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Abstract

In recent years, Body Sensor Networks (BSNs) have been used as the basis of many systems aimed at
monitoring bodily parameters ranging from skin temperature, to breathing, to motion. These measure-
ments can then be used to generate additional information related to the monitored subject, such as for
heat stress prediction or fall detection.

This thesis is concerned with the design, development and realistic evaluation of a BSN-based end-to-
end posture classification platform using on-body accelerometers. The work is motivated by applications
that require stable, sub-second, end-to-end classification of postures, as well as dynamically configur-
able operation to support exploratory data collection. Classification is performed on-node, thus redu-
cing the amount of data/information transmitted from the wearable nodes to a data sink. The work
is experimentally-led, and uses an application case study—on-body monitoring of Explosive Ordnance
Disposal (EOD) operatives—to provide context for system requirements and experimentation performed.

This thesis provides three main contributions:
First, the design of a platform that allows real-time on-body classification of static and dynamic

postures—a capability not present in existing work. The specific posture set consists of six static pos-
tures (sitting, standing, kneeling, and lying on back, front and one side) and two dynamic postures
(walking and crawling), of which kneeling and crawling are not commonly considered in the literature.
Classification is performed on a small, light embedded device using a simple easy-to-implement algorithm.
The classification algorithm used is a C4.5 decision tree, with a temporal feature (windowed variance) to
aid in distinguishing dynamic and static postures. Offline classification accuracy is shown to be 96.3%
based on data gathered from subjects in a laboratory environment, and real-time on-node classification
accuracy is shown to be comparable to this figure (95.5%).

Second, further advance beyond the state of the art is presented through an investigation into pos-
ture transitions. Posture transitions cause transient (<1s) posture changes in the classifier output and
are shown to reduce classifier accuracy by 2% for every transition / minute for classifiers not specific-
ally designed to handle transitions. Three posture filters that remove such transient posture changes
are designed, implemented and tested on experimental data. The best performing filter, Exponentially
Weighted Voting (EWV), is shown to reduce posture change events by 75.2% and increase accuracy by 1%
(over unfiltered results). Compared to streaming raw data, an event-based posture classification system
is shown to reduce transmissions by 98.5% (66-fold reduction).

Finally, a broad investigation is presented into the effect of both system-related and training-process
factors on the accuracy of machine learning-based posture classifiers. The factors analysed include i) tem-
poral and feature parameters, ii) sensor sampling rate, iii) number of sensors used, iv) posture class
aggregation and v) number of subjects used for training. Optimal parameters are determined for the
motivating EOD application, with a range of parameter values shown to guide development of other
classifiers.

Through the novel contributions presented, this thesis provides a solid groundwork for further research
in BSN based posture classification systems and simplifies optimisation of machine-learning classifiers for
specific posture classification applications.
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Chapter 1

Introduction

In recent years, the increased availability of small, low power, high capability personal computing de-

vices and inexpensive miniaturised sensors has made non-intrusive pervasive sensing of people and their

environment a practical possibility. The provision of such capabilities has applications ranging from

workplace safety to healthcare to the military, based on diverse sensed parameters such as air pollutants,

worker activity level, or structural stresses.

This thesis is concerned with the use of machine learning for real-time postural activity classification

based on acceleration data. Posture classification determines the posture of the subject (assigning a

label such as “sitting” or “standing”), as opposed to motion capture which focuses on determining the

relative position of each segment of the body. The technology available to support real-time remote

posture monitoring has evolved over time: advances in micro-sensors have resulted in smaller and lighter

accelerometers [13, 115], the adoption of embedded computing into common household and personal

devices has driven the development of microcontrollers with high processing capability and low power draw

in small packages, and radio-based communication has replaced wired links in many applications [91]. In

combination, these technologies can form the basis of a compact and ubiquitous Body Sensor Network

(BSN) solution for human posture/activity monitoring [14, 74, 86, 116]. BSN-based systems using these

technologies have the advantage that the equipment required to capture motion or posture is much smaller

and lighter than other solutions, (such as video-based capture) and can be carried by the subject—

reducing the need for equipment to be installed in the subject’s environment. The use of radio-based

communication means that the subject is not tethered to a specific location, allowing for natural movement

and the ability to carry out tasks away from a monitoring base station. The ability to automatically

recognise posture can facilitate the provision of personalised computer-based support in areas such as

medicine [12, 63, 85, 93, 96], workplaces [81, 105], and sports [10, 79].

