

SeNeLEx and RiST (Reichenbach et al. 2006). These environments do not need to be used in isolation, of

course—measurements and observations derived from one could be used as set-up parameters in another,

or to help inform custom simulation software.
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2.10.2 Emulation

Using empirical data to inform simulation parameter values, rather than purely calculating them (for

example, ranging or communication data) represents an addition to the realism of a simulation. Empirical

data sets can capture some of the environment-specific effects that basic models cannot. The Statistical

Emulation method (Whitehouse et al. 2004), is an example of gathering a data trace in-situ, and using it to

power a realistic localisation simulation (thus making it an emulation). Part of the challenge of performing

this type of emulation is gathering a data set which represents the environment in sufficient detail. For

example, Whitehouse gathered range data using 20 ultrasound enabled nodes that have been arranged in

such a way that all ranges between 0.5m and 4.5m (at 0.25cm intervals) can be measured (Whitehouse

et al. 2004). This approach captures environmental specific problems, such as non-estimates (range could

not be measured) and node-to-node ranging variations (induced by electronic or mechanical differences

between nodes). The data is used in the Matlab based Silhouette localisation software (Whitehouse

et al. 2004, Whitehouse & Culler 2006) to investigate its effects on the performance of several localisation

algorithms, comparing the results with pure simulation and finding a disparity between the two.

One of the most powerful emulation frameworks to date is EmStar (Girod et al. 2007). EmStar

allows the user to perform simulation, emulation and real deployment using the same framework. This

means code developed and simulated can be cross-compiled and tested on real embedded hardware. This

approach is advantageous as there is a reduction in the amount of porting required. EmStar allows

network connectivity to be emulated in real-time using live test bed data, making it a powerful tool for

transitioning to real hardware from simulation through emulation.

2.10.3 Real-life deployment

The strength of using test beds lays in actually being able to run algorithms on real hardware, and

gather non-simulated data. This can be particularly useful for testing radio communication, for example.

However, creating localisation test beds can often be difficult because algorithms are affected by environ-

mental context. Ranging mechanisms will most likely work differently indoors and outdoors, for example

if signal strength is being used to determine range or location. Evaluating an algorithm on a test bed in

a different environment than the application targets may give an incorrect indication of the algorithms

performance.

Real life deployment of a localisation algorithm on hardware in an indicative environment (i.e. similar

to where the real network will be deployed) is the most important evaluation of a localisation algorithm.

Unfortunately, it is also the most time consuming, costly, and error prone aspect of localisation evaluation.

An in-situ evaluation of a localisation algorithm will most likely be as demanding as a real deployment

of the network in terms of planning, deployment equipment and time taken to deploy.

The deployment phase of localisation algorithm evaluation is also the most error prone and unpre-

dictable, so researchers should have a detailed plan of how and what data needs to be gathered. The aim

should not be to perform a large amount of testing, but to have directed and planned experimentation.

Software will most likely need to be adapted to work correctly in the field, and worst case scenarios (what

to do if everything fails) should be planned for. Several days should be set aside for deployment, with

the understanding that the likelihood is high that things will not work as expected first time.
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2.10.4 Summary

When evaluating localisation algorithms, it is difficult to separate the issues arising from actual deploy-

ments from theoretical drawbacks and constraints of various algorithms. From a theoretical perspective,

it is desirable to have an algorithm that is independent of the ranging technique used and platform ca-

pability, as well as being robust to the deployment environment and generic with respect to application

requirements.

Given that a WSN is deployed for some realistic, physical monitoring and processing aim, the local-

isation algorithm designer should always have some set of motivating applications in mind, throughout

the design process. These can be general classes of applications such as tracking and location awareness

or clearly specified applications such as forest fire monitoring and animal call localisation. Different

applications will place different weightings on the various criteria discussed at the start of this chapter—

scalability, accuracy, coverage and cost.

In conclusion, evaluating localisation algorithms is not to be underestimated by researchers. In order

to fully evaluate a localisation algorithm, its performance must be tested in simulation, emulation and

realistic environments. Both the design and development process for new localisation algorithms and the

process of selecting a best fit algorithm for a particular application requires consideration of the trade-

offs between accuracy, cost, coverage and scalability the localisation system needs to achieve. Although

simulation is the least costly and most used tool for evaluating algorithms within the WSN domain, with

respect to localisation researchers must be aware of the limitations of purely simulated models, especially

for radio communication and inter-node distance estimation.

The use of metrics to describe the quality of localisation is important for all evaluation criteria, but

possibly most notably for accuracy evaluation. Using Euclidean error is a common approach, but may

not be indicative of how closely a localisation solution fits ground truth. Also, when ground truth is not

available, an equivalent metric must be found which tells the user how closely the localisation estimate

matches the initial constraints (such as inter-node spatial estimates). Considering the domain’s state-of-

the-art, being able to instantiate a specific localisation algorithm is still not an easy thing to do. Even

after choosing a localisation algorithm that is most suitable for the motivating application, it is likely

that researchers will still have to implement it on specific hardware (with relevant ranging measurement

mechanisms, if applicable) before being able to evaluate its performance.

2.11 Summary

This chapter has provided a detailed view of the literature that most concerns this thesis: real-life WSNs,

self-localisation and source-localisation algorithms, and the techniques used to gather data to be used as

input to these algorithms. Throughout this chapter, there have been observations which have influenced

the work presented in this thesis, and the approaches taken to evaluation. These observations are listed

below.

Real life evaluation

Any system that is built for a real-life application will require a stage of testing in-situ. This is true

for evaluation of all services, including self-localisation. Consequently, in-situ evaluation of both self

and source localisation was carried out and is presented in Chapters 3 (self-localisation) and 5 (source
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localisation) respectively.

High data-rate systems

High data-rate systems bring greater challenges than dumb sensing networks because they require some

form of in-network processing. Different authors have taken different approaches to deal with high data

rates, but in general there is a need to filter out and further process or communicate only useful data and

potentially apply compression. Thus, two approaches to reduce data and apply intelligent in-network

processing when it is suitable are presented and evaluated in Chapters 6 and 7.

Signal detection and ranging

Range estimation is used in most fine-grained self-localisation algorithms. Some algorithms however use

primarily angle information, or a mix of angle and range information. Signal detection is one of the

most important parts in range and angle estimation as it directly relates to the accuracy and precision

of a given technique. Acoustic ranging systems are readily implemented from off the shelf parts (micro-

phone, speakers). Additionally, the audible acoustic range has a high bandwidth for signal modulation

(20 Hz–20 kHz), whilst having a slow propagation speed which can be used in conjunction with faster

electromagnetic signals for RToA techniques. The benefit of an accurate signal detection algorithm for

acoustic ranging is shown in Chapter 3, where several ranging implementations are evaluated.

Self-localisation

Self-localisation algorithms are generally designed to meet some constraints. Whether these constraints

are imposed by device, network or application, they affect how the algorithm operates. In range-only

based systems, it is important to ensure that ranges are consistent with geometry. This becomes more

complex in 3D. Self-localisation in 3D with both range and range and angle-based algorithms is presented

in Chapter 3.

Source-localisation

Source localisation is a more complex problem than self localisation. Not only does it rely on the accuracy

of node-localisation, but it must deal with complex, wideband signals which have to be detected before

they can be processed through the localisation pipeline (Figure 2.2). Chapters 4 and 5 deal with the

issues related to source-localisation by means of a system developed to support a specific application,

and its subsequent refinement in Chapters 6 and 7.
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Acoustic self-localisation

Both Chapters 1 and 2 described node-localisation as the process of determining the relative physical

positions of nodes in a deployed WSN. In general, node-localisation is important to give positional

context to the physical data that sensor nodes are gathering. Chapter 2 presented the state of the art

with respect to range and angle estimation and localisation in WSNs. This chapter concentrates on

ranging and self-localisation (where the WSN performs node-localisation) in WSNs for applications with

a 3D requirement.

Some WSN applications require the WSN to localise the position of a phenomena relative to the posi-

tions of the nodes in the network, and based on the data these nodes are sensing. These are source localisa-

tion applications, and examples are: localising the position of a structural fault in a building (Chintalapudi

et al. 2006), the position of a water leak in a pipe (Stoianov et al. 2007), the position of an animal from

its call (Ali et al. 2007), or the position of a vehicle from its magnetic signature (Arora et al. 2005).

Some of these WSN-based source localisation applications need only a coarse-grained sense of position

of the target and the nodes, such as: the target x to be localised is closer to node b than node a. An example

from the literature is the localisation of cane toads for migratory tracking over long periods of time (Hu

et al. 2005). Another class of these applications require a more accurate, fine-grained estimate of the

position of the target being observed, in a coordinate system (such as Euclidean or geographic). For both

applications, any error in the estimated positions of the nodes will result in error in the estimated position

of the target. However, for applications with fine-grained requirements, this can cause unacceptable error

in position estimates. It is therefore important to minimise the positional error of the nodes in the

node-localisation process.

For fine-grained applications that reference node and target position in a coordinate system, the

distinction between estimating position in two dimensions (2D) and three dimensions (3D) is important.

The addition of an extra degree of freedom (the z axis) requires extra measurements to be made to

remove positional ambiguity (as noted in Chapter 2). In addition, measurement estimation error (range

or angle) can have more of an effect on position estimates in 3D because of the extra degree of freedom

in which the error can manifest.

In real-life deployments, nodes must be placed in real 3D environments. It should follow therefore,

that to gain the best node-localisation and localisation estimates the positions must be estimated in 3D.

However, if the deployment for the nodes shows little vertical variability, it may be suitable to estimate

positions in 2D rather than 3D, thus removing a degree of complexity. This unfortunately, is not a general

solution to the problem of deploying in realistic environments.

Some WSN applications with fine-grained requirements will not be able to guarantee placement over
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a relatively planar area, and so node-localisation must be performed in 3D. The source-localisation appli-

cation considered in this thesis is an example of this: a WSN is used to estimate the position of a marmot

in its natural habitat, based on the acoustic signals (alarm calls) it creates. The result of estimating the

position of the animal is to allow further observation. In an attended deployment scenario the user can

take a photo based on the position estimate, and in an automated, unattended scenario, the position

estimate could be used to actuate cameras to the position of the marmot, automatically taking photos

or footage. The automated approach is not covered in this thesis, but the reader is directed to work on

multi-modal target tracking in WSNs by Kushwaha et al. (2008).

Accurate node-localisation in 3D is possible to perform manually, by using surveying tools, GPS mea-

surements, or even measured distances between nodes (using range-finders or tape measures). However,

these approaches are error prone (due to human involvement), time consuming (especially as the number

of nodes increases) and may inadvertently induce error into the position estimates. Additionally, if the

nodes require knowledge of their own positions, there needs to be a facility to communicate these posi-

tions to the WSN. Therefore, the node-localisation method chosen in this thesis, and specifically in this

chapter is self-localisation, where nodes can automatically perform the localisation process themselves.

It has the potential to be quicker than manual localisation (certainly in the range and angle gathering

stage) without the potential for human-induced error that manual node-localisation may create.

The contribution of this chapter is the evaluation of both acoustic ranging and 3D localisation algo-

rithms of varying complexity on sensing platforms of varying complexity, with respect to 3D localisation.

As discussed in Chapter 2, acoustic range estimation between devices is an easily accessible and cheap

option for accurate ranging in WSNs. It requires only a radio, speaker and microphone, as well as a

suitable ranging algorithm. Time of flight (ToF) ranging approaches such as those introduced in Chapter

2 (Time of Arrival, Relative Time of Arrival and Two-Way Ranging) can be used to cooperatively estimate

range between devices. Therefore, acoustic ranging is chosen for ranging experimentation in this chapter.

Three different acoustic-based ToF ranging algorithms described in Chapter 2 were evaluated ex-

perimentally in this chapter in order to assess their relative accuracy, precision and operational range:

Relative time of arrival (RToA), Time of arrival (ToA) and Two-way ranging (TWR). The three ranging

algorithms were implemented on three different platforms that have different processing and hardware

resources: the Mica2 (kBs of Random Access Memory (RAM), 8-bit Atmel micro-controller), the Gum-

stix (MBs of RAM, 32-bit ARM microprocessor) and the Acoustic ENSBox (MBs of RAM, 32-bit ARM

microprocessor). These three platforms were chosen because they represent three different points in the

WSN design space: the Mica2 is a de facto low-power WSN platform, the Gumstix is a general-purpose

embedded platform and the Acoustic ENSBox is a specialised platform for prototyping acoustic embedded

sensing applications.

The Mica2 is a COTS platform with an implemented acoustic ranging algorithm based on RToA. The

Acoustic ENSBox is a custom-made platform, with a ToA-based acoustic ranging algorithm implemented.

The third platform was developed using off the shelf components to represent the middle ground in the

design space. The platform is compromised of a speaker, an electret microphone, Gumstix processing

board, and AC ’97 compatible expansion sound board.

As will be shown in Section 3.2.1 on page 79 and Section 3.3.1 on page 90, the ENSBox and Gumstix
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platforms had greater resources (RAM, CPU, custom hardware) than the Mica2 platform, and were able

to achieve longer operational range, and greater accuracy and precision. The accuracy and precision of

the ranging mechanism was directly related to the complexity of the algorithms that were deployed on

the platform. The acoustic signal type, time synchronisation technique, signal detection algorithm and

sample rate were all shown to be factors in accurate acoustic ranging.

Self-localisation in 3D was investigated on the Mica2 and the Acoustic ENSBox. First, lateration, a

primitive of many localisation algorithms (described in Chapter 2), was used to evaluate the performance

of acoustic range-based Mica2 localisation on a controlled 3D terrain. Second, a more complex and com-

plete 3D localisation algorithm, implemented for the Acoustic ENSBox was evaluated in several outdoor

environments, which varied in area, relative height and ambient noise level. The author’s contributions

in this chapter are as follows:

• Accuracy and precision characterisation of three acoustic ranging mechanisms on three platforms:

the Mica2 (Section 3.1.2), the Acoustic ENSBox (Section 3.2.1) and the Gumstix (Section 3.3.1).

• Implementation of a proof-of-concept platform for acoustic ranging based on the Gumstix single

board computer, including hardware and software integration and implementation of a suitable

ranging algorithm.

• The evaluation of multiple localisation algorithms with respect to terrain complexity, geometric

dilution of precision, and ranging algorithm.

Controlled, indoor and outdoor experimentation was carried out with respect to several ranging

mechanisms and localisation algorithms. This was necessary to understand the relative performance of

both ranging mechanisms and localisation algorithms in realistic environments. In addition, simulation of

sensor localisation was performed to understand and isolate the effects of varying ranging precision and

GDoP. Simulation was sufficient to provide a theoretical understanding of precision and GDoP effects

and how they affect the design parameters involved in ranging mechanism and localisation algorithm

selection.

The chapter is divided up into three sections, where three different acoustic ranging implementations

are evaluated on three different platforms. First, the performance of an off-the-shelf ranging algorithm

developed for the resource constrained Mica2 platform was evaluated, and tested with a real 3D localisa-

tion scenario, using lateration. Second, the performance of a more capable, but highly specific acoustic

sensing platform (the Acoustic ENSBox) is evaluated, and tested within several outdoor 3D localisation

scenarios, using accuracy and precision metrics (as discussed in Section 2.5).

A third platform was developed as an even trade-off between ranging accuracy and precision, oper-

ational range and hardware and software requirements (see Section 3.3). This platform was based on

the Gumstix single board computer. This third platform was necessary because the previous two plat-

forms represented extremes of the design trade-off. The Mica2 required a minimal amount of processing

and hardware, but had short operational range, low precision and accuracy (which in turn limited 3D

localisation accuracy). The Acoustic ENSBox had a long operational range, high precision and accuracy
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Figure 3.1: The Mica2 platform and external sensor board with microphone and sounder

(which allowed for accurate 3D localisation), but required custom hardware and had high memory and

proceessing requirements.

3.1 The Mica2 platform

The experimental work described in Section 3.1 uses the Mica2 platform to perform acoustic ranging and

localisation. A suitable ranging mechanism was found and used to range between several devices, and

perform localisation through lateration.

The Mica2 platform (shown in Figure 3.1) is a third generation mote from the University of California

Berkeley mote family. Traditionally it has been the platform of choice for various laboratory-based

WSN experimental set-ups and some real-life deployments as reported in the literature (Priyantha

et al. 2001, Priyantha et al. 2003, Moore et al. 2004, He et al. 2003, Sallai et al. 2004, Stoleru et al. 2004,

Whitehouse 2002, Whitehouse et al. 2004, Whitehouse et al. 2005, Whitehouse & Culler 2006, Zhang

et al. 2007). Although largely superseded by the Telos platform, the Mica2 still finds use in deployments

where 2.4 GHz frequencies are readily absorbed by moisture and foliage, such as in rainforests. Though a

variety of operating systems exist for the Mica2 (and similar platforms), the most popular is TinyOS (Hill

et al. 2000). TinyOS programs are written in nesC, a dialect of C which implements the abstractions

specified by TinyOS (Gay et al. 2003).

The Mica2 is an 8-bit micro-controller based platform, using the Atmel ATMega128L. It has 4kB

RAM, 128kB program flash and 512kB serial flash memories. The processor runs at 8 Megahertz (MHz)

and the clock runs at 32.768 kHz. The Analogue to Digital Converter (ADC) has 10-bit resolution

and can be sampled at up to 17.7 kHz. Wireless communication is provided by a ChipCon CC1000

radio (Anonymous 2004), which transmits at relatively low data rates (around 19.2kbps) using either

433 MHz or 900 MHz carrier frequency.

An external sensor board (shown in Figure 3.1) provides a suite of sensors for the Mica2: a temperature

sensor, light sensor, 2-axis accelerometer and an electret microphone and sounder, which generates a fixed

frequency acoustic signal in the 4.5–5 kHz range.

This provides the Mica2 with the necessary hardware to enable acoustic ToF ranging. To assist the

ranging process, the sensor board allows the microphone output to be passed through a National Semi-
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conductor LMC567CM low power tone-decoder (or tone-detector) (Anonymous 2002). The tone detector

has a Phase locked loop (PLL) circuit which responds to frequencies in the range of the Mica2 sensor

board’s sounder. When the response of the microphone and the PLL are high enough in combination, an

interrupt is signalled, indicating that the tone-detector has identified the sounder’s tone. This provides

a way to process acoustic signals sent from the sounder in hardware without using up valuable mote

resources. Several ranging implementations have made use of the tone detector to provide a lightweight

ranging mechanism.

In Calamari (Whitehouse 2002), a RToA ranging scheme was implemented using the tone detector,

with a maximum operating ranging distance of 2m. The error from the ranging mechanism was non-

Gaussian, meaning averaging many samples may not converge on zero error. An improvement over this

method was implemented (Kwon et al. 2005), adding a custom 9V speaker and using an encoded binary

signal (rather than a single tone interrupt) to increase the operational range. Ranges of 15–30m were

reported outdoors, but subsequent experimentation (Scherba & Bajcsy 2004) reported an average indoor

range error of 2m at short distance (most likely due to multi-path/reverberation). In Thunder (Zhang

et al. 2007), a ToF ranging mechanism based on TDoA was implemented. A non-mote acoustic source (an

amplified speaker) generated an event, which was detected by nodes that were time-synchronised using

the Time Flooding Synchronisation Protocol (FTSP) (Maroti et al. 2004). The experimental results of

this system report an average error of 49cm and a worst case average error of around 200cm at distances

ranging from 15 to 150m. The authors in all of the above works observed differences in sounder frequency

and false detections from the tone decoder added to variability between different sensor boards with the

same nominal specification.

Additionally, saturation of the decoder was also a problem: when the signal is too loud, this causes

the signal not to be detected. These shortcomings affect the usefulness of the tone-decoder as a basis for

implementing acoustic ranging on the Mica2. Other work has addressed this by ignoring the tone decoder

and performing signal detection entirely in software (Sallai et al. 2004). In outdoor experimentation with

fifty motes deployed on a concrete surface at distances of 1 to 10m, the range error of the mechanism was

found to be normally distributed with a mean of −8.18cm and a standard deviation of 20cm.

This implementation offers the highest precision as well as reasonable operational range on the con-

strained Mica2 platform, making it suitable for fine-grained ranging (and hence 3D localisation). In

Section 3.1.1, the algorithm is described in detail, followed by the experimentation performed using it.

3.1.1 Vanderbilt RToA acoustic ranging algorithm

The RToA approach (Sallai et al. 2004) is similar to previously described approaches (Whitehouse 2002,

Kwon et al. 2005) whereby an acoustic signal is sent at the same time as a broadcast radio message; any

nodes that receive the radio message attempt to estimate the range to the target. The acoustic signal is

generated by turning the Mica2 sensor board’s fixed frequency (4.5kHz) sounder on and off.

A recording of the ranging signal is shown in Figure 3.2(a). In total, the signal lasts around 1.5s,

and is made up of a series of sixteen 1.2ms tone periods (where the sounder is generating its fixed tone)

interspersed with varying intervals of silence, from 49ms to 70ms. The lower part of Figure 3.2(a) shows

an example sound/silence period.
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(a) A time series of a recording of the ranging signal,
including a close-up of tone and silence periods.

(b) Summing of the signal to improve SNR and inferring
ToA from the point of highest energy

Figure 3.2: A recording of the ranging signal and the inference of ToA from the summed signal’s energy.

Each node is pre-programmed with the length of the sounding and silence periods in a ranging signal,

and upon receiving a broadcast ranging message will continuously sample its microphone (at 17.7 kHz),

storing the data into a software buffer. Instead of recording the sequence as a continuous signal, the

observer samples it as sixteen individual 1.2ms tones (and corresponding silence intervals), each time

moving its data pointer back to the start of the recording buffer. As each of the sixteen tone and silence

periods are sampled, they are summed with the rest of the data currently in the recording buffer. This

illustrated in Figure 3.2(b). Summing of the sequence is performed to increase the Signal to Noise Ratio

(SNR), under the assumption that noise in the channel is Gaussian (and thus will be cancelled when

summed with other Gaussian noise). After sampling the ranging sequence, the recording buffer data

is bandpass filtered in the 4.5–5 kHz (range using a custom 35-tap time domain filter), and the ToA

determined.

Because the sounder tone does not have a high-energy onset, the ToA of the ranging signal is inferred

by finding the point of highest energy in the recording buffer (point b in Figure 3.2(b). This is assumed

to be the middle of the summed 1.2ms tones, from which the start of the signal is found by subtracting

an empirically determined offset (line ab in Figure 3.2(b)). The point of highest energy in the buffer is

assumed to be the middle of the chirp (point b in Figure 3.2(b).

This ToA is considered valid if it meets two consistency heuristics: (1) the supposed tone’s envelope

is within a certain width (number of samples), and (2) the energy within the tone’s envelope is at least

two times the average value in the recording buffer.

The envelope of the signal is determined by taking the average energy over the buffer, and determining

the at which a moving average running over the buffer rises first above, then below, this average. The

algorithm implementers determined the envelope size empirically.

The rest of Section 3.1 describes the author’s experimental characterisation of Sallai et al.’s RToA

ranging algorithm (2004) in both indoor and outdoor environments. Further, several Mica2 motes were
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Figure 3.3: Westwood Plaza, at UCLA, where the ranging experimentation took place. The area is
surrounded by buildings. To the left of the image lies the UCLA sports field, and to the right Jan steps
goes upward. The circle represents the static position of the target, and the black line the trajectory of
the observer (image taken from Microsoft Live Maps: www.bing.com/maps).

used to perform lateration, the most well-known range based localisation algorithm.

3.1.2 Outdoor operational range

A maximum operational range of up to 10m and a Gaussian distribution of error for outdoor environments

was reported for the distance estimates made by the RToA ranging implementation (Sallai et al. 2004).

To verify the reported outdoor performance, a two-node experiment was set up by the author at the

University of California, Los Angeles (UCLA), at Westwood Plaza. The area was a combination of

concrete pathways and grassed area, measuring around 120m by 60m and is shown in Figure 3.3.

Two Mica2 nodes were raised 1m from the ground on tripods. The target node was static (placed at

the position marked with a circle in Figure 3.3) and the observing node was moved to various locations

during experimentation (along the trajectory line shown in Figure 3.3). The aim of the experiment was

to establish the in-situ operational range of the Vanderbilt RToA implementation, and determine the

expected range error.

Nodes were initially placed 0.5m apart. The observing node was moved away from the target node

in 0.5m increments until the ranging process no longer yielded range estimates. At each 0.5m increment,

50 ranging signals were emitted by the target, and the observer’s estimates of range were recorded on

a nearby base station laptop for offline analysis. Experiments were carried out at midnight, when there

was little through traffic in the area, and ambient noise was low (59–61 decibel (dB)). Range between

nodes was measured using a Hilti PD30 laser range finder (giving sub-centimetre accuracy).

Figure 3.4 shows the range error versus distance for the experiment. Each bar represents median

error, circles represent mean error, and the whiskers represent 1 standard deviation.

It is clear that for the implementation of this mechanism, range estimation error does not vary linearly

with distance. Additionally, standard deviation is not correlated with error: estimation at both 2m and

4m show large standard deviation but low error (less than 10cm). Mean error is largest at 5.5m (an

overestimation of around 0.5m) but is bounded below 0.3m for all other ranges.

The maximum operational range was 8m, although a gap was observed at 7.5m where no measurements
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Figure 3.4: Range vs. error using the Mica2 platform outdoors. Whiskers are 1 standard deviation.

could be taken. This could be an effect of the outdoor testing environment. For example, multi-path

reflections may have caused interference to the observer in the 7.5m position–the result of the ranging

process at this distance indicated that the received signal did not match the expected signal envelope.

The fact that all ranges are over-estimated could be related to an under-estimation of the ambient

temperature. A higher temperature would increase the speed of sound, meaning the distance would be

over-estimated. The recorded temperature during experimentation was 22.4◦C, giving a speed of sound

of 344.767m/s. The assumed speed of sound for the ranging mechanism was 340m/s. This difference in

speed of sound can account for 5.6cm of the 20cm error observed, asssuming an average distance of 4m

which the sound travels over (the experimentation went from 0.5m to 8m): (4/340 × 344.767) − 4 = 5.6.

It is therefore highly unlikely that temperature effects alone could have been responsible the error seen

in these experiments, although it may have accounted for part of it.

3.1.3 Indoor operational range

As discussed in Chapter 2, acoustic signals are affected by reflections in the environment. When the signal

reflects off a surface, it can interfere with the original signal (either destructively or constructively), or

cause echoes of the signal which are received by the observer. If a reflection is falsely determined to be

the start of the signal, this will lead to an over-estimation of distance. Over-estimation will also occur

in non-line of sight conditions, when the direct line of sight between devices is blocked, because the only

version of the signal arriving at the receiver will be the reflection. Note that only over-estimates can be

caused: reflection can only make a signal take longer to arrive than the direct path between devices (which

is the shortest path). In the specific ranging algorithm, reflections can potentially cause over estimation
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Figure 3.5: The indoor experimentation environment for ranging.

because the maximum signal energy may be slightly higher due to reflections that cause constructive

interference (that is make the signal stronger).

In Section 3.1.2, outdoor experimentation yielded consistent positive overestimates of distance that

were not caused solely by an incorrect measurement of the speed of sound. In addition, inconsistent

error appeared that was not correlated with distance. It was hypothesised that this was related to

reverberation, however the exact source could not be isolated. In Section 3.1.3, evaluation is continued

from an outdoor environment to an indoor environment.

Experimentation took place in the Armstrong Siddeley Building at Coventry University, in a research

laboratory measuring approximately 5m by 8m. All experiments took place approximately in the middle

of the room. Motes were placed on a wooden laminate table, roughly 70cm high from the floor, as in

Figure 3.5.

This was an example of a harsh indoor environment for acoustic ranging, where the closeness of the

walls meant that a signal could potentially reflect multiple times, causing interference with the direct

path acoustic signal between nodes. The magnitude of the interference would depend on the amount

of energy that was reflected off the walls each time. For example, assuming the speed of sound to be

343m/s, it would take 23ms to reflect off the longest wall from the middle of the room and back and 15ms

from the shorter wall. Given that the ranging signal was 1.15s long, it was highly likely that reflections

would be able to distort the energy envelope of the signal that was sampled by the mote.

An experiment to determine operational range in the difficult indoor environment was performed.

There were ten motes used in the experimentation, split into five pairs. In the outdoor experimentation

time limitation meant that only 50 ranging signals were sent from one target node to an observing node
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Figure 3.6: Aggregated range error across all Mica2 pairs, presented as a bar graph (3.6(a)) and a series
of cumulative density function (CDF) plots (3.6(b)). Whiskers are 1 standard deviation.

(experiments needed to be performed in the few hours between the experimental area being free of people

and the automated sprinkler system coming on). The indoor experiment was not time-limited and thus

it was decided that both nodes should send ranging signals, to see the difference in range estimation from

two nodes the same distance apart. Additionally, the number of signals sent was increased from 50 to

100, to see if the accuracy of the range estimates could be improved by taking more samples.

Only one pair of motes was used at a time, and the position of the motes in the experimental area

was kept constant. It was expected that the ranging mechanism would show similar range estimates (or

range error) at different ranges and across different motes. A reduced maximum operational range was

expected due to the reflections resulting from the walls in the room (compared to the 8m seen outdoors).

The goal was to determine the maximum operational range in this environment by increasing the

distance between nodes in 0.5m increments, but it was found that the nodes could not make range

estimates further than 0.5m (failed to give any values), indicating that the ranging algorithm was severely

compromised by the indoor experimental environment. As noted in Section 3.1.1, if the ranging signal

sampled was too wide or did not have enough energy at the peak, it was not valid, and so the ranging

value reported would be −1 to indicate an invalid signal. Therefore, the gathered data set corresponded

to four distances: 10cm, 20cm, 30cm and 50cm, with 100 range estimates attempted by each node.

Figure 3.6(a) summarises the results of the indoor ranging. The mean, median and standard deviation

were calculated using all range estimates between all pairs at each distance (between 937 and 939 data

points per distance out of a possible 1000 total).

The results show a reduction in error as nodes are moved further apart. Specifically, the error shown

at 10cm is far greater than the error at the other distances. For each distance, Figure 3.6(b) shows

a Cumulative Density Function (CDF) plot of error for all range estimates taken. CDF plotting was

chosen in this case to highlight differences in the error distribution between multiple data sets. The CDF
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Figure 3.7: Error in range estimation at 10cm and 50cm. Whiskers are 1 standard deviation.

curves at 20cm, 30cm and 50cm are in line with the curve a normal distribution would be expected to

follow, whereas the error at 10cm shows a vastly different curve which does not appear to be normally

distributed. To show this graphically, a normal distibution closely fitting the data for 20, 30 and 50 was

plotted under the data points (with µ = 3 and σ = 9) in each graph.

Figure 3.7(a) shows the error for each pair of nodes at 10cm. Bars show median error, dots show

mean error with standard deviation whiskers. Four out of the ten nodes show a median error of over

40cm, whereas the other nodes show a median error below 20cm. For comparison, error at 50cm is shown

in Figure 3.7(b). One clear difference is that the error at 10cm is all due to over-estimation, whereas

error at 50cm shows both under and over-estimation. Over-estimation of distance indicates that the

high energy point of the signal is being detected later in the buffer than the actual start of the signal.

Based on the ranging implementation, the error could potentially be due to high signal energy saturating

the microphone. The differences in error between different pairs of nodes could be explained either by

variations in both microphones and speakers between devices, or by variations in the number of samples

taken to determine the mean distance estimate. The differences between speakers and microphones are

discussed in Section 3.1.4 on page 69, and the number of samples is considered in the Section 3.1.3.

Regardless of error induced by placing nodes close together, it is necessary to revisit Figure 3.7(b),

where the error at 50cm is shown across all nodes. The mean range error is spread between ±10cm across

pairs. This indicates that the ranging mechanism lacks accuracy, especially given that 100 estimates were

made by each node. The results also show high values for standard deviation, indicating a low precision:

this indicates that more than 100 estimates may have to be taken for the mean to be sufficiently close to

the actual distance (assuming no bias).

Section 3.1.3 examines the effects of increasing the number of samples taken on error distribution and

accuracy.
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Figure 3.8: Histograms of error for both motes, as a result 1000 ranging estimates each. A Gaussian
distribution has been fitted to each histogram.

Indoor distribution verification

Section 3.1.3 showed that when different pairs of nodes ranged with one another at the same distances, the

ranging mechanism was low precision. In order to determine whether taking more measurements could

yield greater accuracy (due to the low precision of the mechanism), two motes were chosen randomly from

a batch of ten to range with one another at 50cm, with the same indoor, laboratory-based experimental

set-up as the previous section.

The two motes were placed 50cm apart from one another and each sent 1000 ranging signals to the

other in turn. Range estimates were transmitted by each mote to a nearby laptop for offline analysis. An

extremely large number of ranging estimates was taken to see if the accuracy of the ranging mechanism

could be increased from what was observed when only taking 100 estimates. The rationale was that

a low precision ranging mechanism would require more measurements to increase accuracy, or reveal a

systematic bias.

A histogram of range estimation error for each of the two motes ((a) and (b)) is shown in Figure 3.8.

A normal probability distribution has been fitted to each data set, using the mean and standard deviation

of the sample set.

Whilst both error distributions correspond roughly to a normal distribution, neither were zero mean,

and were not biased in the same way (that is, the means were different). The most frequent error bin

is from −4 to −6cm for both nodes: the mean error in Figure 3.8(a) is in line with this (−4.42cm) but

the mean error in Figure 3.8(b) is not (−0.58cm). The median error for each node is within 0.5cm of the

mean in both cases (−4 and −1cm respectively). In examining the most frequent bin in the histograms,

the implication is that both devices are underestimating distance by 4cm–6cm, although the mean and

median error contradicts this in the case of Figure 3.8(b). It is possible that reverberation may have

caused the difference in error distributions between nodes, but it is also possible that slight differences in
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hardware caused slight variations.

3.1.4 Discussion

Based on the experimentation carried out in this section, the Mica2 platform and the Vanderbilt RToA

acoustic ranging algorithm have shown an operational range of up to 8m outdoors and 50cm indoors.

The ranging mechanism shows a broadly Gaussian distribution of error, meaning that averaging multiple

samples should increase the accuracy of the distance estimate. However, in all experiments, the mean

range error varied between devices (at the same distances), and had a large standard deviation. This

implies the ranging mechanism has a low precision. When 1000 ranging estimates were taken between

two nodes, there was still an error of several centimetres.

The error seen outdoors was different to the error seen in the indoor experimentation. This is possibly

due to temperature or reverberation effects. The error observed in experimentation in this section can

be thought of as the combination of two factors: internally and externally induced error, after Savvides,

Garber, Adlakha, Moses & Srivastava (2003). Internally induced error is the result of platform-related

factors which cause inconsistencies between devices, such as differences in speaker frequency or micro-

phones. Externally induced error is the result of environmental effects such as reflections which cause the

cause the ranging algorithm to fail or experience reduced operational range. Three factors are discussed

in this section: sampling quantisation, hardware variation and environmental effects.

Sample quantisation

In Chapter 2, Section 2.6.3 described how the sample rate quantises range estimates: a low sample

rate will decrease the accuracy to which a range estimate can be made. On the Mica2, the maximum

sampling rate of the ADC is 17.723 kHz. This means that between each microphone sample, sound will

have travelled 1.9cm. Because the actual arrival of the acoustic pulse may have occurred in between two

samples from the ADC the estimate is quantised and could be inaccurate to ±1.9cm. In addition, the

ranging implementation rounds distance estimates to integers, meaning that estimates could be quantised

by up to 0.5cm on top of the sampling effects. This gives a total random error of ±2.4cm which could

potentially occur per ranging estimate in the Vanderbilt RToA algorithm. This random error could

possibly explain some of the differences seen even when taking a large amount of estimates, such as the

1000 taken to determine the accuracy of the ranging mechanism.

Hardware differences

It is suspected that variations in sounder centre frequency and microphone hardware may cause differences

in range estimates. The three plots in Figure 3.9 show the energy versus frequency of three recorded

ranging signals. The plots are focused on the frequency bins between 4 and 5.5 kHz (the frequency range

of the sounder’s output). The top and middle sub-plots show the frequency content of the same signal

sampled by two different motes, and the bottom shows a ranging signal from a different mote. It is clear

that both the frequency content shown in both the top and middle sub-plots are similar, with highest

energy around the 4.7 kHz region (which is assumed to be the center frequency of the mote’s sounder).

The bottom plot shows highest energy around the 4.6 kHz region, and the distribution of energy is a

different shape.
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Figure 3.9: Energy versus frequency for two different ranging signals, recorded by different motes. The
top and middle signals are similar (same ranging signal recorded by different motes), especially when
compared to the bottom signal (from a different mote).

Varying amounts of energy in the frequency band of interest may affect the position of the highest

energy point in the signal between different motes. This could lead to differences in accuracy between

different sensor boards of several centimetres.

Environmental effects

The particular technique used to detect the start of a signal (using energy) is sensitive to changes in signal

strength. In indoor environments, there are more reflective surfaces near the Mica2 devices and can cause

constructive or destructive interference (the signal will be attenuated or amplified through destructive

or constructive interference). The signal detection technique relies on several hard-coded heuristics to

determine the start of the signal: (1) the maximum energy point must be two times the average energy

in the buffer, (2) the number of samples between average crossing points (which determine the length of

the signal) must be within a certain range, (3) the offset applied to the maximum point is 207 samples.

Therefore reverberation of a signal in a given environment will alter the signal received at the node,

and hence will change the average energy observed at the node in an environment and position specific

manner that is difficult to predict. This is likely to affect the accuracy of the ranging mechanism: if the

position of highest energy in the signal is affected by echoes, it will appear later in the buffer, creating

an overestimate. In addition, the signal may be attenuated to such a degree that it is impossible to pick

it out from the ambient noise after a certain distance. This will limit the maximum operational range of

the mechanism.

It would appear that the best way to improve the performance of the ranging algorithm for indoor use
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Figure 3.10: The 3D experimental terrain, shown in a photograph (3.10(a)) and as a contour
map (3.10(b)). The contour plot is intended to show the relative heights and positions of the nodes
and does not necessarily reflect the heights of peaks or troughs where no nodes were placed. Throughout
the experimentation, nodes 1, 3, 4 and 6 were treated as anchor nodes and used to localise other nodes.

would be to gather in-situ data and change the parameters for window size and maximum signal energy

(as discussed in Section 3.1.1 on page 61). However, because reverberant environments are unpredictable

and difficult to model, energy-based techniques may be too susceptible to signal interference when used

indoors. Whilst sample rate and hardware differences have an effect on the precision and accuracy of the

ranging implementation, approaches using correlation and coded reference signals are far more likely to

produce accurate results. However, using these approaches requires more processing power and possibly

frequency domain processing, for which the Mica2 nodes do not have enough memory or processing

capability to support readily.

3.1.5 3D lateration

In order to understand the effect of the range errors on the performance of a ranging based localisation

algorithm, a 3D localisation experiment was set up. Lateration was used as the localisation algorithm as it

is based purely on range estimation, and forms the basis of most anchor-dependent localisation algorithms.

Some anchor-free localisation algorithms can also use lateration if they define a local coordinate system

before using lateration (Capkun et al. 2001). However, some of these algorithms will only localise nodes

if there is a sufficient number of range estimates made between the node and its neighbours in order to

satisfy certain rigidity criteria (Moore et al. 2004, Mautz et al. 2007), as discussed in Chapter 2.

An irregular terrain with several peaks and valleys was created using papier-mâché and wire mesh

covering an area of 100 by 80cm with a maximal height of 70cm (see Figure 3.10). The terrain was

placed on a table in the same room used for indoor range experimentation in Section 3.1.3, at Coventry
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Table 3.1: Experiment one results: each of the six lateration runs are shown (locating node 5 using
anchors 1, 3, 4 and 6) in terms of position error in cm (Euclidean distance between estimated and actual
position), and mean and max range error (as a percentage of the distance between node and anchors).

