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Abstract

In recent years, Body Sensor Networks (BSNs) have been used as the basis of many systems aimed at
monitoring bodily parameters ranging from skin temperature, to breathing, to motion. These measure-
ments can then be used to generate additional information related to the monitored subject, such as for
heat stress prediction or fall detection.

This thesis is concerned with the design, development and realistic evaluation of a BSN-based end-to-
end posture classi�cation platform using on-body accelerometers. The work is motivated by applications
that require stable, sub-second, end-to-end classi�cation of postures, as well as dynamically con�gur-
able operation to support exploratory data collection. Classi�cation is performed on-node, thus redu-
cing the amount of data/information transmitted from the wearable nodes to a data sink. The work
is experimentally-led, and uses an application case study�on-body monitoring of Explosive Ordnance
Disposal (EOD) operatives�to provide context for system requirements and experimentation performed.

This thesis provides three main contributions:
First, the design of a platform that allows real-time on-body classi�cation of static and dynamic

postures�a capability not present in existing work. The speci�c posture set consists of six static pos-
tures (sitting, standing, kneeling, and lying on back, front and one side) and two dynamic postures
(walking and crawling), of which kneeling and crawling are not commonly considered in the literature.
Classi�cation is performed on a small, light embedded device using a simple easy-to-implement algorithm.
The classi�cation algorithm used is a C4.5 decision tree, with a temporal feature (windowed variance) to
aid in distinguishing dynamic and static postures. O�ine classi�cation accuracy is shown to be 96.3%
based on data gathered from subjects in a laboratory environment, and real-time on-node classi�cation
accuracy is shown to be comparable to this �gure (95.5%).

Second, further advance beyond the state of the art is presented through an investigation into pos-
ture transitions. Posture transitions cause transient (<1s) posture changes in the classi�er output and
are shown to reduce classi�er accuracy by 2% for every transition / minute for classi�ers not speci�c-
ally designed to handle transitions. Three posture �lters that remove such transient posture changes
are designed, implemented and tested on experimental data. The best performing �lter, Exponentially
Weighted Voting (EWV), is shown to reduce posture change events by 75.2% and increase accuracy by 1%
(over un�ltered results). Compared to streaming raw data, an event-based posture classi�cation system
is shown to reduce transmissions by 98.5% (66-fold reduction).

Finally, a broad investigation is presented into the e�ect of both system-related and training-process
factors on the accuracy of machine learning-based posture classi�ers. The factors analysed include i) tem-
poral and feature parameters, ii) sensor sampling rate, iii) number of sensors used, iv) posture class
aggregation and v) number of subjects used for training. Optimal parameters are determined for the
motivating EOD application, with a range of parameter values shown to guide development of other
classi�ers.

Through the novel contributions presented, this thesis provides a solid groundwork for further research
in BSN based posture classi�cation systems and simpli�es optimisation of machine-learning classi�ers for
speci�c posture classi�cation applications.
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Chapter 1

Introduction

In recent years, the increased availability of small, low power, high capability personal computing de-

vices and inexpensive miniaturised sensors has made non-intrusive pervasive sensing of people and their

environment a practical possibility. The provision of such capabilities has applications ranging from

workplace safety to healthcare to the military, based on diverse sensed parameters such as air pollutants,

worker activity level, or structural stresses.

This thesis is concerned with the use of machine learning for real-time postural activity classi�cation

based on acceleration data. Posture classi�cation determines the posture of the subject (assigning a

label such as �sitting� or �standing�), as opposed to motion capture which focuses on determining the

relative position of each segment of the body. The technology available to support real-time remote

posture monitoring has evolved over time: advances in micro-sensors have resulted in smaller and lighter

accelerometers [13, 115], the adoption of embedded computing into common household and personal

devices has driven the development of microcontrollers with high processing capability and low power draw

in small packages, and radio-based communication has replaced wired links in many applications [91]. In

combination, these technologies can form the basis of a compact and ubiquitous Body Sensor Network

(BSN) solution for human posture/activity monitoring [14, 74, 86, 116]. BSN-based systems using these

technologies have the advantage that the equipment required to capture motion or posture is much smaller

and lighter than other solutions, (such as video-based capture) and can be carried by the subject�

reducing the need for equipment to be installed in the subject’s environment. The use of radio-based

communication means that the subject is not tethered to a speci�c location, allowing for natural movement

and the ability to carry out tasks away from a monitoring base station. The ability to automatically

recognise posture can facilitate the provision of personalised computer-based support in areas such as

medicine [12, 63, 85, 93, 96], workplaces [81, 105], and sports [10, 79].

The goal of the work in this thesis is to demonstrate that posture classi�cation can be accurately

performed in real-time using a wearable monitoring system. Such postural information can be displayed

to an observer or used for further autonomous modelling/prediction. This is of particular bene�t where

1
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the monitored subject is required to work away from a support team in dangerous conditions, such as for

�re�ghters or some military applications. The work in this thesis, therefore, focuses on three main topics

or strands: 1) real-time on-body classi�cation of posture, 2) reducing the impact of posture transitions

on classi�er performance, and 3) an investigation of the design space and selection of optimal system

design parameters for posture classi�cation systems.

This chapter provides an overview of the motivation for the work and the methods used, structured as

follows: Section 1.1 provides a broad overview of the requirements common to the applications bene�ting

from posture monitoring. Section 1.2 presents and justi�es the case study that provides context for the

work in this thesis. Section 1.3 presents the research questions that drove the work. Section 1.4 details

the approach to research, data gathering and classi�er assessment methodology. Section 1.5 presents the

contributions to knowledge. Section 1.6 lists publications by the author resulting from the work presented

in this thesis. Section 1.7 acknowledges the contributed work. Finally, Section 1.8 describes the structure

of this thesis.

1.1 General requirements of posture/activity monitoring appli-

cations

This work focuses on real life applications as these provide concrete requirements and constraints to

guide the development of usable monitoring systems. Knowledge of posture is an important source of

information in a diverse range of applications, including health monitoring, work safety, dance, sports,

and video games. Speci�c applications within these categories include monitoring of patients undergoing

physical rehabilitation, detection of falls in elderly people, monitoring the activity of workers in dangerous

environments, and detecting deviation from daily routine. Section 2.1 on page 16 provides details of a

number of such applications.

Generally, a posture monitoring deployment has one of two goals: 1) observation, decision making,

and application of corrective actions, or 2) pro�ling of the subject’s routine over a period of time. Within

the health monitoring domain, for example:

� Long-term postural monitoring of patients with Parkinson’s disease can provide an indication of

the progression of the condition.

� Monitoring of patients undergoing an at-home physical rehabilitation regime can show whether they

are performing the recommended exercises and maintaining an appropriate level of general activity.
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Such applications have a set of generic requirements that are commonly applicable, a subset of which must

be met for each individual application. Requirements that are often speci�ed for posture classi�cation

applications are:

� The need for high accuracy. This is a fundamental requirement for posture classi�cation systems

targeted at any application. The classi�er accuracy should at least be as high as the state of the

art, which in related work appears to be around 90%.

� The need for a small, lightweight system that can be worn on the body. On-body systems have

become popular as they avoid the need to install monitoring equipment such as video cameras in

the subject’s environment. Considerations for unobtrusive wearable systems include the size and

weight of the on-body components, the quantity of cabling, and the method of a�xing sensors to

the body.

� The need to monitor subjects performing free-form activities in an environment such as a hospital

or the home. While some applications (monitoring patients undergoing physical rehabilitation for

example) may have relatively constrained or predictable activities, many other real-world deploy-

ments will not. When monitoring the daily activities of a subject, for example, such activities could

include any form of free movement, including static and dynamic postures along with transitions

between them.

� Provision of postural information in real-time. In general terms, this is motivated by the need to

provide timely input to another system or to monitor in real-time the evolution of a data stream.

The exact de�nition of real-time in terms of latency will be motivated by an application’s speci�c

needs. In this thesis, a real-time posture classi�cation system is de�ned as one in which the nominal

end-to-end latency of the system (including classi�cation and any wireless communication) is the

same order of magnitude as the sampling period. Transmission latency may increase due to external

in�uences (such as radio interference) but these are expected to be transient in most cases. (Note

that this is a soft real-time requirement as a delayed posture result is not catastrophic for the

class of applications considered here, but does degrade the usefulness of the postural information

delivered by the system.)

� On-body processing of sensor data in cases where 1) autonomous operation is required, or 2) battery

life is a�ected by the quantity of data transmitted. Police and �re�ghters, for example, are required

to work in areas where permanent monitoring equipment is not installed. In these applications, the
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Figure 1.1: Subject wearing an EOD suit while walking and kneeling. Reprinted from Kemp [66] with
permission.

subjects are mobile and are responding to events as they occur, meaning that communication with

a base station cannot necessarily be relied upon.

The case study application focused on in the work here is related to work safety, speci�cally the mon-

itoring of Explosive Ordnance Disposal (EOD) operatives during missions. The requirements of this

application include all �ve of those described above, meaning that development work towards designing

and implementing a system for EOD operative monitoring can feed back into the design of posture mon-

itoring systems targeted at other applications. In particular, the EOD application shares characteristics

with similar applications such as the monitoring of infantry or �re�ghters. Furthermore, the case study

application guides the data gathering and classi�er evaluation process through the de�ning of realistic

constraints and requirements. The EOD operative monitoring application is described in the next section.

1.2 Case study: posture classi�cation of EOD operatives during

missions

The speci�c application chosen to guide the constraints and requirements for this work was that of

monitoring the postures/activities of EOD operatives during missions.

Particular parallels between the EOD operative monitoring case study and the work here were: 1) the

typical postures and activities encountered during EOD missions map to the postures considered in this
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work and 2) operative health considerations (described later in this section) require the provision of real-

time on-body classi�cation of posture. As noted in the previous section, the EOD application guided the

data gathering and classi�er evaluation methodology design in Chapter 4, prompting the use of speci�c

activity routines for example.

The EOD application shares characteristics with a wider class of applications that includes monitoring

of personnel such as �re�ghters and infantry. The similarities between the EOD application and other

personnel monitoring applications include the use of protective clothing, the typical postures and activities

encountered (including some not typically found in healthcare related or daily activity monitoring), and

the need for real-time physiological monitoring due to the harsh environments that may be endured by

the monitored subject. While EOD operative monitoring is the case study application within this thesis,

the similarities to the applications in the wider class will allow the work here to be generalised and applied

to those applications.

During a typical mission, the EOD operative has to wear a protective suit and helmet (which together

weigh over 40 kg) and carry a tool box of equipment the 100 or so meters to the site. To reach the bomb’s

location and ful�l the mission, it may be necessary to climb stairs, crawl through passageways, kneel, use

specialist equipment, or lie down. Examples of a subject wearing an EOD suit are shown in Figure 1.1

on the preceding page.

Within the enclosed suit micro-climate, evaporative cooling through perspiration is less e�ective. This

can lead to Uncompensable Heat Stress (UHS), which occurs when the body cannot cool itself as fast as

heat is being generated due to muscular exercise [33, 75, 117]. The result of UHS is that core temperature

increases beyond the safe range, leading to health problems and potentially death.

An additional problem is that of potentially dangerous build-up of Carbon Dioxide (CO2) within the

EOD operative’s enclosed helmet�it has been shown that, even when below toxic levels, excessive inhaled

CO2 concentrations combined with high temperatures may lead to cognitive impairment [25]. Within the

helmet, the CO2 concentration can increase to as much as a factor of 60 over the ambient level.

The suit manufacturer’s solution to these hazards is to integrate a cooling system within the suit that

blows cooled air into the helmet and onto the operative’s back. In theory this serves the dual purposes

of reducing the temperature within the suit and the CO2 concentration within the helmet. However,

the cooling system’s battery life is not su�cient to last for the entire mission duration (performed in

segments of approximately 1 hour) if the operative sets the fan to a high speed and then performs no

other control adjustments. The operative is likely to do this as their primary concern during the mission

is on disabling the explosive device.
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Figure 1.2: Mean skin temperature against P (Tsk;u � TdjTsk;t) with Td = 36:5 � and chest cooling
applied. Curves are shown for individual activities and for an aggregate if activity information is not
known and all activities are equally likely. Reprinted from Kemp [66] with permission.

The Medusa2 system [66] provides a solution for e�ective cooling system control via automatic actua-

tion of the cooling fans based on sensors integrated within the EOD suit. Medusa2 senses skin temperature

at multiple locations and the CO2 concentration within the helmet. These measurements are used to

provide automatic control of the cooling via predictive modelling to determine the risk of UHS occurring

and to detect excessive CO2 concentration in the helmet.

A requirement of both the predictive health risk modelling and the air quality control implemented

within the Medusa2 system is the availability of real-time postural information. Figure 1.2 demonstrates

the impact of posture on the UHS risk prediction modelling performed by the Medusa2 system. It can

be seen that the probability of the future average skin temperature (that is, the skin temperature after

5 minutes) exceeding a critical threshold, Td, of 36.5 � varies for any given current skin temperature

based on the subject’s posture/activity. For example, if the subject is performing the �Weights� activity

then the risk is signi�cantly higher than for the �Treadmill� activity, particularly for skin temperatures

below 36 �. Knowledge of posture within the prediction algorithm thus not only allows potentially life-

saving warning of dangerous conditions but could also allow energy saving through providing a lower

level of cooling in some cases.