The goal of the work in this thesis is to demonstrate that posture classification can be accurately

performed in real-time using a wearable monitoring system. Such postural information can be displayed

to an observer or used for further autonomous modelling/prediction. This is of particular benefit where

1
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the monitored subject is required to work away from a support team in dangerous conditions, such as for

firefighters or some military applications. The work in this thesis, therefore, focuses on three main topics

or strands: 1) real-time on-body classification of posture, 2) reducing the impact of posture transitions

on classifier performance, and 3) an investigation of the design space and selection of optimal system

design parameters for posture classification systems.

This chapter provides an overview of the motivation for the work and the methods used, structured as

follows: Section 1.1 provides a broad overview of the requirements common to the applications benefiting

from posture monitoring. Section 1.2 presents and justifies the case study that provides context for the

work in this thesis. Section 1.3 presents the research questions that drove the work. Section 1.4 details

the approach to research, data gathering and classifier assessment methodology. Section 1.5 presents the

contributions to knowledge. Section 1.6 lists publications by the author resulting from the work presented

in this thesis. Section 1.7 acknowledges the contributed work. Finally, Section 1.8 describes the structure

of this thesis.

1.1 General requirements of posture/activity monitoring appli-

cations

This work focuses on real life applications as these provide concrete requirements and constraints to

guide the development of usable monitoring systems. Knowledge of posture is an important source of

information in a diverse range of applications, including health monitoring, work safety, dance, sports,

and video games. Specific applications within these categories include monitoring of patients undergoing

physical rehabilitation, detection of falls in elderly people, monitoring the activity of workers in dangerous

environments, and detecting deviation from daily routine. Section 2.1 on page 16 provides details of a

number of such applications.

Generally, a posture monitoring deployment has one of two goals: 1) observation, decision making,

and application of corrective actions, or 2) profiling of the subject’s routine over a period of time. Within

the health monitoring domain, for example:

• Long-term postural monitoring of patients with Parkinson’s disease can provide an indication of

the progression of the condition.

• Monitoring of patients undergoing an at-home physical rehabilitation regime can show whether they

are performing the recommended exercises and maintaining an appropriate level of general activity.
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Such applications have a set of generic requirements that are commonly applicable, a subset of which must

be met for each individual application. Requirements that are often specified for posture classification

applications are:

• The need for high accuracy. This is a fundamental requirement for posture classification systems

targeted at any application. The classifier accuracy should at least be as high as the state of the

art, which in related work appears to be around 90%.

• The need for a small, lightweight system that can be worn on the body. On-body systems have

become popular as they avoid the need to install monitoring equipment such as video cameras in

the subject’s environment. Considerations for unobtrusive wearable systems include the size and

weight of the on-body components, the quantity of cabling, and the method of affixing sensors to

the body.

• The need to monitor subjects performing free-form activities in an environment such as a hospital

or the home. While some applications (monitoring patients undergoing physical rehabilitation for

example) may have relatively constrained or predictable activities, many other real-world deploy-

ments will not. When monitoring the daily activities of a subject, for example, such activities could

include any form of free movement, including static and dynamic postures along with transitions

between them.

• Provision of postural information in real-time. In general terms, this is motivated by the need to

provide timely input to another system or to monitor in real-time the evolution of a data stream.

The exact definition of real-time in terms of latency will be motivated by an application’s specific

needs. In this thesis, a real-time posture classification system is defined as one in which the nominal

end-to-end latency of the system (including classification and any wireless communication) is the

same order of magnitude as the sampling period. Transmission latency may increase due to external

influences (such as radio interference) but these are expected to be transient in most cases. (Note

that this is a soft real-time requirement as a delayed posture result is not catastrophic for the

class of applications considered here, but does degrade the usefulness of the postural information

delivered by the system.)

• On-body processing of sensor data in cases where 1) autonomous operation is required, or 2) battery

life is affected by the quantity of data transmitted. Police and firefighters, for example, are required

to work in areas where permanent monitoring equipment is not installed. In these applications, the
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Figure 1.1: Subject wearing an EOD suit while walking and kneeling. Reprinted from Kemp [66] with
permission.

subjects are mobile and are responding to events as they occur, meaning that communication with

a base station cannot necessarily be relied upon.