Node Position Mean range Max range
ID error (cm) error (%) error (%)

5 (1) 12.13 3.72 5.84
5 (2) 10.89 2.51 4.22
5 (3) 34.37 3.19 7.19
5 (4) 10.87 3.49 5.48
5 (5) 18.09 3.39 4.04
5 (all) 7.39 1.84 2.86

University, Armstrong Siddeley Building. Velcro squares were attached both to the terrain surface and

the underside of each mote to allow them to stick easily onto the surface. The centre of each square was

assumed to be the coordinate point represented. These points were hand measured, with an estimated

error of ±2cm. Three different lateration experiments were carried out, each time using nodes 1, 3, 4

and 6 as anchors. In each lateration experiment each mote in turn sent 50 ranging signals, which were

received by all other nodes (this included both anchors and target motes). Range estimates were collected

by a base-station node attached to a laptop, to enable off-line analysis of the data, including lateration.

Two stages of filtering were performed on the range estimates for given experiment before being used in

lateration calculations. Firstly, all measurements made by the ith node to the jth node were averaged;

secondly, if range estimates had been made by both nodes, the smaller of the two averages was used. This

filtering approach is based on the observation that the higher estimate is likely the result of multi-path

effects (Girod 2005). The resulting estimates were used as input into a multilateration implementation

developed in Matlab.

Experiment one

The aim of the first experiment was to examine repeatability of lateration performance on the terrain.

Nodes 1, 3, 4, 5 and 6 were placed on the terrain, as per Figure 3.10. All nodes sent 50 acoustic signals,

and each range measurement made was reported back to the base station. This process was repeated five

times. For each run, the gathered ranges were filtered (as per the description in Section 3.1.5), and used

in a lateration calculation to estimate node 5’s position (using the known positions of 1, 3, 4 and 6). An

extra run was formed by aggregating the data from the five runs under the assumption that increasing the

amount of measurements would improve localisation performance. The results of each lateration run are

shown in Table 3.1; the far left column shows the node ID of the target, and each run of the experiment

is indicated in brackets. The positional error in the second column is shown in terms of the Euclidean

distance between the actual and estimated positions. Mean and max range error were calculated across

all measurements used in the lateration calculation. This error is shown as a percentage of the actual

distances between target and achors.

The individual runs (from (1) to (5)) show varying levels of positional error, ranging from 10.87cm to
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Table 3.2: Experiment two results: the mean and maximum range error between anchors and targets is
given along with the Euclidean position error in centimetres.

Node Position Mean range Max range
ID error (cm) error (%) error (%)

5 97.50 7.19 13.74
7 37.06 19.84 32.03
8 23.48 3.94 5.24
9 31.02 10.76 12.54
12 n/a 22.68 22.86

34.37cm. Both the mean and max range error do not seem to be definite indicators of positional error,

although the highest positional error run also has the highest max range error (run (3)).

When the range data from all experimented was aggregated (mean values were calculated across all

anchor to target ranges gathered), the resulting position estimate improved to 7.39cm positional error.

This was expected based on previous observations that increasing the number of measurements increased

accuracy (Section 3.1.3). It is likely that in each run, measurements used from several (different) anchor

nodes were not accurate, but when the measurements across all runs were aggregated, they were more

accurate.

However, given that the node to anchor distances ranged from 36.73 to 50.45cm (average 44.8cm),

this represents positional error that is around 16% of the average node to anchor distance. This does not

represent an accurate localisation result.

Experiment two

The aim of experiment two was to examine the performance of lateration for multiple targets in different

locations. In the experiment, four extra nodes were added to the terrain as targets (7, 8, 9 and 12).

Lateration was carried out using 1, 3, 4 and 6 as anchors and 5, 7, 8, 9 and 12 as targets. The results

of the laterations are shown in Table 3.2. Firstly, it should be noted that although it did not physically

move, the positional error seen in localising node 5 is considerably larger (nearly 100cm vs. 10cm—35cm

in the first experiment). It is likely that node 7 caused a partial obstruction between node 5 and the

anchors, which affected the ranging estimates.

When considering the position error of nodes 7, 8 and 9, a large average and maximum range error

does not seem to translate to a large Euclidean error, indicating that other factors related to the lateration

calculation are causing error. For example, node 8’s position is incorrectly estimated by 23.5cm, yet the

maximum range measurement is only 5.2% different to the actual range, and only 3.9% different on

average. This is most likely due to the relative positions of the anchors and the targets, and hence the

effect of Geometric Dilution of Precision (GDoP) (discussed in Section 3.1.6 on the following page). Node

12 could not be localised, due to lack of range estimates.
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Table 3.3: Experiment three results: the mean and maximum range error between anchors and targets
is given along with the Euclidean position error in cm.

Node Position Mean range Max range
ID error (cm) error (%) error (%)

2 n/a 25.80 42.41
5 128.21 13.15 19.18
7 62.16 33.85 55.21
8 200.07 20.96 44.51
9 319.11 15.36 48.70
10 n/a 20.18 44.00
11 n/a 105.19 196.55

Experiment three

The aim of experiment three (as with experiment two) was to examine the performance of lateration for

multiple targets in different locations. In experiment three, three more nodes were added, and node 12

was taken away (due to hardware failures). Lateration was carried out using 1, 3, 4 and 6 as anchors,

and the rest of the nodes as targets. The results are shown in Table 3.3. Again, the lateration error is

different: node 5’s positional error changed from 97cm in Experiment two to 128cm in Experiment three,

most likely a direct result of the average and maximum range error rising. Nodes 2, 10 and 11 could

not be localised due to a lack of ranging estimates. As with experiment two, if these nodes were to be

localised (assuming the newly added nodes as anchors), then their position estimates would be hugely

inaccurate. For nodes 8 and 9, it can be seen that a maximum range error of nearly 50% of the actual

range has led to a positional error of 200cm and 319cm respectively.

3.1.6 Discussion

It is clear from the experiments presented in this section that error in range estimation causes significant

Euclidean error in the position estimates made using lateration. In the first experiment, the average

ranging error was less than 4% of the distance between nodes. Even when the ranges used in this

experiment were aggregated (giving an average 1.8% range error and max error of 2.9%), the positional

error was still 16% of the distance between target and anchor. This implies that the lateration calculation

is sensitive to noise in error measurements. However, as seen in experiments two and three, the magnitude

of the lateration error does not seem to directly relate to mean or max ranging error, meaning it is hard

to tell when given just ranging error how inaccurate the position error will be.

It is likely that in addition to potentially inaccurate ranging estimates, the relative geometry of the

anchors with respect to the target (thus the GDoP) was an influencing factor on the accuracy of the

resulting position estimate. Section 3.1.6 investigates these effects in more detail.

GDoP’s influence on positional error

The arrangement of anchor nodes on the terrain in relation to the targets was not ideal in the experiments

reported in Section 3.1.5. For example, calculating the GDoP for the anchors with respect to node 5
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Figure 3.11: The ideal geometry for four anchor nodes locating a target in 3D.

yields a GDoP of 11.325 (using the equation given in Chapter 2, Section 2.7.1). A better geometry would

involve placing anchor nodes to form a perimeter surrounding the target. For four anchors in 3D, the ideal

anchor configuration is in a tetrahedral shape surrounding the target. The GDoP of this configuration

with respect to node 5 is 1.836. For non-ideal configurations, the Euclidean error of a lateration will be

magnified when the GDoP is high.

To demonstrate the relationship between GDoP and Euclidean error for a given position, a simulation

testbed was implemented in Matlab. A 1 unit cube was created, and random target positions generated

within the cube. Two sets of anchors were placed–the ideal configuration, and the configuration seen

on the 3D terrain. For each target point generated, the GDoP was calculated and 50 multilaterations

performed (for each geometry). Each multilateration consisted of a single range measurement being

generated for each anchor (with respect to the target). Randomly generated noise, drawn from a normal

distribution with zero mean and standard deviation of one was added to the range values. For each

multilateration, the Euclidean error was calculated. For each data point, the mean of all multilaterations

at a given target position was taken. In total, 1000 target positions were evaluated for each geometry.

The results are shown in Figure 3.12.

The effects of anchor position in the simulation are interesting. For the ideal geometry, the GDoP

is low for all target positions (a maximum around 3.3), and the Euclidean error of position estimates

are similarly low (up to 4.5 units). For the terrain geometry, both the GDoP and Euclidean error is an

order of magnitude higher. Consequently, for lateration, it is important not only to consider the error

in ranging estimates that participate in the computation, but also the relative geometry of the sensor

nodes. This experimentation has shown that anchor placement which results in a high GDoP value has

a direct effect on the resulting error in position estimates. The other component of inaccurate position

estimation, range error, is described in Section 3.1.6.

75



CHAPTER 3. ACOUSTIC SELF-LOCALISATION

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
1

1.5

2

2.5

3

3.5

4

4.5

5

Geometric Dilution of Precision

E
uc

lid
ea

n 
E

rr
or

 (
U

ni
ts

)

(a) Tetrahedral geometry

0 10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

Geometric Dilution of Precision

E
uc

lid
ea

n 
E

rr
or

 (
U

ni
ts

)
(b) Terrain geometry

Figure 3.12: The effect of GDoP on positional error for the ideal anchor configuration and the anchor
configuration used in 3D experimentation.

Effects of ranging precision

As discussed in Section 2.5, a high precision estimation mechanism will exhibit low spread of residual

error, thus a low standard deviation. Thus, the more accurate the mechanism, the lower the standard

deviation. To demonstrate the effects of varying standard deviation of a ranging mechanism on Eculidean

error, a testbed simulation was set-up in Matlab.

In the experimentation, the anchor configurations used were the same as Section 3.1.6: an ideal

geometry and the geometry used on the terrain. In the ideal anchor configuration, four anchors were

arranged in a tetrahedron on the edges of a 1m cube. The target was placed at 50, 50, 50, the centre

of the cube. This represents the most ideal 3D anchor/target configuration for four anchors, and has a

corresponding GDoP of 1.5. Second, the terrain configuration was used, with the target being node 5

(GDoP of 11.325). In the simulation, range estimates were generated by corrupting the exact distance

between nodes with a noise component, drawn from a zero mean normal distribution and a standard

deviation which ranged from 1 to 18.71 (a variance of 1 to 350). The results are shown in Figure 3.13.

The x axis shows the standard deviation of the ranging mechanism and the y axis shows the positional

(Euclidean) error of the particular lateration calculation. Each data point is the mean of fifty lateration

calculations, where each lateration calculation uses only one simulated range observation from all anchors

(as in Section 3.1.6).

It can be seen that Euclidean error increases as the standard deviation of the simulated ranging

mechanism increases in both Figure 3.12(a) and Figure 3.12(b). However, this positional error is affected

by a high GDoP value: the error in Figure 3.12(b) is an order of magnitude greater than in Figure 3.12(a),

where the only difference between the two simulations is the relative arrangement of anchor nodes. For

reference, the standard deviation of the Mica2 ranging mechanism experimented with in Section 3.1.2

was around 20cm. With such a low-precision ranging mechanism, one would expect position error on the
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(b) Terrain anchor geometry (GDoP = 11.325)

Figure 3.13: The effects of increasingly low precision range estimation on positional error in lateration.

order of what is shown in 3.12(b), especially if only a few ranging estimates are made from each node.

To summarise, the simulations for GDoP and standard deviation show that the lateration on the

experimental 3D terrain was affected by the geometry of the anchors, but also the precision of the ranging

mechanism. The positional error is a combination of the range error (discussed in previous ranging

experimentation) and the position estimation algorithm. Errors in the position estimation algorithm

can come from: (1) inaccuracy in the known position of anchors and (2) configuration of anchors which

magnify an error which is present. The combination of these factors has made the fine grained 3D

localisation presented here unpredictable and unreliable. Fine-grained ranging and localisation, where

nodes are separated by less than a metre, is clearly not possible with this approach.

3.2 Acoustic ENSBox

The previous section discussed and experimented with a de facto low power WSN node: the Mica2. The

Mica2 represented the worst-case for ranging and localisation, in that it was only capable of running an

energy based ranging algorithm, and was inaccurate and limited in operational range in the presence of

environmental disturbances. This platform was not designed with a specific application in mind, and so

was not optimised toward a certain localisation approach. The limitations of the Mica2 make accurate

self-localisation difficult.

This section describes ranging and localisation using a platform from the opposite end of the WSN

design spectrum: the Acoustic Embedded Networked Sensing Box (ENSBox). The ENSBox is a platform

dedicated to distributed acoustic sensing, specifically, acoustic source localisation. Two versions of the

Acoustic ENSBox hardware exist: the first was a proof of concept (hereafter called the V1 node) (Girod

2005) and the second was a more compact, rapidly deployable platform, suitable for for in-situ scientific

experimentation (hereafter called the V2 node). The V2 node shares the same main processor board

as the original Acoustic ENSBox. The main processing board is a Sensoria Slauson: a 400 MHz PXA
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(a) V1 array (b) V2 node

Figure 3.14: The microphone arrays for the Acoustic ENSBox V1 and V2 nodes. The V1 array is separate
from the main node packaging (not shown), but the V2 array is part of the main node design. Note the
speaker block in the V2 node sits in the middle of the array, whilst the speakers are below the microphones
on the V1 array.

255 processor with 64 MB memory, 32 MB on-board flash and two Personal Computer Memory Card

International Association (PCMCIA) slots containing a 4 channel sound card and an 802.11 wireless card.

In addition, the V2 node has a Gumstix co-processor for data archival. V2 nodes have an 8-hour lifetime

from an internal 5400mAh Li-ion battery, making them suitable for rapid, attended deployment.

The ENSBoxes have a compact array of microphones for sensing and speakers for acoustic locali-

sation signal emission (as shown in Figure 3.14). The four microphones are arranged in a tetrahedral

configuration, allowing the determination of 3D DoA (θ,φ). The V1 and V2 boxes have slightly differ-

ent microphone and speaker configurations: the V1 node has an 8cm baseline microphone configuration

(Figure 3.14(a)) and the V2 node has a 12cm baseline microphone configuration (Figure 3.14(b)). The

V2 node array configuration reduces the effects of spatial aliasing, as discussed in Chapter 2. In the V1

node, a four-way speaker was mounted under the microphone array, with a separate speaker to allow the

microphone channel one to record the emission of its own acoustic signal. In the V2 node, the speaker

block sits in the middle of the configuration and projects directly over the channel one microphone.

The design and implementation of the ENSBox was motivated by bio-acoustic based scientific applica-

tions. Such applications enable species census, classification and behaviour studies to be performed. This

motivating application class requires highly accurate self-localisation performance so as to not induce

error in resulting position estimates made by the WSN.

In previous work (Girod 2005), it was reported that a network of ten V1 ENSBoxes self-localised with

an average 2D error of 11.1cm and 3D error of up to 57.3cm in an 80m by 50m area. The target accuracy
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was ±0.5m positional error over the given space. The difference in performance was attributed to a lack

of variation in the elevation between nodes across the deployment space. In 3D localisation, less variation

in the z axis (i.e. elevation) compared to the x and y axes will reduce the accuracy of the 3D localisation

estimate (this is true for x, y and z axes). In the worst case, a lack of variation in any one of the axes

across the network will cause a degenerate solution for the lateration calculation, meaning the position

cannot be determined. This is related to the GDoP effects on lateration, seen in Section 3.1.6, where

anchor nodes will ideally surround the target node(s) in the x,y and z axes.

Experimentation in this section was performed with the V2 acoustic ENSBox, which has not been

previously characterised to the same extent as the V1 box by Girod (2005). Thus, the experimentation

in this chapter provides the first steps of characterising the implemented ranging and localisation algo-

rithms (Girod 2005) on the V2 box in 3D environments. It is important to note that the biggest concern

when implementing the V2 node with the speaker block being placed in the middle of the array was that

it potentially obstructs signals arriving from certain angles. This chapter provides experimental results

to show that the speaker block does not affect the AoA estimation performance of the Acoustic ENSBox

in self-localisation.

3.2.1 Operational range

The ranging mechanism used by the ENSBox is acoustic ToA. The ENSBox nodes are equipped with

omni-directional speakers that are used to emit pseudo-noise ranging signals. Previous experimentation

with the V1 node had revealed an operational range of at least 90m, with a mean error of 1.73cm and a

standard deviation of 1.76cm (after outliers rejection). An experiment to determine operational range was

carried out using the Acoustic ENSBox at Westwood Plaza, UCLA, the same location the Mica2 outdoor

ranging was carried out at (Section 3.1.2). Two ENSBoxes were placed on tripods one metre from the

ground. Three nodes in total were required to maintain time synchronisation for the ToA mechanism.

The third node was a gateway node, with no acoustic sensing capabilities. The target node remained in a

static position, and the observing node was moved increasingly further away from the target. To replicate

the Mica2 experimentation, the observing node was initially moved in 0.5m increments from 0.5m to 8.5m

away from the target. Subsequently, the observing node was moved at 10m intervals up to a distance of

40m. This provided a total of 21 discrete distances between observer and target from 0.5m to 40m. At

each distance, five measurements were taken, based on the previously observed small standard deviation

of ranging measurements with this platform. Although the V2 nodes could have been placed further

apart than 50m, the laser range finder used to measure the distance became difficult to locate properly

after this distance. (Approaches using tape measure were attempted, but it was difficult to maintain

straight edges and uniform tension. Given the accuracy of the ranging mechanism, this type of ground

truth measurement would have induced more error.) Figure 3.15 shows error at each distance measured

with the ENSBox, with whiskers showing one standard deviation of the error. This demonstrates the

low variance, high precision of the ranging mechanism over distance. The average standard deviation

over all measurements was 0.42cm, with standard deviations at 0.5m, 1m and 30m being 1.04cm, 1.81cm

and 1.87cm, respectively. All other standard deviations were below 0.5cm. Two Least Squares (LS) fits

were applied to the data in Figure 3.15: the solid line (LS fit 1) does not include the 0.5m and 1m data,
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Figure 3.15: Range error vs. distance using the Acoustic ENSBox. Whiskers show one standard deviation.
Solid and dashed lines represent LS fits of data: the solid line includes all data, and the dashed line includes
all except 0.5m and 1m measurements.

and the dashed lined (LS fit 2) does. One explanation for the error seen at 0.5m and 1m is that it is

related to the output power of the speaker, which may saturate the microphone, causing some error bias

in estimation at short distances. This does not explain the larger variance at 30m however. The range

becomes increasingly under-estimated as distance increases.

It is possible that underestimation is due to an assumption that the speed of sound was faster in com-

putation than it actually was. When experimentation started, the temperature was 12.8◦C (339.115m/s),

and reduced during the experimentation period to a low of 10.4◦C (337.695m/s). Assuming an average

distance sound travelled of 20m (experiments went from 0.5m to 40m), then this is enough to account

for around 8.4cm of relative error ((20/339.115) × 337.695 = 19.916m) as the temperature decreased.

The error seen over the distance was from +5cm at 1.5m to −9cm at 40m. The gradual drop in tem-

perature could therefore explain the slope of the error between 1.5m to 40m, and the difference be-

tween the assumed speed of sound used in the range computations (343.371m/s) and the speed of sound

based on the initial observed temperature of 12.8◦C (339.115m/s) could account for a bias of +2cm

(1.5/343.371 × 339.115 = 1.48m). Temperature measurements were made during the experimentation

with a digital temperature sensing unit, but they were too coarse to be applied as compensation to the

ranging mechanism (accurate to 0.1◦C) and were more likely to decrease the accuracy of the ranging

estimates (Girod 2008). In this case, the best approach is to get ranging done in as quick a time as

possible, and at a time where the temperature is least variable, such as early morning (Collier 2008).

Despite these explanations, it is difficult to prove conclusively that part of the range error is is not a
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Figure 3.16: Error (in degrees) vs. Angle of Arrival, using the Acoustic ENSBox. The blue line indicates
experimentation with the speaker attached, and the red line with the speaker removed. Whiskers indicate
one standard deviation of error.

function of range. The experimentation in Section 3.3 also shows the same trend of increase range error

at distance, but under similar experimentation conditions. However, since the mean error is below 10cm

at 40m, it accounts for a relatively small amount of error (0.25%).

3.2.2 Angle of arrival estimation

A coarse grained characterisation of the ENSBox’s AoA estimation was performed (azimuth only), in

order to observe any potential bias induced into measurements taken with the speaker block present.

Obviously, if the speaker block arrangement caused appreciable error, this would affect the ENSBox self

and source localisation algorithms’ accuracy. To perform the experimentation, one ENSBox was mounted

on a swivelling stand, which could be manually adjusted at 2 degree intervals (at a 0.25 degree accuracy).

Another ENSBox was positioned 5m away. The boxes started facing one another (zero degrees AoA),

with the static ENSBox emitting five ranging signals at each new position. At each step, the swivelling

ENSBox was moved 36 degrees, thus a total of 10 steps were performed. The experiment was run twice,

once with the main speaker block attached to the ENSBox, and once without.

Figure 3.16 shows the error vs angle of arrival with and without the speaker block, with whiskers

of one standard deviation of error around the mean. The overall standard deviation was 0.88 degrees

when using the speaker block, and 0.82 degrees when not using the speaker block. Mean error was 0.37

degrees, and max error was 1.91 degrees when using the speaker block; mean error was 0.49 degrees and

max error 1.84 degrees without.

Both data sets seem to follow a similar periodic pattern of error that is indicative of the ENSBox
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pulling away slightly from the dead centre of the stand as it was rotated. It is also possible that slight

inconsistencies between the physical array geometry and the assumed geometry (in the software) could

lead to this kind of error. Both of these effects were observed by Girod (2005) in the V1 node characteri-

sation. The error characteristic appears to be biased by +0.5 degrees from 0 degrees error. This indicates

that there was a systematic bias associated with the original lining up of the nodes. Given the equipment

used, a 0.5 degree error in lining up the nodes for experimentation is not unreasonable. If this bias is

assumed, the error is ±1.5 degrees over the rotation of the node.

Based on the measurements gathered, there does not appear to be a large difference between having

the speaker block mounted on the node or not. The standard deviation of error between the two was

within 0.06 degrees, and the difference in mean error across all angles between the two configurations

was 0.12 degrees. A more accurate characterisation of the Angle of Arrival performance would reveal any

small differences between using the speaker block or not. This would require more accurate mounting

equipment to move the node, and perhaps the use of a surveying tool or similar to measure the amount

by which the node rotates. This is left for future work.

3.2.3 3D localisation performance

The Acoustic ENSBox localisation algorithm does not require anchors to estimate relative positions.

Instead, it makes use of the zenith/azimuth AoA estimates as well as range estimates between devices to

guess initial positions in a polar coordinate system. This guess is then used as the input into a non-linear

least squares algorithm, interleaved with orientation estimation. Including AoA estimates in a localisation

algorithm is difficult because localisation then requires relative node orientation to be estimated as well

as position. However, this provides more information with which to construct an initial guess for the node

positions: with angle and range estimates, node positions can be guessed as polar coordinates to provide

a starting point for the non-linear optimisation used in the later stages of the localisation algorithm. A

good initial guess of position is important for optimisation so that the global solution is found, not a

local minima (this is discussed more in Chapter 2, Section 2.7.6).

The 3D localisation capabilities of the V2 ENSBox were tested in four different locations in the

UCLA campus during May 2008. The four locations were chosen to provide a combination of different

factors that could reduce the accuracy of localisation systems: obstruction through foliage, variation in

height and variation in coverage area (thus density of deployment). To provide accurate ground truth,

a mechanism which was more accurate in determining position than the ENSBox was required. The

SOKKIA Set 510 Total Station for accurate surveying was used in conjunction with a prism reflector.

This enabled distance measurement accuracy to within ±2mm and relative angle (azimuth and zenith)

to within ±5 arcseconds (1 arcsecond = 1/1296000 degrees). Nodes were deployed so that they faced the

Total Station, to allow for ease of computing ground truth orientation of nodes. Figure 3.17 shows the

Total Station, and a node facing the Total Station in order to determine the relative range and angles.

Measurements between node and Total Station required line of sight visibility, so in partially obscured

areas (such as Boelter Hall), node deployment had to be considered in this context.
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Figure 3.17: The Total Station used to determine ground truth of node positions in deployment. The
Total Station is at least an order of magnitude more accurate than the ENSBox localisation system.

Boelter Hall

Boelter Hall at UCLA has an outdoor courtyard situated in the middle of the building. The area is

almost fully walled on three of four sides. There is a lot of foliage from large palm trees (see Figure 3.18),

and the floor is mainly concrete paving, alongside soil. Air conditioning for the building provided a low

ambient noise, which was increased by works traffic arriving near nodes 108 and 109.

Seven V2 nodes were placed around the courtyard area, covering a L-shaped area of 43.4m by 20.6m,

with a variation in relative node heights of 2.3m. Each node sent four ranging signals, and the raw

acoustic data was recorded on each node for post-processing.

Bruin Plaza

Bruin Plaza is a fully concreted, open plaza in the UCLA campus. It offers some potential deviations

in height due to several flights of stairs which overlook the plaza. In total, nine nodes were deployed

in an elliptical configuration over an area 46m by 52.5m, with a variation in relative heights of 4.87m.

Their approximate positions are shown in Figure 3.19. In particular, the placement of node 110, 111,

112 and 113 were on steps (see Figure 3.19). The area was largely open, although there was significant

reverberation around node 112, which was placed on a small curved stage. Due to time restrictions, just

two ranging estimates were taken from each node.

Jan Steps

The Jan Steps link Westwood Plaza and Royce Hall at the UCLA campus. Alongside the steps is a

grassed and paved area which follows the slope of the steps as they rise up to Royce Hall. There are

obstructions, such as overhanging foliage, although several trees grow on the slope. Nine nodes were

deployed over the area from the bottom to the top of the slope, as shown in Figure 3.20. The area
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Figure 3.18: The approximate placement of nodes for the experiment carried out at Boelter Hall. The
area was partially covered by large trees, and a reasonable source of noise was present from the right
hand side of the figure during experimentation due to air conditioning (image taken from Microsoft Live
Maps: www.bing.com/maps).

covered was roughly a square, measuring 98.4m by 97.1m, with a variation in the relative heights of the

nodes of 10.8m (around a 10% grade, which is a gentle slope). Each node sent ten ranging signals to

other nodes.

Royce Hall

The Royce Hall area is a flat, grassed area, enclosed on two sides by buildings, and open on the other two

sides. A concrete path runs around the grassed area. The buildings reflect acoustic signals noticeably.

Nine nodes were deployed over a 52.2m by 53.3m area (roughly square), with a relative height variation

of 0.27m.

Results

At each deployment, the raw data corresponding to the ranging signals was recorded by each node

for offline processing. The data was aggregated onto a PC, and the range processing and localisation

algorithms run off-line, using existing EmStar software, written by Girod (2005). From these results, and

the range table used by the localisation algorithm (the median of the lowest distance estimate between

each pair of nodes), several metrics discussed in Chapter 2 were computed in order to aid analysis of

the localisation results. The metrics calculated for position error were Global Energy Ratio (GER) and

the Mean and Max Absolute Error (MAE, MaxE). GER measures the overall quality of the Euclidean

distances between nodes compared to the actual range estimates, and MAE and MaxE give absolute

position error compared to ground truth. The Mean Range Residual (MRR) metric was calculated to
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Figure 3.19: The approximate placement of nodes for the localisation experiment carried out at Bruin
Plaza (image taken from Microsoft Live Maps: www.bing.com/maps).

show the mean average error between Euclidean distances between nodes and the actual estimated ranges.

Finally, Mean Density (MD) metric was calculated to allow positional and range error to be considered

with respect to the area over which the nodes were deployed.

Because it is anchor free, the ENSBox localisation algorithm produces a scaled representation of the

map. In order to match the scaled map to the ground truth, the Procrustes technique (Kendall 1989)

was used to find the scale, rotation and translation that best fits the ground truth (minimised according

to the sum of squares error).

Table 3.4, shows the results of the localisation with respect to the performance metrics GER, MAE,

MaxE, MRR and MD. First, across all experiments, the GER values are consistently low: this indicates

a good internal geometry created by the localisation algorithm. Second, the mean absolute error is below

0.4m for all experiments and MaxE is below 0.5m for all experiments apart from Jan Steps, which had

a maximum error of 0.78m. It is likely the maximum error at Jan Steps was induced by node spacing

and 3D variation. The experiment covered a larger area with 9 nodes than the other experiments, in

terms of length, width and height. This is reflected in the high MD value, which indicates there was on

average a node every 22.55m in the 3D volume encompassed by the deployment. It appears that node

spacing and 3D configuration has a greater effect on error than the provision of a limited amount of

measurements has(the Bruin Plaza experiment took only two range estimates per node). This is due to

the high precision of the ranging algorithm, allowing accurate localisation with minimal number of range

estimates. The MRR metric compares the Euclidean ranges of the localisation (scaled according to the
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Figure 3.20: The approximate placement of nodes for the localisation experiment carried out at Jan steps.
The area was open, with little reverberation. The nodes were deployed on a slope (image taken from
Microsoft Live Maps: www.bing.com/maps).

Procrustes fit) with the actual ranges measured by nodes. In all cases, the ranges between nodes were

underestimated, which is indicative that the set environmental temperatures used to calculate ranges

were incorrect. It is important to look at the range error in an application context: recall that for the

source localisation algorithm, DoA estimates are intended to be used for source localisation. Therefore,

it is important that the geometry of the physical topology estimated by the self-localisation algorithm

be consistent with the actual physical topology. However, actual distance error is not as important,

given that for DoA triangulation, it is the angles between nodes that must be accurate. This means the

topology need only be correct to a scaling factor, as was shown here. The inclusion of a thermistor to

compensate for ambient temperature changes is left to future work.

3.2.4 Discussion

Clearly, there is a large difference in accuracy between the Mica2-based 3D lateration and the 3D localisa-

tion presented in this section. However, the Acoustic ENSBox platform has considerably more processing

power and custom hardware and uses AoA estimates to aid with localisation.

What follows in this section is a discussion of the ENSBox localisation algorithm with respect to

its motivating application. It was established at the start of this section that the dominating system

requirements for the motivating application were geometrical accuracy and robustness to range error. In

terms of scalability, although the algorithm is anchor free, the processing it performs is centralised, and

comes at a large computational cost. The assumption in this case is that the number of nodes deployed

will not be so large to take an unreasonable amount of time for the algorithm to converge on a solution

(order of minutes). The algorithmic complexity in this case is O(N3), which make scalability difficult in
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Figure 3.21: The deployment layout at Royce Hall, UCLA. this deployment was the most planar of all
the areas under experimentation (image taken from Microsoft Live Maps: www.bing.com/maps).

Experiment GER MRR (m) MAE (m) MaxE (m) MD

Royce Hall 0.0023 −0.41 0.20 0.42 4.37
Jan Steps 0.0016 −0.77 0.37 0.78 22.55
Bruin Plaza 0.0013 −0.18 0.22 0.44 10.93
Boelter Hall 0.0025 −0.14 0.24 0.46 6.65

Table 3.4: Results of 3D localisation in the four different environments. Five metrics of localisation
performance as described in Chapter 2 were calculated: GER (Global Energy Ratio metric), MRR
(the Mean Range Residual metric), MAE and MaxE (the Mean and Maximum Absolute Error between
estimated and ground truth positions), and finally MD (the Mean node Density).

theory.

However, this localisation system is expensive. Each ENSBox has plentiful resources (64 MB RAM,

400 MHz ARM CPU), which also come at the expense of a shorter battery life. These hardware choices

are understandable in the context of the application: acoustic source localisation requires data to be

sampled at high rates and processed/filtered locally. In addition, performing DoA estimation requires

multiple microphones. The localisation system is highly accurate, more than meeting its positional

requirement in 2D (worst case 10cm error) and just going over 0.5m error in 3D. Special care is given to

robust behaviour, but the cost for this is a high number of measurements for each node–the localisation

algorithm requires an over-constrained linear system to remove outliers. In a topology where the number

of range measurements per node is low, outliers are likely to become difficult to remove, or even identify.

Because the localisation algorithm is computed centrally with all measurements, coverage is either 0% or

100%; the algorithm either converges on a result or it does not. This is clearly a problem for scalability.

In maximising the accuracy and resilience to measurement noise, the localisation system becomes
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constrained in scalability and unconstrained in cost (power usage, message sending, and computational

complexity). This is intuitive if one imagines the criteria in tension–one cannot be maximised without

affecting the others. This would seem to limit the generality of the localisation approach, but one could

argue that any self-localisation motivated by a specific application (rather than application class) will

make similar optimisations to maximise performance.

The Mica2 represents the device-centric approach to WSN self-localisation, which asks the question:

given a platform and pre-determined sensor suite, how accurately can acoustic ranging and localisation

be performed? This is in contrast to the ENSBox’s application-centric approach, which asks: what level

of self-localisation is required by the motivating application? Whilst the ENSBox represents the most

accurate acoustic self-localisation system available for WSNs at the time of writing, its capabilities are

a reflection of the high level of accuracy and processing power required by its motivating application.

Therefore, the ENSBox localisation solution is not suitable for every application. In fact it is really only

suitable for high-data rate acoustic sensing applications.

There is a gap in the WSN design space which is obvious when considering the Mica2 and ENSBox:

applications which require accurate localisation, devices which can provide a great deal of processing

capability, but with a general appeal.

3.3 Gumstix

In general, for an application to benefit from acoustic localisation, it must be able to add this functionality

at a low cost in terms of hardware and software requirements. The Mica2 energy-based ranging approach

is far too constrained to be tractable for any real WSN applications, and the ENSBox approach has high

overheads to perform ToA (dedicated time synchronisation, four microphones, etc).

However, in using a microprocessor based platform (like the ENSBox or other microserver class

platforms) instead of a micro-controller based platform (motes in general), the ability to operate at low-

power is severely restricted (certainly with off-the-shelf 32-bit embedded platforms). However, for some

applications it is important to have processing capability available. For example, to provide on-node

processing for supporting high data rate applications.

This section presents the implementation and experimentation with an embedded sensing platform

developed almost entirely with off-the-shelf components which allows accurate ranging (and thus locali-

sation) at a low cost.

Localisation experimentation is not carried out in this section: the aim is to show as a proof-of-

concept that platforms can be built to meet the middle ground in the WSN self-localisation design space

where accuracy and precision can both be achieved with minimal requirements on extra sensors (such as

microphones and speakers).

The development of the Gumstix acoustic platform was carried out over a short time span. The basic

hardware platform essentially consists of a microphone, 4-way speaker block, an audio card and main

processing board with wireless radio. The main processing board was the standard 32-bit Gumstix Verdex

platform, which comes equipped with a Bluetooth radio for communication, a 400 MHz processor and

64 MB RAM. The AudioStix board was used to provide a single channel audio input for the microphone

and the line out to the speaker. The speaker block design and parts were borrowed from the V2 node
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Figure 3.22: The Gumstix-based ranging platform

design, but wired to a mini jack, allowing it to be driven directly from the line-out of the AudioStix. The

platform was powered through the USB port, via a USB power injector, taking two AA batteries. The

nominal lifetime of the platform under experimentation (that is, frequent radio and audio operation) was

around 2.5 hours. Figure 3.22 shows a picture of the platform.

The Gumstix ranging platform created strikes a balance between the extremely constrained Mica2

and the extremely application-specific ENSBox.

The Gumstix itself runs Linux, and a version of the EmStar framework was cross compiled using the

provided toolchain so that components could be re-used in creating the ranging software.

The ranging algorithm is an implementation of the TWR algorithm from the Beep Beep system (Peng

et al. 2007). The algorithm uses a similar approach to Girod (2005) to determine signal sending uncer-

tainty: in order to know exactly when it emitted a signal, a node must record the signal it is sending

and determine the time it physically left the speaker. This removes any sending uncertainty that may be

introduced in the application software or operating system stack. The full Beep Beep system allows for

multiple nodes to range in sequence. In this simplified version, only two nodes range with one another:

two nodes a and b emit ranging signals one after the other, each recording both signals—the signal they

emit and the one they receive from the other node. Both nodes determine the arrival times of both

signals. The implemented approach assumes that both nodes are sampling at the same frequency fs, and

that their microphones are the same distance K from their speakers. The distance x between the devices

is determined by

x =
vs

2fs

((S2,A − S1,A) − (S1,B − S2,B)) + K (3.1)
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where (S2,A − S1,A) is the number of samples between the two ranging signals detected by node A,

and (S1,B − S2,B) is the number of samples between the two ranging signals detected by node B. This

description assumes signal 1 is emitted by node A, and signal 2 is emitted by node B.

The original implementation of Beep Beep used a linear frequency chirp as the acoustic signal for ToF

estimation. In this implementation, the Pseudo-random noise (PN) sequence software implemented by the

ENSBox was modified to work with the platform and the software (PN sequences are discussed in Chapter

2, Section 2.6.6. The Gumstix implementation of Beep Beep leverages the sub-sample accuracy of the

signal detection presented by Girod (2005) with the simplicity and low time synchronisation requirements

of the actual Beep Beep algorithm (Peng et al. 2007). The Beep Beep algorithm reduces complexity as it

does not require explicit time synchronisation between devices, unlike Girod’s highly time-synchronised

ToA approach (2005).

3.3.1 Ranging experimentation

The experimentation with the Gumstix platform took place in Westwood Plaza, in the same place as

the Mica2 and ENSBox experimentation. Two nodes were raised 1m from the ground on tripods (as in

Figure 3.22), and one node remained static whilst the other was moved. In the ranging implementation,

both nodes were required to emit ranging signals. The node that was moved started 0.5m away from the

other node, and was moved away in increments of 0.5m up to 10m, then in increments of 1m up to 20m,

and finally increments of 5m up to 30m (the observed maximum operational range). This made a total of

31 ranging experiments. At each distance, the ranging process was carried out 5 times, with the resulting

distance estimate recorded. Since five measurements had proven to be sufficient for high precision and

accuracy on the ENSBox ranging, it was decided that as the algorithm shared the same ranging signal

generation and detection routines, it would also be suitable for the Gumstix.

Figure 3.23 shows error at each distance measured. Whiskers represent one standard deviation of

error. In most cases (all but 16 and 30m), the precision of the ranging mechanism is high. The mean

standard deviation was 0.48cm, with standard deviations for all distances except 16m and 30m coming

in at 0.55cm or lower. For 16m, the standard deviation was 3.24cm and for 30m it was 4.92cm (which

was the maximum standard deviation).

It is interesting that the both the Gumstix and ENSBox experimentation showed most error at

30m. This may be an indication of an environmental effect present in the experimental area, such as

a consistently strong multi-path area, or area of high ambient noise. Because the 16m mark was not

measured on the ENSBox, this may just be a coincidence. The range estimation does not show the same

error at 0.5 and 1.0m that the ENSBox showed, but the output power of both platforms was different

(see Section 3.5), so they cannot directly be compared. As with the ENSBox in Section 3.2.1, the error

increases with distance. However, temperatures were not gathered for this experimentation so it is unclear

whether the effects were comparable to the ENSBox results. In any case, the error is under 25cm at 30

metres (less than 1% error).

3.3.2 Discussion

With minimal development, it was possible to build a highly accurate ranging solution from material

presented in the literature, and readily available software components. The ranging implementation
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Figure 3.23: Range error vs. distance using the Gumstix-based ranging platform. Whiskers represent
one standard deviation of error.

used in the Gumstix borrows heavily from the ENSBox implementation, and therefore inherits its high

precision performance (mean standard deviation of 0.48cm). This shows the gains that can be made

in having an accurate signal detection technique, based on correlation rather than energy. Despite the

related processing requirements, this is clearly the better choice over energy-based approaches such as

those seen in the Mica2. To quantify the improvement between the Mica2 and the Gumstix platforms:

the standard deviation (precision) went from 20cm on the Mica2 to 0.48cm on the Gumstix, and the

operational range went from 8m to 30m (a 73% improvement). It would be expected now that even

using lateration for 3D localisation, the performance would be vastly improved. Recalling the simulation

performed on the Mica2 experimentation in Section 3.1.6 (particularly Figure 3.13 on page 77), a standard

deviation of error around 0.5cm would yield positional error of below 10cm where the Mica2 may have

seen up to hundreds of cm of Euclidean positional error.