Two possible explanations for the demonstrated e�ect that posture has on heat stress risk are that

1) movement, such as walking, has a tendency to force air to circulate within the suit, whereas certain pos-

aa0682
Typewritten Text
This graph has been removed



CHAPTER 1. INTRODUCTION 7

tures such as kneeling will restrict circulation of air and 2) each activity has an associated level of energy

use, and thus heat production, within the body. Kemp [66] shows a similar posture-dependency when

investigating CO2 concentration within the EOD suit helmet. It is thus clear that postural information

is an essential parameter to enable accurate prediction of health risks such as UHS.

In generic terms, the EOD application is considered to be a good case study for the posture classi�-

cation research presented in this thesis as it has three traits that generalise well to other applications:

1. A need to classify both static (such as sitting) and dynamic (such as walking) postures while the

operative is performing free-form activities. The operative is not being instructed or constrained as

they would be in a laboratory environment. For example, they may kneel while also moving objects

out of their path or lie down while also inspecting a suspicious device.

2. A need for real-time operation. Real-time posture classi�cation is required as postural information

is supplied to an existing system (Medusa2) as an input to support modelling towards ensuring the

operative’s safety.

3. A need for local on-body processing. Classi�cation of posture must be performed on-body (rather

than utilising a more powerful base station computer) as 1) a radio link to the base station cannot be

guaranteed, due to environmental obstructions such as buildings and 2) the unpredictable latency

of wireless links impacts on the required real-time operation speci�ed in (2) above.

1.3 Research questions

The motivation for the work in this thesis is the development a real-time wearable BSN-based instrument

capable of classifying static and dynamic postures. As the instrument is targeted at a realistic application,

there are issues that must be considered that would not necessarily be encountered in a laboratory

environment or in a theoretical case study. The contributions in this thesis are largely around providing

solutions to these issues. The research questions answered in this thesis are:

1. Can the de�ned set of postures, namely sitting, kneeling, crawling, standing, walking, and lying on

front, back and one side, be accurately classi�ed in real-time using an on-body wearable sensor-based

system?

2. How do transitions between postures a�ect classi�er accuracy and can any negative impact be

reduced or eliminated?
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3. What is the design space for a posture classi�er targeted at speci�c application requirements?

These questions are described in more detail as follows:

1.3.1 Can the de�ned set of postures, namely sitting, kneeling, crawling,

standing, walking, and lying on front, back and one side, be accurately

classi�ed in real-time using an on-body wearable sensor-based system?

This question breaks down into two main sub-questions. First, can the given combination of static and

dynamic postures be classi�ed with a high accuracy? Second, can that classi�cation be performed in

real-time on a lightweight on-body device? These questions are addressed in Chapters 3 and 4.

1.3.2 How do transitions between postures a�ect classi�er accuracy and can

any negative impact be reduced or eliminated?

In the grammar of human movement, a postural transition separates two distinct postural phases, such

as sitting and standing. Posture classi�cation research has mostly ignored the problem of transitions,

however they are an important part of normal human movement and a successful classi�cation system

must therefore handle them as correctly as possible. Understanding and addressing the problem of

postural transitions is the subject of Chapter 5.

1.3.3 What is the design space for a posture classi�er targeted at speci�c

application requirements?

The term �design space� refers here to the parameters that must be chosen during the development of

a posture classi�er in order to ensure that it is capable of a high classi�cation accuracy. This question

thus breaks down into several sub-questions such as 1) how many sensors are required, 2) which data

feature best allows postures such as standing and walking to be distinguished, and so on. The factors

considered in the work here are: 1) extracted data feature choice, 2) data feature window size, 3) number

and location of on-body sensors, 4) training set size, 5) sampling rate, and 6) targeting of individual

postures. This investigation is described in Chapter 6.
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Figure 1.3: Overall structure of the work in this thesis, showing how each aspect contributed towards the
others.

1.4 Approach to research

Much of the discovery in this thesis was enabled by an iterative �prototyping-deployment-data analy-

sis� approach. This practical investigation took advantage of the driving application to provide realistic

constraints and requirements for the systems and algorithms developed. The experimentally-led investi-

gation meant that results found throughout the work could feed back into the development of the system

towards suitability for real-world deployments in the given application scenario.

Figure 1.3 summarises the overall structure of the work performed, along with the elements that

contributed to answering each of the research questions given in Section 1.3. The following subsections

describe the role of experimentation in the work performed (Section 1.4.1) and the role of iterations in
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the system prototyping (Section 1.4.2).

1.4.1 Experimentally led investigation

The work presented within this thesis is entirely experimentally focused. Data was gathered from human

subjects performing a series of experimental activity regimes by use of a prototype body sensing system

based on aspects of a posture classi�cation platform developed in the course of this work. The activity

regimes were de�ned based on the needs of the case study application, re�ecting the types of activities

that an EOD operative is expected to perform. The gathered data was used in training and testing

posture classi�ers and so it was important that data was gathered from enough subjects and that the

regimes were implemented consistently across trials. The �nal implemented software algorithms were

implemented on a system derived from the platform described in Chapter 3, forming a full end-to-end

classi�cation system. This allowed them to be experimentally evaluated to demonstrate the functionality

of the complete system and con�rm that the overall accuracy matched the results found during o�ine

testing.

A key aspect of this experimental work is to ensure that results are likely to match those that would

be found when the system is deployed. There are several elements to this:

1. The use of Leave-One-Subject-Out Cross-Validation (LOSOXV), described in Section 4.3 on page 61,

ensures that the estimated system performance is not speci�c to any group of human subjects. Hu-

man subject speci�city is a key problem in this domain. Ordinary strati�ed cross validation will

tend to overestimate the true performance on unseen human subjects and is thus inappropriate.

2. The experimental regimes are designed to be realistic and involve natural movements. Regimes are

further described in Section 4.4 on page 63.

3. Human subjects with a range of heights and body builds were used, as described in Section 4.6 on

page 67.

4. All the proposed algorithms were further evaluated through deployment on wearable hardware and

used in realistic scenarios involving tasked activities, as described in Sections 4.12 on page 76 and 5.5

on page 94.
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1.4.2 Iterative system prototyping

The investigations presented in this thesis required the implementation of a body sensing system for

data gathering purposes to enable the training and testing of posture classi�ers. Furthermore, the full

end-to-end posture classi�cation platform required evaluation through implementation as a prototype

on-body system. This led to an iterative approach to prototyping, starting with a system focused on

gathering the needed data and progressing through iterations as new features and software algorithms were

implemented over the course of the work. This progression allowed the real-time testing and evaluation

of the algorithms.

The hardware and software forming the basis for the prototype instrumentation system are described

in Chapters 3 and 4, with further hardware details in Appendix A.

1.5 Contributions to knowledge

In answering the research questions listed in Section 1.3, this thesis provides several contributions to

knowledge, as follows:

� The design of a platform that allows real-time on-body classi�cation of static and dynamic postures�

a capability not present in existing work. The speci�c posture set consists of six static postures

(sitting, standing, kneeling, and lying on back, front and one side) and two dynamic postures (walk-

ing and crawling), of which kneeling and crawling are not commonly considered in the literature.

Classi�cation is performed on a small, light embedded device using a simple easy-to-implement algo-

rithm. The classi�cation algorithm used is a C4.5 decision tree, with a temporal feature (windowed

variance) to aid in distinguishing dynamic and static postures. This contribution is presented in

the work in Chapters 3 and 4.

� The design and implementation of several posture �lters to prevent rapid (>1 Hz) classi�er output

changes during posture transitions. The impact of transitions is often not considered in the posture

classi�cation literature, as described in Section 2.5. The �lters are evaluated in terms of their e�ect

on 1) classi�cation accuracy and 2) the number of posture change events generated. They provide

a solution to handling postural transitions targeted at the case-study scenario but is also applicable

more generally. This contribution is presented in Chapter 5.

� An evaluation of factors that a�ect posture classi�cation accuracy in a deployed system. The fac-

tors considered are: 1) extracted data feature choice, 2) feature window size, 3) number of sensors,
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4) training set size, 5) sampling rate, and 6) targeting of individual postures. A methodical investi-

gation of parameters such as this is absent in the existing literature. Where investigation is present,

it focuses on a subset of the factors and presents results speci�c to the system implementation used

(an overview of existing investigation is given in Section 2.4). Optimal parameters are selected for

the application scenario targeted here, but the results and discussion provide more general applica-

bility for similar decision tree based posture classi�cation systems. This investigation is presented

in Chapter 6.

1.6 Publications resulting from this work
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thesis and presented the research questions and the resulting contributions. Chapter 2 provides a review

of the literature surrounding posture classi�cation applications and techniques. Chapter 3 describes the

design of a real-time end-to-end posture classi�cation platform along with two example usage scenarios

and an implementation used for algorithm evaluation in this work. Chapter 4 presents the algorithm

selected for posture classi�cation, describes the data gathering methodology supporting the investigations

in this work, and assesses the suitability of the generated classi�ers for the case study application.

Chapter 5 provides an investigation into the e�ect of transitions and demonstrates the method of handling

them chosen here. Chapter 6 presents an investigation into the design space for a supervised machine

learning based posture classi�er, with a focus on C4.5 decision trees. Finally, Chapter 7 concludes on the

work and provides the answers to the research questions outlined in Section 1.3.



Chapter 2

Literature Review

The work in this thesis addresses problems encountered when designing and deploying BSN-based posture

classi�cation systems in realistic (real-life) application scenarios. This chapter thus provides a discussion

of the literature in four main areas: 1) existing applications of BSN-based posture classi�cation, 2) the

hardware platforms used and end-to-end posture classi�cation systems developed, 3) data processing and

the system design space for posture classi�cation algorithms, and 4) methods of approaching the real-life

issue of transitions between postures.

The aim of the literature review is to inform the thesis work, provide background and support for the

developments proposed by the author and reveal the gaps in knowledge and practice in the �eld. Thus,

the literature is drawn on as follows:

� Chapter 3: primarily, the review demonstrates that wearable systems capable of performing real-

time on-node posture classi�cation are not found in published works. Furthermore, posture classi-

�cation for the application class including military and emergency personnel such as infantry and

�re�ghters does not have a large body of published work available. Finally, the review aided in

determining the common requirements and constraints imposed on BSN-based posture classi�cation

systems.

� Chapter 4: the review establishes a view of the common classi�er algorithms used in the literature,

thus informing the author’s choices. The review also examines issues surrounding data gathering

and reporting on classi�er training and testing.

� Chapter 5: the review reveals a gap in existing works regarding the handling of transitions in

applications faced with natural movement.

� Chapter 6: the review informs the investigation of the design space for on-body posture classi�cation

systems. Particularly it highlights the range of system parameters used in prior work.

This chapter is structured as follows. Section 2.1 provides an overview of applications that bene�t from

or require posture monitoring. Section 2.2 looks into BSN wearability. Section 2.3 presents an overview

15
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of the BSN platforms that have been used for building posture classi�cation systems and investigates the

choices of system parameters such as sensor positioning. Section 2.4 describes data processing techniques

and posture classi�cation algorithms used in the literature as gives an overview of the posture classi�cation

system design space. Finally, Section 2.5 describes the techniques used to classify or otherwise handle

posture transitions.

2.1 Applications of posture and activity monitoring

High accuracy, autonomous, easy-to-wear, real-time BSNs for posture classi�cation can bene�t a number

of scenarios in healthcare, leisure activities, and the workplace. The variety of systems and applications

reported in the literature shows that posture monitoring is a relatively well covered research subject with

a number of branches and applications from classi�cation of daily activities [14, 42, 43, 79] to rehabilita-

tion [125] to real time movement recognition for martial arts [54] and manufacturing environments [111].

This section aims to give a broad overview of the types of applications targeted in the literature,

along with the requirements and constraints associated with them. The applications have been broadly

categorised as: daily activities, dance and sport, virtual reality, healthcare, fall detection, and work-

related. The issue of wearability of on-body systems is also discussed.

2.1.1 Daily activities

A common target application in the posture and activity classi�cation domain is that of monitoring

everyday activities. This is a broad application area, potentially encompassing all activities that are

possible for a subject to perform in their day-to-day life. As such, the requirements and constraints

placed on BSNs for this applications tend to be relatively generic, for example focusing on the use of

small lightweight components. Often the primary goal of the research work is to show that the activities

can be classi�ed, and this is investigated using an o�ine classi�er rather than producing a deployable

real-time system. The large amount of freedom of movement and the unpredictable behaviour of humans

make classi�cation of daily activities a challenging goal.

The activities considered are generally taken from one of three main groups: activities within the

home, leisure/�tness activities outside of the home, and o�ce activities. Bao and Intille [14], for example,

developed a classi�er targeting twenty di�erent home and leisure activities including walking, sitting while

folding laundry, bicycling, and vacuuming. Huynh et al. [56] also focused on home activities, drawing a

di�erence between low-level activities (such as walking, sitting, standing, eating, and washing dishes�
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usually lasting up to several minutes) and high-level activities (such as cleaning the house�composed of

multiple low-level activities and lasting as long as a few hours). Bharatula et al. [18] presented a system

aimed at classifying daily o�ce activities such as fast typing on a keyboard, moving a computer mouse,

writing on a whiteboard, and opening a cupboard.