The case study application focused on in the work here is related to work safety, specifically the mon-

itoring of Explosive Ordnance Disposal (EOD) operatives during missions. The requirements of this

application include all five of those described above, meaning that development work towards designing

and implementing a system for EOD operative monitoring can feed back into the design of posture mon-

itoring systems targeted at other applications. In particular, the EOD application shares characteristics

with similar applications such as the monitoring of infantry or firefighters. Furthermore, the case study

application guides the data gathering and classifier evaluation process through the defining of realistic

constraints and requirements. The EOD operative monitoring application is described in the next section.

1.2 Case study: posture classification of EOD operatives during

missions

The specific application chosen to guide the constraints and requirements for this work was that of

monitoring the postures/activities of EOD operatives during missions.

Particular parallels between the EOD operative monitoring case study and the work here were: 1) the

typical postures and activities encountered during EOD missions map to the postures considered in this
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work and 2) operative health considerations (described later in this section) require the provision of real-

time on-body classification of posture. As noted in the previous section, the EOD application guided the

data gathering and classifier evaluation methodology design in Chapter 4, prompting the use of specific

activity routines for example.

The EOD application shares characteristics with a wider class of applications that includes monitoring

of personnel such as firefighters and infantry. The similarities between the EOD application and other

personnel monitoring applications include the use of protective clothing, the typical postures and activities

encountered (including some not typically found in healthcare related or daily activity monitoring), and

the need for real-time physiological monitoring due to the harsh environments that may be endured by

the monitored subject. While EOD operative monitoring is the case study application within this thesis,

the similarities to the applications in the wider class will allow the work here to be generalised and applied

to those applications.

During a typical mission, the EOD operative has to wear a protective suit and helmet (which together

weigh over 40 kg) and carry a tool box of equipment the 100 or so meters to the site. To reach the bomb’s

location and fulfil the mission, it may be necessary to climb stairs, crawl through passageways, kneel, use

specialist equipment, or lie down. Examples of a subject wearing an EOD suit are shown in Figure 1.1

on the preceding page.

Within the enclosed suit micro-climate, evaporative cooling through perspiration is less effective. This

can lead to Uncompensable Heat Stress (UHS), which occurs when the body cannot cool itself as fast as

heat is being generated due to muscular exercise [33, 75, 117]. The result of UHS is that core temperature

increases beyond the safe range, leading to health problems and potentially death.

An additional problem is that of potentially dangerous build-up of Carbon Dioxide (CO2) within the

EOD operative’s enclosed helmet—it has been shown that, even when below toxic levels, excessive inhaled

CO2 concentrations combined with high temperatures may lead to cognitive impairment [25]. Within the

helmet, the CO2 concentration can increase to as much as a factor of 60 over the ambient level.

The suit manufacturer’s solution to these hazards is to integrate a cooling system within the suit that

blows cooled air into the helmet and onto the operative’s back. In theory this serves the dual purposes

of reducing the temperature within the suit and the CO2 concentration within the helmet. However,

the cooling system’s battery life is not sufficient to last for the entire mission duration (performed in

segments of approximately 1 hour) if the operative sets the fan to a high speed and then performs no

other control adjustments. The operative is likely to do this as their primary concern during the mission

is on disabling the explosive device.
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Figure 1.2: Mean skin temperature against P (Tsk,u ≥ Td|Tsk,t) with Td = 36.5 ℃ and chest cooling
applied. Curves are shown for individual activities and for an aggregate if activity information is not
known and all activities are equally likely. Reprinted from Kemp [66] with permission.

The Medusa2 system [66] provides a solution for effective cooling system control via automatic actua-

tion of the cooling fans based on sensors integrated within the EOD suit. Medusa2 senses skin temperature

at multiple locations and the CO2 concentration within the helmet. These measurements are used to

provide automatic control of the cooling via predictive modelling to determine the risk of UHS occurring

and to detect excessive CO2 concentration in the helmet.

A requirement of both the predictive health risk modelling and the air quality control implemented

within the Medusa2 system is the availability of real-time postural information. Figure 1.2 demonstrates

the impact of posture on the UHS risk prediction modelling performed by the Medusa2 system. It can

be seen that the probability of the future average skin temperature (that is, the skin temperature after

5 minutes) exceeding a critical threshold, Td, of 36.5 ℃ varies for any given current skin temperature

based on the subject’s posture/activity. For example, if the subject is performing the “Weights” activity

then the risk is significantly higher than for the “Treadmill” activity, particularly for skin temperatures

below 36 ℃. Knowledge of posture within the prediction algorithm thus not only allows potentially life-

saving warning of dangerous conditions but could also allow energy saving through providing a lower

level of cooling in some cases.