The implementation of Beep Beep on a windows-based mobile phone (Peng et al. 2007) provided

operational ranges of 4m to 12m (depending on ambient noise conditions), with an average standard

deviation of 0.4cm to 1.4cm. The implementation presented here provides a comparable standard devi-

ation of error and therefore precision, but with more than double the range. This should not be taken

as a direct improvement however: given the comparable precision of the signal detection algorithms, the

output power of the signal is seemingly the only factor which could affect range. The relative output

powers between the three devices evaluated in this thesis are discussed later in this section.

It could be argued that part of the disparity in operational range performance between the three

devices is related to output power of the ranging signals of each platform. As noted in Chapter 2, (Kwon
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Table 3.5: Output power by platform at 0.5m

Platform Output Power (dB)

Mica2 60
Gumstix 92
ENSBox 100

et al. 2005) added a custom speaker to the Mica2 in order to increase range, although they found this

affected the precision of the ranging mechanism (due to using the built-in Mica2 tone decoder). The main

difference between the Gumstix and ENSBox platforms was in hardware: the ENSBox used a powered

amplifier to increase the output power of the ranging signal, whereas the Gumstix platform used the only

the output provided by the line-out of audio card.

In an attempt to quantify the difference between relative output powers of the three platforms, an

experiment was set up whereby a node was raised 1m from the ground, and its speaker aligned with

a sound level meter (model from radio shack). The device was positioned 0.5m away from the speaker

of the node. There was up to 0.01m difference in the 0.5m measurement between different platform

experiments. The ambient noise was observed to be 50 dB in the experimental environment (a 7m by 7m

room). The results are shown in Table 3.5.

It is important to note that the absolute values of output power may not be reliable, as the indoor

environment may have increased or decreased these due to reflection and signal interference. However,

the relative difference between the output powers is clear to see—the Mica2 has a significantly quieter

output than the the Gumstix and ENSBox. Regardless of the techniques and algorithms being used

to modulate and process the acoustic signals (to estimate distance), a longer operational range can be

expected from a speaker with higher power output (as the signal to noise ratio will be better over a longer

distance). Although, the ENSBox example seemed to indicate that when a node is required to sample its

own signal, this can be a limiting factor. In this case, gain may need to be adaptively altered.

The contribution to the chapter (and the thesis) of this section is the development of the proof-

of-concept Gumstix ranging platform, which show that a middle ground between ranging performance

and platform complexity is possible. This makes the barrier for accurate self-localisation lower in terms

of hardware complexity, potentially enabling accurate 3D localisation for applications which previously

could not afford it.

3.4 Summary

This chapter began by motivating the need for 3D self-localisation for a certain class of localisation appli-

cations with a fine-grained accuracy requirements. Acoustic ranging (and potentially angle estimation)

was determined to be the most accessible way to provide accurate input data for the self-localisation

process.

With this in mind, acoustic ranging and 3D localisation was evaluated with respect to several sensing

platforms and implementations. Three ranging algorithms, based on RToA, ToA and TWR were evaluated

on three platforms of varying capability: the Mica2 (COTS, low capability), the ENSBox (custom-made,
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high capability) and the Gumstix (custom-made, high capability). The pre-existing implementations of

acoustic ranging Mica2 and ENSBox platforms were characterised in terms of operational range, accuracy

and precision through in-situ experimentation. Subsequently, 3D localisation was performed using later-

ation for the Mica2 platform, and the non-linear multilateration algorithm that is part of the Acoustic

ENSBox’s software. It was found that the less-capable Mica2 and its associated ranging algorithm had a

short operational range (8m outdoors, 0.5m indoors) and was low precision (20cm standard deviation),

and this caused significant positional error when used in conjunction with the 3D lateration calculation.

The effects of node placement and low precision were investigated in simulation based on the inaccurate

3D localisation performance. This showed high GDoP values can increase positional error by an order of

magnitude (tens vs hundreds of cm positional error).

In comparison, the customised Acoustic ENSBox V2 platform was found to perform significantly

better: an operational range of at least 40m (up to 100m in actual localisation experimentation) with high

precision (average 0.42cm standard deviation). Over four realistic outdoor 3D localisation experiments,

the average positional error ranged between 0.20cm and 0.37cm, with a maximum error of 0.78m. The

deployment densities ranged from one node every 4.37m3 to one node every 22.55m3. The excellent

performance of the ENSBox comes at the cost of custom hardware that was designed for specific acoustic

sensing applications, in addition to a highly accurate time synchronisation requirement. This does not

make the approach general to other applications which may desire fine-grained 3D self-localisation.

The vast difference in performance motivated the creation of a new, proof of concept node that sup-

ported acoustic ranging, based on the Gumstix hardware platform. The platform was built mainly from

COTS parts, except for the speaker block which was borrowed from the V2 ENSBox. The ranging im-

plementation was based on the Beep Beep algorithm (Peng et al. 2007), but using the signal detection

routines borrowed from the Acoustic ENSBox ranging implementation. In experimentation, the plat-

form’s operational range was 30m, with high precision that was comparable with the ENSBox (average

standard deviation of 0.48cm). The Gumstix platform was not evaluated with respect to 3D localisation,

therefore it is not possible to compare localisation performance with both the ENSBox and the Mica2

experimentation in this Chapter. Whilst the Gumstix lacks the angle of arrival measurements of the

ENSBox, its accuracy and operational range is such that one would expect it to perform accurately with

lateration (compared to the Mica2), and a 3D range-only, non-anchor-dependent localisation algorithm,

such as robust quintilaterals (Mautz et al. 2007) as discussed in Chapter 2.

The advantage that the ENSBox and Gumstix’s extra processing power gives is that more accurate

signal detection can be performed, than on the Mica2. Accurate signal detection requires a correlation-

based approach, rather than the energy based approach used by the Mica2. Implementing a correlation-

based approach with similar accuracy on the Mica2 would be practically impossible because of the lack

of memory (the Mica2 only has 4kB total RAM) and disparity in sampling rate: the Mica2 can sample

at a maximum of 17.7 kHz, which is not good enough for sub-centimetre accuracy (sound travels 1.9cm

in between each sample).

For the class of 3D applications motivated at the start of this chapter, the Mica2 is not sufficient to

support fine-grained 3D localisation, even in a lateration experimental set-up. The ENSBox is suited to

the fine-grained, 3D self-localisation requirements of the marmot localisation application. This is because
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it is a custom self-localisation solution, designed specifically for acoustic source localisation and other

acoustic-related applications.

The next chapter switches focus from self-localisation to source-localisation. This comprises work

based on the motivating application: the localisation of animals in their natural habitat (which requires

accurate 3D self-localisation).
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Chapter 4

An on-line acoustic source

localisation system

Chapter 3 discussed node hardware and software requirements in order to achieve accurate acoustic self-

localisation in WSNs. Accurate self-localisation is extremely important for a class of applications that

use node position as input to source-data fusion. Chapter 4 focuses on this class of applications, taking

acoustic source localisation as the motivating high data-rate application. Specifically, the application

considered is the localisation of marmots in their natural habitat. (Marmots are small rodents with dis-

tinctive alarm calls that can be found in the USA.) Marmot localisation is a useful tool for the automation

of scientific observations that biologists need to make in order to understand marmot behaviour based

on their calls. These observations are valid for other biologically-motivated source localisation systems

for different types of animals and birds.

Firstly, a design for an on-line marmot localisation system was developed and implemented by the

author. For this system, an existing set of components to perform acoustic localisation were integrated,

producing a prototype on-line source localisation system.

Secondly, using the on-line model for acoustic source localisation as an example application, a hardware

and software platform for on-line acoustic sensing called VoxNet was developed and deployed as part of

a collaborative effort. Several individual components of the system were developed, unit tested and

evaluated by the author prior to deployment. For both systems, controlled indoor experimentation was

performed to benchmark key components. This was sufficient to allow for comparative performance

measurement between them.

VoxNet provides support for user-interaction via a high-level interaction model which enables a variety

of acoustic sensing applications. For application level programming, VoxNet uses the Wavescope stream-

processing engine. Underlying components to support the Wavescope engine running on a node were

integrated, such as data acquisition drivers and multi-hop network communication. In the design of

VoxNet’s programming and usage model, consideration was given to both the application specific and

more generic aspects of the system. The VoxNet implementation required less CPU and memory than

the original EmStar–only implementation, through tighter integration of existing, tested components

(to reduce overhead). Minimising the resource requirements allowed for the implementation of extra

functionality.

This chapter does not try to innovate in the components of the source data fusion, which includes

algorithms for: event detection, bearing estimation and data fusion for position estimation. The focus here
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is rather on the on-line operation of the system, and provision for human interaction and reconfigurability

for the deployable source localisation system.

This chapter is organised as follows: Section 4.1 elucidates marmot localisation as an application

and Section 4.2 provides an abstract overview of an on-line marmot localisation system. Subsequently,

two design-implementation cycles are presented for the localisation system, in Sections 4.3 and 4.4.

Section 4.5 presents micro-benchmark analysis of the two system iterations and Section 4.6 summarises

the contributions of this chapter.

4.1 Application motivation

The field of bio-acoustic research is broadly concerned with the transmission and reception of acoustic

signals made between animals or birds. One particular aspect of bio-acoustic research focuses on un-

derstanding the purpose behind certain acoustic signals produced by animals, and how these relate to

the environment in which they are produced. Census is also an important part of bio-acoustic stud-

ies. Acoustic census counts the number of individuals present in a given audio recording, which can

help the researcher estimate population size in a given area. Acoustic-based census is possible because

many mammals and birds produce loud alarm calls, territorial calls, and songs that are species-specific,

population-specific, and often individually identifiable (McGregor et al. 2000). As such, these vocalisa-

tions can be used to identify the species present in an area, as well as in some cases to count individuals.

Acoustic monitoring for census has been shown to be useful for cane-toad monitoring (Driscoll 1998),

elephants (Payne et al. 2003), birds (Hobson et al. 2002) and whales (George et al. 2004).

Recognising animal and bird calls and distinguishing between different individuals can be a difficult

problem. Only a handful of ornithologists have the skill to accurately census birds in dense, tropical

forests. Some animal vocalisations are impossible to observe such as infrasonic elephant vocalisations,

which are out of range of human hearing (Payne et al. 2003).

Localisation of animals and birds is a key component in census since determining the position of an

animal or bird based on its call can help the scientist disambiguate similar calls. Localisation can also

help the scientist understand territorial behaviour of the animal or bird of interest.

The particular animal considered with respect to source localisation in this chapter is the marmot,

a medium-sized rodent native to the western United States. Marmots are notable for their high pitched

alarm calls when they sense danger. Localisation in this case is helpful for understanding where an

animal was when it made a call, and why it made the call (to warn others, or protect itself). Although

marmots call relatively infrequently, they are prone to bouts of alarm calls, where 20 or more calls are

made in a single position, with an interval of around 1 second between each call. The calls are short

(around 40 milliseconds) and are high energy and high frequency. This makes them ideal candidates for

energy-based event detection (as discussed in Chapter 2).

4.1.1 Traditional user-interaction

Traditionally, bio-acoustic researchers gather data by attaching one or more acoustic sensors to a multi-

channel recorder situated around the animal/bird habitat of interest. The researcher will attend the

deployment and keep a detailed log of interesting acoustic events to aid and complement data post-
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analysis in the lab.

This approach commonly results in several hours’ worth of continuous acoustic recording, which must

be manually examined off-line by the scientist. Analysis through listening to unfiltered audio data is

enhanced with time and frequency domain data visualisation in order to find sections of audio that

are of interest. A variety of domain-specific applications and frameworks for data acquisition, event

detection and analysis exist. Raven (Anonymous 2008b) and Ishmael (Mellinger 2001) are software

applications designed to help the bio-acoustic researcher visually and statistically explore the audio

stream in both the time and frequency domain, and then run automated event detectors over the audio

stream. When more than one channel of audio data is gathered, both software applications provide the

ability to perform signal enhancement and direction estimation using beamforming techniques. Similarly,

Engineering Design (Anonymous 2008c) provide a suite of compatible tools such as Signal, Real Time

Spectrogram (RTS), Event Detector and Event Analyser, which allow automated event detection and

analysis for acoustic applications. The suite of applications aims to be a general purpose event detection

and analysis tool.

General purpose audio processing and recording tools such as Audacity (Mazzoni & Dannenberg 2007)

and Baudline (Anonymous 2007b) allow the user to investigate the characteristics of audio signals,

such as power and frequency content. These tools are useful, but are not integrated into any kind

of processing framework. Often they can be used in combination with general purpose tools like Mat-

lab (Anonymous 2009f) to perform ad-hoc processing that mimics the functionality of more specialised

processing frameworks.

4.1.2 The need for in-situ automation and interaction

Any automated in-field analysis of acoustic data can potentially ease off-line analysis of the data set for

the scientist. In this case, distributed acoustic sensing systems supporting on-line, real-time processing

and analysis of data have the potential to be a vital research tool for the scientist in the field. Researchers

can be given insight into territorial behaviour of animals and birds with a greater density of observation

than would be possible using the methods described in Section 4.1.1.

4.2 Application requirements and overview

The marmot localisation system is motivated by the following scenario: the scientist wants to detect

marmot alarm calls and determine the location of marmots, relative to known positions (such as their

burrow locations). By obtaining the marmot position estimates as the system is running, the scientists

can augment their written log-traces with pictures of animals under observation. Ideally, these pictures

could be taken by automated imagers which are actuated based on the results of the position estimate

provided by the localisation system.

Such a localisation system may also enable the scientist to record additional data about the current

habitat conditions, such as what caused the animal alarm call, and which animal raised it. In this chapter,

it is assumed that a scientist is only interested in localising one animal at any instant. (A discussion on

the importance of this constraint is presented in Chapter 5.)

Such a system requires that position estimates are delivered as close to real-time as possible, in order
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Figure 4.1: The source localisation localisation flow considered in this Chapter.

to enable actuation and image collection (either manual or automated).

Ali et al. (2007) presented a proof-of-concept distributed event detection system for this application

based on the Acoustic Embedded Networked Sensing Box (ENSBox) which was discussed in Chapter

3 (Girod 2005). Their system used the on-line energy-based event detection algorithm described in

Chapter 2 (Trifa 2006). The algorithm was tuned for marmot vocalisations and evaluated both in-situ

with real marmots and in controlled experiments with marmot recordings.

Time synchronised, continuous, four-channel audio recordings of marmots were also gathered in-situ

at each node, and combined with self-localisation results to perform source localisation off-line.

A network of Acoustic ENSBoxes were used to gather continuous, time synchronised audio over several

hours. Self-localisation was also performed, giving reference positions for nodes. The gathered audio

data was examined off-line by a biologist to determine the location of marmot events of interest across all

nodes. This process was performed manually in each node’s audio stream, rather than in an automated

fashion. For each event, the Direction of arrival (DoA) estimate from each node was determined, using

the Approximated maximum likelihood (AML) algorithm as discussed in Chapter 2 (Chen et al. 2002a).

The AML results for a given event were used as input to a source localisation algorithm (along with

the self-localisation results giving node reference positions). Under controlled tests (which the author

contributed to) where six V2 nodes were placed in a rectangular configuration covering 35m by 60m, the

data fusion yielded an RMS positional error of 0.7m when the source was inside the convex hull created

by the sensors, and 2.07m when the source was outside of the convex hull (Ali et al. 2008).

The applicability of the approach above for on-line source localisation of marmots was hence demon-

strated, and whilst an end-to-end system was not presented by Ali et al. (2007), the components that

would be required are available. They comprise an on-line event detector, DoA estimation algorithm

(AML) and DoA based localisation algorithm. As per its description in Ali et al. (2007), the conceptual

flow for such an on-line, end-to-end localisation system is as follows (Figure 4.1): an acoustic event is

detected within the network. Subsequently, all nodes send data corresponding to a detection to the sink.
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Figure 4.2: Top-down system design for the first iteration of the acoustic localisation system. Each box
represents a process, with green boxes identifying components built entirely by the author. Orange boxes
are EmStar libraries and blue boxes indicate existing components that were modified by the author.

The sink aggregates all the data corresponding to the acoustic event and determines the DoA of each

detection. Along with the node positions, the resulting DoAs are used as input to the source data fusion,

which yields a 2D position estimate.

In addition to this, the localisation system requires a way for the user to reconfigure or tune certain

system parameters during operation, such as the event detector parameters (as in Chapter 2). Since

the target users of this system are non-expert, it is crucial that the system be easy for them to deploy,

initialise, and configure/reconfigure.

The first iteration of a system fitting the requirements above is presented in Section 4.3, based on

existing components integrated to create an end-to-end source localisation system.

4.3 Top-down marmot localisation system design

The aim of the first system design exercise and its accompanying implementation and deployment was

to integrate the source localisation components used by Ali et al. (2007) into an end-to-end, on-line

localisation system. The physical architecture of the system was centred around a network of nodes in

direct communication with a single sink node. The nodes used were Acoustic ENSBox sensing platforms

(as described in Chapter 3), and the sink was an x86 laptop which was designed to allow the user to

interact with the system. Both platforms ran Linux as their operating system. (The overall design and

processing flow of the on-line source localisation system can be traced using Figure 4.2). Each node in

the network ran the same event detection application (Event detector in Figure 4.2), and the sink ran

a position estimation application (Data collection, AML processing and Data Fusion). The node-side

application was responsible for event detection and transmission of detection data to the sink. The sink

application was responsible for reception of detection data and its processing through the AML algorithm

and data fusion processes. The sink also provided a point of interaction for the user, offering some control

tools and visualisation of position estimates.

The system as a whole was built using the EmStar software development framework for WSN appli-

cations (Girod et al. 2004, Girod et al. 2007). EmStar provides libraries for standard WSN functionality,
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such as neighbour discovery, link estimation, message sending, sharing of state in a distributed manner,

data acquisition, and more. Each coloured rectangle in Figure 4.2 represents an individual process—green

boxes are components built by the author to integrate the on-line application; orange boxes are library

components. Blue boxes are components written to support the work presented in Ali et al. (2008), and

subsequently modified by the author inn order to integrate them into the on-line system.

A whole EmStar application is the combination of several communicating processes, which are man-

aged by the Emrun application. Emrun is configured by a user-defined run file that provides the location

on disk of all of the processes that must run, and command line options to be used when each process

is invoked, and how Emrun must react if any processes crash (to either restart the process or not). Al-

though Emrun is designed to support executables written using the EmStar framework, it can be used to

start and restart arbitrary processes (if they are not required to communicate). The EmStar framework

enables Inter-Process Communication (IPC) by using a software framework called the Linux Framework

for User-Space Devices (FUSD) (Elson 2002).

Using multiple processes to run EmStar-built software creates significant overhead compared to a

threaded application (processes are more expensive in terms of system resources than threads). In

addition, the FUSD implementation incurs some overhead for IPC. However, it provides great benefit,

as it enables modularity in application development, meaning faults can be isolated to processes. This is

vital to ensure system robustness during development and testing of WSN software (Girod et al. 2007).

The node and sink applications are now discussed.

4.3.1 Node-side application

The node side-application consisted of several library components and two application level executables—

an event detector executable and a detection transmission executable. Communication between compo-

nents was implemented using EmStar devices. These are identified in Figure 4.2 with the prefix /dev/.

In the remainder of Section 4.3, the application level components are firstly discussed in more detail,

followed by the library components.

Event detector

The event detection process is responsible for detecting events of interest and then communicating the

detection times to the detection transmission component via a detection device. Whenever a detection

is triggered, the event detection component records the start and end times of the detection, and places

them on the detections device, signalling that new data is available. The event detector was taken from

an EmStar implementation used by (Ali et al. 2007), which showed good performance and suitability

for on-line event detection of marmots in-situ.

The only modification required was to add the event detections device to the event detector process,

to enable communication with other processes.

Detection query and transmission

The detection transmission process is responsible for querying the relevant data segment from the audio

acquisition component whenever new detections arrive, and sending this data to the sink. This is ac-

complished using EmStar library functions to listen on the detection device, query data from the audio
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acquisition layer, and send the data via a Transmission Control Protocol (TCP) connection to the sink.

For each triggered detection, the detection transmission process requests 4096 samples of audio per

channel from the audio acquisition component, centred around the detection time. This corresponds to

to 90ms of audio or 32 kB of raw data (four channels, sampled at 48 kHz with 16 bit samples).

The detection size of 4096 samples/channel was chosen as a trade-off between the capturing the

acoustic signal of interest (around 40ms for a marmot call) and the smallest window size on which it is

best to perform an AML (for processing complexity reasons). As noted in Chapter 2, the AML result

suffers from edge effects induced by the Discrete Fourier Transform (DFT), which can be somewhat

addressed by providing adequate padding either side of the signal of interest.

In addition to the application level components, several driver components are required to support the

application running on the node. These are all provided by previously implemented and tested EmStar

executables, and are described below.

Network communication

As noted in Chapter 3, the Acoustic ENSBox nodes use 802.11 radios in the ad-hoc Independent Basic

Service Set (IBSS) mode. Communication between nodes and the sink is provided using TCP/Internet

Protocol (IP).

A feature specific to the prism2 chipset on the particular 802.11 wireless cards used, called Pseudo-

Independent Basic Service Set mode, is enabled to eliminate network partitions due to different parts of

the network converging on different ad-hoc cell IDs. Whilst security is not a major consideration in the

network design, the Pseudo-Independent Basic Service Set mode provides security by obfuscation, as it

allows only nodes with a particular version of the driver and specific chipset to join the network, thus

greatly reducing the threat of potential intruders. However, this work-around is not intended to be a

complete security solution. If security is an issue, then a more formal approach would need to be taken.

Time synchronisation

Time synchronisation is important in order to correlate detections across a distributed network of nodes.

The time synchronisation component used is a combination of Reference Broadcast Synchronisation

(RBS) (Elson et al. 2002) and a protocol to propagate global time from a node, called gsync (which could

potentially use a GPS receiver as its time source (Karp et al. 2003)). The time synchronisation service

allows conversion between global and local timestamps via an API function. At a high level, it does this

by performing a linear fit based on the x most recent timestamp pairs it has seen and uses this to predict

one timestamp (either local or global) given the other. The sink does not require time synchronisation

with the nodes, because its only function was to gather the data.

Audio acquisition

An audio acquisition server, called the audio daemon takes responsibility for the acquisition and inter-

leaving of audio samples taken from the four channels on the Acoustic ENSBox’s VXP440 soundcard,

as well as the presentation of these samples to the application layer. Software interleaving of audio

samples from the four channels is required because the hardware audio codecs are not synchronised on

a per-sample basis within the sound card. The audio acquisition component maintains a ring buffer of
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the most recent ten seconds of audio gathered, and provides a query interface API, which allows users

to request copies of samples from the ring buffer. This functionality is used by the detection query and

transmission executable, as previously described. The design and development of the audio server are

discussed in detail by Girod (2005).

Self-localisation

A self-localisation component was developed for the Acoustic ENSBox by Girod et al. (2006). This

provides accurate relative position estimation, based on acoustic range estimates between nodes. The self-

localisation component comprises two components: acoustic ranging and multilateration (both discussed

in Chapter 3). The relative node coordinates established by the self-localisation component are made

available to other processes in the EmStar application through a FUSD device.

Although the sink does not directly participate in the localisation process, it runs the localisation

components so that the position estimates can be propagated to it. This means the sink can use the data

as input to the data fusion.

4.3.2 Sink-side application

The sink side application is divided into two executables, one (data processing) which implements DoA

estimation (using the AML algorithm) and the data fusion (pseudo maximum-likelihood), and the other

(interaction) which supports the interaction between the system and the user. These executables are

described below.

Data processing

Support for data reception over TCP/IP is built using EmStar libraries for an event-based TCP server.

Each node opens a TCP connection with the sink to send a detection, and disconnects after successful

transmission. As the individual TCP segments of the 32 kB detection message from a node are received,

they are copied into a buffer. When the full 32 kB detection message is received, this is pushed into a

queue for AML processing.

The AML processing thread takes items from the AML queue and processes them in turn. After

the processing of each AML result, a 0.5 second timer is set, and the AML result is placed into a data

fusion record structure, to prepare it for the data fusion. If any other AML results arrive before the

timer expires, they are added to the same data fusion record, and the 0.5s timer is re-started. If an

AML result arrives from a node which is already represented in the data fusion record, the new AML

replaces the previous one. The data fusion record contains all of the data required to perform the data

fusion—the ID, position of each node, and its AML result. When the timeout occurs, the current state of

the record is copied and placed on a data fusion queue (the current state is subsequently reset). A data

fusion thread then takes records from the queue and uses them as input to the localisation algorithm.

Whenever an AML result is gathered, this data is placed on a device, meaning another process can read

the AML result and visualise it, for example. This means the correctness of AML results can be analysed

in isolation from the data fusion/position estimate phase (in practise, a separate AML-only visualiser

was used to view the output of a single node’s detection). The settings of the AML algorithm, namely

the frequency bands to be used in the computation, are tunable via a control device exposed by the
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application (described in 4.3.2 below).

Finally, the data fusion algorithm takes the results from the data fusion queue and the known positions

of the nodes (from the self-localisation device) and combines them. The algorithm output is a pseudo-

likelihood map (as a .ppm) file which is then displayed to the user.

Interaction

In order to provide interaction for the user, a web interface was developed, using EmStar Hypertext

Markup Language (HTML) libraries. This was possible because both the nodes and sink ran lightweight

Hypertest Transmission Protocol (HTTP) servers provided as EmStar library services.

The web interface provides a web page that the user can view on the sink (laptop), giving a vi-

sualisation of the individual AML results that went into a given data fusion, as well as the resulting

pseudo-likelihood map. The web-interface also provides a way to input parameters for both the on-node

event detector and sink-side AML processing controls. In the back-end, event detection configuration is

provided by an existing EmStar application for remote, synchronised recording called netrec (network

recorder). A sink side process maintains the status of all nodes running event detection and recording

software in the network. This includes event detection settings, local hard disk space and recording set-

tings. A node side process responds to commands to start and stop recording, as well as to change event

detector settings. The sharing of configuration state between nodes and sink is provided by a library

EmStar service, called statesync which provides efficient, log based state sharing between nodes in small

networks.

4.3.3 Discussion

The system produced was intended and evaluated as a demonstrator. It was verified that the various

components worked together and that the system was capable of presenting results on-line; therefore, no

quantitative results are shown. The system was demonstrated on two separate occasions, firstly at the

IPSN 2007 conference, where an eight-node network was set up over a 30 metre square area, and secondly

at the CENS research review in 2007, where an eight-node network was set up over a 15–20 metre square

area. In both demonstrations, a controlled acoustic source was used to validate the performance. The

acoustic event used was a dog-whistle, chosen because of its strong dominant frequencies. The original

energy band chosen for marmot frequencies was a continuous frequency band between 4.64 to 7.74 kHz.

So, in order to tune the event detector and AML, the whistle was recorded and its frequency spectrum

analysed. Four frequency bands were chosen to compute energy across for the dog whistle: 6.96–7.74 kHz,

13.16–15.48 kHz, 18.58–20.13 kHz and 20.9–23.22 kHz. The last three bands were harmonics of the first,

dominant frequency band. The event detector was configured to monitor only these frequency using the

web interface.

The integrated system produced demonstrates that an end-to-end system for source localisation was

viable, and provided a reference to compare future performance to (see Section 4.5). However, in-

situ non-expert user configuration was not explicitly considered, and neither was ease of deployment

and initialisation. It would be difficult for a domain scientist to change the components or re-write

software. The visualisation components were fixed in their implementation, and limited (AML and

position estimation map). Additionally, the system did not work over multiple network hops, meaning
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that single hop connectivity with the sink had to be guaranteed for all nodes in order for the system to

function correctly.

The second iteration of the acoustic source localisation system formed a proof of concept for a hard-

ware and software platform for on-line acoustic sensing, called VoxNet. The on-line source localisation

application was used as an example application for the platform. Several new issues which were not raised

in the development of the first proof-of-concept were addressed: multi-hop networking, interactive usage

and high level application creation and dissemination.

For the VoxNet system, the author took responsibility for the development and evaluation of key

system components, specifically the real-time data recording functionality (spill to disk), an interactive

system shell to send commands to nodes and receive status updates (the WaveScope Shell), and a file

dissemination protocol. The author also developed a framework for experimental data gathering, built

into the WaveScope shell. This framework was used by the author to carry out several data gathering

experiments, both in-situ, and in controlled experiments (described in Chapter 5). Finally, the author

compared the resource consumption between the EmStar and VoxNet sytems (Section 4.5.1).

4.4 A bottom-up marmot localisation system design

The informal, qualitative evaluation of the first iteration of the system was sufficient to show that the

components could be integrated into an on-line system, and also could be re-tuned whilst in operation.

However, the system was not easily configurable, and did not support other features that would be

expected by a domain scientist, such as raw data collection. It was also only a single-hop network

architecture, limiting the deployment scale achievable.

Working with real users and a concrete application enabled refinement of objectives with respect to the

marmot localisation system, both in terms of the capabilities of the system and the desired user experience.

As a result of these experiences, the next iteration of the marmot localisation system was designed and

implemented: VoxNet, a hardware and software platform for distributed acoustic sensing.

The general aim of VoxNet is to support high data-rate sensing applications, using a design motivated

by bio-acoustic applications. The contributions that VoxNet provides beyond the original on-line marmot

localisation system are:

1. A platform capable of rapid deployment in realistic environments for bio-acoustic applications

2. A high level programming interface that abstracts the user from platform and network details,

whilst compiling into a high performance distributed application

3. The definition of an interactive usage model based on run-time installable programs, with the ability

to run the same high level program seamlessly over live or stored data.

In VoxNet, software flexibility is a system design requirement. It is important to be able to facilitate

multiple application functionality as well as reconfiguration and tuning of applications running in the

field. For example, concurrently with the localisation application, a researcher might want to archive

all the raw data gathered without disturbing the running system. A feature called Spill to Disk was

developed to support this.
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Figure 4.3: The VoxNet system architecture, showing both on-line and off-line operation contexts. The
control console represents the user interface to both contexts.

Distributed VoxNet applications are written as a single logical program in the Wavescript macro-

programming language (Girod et al. 2007), abstracting the programmer from the particular details of

the network and particular hardware platforms. Other well-known WSN macro-programming approaches

include TinyDB (Madden et al. 2005), Kairos (Gummadi et al. 2005) and Regiment, the forerunner to

Wavescript (Newton et al. 2007). These programs can operate over a combination of live and static data,

residing in a distributed system of sensors and back-end servers. This model enables users to tune and

further develop applications during pilot deployments, and enables the system to be used as an interactive

measurement tool while it is deployed. This is important for many short-term scientific deployments,

because it allows a scientist to immediately explore newly observed phenomena.

4.4.1 System architecture

Figure 4.3 shows diagrammatically the VoxNet system architecture—a framework in which programs can

be written, compiled, and disseminated, and the results can be archived and visualised. VoxNet is made

up of several hardware components: a network of nodes, a gateway, a control console, the compute server

and the storage server.

Nodes form the main part of the on-line operation of the system, sensing and potentially processing

audio data. The gateway provides a connection to relay traffic between the control console and the

network of nodes. The control console provides a unified interface for both the on-line and off-line

portions of the platform. It hosts the interaction tools, and acts as a sink to the programs running in the

network. Results and diagnostic data are returned to the control console for display and visualisation.

A PDA may also be used to visualise data from network streams whilst mobile in the field. The storage

server archives data acquired by nodes for later retrieval and processing. The compute server provides a
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Figure 4.4: The on-line, interactive development cycle for VoxNet.

centralised unit for off-line data processing and analysis.

The full VoxNet architecture operates in two contexts: on-line and off-line.

Interaction model

When running on-line, Wavescript programs are created, compiled and disseminated to the network via

the control console. Data arriving at the control console can be visualised as well as archived to a storage

server. This data includes application specific streams, as well as logging data and operational statistics.

When in off-line operation, streams of results and offloaded raw sensor data can be archived to a storage

server and later processed off-line, using the same user interface. Applications that would previously

have run on the control console and nodes, can be run on the compute server with data queried from the

storage server.

Section 4.4 concentrates mainly on the design, implementation and evaluation of the on-line operation

context of VoxNet. Off-line operation is considered in more detail in Chapter 5. This is because the

marmot localisation application is focused on on-line localisation. It is therefore most important to

address firstly the on-line aspects of the system.

4.4.2 On-line VoxNet components

The VoxNet software stack is made up of three integrated layers:

• The high level application layer, provided by the Wavescope stream processing engine, which

handles compilation, optimisation, and operation over the network.

• The distribution and interaction layer, which provides a collection of sub-application level

control and visualisation features important for tracking resource availability, troubleshooting and

usability in the field and in off-line computations.

• The platform drivers and services layer, which supports the operation of the interaction and

application layers on the specific hardware used in VoxNet. This layer includes core components
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Figure 4.5: The layers in the VoxNet software stack, shown for both node and sink.

such as time synchronisation and multi-hop network communication.

The control/visualisation tools and platform drivers/services were implemented using the EmStar

framework, allowing re-use of existing (and tested) components, as well as rapid development of new

tools and services. These components are described in greater detail in the remainder of Section 4.4.

4.4.3 Application layer

In VoxNet, applications are run using the Wavescope stream-processing engine. The Wavescope project

is an ongoing effort which started in 2006 at MIT with an aim to develop a stream processing system

for high-rate sensor networks (data sampling at rates of hundreds to tens of thousands of Hertz) (Girod

et al. 2007, Girod et al. 2008). Wavescope represents streams of data in units called SigSegs. These are

windowed segments of data with associated meta-data such as sample frequency, window size (in samples)

as well as a single timestamp, for the first sample in the window. Wavescope does not timestamp data on

a per-sample basis for high-data rate applications because of the overhead involved in both processor time

and memory requirements. Instead, Wavescope assumes that data sources provide contiguous streams of

samples; this means a window of data can be indexed correctly knowing only the timestamp of the first

sample.

Wavescope programs are written using the custom stream-processing programming language, Wave-

script. Similar to other stream-processing languages, Wavescript structures programs as a set of commu-

nicating stream operators (also known as kernels or filters). To write a program, the user writes a script

that concatenates stream operators to form a directed graph. Stream operators consume one or more

input streams, and produce one or more output streams. During compilation, the Wavescope back-end

performs a depth-first traversal of the Wavescript dataflow graph, meaning that emitting data from one

operator to another corresponds to function call make from the upstream operator into the code for the

downstream operator. Wavescript programs are written using a functional programming paradigm for the

most part. However, unlike pure functional programming languages, Wavescript allows side-effects (state-

ful variables). Syntactically, Wavescript is most similar to the ML programming language. Wavescript
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Figure 4.6: The high-level graph of the WaveScope localisation application. Operators and named streams
are shown. The corresponding node and sink-side code is shown on the right hand side of the figure.

allows users to write custom stream operators directly in Wavescript to augment the existing library of

operators.

The Wavescope engine used in VoxNet requires that users write both the sink and node side of

the executables, and define where network communication takes place. Two Wavescope operators are

provided to allow this functionality, toNet() and fromNet(). toNet() maps a local stream onto a named

network stream, and fromNet() subscribes to the named network stream, outputting it as a local stream.

The Wavescript compiler converts the high-level application representation into efficient, low-level C code

for either x86 or embedded architectures (such as ARM). The resulting Wavescope executables are run

on the VoxNet platform using Emrun.

The high level data flow graph for the Wavescript implementation of the marmot localisation applica-

tion is shown in Figure 4.6. Stream operators are shown in blue, and named stream variables (that flow

between operators) are yellow with text in 〈angle brackets〉. Audio data acquired by a node is directed

into Wavescope by the Audio operator as four channels (ch1 to ch4). Stream ch1 is passed through the

eventDetector operator, which produces a stream of tuples called events, which correspond to the start

and end times of marmot calls. The events stream is passed through the sync library operator, along

with the four original audio channels. The sync operator outputs a four channel stream of raw data

(detections) which corresponds to the data ranges specified in events. The detections stream flows

through the toNet operator into a named network stream (det-stream).

At the sink, the fromNet operator receives data from any nodes which are publishing det-stream,

outputting a detections2 stream. detections2 flows through the AML operator, producing amls—a

stream of angle of arrival estimates. amls flows through the grouping operator temporalCluster, which

time-correlates AML results, producing a stream of grouped data (clusters). This flows through a data

fusion operator to produce a stream of position estimate maps, which are output to the user.
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A vital part of integrating Wavescope into VoxNet is Wavescript’s Foreign Function Interface (FFI).

This allows Wavescript operators to be bound to library code written in C. For example, the FFI allows

Wavescript to ensure that extremely intensive kernels of computation (for example, Fourier transforms)

are implemented by the appropriate C or FORTRAN implementations (such as FFTW or LINPACK).

The FFI has been extremely useful for supporting Wavescope in VoxNet. For example, the net-

work operators (toNet and fromNet) are wrapped calls to the node’s network subscription server (see

Section 4.4.4), implemented using the FFI. The FFI was also used to integrate the audio acquisition com-

ponent as a live data source. This meant that acquired data could be pushed to the compiled Wavescript

code, where it was viewed as a stream (via the Audio operator). Unlike other statically linked C libraries,

the audio acquisition component was compiled directly into the node-side executable. This was because

the audio driver could not afford the speed and memory overhead of using an IPC mechanism to transfer

the data to the node-side executable. This was achieved by using two concurrent threads in the node

executable with a buffer in between. One thread ran the audio acquisition component, and put audio

data onto a buffer. The result was read by the other thread, which was the main Wavescript application.

The Wavescript language and compiler was developed in prior work (Girod et al. 2007). VoxNet builds

on this, extending the functionality to support applications running with live data inputs, on an embedded

platform, and over a wireless network. VoxNet is the first embedded target for the Wavescript compiler,

and developing the VoxNet back-end motivated many new features and optimisations. Implementing the

animal localisation application using the Wavescript programming language and optimising the compiler

resulted in a 30% reduction in processor load and 12% in memory usage, compared with the first iteration

of the system (see Section 4.5). Prior work on Wavescope focused on Wavescript and single-node engine

performance, but the VoxNet platform motivated significant new developments. These developments

formed the basis of the distribution and interaction layer, and are described below.

4.4.4 Distribution and interaction layer

The distribution and interaction layer is responsible for allowing Wavescope programs to flow in a multi-

hop network, as well as providing sub-application control and diagnostics. To support this, the distribu-

tion and interaction layer offers the following functionality:

• Network stream subscription server to create, publish and subscribe to data streams.

• Discovery service to discover nodes, maintain status and connection information at the sink.

• Wavescope Shell (WSH)—a command line interface to the control console, allowing commands and

binaries to be disseminated to the network.

• Wavescope application dissemination mechanism to disseminate compiled binaries to the nodes in

the network via network streams.

• Stream visualisation mechanism to visualise data travelling over networked streams.

This distribution and interaction layer represents a large amount of the author’s individual contri-

bution to the VoxNet project in terms of design and implementation. The individual elements are now

discussed, with exception of the visualiser, whose operation is secondary to the system’s functionality.
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Network stream subscription

To support the flow of Wavescope streams across network boundaries in VoxNet, a TCP/IP based network

stream abstraction using a publish-subscribe model was developed. The network stream abstractions

are used for all types of communication in the VoxNet system, including visualisation, log messages,

control messages and pushing new compiled programs. Networked streams are conceptually the same

as Wavescope streams, flowing uni-directionally from one point to another. Additionally, a published

networked stream can flow to multiple clients.