The system developed by Pansiot et al. [96] integrates an ear-worn activity recognition sensor (e-AR,

which senses tilt and movement frequency spectrum) and ambient blob sensors that process a video

signal to identify blobs or silhouettes and their motion based on optical �ow. The system is capable of

di�erentiating between sitting, sitting (sofa), standing, standing (head tilted), reading, eating, lounging,

walking, and lying down. Although Pansiot’s proposed system can be installed in a home environment,

it is not suitable for deployment in situations where the subject would move to other unplanned locations

due to the dependency on the subject being visible to the blob sensor. This problem motivates the bene�ts

of developing systems that consist only of body-worn sensors: to enable mobility and functionality in an

unconstrained environment.

Tapia [116] considered three activity categories: 1) static postures (such as lying down, standing, and

sitting), 2) activities with multiple intensities (such as walking, rowing/arm ergometry, and cycling), and

3) other activities (such as running, calisthenics, and moving weights). Similarly, Ermes [42] targeted a

mixture of indoor activities (such as lying, working on a computer, and standing reading a paper) and

outdoor activities (such as playing football, running, rowing, and cycling). Data processing and postural

information extraction is performed o�ine (rather than in real time during use of the system) which

is common in studies/research in this domain, although Ermes suggests real-time operation as a future

direction.

Laerhoven et al. [74] expanded on classi�cation of daily activities by introducing a rhythm model that

captures the user’s normal daily pattern of behaviour. Activities included having breakfast, relaxing in

the sauna, and watching TV. The rhythm model allows the system to perform classi�cation of otherwise

ambiguous sensor data. An example given in the work is of a user who gives a lecture every Tuesday

afternoon. If the result of activity classi�cation was inconclusive at that time then the rhythm model

could improve the estimate.

To summarise, the primary motivation in this application area is the classi�cation of a large number of

postures and activities. The focus is on the performance of the classi�er itself rather than on a deployable,

real-time classi�cation system.
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2.1.2 Dance and sports

Dance and sport often employ motion caption systems to either 1) provide an interactive output based on

the subject’s movements or 2) provide feedback as to whether speci�c movements have been performed

correctly (usually compared against a professional performing the same movements).

Bellis et al. [16] and Lynch et al. [83] designed wearable systems for an interactive dance environment.

Bellis et al. present a node design based on stackable 25 mm boards, each ful�lling a speci�c purpose

(such as sensing, power, and processing). Their aim was to produce small, modular, wireless devices with

integrated signal processing to allow the implementation of data processing algorithms to reduce data

transmission. Lynch et al. extend the concept put forth by Bellis et al., designing wireless nodes based

around 10 mm cubes incorporating the same capabilities as the 25 mm system. The primary consideration

is further reduction in size. The inclusion of wireless communication is presented as an advantage as it

avoids tethering the nodes (and thus subject) to a �xed location. They suggest that these same goals

would also make the nodes suitable for site monitoring deployments in industrial plants.

Another system based around motion capture, is that developed by Young et al. [128] (also described

by Arvind et al. [6]). This system is based on the Orient inertial sensor device which is dedicated to

motion capture in fast-movement applications. An on-body network of �fteen devices are used to capture

full body 3D movement in real time, which is translated into a real-time 3D model of the subject’s

motion using a rigid-body model. The on-body devices were designed with the goal of small size and

low weight to increase the wearability, with wireless communication to allow the subject to move freely.

Orientation estimates are calculated by each node in order to reduce the bandwidth requirements of the

wireless communication links. The intended battery life is 1�2 hours to accommodate stage performance

or multiple shorter takes in an animation studio.

For these systems it can be seen that the provision of small, light, wireless nodes is important to

support the application in an unconstrained environment. They increase the wearability of the system,

minimise deployment time, and allow the subject to move freely while wearing the system. Further, given

the high sampling rates and potentially large number of sensors in motion capture applications, on-node

data processing is used to reduce the bandwidth requirements.

2.1.3 Healthcare

Many examples of systems for posture classi�cation exist in the patient care application area. Monitoring

of patients undergoing physical rehabilitation is a common application, as the information required for

assessment of progress is primarily motion-based. Other applications involve monitoring the status of
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Table 2.1: Targeted postures and activities in a sample of healthcare related literature.

Authors Application Targeted postures/activities

Long et al. [79] Healthy life styles Walking, running, cycling, driving, and
various sports

Pansiot et al. [96] Monitoring elderly
people

Walking, standing, reading, eating,
sitting, lounging, lying down

Ying et al. [127] Monitoring of people
with Parkinson’s
disease

Step detection

Motoi et al. [93] Rehabilitation Walking speed, posture changes

Mathie and Celler [85] Patients with
congestive heart
failure or COPD

Walking, falling, sit-to-stand, sit-to-lie,
standing, sitting, and lying on back,
front, and side

Zhang et al. [129] Monitoring of
correct posture

Sitting (back arched, leaning right,
leaning left, normal), standing (upright,
leaning forward), lying (right side, on
back, face down)

Steele et al. [110] Patients with COPD Walking

patients with conditions that either impair their movement or cause involuntary movement. Continuous

monitoring of patients at home is another important application area. Mathie et al. [85] point out that

monitoring a patient at home allows early detection and treatment of health status changes and that

�when monitoring the condition of patients with neurodegenerative or chronic diseases, a knowledge of

their body movement and physical activity levels during the day is important�. Table 2.1 gives a sample

of common applications and targeted postures/activities in the literature, where it can be seen that the

applications are broadly split into two categories: those that require classi�cation of a wide range of daily

activities and those that require classi�cation of a speci�c subset.

Ying et al. [127] implemented a system that provides automatic step detection for patients with

Parkinson’s disease. The system implemented consisted of two dual axis accelerometers mounted on

the patients’ feet. Other work by Bamberg et al. [12] describes a wireless system for performing gait

analysis (pattern of movement during locomotion). The platform includes two dual-axis accelerometers,

three gyroscopes, four force sensors, and two bidirectional bend sensors integrated into a shoe. While

their system was mounted within a shoe, one of the requirements was that it should not a�ect the gait

of the subject. They present their system as an alternative to current methods of gait analysis. Gait

analysis is generally carried out in a motion laboratory using expensive computer-based force and optical

tracking sensors that must be attached to the patient or via visual observation by a clinician wherein the
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results are qualitative, unreliable, and di�cult to compare across multiple visits. Their system provides

repeatable quantitative results for longer periods of monitoring and allows gathering of data from subjects

in their home (it is noted that patients often perform better in laboratory tests than in their �natural�

environment, making such tests unreliable indicators of status).

Jovanov et al. [63] developed the ActiS sensor node, designed to be used as part of a wireless Body Area

Network (BAN). This node incorporates a bio-ampli�er and two accelerometers, allowing the monitoring

of heart activity as well as the position and activity of body segments. The main focus is the node’s use

for monitoring the activity of physiotherapy patients outside of the laboratory. Jovanov et al. describe

in depth the limitations of existing monitoring systems and the requirements for replacement systems.

They note that current systems are not widely accepted for continuous monitoring primarily because of

the amount of equipment required, the unwieldy wiring between individual components, and the lack of

support for analysis of large banks of gathered data. Wiring has a negative e�ect on the patient’s comfort

and level of activity. Furthermore, the time taken to deploy such a system on the patient impacts on each

individual monitoring session by adding non-productive time (i.e. time spent not gathering data) to the

session. Clearly, wearable wireless technology could provide a solution to speed up deployment compared

to wired monitoring, and allow attachment to the patient for a prolonged period in an unconstrained

environment.

Motoi et al. [93] presented a method for monitoring posture and walking speed in the sagittal plane

(the vertical plane from front to back dividing the body into left and right halves). The system integrates

a trunk unit (with a sensor unit for measuring trunk angle) and lower body limb sensors (two sensor

units with an accelerometer and gyroscope), and is based on an earlier system that su�ered from several

drawbacks (including the subject having to carry multiple pieces of equipment and a large quantity of

cabling). The new revision of the system reduced the number of on-body units from four to two, simpli�ed

the wiring arrangements, and added additional sensors. This resulted in a more comfortable system for

the subject to wear, along with better results due to the additional data made available from the increased

sensor load.

Monitoring of patients with congestive heart failure and Chronic Obstructive Pulmonary Disease

(COPD) was studied by Mathie et al. [85]. A single triaxial accelerometer attached to a belt placed in a

pager casing was used for monitoring postures (such as standing, sitting, and lying on the left side, right

side, front and back), metabolic energy expenditure and movement. It is noted that the placement of

the sensor was not optimal, trading o� some clarity in sensor data to improve the comfort and ease of

attachment of the device (as reported by test subjects). Data was transmitted from the sensor node to
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a computer with no on-body processing.

In healthcare monitoring applications the wearability is vitally important, even at the cost of delib-

erately selecting a non-optimal sensing location in order to improve the subject’s experience (Mathie et

al. [85]). In some cases, existing systems are bulky or otherwise uncomfortable, limiting user satisfaction

and the potential for long-term monitoring deployments. The need to address a subject’s comfort be-

comes more apparent when home monitoring is considered as an alternative to short-duration laboratory

or clinical monitoring. In these cases, the subject must wear the system for some large proportion of the

day. Bao and Intille [14] note that subjects often feel self-conscious if the on-body system involves wiring

that may be seen by others.

2.1.4 Fall detection

The area of fall detection is, in many ways, related to the healthcare application area. The primary goal

is usually to detect falls and near falls either as a means of monitoring the progression of an existing

health condition or, particularly with near falls, as a preventative measure for a subject who is suspected

to be at risk of falling (for example elderly patients).

Li et al. [76] present a fall detection system using two sensor nodes (consisting of an accelerometer,

dual-axis gyroscope, and single-axis gyroscope) placed on the chest and thigh. The system is aimed at

classifying daily activities (walking, sitting, jumping, lying down, running, walking on stairs, and running

on stairs), fall-like motions (quickly sitting), �at surface falls (falling forward, backwards, right, and left),

and inclined falls (falling on stairs).

Jeon et al. [61] conducted three di�erent studies looking into posture changes, falls, and daily activities.

An accelerometer was placed on the chest and data was transmitted through Bluetooth to a PDA. The

intention of the system is that when a fall is detected the system will display an alert on the PDA. If the

alert is not responded to then an emergency centre will be automatically contacted. The advantages of

such a system include portability, convenience, and low cost. In addition, the user interaction in normal

situations is minimal, meaning that the device does not intrude on the subject’s activities.

Nyan et al. [94] designed a system for classifying walking, sitting down, standing up, lying down,

getting up, ascending stairs, and descending stairs, along with transitions between the postures (such as

sitting to standing). An accelerometer was placed on the subject’s shoulder and data was transmitted

via Bluetooth to a laptop or a phone. An SMS is sent to a pre-de�ned phone number if the person falls

or if an emergency button on the sensor node is pressed. Data was recorded from six subjects performing

a prede�ned set of activities over a period of �ve hours and the system achieved an overall sensitivity of
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98.83% and speci�city of 94.98%. (Sensitivity is calculated as true positives divided by the sum of true

positives and false negatives or tp= (tp+ fn) while speci�city is true negatives divided by the sum of true

negatives and false positives or tn= (tn+ fp)).

Jafare et al. [60] proposed a methodology to classify four transition movements�sit-to-stand, stand-

to-sit, lie-to-stand and stand-to-lie. The sensing system consisted of a sensor board incorporating a

three-axis accelerometer and a GPS, transmitting the sensed data via Bluetooth to a medical centre via

a laptop and a mobile phone. Two sets of experimentation were performed, the �rst with two subjects

imitating 68 types of falls and the second with eleven subjects performing a prescribed regime of walking,

sitting down and lying down. An overall classi�cation accuracy of 84% was achieved for the four transition

types.

It can be seen that a common trend in fall detection is to provide an automated call for help

mechanism�Jeon et al. show an alert on a PDA that calls for help if the subject does not respond,

Nyan et al. transmit an SMS message to another phone if a fall is detected, and Jafare et al. transmit

data to a medical centre. This requirement appears more often in fall detection compared to other ap-

plications, likely due to the need for rapid response, because of the old age or fragility of the subjects,

and the intention for the systems to monitor continuously on a subject that is otherwise unsupervised.

2.1.5 Work-related applications

Generally, the work-related activity monitoring applications fall into one of two categories: 1) monitoring

the activities performed by the subject and 2) increasing the safety of the subject (through health or

environment monitoring). This section describes a sample of posture monitoring systems targeting work-

related applications, with a focus on workers operating in harsh environments.

Lukowicz et al. [81] researched the recognition of gestures for workers in a wood shop. The tasks

performed during tests consisted of assembling a simple object made of two wood pieces and a piece of

metal. Acceleration sensors were placed on both wrists and on the upper part of the right arm, along with

a microphone on the chest and on the right wrist. The main activities performed were hammering, sawing,

�ling, drilling, sanding, grinding, screwing, and using a vice, for which classi�cation was performed with an

accuracy of 83.5%. Lukowicz et al. describe several advantages of wearable context-sensitive computing

devices in the workplace, including the reduction in cognitive load (compared to accessing information on

a traditional desktop computer) and the ability to automatically record actions performed by the worker.