To enable the network stream abstraction, each node (as well as the sink) in VoxNet runs a subscription

server, which is responsible for creating new streams to be published, managing subscribers to each

published stream, and subscribing to streams published by other nodes (or the sink). Streams are

identified by a descriptive name (for example, detections) which must be unique to a given subscription

server (but is not required to be globally unique).

Networked streams are intended to be 100% reliable to preserve the flow of data in Wavescope ap-

plications. To ensure reliable data transmission, the stream abstraction is built upon TCP/IP. The

implementation of the network stream abstraction was built using the EmStar event driven TCP server

and client libraries as base functionality (these are the same libraries used in the first system iteration).

The network stream library offers an API to users, shown below:

• create subscription server(options)

creates a new subscription server, with user-defined options.

• register stream(stream name, new client cb, options)

registers (or publishes) a new stream with the subscription server. new client cb allows the user

to provide a callback function to be triggered when new clients subscribe.

• subscribe(stream name, server address, data received cb)

subscribes to a stream offered by a server. data received cb allows the user to provide a callback

function to be triggered when a new message arrives.

• unsubscribe(stream, server address)

cancels subscription to a stream on a given server.

• send msg(stream)

sends a message to all clients subscribed to the given stream.

The options structure contains fields that allow the user to define certain default configurations for

the server, and each stream individually. The configuration parameters are: stream semantic, connection

keepalive timeout, keepalive count, buffer size and auto reconnect (discussed later in Section 4.4).

In order to subscribe to a publisher’s stream, a subscriber needs to know the IP address of the publisher

of the stream and the stream’s name. The two subscription servers negotiate the subscription process

via a two-way handshake (request subscription, acknowledge subscription). The publisher’s subscription

server registers the client as a subscriber of the stream, opening a TCP connection with it over which

the stream data will be transmitted.
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When data is requested to be sent at the application level (using the send msg function), it is queued

by the subscription server in the relevant stream’s outgoing buffer as a message. Stream data gets received

by clients as messages. The event-based TCP EmStar library takes responsibility for sending individual

parts of a message to clients, and the TCP protocol ensures in-order, reliable delivery. Reception of a

complete message is acknowledged by each client. Only when a message has been acknowledged by all

clients subscribed to a stream can it be removed from the stream’s queue.

Both the publisher and the client play a part in stream connection management. On the subscription

server, each stream client has an individual TCP connection—different streams going to the same client

are not multiplexed. In order to keep TCP connections active when no traffic is being sent over them

(thus avoiding the three way handshake required to initiate a TCP connection), subscription servers send

per-stream keepalive messages at pre-determined intervals (as noted above). If a client does not respond

to a user-defined number of keepalives, the server assumes that the TCP connection has stalled due to

repeated packet losses (stemming from signal quality or temporary routing problems); it will therefore kill

and restart the TCP connection. If a client becomes disconnected from a published stream, it will attempt

to reconnect indefinitely, with an increasing timeout. Upon reconnection to a given stream, the server

will replay any messages the client had not acknowledged whilst disconnected. If client unsubscribes from

a stream, the publishing subscription server will initiate a two-way unsubscribe handshake (unsubscribe

request, unsubscribe acknowledge). Upon completion of the handshake, the publishing subscription server

removes the client from its list of subscribers.

If a stream has no clients, any messages sent to it will be buffered, waiting for an initial subscription.

If a client subscribes, it will send all of the buffered data to it. This ensures that potentially important

data is not lost during initialisation of an application in VoxNet. However, each network stream has

a limited buffer (the default is 512 kB). Consequently, several lossy semantics have been implemented

to deal with buffer overflows. These can be defined by users as part of the options for initialising the

subscription server or individual streams. The first causes messages to be dropped from the head of the

queue upon buffer overflow, called drop oldest. The second, called always request latest, does not buffer

data, and all new clients begin receiving only new data. This means data may be dropped by a client

if its connection is forced to restart. The spill to disk component uses the always request latest stream

semantic, because in the event of a disruption, the raw data will quickly overrun any in-memory buffer.

In addition, the directly wired connection to the Gumstix is reliable, so loss is not a problem.

In VoxNet, nodes advertise published streams to the sink via the discovery server, which is described

later in Section 4.4. There are some well-known streams that are exposed by nodes and the sink during

normal operation of VoxNet:

• Control stream (Sink). Allows the sink to send commands to all nodes in the network. All nodes

subscribe to this stream.

• Log stream (Node). Allows nodes to send information to the sink. The sink subscribes to the

control streams of all nodes known to the discovery server.

• File stream (Sink). Allows the sink to send data files (such as new binaries) to the nodes.
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For Wavescope programs, the subscription server is already started and the FFI is used to provide

the toNet and fromNet functions for the system.

While the current implementation uses end-to-end TCP sessions, in other application contexts and

at larger scales this may no longer be adequate. Further work is required to experiment with other

communication mechanisms including split-TCP and Delay Tolerant Networking (DTN) approaches. It

is expected that other semantic models will arise as more VoxNet applications are developed.

Discovery service

The control console is a centralised point of contact for the network that is responsible for node discovery,

application dissemination, resource usage tracking, error logging, and profiling statistics. It serves as a

mediator between users who want to install a program and the VoxNet distributed system, and hosts all

appropriate compiler tools and scripts. The discovery service hosted on the control console maintains

a list of active VoxNet nodes and back-end server machines, and tracks their capabilities and resource

availability. When VoxNet nodes or servers start up, they connect to the control console at a well-known

address and register with the network.

Application dissemination

When a user submits an application for propagation to the VoxNet system, the control console com-

piles it for the appropriate architectures and pushes the compiled components out to nodes currently in

its discovery list. The application dissemination mechanism is based around networked streams: each

node subscribes to a file stream exposed by the control console. When a new application needs to be

disseminated, it is sent to each node over the file stream. This approach gives the same performance

as manually copying the file to each node in the network using the secure copy application (scp). The

relative performance is shown in Section 4.5. To actually perform the dissemination, the user can use the

Wavescope shell, defining the file to send, and the location to send it to on all the nodes.

After applications have been disseminated, they must be initialised in the system. This feature is

not fully implemented in VoxNet’s current incarnation and is performed by making use of symbolic

linking and the Emrun process manager. The currently running application binary is referenced in the

user-defined Emrun run file via a symbolic link, rather than directly. When the new binary has been

successfully received, the symbolic link is changed to point to it. The Wavescope process is then killed,

which causes Emrun to reload and restart the executable. This time, the newly disseminated executable

will run, rather than the old one.

Dissemination as currently implemented does not consider several important factors: transactional

binary updating (what to do if not all nodes in the network receive the new executable) and application

rollback (how to swap out a faulty application and replace it with a previous (working) one). A potential

solution to rollback could be that the location of the previous binary is stored, and if Emrun notices the

new binary has crashed, then the symbolic link is reverted before the process is restarted.

WaveScope shell (WSH)

To control the VoxNet deployment, the Wavescope Shell (WSH) was developed: a text-based command-

line interface to the control console, similar to the UNIX shell. WSH was implemented using GNU
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readline, and is based on the Remote Broadcast Shell (RBSH) implemented by Girod (2005). WSH

uses reliable stream connections to communicate with nodes, as opposed to RBSH’s unreliable approach,

where commands are flooded to nodes as many as three times to ensure delivery. Additionally, WSH

distinguishes between local and network commands, whereas RBSH forwards any UNIX command given

at the prompt to be remotely invoked at all nodes in the network (WSH can also perform this functionality

via the send command).

WSH communicates with nodes over the control stream, which all nodes in the network subscribe

to by default. As the control console also subscribes to all nodes’ control streams by default, log messages

sent over this stream are passed to WSH for display to the user. (Log messages sent by nodes to the

control console carry a special header to identify them to be interpreted as character data. WSH knows

how to parse and interpret these messages).

The WSH network command set is as follows:

• send

send and execute an arbitrary UNIX command locally on the node.

• pause

pauses the Wavescope application that is currently running on the nodes.

• start

(re)starts the Wavescope application that is currently running on the nodes.

• flush

clears the send buffers of all streams exposed by all nodes in the network.

• list

provides a tabular display showing the current status of each node registered via the discovery

protocol. Each stream a node currently exposes is displayed, along with the current send-buffer

status for that stream (the amount of data that is queued to send).

• test

request nodes to send back an arbitrarily-sized message on the control stream, including a timestamp

indicating when the message was queued to be sent. Accepts arguments for the amount of data

nodes should send back and the ids of nodes that should reply.

• fsend

sends a file to all nodes in the network. Accepts an argument for the file to send, the nodes to send

it to and the location to save the file to remotely. This mechanism allows for binary dissemination,

as noted in Section 4.4.4.

Network commands (that is, commands that are node-bound) are sent to all nodes in the network

by default. If the user provides a comma-delimited list of nodes to send to as an optional argument to

any network-based control command, then only those nodes which are listed will respond to the message.

Note that the message is always delivered to all nodes. This feature can be used to selectively address
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nodes, for instance in requesting them to send data back to the control console when testing the network

connection. Control client logic on each node parses WSH command messages when they arrive (on

the control stream) and the node acts accordingly: executing an arbitrary command, receiving a file or

replying with a timestamped data packet.

The test command is a useful tool for network testing at sub-application level, and was designed

and implemented by the author to provide a framework to perform network transfer time analysis. The

functionality of test is significantly extended in Chapter 6 to support more advanced network testing.

WSH receives and interprets the data test messages that are sent by nodes in response to test commands.

WSH takes a timestamp when the message arrives at the application layer as well as reading the global

sending timestamp the node placed in the message payload. These timestamps, as well as the node id

and message size are output to the screen by WSH so the user can used them to calculate data goodput.

In the current implementation, WSH is integrated within the control console software, although future

versions would separate these two functions so they could exist on different computers if required. This

would allow the shell to be located on a portable computer, for example the user may want to carry a

computer nearer to the deployment, and still issue commands to the node, but still have the main control

control in a static position.

Spill to disk

Experience with field scientists showed that even in instances where detection and localisation can be

performed on-line, there is also value in recording a raw data set for future processing. While this desire

may diminish as confidence is gained in data reduction algorithms, it will always be important in the

testing phases of any new algorithm, as well as for interactive use (to replay and re-analyse recent data).

To address these concerns, a spill to disk functionality was developed. The spill to disk component saves

correctly time-stamped raw data streams to the flash card in the VoxNet node. In the main Wavescope

program, an extra toNet operator is included so that the main processor publishes the raw data being

gathered as a network stream visible to the supervisory co-processor (the Gumstix). A subscription

client on the Gumstix receives the data over the wired network from the main ENSBox processing

board, and marshals it to files on its flash card, properly annotating with global timestamps. Through

experimentation, it was found that VoxNet can continuously archive 4 channels of audio at 44.1 kHz

while concurrently running other applications, as shown in Section 4.5.2 on page 116.

In a VoxNet deployment, network limitations mean that raw data can only be saved in a node’s local

storage (and as such can still be accessed by a distributed Wavescript program). After the deployment,

stored raw data can be dumped to a large server for archival purposes; the same programs that run in a

deployment can be run against the archived raw data.

4.4.5 Platform drivers and services layer

The drivers and services layer provides important support for the application and interaction layers of

VoxNet. Some of the components used in VoxNet are similar or the same as those used in the first

iteration of the system, and are noted thus where relevant.
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IP routing

VoxNet implements IP routing from each node back to the gateway node using an existing user-space

implementation of Dynamic Source Routing (DSR) (Johnson et al. 2001), written by Stathopoulos (2006).

The implementation dynamically installed routing entries into the kernel routing table, allowing nodes

to automatically forward traffic on behalf of one another. Although DSR can establish routes between

any two nodes on-demand, it was only used to find and maintain routes between the sink and nodes.

The DSR implementation was not fully integrated into the system, meaning that to maintain routes, a

special ping message has to be sent by each node to the sink periodically. Future implementations of the

system may allow the traffic that is travelling over the path to act as a keepalive for the DSR algorithm.

The implementation of DSR required little modification to run in the VoxNet system.

The gateway forwards between the Pseudo-Independent Basic Service Set network and a normal

wired or wireless Local Area Network (LAN). This means that client devices are not required to use

Pseudo-Independent Basic Service Set mode (a special feature of a particular hardware driver, discussed

in Section 4.3.1).

Link estimation and neighbour discovery

Link estimation and neighbour discovery are important to support the multi-hop routing protocol used—

in this case, Dynamic Source Routing. Link estimation was provided by an existing driver called rnplite,

which periodically sends broadcast messages to determine link quality between neighbours. A moving

average for each of a node’s neighbours was taken, based on the amount of broadcast messages that

were sent and received. Since incoming and outgoing links can experience different levels of loss (Cerpa

et al. 2005), it was important that a node knew how many of its messages were received by others

(outgoing) and how many messages it received from other nodes (incoming). The sent and received

values are expressed as a percentage of the total sent within the moving time window.

Gateway time synchronisation

The time synchronisation service used by the nodes in the network based on RBS only works over

wireless communication, hence extra logic is required to bridge the gap between the control console

and the network (as they are linked through a gateway). In order to support this, an application was

developed which runs on the sink and the gateway. The existing EmStar time synchronisation service

(gsync) requires that pairs of global and local time measurements are recorded regularly. The gsync

service uses these measurements in a linear regression to allow arbitrary local times to be converted to

global time and vice versa. The aim of these pairs is to have them be as close as possible in time (ideally

both are taken at exactly the same time). However, because the sink and gateway are separated by a

wire, some latency is incurred between the sink requesting the current time and physically receiving it

from the gateway: the time taken for the gateway to respond the query, and send a reply over the wire.

The most basic way to approach this would be for the sink to request the global time from the gateway,

then pair it with a local timestamp which is taken when the request reply arrives. However, this does

not factor in the time taken for the request to travel back and forth along the wire. Therefore, a more

complex procedure is required to increase the accuracy of timestamps.
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The implemented solution is as follows: the gateway is configured as the root time source for all nodes

in the network. Periodically, the sink queries the gateway for its current time, using a User Datagram

Protocol (UDP) packet (a TCP packet may incur latency due to the three-way handshake required to

establish a TCP connection). The sink locally records the time at which it sends a query packet (tq,s).

The gateway runs a time server, which services only time queries from the wired interface. When it

receives a query, it timestamps its arrival time (tq,a) and prepares a reply packet (which the arrival time

is inserted into). Before the reply packet is sent, another timestamp (tr,s) is made and inserted into the

packet. The sink timestamps the arrival of the reply packet as tr,a. The sink wants to pair tr,s and tq,s,

so it computes the wire transmission time W as follows:

W = (tq,a − tr,s) − (tq,s − tr,a)/2 (4.1)

and then the timestamp pair tpair as:

tpair = 〈tq, tr + W 〉 (4.2)

meaning that tr has the estimated wire transmission time w added to it. This means that tq is as close

as possible to the reception time.

4.5 Evaluation

In Section 4.5, the operation of the system as a whole, and its individual components are discussed and

evaluated. The evaluation performed here has been performed both through micro-benchmarking and

real-life deployment. Real-life deployment is evaluated in Chapter 5. Resource usage and processing times

are compared for the AML and event detection components on nodes. The spill to disk and dissemination

components are also benchmarked.

4.5.1 Memory consumption and CPU usage

It is important that the VoxNet implementation of the marmot localisation application be comparable in

terms of resource usage to the original EmStar-only application.

In order to test this, the resource footprint (CPU and memory usage) of the on-node event detector

was recorded for both applications. Figure 4.7 shows the CPU and memory usage involved in the on-

node event detection for both the Wavescope and EmStar applications. For both, this comprises two

components: the detector itself and the data acquisition. The figures are the mean of one minute’s worth

of CPU and memory usage obtained using the Linux command top (20 data points).

Figure 4.7 shows that the total overhead of the Wavescope version is over 30% less in terms of CPU

(87.9% vs 56.5%) and over 12% less memory (20.9% vs 8.7%). The main reason for this is that the

sampling layer is compiled into the main VoxNet executable, removing the overhead of inter-process

communication that EmStar uses.

4.5.2 Spill to disk

Because the Wavescope version uses fewer CPU and memory resources, additional components can run

concurrently with the detection application. To demonstrate this, the spill to disk component (which

archives a copy of all raw audio data to flash storage) was tested along-side the event detection application.
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Figure 4.7: Comparison of memory and CPU usage for the on-node event detector in both EmStar
and VoxNet. The left hand side set of bars show CPU usage (broken down by event detector and
data acquisition components) and the right hand set show memory usage. For VoxNet, the spill-to-disk
component running concurrently with the event detector and data acquisition is also included.

The event detector was run concurrently with the spill to disk component for 15 minutes. The CPU and

memory usage was monitored on the Slauson (the ENSBox’s main processing board), as well as the data

transfer rates between the Slauson and Gumstix, and the buffered queue sizes for the incoming data

stream at one second intervals. Figure 4.8 shows both the stream buffer size and data transfer rate over

time. On average, the throughput from Slauson to Gumstix must keep up with the data rate—that

is, four channels of 16-bit audio sampled at 44.1 kHz (344.5 kB/s). The throughput from Slauson to

Gumstix over the stream was 346.0 kB/s, which is in line with the required raw data rate (including a

timestamping overhead of 8 bytes per raw data segment).

The stream buffer between Slauson and Gumstix was never completely cleared—on average it had

79.5 kB (0.23 seconds) of data in it at any one instant. The sensor buffer, which stores a back log of

acquired sensor data (up to 10.42 seconds) was slightly behind (2.07 seconds at worst) as the application

initialised on the platform, but the buffer was emptied after around 10–12 seconds (indicating stabil-

isation). Including the start up period, the buffer between the data acquisition thread and the main

Wavescript program had on average 0.02 seconds of data in its buffer throughout the experiment. This is

a positive result, as it means that the data acquisition and the main program threads are being serviced

fairly (i.e. getting the same amount of processor time). If the buffer started to fill up, this would indicate

an imbalance between the two threads. Once the buffer starts to fill up, it becomes difficult for the main

program thread to catch back up with the real-time audio. Under heavy load, this would be disastrous,

and most likely result in the loss of audio data (getting dropped from the buffer). The third and sixth

117



CHAPTER 4. AN ON-LINE ACOUSTIC SOURCE LOCALISATION SYSTEM

0 200 400 600 800 1000 1200 1400 1600 1800 2000
200

250

300

350

400

450

T
ra

ns
fe

r 
ra

te
 (

kB
/s

) 

Time (s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

D
at

a 
in

 b
uf

fe
r 

(k
B

) 

Time (s)

Figure 4.8: Data transmission rates between the ENSBox’s main processing board (the Slauson) and the
Gumstix co-processor, as well as buffered data queue size, over a 15 minute period.

bars in Figure 4.7 show that the overall resource overhead of running both spill to disk and an event

detector on the node is 80.7% CPU and 9.5% memory (taken from 20 consecutive top measurements).

4.5.3 Binary dissemination

The network stream file dissemination approach was compared to the scp application, in terms of latency.

scp is a commonly used method of securely transferring files over a network using TCP/IP so it represents

a good comparison point. A 1.5 MB file representing a new binary was transferred to an increasing number

of nodes (up to four). Both scp and the network stream file dissemination mechanism were used. For

scp, the file was transferred to each node in sequence, and for the network stream mechanism, the file was

transferred to as many clients as were subscribed to the stream. For each number of nodes, five transfers

were made. It was expected that the transfer times would be similar, and that the network stream mode

should not be slower than scp. Figure 4.9 shows the results. The performance is as expected: scp and

the dissemination mechanism are within a second of one another for a 1.5 MB file (with dissemination

mechanism quicker). However, the approach is not really scalable, as the time to transfer data will be

linear in the number of nodes (which is the same as manually copying the file to all nodes, like scp).

A different approach may be for nodes to propagate the file to its multi-hop children as follows: the

sink sends the binary to its children on the routing tree, and they send to their children, until the new

executable has been propagated throughout the network. This may allow nodes to take advantage of

spatial re-use, where nodes that are not in the same communication range can transmit at the same time

(this is discussed more in Chapter 6).
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Figure 4.9: The amount of time to transfer a new binary to nodes in the network using scp or the network
stream mechanism.

4.5.4 On node processing comparison

Providing the capability for on-node data processing is an important part of VoxNet. To further test

the on-node processing capability, the time taken to compute a DoA estimate using the AML algorithm

was measured. In the marmot localisation application, this is an intensive processing operation, but can

potentially be performed at the node or sink. It is currently processed at the sink. The performance of

the C implementation of the AML used in the EmStar-only system was compared to the corresponding

Wavescope implementation. The same Wavescope program was used to test both implementations: the

Wavescope version was written in natively in Wavescript, and the C version was compiled into a C library

module, and accessed through a FFI call. Whenever an event detection was triggered, it would be passed

through the AML operator (either the C or Wavescope version). The time taken to perform each AML

computation was measured. For both implementations, 50 event detections were triggered. Table 4.1

shows the minimum, mean, median and maximum processing times for both the native Wavescope and

FFI AML computations. For comparison, figures are shown for the same AML computation running on

an x86 laptop-based version of the VoxNet node (Allen et al. 2007), with 256 MB RAM and a P4 2 GHz

processor.

There is comparable performance between C and Wavescript generated C in both ENSBox and x86.

The mean and median values are similar (within 0.1 second) between C and Wavescript, although Wave-

script shows lower min and max values on the node. there is roughly a 0.4 second range in AML processing

times, which is 16% of the total time taken for the AML on average. On x86, the processing times are

clearly faster. As with the node latencies, the times are close together (this time within 0.02 seconds
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Table 4.1: Processing times (in seconds) for C and WaveScope implementations of the AML algorithm
applied to streams of event detections. Min, mean, median and max processing times are shown for x86
and ENSBox architectures.

Min (s) Mean (s) Median (s) Max (s)

C (node) 2.4430 2.5134 2.4931 2.7283
WaveScope (node) 2.1606 2.4112 2.4095 2.5946
C (x86) 0.0644 0.0906 0.0716 0.2648
WaveScope (x86) 0.0798 0.1151 0.0833 0.5349

of one another). However, the maximum latency for Wavescript is 0.53s, which is twice the amount of

the maximum C latency. It is likely this value is an outlier. This means that the Wavescript generated

code performs as well as a hand-coded C implementation. This is a positive result, as there is a danger

that code generated automatically from a high-level language like Wavescript will produce inefficient

code. Therefore, there has been no sacrifice in performance in using the high-level Wavescript language

to express VoxNet’s programs.

4.6 Summary

The chapter described two design/implementation cycles of an end-to-end, on-line marmot localisation

system. The initial system design and implementation was taken from a top-down perspective, building

on prior work to enable an end-to-end localisation system to be built using the EmStar WSN software

development framework. This implementation took several existing components and provided application

glue to integrate them into a proof of concept demonstrator, albeit without addressing reconfigurability

or interaction concerns. The second iteration took a bottom up approach to marmot localisation, by

providing a platform for distributed acoustic sensing over which the marmot localisation application

could be expressed. This iteration of the end-to-end system was developed as a collaborative effort

known as VoxNet. VoxNet’s design stems from consideration of high data-rate applications in the context

of bio-acoustic applications. It was shown that in using Wavescript instead of exclusively EmStar to

define and build the marmot localisation application, less CPU and memory resources were consumed.

The availability of extra resources enabled extra functionality to be implemented alongside the required

program flow. It is important that the high-level programming and interaction model provided for users

of the network are achieved without loss of raw performance, even on a platform as resource-rich as the

V2 ENSBox/VoxNet node.

The interaction layer tools developed for stream management, stream discovery, dissemination and

network subscription are only loosely coupled with Wavescope/Wavescript via the foreign function inter-

face. These tools can therefore be re-used in non Wavescope contexts, including other applications where

the model is suitable.

VoxNet has a general appeal to the general application class of source localisation (animals and birds,

not just marmots) and the broader application class of distributed acoustic sensing applications. At

the broadest point, high-data rate sensing applications can make use of the software platform VoxNet
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provides for non-acoustic sensing applications, such as seismic sensing. Chapter 5 further discusses

VoxNet’s evaluation during in-situ operation, draws on the deployment lessons and highlights the issues

discovered during deployment.
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Chapter 5

Deployment lessons and refinements

Chapter 4 described the design and implementation of two iterations of an on-line system for the source

localisation of marmots. This culminated in the implementation of VoxNet, a platform for distributed

acoustic sensing on which the marmot localisation application could be expressed. The design of the

system was application-led, and the marmot localisation solution was based on the integration of existing

components (event detection, angle of arrival estimation and localisation) into a system which could

be used to perform localisation on-line, in-situ, rather than off-line. Whilst some evaluation and micro-

benchmarks were presented in Chapter 4, it was vital for the system to be deployed and tested with real-life

stimuli in an uncontrolled environment. This was to identify usage problems and failure modes that could

not be determined through controlled experimentation, as well as indicate areas for improvement.

This chapter reports on the in-situ, ten-day deployment of the marmot localisation application at the

Rocky Mountain Biological Laboratory (RMBL) in Colorado. A detailed account of the actual deployment

experience is provided, alongside the problems that were encountered during the deployment, and the

lessons learnt during this time. The rest of the work presented in this thesis (Chapters 6 and 7) is

informed and motivated by the deployment-related findings reported in this chapter.

The on-line operation of the marmot localisation application running on VoxNet is what differentiates

it from previous work in marmot localisation, as discussed in Chapters 2 and 4. The two most important

factors for the on-line performance of the marmot localisation application and VoxNet’s operation in

general are the latency of data transfers and the intelligent grouping of data at the sink for processing.

These factors affect the robustness and timeliness of the localisation application, thus it is important that

further platform development work will cater for ensuring timely delivery of data. Subsequent work in

this thesis (Chapters 6 and 7) concentrates on designing and implementing approaches to improve the

timeliness and reliability of the system.

The rest of this chapter is organised as follows: Section 5.1 describes the deployment in detail; the

deployment process, pre-deployment notes and general lessons earned are described. Subsequently, the

specific problems relating to the marmot localisation system and the VoxNet platform are elaborated

on. In Section 5.2, three identified application-specific marmot localisation problems are discussed: the

on-line grouping of detections to determine network-wide events, false detections arising from weather

conditions and the efficiency of the localisation algorithm used in an on-line context.

In Section 5.3, four identified problems associated with the general operation of the VoxNet system

are detailed: data logging, data loss, data consolidation and stream priority. These problems impacted

the specific application and subsequent analysis of data gathered and would impact to an extent any

acoustic sensing application running on the VoxNet platform.
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In light of the experience of deploying and using VoxNet in the field, Section 5.4 discusses the steps

that would be necessary to make the system ready to be adopted by scientists for field research. Finally,

Section 5.5 concludes the chapter and explains the path for the rest of the work in Chapters 6 and 7.

5.1 In-situ deployment

From the 8th to 18th of August 2007, the VoxNet platform was tested in a deployment at the Rocky

Mountain Biological Laboratory (RMBL) in Gothic, Colorado, USA. Biologists have been studying mar-

mot behaviour around this area for a number of years. (This location was also used in the experimental

work conducted by Ali et al. (2007)).

Four people in total were present at RMBL to deploy VoxNet in-situ: the VoxNet development team

and a biologist studying marmot behaviour using the Acoustic ENSBox as a data acquisition tool. The

VoxNet team consisted of the three computer scientists collaborating on the VoxNet project: Ryan

Newton (MIT) was the developer of the Wavescript language and compiler for Wavescope, Lewis Girod

(MIT) was the main developer of the Acoustic ENSBox (V1 and V2), EmStar and VoxNet, and the

other was the author, co-developer of the VoxNet system and contributor to the Wavescript and EmStar

projects. The biologist, Travis Collier (UCLA Evolutionary Biology), was an expert user of the ENSBox

nodes, having deployed them for time-synchronised recording of raw audio several times previously, and

was a central participant in the previous off-line experimentation for marmot localisation (Ali et al. 2007).

During the ten-day period of VoxNet deployment (and several months beforehand), the biologist also used

the nodes to gather raw acoustic data without VoxNet. Throughout VoxNet’s deployment, the biologist

was there to provide domain expert advice and guidance where required, and to generally help assist with

the physical deployment.

Over the ten day period, four attended deployments of the VoxNet network were undertaken. The

usage model during this time was a cycle of: physical deployment of nodes, attended operation of the

localisation application, post deployment collection of devices and consolidation of data for analysis.

These three phases roughly coincide with part of VoxNet’s intended on-line usage model (in-situ, on-

line interaction) and post-deployment/transitional stage (consolidate data to archive server). However,

VoxNet also accommodates post-processing of gathered data via the archive and compute servers, which

was not implemented in this deployment (although it is discussed in Section 5.3.3). Each time, a network

of eight nodes was deployed from mid-morning until early afternoon (when marmots are typically active).

The eight nodes were deployed over an area of 140m by 70m (2.4 acres), as shown in Figure 5.1. Each

node was between 40–50 metres of its nearest neighbours. The node positions chosen by the biologist

were based on expert knowledge: the deployment area encompassed three well-known marmot burrow

locations. The node positions were kept consistent over different deployment days by leaving stands in

position and only removing the nodes at the end of each deployment. Nodes were taken back to the

accommodation for software debugging and data consolidation.

Following advice from the biologist in attendance, the gateway node and control console were placed

in turn in two selected positions during the experimentation. The first was 200m west of the deployment,

in a car-park. The second was 100m southwest of node 100 (see Figure 5.1). When at the second

position, all nodes were within one hop of the gateway node, meaning that multi-hop communication did
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Figure 5.1: The physical deployment of the eight nodes at RMBL. The nodes were deployed over a 140m
by 70m area. The gateway and control console were deployed at two locations during the deployment,
approximately 200m west of node 104 (in the car park), and approximately 100m southwest of node 100
(in an open, grassed area).

not necessarily have to be used during the deployment. Both of these positions were far enough from

the deployment area so as not to constantly interfere with the marmots. It was intended to use VoxNet

in both a multi-hop and single-hop network configuration whilst running the localisation application, in

order to isolate any problems that related directly to the multi-hop component of the system.

During deployment, the marmot localisation application as described in Chapter 4 was run in the

VoxNet network. A laptop was used as the control console, which was connected via Ethernet to the

gateway. The Wavescope Shell (WSH) to control the nodes was run at the control console, as well as

the sink-side processing of the marmot localisation application (AML and position estimation). The

control console was time synchronised with the network using the time server service on the gateway, as

described in Chapter 4. Throughout the deployment, the WSH logged all detections and messages that

were generated by the nodes in the network and transmitted to the control console on both detection

and control streams. All locally generated debug and network information data was also logged by the

WSH. In addition to sending control information, nodes also logged link quality and network topology

information. This data was gathered from the nodes after the deployment, back at the accommodation.

Controlled network data transfer experimentation was also carried out during the deployment period.

This experimentation is discussed and drawn on in detail in Chapters 6 and 7.

5.1.1 System usage cycle

In total, four deployments were carried out over the ten day period. The deployments were fully attended

throughout, to allow maintenance to be carried out as well as note-taking on problems or interesting
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Figure 5.2: A deployed sensor node.

events. Each deployment had the same high-level usage cycle: the nodes were physically deployed and

switched on, self-localisation was performed and the marmot localisation application was run. Upon

ending each experiment, the nodes were shut down and collected, leaving the stands behind in order to

maintain consistent node positions across all deployments. It was necessary to bring the nodes back in

order to extract any log data that had been gathered, and to make any modifications to the software in

order to prepare for the next day’s deployment.

The VoxNet node hardware was the Acoustic ENSBox V2, which had already undergone a complete

packaging re-design refinement to make it smaller and lighter, thus easier to carry and deploy. In par-

ticular, each V2 node was enclosed in single box with a handle attached, meaning that up to four nodes

could be carried by one person at a time. Since there were always four people attending the deployment,

each person deployed two V2 nodes, mounting nodes at each of the stands, as per Figure 5.1.

As the nodes were deployed on each stand, they were switched on. When each node completed its boot-

up process, it played a short two-tone sound to indicate it had loaded up the application successfully. This

feature was implemented at the request of the biologist based on previous deployment experience. The

approach saved time, and confirmed that nodes were working correctly. After the nodes were initialised,

self-localisation was performed before starting the Wavescript application. The results were stored in a

file that was read by the sink-side application on the control console.

5.1.2 Deployments

Each of the deployments was intended to test VoxNet and the marmot localisation application in a realistic

environment to allow a comprehensive picture to be built as to the necessary improvements for further
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design iterations. It was important to understand the problems arising from running the localisation

application on-line, with real marmots. On-line operation is the primary difference between the VoxNet

marmot localisation system and the off-line version presented by Ali et al. (2007).

In the days preceding the first deployment, several trips were made to the field in order to test multi-

hop networking component in a realistic scenario, and over a larger distance than had previously been

attempted. A problem was observed where the control console (which was connected to the gateway) was

not able to receive data from the nodes when the application was running. The gateway was forwarding

the control console’s data to the network, but the nodes in the network could not forward traffic to the

sink. This was because when a new multi-hop route was found for a node (by the routing component),

the IP address of the node’s new parent was not being used as a gateway in the kernel’s IP routing table

(this is necessary to make sure traffic is forwarded out of the network using IP forwarding).

Throughout deployments one, two and three, there were problems with the data buffer (audio buffer)

between the data acquisition component and the marmot localisation application (which used the data

acquisition as a source). This problem was eventually tracked down to a thread-starvation problem

between the data acquisition thread and the node-side thread in the application executable (which were

complied together to reduce IPC overhead). The two threads needed to be serviced fairly, because if one

started to get more processing time than the other, the audio buffer between them would get full and

start dropping data. If the buffer started dropping data, then the audio stream being gathered would no

longer be continuous. This would be problematic for the event detector, as non-continuous data would

affect the noise estimation causing false detections. Additionally, the spill to disk component would have

large gaps in the raw audio stream, although it was not utilised in this deployment. This was solved with

two fixes: increasing the buffer size, and applying a more efficient data copying technique between the

threads (this Whilst increasing the buffer size would not guarantee to fix starvation, the gap issue was

not observed after improving the data copying technique between threads.

Because several problems occurred that were not predicted prior to deployment, further analysis of

log data was required (which required

It was not always suitable to solve problems in-situ: laptops were running on batteries, and log data

needed to be gathered, consolidated and analysed. Additionally, development and controlled experimen-

tation was required, both of which were not suitable to be performed at the deployment site. Although

the deployment area was near (within five miles) the accommodation, the time window in which to

monitor marmots every day was limited. This meant that a non-trivial software bug would effectively

hamper the day’s work. In addition, the biologist present throughout the deployment had to record

continuous marmot data on some of the days set aside for deployment. This meant that VoxNet could

not be deployed on these days (the scientist needed to run his own, EmStar-based software).

Weather conditions were hazardous for the gateway and control console: they were not waterproofed,

so had to be protected from the rain. Furthermore, sunlight made the laptop screen difficult to read (a

solution to this problem is shown in Figure 5.3).

The screen glare problem was compounded by the fact that battery life at the control console was

limited. Often, the screen brightness had to be reduced in order to conserve battery life. Several times,

it was necessary to change laptops in order to keep experimentation running. This proved difficult for
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Figure 5.3: Dealing with the problems of screen glare during in-situ experimentation.

consolidation of data post-deployment, as will be discussed in Section 5.3.3. Ideally the battery life

of the control console should match the lifetime of the nodes, or at least the intended duration of the

deployment.

During the deployments, it was necessary to induce marmot calls to test the marmot localisation

application. This was achieved by a member of the deployment team walking slowly and quietly into the

deployment area, and then making a sudden movement at the marmots. Usually, a single marmot would

signal alarm and all would run back to their burrows temporarily. When many marmots were together,

this behaviour could result in multiple marmot calls.

Each of the deployments identified a specific problem that had been overlooked or underestimated

during the laboratory-based development of VoxNet. Therefore, with each deployment, the general

operation of VoxNet was improved. The rest of Section 5.1 describes each deployment in more detail.

5.1.3 Deployment one

The first deployment was made on August 14th, 2007 and involved running the full marmot localisation

application. There was light rain falling over the deployment area and as the gateway and control console

were not weather-proofed, they were deployed at the car park (position one), inside the car.

VoxNet’s multi-hop routing component was initially enabled for the deployment, but encountered a

problem that had not been seen previously in lab or initial in-situ testing. The implementation of the

DSR algorithm would find long paths from node to sink (up to eight hops) which would change often and

appeared not to settle. It was not understood why this occurred, and time did not allow for a detailed

analysis of the routing component (perhaps a bug in the implementation). To resolve the problem it was

decided to limit the maximum length of a routing path between node and sink to be three hops. This

change was implemented after the deployment, and worked for the remaining deployments.

The marmot localisation application was run in single hop mode whilst still at the car park (the
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weather had cleared by this point). When detections were triggered at each node, a data transport

problem became apparent. It was found that nodes could quickly pass short log messages back to the

sink (around 30 bytes) to indicate that detections had been made, but detection data was not getting

back quickly enough for detections together (recall a timer was set for 0.5s after each detection’s arrival at

the sink, from Chapter 4). This in turn meant there was no suitable input for the localisation algorithm,

which was not invoked at all. Instead, nodes were repeatedly getting disconnected from the control

console as they tried to send data. The initial assumption was that this was due to the low quality of

network links, so a decision was made to move the gateway and control console to position two (as shown

in Figure 5.1) and see if this would help with disconnection problems. Moving the gateway closer to

the nodes did not seem to change the rate of disconnections, so it was decided to bring the nodes in to

consolidate and analyse the data set that had been gathered. The total time from position one (car park)

deployment to consolidation at position two was 25 minutes.

Post-deployment, problems were found with the log data. The raw detection data messages sent from

nodes had detection timestamps in the node’s local clock rather than the network time. Additionally,

the sink-side application recorded a log message when detection data from nodes arrived at the sink, but

neglected to record the id of the node in this message, or the time it arrived at the sink. This meant

that the latency between detection at the node and arrival time at the sink could not be determined,

which would have shown how long detections were taking to arrive and infer if moving the gateway did

indeed help. The only data that could be gathered from the sink-side logs was that the detection data

being sent from nodes were varying in size, either 32 kB, 65 kB or 128 kB. The detection lengths should

have all been 32 kB, so the extra data generated would have been filling up nodes’ sending queues. This

could have meant that data was not received at the sink because it was getting dropped (although there

was no log information to support this). During the 25 minute period, 86 detections were made by all

nodes, but only 46 were received at the sink. This may be partly due to the fact that the application

was stopped before nodes had cleared their data buffers, when feasibly they might have transmitted the

remaining data.

Finally, the link information that was logged at each node showed that link quality improved between

all nodes and the gateway after moving the gateway to position two. It was not clear from the gathered

log information whether this had an effect on the latency of transmissions, however.

5.1.4 Deployment two

The second deployment took place on August 16th, 2007. Starting at 11am, the VoxNet network was

set-up in single-hop mode with the gateway in position two, running the marmot localisation application

for several hours. Subsequently, the application was stopped and VoxNet set into multi-hop mode.

The intent was to gather marmot detection data in single-hop mode, and then troubleshoot multi-hop

communication and data transfer latency (as seen in deployment one), before finally starting the marmot

application in multi-hop mode. Controlled experiments were carried out for 30 minutes (see Chapter 6

for more details), to be followed by the evaluation of the localisation application. However, the multi-hop

deployment had to be cut short due to weather conditions when a storm interrupted deployment. As

the rain started, the gateway was moved from position two to position one (inside the car). The rain
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Figure 5.4: Four marmots as observed at RMBL. Note that the marmots tend to gravitate around their
burrows.

caused the marmots to retreat to their burrows, and the raindrops hitting the microphones and node

cases caused the event detectors to constantly trigger. It was expected that the network would become

heavily congested, and that nodes would drop data as their transmit queues overflowed. Over the course

of just 436 seconds (7 1/4 minutes), 2890 detections were triggered (a rate of around 6 a second network-

wide). At the control server side, 342 detections arrived at the sink. This episode gives an insight into

the behaviour of the marmot localisation application running in VoxNet during heavy load. Each node

dropped in the region of 90% of detection data queued to send. Despite these data losses, the system

continued to run, demonstrating that it could deal with network overloading in a graceful manner.

After the deployment, the nodes were collected and the data consolidated at the accommodation. It

was discovered that the changes made to the VoxNet application to improve logging output had neglected

to record the node id associated with the raw detection, meaning that the single-hop data gathered was

unusable. However, with respect to marmot localisation, rainfall is not really a situation that would

warrant continued operation of the system. This is because the marmots would retreat back into their

burrows, meaning they could not longer be observed. In this case, the scientist would either temporarily

stop the application, or abort the experimentation for the day. However, in unattended deployments

where the WSN is expected to be autonomous, it may be useful for the network to identify a change in

weather conditions as a reason to temporarily stop processing data.

5.1.5 Deployment three

The third deployment took place on August 17th, 2007. The weather was bright and sunny, so it was

decided to move the gateway node to position two. In the deployment, an attempt was made to manually

write logs detailing marmot behaviour: recording the rough locations where marmots called from and

how many calls were detected. This was done in an attempt to relate events recorded by the system to

real marmot events, an aspect that had been neglected in the two previous deployments.

Only seven of the eight nodes were used as the eighth node was experiencing intermittent problems

causing it fail to respond to network communication. This was put down to transient effects caused by

the rainfall in the previous deployment day. The nodes were deployed for 2 hours 10 minutes. Within

that, the application was run in multi-hop mode for around 1 hour 25 minutes, and in single-hop mode
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Figure 5.5: A set of events taken from deployment three, dated 17th August, 2007. The x axis shows
time since the first detection (in seconds) and the y axis shows node id. Each data point represents the
time a detection was triggered at a node.

for around 45 minutes.

During the deployment, three periods of marmot activity were induced by members of the deployment

team. The first period of activity lead to a set of eight detections over a two-minute period (approximately)

where the sixth, seventh and eighth alarm calls were from different marmots but close together. Figure 5.5

shows a graph of detection time from first detection (on the x axis) vs node id (on the y axis). The

individual marmot calls are clear on the graph with detections made by several nodes appearing as

tightly grouped vertical lines. Notably, the sixth, seventh and eight calls are situated around the 80

second mark, where there are indeed multiple detections from each node within a small space of time.

After this point, the control console was swapped over to a different laptop and the application restarted.

The second period of activity was a bout of twenty-eight calls made by one marmot as a member of

the team slowly approached it. Calls were made at intervals of roughly one second. Photos were taken,

but unfortunately the raw data corresponding to the set of detections was not recovered from the control

console post-deployment, and was inadvertently overwritten during the next day’s deployment. Attempts

made to induce another bout were unsuccessful.

The third period of activity yielded a set of six marmot calls, but the data corresponding to these were

lost in the same manner as the marmot bout. To further frustrate, the version of the sink-side application

running at the control console had not been updated to reflect the logging changes from Section 5.1.4,

where the node id was recorded along side the AML and detection data. Thus, the log data taken by the

WSH and the sink-side application were not sufficient to draw a graph similar to Figure 5.5.
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Figure 5.6: A set of events taken from deployment four, dated 18th August, 2007. The x axis shows time
since the first detection (in seconds) and the y axis shows node id. Each data point represents the time
a detection was triggered at a node.

5.1.6 Deployment four

The fourth deployment took place on the 18th of August, 2007. The marmot localisation application was

run for just over two hours whilst marmot alarm calls were induced by a team member. The gateway and

control console were placed at the car park, and the network was started in single-hop mode. A larger

antenna was available to use which provided one-hop communication to all nodes from the car-park

gateway location (which had not been previously possible).

The manual data logs of detected events gathered by nodes showed the frequency at which the

event detectors were being triggered, however it did not give a ground truth data stream to compare

against. Therefore, it was decided that one of the nodes would record a full audio stream in parallel with

the marmot localisation application. This recording could subsequently be used as a ground truth for

the events detected by nodes during the deployment. The resulting data set of raw data files totalled

3.8 Gigabyte (GB) (four channels of 16-bit audio sampled at 48 kHz for around 2 hours).

The marmot localisation application was run for a full two hours, and Figure 5.6 shows the entire

time series as detections vs node id. The data is clearly noisy, with high incidence of potentially spurious

detections (that is, detections which do not match up vertically with any other detections). It is speculated

that this was caused by windy conditions, which were seen to cause unanticipated detections.

Within a 2 hour period (7194 seconds), a total of 683 detection events were sent to the sink by nodes

in the network. Just 5 out of 683 detections were dropped (a 99.3% success rate). Although 100% data

reliability was expected, the data drops were observed to be due to the overflow of the network buffers
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(which were 512 kB per stream) during periods of network congestion and high detection rates. When

the stream’s sending buffer is full, new data is dropped (known as tail dropping). This indicates that the

arbitrary buffer sizes chosen for streams were too small for the volume of detections that each node was

experiencing.

5.1.7 Summary

To the casual reader or WSN theoretician lacking deployment experience, this deployment may not

sound successful. However, this is not the case. Firstly, it should be noted that many, if not all WSN

deployments actually follow similar success and failure patterns.

For example, the first iteration of several real-life deployments suffered with data low yield and quality,

as well as debugging and operational difficulties. Examples include a volcano monitoring project (Werner-

Allen et al. 2006), a redwood tree deployment (Tolle et al. 2005), a precision agricultural monitoring

system (Langendoen et al. 2006) and a soil contaminant monitoring system (Ramanathan et al. 2006).

At a superficial level, the source of these problems is lack of adequate preparation. However, trying to

predict the behaviour of even dumb WSNs before deployment is difficult: it is practically impossible to

think of every potential failure point of a system before deployment. This is partially due to the fact

that some obscure failure conditions are only revealed during in-situ operation. In many cases, it is only

through experiencing unpredictable, obscure problems that the deployment and operation of a system

can be made more reliable and robust.

However, comprehensive preparation is difficult for first system iterations, due to the physical difficulty

of deployment, as well as prediction of corner cases which will cause system to stop working, but only

become apparent in unpredictable environments. In the author’s opinion (aligned to that of many other

deployers), the first rule of deployment is that everything that can go wrong will go wrong. To combat

this, it is important that the WSN deployer be prepared for unpredictable eventualities by scheduling

enough time for the deployment. Although only four days were used for deployment here, all of the ten

days available were used to improve VoxNet’s reliability and robustness.

In summary, this deployment was an exploratory exercise to enable understanding of the behaviour of

the system in-situ. As such, the experience gained here was essential in making decisions about further

research needed to increase application-specific and general VoxNet system performance and reliability.

What follows is a more in depth discussion of the problems that occurred during deployment, from both

the marmot localisation application and the general VoxNet context.

5.2 Application related problems

Section 5.2 discusses the localisation application related issues which became apparent during the deploy-

ment. The circumstances around the identified problems, and the reasons for their occurrence, as well as

potential solutions are detailed.

5.2.1 False detections

The energy-based event detector used to detect marmot calls (as discussed in Chapter 2) is sufficiently

lightweight enough to be run on high data rate audio streams: in the marmot case, the sampled audio

stream was decimated from 48 kHz to 24 kHz. Because the detector looks only at energy in specific
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frequency bands, it will only be triggered by transient signals that are sufficiently above the estimated

noise level in the given frequency bands. However, false detections can arise from wideband acoustic

sources that have energy in a wide range of frequency bands, such as a loud hand clap.

During both deployment of VoxNet, and the previous EmStar localisation demonstration, it was noted

that a hand clap transients could indeed trigger the event detector. The signal would be picked up by

several nodes, constituting a valid event that could be localised, even though it was not a marmot.

Additionally, in the field, uncorrelated weather events such as rainfall and strong winds were observed to

trigger the event detectors frequently (see Sections 5.1.4 and 5.1.6). These uncorrelated false detections

may also be interpreted as observations of the same global event.

To address this problem, events detected using the energy-based detection technique could be sub-

mitted to a more rigorous examination to determine if they require further processing (for example,

through the AML). A suitable candidate for this approach is the application of automated classification

techniques. Work has been presented in the literature on the use of Hidden Markov Model (HMM)s

to classify species of acorn woodpecker (Trifa 2006) and other types of bird (Trifa et al. 2008). In the

approach presented by Trifa et al. (2008), the HMM is trained against reference bird calls to create ob-

servation vectors, which can be used to classify the signal as it evolves. The observation vectors can be

created using techniques such as building Mel-Frequency Cepstral Coefficient (MFCC)s, Linear Predic-

tive Coding (LPC) or Artificial Neural Network (ANN)s (Hosom et al. 1998). Through experimentation,

Trifa et al. (2008) observes that MFCCs are more suited to recognition of bird song than LPC, due to

sharp transitions that are present in bird calls.

Whilst the evaluation of an observation vector in a trained HMM is not computationally complex, the

creation of the observation vector may require significant processing. For example, to find the MFCCs

of a signal the following steps are required: (1) compute the DFT of the signal, (2) map the resulting

spectrum to the Mel scale, (3) take the log of the power at each Mel frequency, and finally (4) take the

Discrete Cosine Transform (DCT) of the powers.

Classification will require resources in addition to the requirements of energy-based event detection,

and so may not be suitable for real-time analysis of signals, depending on the computational capability

of the intended deployment platform. It is possible that the 32-bit microprocessor on the V2 ENSBox

could support such a processing chain, although optimisation may be required.

Aside from its uses to aid event detection, classification is a generally important component of the

higher-level sensing goal for smart bio-acoustic sensing: automated census for different species of animals

and birds.

5.2.2 On-line event grouping

In deployment one (Section 5.1.3), it was found that detection data was not arriving from nodes fast

enough to allow grouping. The latency of data transfer effectively rendered the localisation stage unusable,

because it could not be guaranteed that events arriving at the sink were temporally close together in terms

of detection time.

The approach to grouping detections arriving from nodes during on-line operation was developed for

the original EmStar based implementation of the acoustic source localisation system, as stated in Chapter
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4. In this approach, if several detections arrived at the sink, each within 0.5s of one another, they would

be processed as if they were observations about the same event (DoA estimation, then input into the

localisation algorithm). Any detections that arrived later than 0.5s after the previous detection were not

considered part of the same group. In the first system iteration in Chapter 4, this grouping technique

worked under controlled demonstration conditions (using a dog whistle). However, in the field detection

data was sometimes delayed, especially when nodes were trying to send many detection messages at the

same time, possibly as a result of false detections. As a result, the 0.5s timer was not sufficient to capture

more than one or two detections at a time. However, increasing the time window would have increased

the possibility that unrelated events would have been forced into the same localisation computation.

Regardless of the cause, a better solution for grouping data as it arrives at the sink is required, based

on detection time of events rather than arrival time. Section 5.2.2 proposes a sink-side on-line grouping

algorithm for grouping detections received from multiple nodes, based on detection time.

The on-line grouping algorithm uses two rules to group data arriving at the sink: temporal and identity

consistency. Temporal consistency requires that detections are suitably close together in terms of their

observed detection times, and identity consistency requires that only one observation from any one node

must be present in a given set of data that is used to estimate a position by the sink. The aim of the

algorithm is to organise incoming data into groups that bear resemblance to an actual acoustic event of

interest. Subsequently, groups that have enough observations (at least three) can be further processed

with the DoA and source localisation algorithms.

Assume a network of n sensor nodes, each with a unique id from 1 to n. Nodes make detections

d to which they locally assign a sequence number s such that combination of node id and sequence

number make a globally unique identifier i such that di = dns. The detection itself di consists of a tuple

〈ddet, draw〉, where ddet is the detection timestamp, draw is the raw data sample corresponding to the

detection. These detections are sent to the sink. The sink maintains groups of detections in a list G

where the most recent group is always the gcurr. The number of detections in G is given by n(G). Each

group
{

g1, . . . , gn(G)

}

in G consists of a set of detections g = {di,1, di,2, . . .}. Each detection also has

an associated watchdog timer wg, used to trigger processing. The number of detections currently in a

group is given by n(g). When the new detection di arrives at the sink, the grouping algorithm checks

whether it can be added to the current group, gcurr. To complete the definition, assume the function I(d)

produces a node’s id n, and the function T (d) produces the detection timestamp ddet. Assume also that

function m(g) produces the mean timestamp of a detection group given the group of detections. There

are two tune-able global variables the sink uses—the uncertainty factor δ and the watchdog timeout value

l. The uncertainty factor defines how close a detection’s timestamp must be to the current group’s mean

timestamp m(gcurr) to be eligible to join the group. The watchdog timeout value dictates how long the

sink should wait before checking whether a group’s data should go through the AML and data fusion

algorithms.

At least three detections are required to make a position estimate, but up to n (the number of nodes

in the network) can potentially be added (if all nodes trigger a detection). Thus, it does not make sense

to trigger the AML and localisation stage when only three detections have been received if there is a

possibility that more may arrive from other nodes. Therefore, the watchdog timer provides a window in
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which all the nodes in the network can potentially send detections to the sink. When a new group is

started, the sink sets the timer associated with it to timeout after l seconds. The choice of l is a trade-off

between allowing a large enough window that all nodes can transfer their detection data and providing a

timely end-to-end position estimate to the user. Once a detection has arrived at the sink, the algorithm

performs four steps:

1. Evaluate identity consistency

2. Evaluate temporal consistency

3. Place detection in correct group

4. Check and process group (timeout-based)

Step 4 is event based, in that a timer is conditionally set during the flow of steps 1–3, triggering some

time after a detection has been added. Each step is now described in detail.

1. Evaluate identity consistency. When a detection tuple di arrives at the sink, it must be checked

for identity consistency against the current group gcurr. The identity consistency rule asserts that

nodes in a group are unique, or, if I(x) gives the node id associated with detection x, then,

I(x) = I(y) ⇒ x = y (5.1)

for all x, y ∈ gcurr. If a detection fails the identity consistency check, it skips step 2 and goes to

step 3.

2. Evaluate temporal consistency. After checking for identity consistency, the detection di must

be checked for temporal consistency to see if it can be added to the current group. The detection’s

timestamp T (di) is compared to the current group’s mean timestamp m(gcurr). There are three

possible outcomes in testing a detection for temporal consistency:

(a) If the absolute difference between the detection timestamp and the current mean of the group

is less than the uncertainty value (|T (di) − m(gcurr)| ≤ δ), then the detection di should be

added to the current group gcurr. If there are no detections in gcurr, the detection di is added,

and the watchdog timer wg set to l.

(b) If the absolute difference between the detection and the current mean of the group is greater

than the uncertainty value (|(T (di) − m(gcurr)| > δ) and the difference is positive ((T (di) −

m(gcurr)) > 0), then a new group gcurr+1 should be started (because the event happened more

recently than the current group and is not part of it). The previous group gcurr should be

checked to see if it can be processed further.

(c) If the absolute difference between the detection and the current mean of the group is greater

than the uncertainty value (|T (di) − m(gcurr)| > δ) and the difference is negative ((T (di) −

m(gcurr)) < 0), then the event happened before the current group gcurr. A search is initiated

to find the correct historical position of the detection (step 3: find historical position).
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3. Find historical position. If the detection fails either the identity or temporal checks against

the current group, the algorithm initiates a search back through previously created groups to find

the correct historical position for the detection. This is done by tracking back through previously

created groups, and repeating the identity and consistency checks, until a position in a group is

found. There are two corner cases the algorithm must consider:

(a) The detection cannot fit into any of the existing groups. In this case, a new group is made in

between the two groups that the detection is closest to.

(b) Although the detection passes the temporal and identity consistency checks for a group, an

older existing group in G has a smaller gives a smaller residual value for |T (di) − m(g)|, the

difference between the group mean and the detection timestamp. To address this, the distance

from the mean of the previous group is recorded—when the current mean is larger than the

previously recorded mean, this indicates the best group has been found.

4. Check and process group (timeout-based). When the watchdog timer wg times out (after l

seconds), the group g associated with that timer (which might not be gcurr) is checked to see if it

can be processed further. This is done by checking if the group has more than three detections in

it. If I(g) ≥ 3 then the group is ready for further processing

Further processing refers to the AML and data fusion algorithms used to estimate direction of

arrival and position respectively.

This algorithm can be used to group incoming detection data as it arrives at the sink in a more

intelligent and effective way than trying to use detections that arrive around the same time as input to

the localisation algorithm. However, as it stands, this algorithm supports only the grouping of raw data

corresponding to detections as it arrives at the sink. This still means that raw data corresponding to

false detections are being sent whether or not they correspond to a real network wide event (that is, a

marmot call). To address this, the online grouping algorithm is further developed in Chapter 6, to support

selective requesting of relevant data from nodes, based on whether it appears to be temporally correlated.

This approach reduces the amount of data that needs to be sent over the network, significantly, in noisy

environments. Thus, the evaluation of the modified grouping approach is presented in Section 6.3.2

on page 162, in reference to the degree of data reduction possible when combined with a suitable data

collection process (a visual representation of the grouping is shown in Figure 6.11 on page 164).

5.2.3 Localisation algorithm

The localisation algorithm was not extensively used during the four deployments because of on-line data

grouping issues discussed in Section 5.2.2 and in Section 5.1.3.

To briefly review the original description in Chapter 2, the localisation algorithm creates a 2D event

space to search (with a given distance resolution) and computes the pseudo-likelihood of the target being

at each point in the search space (based on nodes’ AoA estimations). This means that the search space

is exhaustively searched: every possible value in the search space is computed before determining the

position. The only optimisation of processing the algorithm allows is to reduce the resolution of the
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search space (that is, increase the geographical size of each point in the search). However, this approach

also limits the accuracy of the position estimation (it will be quantised to the resolution of the search

space).

Since each point in the two-dimensional search space is the sum of N calculations (for N nodes

contributing to the localisation algorithm), the time taken to process each element is O(n). However, the

time taken to process all of the elements in the search space relative to the resolution is O(n2), which far

outweighs the per-node time complexity. Therefore, as the size of the search area or the resolution of the

search space increases, the time taken will rise by n2. This may induce unacceptable latency for on-line

localisation results.

Instead of an exhaustive search, a multi-resolution search would perform better. A multi-resolution

search starts with a with a low resolution scan over the space, zooming in on the most likely space each

time, thus increasing the resolution. For example, a 100m by 100m grid could be divided up into 10m

squares, so that only 10 points would have to be searched initially. The 10m by 10m point that has

the highest pseudo-likelihood could then be divided up into a 1m resolution grid, which would require a

search through a further 10 points, giving a 1m resolution. This accuracy can be further improved by

taking increasingly smaller grid sizes.

Assuming the search grid of 100m by 100m and a required resolution of 1m, the grid method will

search 10000 points, and the multi-resolution approach will search only 200 points, a 98% reduction in

computation. From the point of view of end-to-end latency with respect to position estimates, it may

be important to maintain a constant time in which the localisation algorithm completes. This could be

accomplished by adaptively scaling the resolution accordingly, depending on the search space size and

the number of nodes contributing likelihood observations.

Regardless of the computational complexity, the assumption that the localisation algorithm makes is

that that the acoustic event happens within the search space defined around the network of nodes. In

the case of the marmot localisation application the scientist will want to surround the marmot burrow

with nodes. For acoustic localisation of other animals it may not be sufficient to assume a set search

space. For example, birds may move more dynamically over a wider area. If the area being monitored

is well-known and limited, then this approach is reasonable and helps to narrow down the search space.

However, if the sound sources are likely to move outside of the search area, then this approach will yield

incorrect position estimates. This is because the search space will still have a maxima, but it will not be

consistent with the actual node position. A similar problem was found in the ToA consistency function

approach presented by Balogh et al. (2005) which was discussed in Chapter 2.

Finally, the approach of using a linear, closed-form angulation solution (similar to lateration discussed

in Chapter 2) would only work if a single angle estimate was used from each node, rather than a likelihood

vector. This approach would be faster, but is less likely to be accurate especially if the individual AML

maximum likelihoods are inaccurate, as was observed by Ali et al. (2007).

5.2.4 Summary

Section 5.2 has discussed the application-specific problems that were observed from the deployment of

VoxNet: false detections, on-line data grouping and the choice of localisation algorithm. Each of these had
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an impact on the success of the RMBL deployments, and accordingly improvements have been suggested

to improve each of them. Chapter 6 discusses on-line grouping in more detail, but false detections and

the choice of localisation algorithm are left to future work. The problems that were more general to the

VoxNet platform are now discussed.

5.3 General VoxNet problems

The challenges and features presented in Section 5.2 were specific to the marmot localisation application.

Section 5.3 identifies the general problems and challenges for the on-line operation of the VoxNet platform

that were observed during the deployment of the marmot localisation application. These include data

logging, stream priority and data consolidation.

5.3.1 Data logging

A hugely underestimated factor for the successful deployment of the marmot localisation application was

logging of raw detection data and system health information.

The sink-side application recorded all detections sent to it by nodes in the network, and all AML

results to file for later analysis (in ASCII rather than binary format).

During each deployment, each node recorded the link quality and multi-hop data routes to neighbours,

every 10 seconds. The logs were timestamped with local and global timestamps and were used to analyse

the quality of the links and network routes over time. In addition, the output from both the WSH and

the sink-side localisation application were saved to disk at the control console. The type of data logged

by the WSH and sink-side application became increasingly more detailed with each deployment. From

the second deployment onwards, the WSH recorded discovery updates from each node and outputted a

summary of data to a log file every 10 seconds, providing details of all of the nodes connected to the

control console, their current local and global timestamps, local up-time, connection state and the current

size of audio buffer queue. In addition, information about all of the streams each node exposed and the

sizes of queue for each stream were recorded.

Unfortunately, the data gathered during deployments one, two and three were practically unusable due

to insufficient log data being recorded at each node. It was only during the third and fourth deployments

that enough data was logged on the sink-side application and the WSH to be able to analyse the temporal

patterns of detections across the network. There were some oversights which invalidated data: in the

first, second and part of the third deployments, nodes sent detection data that was timestamped with a

local detection time (rather than a global timestamp). This meant that detections could not be correlated

between nodes. The WSH timestamped the arrival of any messages from the nodes, but that was not

sufficient. Additionally, on the sink side application, the detection recording originally did not include

the node id with the raw detection. This was only fixed part way through the third deployment.

A more subtle problem was that of timestamping at the control console: although the control console

was time synchronised through the network, some data logs used the local system time of the control

console, and some used the global network time. This made it difficult to correlate the control console

and sink-side application logs post-deployment. In addition, the format of timestamps was confusing:

link estimates and multi-hop routing table logs were timestamped using a coordinated universal time
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(UTC) timestamp, which was offset from the local timestamps (which were in the mountain time zone

in Colorado). Translating between these timestamps was open to errors, especially when trying to relate

topological and link data with events that occurred in the logs.

Part of the reason for this problem is that the back-end, off-line aspects of the VoxNet system were not

implemented for the deployment. Thus, consideration had not been given to making sure that all data

logged was using a common time format. This would have been a necessity for automated consolidation

of data from the nodes, post-deployment. This practical aspect of automated data consolidation is con-

sidered in Section 5.3.3. Additionally, during deployment, nodes did not use the spill-to-disk functionality

discussed in Chapter 4. Making a full, synchronised record of the audio stream gathered (or even a single

channel) on each node would have been invaluable for post-deployment analysis of false detections.

5.3.2 Stream priority

In Chapter 4, networked streams were introduced as a useful way to enable the flow of Wavescope

programs over multiple network hops, as well as to communicate lower-level data, such as log messages,

control data and new binaries between sink and nodes. The general operation of the subscription server

is that all published streams are given their own TCP connections. Each stream is serviced equally by the

subscription server (due to the underlying TCP server). However, there may be cases where it is more

important for some networked streams to be treated with a higher priority than others. For example,

it may be that Wavescope stream data takes higher priority than control or log data. It may be more

important for the sink to be able to send commands to nodes than for nodes to send log messages.

To implement priority for networked streams, it is necessary to ensure that certain streams are serviced

at a higher frequency than others. The frequency of service can be related to some arbitrary scheduling

scheme.

5.3.3 Data consolidation

The off-line operation context of the VoxNet architecture was not discussed in detail in Chapter 4 because

the application at hand was primarily motivated by on-line localisation. However, VoxNet is intended

to be both an on-line and off-line platform, hence it is important to consider how data gathered during

the on-line operation of the system will be stored, and accessed at a later date. Data consolidation is

considered here whilst data access is considered in Section 5.4.1.

During the deployment of VoxNet, a significant amount of application data (raw detections, AML

results, position estimates) and system health data (multi-hop routes, link quality, per-node stream status

and so forth) was gathered and used to analyse the performance of the system. However, Section 5.3.1

observed that the lack of a unified system for logging and timestamping led to inconsistencies which

rendered otherwise useful data unusable for analysis.

During the VoxNet deployment period, the typical way to gather data for post-analysis with the

acoustic nodes was to remotely copy data files using scp (for system health and application logs), and

manually extract Compact Flash (CF) cards for raw audio data, copying the data to a laptop. Data

created at the control console was manually copied from the main application directory into the same

place as the remote data. The manual approach left great potential for forgetting to transfer certain data

or inadvertently over-write important data. In deployment three (Section 5.1.5), this caused the loss of
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data corresponding to a rare marmot bout.

A management interface to make this process easier, more reliable or even automated would be vital

to prevent data loss and organise data effectively for later access.

For the marmot localisation application, and likely other similar attended applications, the data

need only be consolidated at the end of the deployment. In this case, the data consolidation could be

implemented as part of the control console functionality. Nodes could be set into a special download

mode, where all data is sent to the control console and automatically organised into streams: for example

log streams and data streams. A key concept to VoxNet’s interaction model is the unification of the

on-line and off-line modes of VoxNet so that they are seen as part of the same process.

5.3.4 Summary

Section 5.3 discussed several problems that were observed about the general operation of VoxNet through

the marmot localisation application: data logging, stream priorities and data consolidation. Out of these

problems, insufficient data logging caused the most problems during post-deployment analysis, closely

followed by data consolidation. These are problems which could vastly affect how easy VoxNet interact

with after deployment, as well as the post deployment analysis of both application and log level data (for

the scientist and WSN developer respectively). The unification of these problems in the overall VoxNet

platform are left for future work, but the implications for adoption of the system are discussed below in

Section 5.4.

5.4 Enabling scientific adoption

So far, marmot-localisation specific and general VoxNet issues related to deployment experiences have

been described. The experience of deploying VoxNet enabled these observations to be made. However,

there are still some issues that whilst not observed directly in the field, the author believes are important

to enable the adoption of the system by domain scientists. The issues discussed in Section 5.4 are: data

access and fault tolerance for robustness and reliability.

5.4.1 Intuitive data access

As discussed in Chapter 4, VoxNet intends to bridge the gap between on-line and off-line performance,

first by allowing the same applications that are run on-line to be run on archived data, and second by

providing a way to consolidate and access the on-line data gathered through deployment in an off-line

context. The archive server is integral to this vision: Section 5.3.3 discussed how the collection of data

from on-line deployments (from both the control console and the nodes) might be consolidated to the

archive server.

In this approach, all data logs as well as recorded data streams are archived by the server, to be

retrieved and analysed by the user. For the marmot localisation application, the time-stamped log data

streams, detection streams and AML streams could be used to provide annotations for the raw data

streams gathered. These streams could be visualised together, and would aid the deployer in off-line data

analysis; it would also assist a user who was not present at the deployment to quickly make sense of

the data. This approach would require that all log, control and other data sources were timestamped in

the same format (as noted in Section 5.3.3), and that the system had a way to deal with data that was
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gathered during a period with no synchronisation. Section 5.4.2 discusses more the implications of time

synchronisation failures for system usage.

The aim of the archive server is to provide a search-able archive of all data gathered as part of on-

line VoxNet deployments. This is to enable the user to analyse data after field experimentation. The

Seismogram Transfer Program (STP) (Anonymous 2007c), for example is a program that allows users to

request data from the Southern California Earthquake Data Centre and provides a web-based interface,

and a shell console that users can use to query subsets of seismic data corresponding to earthquake events.

This data can have filters directly applied to it, and in some way resembles the same kind of interface

that Matlab might provide to data streams. Users can request lists of most recent data events, with ids,

which can then be cross referenced. This allows queries along the lines of list available data corresponding

to event x. For VoxNet, annotations provided during on-line operation could be used as information to

help the user in querying data—for example get data from all nodes which was gathered around the time

of event x.

Deciding what are correct interfaces (graphical or otherwise) to help summarise data for the browsing

user is beyond the scope of this discussion, but present interesting research topics. Powerful graphical

interfaces that can integrate raw acoustic data, photographs and other processing (direction of arrival,

position estimates, others) and notation may help the scientist make other meaningful observations.

5.4.2 Automation for fault tolerance and robustness

In VoxNet, there are two important system-level services whose correct operation is dependent on the

wireless networking links: time synchronisation and network latency. For time synchronisation, if the

network, or a subset of the network loses time synchronisation at any point during system operation, this

may invalidate any of the observations and processing that are being performed. Time synchronisation

performance is related to the quality of the links that the data is travelling over. If links consistently

fail, nodes may find themselves without neighbours to synchronise with, and will thus lose time syn-

chronisation. For network latency, transient loss of link quality can affect the speed of data transfer in

the wireless network. This can affect the perceived timeliness of the system when it is being used in

an on-line manner. If the user is basing observations on the output of the system (as with the marmot

localisation application), then it is important that the results arrive in sufficient time to allow the user

to perform their observation (or take a picture, for example), while the phenomenon is occurring.

If either time synchronisation or network latency services become compromised, then the quality of

the information provided by the application level processing will be affected (since data is not timely

or synchronised adequately). Ideally though, the user should not have to care about these lower-level

services, and should be assured that they are fit-for-purpose over time. In dealing with potentially

transient problems with the network, it is important that the system attempts to mitigate these problems

in an adaptive, automated manner. However, there may be some instances where the network cannot

adequately resolve the situation, and must therefore inform the user of the problem so that they can

adjust their confidence in the measurements being made, or can perform remedial actions. Ideally, the

system would provide hints or advice to the user about the best way to resolve the problems.
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5.5 Summary

For the marmot localisation application, the on-line usage cycle followed three main phases:

• set-up: physical deployment and initialisation of system

• operation: attended use of the system whilst running

• post deployment : collection of physical devices to return to laboratory environment; consolidation

of data to storage

These three phases correspond to the on-line operation context of VoxNet, coupled with the subsequent

transition to off-line operation (but not actually including the off-line processing of data). Deployment

of VoxNet raised several challenges with respect to the usage cycle deployment and usage cycle. These

challenges fell into three categories:

1. Application specific support and improvement

2. General support for on-line operation

3. General support for off-line operation

For the immediate operation of the system, the first two categories (application specific support and

on-line operation) are the most important.

Since the application is running on-line, it is important that it is perceived to be running in a timely

manner to the user: an excessive amount of time waiting for data to arrive at the control console may

affect whether the scientist can make in-situ marmot observations or not. A lack of robustness relating

to (potentially transient) network latency could affect the scientist’s trust in the system or willingness to

adopt it for in-situ use.

End-to-end latency has been at the core of several problems with the marmot localisation system

during deployment, notably data transfer latency and localisation algorithm latency. Latency of data

transmission is something which directly influences the performance of the on-line marmot localisation

application. The latency of transferring raw detection data from the node to the sink-side application

affected the data grouping algorithm’s ability to decide when to group data and process it further. This

was because detections could be delayed in their transfer, and arrive after the detection timer had expired

(0.5s). This is a fundamental problem in the operation of the system: without a suitable grouping solution,

performing localisation on-line is practically impossible.

This problem was compounded by false detections: when nodes generate a lot of detections in a

short space of time, for example from false detections, this creates a lot of data which must be sent by

nodes over the network. This affects the end-to-end latency, as all the data has to be sent, delaying the

meaningful data that can be used by the sink-side application. Therefore, a way to filter out the noise of

the unwanted detections will have an effect on the amount of data that needs to be sent by nodes, thus

helping to reduce transfer latency in the network.
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Based on the above observations, the rest of the work in this thesis concentrates on increasing the

robustness and timeliness of the marmot localisation system by identifying the exact the causes of latency

in the localisation system and providing improvements to reduce that latency through data filtering and

adaptive processing of data.
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Chapter 6

Reduction of end-to-end localisation

latency

Chapter 5 discussed the in-situ deployment of the marmot localisation application implemented on the

VoxNet platform. The deployment raised many potential issues with respect to application and platform

operation. The two most important and far-reaching issues were of data transfer latency and intelligent

grouping of data.

This chapter addresses these factors in more detail, in the context of end-to-end timeliness of the

marmot localisation application. For WSN applications that run in an on-line manner, such as the

marmot localisation application, time is an important constraint. Some applications within this class

may require that data sensed in the network is processed within strict timing deadlines (these are hard or

soft real-time systems depending on the implications of missing the deadline). Other applications within

the class have a less strong requirement: that the system must show a level of timeliness with respect to

results delivered to the user. The marmot localisation system is an example of a system which should

maintain timeliness wherever possible.

This chapter discusses the sources of latency which affect timeliness in the marmot localisation system,

as identified by the author upon design and evaluation of the system as described in Chapters 4 and 5.

The rest of this chapter is organised as follows: Section 6.1 describes three distinct areas in the end-to-

end processing chain where latency is introduced: on-node processing, network data transfer and sink-side

processing. Of these, network data transfer is the largest contributor to end-to-end latency. An analysis

of the sources of latency in the network data transfer are considered from application level down to

physical level. To improve overall system timeliness, a case is made for on-node processing in Section 6.2,

and for temporal filtering of event detections at the sink before data collection in Section 6.3. This is

supported by proof-of-concept simulations using network transmission data gathered through controlled,

in-situ experimentation (from Chapter 5). This was sufficient to provide proof-of-concept validation that

could be readily extended to real deployment.

Three algorithms developed by the author are presented in this chapter: Lazy Grouping, Static

Threshold Adaptation, and Dynamic Prediction Adaptation. Lazy Grouping supports the grouping and

collection of data for position estimation. Lazy Grouping is a modification of the On-line Grouping

algorithm (presented in Chapter 5), which gathers only data which is useful for position estimation.

Static Threshold Adaptation and Dynamic Prediction Adaptation support adaptation of processing from

sink to node in the network, based on network conditions.
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Figure 6.1: The marmot localisation use case, divided into three discrete components representing the
three broad sources of latency in the end-to-end WSN system—on-node detection/processing (1), network
transfer (2) and sink-side processing (3),

6.1 Causes of network latency

In the on-line marmot localisation system’s motivating use case, the scientist deploys a network of nodes

to monitor marmots in their habitat. The scientist waits at the sink node (most likely a laptop) to

receive position estimates of marmots soon after their calls have been detected, subsequently using this

information to position a camera to take photos of the marmots, or to help decide if the physical topology

of the network needs changing. The end-to-end performance of the WSN system in this use case is judged

by how quickly the network can identify an event of interest, estimate the location of the event and present

the user with this estimate.

Figure 6.1 shows the processing chain from event detection to presentation of position estimate to the

user for the use case. From a WSN perspective, the marmot localisation processing chain starts at node

level, where the nodes run event detectors to detect marmot calls. When such events are detected, the

corresponding data is placed on a sending queue and transferred over the network to the sink. At the sink,

each detection is processed using the AML algorithm (described in Chapter 2) and related detections

are then fused together to determine the position estimate, which is displayed to the user. The user’s

expectation is that a position estimate will arrive in a timely manner, such that it can be used to make

specialist application related observations or take decisions. Therefore, the timeliness of the system is an

important measure of its end-to-end performance. Whilst a specific timing deadline is not imposed on

the system for converting detections to position estimates (unlike a soft or hard real-time system), the

longer the user has to wait for the result, the less likely it is that the information is useful. Therefore,

the focus of the system is on presenting results as quickly as possible.

Broadly, in the processing chain, there are three contributors to the end-to-end latency of position

estimates (thus timeliness) in the system: node latency, network latency and sink latency. Node and

network latency is due to on-node event detection and the transfer of that detection data to the sink.

Sink latency is due to the processing detection data through the AML and data fusion algorithms, and

the graphical presentation to the user.

As described in detail in Chapter 5, the first in-situ deployment of the marmot localisation system
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took place at the Rocky Mountain Biological Laboratory (RMBL) in August, 2007. During this period,

controlled experimentation was also carried out. Eight nodes were deployed, although not all were used

in every experiment.

During the in-situ deployment, it was observed that network transfer was by far the largest contributor

to the end-to-end latency in the system. The on-node event detection ran in real-time, and the sink

processing load was nominal (processing each AML data took on the order of tens of milliseconds).

Several factors were observed to affect the time taken to transfer data from the nodes to the sink: the

event frequency, the multi-hop topology and the antenna gain. These factors were further examined by

the author through in-situ operation and controlled experiments. Two other factors were also suspected

to contribute to data transfer latency, but were difficult to isolate through in-situ experimentation—the

data transport mechanism, and the data rate. All factors above have analogies to the abstraction layers

in the TCP/IP model, as indicated by Figure 6.2 on the following page. This figure shows the individual

components that contribute to the overall network latency stacked from physical to application level. The

latency contribution of each of these components is discussed below, starting from the application level

and working down the stack to the low-level aspects, such as those that affect the physical transmission

of the data over the network.

Fundamentally, the amount of time the data will take to transmit is a function of the amount of data

that needs to be sent and the rate at which it is sent (that is bits or bytes per second). This rate has

different meanings at different levels in the system stack. At the physical level, this refers to the rate

at which bits can be physically encoded on the communication channel (the data-rate or bit-rate). This

represents a physical limit on the speed of the transfer (discussed further in Section 6.1.4), and does not

consider individual packets of data. At the data transport level, the rate at which packets of data are

received is called the throughput. Throughput includes the frames and header information included in each

packet. At the application level, the rate at which useful data is received is called the goodput. Goodput

takes into account only the data payload of a packet, disregarding the frame and header information.

6.1.1 Event frequency

From the point of view of the nodes in the network, the event frequency represents the highest level

factor that can affect transfer latency in the end-to-end system. In the motivating application, individual

marmots call relatively infrequently, although several marmots may call within a short period, or an

individual marmot may produce what is known as a bout, where it makes as many as 20 calls in a row, at

approximately 1 second intervals. However, in the context of the system, event frequency refers not only

to the rate at which the animals call, but also to the rate at which the event detector running on the

nodes is triggered. In an ideal scenario, the trigger rate and the call rate would be identical. Realistically,

there are however false positives which can trigger a node’s event detector. Nonetheless, as the frequency

of events being detected by each node in the network increases, it follows that the amount of data that

needs to be sent back to the sink will increase. Because outgoing data is sent to a message queue, it will

take longer to transfer the most recent detections if there is a large amount of data waiting to be sent.

To show the effects of event frequency on data queues, and the subsequent transmission times, an

example is considered from a data trace of actual detection events from the system running in-situ, at
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Figure 6.2: The observed and suspected factors causing latency (left), and their analogies to abstraction
layers in the TCP/IP model.

RMBL. Seven of the eight nodes were used (node 108 was not used), with each node one hop from the

sink.

Figure 6.3 on the next page shows the effect of a rapid number of detections across the network in a

short period of time. The data shown on the graph is for a period of 3 seconds, when 19 detections were

triggered across various nodes. Each data point represents a detection (where the x axis is the detection

time, and the y axis is the number of events that were queued network-wide when the detection was

made). The graph shows how data can quickly accumulate in the network.

Figure 6.4 on page 150 shows the relationship between the time taken for a detection to go from

message queue to sink, and the aggregate number of detections in the network at the time of detection.

Each data point represents a detection made by a node. The x axis is the amount of queued detections

across all nodes when the detection was made, and the y axis is the time that particular detection took

to arrive at the sink.