Recognition of tasks would allow automatic display of manual pages and alerting of the worker if steps

are missed.



CHAPTER 2. LITERATURE REVIEW 23

While not directly treating postures, Sung et al. [112] present a system for detection of shivering

aimed at workers in cold climatic conditions, using the case study of Army Rangers on missions. The aim

is to develop a real-time instrument able to classify cold exposure using non-invasive sensing methods and

minimal processing power. The instrumentation used for testing consists of two accelerometers (on the

right arm and chest), a 12-lead Electrocardiograph (EKG) set, heat �ux sensors and rectal/oesophageal

body temperature thermometers. Subjects were submerged between waist and chest deep in cold water

(at either 10 � or 15 �) and walked on a treadmill. Several models were tested, with the best�a Hidden

Markov Model (HMM)�being �e�ectively 100% accurate� when providing core temperature classi�cation

(into �baseline�, �cold�, and �coldest� temperature regions) based on shivering activity. In addition to

o�ine testing, a real-time evaluation was performed, giving similar results. The system is interesting as

it involves real-time processing of acceleration data as well as mining over mixed physiological sensing

data sets towards arriving at well-being decisions.

Kemp [67] provides details of several wearable body sensor systems for monitoring workers in danger-

ous environments. Of these, two systems utilised accelerometers for monitoring activity. The commercial

LifeShirt system by VivoMetrics [77] includes a lightweight, machine washable chest strap with embed-

ded sensors that monitor the subject’s breathing rate, heart rate, activity level, posture (see description

below), and skin temperature, while the LifeGuard system presented by Montgomery et al. [92] includes

accelerometers and a variety of physiological sensors. In both cases, acceleration is measured at a sin-

gle location on the chest (the LifeGuard system uses two 2-axis accelerometers arranged perpendicular

to each other to capture the three independent axes of movement and one redundant measurement).

The LifeShirt is described as providing postural information (the speci�cs of this information are not

stated but appear to be the chest rotation relative to vertical), while the LifeGuard system provides only

information on activity level.

Similarly to the LifeShirt, the commercial PSM Responder [101] system by Zephyr Technology Cor-

poration is aimed at monitoring of workers in dangerous environments, including EOD operatives. Mon-

itoring is performed by the BioHarness (available as a chest strap or integrated into a garment) and the

captured data is transmitted to a PC where it is visualised. The speci�c outputs shown are the rotation

of the chest from vertical, the individual axis readings, and the vector magnitude of the axis readings.

The system thus does not classify posture in the sense considered by this thesis, giving only the angle of

the chest.

Biswas and Quwaider [23] describe a posture classi�cation system for monitoring the activity of

soldiers in the �eld, which performs classi�cation in real-time but not on-body. Primarily, the focus is on
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transmitting contextual information and safety alerts to other personnel so that appropriate decisions can

be made with regard to rescue attempts or provision of medical aid. The speci�c postures identi�ed are

sitting, standing, walking, and running, and classi�cation is performed using a PC rather than on-device.

Extension to support online on-body classi�cation of posture is suggested as a future work direction.

The work presented in this thesis is based around the provision of real-time posture classi�cation via

wearable nodes performing on-body processing of data. The primary reasons for this are 1) that on-body

transformation of data into information reduces the transmissions required by the system to an external

base station (as touched on by Curone et al. [35]) and 2) to allow autonomous operation in the event

that the communication link to the base station cannot be maintained. The systems described in this

section either do not perform posture classi�cation (providing either the rotation angle of the device or

the raw accelerometer data itself) or perform the classi�cation using a PC to which all data is transmitted.

Furthermore, crawling and kneeling are postures that must be classi�ed in certain applications such as

�re�ghter monitoring [26, 36], but are not classi�ed by systems presented in the works reviewed.

A consideration in the design of wearable systems is that of wearability. This is particularly the case

in medical applications (as described in Section 2.1.3) as the subject may be wearing the monitoring

system for long durations of time. The next section thus reviews published works on wearability.

2.2 Wearability

As described in Sections 2.1.2 and 2.1.3 the wearability of an on-body system directly a�ects the user’s

satisfaction with the system and thus the likelihood of them opting to use it. Furthermore, for posture and

activity monitoring applications, it is desirable to avoid impeding or restricting the wearer’s movements.

When considering a system’s wearability, Knight et al. [70] states that the level of comfort may be

a�ected by a number of factors such as: physical dimensions of the wearable devices (for examples their

size and weight), how they a�ect movement, and any pain caused either directly (for example rubbing

against the skin or producing heat) or indirectly (for example muscle fatigue).

Gemperle et al. [47] conducted research to locate, understand, and de�ne the locations on the human

body where wearable objects can be placed without interfering with the movement of the wearer. The

most unobtrusive locations found on the body for wearable objects were: (a) collar area, (b) rear of the

upper arm, (c) forearm, (d) rear, side, and front ribcage, (e) waist and hips, (f) thigh, (g) shin, and

(h) top of the foot. A location that is often suggested as suitable is the hip, as it is closer to the center

of gravity and the weight of the object is therefore less perceivable [17, 41, 47, 121]. Dunne [41] states
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that the weight that can be easily carried di�ers across user groups (men versus women, adults versus

children versus older adults, and so on), meaning that establishing acceptable limits requires the target

user group to �rst be determined. Overall, while it is accepted that the weight of a wearable object

should not hinder the subject’s movement or balance, there is no precise measure given in the literature

as to what suitable limits are.

The wearability of on-body systems can be enhanced via integration of the devices into clothing and

the use of �exible electronics, both of which have been made possible by advances in miniaturisation of

electronics generally and sensors speci�cally. Lymberis and Dittmar [82], Meng and Kim [88], and Patel et

al. [98] all provide examples of monitoring systems targeted at health-related applications incorporating

one or both of these techniques in order to increase wearability. Alternatively, sensors may be made both

less intrusive and less visible by disguising them as jewellery. Asada et al. [7], for example, present a

photoplethysmographic (PPG) sensor designed to be worn as a ring, while Degen et al. [37] present a

system for fall detection built into a wrist-watch form factor.

In this thesis the sensor positions (lower arms, upper arms, chest, hip, ankle, thighs and calves) match

those considered by Gemperle et al. [47] to be unobtrusive. The weight of the sensors is distributed across

di�erent parts of the body, while the weight of the on-body nodes is located around the waist in a pouch

closer to the center of gravity. This should allow the system to be unobtrusive to the wearer.

2.3 BSN platforms for posture monitoring

Due to the need to use small and lightweight on-body components as shown in Sections 2.1.2 and 2.1.3,

BSN systems have historically been built around computationally constrained hardware platforms with

low power consumption ([39, 62, 49]). While the increasing popularity of smartphones and tablets has

driven the production of lower cost and more capable platforms, these tend to consume more power and

thus have a shorter battery life.

In surveying the literature in the posture and activity classi�cation area, is clear that there has been

no convergence on a particular hardware platform to support either data acquisition or end-to-end posture

classi�cation systems. Of a sample of 21 papers from the posture monitoring literature, as described in

Table 2.2, 13 used an o�-the-shelf monitoring platform, while 8 used custom node designs. In both cases,

hardware platforms based on a range of technologies have been used. In addition, a variety of methods

were used to transmit the data from the on-body nodes or to store it, as shown in Table 2.3.

Farella et al. [43, 44] and Young et al. [128] both developed a bespoke on-body node as the basis
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of their systems (the WiMoCa node and the Orient-2 system, respectively). The WiMoCa is a wireless

sensor node containing an ATmega8 microcontroller, a TR1001 868 MHz radio chip, and an LIS3L02DQ

accelerometer, while the Orient-2 is based around a dsPIC 30F3014 microcontroller, a CC1100 868MHz

radio chip, and incorporates an MMA7260Q three-axis accelerometer, two HMC1052 two-axis magne-

tometers, and three ADXRS300 gyroscopes.

In the case of o�-the-shelf hardware, the lack of commonality in platform choice between di�erent

researchers is likely to be due to a combination of reasons, with the main two being: 1) availability of

particular platforms at the time the research was conducted and 2) the researchers’ prior experience

with particular hardware platforms or associated software (such as the OS or programming languages

supported). Bespoke systems, by their nature, are varied and, in addition to the reasons of hardware

availability and familiarity of the researcher with speci�c technologies, re�ect a need to optimise perfor-

mance for a given application. These factors may help to explain the wide variety of platforms (described

in Table 2.2) using a number of di�erent wireless communication protocols (as listed in Table 2.3). Prac-

tically, the criteria for platform selection speci�ed by the researchers are often similar (most commonly

around the devices being small and light and having a low power consumption) and much of the work pre-

sented could feasibly be implemented on a common platform. The devices selected (as listed in Table 2.2)

are usually based around a 8- or 16-bit microcontroller with a small amount of RAM and frequently an

integrated ADC, along with a radio (integrated with the microcontroller or as a separate chip).

Notably, it can be seen in Table 2.2 that in 18 of the 21 works reviewed, classi�cation was performed

on a PC or laptop rather than using an on-body device (two of the remaining three [39, 65] performed

classi�cation partially on the device and partially on a PC, while Maurer et al. [87] performed classi�cation

on the device but did not give any results). As already established in Section 1.1, autonomous operation

is an essential feature for posture classi�cation systems deployed in applications i) requiring a high degree

of mobility for the wearer of the system or ii) where the postural information is used as input to another

subsystem deployed in the on-body system. Deployment of the classi�er on an on-body node was noted as

a goal in several works, such as Curone et al. [35] and Zhang et al. [129]. However, the the fact that none of

these algorithms have been deployed and evaluated on-node means that their real-life performance is not

known. Deployment in this way is a crucial step in determining not only their performance generally with

regard to the �gures quoted as the state of the art, but also their suitability for deployment in applications

requiring real-time on-body classi�cation (such as the ones presented in Section 2.1.4 and 2.1.5).

The lack of standardisation on a given platform or communication method means that work cannot

easily be shared and thus development e�ort is likely to be heavily duplicated between projects. Given
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Table 2.3: Methods used for data communication / storage in literature.
Communication / Storage References

802.15.4 [4, 27, 39, 49, 62, 65]
Bluetooth [20, 35, 69, 87]
Bespoke 2.4 GHz protocol [72, 78, 95, 126, 122]
Bespoke 868 MHz protocol [44, 128]
Local storage [42, 79, 129]
Wired comm. [46]
Not stated [103]

no �standard� accepted platform for this type of work and to allow for 1) faster prototype iterations and

2) the deployment of complex algorithms, a relatively powerful hardware platform was chosen for this

work in comparison to the platforms described in this section. The chosen platform is described in detail

in Section A.1. Furthermore, the classi�cation system described in this thesis is capable of real-time on-

body posture classi�cation�of the works reviewed here, only one is presented as having this capability

(described by Maurer et al. [87], though the posture set is smaller than that considered in this thesis and

no results are given for online classi�cation).

2.4 Classi�cation methods for posture monitoring: data pro-

cessing and system design space

Within the posture and activity classi�cation literature, a variety of algorithms have been applied to

the task of processing and classifying sensor data, commonly acceleration and/or gyroscopic data. Most

approaches in the literature make use of some sort of machine learning to support classi�cation, and as

such require training data in addition to data used for validation/testing. This section describes some of

the methods used, along with other relevant details regarding training and testing classi�ers.

This section identi�es the common steps taken in designing, implementing and evaluating machine

learning based classi�ers. The �rst step in this process is data gathering for training and testing of the

classi�er. This data is pre-processed (for example to adjust for sensor calibration and �lter out noise in

the samples) and then any required data features (such as variance or Signal Vector Magnitude (SVM),

as described in Section 2.4.3) are extracted. Following classi�cation, additional steps may be taken to

attempt to increase the accuracy of the classi�er (as described later in this section).

The literature revealed that the number of subjects used when gathering experimental data to support

classi�er training and testing is highly variable. Xue et al. [123] for example used data from 44 subjects,
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while Takeuchi et al. [114] used data from only 3 subjects�using one for training the classi�er and two for

testing it�and Huynh et al. [56] used data collected from one subject (performing the set of activities four

times). It is commonly accepted that the training of a classi�er that will generalise well to unseen subjects

requires data gathered from a variety of subjects. However, the wide variety of subject numbers found

in the literature and the general lack of justi�cation for employing those numbers of subjects seems to

imply that subject selection is based largely on availability and convenience rather than scienti�c rigour,

particularly in cases where very low numbers of subjects are used. It is possible that the root cause of

this is that the researchers are focused on designing and implementing a prototype posture monitoring

system rather than performing rigorous validation of the classi�er.

It is clearly important that rigour be applied to the data gathering process to ensure meaningful

validation of the classi�er. This thesis therefore brings well-evidenced analysis of the optimal number of

subjects to be used for training (see Chapter 6) as well as introducing a robust methodology for testing

and evaluation of classi�ers (see Chapter 4).