Both Figure 6.3 on the next page and Figure 6.4 on page 150 show that queued detections in the

network can quickly increase, and the time taken for a detections to arrive at the sink is related to the

total amount of data queued to be sent in the network. Ultimately, this shows that the event frequency,

and hence local and aggregate queue size will have an effect on the time taken to transfer data to the

sink.
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Figure 6.3: A plot of a specific time window from data gathered in-situ at RMBL. The graph shows the
number of detections being sent (or queued) vs. detection time. Each point on the graph represents a
detection made by a node, with the x axis representing the time since the first detection in the data set
was made (not shown in this graph), and the y axis representing the number of events that were either
queued or being transmitted in the network at that point. The x axis units are chosen for ease of reading.

6.1.2 Data transport protocol

Whilst the rate at which events are triggering the event detectors on nodes can explain how large amounts

of data are generated, the data transport protocol is responsible for making sure that data gets from node

to sink reliably and in the order it was intended. The overhead associated with ensuring this means that

the data transfer protocol plays an important part in transfer latency. The system uses the Transmission

Control Protocol (TCP) as its data transport protocol, a ubiquitous part of the TCP/IP suite which

has been integral to data transport in the Internet. TCP takes responsibility for reliable, in-order data

transmission, congestion avoidance and flow control, all of which are briefly described below. TCP also

implements a fairness policy, where all nodes that are transmitting simultaneously are afforded an equal

share of the bandwidth over time.

To ensure reliable, in-order data transmission, TCP implicitly acknowledges successful reception in

its ACK reply to the sender by including the sequence number of the next byte it expects to receive. The

sender can then re-transmit any bytes that were not received by the receiver. This means corruption of

part of a packet (TCP segment) does not necessarily mean the whole packet must be retransmitted. Flow

control allows the receiver to adjust the rate at which the sender is sending data (for example the sender

may be sending too fast for the receiver). This is done by the receiver specifying the amount of data it is

willing to receive before acknowledging its successful arrival. The sender cannot send more data until it
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Figure 6.4: Time taken for a node to transfer 32 kB of data (a detection) to the sink, vs the number of
detections currently queued or mid-transmission in the network. Each data point represents a transfer,
and how long it took to arrive at the sink from when it was queued.

has received the acknowledgement (the sending of which may be delayed using a timer at the receiver),

thus its rate is adaptively controlled.

Similarly to flow control, TCP implements a congestion avoidance scheme by using a per-connection

congestion window, which limits the number of segments from a sender that may be in-transmission

without acknowledgement from the receiver. On wired networks, TCP interprets packet loss as an

indication of congestion in the network (there is more data needing to be sent that the network can

actually carry at that instant). TCP infers packet loss at the sender: if the sender receives duplicate data

acknowledgements for the same TCP segment from the receiver, then there must be packet loss. When

congestion occurs, TCP reacts according to the policy of the congestion control algorithm being used.

Essentially, all of these algorithms provide some back-off from transmission (to ease the congestion),

followed by a period of progressively increasing the congestion window size (hence the data rate). This

helps the sender establish whether the channel is still congested or not (in which case it would back off

again), and is known as slow-start. The nodes and gateway in the system discussed in this thesis run

version 2.6.10 of the Linux kernel, which uses the Binary Increase Congestion control (BIC) algorithm.

BIC is optimised for high bandwidth networks with long Round Trip Times (RTTs).

Whilst in wired networks the assumption that packet loss is entirely due to congestion is valid, this

assumption does not hold in wireless networks. This is because wireless networks experience additional

losses unrelated to congestion—that is, a packet may not reach its destination due to interference or loss

of signal strength in the wireless channel. Loss caused by the physical properties of the wireless channel
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(rather than congestion) can cause TCP transmissions to back off and slow transfers down in an overly

conservative manner. This can result in high latency for transmissions, depending on the sequence of

losses that a connection may observe.

The TCP connections in the system here operate over multiple hops, using IP forwarding (as discussed

in Chapter 4). This means that the data transport protocol sits on top of the multi-hop routing layer

in the system, provided by an implementation of the Dynamic Source Routing (DSR) protocol. It

follows that data travelling over multiple-hops has an increased chance of experiencing latency due to

the effects of TCP. VoxNet’s stream management software tries to mitigate latency by disconnecting and

re-establishing TCP connections that have backed off to an inappreciable degree, based on a higher level

acknowledgement/timeout protocol (discussed in more detail in Chapter 4).

A reliable transport mechanism is important to the marmot localisation application, as the AML

algorithm cannot operate correctly on a partial stream of data. Therefore unreliable protocols, such as

the User Datagram Protocol (UDP) are not useful here. UDP is useful when streams of data can trade-off

loss with real-time performance. For example, in media streaming, packet loss can be absorbed; the goal

is to keep the stream timely, and as close to real-time as possible. The main limitation of TCP in ad-hoc

wireless networks is the lack of interference avoidance, due mainly to the lack of communication between

link layer and data transport layer.

The data transport protocol plays an important part in the potential latency of data transfers. Because

reliable data transfer is important for correct operation of the system, the potential latency incurred by

using TCP must be traded off against lossy, but faster operation.

6.1.3 Multi-hop topology

Multi-hop message routing in ad-hoc wireless networking allows communication between nodes that are

either out of physical communication range with one another or have communication links with a high

loss rate.

Multi-hop networks can be used to increase the effective range of a network, but can also reduce the

effective bandwidth available to nodes several hops away, as well as increasing the aggregate amount of

data passing through the network. The aggregate amount of data that must be sent is a side-effect of

packet-forwarding. For example, should a node that is three hops from the sink want to send a packet of

data—this has to be forwarded independently by two other nodes, resulting in an aggregate amount of

three packets that must be sent in total.

Because the radio channel is a shared medium, message forwarding also affects the availability of

the radio channel for all nodes that are within communication range. This effectively reduces the max-

imum throughput available to a node, the further away it gets from the sink. Generally, the maximum

throughput (and therefore goodput) available to a node in a multi-hop network degrades at a rate of 1/x,

where x is the number of hops from the node to the sink (Fu et al. 2003). For example, if the maximum

throughput available to a node one hop away is nominally 500 kB/s, then a node three hops away would

only be able to achieve a maximum throughput of 166.7 kB/s. With regard to the goodput, since it

refers to the rate of application level data rather than overall packet size, the bandwidth values would be

smaller but the per-hop ratios would be the same.
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Figure 6.5: Figure 6.5(a) shows the minimum, mean and maximum time taken to send 32 kB in a multi-
hop network when all nodes are requested to send data at the same time. Fifteen transfers were recorded
for each node, and results are sorted by minimum latency. Figure 6.5(b) shows the multi-hop routing
tree for the network during the experiment.

If nodes are not within the same transmission region, some gain in bandwidth can be made through

spatial re-use, where parts of the network which cannot physically interfere with one another can theoret-

ically transmit at the same time. However, in this case, unexpected radio collisions are introduced by the

hidden terminal effect where two nodes communicating with a third (or access point) experience unex-

pected loss (Moh et al. 1998). This occurs because the two sending nodes are not within communication

range of one another, hence cannot sense that the other is transmitting.

An in-situ experiment was performed to simulate a worst case acoustic localisation scenario for data

transmission, where all nodes made a detection within a short space of time and attempted to transmit

to the sink-side application at roughly the same time (within several milliseconds of one another). The

WSH was used at the sink to periodically request seven of the nodes to send back 32 kB simultaneously

(using the send command), and the time taken for each transfer was recorded. A total of 15 data requests

were made to all nodes. VoxNet’s multi-hop routing layer was activated during the experimentation. The

resulting multi-hop routing tree is shown in Figure 6.5(b).

Figure 6.5(a) shows the min, mean and max time taken for each node to transmit the data, sorted by

the number of hops each node was from the sink. The median latencies were also calculated and found to

be close to the mean values. The time taken to transmit the data in this experiment increases considerably

with the number of hops (meaning that the goodput is reduced). When comparing the per-node transfer

latency to the node’s position on the routing tree there is a marked difference in latency between nodes

who are children of 104 (115 and 112) and those who are children of node 113 (100, 103, 108). Therefore,

it could be concluded that simultaneous transmission in a network such as the one created here had a

marked effect on the system latency, which is further dependent on the network topology (particularly
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Figure 6.6: The maximum goodput ratio for nodes that were 1, 2 and 3 hops away from the sink. Each
data point is the mean of all nodes that number of hops from the sink. The ideal goodput ratio is shown
as a comparison.

on how many children a parent node has).

It was noted previously that the expected throughput (or goodput) should degrade at a rate of 1/x.

To verify this, the observed mean latencies were converted to goodput values, by dividing the data size

of the application level payload (32 kB) by the time taken to transfer. The overall mean goodput for

nodes situated one, two or three hops from the sink were taken for each node, and expressed as a ratio

of the one-hop mean goodput. The results are shown in Figure 6.6, along with the ideal goodput ratio.

It can be seen that the observed mean goodput ratio is less than what would be expected—30% versus

50% of the one-hop goodput at two hops, and 15% versus 33% of the one-hop goodput at three hops.

This reduction of goodput is potentially a side-effect of concurrent transfers.

To make a more compelling case for the hypothesis that concurrent multi-node transmission reduces

the goodput ratio below what would theoretically be expected, a controlled experiment was set up in a

laboratory environment. A linear six-hop network was formed, with all nodes in the same transmission

region, in order to factor out any hidden terminal effects. Nodes were set-up to ignore packets at the

MAC layer from all but their one-hop neighbours in the chain. This experimental set-up recreates similar

experimental environments used by Fu et al. (2003) to investigate TCP performance in wireless ad-hoc

networks.

Nodes were requested to send data payloads of 32 kB or 535 kB. Fifty requests were made for each data

size to all nodes individually, and then fifty requests to all nodes simultaneously for the 32 kB payload.

The 535 kB payload was chosen because it represented the maximum observed throughput at one hop

in the experimental set-up. It was measured using the iperf tool before the actual experimentation.

Figure 6.7 shows a clear difference in goodput ratio between simultaneous and single requests for 32 kB.

The graph shows a larger goodput ratio drop off at two hops when multiple nodes are transmitting,
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Figure 6.7: A graph of goodput ratio for transfers in a linear, 6 hop network. Each data point is the result
of 50 transfers, either 32 kB or 535 kB (the observed maximum 1 hop throughput). The ideal goodput
is shown for comparison. Data requests were either to the node at each hop individually (single), or to
all six nodes in the network (multiple).

followed by a small decrease per hop from three hops onward. Conversely, the single node transfers

degrade at a gradual rate, with the goodput ratio actually being better than the expected ratio. This is

likely due to the fact that the data payload being sent does not fully use the bandwidth of the channel, so

the relative goodputs observed are higher. The result for the single 535 kB payload confirms that when

the maximum throughput possible at one hop is requested, the goodput ratio matches the expected ratio

at each hop.

For the marmot application, the implications in terms of end-to-end system latency are that if all

nodes are sending data simultaneously, the goodput available to nodes more than one hop from the sink

will be reduced significantly from what would normally be expected. If however, only one node is sending,

one can expect a better goodput ratio if the payload is small in comparison to the maximum one-hop

goodput.

In conclusion, the in-situ and controlled experimentation showed that latency was affected by the

multi-hop topology, potentially generated by a variety of sources: number of nodes transmitting simulta-

neously, hops from sink, spatial re-use and data size. However, it was not possible to specifically isolate

and quantify these causes on the basis of the in-situ data set. Therefore, supplementary experimentation

was carried out in controlled conditions out to show that smaller data payloads can achieve a through-

put ratio that is better than the expected ratio (based on maximum throughput), and that multiple

concurrent transmissions have a detrimental effect on the expected throughput.

6.1.4 Bit rate

The rate at which bits are physically encoded onto the wireless channel by a radio is called the bit rate,

and it enforces a physical limit on the maximum speed that data can be received over a wireless link.
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Bit rates are typically measured in bits per second, or bits per second (bps). The lower bit rate data is

sent at, the longer it will take to be physically received, and thus the greater the latency. For example,

1024 Kilobit (kb) will take 1 second to receive if sent at 1 Megabits per second (Mbps), 0.5 seconds at

2 Mbps, 0.18 seconds at 5.5 Mbps and 0.09 seconds at 11 Mbps.

VoxNet uses wireless radios that comply with the IEEE 802.11b standard. In 802.11b, the bit rate

can be dynamically adjusted between 1 Mbps, 2 Mbps, 5.5 Mbps and 11 Mbps at run-time, depending

on recent packet loss rates. This is important because it has been shown that lower data rates in 802.11b

have a higher probability of reception see (Aguayo et al. 2004), and that transmissions sent at lower

data rates can potentially have a longer communication range see (Lundgren et al. 2002). The 802.11b

standard requires that unicast transmissions (one sender, one receiver) are acknowledged at the MAC

layer, and can be sent at any data rate. There can be a maximum of seven retry attempts of a packet

at the MAC layer before its transmission is failed. Broadcast transmissions must be sent at a fixed data

rate of 1Mbps, and that there are no MAC layer acknowledgements or retries for these transmissions.

VoxNet nodes use the SMC 802.11b network cards with the Prism 2.5 firmware which dynamically

chooses the data rate according to the following algorithm: a packet is originally attempted to be sent at

the highest rate (11 Mbps), but if this packet is not successfully transmitted (unsuccessfully acknowledged

after 8 retransmissions), the next lowest bit-rate is used (5.5 Mbps). After 10 seconds, and no more loss,

the bit-rate can return to 11 Mbps. If the card experiences more loss, the rate may be lowered again.

Variable data rates are not present in every wireless standard. For example in 802.15.4 (the standard for

low-rate wireless personal area networks), the data rate is fixed at 250 kbps (or 0.24 Mbps).

The higher-level metrics of both goodput and throughput are affected by the bit rate of the wireless

radio, and MAC layer retransmissions below that. Higher layers of abstraction are not made aware of

the data rates and retransmissions being carried out at the MAC and physical levels, which can cause

problems for the end-to-end latency of data transfer. This is especially true for the data transport layer

(TCP) which attempts to implement its own flow control based on assumptions of congestion in the

network. The combination of TCP and MAC layer retransmission and bit rate selection is therefore a

contributing factor in the end-to-end latency of data transfers.

Wireless loss and interference vary depending on physical obstacles in the environment, temperature,

humidity and other weather conditions, making it complicated to predict in real environments. Lower

data rates may be more stable, but result in a higher transmission latency. If data rates fluctuate

between different links, some transmissions may take longer than others. In multi-hop networks, one or

more low-quality links on a path will lead to an increase in the overall latency that a node experiences.

6.1.5 Antenna gain

A set of data gathering experiments were carried out in-situ at RMBL to examine the difference in time

taken to transfer data when the gain of the omnidirectional antenna at the sink was changed. Theo-

retically, using antennae with greater gain should improve the quality of the reception and transmission

between nodes. The result of this would be a reduction in transmission errors which would affect data

rate choice and MAC level retransmissions, as discussed in Section 6.1.4. Effectively, this should manifest

itself as a reduction in the time taken to transfer data between nodes and the sink.
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(b) CDF of time taken to transfer 32 kB, all nodes

Figure 6.8: The effect of changing antenna size on nodes deployed one hop from the sink. Note that node
113 was absent from the 5 dBi antenna set of experiments. There is a clear increase in median time taken
to transfer 32 kB between the two antennae. The CDF also shows a difference in the spread of latency
between 5 dBi and 9 dBi experiments.

Two different omnidirectional antennae with 5 decibel isotropic (dBi) and 9 dBi gains were used at

the sink (the antennae at the nodes were not changed). The gateway and control console were placed at

the car park (position one from Chapter 5, Figure 5.1 on page 125), and all nodes were one-hop from the

sink with both the small and large antennae. At the control console, only the WSH was running, and at

the nodes, only the WSH client code. The marmot localisation application was not running.

Using the WSH, six (for the lower gain antenna) or seven (for the higher gain antenna) nodes were

requested to send 32 kB back to the sink at the same time. This simulated the worst case data transfer

scenario for the localisation application, where all nodes detect the same event and send detection data at

the same time. A total of 16 requests were made for the 9 dBi antenna and 21 for the 5 dBi antenna. The

number of nodes changed from seven to six due to a fault in one of the nodes (node 113) that occurred

in between the 9 dBi experiment and the 5 dBi experiment. The median times for the data transfers (in

seconds), per node, are shown in Figure 6.8, as well as a Cumulative Density Function (CDF) plot of all

the transfers for both antennae. The median was plotted due to its robustness to outliers, although both

the mean and median were in close agreement for each node in this data set.

In Figure 6.8(a), there is a marked difference in median time to transfer 32 kB between the antennae.

The CDF in Figure 6.8(b) confirms this, additionally indicating that around 20% of the transfers using

the 5 dBi antenna took longer than 2 seconds, whereas 100% of the transfers using the 9 dBi antenna

took less than 1.5 seconds. Using a higher gain antenna is clearly a good way to increase transmission

reliability and coverage, although in dense networks this may limit the amount of spatial re-use possible.

Changing only the sink’s antenna reduced both the latency and its variability, which is important for

robust operation of the system here. It remains to be seen whether using high gain antenna on all nodes

would increase the performance further, or create more potential for inter-node interference. This was
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not investigated in the context of the work reported here.

6.1.6 Summary

At the start of Section 6.1, time taken to transfer data over the network was observed to be the largest

contributor to end-to-end position estimation latency. It was shown here how this latency of data transfer

could be broken down into several inter-related factors, present at different levels of the stack in the

system. The higher levels in the stack absorb the effects of the previous layers, as well as adding in

their own contribution to the latency. Complex interactions take place in the network transmission stack:

at the application layer, the more data that is generated, the longer it will take to transmit; at the

physical and data link layers, the speed at which this data can actually be transmitted is affected by

the interference in the network and the number of times messages must be retransmitted. At the data

transport and network layers, data must be forwarded reliably, over multiple hops. When multiple nodes

are transmitting, loss and congestion can increase transfer times across the whole network, particularly

for nodes that are several hops from the sink.

Given that these factors can all combine to increase transfer latency, but are difficult to predict

individually, it is clear that when data payloads to be transferred are large, the network must be treated

as an expensive resource, to be used only when necessary. Therefore, to reduce end-to-end latency, it is

important to understand how processing can best be shared between node and sink in the system, and

how the network can best be used when required.

6.2 A case for local processing

As presented in Section 6.1, there are a number of demonstrable factors which affect the latency of data

transfers from node to sink. For the marmot localisation application, the interaction of these factors

makes the cost of sending large amounts of data highly variable. Section 6.2 makes a case for minimising

network traffic by processing locally, and analyses the implications of the ensuing trade-off.

In Chapter 4, it was shown that processing of the AML algorithm (to estimate direction of arrival of

the acoustic source) could be performed locally, although at a slower rate relative to a typical laptop. The

processing takes 2.4112 seconds on average when performed on the node, versus around 0.0833 seconds

on an x86 laptop. The result of a detection processed with the AML algorithm is 800 bytes (360 2-byte

integers plus some timestamp overhead), which can fit into a single TCP packet (a segment) assuming a

Maximum Transmission Unit (MTU) of 1500 bytes (this is standard for 802.11 networks). In comparison,

a similar 32 kB transfer would involve 21 packets.

Therefore, the conditions under which it is beneficial to process the data locally depend on whether

the speedup in network transmission plus the time taken to process locally is less than the time it would

take to transmit the raw data. To evaluate this trade-off, a simulation was drawn to compare sending

32 kB of raw data and processing at the sink with processing locally and sending 800 B of processed

data. The idea is to add the empirically observed time to send 32 kB over a multi-hop network to the

empirically observed time taken to process the AML at the sink, and compare that to the empirically

observed time taken to process the AML locally plus the empirically observed time taken to send 800 B to

the sink. The AML latencies for local and sink-side processing were gathered in Chapter 4 and 32 kB data
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Figure 6.9: Simulation results showing the difference in end-to-end latency between processing at the
sink and sending raw data (left hand side), and processing at the node and sending the AML result to
sink (right hand side). Each bar contains two parts: the AML processing time (lower part) and the data
transfer time (upper part). The x axis shows the number of hops from the sink, where 2(a) and 2(b) are
different branches of the routing tree (as shown in Figure 6.5(b) on page 152).

transfer latencies were gathered during the RMBL deployment (Section 6.1.3). However, the latencies

for 8 nodes transmitting 800 B simultaneously over multiple hops were not gathered during controlled

experimentation at RMBL (when the 32 kB data was gathered).

To address the lack of multi-hop 800 B transfer latency data, it was necessary to model the behaviour

of a single TCP packet travelling over multiple hops, based on data gathered over a single hop. It was

only necessary to model the behaviour of a single segment in an established TCP stream, because the

AML result could easily fit in a single 1500 byte packet.

The data used with the packet latency model was gathered from a controlled one-hop experiment

performed at RMBL, where 8 nodes simultaneously sent 800 B to the sink. Over 22 simultaneous data

transfer requests (154 transfers total), the mean transfer time was 0.0212s (min 0.008s, max 0.0607s).

The model was formed using an expected packet loss rate per hop. The packet loss probability p was

set at 1/50 for each hop that a packet must travel over. The expected loss rate for a packet travelling

over N hops is then

P (N) = 1 − (1 − p)N (6.1)

assuming the TCP retransmission timer has an exponential back-off starting at 1 second. Using the
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formula for a geometric series, the expected latency E(x) is

E(x) = N · H + P (N)/(1 − 2 · P (N)) (6.2)

where H is the mean latency for transferring 800 bytes over one hop (H has been empirically determined

to be approx. equal 0.212).

The model was used to predict the latency of transferring 800 B over 1,2 and 3 hops, and added to the

observed time to process an AML locally at the node. This was compared to the latency to transmit 32 kB

over 1, 2 and 3 hops, plus the latency to process the AML at the sink. The results of this comparison are

shown in Figure 6.9 on the preceding page. Between 2 and 3 hops, there is a definite advantage to local

processing: on one side of the routing tree (marked 2(b) on Figure 6.9), transfers take almost 3 seconds

on average at 2 hops, and even longer at 3 hops (around 5 seconds on average). The simulated times for

local processing and reduced data transmission show AML and sending times of around 2.5 seconds at

two and three hops.

Section 6.2 has established that there is a viable case processing data locally when it would take longer

to send raw data to the sink. However, identifying when this is the case is a complex matter. Previously,

it was established that the network is a valuable resource. Only data that is required to be sent over the

network should be sent.

6.3 An approach to reducing latency

So far in terms of network latency, it has been shown that data transfer over multiple hops in an ad-

hoc network induces latency that increases with the number of hops that a node is away from the sink.

However, this latency is compounded when a node has a large amount of data to send, and also when

the network is congested or experiencing loss. Section 6.2 showed through simulation that it is best to

process locally when it would take longer to send raw data over the network. A specific example was

presented, using data gathered from a controlled eight node in-situ experiment. The specific simulation

found that nodes should process locally when they were between 2 and 3 hops from the sink.

Different approaches to address network latency in networking have been reported in the literature,

depending on its root cause. When some nodes are transmitting more than others, bandwidth equalisation

techniques can be used to deliberately and selectively throttle certain connections, so that other nodes

get a fairer share of the network bandwidth. This type of equalisation is applicable for both wired (802.3)

and wireless (802.11) networks, where each node has a direct link with the access point, which arbitrates

connections. An example of this in managed wireless networks is the AirEqualizer (Anonymous 2007a),

which monitors aggregate and per-stream traffic on per second basis, artificially inducing latency on

connections which are hogging bandwidth. This can happen in wireless networks when nodes are unfairly

represented due to the hidden terminal problem, as noted in Section 6.1.3. Traffic can also be prioritised,

depending on the content of the packet headers. The approach is generally termed traffic shaping, and is

performed by either (1) rate-limiting the data transfer speeds of specific users to provide a given quality

of service (QoS) or (2) using packet classification techniques to block or drop traffic.

In multi-hop ad-hoc networks, this issue is rather more complex, as nodes do not always have a
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direct link to the sink, meaning a bottleneck or low quality link may be at one or several points along

the path. To improve wireless network performance in hard real-time systems, a time division multiple

access (TDMA) approach is a way to ensure nodes get an equal share of the network bandwidth. An

example of this approach is the WirelessHart standard (Anonymous 2007d), which is aimed at process

control, where it is important to provide real-time updates of sensor status to make control decisions.

The approach taken in Section 6.3 to latency reduction is application-specific. The characteristics of

the marmot localisation application are used to determine what traffic is actually necessary, rather than

concentrating on general rate limiting or particular stream limiting. From an application perspective, the

author argues that there are two principles that should be met when accounting for the relative expense

of transmitting data over multiple hops and attempting to reduce end-to-end latency:

1. Only send data when it is useful for the network’s overall aim

2. Only process locally when it is advantageous to do so

The first principle requires that only useful data is sent over the wireless channel, ideally reducing

transfer latency. This implies that it must be decided exactly what useful data is. The second principle

requires that the cost of transferring raw data should be traded off against the cost of local processing

(but makes no requirement on whether this data is useful or not) Section 6.4 proposes two algorithms of

differing complexity to help decide when a node should process data locally to meet the second principle.

Section 6.3 proposes and justifies through simulation an algorithm to reduce the amount of data sent

over the network by determining which data is actually useful to meet the first principle.

An important aspect of meeting the goal of only sending data that supports the application’s overall

aim is to provide some way of deciding if data is useful before sending it. In the context of the motivating

marmot localisation application, data sent by the nodes is only useful if it is being used as part of a

position estimate calculation. The author proposes an algorithm called Lazy Grouping to decide whether

data is useful and hence whether it should be sent or not. The rest of Section 6.3 describes Lazy Grouping

in detail and justifies its approach through simulation.

6.3.1 Lazy Grouping

Lazy Grouping is a centralised algorithm that builds on and modifies the original on-line grouping algo-

rithm presented in Chapter 5. Where the basic on-line grouping algorithm attempts to group all event

data that it receives (regardless of whether it could be used in the localisation algorithm or not), Lazy

Grouping takes a more proactive approach in data collection by only requesting event data when the

corresponding detection has been confirmed to be part of a group. For the marmot localisation ap-

plication, this means that if at least three different nodes report detections which are close enough in

time, then the raw data should be requested by the sink-side application for AML processing and input

into the localisation algorithm. The Lazy Grouping approach is inspired by Bentley’s lazy evaluation

approach (Bentley 1986):

Lazy evaluation: the strategy of never evaluating an item until it is needed avoids evaluations

of unnecessary items.
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Figure 6.10: The flow of Lazy Grouping’s on-ling grouping and data collection stages.

Lazy Grouping breaks into two distinct parts: on-line grouping and data collection. Lazy Grouping’s

on-line grouping is largely based on the on-line grouping approach in Section 5.2.2 on page 134, but it

requires that nodes send detection notifications when they make detections, instead of raw data. Detection

notifications are similar to the original detection tuples di (in Section 5.2.2 on page 134, but they do not

contain the raw data, draw, only the detection timestamp ddet. Therefore, they are smaller (tens of bytes

instead of tens of kilobytes) and thus faster to transfer. To support this, nodes maintain a local buffer B

with all of the i current raw detections B = {d1,raw..di,raw} (see Section 6.3.3 for issues relating to buffer

overflow and data loss).

Lazy Grouping’s data collection is initiated when the sink has a group of at least three detection

notifications: it sends out requests to all the nodes in a given group. The nodes locate the relevant raw

detection data in their local buffers and send it to the sink. When the sink has received all of the data

in a given group, it triggers the next stage of the processing for the group (AML and data fusion). The

event flow for Lazy Grouping is shown in Figure 6.10, and described in greater detail below.

1. Evaluate identity consistency (Sink). This stage is exactly the same as the equivalent stage

in the on-line grouping algorithm presented in Section 5.2.2 on page 134.

2. Evaluate temporal consistency (Sink). This stage is exactly the same as the equivalent stage

in the on-line grouping algorithm presented in Section 5.2.2 on page 134.

3. Place detection in correct group (Sink). This stage is exactly the same as the equivalent stage

in the on-line grouping algorithm presented in Section 5.2.2 on page 134.

4. Check group and request data (Sink: timeout-based). When a set amount of time l second

has elapsed, the watchdog timer set when the group was created wt triggers. At this point the group

g associated with wt is checked to see if it can be processed further. If the number of detections in

the group is three or more (n(g) > 2) then the group is flagged for collection. At this point, the

sink sends each node I(d) in the group g a data request message, containing the sequence number s
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the node assigned to the detection, as well as the group number I(g) that the sink assigned to the

group when it was started.

5. Locate data and send to sink (Node). Node I(g) that receives a data request message finds the

raw detection in its the local buffer (given by B
I(g)
s ) and sends a reply tuple to the sink R = 〈draw, t〉.

6. Place data in correct group and trigger next processing stage (Sink). When the raw

data draw arrives at the sink, it can then be referenced to the group gt. The raw data can then be

placed into the node’s detection tuple. When all the raw data has been gathered for gt, the sink

can trigger the next stages of processing—the AML and data fusion algorithms.

The Lazy Grouping approach to filtering of detections is necessary because the event detectors that

the nodes run to detect marmot calls can be susceptible to false positives (for example, caused by weather

events, as discussed in Chapter 5). If a node’s event detector is triggering due to many false detections, this

will result in raw data of many false detections sent unnecessarily back to the sink, creating unnecessary

traffic. In this case, traffic equalisation approaches would attempt to lower the node’s sending rate so

that other nodes can get a fair share of the available bandwidth, which does not solve the problem that

the data being generated is of no use.

The application-informed approach taken to reducing latency by reducing traffic is more suitable for

the localisation application. The filtering should make it more difficult for a node to steal bandwidth

from other nodes as its detections are only useful when correlated with others.

6.3.2 Algorithm validation

In order to validate the approach used in Lazy Grouping algorithm, two simulations were carried out

using data gathered in-situ at RBML. The first simulation used an off-line implementation of the Lazy

Grouping algorithm on the in-situ data trace to determine to what extent it could reduce unneeded data

transmissions. The second simulation used the same in-situ data trace in conjunction with a set of data

transfers gathered from a controlled experiment from the same network configuration (also at RMBL) to

observe the relative reduction in latency in gathering data corresponding to groups. It should be noted

that all of the data gathered and used in these simulations was from a one-hop network, rather than a

multi-hop network. The experiments are discussed below.

Experiment one: data reduction

The goal of the first experiment was to quantify the reduction in data transfer that could be possible using

Lazy Grouping. It was expected that Lazy Grouping would provide significant benefit when applied to

the RMBL data set. The experiment was performed using simulation. To achieve this, an off-line version

of the Lazy Grouping algorithm was run over a real event stream gathered at RMBL. The off-line version

of Lazy Grouping only simulated the creation of groups, not the requesting and transferring of data

(this was simulated in the second experiment). In the RMBL data set seven nodes all one hop from the

sink sent back any events that were triggered by their event detectors (regardless of whether they were

actually marmot calls or not). For each detection that arrived at the control console, the sending node

ID, global time of detection and time taken to transfer the data were recorded. The amount of data sent
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per detection was 128 kB, rather than 32 kB. This was due to a misconfiguration of the system which

was not possible to rectify during the deployment. This disparity in data size does not affect the analysis

here as it is only the timing of the detection events that are of interest, not their size. The amount of

detection data transferred during the actual in-situ experimentation was 44.125 MB (353 events). When

the off-line Lazy Grouping algorithm was run over the data set (using a fuzz factor of 440 ms), and a

minimum grouping of 3 detections to make a position estimate), the amount of data that would have been

sent was reduced to 15.75 MB (126 detections). This represents a 64% reduction in data transferred—a

clear validation of the data reduction capabilities of the Lazy Grouping algorithm. In all, 24 groups were

made: 14 groups with 3 detections each, 16 groups with 4 detections each and 4 groups with 5 detections

each. No groups larger than 5 were found.

Figure 6.11(a) on the next page shows a magnified window of the first 18 minutes of the RMBL data

trace, with time since the first detection on the x axis, and node id on the y axis. Detection events

are marked as dots and events which have been grouped together are marked with squares. To aid

understanding, the mean timestamp of each group is shown as a vertical line. This shows the filtering

effect of the Lazy Grouping approach and gives an indication of the number of detections that can be

disregarded based on the temporal and identity consistency rules. Figure 6.11(b) shows a particular group

of detections from Figure 6.11(a), highlighting how the temporal consistency rule rejects detections which

are not within the uncertainty factor from the group’s mean.

Experiment two: latency reduction

The goal of the first experiment was to demonstrate the potential reduction in the amount of data sent

using Lazy Grouping. The goal of the second experiment was to simulate the data collection phase of

Lazy Grouping. This demonstrates the potential reduction in latency that is possible when only the data

classed as useful by the Lazy Grouping algorithm is gathered. The Lazy Grouping data collection phase

consists of the following steps: (1) receive detection notifications from nodes, (2) send out requests for

data and (3) receive raw data responses from nodes. More formally, assume that a group gi containing

n(gi) detections is created by the Lazy Grouping algorithm. Assume ℓg = {gi}
n(gi)
i=1 is the set of latencies

for collecting data from all nodes in a group g, where each element of ℓg is determined by

ℓg = qi · draw,i + ddet,i + dreq,i) (6.3)

where q is the number of detections the ith node had waiting to be sent in its local queue before the

current request, ddet is the time taken for the ith node to send a detection notification and dreq is the

time taken for the sink to send a data request to the ith node. The overall latency l(gi) to gather the

data from the group gi is therefore

l(gi) = max
g

ℓg (6.4)

The simulation of Lazy Grouping’s data collection process as discussed above was implemented in Matlab.

The simulation iterated through the list of detections belonging to the groups created by the Lazy

Grouping algorithm in experiment one (Section 6.3.2). The list was ordered by detection time. For

each detection, qj was inferred by counting the number of detections node j had made as of the current
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(a) A plot showing the result of grouping detections to decide which data should
be sent to the sink by nodes. Each point on the plot is a detection, made by
a node (shown on the y axis) at a certain time (shown on the x axis). Vertical
lines show the mean of the group to which detections marked as squares belong
to. All other detections are discarded.
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(b) Rejection of detections that are not close enough to the mean of the event
group. In this case, the detection from node 112 was more than 440ms away
from the mean established by the detection timestamps from nodes 109, 104,
103 and 100.

Figure 6.11: The grouping of estimates based on temporal and identity consistency.
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Figure 6.12: A graph showing the potential benefit of Lazy Grouping’s data collection process in simu-
lation. For comparison, the time taken for the data to arrive at the sink for the original data trace is
shown. The error bars represent the min and max times for each transfer, and are ordered by group size.

position in the list and subtracting the number of detections the sink had received (this could be inferred

from the reception time logged for detection).

The other parameters to calculate li (draw, ddet and dreq) were determined from empirically gathered

data. Eight 128 kB and twenty-two 800 B simultaneous seven-node data transfers were requested during

controlled experimentation in a one-hop network at RMBL. For each 128 kB or 800 B data request, the

start of the first transmission and the arrival of the last transmission were recorded, giving the total time

to gather 128 kB or 800 B from all seven nodes. The mean of the twenty-two 800 B transfer times were

used to model both ddet and dreq.

For comparison, the time taken to gather the groups in the in-situ data trace were calculated, simu-

lating what would happen if the on-line grouping algorithm was grouping data as it arrived at the sink,

rather than requesting it. To do this, the earliest detection time and latest arrival time of the detections

in each group were found. The results of the Lazy Grouping simulation and the latency from the normal

event stream are shown in Figure 6.12. The bars represent mean time taken to collect the data for the

group, with error bars representing the min and max times.

There is a clear improvement in the time taken to gather a group of data using Lazy Grouping.

The best improvement in data collection time is seen when collecting data for groups of five detections:

the average time goes from twenty seconds to five seconds, a reduction in latency of 75%. In general,

the trend indicated by both sides of Figure 6.12 is that larger clusters take longer to gather. This is

particularly notable in the non-Lazy Grouping simulation. However, the latency increase is most likely
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partially caused by a high frequency of detections being triggered and transferred during periods when

larger groups are likely to be formed. This is exactly the kind of situation that Lazy Grouping can

address, and it does so by ensuring that only useful data is sent.

6.3.3 Discussion

There is an implicit assumption in temporal grouping that time is the only important factor in deciding

whether a set of detected events constitute an actual marmot call (or other animal). However, it was

observed experimentally that other events such as rainfall and wind could cause false positives from

the event detector. A correlated false positive (where several nodes’ event detectors are triggered by a

non-marmot sound) could give the impression of a real event, even though the actual sound that caused

it was not the source of interest. A partial solution to this problem was discussed in Chapter 5, where

classification techniques could be used on-node to differentiate between actual marmot calls and false

positives. However, this may require increased processing power or operate with an additional delay,

especially when dealing with several detections triggered closely in time. By comparison, the temporal

grouping algorithm is relatively lightweight, with minimal processing. The amount of data required to

be sent to determine network wide events is also minimal.

Section 6.3.1 discussed Lazy Grouping, an algorithm to reduce latency and network traffic based

on gathering data from nodes after their detection notifications have been grouped based on temporal

correlation. The Lazy Grouping protocol adds an extra round of communication between sink and nodes,

first to send detections, and then request data, followed by the actual data transfer. In terms of network

traffic, the Lazy Grouping protocol requires that nodes send detection notifications (1 packet) instead

of raw data upon receiving detections. It also requires that the sink sends out a small (1 packet) data

request to every node that is part of the group for a given event. Nodes must also store the detected

events, rather than just sending them as they are detected. Each VoxNet node maintains a 10 second

ring buffer of data (see Chapter 5) from which the data can be queried and sent. It is likely that this

would suffice for normal operation, as detection events are likely to be requested soon after the detection

message has been sent to the sink (that is, within 1 or 2 seconds). The Lazy Grouping algorithm was

validated by two experimental simulations, one which showed how the amount of data needing to be sent

could be reduced, and the other showing how the time taken to gather data corresponding to a group

could be reduced. In a realistic deployment, it is expected that Lazy Grouping would significantly reduce

the amount of data transmitted over the network, and a marked difference in data transfer times would

be seen. Of course, latency will still be seen from data transfers during periods of wireless loss.

6.4 Adaptation policies

In Section 6.3 two principles were proposed to reduce end-to-end latency in the acoustic localisation

system. The first principle, to only send data when it is useful for the network’s overall aim, was

addressed by Lazy Grouping 6.3.1 on page 160. Section 6.4 addresses the second principle: to process

locally when it is advantageous to do so. It has already been shown in Section 6.2 that local processing

is a viable alternative to sending data over the network in some cases, but the difficulty is in predicting

when a node should process locally. Two policies to predict when local processing is advantageous have
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Figure 6.13: An example of how per-link ETX is aggregated to make path ETX. In this case, the path
ETX is greater than 2.5, so the Static Thresholding algorithm dictates the node should process the AML
algorithm locally.

been developed and implemented by the author: static thresholding and Dynamic Estimation, which are

described in the rest of Section 6.4.

6.4.1 Static Thresholding

The basis of the Static Thresholding policy is to use an empirically determined threshold (Section 6.2)

to aid a node in deciding when to process locally. It was previously observed that nodes between 2 and 3

three hops away from the sink would have been best suited to processing data locally. However, a node’s

hop count from the sink is an integer value, thus cannot represent a value between 2 and 3 hops. Instead,

this intermediate 2 to 3 hops value can be roughly equated to the Expected number of transmissions to

transmit one packet (ETX) (Couto et al. 2003). Using ETX in this way is reasonable because it gives an

indication of the number of packets that must be sent over a link in order for one packet to be successfully

received. The path ETX value is the sum of the ETX for each link in the path. An example is shown in

Figure 6.13. This is the same idea as the example given in Section 6.1.3, where if a node is three hops

away from the sink, it will take at least three transmitted packets for the packet to arrive.

Recalling that the original experimental observation was that a node should process locally if it was

between two and three hops from the sink, this could be equated to a minimum ETX value of 2.5.

VoxNet’s implementation of the DSR routing algorithm (described in Chapter 4) uses ETX to decide

the best routes in the network, thus the ETX value is available to nodes locally. The general Static

Thresholding policy that is evaluated by a node for each detection triggered is

if c(E) > τ , then process locally, Else send raw data to the sink.

where c(E) gives the current ETX value at a node, and τ is the ETX value representing the decision

threshold. The experimentation performed in Section 6.2 on page 157 indicated τ should be set to 2.5

(this value for τ is used in further evaluation in Section 7.1 on page 172.

Static Thresholding is a näıve approach to adaptation, in that does not take into account local queues

on the node for either outgoing data, or local AML processing queues. However, this approach does have

the advantage of being cheap in terms of required processing, as each node only requires knowledge of

their current path ETX, given by c(E). The value of 2.5 for τ is based on one set of experimental data

transfers in Section 7.1 on page 172 so is not necessarily representative of larger networks, different routing

topologies or networks that change routes over time. Therefore, it is expected that the threshold will not

be a decision indicator for local processing in general. A more generally suitable approach would be to
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dynamically estimate whether to process locally or not, based on parameters that can be measured about

the state of the network as it is running. A policy called Dynamic Estimation, which uses a dynamic

estimator based on recent network transfers is presented by the author in the remainder of Section 6.4.

6.4.2 Dynamic Estimation

Dynamic Estimation uses data that is available from the running system to make the choice to process

locally, based on the evaluation of a dynamic estimator. The dynamic estimator requires that a node

records the latency of all raw data transfers it makes: the latency of these previous transfers is used to

estimate how long the next transfer will take. The policy is as follows:

if taml · n(qaml) < ℓ̂(d) then the node should process locally

where taml is the time to taken process an AML locally on a node, n(qaml) is the number of raw detections

waiting to be processed locally and ℓ̂(d) is the estimated time that the transfer current detection will take

to send over the network ℓ(d), provided by a dynamic estimator function (discussed next). The reason

why only raw data transfers are used because they are the same size: using the information/log messages

may give an incorrect estimation of goodput because they are so small, and do not suffer the effects of

TCP and wireless loss to the same extent (see Section 6.1.2 on page 149).

Two different implementations of the dynamic estimator function to estimate ℓ(d) are presented in

Section 6.4.2: ℓ̂1(d) and ℓ̂2(d). Both of these implementations use the time taken for previous transfers to

predict the next transfer. ℓ̂1(d) uses a goodput measurement, which is the measure of useful data received

divided by the time taken to transmit. ℓ̂2(d) uses a pseudo-goodput measurement, which measures the

time elapsed from the detection being placed on the outgoing queue until it was received at the sink.

Both estimators for ℓ(d) determine their predictions as the amount of data that must be sent on the

path from node to sink, divided by the goodput (or pseudo-goodput) estimate, which is calculated from

previous transfers. The estimate of ℓ(d) using ℓ̂1(d) is

ℓ̂1(d) = n(qsend) · D/gk (6.5)

where n(qsend) is the number of detections queued to send (including the current detection), D is the

amount of data to be sent, and gk is the mean goodput of the last k transfers the node has made. The

amount of data to be sent D is given by

D = h · s(draw) (6.6)

where h is the number of hops the node is from the sink and s(draw) is the size (in kB) of a raw detection,

so that the forwarding of data over multiple hops is considered. The mean goodput gk is calculated from

the last k transfers on a per-node basis as

gk =
1

k

n
∑

i=x−k

Di

ti
(6.7)
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where x is the number of transfers sent so far, ti is the time taken for the ith transfer and Di is the total

amount of data that was sent over the sent over the path between node and sink for a given transfer, as in

Equation 6.6. This allows the node to use an arbitrary number of previous transfers to help in predicting

the time that the next transfer will take.

The pseudo-goodput estimate ℓ̂2(d) for ℓ(d) is

ℓ̂2(d) = D/pk (6.8)

where pk is the mean pseudo-goodput derived from the past k raw data transfers. The pseudo-goodput

differs from the mean goodput g in that it includes the time spent on the message queue qi. The mean

pseudo-goodput pk is

pk =
1

k

n
∑

i=x−k

Di

qi + ti
(6.9)

where qi is the time each detection spends on the message queue. The pseudo-goodput estimate ℓ̂2(d)

may be easier for the higher level system to determine, because qi + ti is determined by timestamping

when the data was queued to send and when the transfer was completed, rather than when the data

transmission actually began.

To allow the node to determine transfer times and evaluate the Adaptation policies locally, the sink

provides the global time at which it received the node’s transfer as part of the acknowledgement of

message reception. Static and Dynamic Estimation are evaluated in Section 7.1 on page 172, where the

in-situ and controlled experimentation performed at RMBL is augmented by controlled experiments using

the same VoxNet nodes at the University of California, Los Angeles.

6.5 Summary

This chapter identified the main sources of end-to-end latency in the marmot localisation system. These

sources were observed during an in-situ deployment of the system, as well as controlled experimentation,

in-situ and in a laboratory environment. These sources of latency were shown to be either node-based,

network-based or sink-based. In-situ observation of the system running established that network latency

was by far the biggest contributor to overall latency in the system.

Transmission of data over the network was identified as an expensive resource, which needed to be used

when it was necessary, rather than whenever possible. Based on this observation, the author proposed

two axioms to be met for reduction of end-to-end latency of position estimation—to only send data when

it is useful for the networks overall aim and to process locally when it is advantageous to do so.

To meet these axioms, two refinements and associated algorithms were presented: Lazy Grouping and

Adaptation. Lazy Grouping was used to stop unnecessary raw data from being sent over the network and

taking up valuable network bandwidth. This was achieved by requiring nodes to send small detection

notifications to the sink (rather than full raw detection data) which were grouped. Data was requested

only from nodes whose detections were part of a group. Simulation was used to evaluate both the

grouping and data collection aspects of Lazy Grouping, using a real-life data trace. A 64% reduction in

data transferred was observed, as well as a reduction in mean data collection time of 75% (five seconds
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Figure 6.14: The flow of events in the original system (left), with adaptation (middle) and with Lazy
Grouping (right) refinements.

versus twenty seconds on average for a group of five detections).

Two approaches to adaptation, static and Dynamic Estimation were presented. These are further

evaluated in Section 7.1 on page 172. Static Thresholding used an empirically derived, static measure of

when local processing was advantageous, and Dynamic Estimation used recently completed transfers of

raw data to predict how long the next transfer would take (and hence whether to process locally or not).

Figure 6.14 shows how the Lazy Grouping and Adaptation components could be embedded into the

original system flow (shown on the left of figure 6.14). The Lazy Grouping approach to data filtering

and collection (the far right column in Figure 6.14) conceptually replaces both the data transfer and

grouping components seen in the original system data flow. Whereas the flow of the original was one-way

(nodes transmit raw data to the sink), Lazy Grouping requires a more involved, two-way interaction:

nodes transfer detection notifications to the sink, which groups them. Subsequently, the sink sends data

collection requests to the node, which reply with the relevant raw data.

The data flow for Adaptation is still conceptually one-way, however it can be either raw data or

processed AML results which are sent by the node to the sink. Although the integration of these two

components is not discussed here, it is considered in Chapter 7, where the implications of integration are

considered, and a new data flow formed.

In Chapter 7, Adaptation is evaluated through the Static and Dynamic Thresholding algorithms

(including both ℓ̂1(d) and ℓ̂2(d) latency estimators for Dynamic Estimation).
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Chapter 7

Adaptation policy evaluation and

general results

Chapter 6 presented two refinements, Lazy Grouping and Adaptation, for reducing the latency of data

transfers in VoxNet based on application-specific information. Adaptation is the choice a node makes

(when it triggers an event detection) as to whether it should process the raw data corresponding to a

detection through the AML algorithm at the node, or send the raw detection data to the sink for AML

processing.

Two on-node policies for Adaptation were presented in Section 6.4 on page 166, where the choice of

where to carry out the data processing is based on an empirically derived static threshold or a dynamically

calculated latency estimate. This chapter presents the evaluation of these two Adaptation algorithms.

The evaluation was performed: (1) in simulation using data traces gathered from the VoxNet’s deployment

described in Chapter 5, (2) through controlled experiments performed in-situ and around the campus of

the University of California, Los Angeles (UCLA). Controlled, in-situ experimentation was necessary to

provide data traces that had environmental effects which are complex to simulate using theoretical models.

Simulation using these controlled data traces was sufficient to provide proof-of-concept validation.

Dynamic Estimation was found to improve the correctness of Adaptation decisions by up to 30% over

Static Thresholding. Dynamic Estimation has a further advantage over Static Thresholding in that the

estimators it uses predict the latency of data transfers. The accuracy of latency estimates produced by

the Dynamic Estimation policy’s latency estimators is adequate for the application at hand. However,

for general suitability, the estimators require further improvement.

The implications of integrating Lazy Grouping and Adaptation into the VoxNet system were consid-

ered. Several issues were raised regarding changes that would be required to Lazy Grouping, Adaptation

to allow co-existence, as well as the integration-related modifications that would be needed at applica-

tion and network level in VoxNet. The resulting data flow for marmot localisation is compared to other

high data-rate systems, and in particular to the Lance framework for data collection. VoxNet shares

some important characteristics with Lance, but also provides application specific dynamic processing

(Adaptation) which is not suitable for Lance’s generic approach.

The work presented in this chapter is a combination of practical experimentation, simulation and

emulation aimed at evaluating Adaptation in terms of its effect on latency of data transmissions as

part of on-line source localisation. The use of different experimental approaches enabled a thorough

and complete understanding of the core issue in this chapter, namely improving the timeliness of the
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end-to-end acoustic localisation system. The rest of this chapter is organised as follows: Section 7.1

describes the experimental work and simulation set-up used to evaluate the Adaptation policies, along

with analysis of the results. Section 7.2 discusses the integration of both Lazy Grouping and Adaptation

into the end-to-end acoustic localisation system. Sections 7.3 and 7.4 consider the generic elements of the

system with respect to other localisation applications and high data-rate systems, and finally Section 7.5

summarises the contributions of this chapter.

7.1 Evaluation of Adaptation policies

To evaluate the performance of the two Adaptation policies presented in Section 6.4 (Static Thresholding

and Dynamic Estimation), simulation was carried out using Matlab based on data traces gathered from

in-situ experimentation. Section 7.1 describes the approach used to gather the data traces, how they

were used in simulation, and the analysis of the results obtained.

The evaluation of the Adaptation policies through simulation had two goals. The first evaluation goal

was to compare the performance of Static Thresholding and Dynamic Estimation policies on the basis

of the correctness of their Adaptation choices. This is the only way the two policies could be compared

side-by-side, since the Static Thresholding policy was based on observations from a fixed local processing

time (for the AML) and a specific network topology.

The second evaluation goal was to determine the accuracy of the latency estimators ℓ̂1(d) and ℓ̂2(d)

used by the Dynamic Estimation policy (Accuracy refers to how closely the predicted and actual data

transfer latencies were). Accurate prediction of transfer latency allows the Dynamic Estimation policy

to be generally suitable in making local processing decisions where the local processing operation takes

an arbitrary amount of time. In addition to the latency prediction, the factors which could affect the

accuracy of the transfer latency predictions were also evaluated: the amount of previous transfers to use

in latency estimation, and the amount of time a local processing operation took.

This rest of Section 7.1 is divided into: the gathering of empirical data (Section 7.1.1), an outline of

the simulation process (Section 7.1.2) and analysis of the simulation results. The analysis of results is or-

ganised into: comparing the performance of Static Thresholding and Dynamic Estimation (Section 7.1.3),

the accuracy of the latency estimators (Section 7.1.4), the effects of varying previous data transfers on

latency estimates (Section 7.1.5), and the effects of varying local processing operation time of latency

estimates (Section 7.1.6).

7.1.1 Gathering of empirical data

In total, three data traces were gathered of which one came from live system operation, with real event

detectors running (taken at Rocky Mountain Biological Laboratory in 2007). The other traces were taken

from controlled outdoor and indoor experiments, where requests were sent to nodes to obtain data back,

emulating the effect of acoustic events occurring in the network.

All experiments used seven nodes, and a gateway with laptop attached to act as the sink. For each

experiment, the network topology was known, and consistent for the experimental period (shown in

Figure 7.1 on the facing page). Table 7.1 describes the data sets gathered. First, it should be noted

that the RMBL data set was different to the controlled data sets in that the size of the detections was
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Table 7.1: A description of the data sets gathered, including location, network topology and data source.

Experiment location Topology Data source Per-detection size

RMBL, CO, 2007 single-hop in-situ events 128 kB
Royce Hall, UCLA, 2008 dynamic multi-hop request plan 32 kB
CENS Lab, UCLA, 2008 fixed multi-hop request plan 32 kB
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Figure 7.1: The multi-hop routing trees used in experimentation. Note that the RMBL, CO experimen-
tation was single-hop, thus is not shown here.

larger (128 kB versus 32 kB) due to misconfiguration. Therefore, a direct comparison with a data set

where 32 kB detections were gathered may be misleading; the transfer latency was greater, as would

be expected. However, the analysis of this data set was included to allow for discussion on the general

suitability of Dynamic Estimation’s latency estimators ℓ̂1(d) and ℓ̂2(d).

Second, the multi-hop topology used in the CENS Laboratory was created by using MAC address

filtering at each node to enforce a particular multi-hop topology (that is the DSR component could only

find the particular multi-hop topology enforced).

Experiments at Royce Hall and the CENS Lab made use of the WSH mechanism which allowed data

requests to be sent to some or all of the nodes in the network, mimicking actual event occurrences (this

functionality was described in greater detail in Chapter 4). Modifications were made to allow the sending

of data requests to be automated, using a script denoted here as a request plan. This allowed for timings

to be inserted in between each data request (that is: send a request, then wait x seconds, then send

another), enabling repeatable request plans across different experiments. An example of a test plan is

shown in Figure 7.2.

Two request plans were used. In one, data requests took place at 1 second intervals, and in the

other, data requests took place at 5 second intervals. Both plans were logically divided into seven phases,

each consisting of 21 data requests. In each phase, an increasing number of nodes were requested to

simultaneously send data, starting with one node and ending with all seven. In each phase, each node

in the network was requested to send data an equal number of times, so that no particular node could

dominate the data set. A pause was inserted in between phases so that any delayed transfers could

complete before the next phase started. For all experiments (RMBL, Royce and Lab), the following data
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1000 send test nodes=112,113 size=32768

5000 send test nodes=100,103,104,108,109,112,113 size=32768

40000 send test nodes=100,103,104,108,109,112 size=32768

Figure 7.2: A few example lines from a request plan. The first field is the timeout (in milliseconds)
before the command is issued. send test tells the WSH to send the command over the network, nodes
describes which nodes should replay to the request, and size tells the node the amount of data to send
back.

were recorded for each raw data transfer between node and sink that took place, representing the data

trace:

• Node ID

• Event detection timestamp

• Detection arrival timestamp

• Timestamp when message was sent to outgoing queue

• Time taken to transmit data

• Detection data size

• ETX value when the detection data was queued to send

• Number of hops node was from sink

• Number of detection events in outgoing message queue

• Aggregate number of detection events in the network

These traces provided enough data to enable simulations of the Adaptation algorithms to be run off-line.

7.1.2 Simulation

The Static Thresholding algorithm was simulated by iterating through the list of data transfers, examining

the ETX value and recording the outcome of the policy evaluation (to process locally or not). To simulate

the Dynamic Estimation algorithm, the list of data transfers was copied into two lists: one sorted all the

transfer records by event detection timestamp (to simulate the order in which they were detected), and

the other sorted the transfer records by detection arrival timestamp (to simulate the order in which the

transfers were received at the sink). This meant that for any event detection record, it was possible to

determine all of the transfers that had occurred (for that particular node). Therefore, the k most recent

transfer latencies could be computed. For the simulation k = 3 was used, as it was found to be the best

trade-off between historical transfer latency and latency prediction accuracy across all data traces (this

will be further discussed in Section 7.1.5). As with the Static Thresholding simulation, the detection list

was iterated through, and for each data transfer record, both latency estimators ℓ̂1(d) and ℓ̂2(d) were

used to predict the transfer latency. Since the goal of the experimentation was to evaluate the accuracy
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of the latency estimators, it was not essential to include Lazy Grouping in the system or the concept of a

local processing queue in the policy evaluation. The local processing queue is important to consider when

addressing the integration of the Lazy Grouping protocol as a whole, which is discussed in Section 7.2.

It could also be argued that the decision to process locally means that the data transfer corresponding

to that detection would not be sent, and thus not used for historical data. In the simulation all transfers

are included. Selectively removing some transfers is difficult to simulate with an off-line data set, and is

more conducive to a real system test (as discussed in Section 7.2.3 on page 185). However, the factors

being considered by the experimentation are whether the latency estimators could predict correctly when

to adapt, and whether the estimation was accurate given the data supplied.

The rest of Section 7.1 analyses the simulation results, starting with the relative performance of the

Adaptation policies.

7.1.3 Performance of Adaptation policies

For each detection event that is triggered at a node, the goal of Adaptation is to correctly decide whether

it will take longer to process raw detection data locally or to send it to the sink. Therefore, the best way

to evaluate the Adaptation policies’ relative performance is to compare the processing choices made by

the algorithm with the choices that ensure minimum system latency (referred to as the correct choices).

The Static Thresholding policy decided to process locally if the ETX at the time of event detection was

exceeded the ETX value of the threshold τ (Section 6.4.1 on page 167). Based on experimentation in

Section 6.2 on page 157 the ETX value of τ was 2.5 (which can be considered to equate to between two

and three hops). The Dynamic Estimation policy chose to process locally if the estimated time taken to

transfer ℓ̂(d) was greater than the time taken to process the raw detection through the AML algorithm

locally taml (assuming no AML processing queues). In Section 4.5.4, taml was determined to be 2.2s.

Every choice made by a policy was classed as correct if it met one of the following criteria (otherwise it

was classed as incorrect);

• The decision is to adapt and the actual transfer time was greater than taml seconds (correct because

sending would have taken longer).

• The decision is not to adapt, and the actual transfer time was less than taml seconds (correct

because sending would have taken less time).

The choices for all of the transfers were recorded according to these criteria, and compared to what

would have been the correct choices (determined from the actual transfer latencies). It was expected

that the Dynamic Estimation policy would make a higher percentage of correct decisions than the Static

Thresholding policy because of it could potentially adapt to changes in network latency over time. Ta-

ble 7.2 on the following page shows the percentage of correct choices made by both algorithms. It should

be noted at this point that the ETX values (at time of sending) were not gathered in the RMBL ex-

perimentation, hence no results for Static Thresholding are reported. However, it is hypothesised that

ETX would not have been a good indicator of latency because the data size sent was different (128 kB

vs 32 kB) and the network topology was different (all nodes were one hop away from the sink). Link
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Table 7.2: The relative performance comparison between an ETX based decision point for Adaptation
and the ℓ̂1(d) and ℓ̂2(d) latency estimators. As previously discussed, the estimates were made using the
mean of the last three received transfers for each node.

Experiment ETX (%) ℓ̂1(d) (%) ℓ̂2(d) (%)

RMBL n/a 74.79 70.54
Royce 64.9 94.07 96.3
Lab 86.05 97.87 97.02

quality would have to have been low for ETX to exceed 2.5 (Static Thresholding’s Adaptation decision

threshold) for any of the nodes.

Both of ℓ̂1(d) and ℓ̂2(d) performed better than the ETX value used by Static Thresholding. In the

case of the Royce data set, the improvement is in excess of 30%. The Lab data set shows ℓ̂1(d) and ℓ̂2(d)

performing approximately 11% better than the Static Thresholding. The ETX value used to compare

against τ may not be suitable when there are items in a node’s local queue. This is because the ETX

represents the state of the network when the data was queued, not when it was actually sent. It is

certainly possible that the ETX would have changed when the node actually transmitted the data. To

test if queued ETX had an effect of the percentage of correct choices, only transfers initiated when a

node had no queued detections were evaluated using the ETX value. This resulted in a change of less

than 1% for both data sets (64.43% vs 64.9% for the Royce data set, 86.78% vs 86.05% for the Lab data),

showing that the effects were minimal.

From Table 7.2, there is clearly a difference in the latency estimator performance that is dependent

on the data set. For the ℓ̂1(d) and ℓ̂2(d) latency estimators, the correct choice percentage is high for both

Royce and Lab data sets (between 94% and 97%), but around 20–25% lower for the RMBL data. On

explanation for this may be the difference in detection data size for the RMBL experiments (128 kB for

RMBL as opposed to 32 kB for both Royce and Lab data sets).

These results confirmed the expectation that the Dynamic Estimation policy would perform better

than the Static Thresholding policy.

7.1.4 Accuracy of Dynamic Estimation latency estimators

Section 7.1.3 compared the relative performance of the two policies for Adaptation, Static Thresholding

and Dynamic Estimation. Whilst Static Thresholding’s adaptation evaluation was based on an empirical

threshold τ , Dynamic Estimation made the choice to process locally based on estimates provided by one

of two latency estimators: ℓ̂1(d) and ℓ̂2(d).

Section 7.1.4 examines the accuracy of both ℓ̂1(d) and ℓ̂2(d) in predicting the latency of raw data

transfers. The accuracy of latency estimates has a bearing on the generic suitability of Dynamic Esti-

mation. If the estimates provided by ℓ̂1(d) and ℓ̂2(d) are sufficiently accurate, the Dynamic Estimation

policy can be used to make Adaptation choices for arbitrary local processing times (rather than the spe-

cific taml). The metric Merr used to evaluate the accuracy of the latency estimates made by ℓ̂1(d) and
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Table 7.3: The accuracy of transfer latency prediction. The columns show the percentage of relative
error between estimated and observed latency, and each cell shows the percentage of predictions which
fell within that interval. For example, 67.71% of transfers were within 50% of the actual value for the
RMBL experiment.

% of estimates within error bound
Experiment ±50% error ±25% error ±10% error

RMBL (ℓ̂1(d)) 66.86 46.46 27.20

RMBL (ℓ̂2(d)) 67.71 49.01 28.33

Royce (ℓ̂1(d)) 70.99 43.99 16.91

Royce (ℓ̂2(d)) 75.88 47.76 18.75

Lab (ℓ̂1(d)) 89.54 62.67 28.40

Lab (ℓ̂2(d)) 90.14 63.52 28.66

ℓ̂2(d) compared to the actual transfer latencies ℓ(d) is given by

Mi,err = ((ℓ̂i(d) − ℓi(d))/ℓi(d)) · 100 (7.1)

where ℓ̂i(d) is the estimated latency (estimated by ℓ̂1(d) or ℓ̂2(d)) and ℓ(d) is the observed latency (from

Section 6.4). This metric describes the estimate ℓ̂i(d) as a percentage of the actual latency. If Mi,err

is positive, the error is an over-estimate, and an under-estimate if negative. This allows for comparison

of error across different latencies in a way that the absolute error would not be suited to. For example,

a prediction of 0.01s seconds when the actual latency was 0.10s is only 0.09s error, but a prediction of

1s when the latency was actually 10s shows a 9s error. Using Mi,err would show they have both been

under-estimated by 90% (-0.9).

The evaluation was performed as follows: the results of applying ℓ̂1(d) and ℓ̂2(d) to the all of the

detection transfer records in the RMBL, Royce and Lab data traces (as per the simulation in Section 7.1.2)

were used with the actual latencies for each transfer to calculate Mi,err. Table 7.3 shows the results across

each of the data traces (RMBL, Royce, Lab) with respect to three arbitrarily chosen accuracy bounds:

±50%, ±25% and ±10% of the actual latency. For each bound, the percentage of all latency estimates

for a given experiment that were within these bounds are shown. The specific bounds were chosen to

represent increasing degrees of accuracy: ±10% error in latency prediction could be considered accurate,

±25% considered moderately accurate and ±50% considered not particularly accurate.

Bearing these classifications in mind, the results in Table 7.3 do not show particularly accurate

performance. An ideal result for the latency estimators would be to have a large percentage of the data

transfers be classed as accurate (within ±10%) all of the time. However, for each of the three data traces,

the latency estimates provided by ℓ̂1(d) and ℓ̂2(d) were classed as accurate only 17%-29% of the time

(depending on experiment). In fact, the latency estimates are for RMBL and Royce are only classed as

not accurate (within ±50%) around 66%–75% of the time.

Overall, the accuracy of latency estimates was best for the Lab data set, where around 90% of all
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Figure 7.3: The trade-off of number of recent transfers to use in calculating the mean, for different data
sets. Those noted with (P) on the legend used ℓ̂2(d), others used ℓ̂1(d).

transfers were at least within ±50% of the actual latency (although this is still classed as not accurate).

The ℓ̂2(d) latency estimator shows better performance on the whole than the ℓ̂1(d) latency estimator,

although they are never further than 5% apart in the different error bounds categories.

There is a clear gap between expected and achieved accuracy for both of the latency estimators. This

has an effect on the general suitability of the estimators, particularly when considering arbitrary local

processing times, as discussed in Section 7.1.6.

7.1.5 Effects of varying transfer history on latency estimation

The optimal number of previous transfers to be considered for predicting the latency of the next transfer

was not immediately clear during initial simulation. To investigate this further, the Dynamic Estimation

policy latency estimators were tested for a varying number of previous transfers. Both ℓ̂2(d) and ℓ̂1(d)

were simulated with all data sets, using between one and twenty transfers in each latency estimate.

Figure 7.3 shows a graph of the number of transfers used in each latency estimate on the x axis versus

the percentage of estimates within the ±50% accuracy bound on the y axis (as discussed in Section 7.1.4).

The other error bounds (±25% and ±10%) showed similar trends, and are not presented here.

There is a drop in accuracy for the RMBL data set after 2 transfers used, indicating that using a small

amount of history is sufficient. However, the Lab data set seems to stabilise after 3 transfers used, and the

Royce data set continues to improve after as many as 8 previous transfers are used. The choice on how

many previous transfers is unclear on these data sets, but the use of 3 seems to be an adequate trade-off,

hence why this was used in the Dynamic Estimation policy simulation in Section 7.1.3 on page 175.

Interestingly, there is a definite difference in the benefit gained by using previous transfers between ℓ̂2(d)
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Figure 7.4: A graph showing different processing times vs correct percentage of Adaptation choices for
the three different experimental data traces used.

and ℓ̂1(d). In general, ℓ̂2(d) seems to show better performance when using more than one recent transfer,

most notably in the Royce data set, where it consistently outperforms ℓ̂1(d).

7.1.6 Effects of varying local processing time on correct choices

An important part of understanding the general suitability of the Dynamic Estimation policy is its per-

formance with respect to different on-node processing latencies (rather than just the previously observed

time to process the AML). To evaluate this, the Dynamic Estimation policy was simulated using the

RMBL, Royce and Lab data sets, with the ℓ̂2(d) latency estimator. For all transfers in all data sets,

twenty different local processing times were evaluated, ranging from 0.5s to 10.0s in 0.5s intervals. Be-

cause both latency estimators showed similar performance in the previous analyses, it was decided to use

only the ℓ̂2(d) latency estimator in this analysis (for ease of presenting and analysing results).

Figure 7.4 shows a graph of the total correct decisions made by the Dynamic Estimation policy for

each local processing time, and over each data trace. The x axis is local processing time and the y

axis is the total percentage of correct choices the policy made. For the Royce and Lab data sets in

Figure 7.4, Dynamic Estimation with the ℓ̂2(d) latency estimator never fell below 80% correct in making

Adaptation decisions. Both Royce and Lab data sets see an increase in correct decision percentages as

the local processing time increases. However, the RMBL data set shows a different pattern: the correct

choice percentage starts high and reduces dramatically around the 2–2.5 second mark. In order to better

understand the reason for the dip in correct Adaptation decision percentages, two bar graphs were plotted

for both the Royce and RMBL data sets, showing the breakdown of total correct choices by choice type:

either to process locally (adapt) or not (do not adapt). These are shown in Figure 7.5, where the x
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(a) Breakdown of correct choices for Royce data set
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(b) Breakdown of correct choices for RMBL data set

Figure 7.5: The relative breakdown of choices for each data set. Black shows correct decisions to adapt,
and white shows correct decisions not to adapt.

axis represents the processing time, in 0.5s intervals, and the y axis represents the percentage of correct

choices that Dynamic Estimation made with each latency estimator.

For the Royce data set in Figure 7.5(a), it can be seen that apart from the 0.5s local processing time,

the relative breakdown of correct choices is more in favour of not processing locally (and the correct

choice percentage increases as local processing time increases). This is because as the processing time

increases, the network’s latency is less than the local processing latency, hence more do not adapt choices

are made.

For the RMBL data set in Figure 7.5(b), the correct Adaptation decision percentages are entirely

dominated by choices to process locally between 0.5 and 1.5 seconds. As the local processing time

increases, the total percentage of correct Adaptation decisions decreases and more choices to not process

locally are seen. The total percentage of correct decisions is worst at 2.5 seconds, and increases gradually

from then on (where a similar trend to the Royce data set is seen).

Taking the median transfer times across all transfers in each data set reveals a potential cause for the

disparity in performance. The Royce data set and the Lab data set had median transfer latencies of 0.58s

and 0.55s respectively, whereas the Royce data set had a median transfer latency of 2.98s. This disparity

in median transfer latency was most likely caused by the different in raw detection data sizes that were

transferred (32 kB for Royce and Lab, 128 kB for RMBL). If these median times are compared to the

local processing times in Figure 7.4, it can be seen that the point at which each data set sees its worse

correct decision percentage is around the point at which the median transfer time is located.

This shows that the Dynamic Estimation policy gets the least correct decisions around the point at

which the median transfer time is roughly the same as the local processing time.

This makes sense based on the accuracy experiments: unless the latency estimators’ predictions are

accurate, they will perform worst at this point. It is be expected that a more accurate latency estimator
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would improve the percentage of correct choices when the median transfer time is roughly the same as

the local processing time.

7.1.7 Discussion

Section 7.1 has evaluated the Static Thresholding and Dynamic Estimation policies presented in Chapter

6. The aim of these policies is to help improve the end-to-end timeliness of the acoustic localisation system

by allowing nodes to decide whether to process locally or not, based on observed network conditions. The

first policy, Static Thresholding, used the ETX metric to decide whether a node should process locally

or not. The ETX value used as a threshold was based on the observation that a node should process

locally if it was between two and three hops from the sink. The second policy, Dynamic Estimation,

made the decision to process locally or not based on the predicted latency of the transfer. This predicted

latency was based on the recorded latency of previous transfers. Two separate latency estimators were

proposed and evaluated: ℓ̂1(d) and ℓ̂2(d). The evaluation of the policies was performed in simulation,

using data traces of network transfers gathered in-situ and through controlled laboratory experiments.

The Dynamic Estimation approach is applicable to more general use, as it could be used for arbitrary

data payload sizes, and arbitrary network sizes. This is because latency estimates are based on real data

transfers that occur in the network, and are size-adjusted depending on the current number of hops the

node is from the sink.

The latency estimators used in the Dynamic Estimation algorithm did not require direct consideration

of lower-level layer specifics, such as TCP performance under high traffic, loss and congestion, and variable

bit-rate transmissions. Instead, application level data was used: when a packet was sent (or queued to

be sent), and when it arrived, as well as the number of hops a node was from the sink. This data was

easier to gather and use in the latency estimators implemented.

In comparing the two Dynamic Estimation latency estimators, ℓ̂2(d) showed better accuracy at pre-

dicting transfer times over several data sets. It was also shown that the ℓ̂2(d) could work accurately

against a variety of local processing times.

A problem for the Dynamic Estimation latency estimators is a lack of historical data: if relatively few

transfers are made by each node, the latency predictions may not be accurate and therefore Adaptation

decisions may not be correct. In practise however, it would be expected that the system would see data

transfers until significant loss or congestion occurred, followed by periods of local processing, roughly

echoing the real-time network state.

Adaptation was one of two refinements presented by the author to reduce latency, thus improving

timeliness in the acoustic localisation system. The other refinement was Lazy Grouping which was

validated as a proof of concept in Section 6.3.1. In Section 7.2, Lazy Grouping and Adaptation are

considered in terms of their co-existence and integration in the acoustic localisation system. Potential

problems and implementation points are discussed, as well as the general applicability of the approach

used.

181



CHAPTER 7. ADAPTATION POLICY EVALUATION AND GENERAL RESULTS

Figure 7.6: The comparison of the original processing chain and the refined processing chain, including
both lazy grouping and Adaptation. The boxes indicate where the processing is taking place, followed
by what is happening.

7.2 Adaptive system data flow and integration

Having presented the Adaptation and Lazy Grouping algorithms and evaluated them in isolation, it is

important to understand how they would co-exist when integrated into the VoxNet system, and how the

event flow would subsequently be modified. A comparison between the event flow in the original and the

refined system (integrating both Lazy Grouping and Adaptation) is shown in Figure 7.6. The left hand

side shows the original processing chain, and the right hand side shows the processing chain with both

Lazy Grouping and Adaptation incorporated.

The refined system event flow is as follows (with reference to Figure 7.6): Nodes have detections

triggered locally in response to the acoustic event of interest (Node: Event detection). The notifications of

these events are sent to the sink (Network: Detection Notification Transfer), whilst the data corresponding

to the event is kept in a ring buffer, from where it can be queried out at any time by the sink, using the

node-specific sequence number to identify it. Upon receiving detection notifications, the sink attempts

to group them using the online grouping algorithm described in Chapter 6 (Sink: Temporal and Identity

Grouping). When it decides that there are enough events to process, it requests the data from nodes

(Sink: Data Collection). Upon receipt of the request, the node then evaluates the Adaptation policy

(Node: Evaluate Adaptation policy). If a node decides to process locally, it sends the result to the sink

when finished (Node: AML, Data Tx). Otherwise, it sends the raw data associated with the detection

(Data Tx, Sink: AML). When the sink receives an AML result back, it stores it in the record it holds for

the group. When it receives raw detection data, it processes the AML immediately (as it knows already

that the data is useful), and stores the result in the group record. The sink will not allow the group to

be processed through the localisation algorithm until all requested data has been gathered and processed

through the AML algorithm to produce DoA estimates. Following this, the AML results in the group are
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passed on to the data fusion algorithm, from which the position estimate is determined and displayed to

the user (Sink: AML Fusion, Sink: Position Estimate). Whilst conceptually the components fit together

in the system flow, it remains to be seen whether the refinements would together improve the end-to-end

latency or interfere with one another.

7.2.1 Integration issues

In order to enable the flow of this use-case, the system originally presented in Chapter 4 would need to be

changed. Due to VoxNet’s flexible architecture, both Lazy Grouping and Adaptation could be expressed

in Wavescript, the language that VoxNet uses to describe applications. However, some changes would be

necessary to lower level network components to support this.

In Wavescript, a program is defined as a directed graph, where data flow streams through processing

operators towards an endpoint (as discussed in Chapter 4). In the original system’s data flow graph

streams of detections made by multiple nodes in the network flow toward the sink, where they are

merged into a single stream, becoming a stream of AML results and then a stream of position estimates.

However, Lazy Grouping implies a more complex data flow graph where data flows from nodes to the

sink, then back out to the nodes, and back to the sink. In terms of a Wavescript program graph, the

flow could be described as follows (assuming the flow starts at the event detection operator on each

node): the output of the detection operator on each node is a stream of raw detections and a stream of

detection notifications. The stream of detection notifications flows through a network operator (flowing

to the sink). At the sink, the flows of detection notifications from each node are merged together by a

detection grouping operator, which produces a stream of grouped data requests. This flows through a

network operator, which pushes a stream of data requests to each node. The stream of data requests is

merged with the stream of raw detections at each node, at a data request operator. The operator outputs

a stream of raw detection data which passes through an Adaptation operator. The Adaptation operator

produces either a networked stream of detection data (flowing to the sink), or a stream of data which

passes through an AML operator, and then a network operator to the sink. At the sink, the incoming

detection flows (either raw or processed detections) are merged into groups by an Adaptation fusion

operator, which produces a stream of groups suitable for passing through the data fusion operator (to

produce position estimates).

The event flow graph for Lazy Grouping and Adaptation as described above can largely be supported

by application level implementation—Wavescript has existing support for event detection and network

sending and receiving operators, for example. The operators described in italics in the above description

can be expressed as user-defined Wavescript operators, the functionality of which is discussed below:

1. Detection grouping operator: collect all detections from nodes and merge them into a single

stream of data requests, which flows back out to all nodes.

2. Data request operator: merge raw detection stream with the data request stream coming from

the network, producing a stream of raw detections corresponding to the requests issued by the sink.

In this way, no items flow from the raw detections stream to the sink until a request for an item can

be merged with an item in the queue. This also implies that a policy would be required to evict
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data from the input buffer if it has not been merged for some time.

3. Adaptation operator: takes as input a stream of raw detections, internally making a call to a

lower level network function to get a prediction for a transfer. This produces either a stream of raw

detections or a stream of processed AML results. This requires the use of a switch operator, which

changes the path of the directed graph depending on evaluation of a switch condition—this type of

behaviour is already available in Wavescript.

4. Adaptation fusion operator: merge raw detections and AML results coming from the network

into correct groups to produce a stream of grouped, AML-processed data which can flow through

the data fusion operator (to produce a position estimate).

In addition to user-defined network operators to support Adaptation, VoxNet’s network stream layer

(which sits under the Wavescript program and above the data transport layer) would need to be modified

to record the time taken and data size for each transfer that had taken place. This change would be

implemented for both the sink side and node side. The sink would need to keep a record of all transfers

for all nodes, and each node would need to keep a record of its transfers to the sink (or the most

recent transfers). Additionally, on the sink-side, a change would have to be made for the underlying

stream mechanism, so that the sink sends back the time a transfer took as a field in the final data

acknowledgement message (as discussed in Chapter 6, Dynamic Estimation). This would enable both the

sink and node to track all transfers that have taken place. This transfer data would be made available

to the application layer by means of Wave Script’s foreign function interface. The function would query

the mean goodput of the last x transfers from the stream layer.

In summary, Lazy Grouping and Adaptation can theoretically be expressed as a Wavescript graph,

where most functionality can be implemented as user-defined operators to carry out the various tasks that

make up the algorithms. However, some support is required from the network layer, via modifications

to the networked stream layer. The next consideration for the refinements is how they may be improved

to enable a self-organising, adaptive network which can provide the output required by the user without

user intervention.

7.2.2 Further algorithmic refinements

Further refinements to both Adaptation and Lazy Grouping become apparent when considered in the

context of the system as a whole. Assigning priority to data collection, important run-time parameters,

data collection timeout and the data collection method are considered next.

In a network where many events are being triggered, a trade-off presents itself—is it more important

to keep up with current events (ignoring older data), or is it more important to make sure all data that

was requested gets collected? In the motivating end-to-end system use-case, timeliness is the goal—it is

important that the position estimates arrive in enough time that they can be acted upon. In this case,

the scientist may want to ignore events that have not been collected after 10 seconds, for example. In

general, the priority of data may have different meanings depending on the relative importance of certain

data to the application goal. Several examples are highlighted below, reflecting different data request

scheduling techniques that could be used under network load.
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• Stack: newest data requests are fulfilled first.

• Collection time: data requests could be ordered according to how long the sink estimates it will

take to gather all of the data.

• Size: data requests could be prioritised according to the size of the groups the sink has made—for

example, choose groups that have four observations before any others, or, always process the biggest

groups first.

• Queue with data age: oldest data requests are fulfilled first, but if the data age limit is reached

on outstanding data requests, they are cancelled.

The Dynamic Estimation latency estimates (made by either ℓ̂1(d) or ℓ̂2(d)) could be used to dynami-

cally calculate data age for each group created by the Lazy Grouping algorithm. The data age would be

determined as the largest predicted latency in a group. If the data has not been received by this time, the

sink would cancel the transfer of any data that had not yet been received and carry on with data fusion.