The processing of acceleration data prior to classi�cation is not commonly considered in the literature

beyond extracted data features. In some cases, however, the data is �ltered to remove noise or in an

attempt to separate movement and gravitational signals. Khan et al. [69], for example, apply a moving

average, Kang et al. [64] apply a low-pass �lter, Karantonis et al. [65] apply a median �lter to remove

noise and a low-pass �lter to separate gravitational from movement-related acceleration, Mathie et al. [84]

applied a high-pass �lter to remove the gravitational component of the acceleration and then a median

�lter to remove noise, and Sharma et al. [106] apply a moving average to remove noise and a high-pass

�lter to separate gravitational and movement acceleration. Other types of pre-processing are performed

based on the data gathered and the needs of the analysis performed. Parkka et al. [97] perform calibration

and resampling of the data, while Sharma et al. [106] perform a combined unit conversion and calibration

step. Other than the examples above, sensor calibration is rarely mentioned in the literature. Calibration

was considered by the author here and reported in Section A.1.3 on page 147. An analysis of the e�ect

of uncalibrated sensor data on decision tree accuracy was performed. It was found that the classi�cation

accuracy was not a�ected by the lack of sensor calibration (with linear calibration and C4.5 decision tree

classi�ers as used here).

The next stage of data processing is feature extraction. The use of data features provides classi�ers

with more information than can be observed from the raw samples alone, particularly with regard to the

evolution of the signal over time. Features are fundamental to the work in this thesis and their use in

existing work is investigated in Section 2.4.3. Researchers have investigated a large number of features
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in an attempt to provide su�cient information for the classi�er to distinguish the required postures (for

example Frank et al. [46]). Lombriser et al. [78] and Atallah et al. [8], started with a large set of feature

candidates and selected a small number of features based on an analysis of their outputs.

Once the data has been pre-processed and features have been extracted, classi�cation is performed.

There are a large number of classi�cation methods used in the literature, often based around supervised

machine learning algorithms. Methods used include Support Vector Machines [4, 53, 56, 71, 113, 123, 124],

Bayesian techniques [8, 14, 46, 78, 79], Arti�cial Neural Networks [4, 69, 97, 126], Decision trees [14, 21, 31,

78, 79, 87, 97, 109], Fuzzy rule based methods [4], Hidden Markov Models [22, 39, 50, 56, 59, 90, 95, 114,

103] and K-means clustering [19, 58, 87]. Decision trees are relatively popular as they are computationally

simple compared to many of the other methods, and provide, by and large, high classi�cation accuracy.

This makes them ideal for deployment on resource constrained on-body nodes. Their use in the posture

classi�cation literature is described in more detail in Section 2.4.2.

Following classi�cation, post-processing is occasionally performed to increase the accuracy of the

classi�cation results. Parkka et al. [97], for example, applied a median �lter to the output of the classi�er

to eliminate short duration postures.

2.4.1 Testing and evaluation

There are two important factors in the testing and evaluation of a classi�er: 1) whether the testing is

performed o�ine, based on data traces, or as part of a deployed classi�cation system and 2) in the o�ine

case whether the data is truncated to remove transitions, or is fully representative of natural movement.

In the literature surveyed, the majority of the classi�er testing was performed o�ine. There are some

examples of realistic deployments for testing. Karantonis et al. [65] provided the results of online testing

of their classi�er with six subjects performing 12 tasked activities, and reported an overall accuracy of

90.8%. Dong et al. [39] presented results for a system deployed on a single subject in real-time, �nding

a classi�cation accuracy of around 90% during various physical exercise type activities. Quwaider et

al. [103] deployed their system on a single subject performing several activities such as sitting, standing,

and lying, and reported an accuracy above 90%. Online testing of this type is important in con�rming

the performance of the classi�er, particularly when performed in realistic (non-laboratory) settings.

In comparison the results above, the author’s work resulted in classi�ers that were tested and evaluated

both o�ine and deployed, using real-time classi�cation in realistic scenarios. An average classi�cation

accuracy of 96.3% was obtained during o�ine testing using 17 subjects. Real-time classi�cation accuracy

was 97% (as an average for �ve subjects performing tasked activities while being monitored).
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Figure 2.1: Simple decision tree example. The dashed arrows indicate the nodes that would be visited
given the example data values.

The second factor, that of truncation, is rarely discussed in the literature surveyed. It is likely that in

most cases only the results belonging to annotated periods of activity are used in calculating the classi�er

accuracy, as the technique for determine a �correct� result during a transition is not stated. In some

cases, a particular point during the transition is assigned as the �change over� moment (for example,

Parkka et al. [97] performed annotation via a tablet device during experimentation and created a change

over point when selecting a new posture during each transition). The author here presents an alternative

method in Chapter 5.

2.4.2 Decision Trees

Decision trees are a common classi�cation tool that use a tree-like graph as a predictive model. A

common decision tree based algorithm used in posture classi�cation is C4.5 [14, 21, 31, 78, 79, 87, 97, 109],

developed by Quinlan [102]. A simple example of a decision tree of this type is shown in Figure 2.1. An

advantage of decision trees is that once trained, they are computationally simple and thus suitable for

implementation on constrained embedded platforms (as evaluated by Maurer et al. [87] in terms of clock

cycles and execution time per classi�cation). Additionally, they do not contain loops and thus the time

taken to perform a classi�cation is bounded by the microprocessor speci�cation and the depth of the tree.

This makes decision trees a suitable choice for applications that require real-time classi�cation (such as

those described in Sections 2.1.4 on page 21 and 2.1.5 on page 22).

Based on results reported in the literature, the classi�cation accuracy obtained for posture classi�-

cation when using decision trees is similar across di�erent research projects: for example, 84.3% [14],
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86% [78, 97], and 89.3% [3]. Maurer et al. [87] reported classi�cation accuracies of between 85.2% and

92.8% depending on the sensing location selected. The accuracy found by Tapia et al. [116] was only

56.3% when di�erent intensities of activity were considered (for example, walking at various speeds), in-

creasing to 80.6% when the intensities were merged into a single class per activity. Karantonis et al. [65]

used a method similar to binary trees to distinguish between periods of activity and rest, recognise the

postural orientation of the wearer (sitting, standing, walking, and lying on front, back, and side), and

provide an estimation of metabolic energy expenditure. Recognition of postural orientation was carried

out with 94.1% accuracy. The similarity in classi�cation accuracy across the reported results may re�ect

a property of decision trees as applied to realistic data. As a rule, researchers will attempt to produce a

system that matches or exceeds the performance of the work reported in the existing literature. For ex-

ample, if the state of the art consists of classi�ers capable of achieving a given accuracy, then researchers

will attempt to create a classi�er that either 1) achieves a higher accuracy or 2) achieves the same ac-

curacy but expands upon the capabilities of existing classi�ers (for example, classifying a wider range of

postures, running on a more constrained hardware platform, or targeted at use in an application that

imposes additional requirements).

To give an example beyond decision trees, He et al. [53] reported a classi�cation accuracy of 92.3% us-

ing a Support Vector Machine based approach classifying data gathered from an ADXL330 accelerometer.

However, in a publication based on the same work two years later, Xue et al. [123] reported an accuracy

of only 86.8% using the same type of classi�er and the same sensing device. A contributing factor for the

decreased accuracy in this case appears to be that a larger number of postures are considered�ten in the

later paper compared to four in the earlier one. Despite the decreased accuracy, the work is considered to

be an advance because it increases the capability of the system while still providing an accuracy similar

to that found elsewhere in the literature.

2.4.3 Posture classi�cation system design space

The design space for posture classi�cation systems is complex, encompassing a variety of system param-

eters that can impact the accuracy of the system (such as the positioning of sensors, the sampling rate,

number of sensors and feature extraction methods used). However, similar to the selection of hardware,

there is little commonality between systems reported in the literature with regard to these parameters.

In addition to causing duplication of investigative work and lack of uni�cation over the classi�er design

space, this may also make it di�cult to meaningfully compare performance across di�erent work, ob-

scuring the reason for particular systems performing better or worse than others. To demonstrate the
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Figure 2.2: Number of on-body sensors used in posture/activity classi�cation research.

range of options and design parameter settings, 43 papers were selected from the posture classi�cation

literature. This section analyses these papers in terms of �ve major parameters: the number of sensors

used, the positioning of the sensors, the sampling rate used, the features extracted from the gathered

data, and the postures targeted for classi�cation.

Number and positioning of sensors

Figures 2.2 and 2.3 show the distribution of number of sensors and sensor positions respectively over the

set of papers considered. It can be seen that there is little consistency in sensor number and placement

between di�erent research projects and that:

� The most common number of sensors used was 1. Common locations include the hip [46, 114, 84,

79, 65, 20], wrist [126, 90, 74, 59, 109, 108] and chest [68, 15].

� None of the papers surveyed used more then 9 sensing positions.

� The most common sensor positions are the hip and wrist. This is likely to be due in part to the

method of placing the sensor on the subject, as wearability is increased by designing the node to

be mounted on a belt or building it into a watch style housing.

Table 2.4 provides additional detail on the sensor positions used in the reviewed works, where it can be

seen (in addition to the points already discussed) that there is little consistency between selection of the

left or right side of the body for sensor placement.
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Figure 2.3: Sensor positioning in posture/activity classi�cation research.

Sampling rate

The sensor sampling rates used in the papers surveyed varied from 10 Hz to 100 Hz, as shown in Figure 2.4.

100 Hz appears to be the most common sampling rate. No justi�cation is generally given for the choice

of sampling rate, though it may be related to the capabilities of the hardware platform used to collect

the data. Despite 100 Hz being commonly used it has been shown that posture classi�cation can be

performed at much lower rates. Karantonis et al. [65], for example, stated that almost all measured body

movements involved frequency components below 20 Hz and that even while walking 99% of the energy

is contained below 15 Hz. Antonsson and Mann [5] concluded that 98% of the power for gait analysis is

contained below 10Hz, and Bouten et al. [28] state that �[when] walking at natural velocity the bulk of

acceleration power in the upper body ranges from 0.8�5 Hz�. Using the results of Bouten et al. as an

example, it is possible to conclude that 10 Hz is the lower bound (Nyquist rate) to capture the frequency

components of walking.

In the work here, a sampling rate of 10 Hz was used in the implementation of the deployable real-time

systems and Section 6.7 on page 116 demonstrates that this is su�cient to allow accurate classi�cation

of the set of eight postures considered here.

Extracted data features

As with the other parameters considered, there is little commonality in extracted data features used in the

work surveyed. In some cases (particularly where only o�ine classi�cation was performed), researchers
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Figure 2.4: Sampling rates used for accelerometer data gathering in posture/activity classi�cation re-
search.

have used a large number of features simultaneously in an attempt to provide su�cient information for

the classi�er to distinguish the required postures. Frank et al. [46], for example, selected 19 features

from a larger set. Other researchers have started with a large set of feature candidates and selected a

small number of features based on an analysis of their outputs for the di�erent postures. Lombriser et

al. [78], for example, evaluated 8 features and selected 3 (mean, variance, and energy), while Atallah et

al. [8] analysed a set of 13 features and determined that entropy, covariance, and energy provided the

best results.

Over the set of papers surveyed, the most popular features were: mean (17 papers), variance (15

papers), energy (10 papers), Root Mean Square (RMS) (6 papers), and Signal Magnitude Area (SMA)

(4 papers). Note that these features and others have been considered by the author here and are fully

described in Section 6.4 on page 105, along with an analysis of classi�cation accuracy delivered.

Targeted postures

Figure 2.5 shows the postures and activities classi�ed in the work surveyed. The �ve most common

postures are walking, standing, sitting, running, and lying, followed by more complex activities that

add additional movements to (or combine) these �ve (for example, vacuuming will involve standing and

walking, while cycling is similar to sitting but with additional leg movement). The choice of postures and

activities to classify is heavily dependent on the application researched�whether it is focused on daily

activities or sports for example.
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Figure 2.5: Postures and activities classi�ed in the literature.

In the work here, the postures selected include four of the common postures studied by others (walking,

standing, sitting, and lying), and add kneeling and crawling to these. The two additional postures

appear to be rare in posture classi�cation research and yet are required for applications such as �re�ghter

monitoring [26, 36].

To summarise the discussion in this section, the design space for posture classi�cation systems has

a large number of options available (in the number of sensors used, the positioning of the sensors, the

sampling rate used, the features extracted from the gathered data, and the postures targeted for classi-

�cation) and little standardisation has occurred to date with regard to the best selections for any given

purpose. Chapter 6 provides an in-depth analysis of the design space and gives advice with regard to

selection of the optimal system parameters.

2.4.4 Main limitations of existing posture classi�cation research

A workshop [80] highlighted the main areas in which existing posture classi�cation literature was lacking.

Primarily, the issues identi�ed were related to inadequate or incomplete reporting, a lack of reasoning

and justi�cation for the work, and the use of unrealistic evaluation methods. For example, Amft [2]

states that �the particular kind of work (e.g. user study, algorithm development, etc.) and deployed

algorithm class (e.g. activity classi�cation, repetitive or single-instance recognition, activity spotting) is

typically not su�ciently speci�ed upfront� and that �aspects of how evaluations are performed, are often

left unspeci�ed, unconsidered, or are just omitted in reports�. Of the problem areas identi�ed by the
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workshop participants, the following are investigated in this thesis:

1. Moving from laboratory-based evaluation towards addressing realistic challenges. This includes

analysis of the proposed solution on realistic data, assessment of system robustness to realistic

conditions, and establishing a link between what was studied and the real-world applications it

could be applied to [24]. More fundamentally, a suitably de�ned motivating scenario or reasoning

for the work presented is required [100]. The theme throughout this thesis is the requirements and

constraints set by a class of applications including, as the driving case study, monitoring of EOD

operatives during missions. Chapters 4 and 5 include realistic evaluation of a prototype posture

classi�cation system incorporating the algorithms proposed in this thesis.

2. Clear and detailed reporting of methodology (including annotation methods [29]) and evaluation

methods (including analysis/performance metrics [2]) [34]. Chapter 4 describes in detail the data

gathering and evaluation methodology followed for the work presented in this thesis.

3. Justi�cation of system design considerations, including sensor placement, classi�cation algorithms,

and calculated data features [99, 100]. Each of these items is discussed in this thesis: system design

is detailed in Chapter 3, sensor placement and calculated data features (among other system and

data gathering parameters) are investigated in Chapter 6, and the selected classi�cation algorithm

is justi�ed in Chapter 4. Furthermore, Chapter 5 gives an in-depth discussion of an extension to

the classi�cation algorithm to handle postural transitions in a meaningful way.

The concerns summarised above are related to the way in which results are reported�justifying why

design choices were made, evaluating classi�er performance on realistic data, and clearly stating how

the experimentation was performed and the results were analysed. This information is important in

allowing other researchers to reproduce the work or adapt elements of it and apply them to a di�erent

usage scenario. Furthermore, as pointed out by Amft [2], the results presented are often the �best case�

results and do not take into account, nor do the authors explicitly report, realistic limitations. The

areas of concern summarised here are thus a major driver for the reporting in this thesis, demonstrated

in Chapters 4 (data gathering and evaluation methodology), 5 (transitions handling, an inherently real-

world challenge), and 6 (system design parameters).



CHAPTER 2. LITERATURE REVIEW 39

2.5 Handling transitions between postures

The handling of transitions is an aspect of posture classi�cation that is not commonly considered during

the classi�er design stage. The focus of classi�er research is often purely on creating a system that can

perform classi�cation of the selected postures. Data gathered to support the o�ine design and testing of

the classi�er is thus truncated to include only the postures of interest. This means that the accuracy is

not as high as anticipated when the classi�er is deployed for real-life monitoring, because the classi�er is

presented with data samples that it was not trained to classify.

There has been some e�ort within the literature to: 1) analyse speci�c types of transition to directly

perform classi�cation of them, and 2) develop fall detection systems based around transitions from a

given posture to lying down.

A transition that is often targeted for detection or classi�cation is that of sitting-to-standing (and the

inverse, standing-to-sitting). Atallah et al. [8], Barralon et al. [15], and Jiang et al. [62] all looked into

detecting such transitions. Godfrey et al. [48] investigated detection of sitting-to-standing and standing-

to-sitting transitions to aid in classifying standing and sitting when using only a single sensor placed

on the chest. Aloqlah et al. [1] looked into transitions between standing, sitting, and lying using data

gathered from a three axis accelerometer mounted in a headband. A discrete wavelet transform is used in

combination with a fuzzy logic inference system to detect the transitions and infer the current posture.

Fleury et al. [45] investigated transitions that occur in daily life such as sitting-to-standing and

standing-to-lying down. A MMA7260Q accelerometer and a HMC1053 magnetometer are integrated into

a data acquisition board, which is placed under the subject’s left armpit. Classi�cation is performed

by �rst segmenting the signal using thresholds and then applying a wavelet analysis. Thirteen subjects

performed a prescribed regime that involved sitting on a chair, moving around and lying on a bed,

recorded by �ve webcams for veri�cation. An accuracy of 70% correct classi�cations was achieved over

the 13 subjects. Jafare et al. [60] also proposed a methodology to detect transitions between sitting,

standing, and lying. Two sets of experimental data were analysed: 1) two young subjects imitated 68

types of falls, and 2) four young subjects and seven elderly subjects performed a prescribed regime of

walking, sitting down and lying down. An overall accuracy of 84% was achieved for the four transitions.

Khan et al. [68] investigated transitions between sitting, standing, walking, and lying, along with several

postures, achieving an average classi�cation accuracy of 97.9%.

Li et al. [76] present a fall detection system using two sensor nodes placed on the chest and thigh.

Data was collected from three male subjects undertaking the following activities for 5 seconds each: daily

activities (walking on stairs, walking, sitting, jumping, lying down, running, running on stairs), fall-like
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motions (quickly sitting down upright and reclined), falls on a �at surface (falling forward, backward,

right, and left), and falls on an inclined surface (falling on stairs). When a transition to lying is detected,

the acceleration and angular velocity are analysed to determine if the transition was intentional. If the

transition was not intended then it is classed as a fall.

Detection of transitions can be useful in some applications such as detecting falls or as additional

information to aid in classifying postures. However, the work in this thesis required a di�erent approach

to that found in the literature surveyed. Here, the goal is not to detect the transitions as such, but

to diminish their negative impact on the accuracy of a classi�er when used in a real-life deployment.

Chapter 5 describes the method used to achieve this goal.

2.6 Summary

Posture classi�cation using a BSN-based system is the topic of a wide variety of research projects, targeted

at applications ranging from providing long-term remote healthcare to increasing work safety. In these

applications, the bene�t of such systems lies in either 1) replacing bulky existing equipment with smaller

lighter on-body sensing nodes or 2) in providing postural information where none was previously available.

The systems presented in the literature generally focus on two areas of BSN-based posture classi�cation:

evaluation of posture classi�er performance (usually o�ine), and the use of small and light on-body devices

to increase wearability. Real-time on-node classi�cation of posture is required for several applications

(such as monitoring of �re�ghters) but is generally not performed, despite being noted as a goal in some

cases.

Despite the wide range of applications and the number of research projects targeting them, the design

space for posture classi�cation systems has not been extensively analysed and there is little commonality in

the hardware platforms used. For example, a survey of 21 papers showed that 13 of them used o�-the-shelf

devices (12 di�erent devices in total) and the remaining 8 each developed their own hardware platforms.

Of the projects, 17 used wireless communication: 802.15.4 (6 projects), Bluetooth (4 projects), generic

2.4 GHz (5 projects), and 868 MHz (2 projects) radios. The system parameters selected in the literature

also showed little commonality in terms of the number of sensors used, the positioning of the sensors,

the sampling rate used, the features extracted from the gathered data, and the postures targeted for

classi�cation. Chapter 6 presents an investigation into the design space for posture classi�cation systems

and provides guidelines for developing a posture classi�cation system targeted at real-life application

deployment. Reporting of data gathering methodologies and robust classi�er evaluation methods are
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considered to be lacking in the posture classi�cation literature. The methodology used here is described

in Chapter 4.

Handling of transitions within the literature surveyed is focused on detecting speci�c types of transition

either as an end in itself, to aid in classifying other postures, or as a step towards detecting falls. Detection

of transitions involving sitting and standing is particularly common within the literature surveyed. The

approach taken within this thesis, however, is to target the classi�er only at the speci�c postures required

and to implement a means of reducing the negative impact of transitions on the classi�er accuracy.

Chapter 5 provides details of the technique used.

The work in this thesis builds upon works from the literature with regard to the system design and

classi�er selection. Speci�cally, the C4.5 decision trees used here (see Chapter 4) were also used for

classi�cation by Bao and Intille [14] and Tapia [116], the positioning of accelerometers on the body (as

shown in Chapter 6) are similar to those used by Guenterberg et al. [49] (and match those later used by

Xu et al. [122]), and the set of features extracted from the raw sensor data (presented in Chapter 6) was

based on the work of Ermes [42], Bao and Intille [14] and Mathie et al. [85].
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Chapter 3

Posture classi�cation platform

3.1 Introduction

It was shown in Sections 2.3 on page 25 and 2.4 on page 28 that the literature provides no standard way

of designing and building posture classi�cation systems, though there are some commonalities in broad

terms with regard to the processing stages implemented. This chapter presents the concept and design

of a general end-to-end platform for real-time posture classi�cation. The platform presented is named

Class-act, since it is a classi�er of activity. The platform is targeted at two usage scenarios:

� A self-contained system providing postural information to an external system (for further process-

ing/modelling or visualisation).

� A con�gurable investigative instrument for posture-related investigations.

The Class-act platform architecture speci�es two roles that individual BSN sensor nodes can perform:

1) Primary Nodes responsible for classi�cation and relaying con�guration commands to the Secondary

Nodes and 2) Secondary Nodes that are responsible for gathering data and passing it to the Primary

Node. The architecture allows for a single Primary Node along with any number of Secondary Nodes as

required by the application. The hardware used is not speci�ed by the platform design, allowing �exibility

in speci�c implementations (in the use of less-wired or completely wireless communication, the number

of sensors per node, and so on). Section 3.2 describes the platform design in detail.

The work in this chapter, in combination with Chapter 4, forms one of the three contributions brought

by this thesis (to quote from Section 1.5):

� The design of a platform that allows real-time on-body classi�cation of static and dynamic postures�

a capability not present in existing work. The speci�c posture set consists of six static postures

(sitting, standing, kneeling, and laying on back, front and one side) and two dynamic postures (walk-

ing and crawling), of which kneeling and crawling are not commonly considered in the literature.

Classi�cation is performed on a small, light embedded device using a simple easy-to-implement algo-

43
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rithm. The classi�cation algorithm used is a C4.5 decision tree, with a temporal feature (windowed

variance) to aid in distinguishing dynamic and static postures.

The chapter is structured as follow: Section 3.2 presents the Class-act platform design and archi-

tecture. Section 3.3 describes two application examples demonstrating the additional requirements that

such applications can impose. Section 3.4 presents a prototype system implementation example. Finally,

Section 3.5 summarises the work presented in this chapter.

3.2 Design/architecture

This section presents the design and architecture of an end-to-end posture classi�cation system, along

with the hardware requirements for such a platform.

Figure 3.1: Generic data processing chain for posture classi�cation systems.

Figure 3.1 shows the general data �ow speci�ed by the Class-act platform design, derived from systems

presented in the literature (as described in Section 2.4 on page 28), with the following stages:

Sense Acceleration/gyroscope data is sampled from the attached sensors.

Pre-processing The sampled values are processed to prepare them for use by the classi�er. This may

involve steps such as �ltering or adjusting for calibration.

Feature extraction Data features (such as variance) are extracted to aid in classi�cation. Chapter 6

presents an investigation of the e�ect of a number of features on classi�cation accuracy.

Classi�cation The sampled values and extracted features are used to determine the current posture of

the monitored subject. Chapter 4 describes the classi�er used in the work here.

Post-processing The classi�er output is manipulated to achieve goals such as reducing the number of

posture changes identi�ed. For example, Chapter 5 presents transition smoothing �lters�a post-

processing step to solve the problem of rapid classi�er output changes during postural transitions.

The postural information generated via this processing chain is provided to an external system. The

external system may be one of several di�erent devices such as a remote PC used for observation of the
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subject or another on-body system that performs further processing/modelling using posture as an input.

To simplify the discussion here, these will all be referred to as �external system� unless the distinction is

important to the discussion.

In order to provide the described processing stages, the Class-act platform architecture speci�es two

roles for BSN nodes:

Secondary Nodes A Class-Act system1 contains any number of Secondary Nodes. The actual num-

ber of these nodes in an implemented system will be based on the application requirements (such

as a need to keep system components at di�erent locations on the body physically separate) and

hardware constraints (such as the maximum number of sensors a given node can support). The Sec-

ondary Nodes are responsible for gathering data, performing pre-processing and feature extraction,

and passing the data to the Primary Node.

Primary Node A Class-act system contains one Primary Node. The Primary Node enables the system

to meet the need for on-body classi�cation of posture. The node is responsible for gathering

data and performing pre-processing and feature extraction (as with the Sensing Nodes), but also

1) aggregates data from all nodes, 2) performs classi�cation, 3) transmits postural information

and/or sensed data to an external system, and 4) relays con�guration commands from an external

system to the Secondary Nodes (for the investigative system usage scenario).

Figures 3.2 and 3.3 demonstrate the data �ow for each of the two usage scenarios speci�ed (self-

contained posture classi�er and investigative instrument). The data �ow through the Class-act system in

each scenario consists of stages representing data gathering, pre-processing of the data (calibration, �lter-

ing, and so on), feature extraction, posture classi�cation, post-processing (such as transition smoothing

�lters), transmission of the data, and remote con�guration capability. It can be seen that the processing

chain shown in Figure 3.1 is suitable in both cases. In fact, the only di�erence in node capabilities be-

tween the two scenarios relates to the external system�the investigative instrument is capable of being

recon�gured during use. Examples of con�guration options that may be implemented are:

� Selection between a set of classi�ers.

� Selection of the data feature to extract.

� Selection of the transmission mode to use: 1) transmission of all sensed data and postural informa-

tion, 2) transmission of postural information only, or 3) transmission of posture changes only (i.e.

an event-driven transmission mode).
1 �Class-act system� is used as shorthand to refer to any system implemented based on the Class-act platform design.
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Figure 3.2: Self-contained system usage scenario data �ow.