The user may also benefit from having control over the minimum and maximum number of detections per

group. This will affect how long it takes to gather all of the data for a position estimate. If it is assumed

that more observations equates to a higher accuracy position estimate, then latency may be traded off

with accuracy. This will have an effect on the timeliness.

The final adjustment proposed here is related to the data gathering approach. When the Lazy

Grouping algorithm has formed a group, it requests data from all of these nodes simultaneously. It may

make more sense to request data for a group on a node-by-node basis, or to at least stagger the requests.

This may help reduce channel contention, and therefore TCP congestion. However, this request method

was not evaluated, and is left for future work.

7.2.3 Discussion

Section 7.2 has highlighted some potential issues to be resolved when integrating Lazy Grouping and

Adaptation into the VoxNet system, and the further algorithmic improvements that could be made.

Some aspects have either not been evaluated in-situ, or have not been considered in the evaluation

presented in this thesis. The reasons for this are discussed below.

It is clear that further experimental work is need to evaluate the impact of integrating Lazy Group-

ing and Adaptation. However, experimental design to support this could be potentially difficult. In

Section 7.1, experimental data traces were used for evaluation. This allowed proof of concept simula-

tions to be carried out. However, performing in-situ evaluations of the proposed components is a more

complex task. The main problem lays with ensuring repeatability to allow for comparison between dif-

ferent approaches and integrated system versions. This is particularly problematic for the Adaptation

component, which makes decisions based on the dynamic nature of the network. The experimental plan

described in Section 7.1 on page 172 helps in terms of providing a repeatable simulated event generation

scheme, but does not account for differences in the network behaviour. Therefore a full evaluation of

the improvements proposed in this chapter require in-situ, parallel deployment of the respective system

iterations for long periods of time. However, in reality this is difficult, and seldom seen in real sensor
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network deployments, due to expense of equipment, and the physical difficulty of deploying two separate

networks. This evaluation is left for future work.

The work reported in Chapter 6 and evaluated in this chapter focused mainly on the latency effects

seen at the nodes in the network and their contribution to the end to end latency seen in estimating

position of acoustic sources. This view is not complete however, as it does not consider the factor of

sink-side processing. At the sink side, there are potential performance bottlenecks in the data fusion

algorithm that stem from how the search space is defined and the number of detections used. Because of

the comparatively limited local processing resources, the sink-side AML calculations are cheap compared

to on-node calculation. The localisation algorithm is slightly more expensive, as it requires a search space

to be defined in which the estimated position is expected to be (based on how the scientist has deployed

the network). As discussed in Chapter 5, this can potentially provide a bottleneck if the search space is

too large, or the resolution of the search space is too high. This will increase the end-to-end latency of

the localisation system.

7.3 Generic adaptive acoustic localisation

The system that has been designed, evaluated and refined in this thesis is fundamentally an event-based

system, exhibiting some level of adaptive/autonomous behaviour, rather than a basic sense and send

system. The adaptive aspects were designed into the system for two reasons: (1) the data load on the

network is too high to stream all of the data back to the sink over the network, and (2) the system is

intended to be used in an on-line manner meaning it is not sufficient to gather and archive data, but

also data must be processed whilst the system is running. Although the use-case presented to motivate

the acoustic localisation system was specific, the issues raised and addressed are more generic. Thus, the

marmot localisation application can be seen as an instantiation of a more generic acoustic localisation

system data flow. From this viewpoint, the generic flow of an end-to-end acoustic localisation system as

seen throughout this thesis is as follows:

1. Distributed acoustic event detection: events of interest are detected within the network

2. Event grouping: events of interest are grouped together according to certain criteria (for example,

time).

3. Data collection: data is selectively collected from the network, based on its relevance to the

overall application goal

4. Data fusion: relevant data is combined to provide the final observation

5. Information representation: the resulting observation is provided to the user in some form (such

as visualisation)

In the marmot localisation system, the on-node event detectors instantiated the event detection stage,

Lazy Grouping instantiated the event grouping and data collection stages, and the DoA-based pseudo-

likelihood localisation algorithm instantiated the data fusion and information representation stages.

If each of the above steps is viewed as a modular component in the application flow, then adapting

the flow to detect a different phenomena requires that the event detection component be substituted for a
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different one (Chapter 5 discussed the implications of different event detectors). The other components—

data grouping, data collection and data fusion would not need to be changed. However, other components

could feasibly be used, such as different localisation algorithms. For example, the data gathered for posi-

tion estimation might be time of flight distance measurements rather than angle of arrival measurements,

and localisation may be performed using multilateration, for example.

7.4 VoxNet and other high data-rate systems

The data flow presented for the marmot localisation application in Section 7.3 indicates a generic data

flow which can be used to describe a given on-line source localisation application.

In Section 2.3 on page 16, other high data-rate systems were surveyed. Like VoxNet, most of the

systems discussed were custom, application-specific implementations which needed to deal with the con-

straints high data-rate applications, but used mote-class devices.

Using constrained devices meant that only limited processing was available on each node. Hence, the

common characteristics with respect to on-node processing in the systems discussed were:

• Data filtering: send only useful data to the sink. This is manifested either in on-node event detection

or sink-based data collection.

• Data compression: intelligently compress data streams such that they can be transferred more

easily over the network.

The vast majority of data flows were linear, with the following pattern: data is sampled at the

node level, potentially filtered, compressed and then sent to a higher tier microserver or sink (for high

level inference). The only exception to this was the one formal, generic framework that was presented:

Lance (Werner-Allen et al. 2008).

Of all of the systems presented in Chapter 2, Lance is the most similar to the instantiation of VoxNet.

The authors of Lance recognised this fact, and indicated in their paper that the marmot localisation

application could indeed be described in the Lance framework (Werner-Allen et al. 2008). The authors

indicate that the event detector for the marmot localisation application could be implemented as a

triggered summarisation function, which is fundamentally different to the continuous summarisations

which the evaluated version of Lance uses.

However, VoxNet’s data flow can be likened to the data flow in Lance: event detections are summaries,

sent to the sink. The grouping algorithm in Lazy Grouping is a policy module which temporally correlates

incoming detections. The data collection protocol of Lazy Grouping is similar to the scheduler, in that

it sends requests when data is deemed to be useful. Whilst VoxNet does determine which data is useful

at both node and network level (event detections and groups respectively), the scheduling constraints

are slightly different. Lance is primarily configured to optimise the network lifetime, whereas VoxNet is

focused on end-to-end timeliness as the main goal. The Adaptation policies of Static Thresholding and

Dynamic Estimation were hence developed for VoxNet to support this.

Indeed, the feature which VoxNet provides that Lance does not is that of Adaptation: the ability for

a node to decide whether it should process a part of the data before sending. The reason Lance does

not cater for this component is Lance’s generality—the framework is primarily for data collection, not
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full application support. Hence, while VoxNet tries to optimise data transfer for end-to-end position

estimation latency by performing some of the processing locally, Lance cannot assume that users want

to do anything more than collect relevant data.

Like VoxNet, all of the other systems surveyed in Chapter 2 suggested either on node compression or

filtering as local processing operations: NetSHM discusses two modes of operation, raw data collection

and locally processed data collection. Similarly, VanGo offers a set of time-domain related filtering, event

detection and compression libraries. However, none of the systems discussed were individually adaptive in

their behaviour toward on-node processing: all nodes process one way or another. In fact, the authors of

VanGo noted that individual Adaptation had not been needed in their application experience (Greenstein

et al. 2006).

Therefore the contribution made by Adaptation is two-fold: the identification of a scenario where

Adaptation could actually be useful, and the instantiation of Adaptation for a real application. In the

specific marmot localisation application, only the AML algorithm was processed locally or at the sink.

However, this represents the application-specific instantiation. It could be envisaged that the dynamic

node-side processing component could be any application-specific data processing algorithm, rather than

an AML computation. Certainly, the Dynamic Estimation policy with its latency estimators would be

able to support this: all that is needed would be a profile of the time that the processing takes on a node.

It is of course noted that the hardware used for implementing VoxNet is considerably more capable

than the motes used in all of the other systems discussed above and in Section 2.3, apart from the Toad

Monitoring application (Hu et al. 2005). This actually strengthens a view that has been central to this

thesis: the device should not dictate the application functionality in the early stages of development,

but the application should. The toad monitoring application in particular holds testament to this:

the original system implementation was not hindered by mote capability, and was able to perform the

processing required by the application. However, when it came to transferring some of the processing to

motes, it became impossible to keep up with the required data rates, resulting in 60% of data being lost.

Subsequent solutions to this problem were unconvincing: scheduling sampling between nodes introduces

further complexity but reduces the amount of data that can be gathered.

7.4.1 Summary

Section 7.3 has presented a generic data flow for acoustic source localisation based on the original marmot

localisation application and the subsequent refinements to improve latency by gathering only useful data

and processing locally wherever possible. It has been argued that the processing flow originally defined

for on-line marmot localisation is potentially applicable to a variety of acoustic localisation applications.

An important contribution here is the identification of two behaviours which characterise high-data

rate applications: filtering behaviour and dynamic behaviour. These general behaviours can be used to

classify a wide range of application-specific approaches to high data-rate, potentially on-line applications.

Section 7.5 validates this by providing a comparison with two existing high-data rate frameworks and

identifying instances of both filtering and dynamic behaviour.
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7.5 Discussion

This chapter and the previous chapter have introduced and evaluated two significant contributions to

improving the robustness and timeliness of a marmot localisation application built using the VoxNet

platform: Lazy Grouping and Adaptation. The integration of these features into the original VoxNet

system has been considered in detail, along with the issues raised by their implementation and co-

existence. The evaluation of Lazy Grouping and Adaptation within the specific context of a marmot

localisation application has provided a revised data flow which could be used for a variety of on-line

acoustic localisation applications.

Whilst these contributions have improved the performance of the specific marmot localisation ap-

plication and given insight into general localisation applications and high data rate applications, it is

important to consider why they were implemented in the context of the application-centric view on the

WSN design space.

Chapter 2 introduced three different views on the WSN design space: the network-centric, the device-

centric and the application-centric. The design and development of the marmot localisation system was

deliberately approached from an application-centric viewpoint. This meant that the specific application

requirements defined the design and implementation of the system and dictated what components were

necessary for the system to operate. It was convenient to approach the system development from an

application-centric viewpoint given the computing resources available in the Acoustic ENSBox devices.

With VoxNet, it was not necessary to be overly concerned with the device-centric view, as the ENSBox V2

platform is a highly capable, microserver-class platform. The high-bandwidth 802.11b radio links used

by the V2 nodes provided their own problems (concerning bit-rates) when compared to low power fixed

bit-rate standards like 802.15.4. However, they provided a vastly superior bandwidth by comparison,

meaning large data files could be sent over the network at high rates using familiar TCP/IP services.

Only after the system was deployed and observed in-situ did the need for improvements related

to robustness and reduction of end-to-end latency become apparent. The observed application-specific

performance issues provided the motivation to implement adaptive, dynamic behaviour in the network.

From a network-centric view, one might ask whether the changes implemented were generally useful

for arbitrary WSNs. From a network-centric viewpoint, Adaptation is a distributed, in-network process-

ing solution. Adaptation allows individual nodes to dynamically react to changes they observe in the

network to minimise latency. However, the approach is not collaborative per se as nodes do not explic-

itly coordinate with one another to achieve this goal. In contrast, Lazy Grouping is not distributed: it

implements a centralised algorithm at the sink to coordinate data collection from nodes. From a network-

centric viewpoint, the Lazy Grouping approach to data collection is not scalable (in the network-centric

sense) as it has one point of failure (the sink) and will tend to put communication stress on nodes close

to the sink.

A fully distributed approach to Lazy Grouping could be taken by attempting to perform all of the

processing collaboratively, in the network, rather than relying on a centralised point to take care of

elements that require inputs from multiple nodes. However, this approach requires a drastic increase in

complexity: nodes would most likely have to form clusters and exchange observations to reach a consensus
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on whether an event has been detected before negotiating further processing, such as local AMLs and a

distributed version of the localisation algorithm.

It is not clear that this extra complexity would be required in this application specific case, or that it

would be quicker than the approach that was adopted in this thesis. Indeed, a fully distributed approached

to Lazy Grouping was not taken because it was not required when considering the application performance

and the amount of nodes available to experiment with. If the network were to scale, then it is possible

that a fully distributed approach might be needed.

Other desirable network-centric features were not considered because given the specifics of the marmot

localisation application and the amount of hardware available. For example, because the nodes were only

deployed for several hours at a time in attended deployments, energy management for network lifetime

was not a concern.

Issues of scalability cannot be completely ignored in the general class of localisation applications.

Instead, they should be considered from an application-centric context. Two reasons to scale an acoustic

sensing system (of which an acoustic localisation system is an example) are to increase density, or im-

prove coverage. Density is increased by deploying more nodes in a given area. This would be done to

provide redundancy (hence ensure full functionality in case of failure) or potentially increase accuracy (of

localisation estimates, for example) by adding more observations.

However, increasing the deployment density in a given area may provide a diminishing return, where

the decrease in available network bandwidth as more nodes are added means receiving an end-to-end

position estimate, for example, may actually end up taking longer. The implications of density and

coverage are more complicated than this scaling-based treatment would indicate, and are discussed further

in Chapter 8 as future work.

To summarise, the application-centric viewpoint was necessary to help identify the changes which

would not impact positively the system performance. It was only through real-life evaluation that these

observations could be made. Using embedded hardware that was not heavily resource constrained allowed

the application-specific changes to be evaluated without being clouded by other issues, such as energy

management.

The next chapter provides a conclusion to the thesis. The contributions presented by the thesis as a

whole are summarised, and the answers to the research questions presented in Chapter 1 are provided,

with appropriate conclusions.
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Conclusion

This chapter concludes the thesis. Firstly, the contributions of the thesis are listed. Secondly, answers to

the research questions posed in Chapter 1 are provided, including cross-references to where the associated

evidence is presented in the thesis. Next, future work is then discussed, and finally closing remarks are

presented.

8.1 Thesis overview

Both self-localisation and source-localisation in WSNs were examined in this thesis. The motivating

application was the source-localisation of marmots, which required: (1) accurate 3D node-localisation

to provide a frame of reference for the animal localisation and (2) some form of in-network processing

to filter the large amount of data that was generated so that it could be transferred over the wireless

network in a timely manner.

A key theme in this thesis has been the WSN design space, and in particular taking an application-

centric view on the WSN design space, where the application requirements are the primary influence on

the systems’ design. Chapter 2 discussed the advantages of taking an application-centric approach to

WSN design over network or device centric views. Having an application which provided realistic require-

ments and sufficient reason to develop in-network processing was vitally important to the development,

deployment, evaluation and refinement cycle which the system went through in this thesis.

The problems faced by the marmot localisation application are indicative of the issues faced by WSN-

based high data-rate systems in general.

8.2 Contributions

This thesis contributes both to acoustic-based self- and source-localisation. These contributions are listed

below, along with the chapter in which they appear.

The contributions to self-localisation are as follows:

• The establishment and justification of an evaluation cycle for self-localisation algorithms based on

simulation, emulation and deployment (Chapter 2).

• Experimental characterisation and evaluation of three acoustic ranging mechanisms and two locali-

sation algorithms on platforms with varying computational capabilities, in both indoor and outdoor

environments (Chapter 3).

• Implementation and evaluation of a proof-of-concept platform for acoustic ranging, including hard-

ware and software integration and implementation of a suitable ranging algorithm (Chapter 3).
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The contributions to source-localisation are as follows:

• Two designed, implemented and deployed iterations of an end-to-end, on-line, marmot localisation

system. This included in-situ deployment and micro-benchmarks of application specific and general

aspects of the system: on-node processing, on-node data archiving, data transfer reliability (Chapter

4).

• The identification and analysis of deployment-related systems issues that are not easily resolved

without in-situ operation (Chapter 5).

• The design, implementation and proof-of-concept evaluation of two refinements that increase robust-

ness and timeliness of the marmot localisation system—Adaptation and Lazy Grouping (Chapters

6 and 7).

These contributions emerged as part of the process of answering the research questions posed in

Chapter 1. Section 8.3 revisits these questions and answers them, providing supporting evidence.

8.3 Research questions

8.3.1 Can a class of WSN applications be identified which require 3D self-localisation?

Yes, a class of WSN applications which required 3D self-localisation are source localisation-motivated

applications where the sensor network is deployed over an irregular terrain to localise a target based on

characteristic signals it emits. This was discussed in Chapter 2. Source localisation applications were

a motivating application for self-localisation in this thesis: the source localisation application was the

localisation of marmots in their natural habitat.

8.3.2 Does the performance of existing 2D self-localisation algorithms change for these

applications?

Yes, the performance of algorithms normally used for 2D self-localisation can change for applications

requiring 3D localisation. This question was answered in Chapter 3, where lateration (a common primi-

tive calculation for position estimation) was tested using Mica2 motes that estimated range between one

another using a lightweight, but low-precision ranging mechanism. In 3D, lateration was found to be

sensitive to both reference point (anchor) placement and measurement noise (in range estimates). Inac-

curate range estimates we seen to produce error that was an order of magnitude greater than the actual

distance between devices. Self-localisation in 2D can be used to approximate over 3D environments, but

as the deployment surface becomes more irregular, the 2D approximation becomes a worse representation

of the actual positions (this was discussed in Chapter 3).

8.3.3 Are there design trade-offs which can ensure adequate 3D self-localisation perfor-

mance for a given application?

Yes, there are design trade-offs that can be made to ensure both adequate and accurate 3D self-

localisation. Localisation accuracy is largely affected by the accuracy of the input data: reference posi-

tions, range estimates and angle estimates, meaning that providing accurate input data gives a better
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chance of obtaining better positional estimates from the localisation algorithm. Therefore, the main

trade-off in localisation performance is accuracy versus platform and computation cost.

In Chapter 3, the evaluation of three acoustic ranging mechanisms of varying computational com-

plexity were presented on three different sensing platforms (with varying computational resources). It

was found that the constrained, generic, commercial WSN device (the Mica2) with a lightweight rang-

ing mechanism implementation provided inaccurate range estimation data, with an operational range of

around 10m, a low precision and was strongly effected by multipath and echoes in the environment. Con-

versely, a resource-rich, custom-made platform (the Acoustic ENSBox) could provide accurate ranging

with high precision (order of centimetres of error) and large operational range (at least 100m). However,

it required highly accurate time synchronisation, intensive signal processing, a powered speaker and mi-

crophone array to achieve this. A proof-of-concept sensing platform based on the Gumstix platform and

a ranging mechanism from the literature were implemented as a compromise between the accuracy of

the custom-made platform’s ranging mechanism and the lightweight ranging implementation used on the

generic WSN platform. In ranging experiments, the platform was found to be able to reach an operational

range of 30m with mean residual standard deviation of ±0.48cm (of samples taken at intervals over the

operational range).

8.3.4 How is the design and integration of an acoustic marmot localisation system affected

by real-time, interactive requirements?

In Chapter 4, two iterations of an on-line, interactive marmot localisation system were designed and

implemented. The system was required to present position estimates of marmots to the user in a timely

manner, so that they could interact. The localisation system’s data flow was based on an existing

localisation toolchain, used in an off-line context. In using these components in a source localisation

system required to be used on-line and interactively, four design considerations were needed that would

not be required for a purely off-line solution: (1) on-line event grouping, (2) reliable data transmission,

(3) on-line interaction, and (4) real-time, on-node data archiving. These are now discussed in more detail.

For on-line event grouping, it was necessary to implement a policy that logically grouped detected

events arriving at the sink (sent by nodes) such that they could be processed into position estimates in

a timely manner. Section 4.3.2 provided an implementation of this.

Reliable data transmission was as important to consider as timely data transmission. To support

reliable transmission, the network used a stream abstraction built on TCP to support applications running

over multiple network hops streaming detection data to the sink (Section 4.4.4 on page 110).

To support on-line interaction, it was necessary to develop a visualiser (to display position results) and

more importantly an interactive shell to allow the user to send commands to the nodes in the network,

determine the status of nodes and issue new programs. The Wavescope Shell (WSH) was developed to

support this, in Section 4.4.4 on page 112.

Real-time, on-node data archiving was important to support off-line analysis of data gathered during

in-situ experimentation, in addition to the real-time localisation provided by the system as a whole. This

was enabled through the spill to disk component, described in Section 4.4.4 on page 114.
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8.3.5 What are the user and deployment related challenges to be overcome to ensure

adoption of an end-to-end marmot localisation system?

As discussed in Chapter 5, the user and deployment related challenges that can help to ensure adoption

of an on-line marmot localisation system fall into three categories: (1) Application specific support, (2)

General support for on-line operation and (3) General support for off-line operation.

Application specific challenges were: correct grouping at the sink of incoming detection data from

nodes, identifying false detections, and the correct choice of localisation algorithm. The application-

specific challenges mainly related to the latency of data transfer, a factor which is important if the system

is to be fit for purpose (that is, allow observations to be made in a timely manner to help augment the

user’s notes during deployment).

General support for on-line and off-line operation included: data logging, stream priorities, and data

consolidation. In addition, specific user-interaction related challenges were raised: visualisation for arbi-

trary data streams (both on-line and off-line), intuitive data access (for off-line interaction), and automa-

tion for fault tolerance and robustness within the system.

8.3.6 How can in-network processing capabilities aid the robustness and timeliness of on-

line acoustic localisation?

Timeliness refers to the end-to-end latency between detecting events within the network to presenting

a position estimate to the user. Robustness refers to the ability of the network to dynamically adapt

to environmental changes in the network which are detrimental to the system timeliness. These include

changes in network connectivity and false detections (signals that trigger detections but are not created

by the source of interest).

In-network processing aided both the robustness and timeliness of the on-line acoustic localisation

system as an outcome of meeting two principles: (1) sending only data that is useful for the network’s

overall aim, and (2) only processing locally when it is advantageous to do so. Two approaches were

presented and evaluated in Chapters 6 and 7 to address these principles: Lazy Grouping and Adaptation.

Lazy Grouping is a centralised algorithm which runs at the sink and controls what detection data nodes

send to the sink, based on whether that data is useful or not. In this case, useful data are detections

that were triggered within a small period of time (0.44s) by three or more nodes. Simulation of Lazy

Grouping using a realistic data trace (Chapter 6) showed a 64% reduction in data transferred could be

achieved, preserving precious network bandwidth. A simulation of data collection showed it was possible

to reduce latency of collection of data by as much as 75% on average (five seconds vs twenty seconds to

collect five detections from five nodes).

Adaptation is a policy that runs on each node in the network. It decides whether a node should process

detection data locally and send the result to the sink, or pass the raw data to the sink for processing. The

policy decision is taken according to either a static or dynamic predictor. The static predictor provides

an empirically observed measure of estimated link quality—the ETX value. The dynamic predictor

estimates the predicted latency of a data transfer based on previous transfer latencies. Predicted latency

is calculated in one of two ways: the time taken since data was queued to send until it was received,

or the time taken since the data left the node and arrived at the sink. Simulation of the Adaptation
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policy for both Static Thresholding and Dynamic Estimation showed that Dynamic Estimation lead to

correct local or sink processing decisions 70–97% of the time, and the Static Thresholding lead to correct

decisions 65–85% of the time.

8.3.7 Are there data processing approaches used in the developed system that are shared

by a class of on-line, high data rate WSN systems?

Yes. The data processing approaches used in the developed system were (1) an on-line marmot event

detector (Chapters 2 and 4), (2) Lazy Grouping (Chapter 6), and (3) Adaptation (Chapters 6 and 7).

The on-line event detector, whilst not a contribution of this thesis, is an example of on-node data

filtering (or transformation) in order to reduce the amount of data sent over the network. Generally, on-

node data filtering is instantiated as data compression or event detection (or a combination of the two)

in several high data-rate systems, such as Wisden (Xu et al. 2004), NetSHM (Chintalapudi et al. 2006),

Toad Monitoring (Hu et al. 2005) and VanGo (Greenstein et al. 2006).

Lazy Grouping is an example of policy-based data collection, where data is collected according to

a certain policy. In Lazy Grouping, the policy was based upon the number of temporally correlated

detections. This data processing approach is also seen in Lance (Werner-Allen et al. 2008), a data

collection framework for high data-rate systems.

Adaptation is an example of data processing not seen in other high data-rate systems in the literature.

This type of data processing is on-node, dynamic data processing.

8.4 Future work

Several areas for future work have been identified: (1) characterisation and measurement (2) evaluation

of refinements, (3) a new iteration of the VoxNet platform (4) smarter sensing (including automated

census, echo detection and accuracy/density studies). Section 8.4 discusses these areas in detail.

8.4.1 Characterisation and measurement

The Gumstix platform presented in Chapter 3 was evaluated as a proof of concept to show that accurate

ranging was possible with a modest increase in processing resources compared to the Mica2. Hence, a

full evaluation of the platform was not necessary for the purposes of this thesis. If the platform were to

be used in an application, consideration would have to be given to 2D/3D localisation-based evaluation

as well as packaging.

Also in Chapter 3, experimentation was performed with the ENSBox V2 to determine if the speaker

block was causing obstructions that could affect AoA measurements. It was found to have a negligible

effect. A thorough characterisation of the AoA mechanism on the V2 ENSBox as per the V1 ENS-

Box (Girod 2005) was out of the scope of this thesis, but may be important for others using the V2

platform further.

Finally, the addition of a thermistor to compensate for temperature related changes in the speed

of sound on both the Gumstix and ENSBox V2 platforms would be desirable, although did not affect

the observations made in this thesis. A significant amount of research would be needed to determine

how accurate the compensation needs to be, related to the observed accuracy of the ranging or AoA

mechanisms.

195



CHAPTER 8. CONCLUSION

8.4.2 The VoxNet platform—a new iteration

When implementing the on-line source localisation system, a variety of issues related to timeliness of data

transfer became apparent. Two refinements where implemented to deal with this: Lazy Grouping and

Adaptation. Both refinements were implemented and their effectiveness evaluated in simulation (using

realistic data traces), as a proof of concept.

It was beyond the scope of the work in this thesis to produce a third iteration of the acoustic local-

isation system in order to evaluate the refinements, which is a significant undertaking (as discussed in

Chapter 7). However, the VoxNet project will undergo a third hardware and software iteration before its

completion, meaning that the changes presented here will be able to be integrated and evaluated.

Chapter 5 identified several aspects of VoxNet which were presented in design but not implemented

in the evaluated system. They were related to the post-deployment phases of VoxNet’s operation, where

data is consolidated, archived and made available for off-line processing:

1. A unified data consolidation mechanism for collecting raw, processed and log data from nodes (and

the control console) and archiving it post-deployment, for further off-line analysis.

2. Storage of said data in such a way that it can be easily and efficiently accessed.

3. Back-end and front-end support to query data from the archive and process it using VoxNet pro-

grams in an off-line manner.

These features were not a direct requirement of the motivating application (the on-line localisation of

marmots), hence it was beyond the scope of this thesis to implement these aspects of VoxNet. Aspects

of the functionality listed above will be developed as part of the VoxNet project as it continues.

8.4.3 Automated census

The work in this thesis resulted in an on-line, real-time acoustic source localisation of an animal (the

marmot). This enables the study of movement patterns and behaviour of animals and birds around

their natural habitat. When localisation is performed in an on-line manner, it allows new forms of user

interaction that are not possible when data is collected for off-line analysis only: a picture of the calling

animal can be taken (either automatically or manually) to augment observations, for example.

However, source localisation forms part of a larger goal for VoxNet: automated census of animals and

birds in their natural habitat (as noted in Chapter 2 and Chapter 5). Census involves estimating the

population of a certain species in an area. For automated acoustic census, it is important to be able to

detect a species of animal or bird, and differentiate between individuals within that species. For this,

localisation is potentially a tool that can be used to disambiguate simultaneous calls, or similar calls

coming from different physical locations.

Being able to automatically classify not only a species, but individuals within a species is an ongoing

research effort, both for VoxNet and other projects (Trifa et al. 2008).

Future work would expand the source localisation developed in this thesis to include classification,

potentially demonstrating the use of localisation-based disambiguation.
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8.4.4 Echo detection

In the off-line analysis of the data gathered in a deployment at Rocky Mountain Biological Laboratory

in 2006, Ali et al. (2007) identified a problem in their source localisation results where reverberations

appeared to cause correlated error in position estimation. The authors hypothesised that a single node

was the source of this error, and removed it from the calculations. Subsequently, the mean and standard

deviation of localisation results improved, validating the hypothesis.

This observation raises an interesting question: assuming the reverberence associated with immediate

environment surrounding a node can affect network-wide localisation results, is it possible for nodes to

automatically identify when they are in a reverberant position and take some form of remedial action?

An ideal solution in the context of automation would be if the node could autonomously determine

how reverberant its environment is, and assign itself some indicative value which represents a measure of

how reverberant the position it is placed in is. Then, for a given detection, its reverberance could be used

to weight the node’s contribution to a particular localisation computation. Similarly to the motivating

observation, the node may just vote itself out of a particular localisation computation.

Additionally, this could help the user during the deployment phase. Nodes could raise hints to the

scientist, that (1) the device placement may need to be reconsidered, or (2) using positions would induce

a level of uncertainty in the position estimates. The user could then reconsider how important the current

position of the node is compared to the uncertainty that it may introduce into a position estimate. It is

possible that a node could perform a reverberance measure using its own speaker and recording facilities.

It could record itself producing an acoustic signal, then look for echoes of the same signal, or even the

direction that the signal came from.

8.4.5 Accuracy and density

Following on from the quality of observations made by nodes, it is also possible that the accuracy of a

position estimate can be affected by how many node observations are used in the localisation computation.

Understanding and quantifying the trade-off between localisation accuracy and density of deployment

is an interesting area for future work given its implications for both deployment and in-situ interaction.

Chapter 7 alluded to accuracy and density in the context of their relevance from an application-related

standpoint. From a deployment standpoint, the implications of accuracy and density of deployments are

compelling: understanding how the density of a deployment affects the resulting localisation accuracy is

important to the system user, as it means the following questions can be posed:

1. What is the minimum number of nodes required to cover a given area to guarantee a certain

localisation accuracy?

2. Given a certain number of nodes and a required accuracy threshold, what is the maximum area

that can be covered?

3. What localisation accuracy can be expected from a given number of nodes over a given area?

4. Does increasing the density of nodes in an area increase the accuracy? If so, what is the limit of

this accuracy?
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Answers to these questions can help the user develop appropriate deployment strategies. It could

also help users zoom in on an area during deployment, potentially by reducing the density in a different

area (while perhaps still maintaining the same detection coverage). Common application deployment

requirements are that the system covers a certain geographical area, or achieve a certain level of accu-

racy. The amount of nodes available, or feasible to deploy may be small, so understanding the effect of

deployment density with respect to coverage and accuracy could be an important deployment-time hint

to the application domain user.

8.5 Final thoughts

Localisation has been an enduring research area for wireless sensor networks. It has yielded many theo-

retical studies, and an increasing number of realistic deployments. It is clear that there is still no one size

fits all solution to the localisation problem. It is the author’s opinion that the general solution will lie in

radio, as it previously has for the ubiquitous Global Positioning System. It is the only general solution

which will allow sensors to utilise the medium which is present in any wireless embedded system to per-

form localisation. An enduring problem which may be solved by wireless communication for localisation

based systems is dealing with Non Line-of-Sight conditions. UltraWide Band (UWB) solutions have

promised to, and still may, provide a realistic solution to localisation in highly obstructed environments.

However, it is not clear when transmitters and receivers will be widely available (due to the potential

interference UWB can cause on the frequency spectrum).

This observation in no way invalidates the work in this thesis: wireless localisation represents an

area still under research that cannot offer immediate, accurate solutions in the same way that acoustic

localisation can. This thesis has shown that sufficient processing power is required to create accurate

ranging, but that for applications where devices are performing acoustic, or other high data-rate sensing,

this is not necessarily a restriction. Therefore, for high data-rate sensing systems that require 2D or 3D

localisation up to several hundred metres, acoustic localisation provides a viable, accurate and immediate

solution.
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Glossary

ARM A 32-bit reduced instruction set architecture commonly used in embedded devices. 17, 58, 87,

108

beamforming A technique to combine multiple, co-located channels to increase the overall SNR of a

signal. 28, 29, 35

EmStar A software framework for writing WSN applications. 6, 53, 54, 84, 89, 95, 99–103, 107, 110,

111, 115, 116, 119, 120, 124, 127, 134

Gumstix A single board ARM-based embedded computer with a 32-bit CPU. v, 58, 59, 78, 88–93, 111,

114, 117, 193, 195

Independent Basic Service Set An ad-hoc network of 802.11 compliant devices. 101

lateration A technique to estimate position of an unknown target using range estimates from three or

more points with known location. 24, 28, 36, 39, 40, 43, 44, 59, 60, 63, 71–77, 79, 86, 91, 93, 102,

138, 187, 192

Mica2 An 8-bit microcontroller based platform, also referred to as a mote. v, 13, 14, 19, 24, 26, 35, 41,

58–63, 69–71, 76, 77, 79, 86, 88–93, 192, 193, 195

mote A generic term for describe small, resource constrained WSN platforms such as the Mica2. 9, 13,

17–19, 25, 26, 41, 60–62, 65, 66, 68–70, 72, 88, 187, 188, 192

Procrustes A set of techniques for shape analysis. 50, 85, 86

Pseudo-Independent Basic Service Set A version of Independent Basic Service Set which is specific

to the Prism2 chipset. 101, 115

Slauson A 32-bit ARM-based embedded platform. 77, 117

VoxNet A hardware and software platform for distributed acoustic sensing. 4–7, 95, 104–112, 114–116,

119–121, 123–130, 133, 134, 138–143, 145, 151, 152, 155, 166, 167, 169, 171, 182–185, 187–189, 195,

196

Wavescope A stream processing engine for high rate WSNs. 4, 7, 95, 106–110, 112–114, 116, 119, 120,

124, 140
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Glossary

Wavescript The language used to write Wavescope programs. 7, 105–109, 114, 117, 119, 120, 124, 126,

183, 184

x86 A complex instruction set for hardware architectures compatible with the Intel 8086 architecture.

99, 108, 119, 157
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Acronyms

ADC Analogue to Digital Converter. 60, 69

AML Approximated maximum likelihood. 29, 98, 99, 101–103, 108, 116, 119, 125, 131, 134, 135, 137–

141, 146, 147, 151, 157–162, 167, 168, 170–172, 175, 179, 182–184, 186, 188, 190

ANN Artificial Neural Network. 134

AoA Angle of Arrival. 23, 25–30, 33–35, 43–47, 79, 81, 82, 86, 137, 195

BAR Boundary Alignment Ratio. 50

bps bits per second. 155

CDF Cumulative Density Function. 66, 156

CENS Centre for Embedded Networked Sensing. 5–7, 103, 173

CF Compact Flash. 140

COTS Commercial Off The Shelf. 10, 58, 92, 93

CPU Central Processing Unit. 14, 59, 87, 95, 116–118, 120

dB decibel. 63, 92

dBi decibel isotropic. 156

DCT Discrete Cosine Transform. 134

DFT Discrete Fourier Transform. 29, 134

DoA Direction of arrival. 26–29, 43, 44, 78, 86, 87, 98, 99, 102, 119, 135, 182, 186

DSR Dynamic Source Routing. 7, 115, 128, 167, 173

DTN Delay Tolerant Networking. 112

ENSBox Embedded Networked Sensing Box. v, 6, 28, 32, 33, 35, 43, 44, 50, 58, 59, 77–79, 81, 82,

85–93, 98, 99, 101, 102, 114, 117, 119, 120, 124, 126, 134, 189, 193, 195

ETX Expected number of transmissions to transmit one packet. 167, 174–176, 181

EWMA Exponentially Weighted Moving Average. 32
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Acronyms

FFI Foreign Function Interface. 109, 112, 119

FFT Fast Fourier Transform. 31, 32

FPGA Field Programmable Gate Array. 17

FTSP Flooding Time Synchronisation Protocol. 12

FUSD Linux Framework for User-Space Devices. 100, 102

GB Gigabyte. 132

GDoP Geometric Dilution of Precision. 3, 38, 39, 44, 59, 74–77, 93

GER Global Energy Ratio. 49, 50, 84, 85

GHz Gigahertz. 34, 60, 119

GPS Global Positioning System. 1, 20, 24, 38, 40, 43, 58, 101

HMM Hidden Markov Model. 134

HTML Hypertext Markup Language. 103

HTTP Hypertest Transmission Protocol. 103

Hz Hertz. 2, 16, 34, 56

IBSS Independent Basic Service Set. 101

ICP Iterative Closest Points. 50

IP Internet Protocol. 101, 102, 110, 115, 118, 147, 149, 189

IPC Inter-Process Communication. 100, 109, 127

kB Kilobyte. 10, 58, 60, 93, 101, 102, 111, 117, 129, 133, 151–154, 156–159, 163, 165, 168, 173, 175, 176,

180

kbps Kilobits per second. 10, 60, 155

kHz Kilohertz. 3, 16, 17, 20, 34, 56, 60, 62, 69, 93, 101, 103, 114, 117, 132, 133

LAN Local Area Network. 115

LPC Linear Predictive Coding. 134

LS Least Squares. 21, 28, 79, 80
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Acronyms

LSS Least Squares Scaling. 41

MAC Media Access Control. 10, 153, 155, 173

MAE Mean Absolute Error. 49, 50, 84, 85

MaxE Maxium Error. 49, 84, 85

MB Megabyte. 14, 58, 78, 87, 88, 118, 119, 163

Mbps Megabits per second. 155

MD Mean Density. 52, 85

MDS Multi-Dimensional Scaling. 41, 44

MFCC Mel-Frequency Cepstral Coefficient. 134

MHz Megahertz. 60, 77, 87, 88

ML Maximum Likelihood. 21, 28, 29, 45, 46

MRR Mean Range Residual. 50, 85

MTU Maximum Transmission Unit. 157

NLLS Non-linear least squares. 43

NLOS Non-line of sight. 36

OS Operating System. 14

PCMCIA Personal Computer Memory Card International Association. 78

PLL Phase locked loop. 61

PN Pseudo-random noise. 34, 35, 90

RAM Random Access Memory. 58–60, 87, 88, 93, 119

RBS Reference Broadcast Synchronisation. 101, 115

RBSH Remote Broadcast Shell. 113

RF Radio Frequency. 23, 24, 26, 34

RMBL Rocky Mountain Biological Laboratory. 123, 124, 139, 155, 158, 162, 163, 165, 169, 172, 173,

175–180

RMS Root Mean Square. 49
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Acronyms

RSS Received Signal Strength. 23, 26

RSSI Received Signal Strength Indicator. 26

RToA Relative time of arrival. 23–25, 56, 58, 61–63, 69, 92

RTT Round trip time. 23, 25

SNR Signal to Noise Ratio. 35

TCP Transmission Control Protocol. 101, 102, 110–112, 116, 118, 140, 147, 149–151, 153, 155, 157, 158,

168, 181, 185, 189, 193

TDoA Time difference of arrival. 21, 23, 25, 27, 28, 33, 34, 44, 46, 47, 61

ToA Time of arrival. 23–25, 31–33, 44, 47, 58, 62, 79, 88, 90, 92

ToF Time of flight. 23–25, 30, 33, 35, 43, 58, 60, 61, 90

TWR Two-way ranging. 23, 25, 89, 92

TWTT Two-Way Time Transfer. 24

UDP User Datagram Protocol. 116, 151

WSH Wavescope Shell. 109, 112–114, 125, 131, 139, 152, 156, 173

WSN Wireless sensor network. vi, 1–5, 9–17, 19, 20, 24–26, 30, 35, 36, 39, 40, 45, 47, 48, 50, 52, 55, 57,

58, 60, 77, 78, 88, 95, 99, 100, 105, 120, 130, 133, 141, 145, 146, 189, 191–193
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