Figure 3.3: Investigative instrument system usage scenario data �ow.
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The self-contained system, on the other hand, will be pre-con�gured with a particular con�guration and

will only transmit posture changes�this avoids transmission of redundant information and, will therefore

extend the battery life. Section 5.4 on page 91 demonstrates the transmission reduction obtained in this

mode for a prototype system implemented based on the Class-act platform.

The Class-act platform design does not specify the hardware needed to implement Primary and

Secondary nodes. However, there are several generic requirements that can be derived from the literature

and from practical system implementation considerations:

� The BSN hardware must include sensors that can provide data relevant to posture classi�cation.

Usually this will be accelerometers and/or gyroscopes.

� The BSN hardware must be capable of sampling at a su�cient rate to allow accurate classi�cation,

particularly where time-dependent data features are extracted.

� The BSN hardware must not restrict the subject to a certain area, leading to two sub-requirements:

� When classi�ed posture is provided to an external system or base station (not located on the

subject’s body), communication of postural information must be performed wirelessly.

� The system must be battery powered (or self-powered in some alternative way).

� The BSN hardware must be light and unobtrusive so that the subject’s comfort and mobility/natural

movement are not a�ected by use of the system.

� In the case of the self-contained system usage scenario, the system must be capable of real-time

operation (as de�ned in Section 1.1 on page 2).

� The BSN hardware must be capable of supporting the pre-processing, classi�cation, and post-

processing to be performed (while maintaining real-time operation in the self-contained system

usage scenario).

3.3 Class-act platform application examples

This section provides concrete examples of how a system based on the Class-act platform architecture

can be targeted at speci�c applications. The �rst is targeted at use in EOD operative monitoring (see

Section 1.2 on page 4), where postural information is supplied to a second system that performs heat stress

prediction and helmet CO2 concentration modelling. The second is targeted at use as an investigative

laboratory instrument.
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Figure 3.4: Self-contained system application example: EOD operative monitoring. Sensor types shown
on the operative for demonstration purposes: white: skin temperature; yellow: accelerometer; blue: helmet
CO2; green: pulse oximeter (pulse rate and blood oxygenation).

3.3.1 Self-contained system

Figure 3.4 gives an overview of an application example for the self-contained system usage scenario�that

of EOD operative monitoring. As described in Section 1.2 on page 4, the EOD operative monitoring

example is only one possible application of the work here, with the broader class including applications

such as monitoring of �re�ghters and infantry. The expectation is that the EOD application can be

generalised to the other applications within this class. In this example, the Class-act system provides

postural information to the Medusa2 system [66], which performs further modelling and prediction with

regard to the health status of the operative. The Medusa2 system was developed as a monitoring system to

enable increased safety of EOD operatives through: 1) monitoring of physiological parameters, 2) inference

of health state information from the gathered data, 3) autonomous actuation of the in-suit cooling system,

and 4) provision of appropriate data, information and alerts to both a remote observer and the operative.

Two of the algorithms implemented within the Medusa2 system (speci�cally, real-time prediction of 1) the

risk of UHS occurring in the operative and 2) helmet CO2 concentration) require posture as an input due

to the large in�uence that posture has on the evolution of the state of the system.

The EOD application brings several requirements beyond the generic ones described in Section 3.2:

� The eight postures speci�ed for classi�cation in the work here map to the postures required in the

EOD application�the system must therefore be capable of classifying these.

� Any instrumentation on the upper and lower body must be physically separate. This is to aid the

operative in donning and removing the EOD suit and to prevent damage to the system at those
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Figure 3.5: Investigative instrument application example.

times.

� The wireless communication method used by the Class-act system must match that used by the

Medusa2 system.

� Co-location of sensors between the Medusa2 and Class-act systems would be preferable in order to

reduce wiring for data and power.

3.3.2 Investigative instrument

Figure 3.5 gives an overview of an example implementation for the investigative instrument. This maps

directly to one of the usage scenarios for the platform and so does not introduce new requirements to

the extent that the self-contained system example does. The only additional requirement, for the sake of

convenience in investigations, is:

� The hardware platform should allow the number of attached sensors to be varied as required between

deployments.

3.4 Prototype implementation example

A prototype system was implemented meeting the requirements of the two example implementations

described in Section 3.3. Due to the use of the Class-act platform design, both application examples

were supported via a single prototype implementation. Full integration with the EOD suit was not a

goal for the prototype system, it serves as a proof-of-concept for the EOD application. The implemented

prototype has been deployed in the work here for evaluation of the algorithms presented in Chapters 4
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and 5. Full hardware details are given in Appendix A.

In response to the requirements presented in Section 3.2 and 3.3, several system design choices were

made with regard to: 1) the number of on-body nodes, 2) the communication methods used (sensor to

node, node to node, and node to other components in the system), 3) the types of data/information

transmitted from the on-body nodes, and 4) the number and location of the on-body sensors.

3.4.1 Number of on-body nodes required

The EOD application requires physical separation of upper and lower body sensing, while the investigative

instrument application does not specify a requirement with regard to the number of nodes. Based on

this, the decision was made to use two on-body nodes (one for the upper body and one for the lower

body) in the prototype system for consistency across both applications. During initial testing of the

implemented prototype, it was found experimentally that a single node could not reliably gather data

simultaneously from more than eight of the sensor boards used. The decision to use two on-body nodes

when building the prototype system therefore means that a total of up to 16 sensors can be supported.

Note that Section 6.6 demonstrates that accurate classi�cation can be performed using only two sensors

(on the thigh and calf) and therefore only one node is needed for a �nal implementation of the system

for the EOD application.

3.4.2 Communications

A generic requirement of the Class-act platform is that of wireless communication from the on-body nodes

to the external system/base station. This applies for the investigative instrument as the base station is

located away from the subject and to the EOD application as the communication method must match

that of the Medusa2 system (in this case, Bluetooth). Bluetooth was selected as it meets the needs of

both applications. For simplicity, Bluetooth was also used for node-to-node communication. Neither of

the applications are expected to involve communication distances greater than that allowed by Bluetooth.

Based on the scenario descriptions given, there are two transmission modes that must be supported by

the on-body system: 1) transmission of postural changes only (for the EOD application), and 2) all three

communication modes with online selection (for the investigative instrument). The prototype system

supports each of these modes.

A wired connection was selected for sensor-to-node communication since: 1) wired links are simpler

and less error-prone than wireless links, and 2) power could be supplied to the sensors alongside the data

connections, reducing the size, weight, and complexity of the sensors compared to a self-powered wireless
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Figure 3.6: Positioning of sensors and nodes on the body for the prototype system.

solution.

3.4.3 Sensor positioning

The position of sensors for the prototype system is a superset of the Medusa2 locations to simplify tight

integration of the two systems. If the two systems were to be merged into a single combined monitoring

system (sharing the same hardware nodes), co-location of the sensors would reduce the amount of wiring

needed between the sensors and nodes. The temperature sensors for Medusa2 are located at the subject’s

neck, upper arms, chest, abdomen, thighs, and calves. The �nal locations selected correspond to the

distinct body segments: upper arms, lower arms, chest, thighs, and calves. These locations match those

used by Xu et al. [122] and are similar also to those used by Guenterberg et al. [49]. An investigation was

conducted (described in detail in Section 6.6 on page 111) towards determining the optimal set of sensor

placements to provide su�cient data for accurate posture classi�cation while also minimising the number

of worn body sensor. Figure 3.6 shows the sensor locations and connections to the on-body nodes given

sensor placements on the subject’s chest, upper arms, forearms, calves, thighs, hip, and ankle. Each of

these eleven locations is considered as a potential mounting position for a triaxial acceleration sensor (see
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Figure 3.7: Data and information �ow for the Primary Node and Secondary Node.

Section 6.6 for discussion of the e�ect of choosing speci�c location subsets).

Due to the directional nature of acceleration measurement, consistency of orientation of the sensors

is important for accurate classi�cation. In order to ensure this consistency, reference diagrams were

produced to show the location and orientation of each sensor (the boards were not packaged for the

prototype, so their orientation was clear visually). While every e�ort was made to match the diagrams

closely, it is natural that some small errors in orientation would occur from one trial to the next, partic-

ularly across subjects with varying body builds. The trials conducted therefore established an informal

test of the e�ect of small inconsistencies in mounting, which was found to have little noticeable impact

on classi�cation accuracy�the variation in accuracy results was generally small, with a standard devia-

tion of 3.7% when WVar was used. This forms an upper bound for the e�ect of mounting inconsistency

(assuming the experimenter is following the diagrams correctly).

3.4.4 On-body node software

Figure 3.7 shows the data �ow and processing steps for the Primary and Secondary Node within the

prototype system. The stages are as follows:

Sense At the Sense stage, data are gathered from the attached acceleration sensors. The classi�cation
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Figure 3.8: Median �lter applied to x-axis of an accelerometer placed on a subject’s calf while sitting.
Top: original accelerometer data. Bottom: �ltered data.

accuracy obtained with varying numbers of sensors is described in Section 6.6 on page 111.

Pre-process The Pre-processing stage consists of two data manipulation steps: median �ltering and

calibration. First, a median �lter with a window size of three samples is applied to remove spurious

data �spikes�. The median �lter was also used in this way by Karantonis et al. [65]. The median of

an array of values, ex, is calculated as

ex =

8
>><

>>:

Y(w+1)=2 if w is odd

1
2

�
Yw=2 + Y1+w=2

�
otherwise

where Y is a sorted array of values and w is the number of values in the array. Given w = 3 (a

�xed window of three values), ex is thus always obtained from Y2. Figure 3.8 shows an example of

the median �lter applied to sample data gathered from the x-axis of an accelerometer placed on

a subject’s calf while sitting. It can be seen that the data are smoothed to an extent, removing

�spikes� that could lead to misclassi�cation of the subject’s posture.

The second step is to adjust the accelerometer sensor data in order to compensate for sensor

calibration errors. The process used for calibration is discussed in detail in Section A.1.3.
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Feature extract The Feature extraction stage consists of features such as Windowed Variance (WVar)

being extracted from the calibrated raw data. An analysis of the classi�cation accuracy bene�ts

gained from feature extraction is given in Section 6.4 on page 105.

Classify Prior to classi�cation being performed, the data from the Primary and Secondary Node are

appended together (or concatenated) to form a single data vector containing all of the body ac-

celeration data and data features. The data is then provided to a classi�cation mechanism. The

method used here is a C4.5 decision tree trained using experimental data, as described in detail in

Chapter 4.

Post-processing The Post-processing stage consists of applying a transition smoothing �lter to the

classi�ed postural information to improve the overall accuracy and output stability. The particular

�lter used may be selected by the user and the �lters implemented here are described in Chapter 5.

Transmit Transmission from the Secondary Node to the Primary Node is performed wirelessly and

includes all of the gathered acceleration data from the attached sensors. Transmission from the

Primary Node to the base station has several modes as described in Section 3.2. In all cases, the

postural information itself is transmitted (continuously or only when the posture changes) and the

acceleration data may be transmitted depending on the application.

3.4.5 Base station software (visualisation and system con�guration)

As part of the prototype system implementation, a visualiser was developed to support the investigative

instrument application. The EOD application is already provided with a visualiser developed as part of

the implementation of the Medusa2 system [66]. The visualiser developed for the investigative instrument

application is described in this section and provides several options with regard to system con�guration.

A screenshot of the visualiser developed is shown in Figure 3.9. The visualiser is split into three

areas. The left-hand side is dedicated to sensors and communications, the central area shows the current

classi�cation result, and the right-hand side shows options related to data acquisition and processing.

The visualiser is implemented in Python using the wxPython Graphical User Interface (GUI) libraries,

providing portability between operating systems. As the set of postures that the system can classify

is pre-de�ned, the current posture is displayed using one of a set of images (one for each classi�able

posture).

The speci�c functions supported by the visualiser are:
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Figure 3.9: Interactive visualisation and con�guration software running at the base station.

1. display of the active sensors for the speci�c classi�cation tree selected (a stick man with coloured

sensor markers�green for active, red for inactive),

2. con�guration of the data transmission mode (as detailed in Section 3.2),

3. indication of whether data is currently being received (green when data is received, red if a de�ned

period�one second as implemented here�has passed with no received data),

4. display of the current posture of the subject using a 3D human graphic,

5. con�guration of the posture classi�cation tree that the Primary Node should use,

6. con�guration of the transition smoothing �lter to apply to the classi�er output, and,

7. con�guration of the sampling rate in Hz to be used by the sensors.

3.5 Summary

The design and architecture of an end-to-end platform enabling on-body posture classi�cation was pre-

sented. The platform was devised to meet the requirements of two usage scenarios described in Section 3.2:

1) self-contained system and 2) investigative instrument scenarios. These scenarios impose a number of

requirements that are generic to all implementations of a Class-act system, such as on-body classi�cation

and use of battery power. A data �ow was devised for each usage scenario to demonstrate the inherent

similarities in system design. The speci�c hardware used is not speci�ed by the platform design, allowing
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�exibility in speci�c implementations (in the use of less-wired or completely wireless communication, the

number of sensors per node, and so on).

The needs of two example applications that are suitable candidates for Class-act systems were de-

scribed: EOD operative monitoring and investigative instrument. These application examples introduce

additional requirements beyond those generically speci�ed for the platform.

A prototype system was implemented based on the platform design. This prototype system was used

for online evaluation of the algorithms described in this thesis (see Sections 4.12 on page 76 and 5.5 on

page 94). Additional detail on the prototype hardware system is given in Appendix A.

The Class-act platform and example instrument implementation described form the basis of the contri-

bution in this chapter and Chapter 4�a wearable real-time instrument performing on-body classi�cation

of posture. To the author’s knowledge, as described in Section 2.3 on page 25, no such system has

previously been demonstrated in the literature.



Chapter 4

Posture classi�cation algorithm and

data gathering process

The previous chapter presented the design of an end-to-end on-body posture classi�cation platform to

address two usage scenarios (self-contained and investigative system), along with two application examples

and an example implementation.

This chapter continues the work described in Chapter 3 through: 1) a posture classi�cation algorithm

suitable for deployment in a wearable (resource constrained) system such as one implemented based on

the Class-act platform, 2) a method for gathering empirical data for training and testing of posture clas-

si�cation algorithms, 3) a demonstration of the �tness for purpose of the algorithm (used in conjunction

with a suitable data feature) for the EOD application considered in this work and the wider class of

related applications generally, and 4) an evaluation of the algorithm’s accuracy in classifying the de�ned

set of eight postures considered in this work. Section 2.4.4 showed that one of the main limitations of the

current literature is the lack of a clear and detailed description of the design and evaluation methodology

used when reporting on posture classi�cation systems. This chapter addresses this gap with regard to

the design and evaluation methodology used in this work.

The chapter is structured as follows: Section 4.1 provides an overview of the classi�er testing and

evaluation process. Section 4.2 describes the classi�cation algorithm and classi�er training algorithm

adopted by the author. Sections 4.3 to Section 4.10 describe the experimental regimes, data gathering

tools, experimental subjects, data annotation method, classi�er training method, and testing method

used in the work here. Section 4.11 presents �ndings related to the suitability of the chosen classi�cation

algorithm for the work here, speci�cally with regard to classifying the set of required postures and the

e�ect of wearing an EOD suit on classi�cation accuracy. Section 4.12 provides a real-time, real-life

functional evaluation of the classi�er. Finally, Section 4.13 summarises the work in this chapter.
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4.1 Classi�er testing and evaluation process

Figure 4.1 on the next page shows the relationship between the data gathering process and classi�er

testing and evaluation, as reported on in this chapter. The Class-act platform requirement of on-body

classi�cation (on a potentially resource constrained node) guided the selection of an appropriate algorithm

for classifying the target postures (Section 4.2). The EOD case study application guided the design of

the regimes (Section 4.4) and selection of the subjects (Section 4.6) for the experimental trials.

The next section describes and justi�es the algorithm chosen for posture classi�cation. It also intro-

duces two central aspects of the design of the classi�er and the data gathering process that a�ect the

suitability of the classi�er for the application.

4.2 Classi�cation algorithm�C4.5 decision trees

Decision trees are a natural choice for the work in this thesis given the requirement for real-time classi-

�cation on an embedded system. Once trained, decision trees are computationally simple and thus easy

to accommodate on constrained embedded platforms (as demonstrated by Maurer et al. [87]). A further

advantage of decision trees is that there are no loops within the tree. Thus, the time taken to perform

a classi�cation has a natural limit based on the depth of the tree. This aids in real-time classi�cation of

posture as the time required for classi�cation has an upper limit that can be determined, and particu-

larly the lack of loops means that there can never be a situation wherein a classi�cation attempt does not

complete. Prior examples of the use of decision trees in posture classi�cation applications were discussed

in Section 2.4.2 on page 31.

Of several other algorithms considered by the author, Hidden Markov Model based classi�ers are used

often in existing works [22, 39, 50, 56, 59, 90, 95, 114, 103]. These are generally relatively computa-

tionally complex, however, and the literature does not indicate a clear bene�t in terms of classi�cation

accuracy [56, 95, 113].

The algorithm chosen for classifying the set of eight postures considered in this work was the C4.5

algorithm [30]. Generically, the C4.5 algorithm creates a decision tree by �nding, at each node, the

attribute (and threshold for that attribute) that allows the data samples to be most e�ectively divided

into subsets containing particular classes. The e�ectiveness of a given attribute in achieving this is

determined via the di�erence in entropy (or �information gain�) resulting from choosing one attribute

instead of another. Quinlan [102] provides an in-depth description of the method of creating decision

trees via the C4.5 algorithm. The process of selecting attributes at each node based on the information
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Figure 4.1: Process for data gathering and posture classi�er testing and evaluation. The links represent
the way in which the di�erent aspects of the work support each other.
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gain means that important attributes (that is, sensor locations) appear closer to the root of the tree, and

redundant sensor locations are likely to be excluded from the tree. This can aid in system development

by highlighting sensors that provide useful data towards classifying the required postures.

The Waikato Environment for Knowledge Analysis (WEKA) toolkit [120] was used to generate C4.5

decision tree classi�ers (via the Java implementation of the C4.5 algorithm as used in WEKA, named J48).

Weka is a free, easy to use, cross-platform tool implemented in Java, providing a comprehensive range

of machine learning algorithms. Testing was performed using the LOSOXV method in almost all cases

(as described in Section 4.3). The testing procedure was implemented outside of WEKA. LOSOXV was

selected in preference to 10-fold cross-validation since the aim was to determine the expected classi�cation

accuracy of the classi�er on unseen subjects. There is considerable variation in how di�erent human

subjects move. Furthermore, there will be slight variations in how sensors are �tted from one subject to

the next. These two factors mean that LOSOXV forms a more stringent test of a posture classi�er than

ordinary 10-fold cross-validation.

In the process of developing the classi�er, two main questions required investigation with regard to

the suitability of the classi�er for the work here:

1. Is it possible to classify the full set of required postures with a high accuracy?

2. Is it possible to train on subjects wearing light clothing and still provide a high classi�cation

accuracy when deploying the Class-act system on a subject wearing heavy protective clothing such

as an EOD suit?

Classi�cation of the full set of postures required by real-world applications such as EOD operative moni-

toring requires the ability to classify not only static postures (such as sitting or standing) but also dynamic

postures (in this case walking and crawling). Information in addition to raw acceleration data is required

for classifying dynamic postures in order to capture some of the history of the subject’s movements. The

solution applied here is the use of extracted data features to capture the history of the data and form

part of the posture classi�er’s input set. Section 4.11.1 on page 74 demonstrates that use of features

when classifying static and dynamic postures results in similar accuracy to using only raw data when

classifying only static postures. The e�ects of eight di�erent data features on classi�cation accuracy were

investigated in this work as described in Section (6.4).

The ability to train the classi�er based on subjects wearing light clothing is important in the case

study application since, for cost and convenience reasons, it would be preferable to train the classi�er

without needing to obtain application-speci�c clothing such as an EOD suit. Section 4.11.2 on page 75



CHAPTER 4. POSTURE CLASSIFICATION ALGORITHM AND DATA GATHERING PROCESS 61

Figure 4.2: LOSOXV training and testing data selection process.

provides the results of this analysis, showing that classi�cation accuracy is not hindered by the type of

clothing the subjects wear.

The following sections provide a description of the data gathering process used in this work. This

is composed of the following phases: experimental planning, data collection, pre-processing, training,

testing and evaluation phases. The resulting data sets were used in the analysis in this chapter, as well

as in Chapters 5 and 6.

4.3 Data gathering and classi�er evaluation process overview

When developing machine learning based classi�cation algorithms, a generic process is usually followed

consisting of data gathering, training, testing, and evaluation. Details of this process, however, are lacking

in the literature, as discussed in Section 2.4.4. A description of this process is given starting in this section

and following on to Section 4.10, focusing on the types of testing and evaluation used in the work here.

The steps are as follows: experimental planning, data collection, pre-processing, training, testing and

evaluation.

1. Prior to experimental data gathering:

(a) An experimental protocol is designed that will allow the experimenter to gather data repre-
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sentative of that which the classi�er is expected to encounter during real-life system use.

(b) Data gathering instrumentation is selected from the available instruments based on its ability

to supply the required data for classi�er training. For example, the system should support use

of the number and type of sensors that will be used in system deployments using the trained

classi�er.

(c) A group of subjects are selected to provide adequate coverage of the range of body types, ages,

and so on that is expected for monitored subjects within the application.

2. Data is gathered via experimentation and accurately annotated (manually or automatically), pro-

viding the means to apply supervised learning techniques and to evaluate the accuracy of the

classi�cation algorithm.

3. Following the data gathering experimentation, the data is pre-processed into a form that is suitable

for training decision trees (as described in Section 4.9).

4. After pre-processing the data, classi�er training, testing and evaluation are performed via one of

the following methods:

(a) LOSOXV is performed in order to assess the overall accuracy of the classi�cation algorithm

based on the data gathered. For LOSOXV, the following process is applied (summarised in

Figure 4.2 on the previous page).

i. A subject is selected as the testing subject (the subject �left out�).

ii. The data from the remaining subjects is combined to form the training data subset and a

classi�er is trained using this.

iii. The classi�er is tested using the data from the �left out� subject.

iv. This process is repeated for each of the subjects in the set and the classi�cation accuracy

results from each iteration are summarised.

(b) Real-time evaluation

i. The best classi�er obtained using the steps above is deployed as part of the Class-act

system and the classi�cation accuracy is evaluated in real-life.

The remainder of this chapter describes each of the steps given above in detail with regard to how

they were applied in training, testing and evaluating the classi�er. The next section describes the data

gathering regimes for the work here (part of the experimental planning phase).
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4.4 Data gathering regimes

Prede�ned regimes are used in the work here to ensure that the data is gathered and archived in a

controlled manner. A regime is a description of a sequence of postures and their durations, along with

the duration of the transition periods between the postures. An appropriate regime speci�cation aids in

ensuring that: 1) the data gathered is consistent between subjects with regard to instructions given to

the subjects and the experimental conditions, 2) all the required postures are fully represented in the

training and testing sets, and 3) correct annotation of the data is applied. Eight postures are targetted

in this work. Six of the eight postures (walking, sitting, standing and lying on back, on front and on

one side) are commonly targeted in the literature (as demonstrated in Section 2.4.3), while kneeling and

crawling are rarely encountered in the literature but are required for applications such as monitoring of

EOD operatives or �re�ghters. An important consideration while planning the experimentation was that

data be gathered while the subjects are performing the required postures and also other activities (such

as kneeling while also unpacking objects from a rucksack). This is expected to be important regardless

of the speci�c application considered as it represents the need to train and evaluate classi�ers using data

gathered in realistic conditions and to prevent over�tting of machine learning based classi�ers.

The regimes used here were based on existing research in the area of EOD operative safety [118] and

on feedback from an EOD suit manufacturer regarding the types of activities that would be performed

during EOD missions. Three increasingly complex regimes were developed by the author, progressively

as the research advanced, focusing on: 1) the eight postures alone (R1), 2) the eight postures combined

with natural movement (R2), and 3) mission-like activity (R3). The three regimes were as follows:

R1 Regime R1 was posture focused, requiring the subject to sit, stand, walk, kneel, crawl, lie on one

side, lie on their front, and lie on their back. Each posture was maintained for one minute, with

the subject performing light arm movement tasks combined with variations from the set positions

(such as, for example, leaning slightly back, forth, or sideways whilst standing). The postures are

exempli�ed in Figure 4.3 on the following page.

R2 Regime R2 was posture and natural movement focused, and expanded on R1 by including natural

movements (such as lifting weights whilst standing, or moving objects from a rucksack whilst kneel-

ing) as shown in Figure 4.4 on the next page. The aim with this regime was to provide the decision

tree training process with data that more accurately represented movements performed by people

in real-life situations (i.e. free movement).

R3 Regime R3 was mission activity focused, matching experimentation presented in existing EOD-



64 CHAPTER 4. POSTURE CLASSIFICATION ALGORITHM AND DATA GATHERING PROCESS

Figure 4.3: Overview of Regime 1 posture timing.

Figure 4.4: Overview of Regime 2 posture timing.
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Figure 4.5: Overview of Regime 3 posture timing.

Figure 4.6: Sensor placement on the outside of the EOD suit.

related physiological research [117]. The aims of this regime were to re�ect the activities that are

most likely to be performed during EOD missions (a subset of the eight described previously) and

also to re�ect the expected relative durations of the activities (whereas R1 and R2 aimed to provide

equal coverage of all eight postures). The activities performed were: walking (3 minutes); kneeling

while moving weights into and out of a rucksack or reading (2 minutes); crawling (2 minutes); arm

exercise while standing (4 minutes); sitting (3 minutes). These activities are shown in Figure 4.5.

During the experimentation, e�orts were made to duplicate the environment of EOD missions and

acquire data from subjects wearing the EOD suit. Variations of regimes R1 and R3 were thus performed

with the subjects wearing an EOD suit. In the EOD suit trials the sensors were placed on the outside
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