Two possible explanations for the demonstrated effect that posture has on heat stress risk are that

1) movement, such as walking, has a tendency to force air to circulate within the suit, whereas certain pos-

aa0682
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tures such as kneeling will restrict circulation of air and 2) each activity has an associated level of energy

use, and thus heat production, within the body. Kemp [66] shows a similar posture-dependency when

investigating CO2 concentration within the EOD suit helmet. It is thus clear that postural information

is an essential parameter to enable accurate prediction of health risks such as UHS.

In generic terms, the EOD application is considered to be a good case study for the posture classifi-

cation research presented in this thesis as it has three traits that generalise well to other applications:

1. A need to classify both static (such as sitting) and dynamic (such as walking) postures while the

operative is performing free-form activities. The operative is not being instructed or constrained as

they would be in a laboratory environment. For example, they may kneel while also moving objects

out of their path or lie down while also inspecting a suspicious device.

2. A need for real-time operation. Real-time posture classification is required as postural information

is supplied to an existing system (Medusa2) as an input to support modelling towards ensuring the

operative’s safety.

3. A need for local on-body processing. Classification of posture must be performed on-body (rather

than utilising a more powerful base station computer) as 1) a radio link to the base station cannot be

guaranteed, due to environmental obstructions such as buildings and 2) the unpredictable latency

of wireless links impacts on the required real-time operation specified in (2) above.

1.3 Research questions

The motivation for the work in this thesis is the development a real-time wearable BSN-based instrument

capable of classifying static and dynamic postures. As the instrument is targeted at a realistic application,

there are issues that must be considered that would not necessarily be encountered in a laboratory

environment or in a theoretical case study. The contributions in this thesis are largely around providing

solutions to these issues. The research questions answered in this thesis are:

1. Can the defined set of postures, namely sitting, kneeling, crawling, standing, walking, and lying on

front, back and one side, be accurately classified in real-time using an on-body wearable sensor-based

system?

2. How do transitions between postures affect classifier accuracy and can any negative impact be

reduced or eliminated?
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3. What is the design space for a posture classifier targeted at specific application requirements?

These questions are described in more detail as follows:

1.3.1 Can the defined set of postures, namely sitting, kneeling, crawling,

standing, walking, and lying on front, back and one side, be accurately

classified in real-time using an on-body wearable sensor-based system?

This question breaks down into two main sub-questions. First, can the given combination of static and

dynamic postures be classified with a high accuracy? Second, can that classification be performed in

real-time on a lightweight on-body device? These questions are addressed in Chapters 3 and 4.

1.3.2 How do transitions between postures affect classifier accuracy and can

any negative impact be reduced or eliminated?

In the grammar of human movement, a postural transition separates two distinct postural phases, such

as sitting and standing. Posture classification research has mostly ignored the problem of transitions,

however they are an important part of normal human movement and a successful classification system

must therefore handle them as correctly as possible. Understanding and addressing the problem of

postural transitions is the subject of Chapter 5.

1.3.3 What is the design space for a posture classifier targeted at specific

application requirements?

The term “design space” refers here to the parameters that must be chosen during the development of

a posture classifier in order to ensure that it is capable of a high classification accuracy. This question

thus breaks down into several sub-questions such as 1) how many sensors are required, 2) which data

feature best allows postures such as standing and walking to be distinguished, and so on. The factors

considered in the work here are: 1) extracted data feature choice, 2) data feature window size, 3) number

and location of on-body sensors, 4) training set size, 5) sampling rate, and 6) targeting of individual

postures. This investigation is described in Chapter 6.
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Figure 1.3: Overall structure of the work in this thesis, showing how each aspect contributed towards the
others.

1.4 Approach to research

Much of the discovery in this thesis was enabled by an iterative “prototyping-deployment-data analy-

sis” approach. This practical investigation took advantage of the driving application to provide realistic

constraints and requirements for the systems and algorithms developed. The experimentally-led investi-

gation meant that results found throughout the work could feed back into the development of the system

towards suitability for real-world deployments in the given application scenario.

Figure 1.3 summarises the overall structure of the work performed, along with the elements that

contributed to answering each of the research questions given in Section 1.3. The following subsections

describe the role of experimentation in the work performed (Section 1.4.1) and the role of iterations in
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the system prototyping (Section 1.4.2).

1.4.1 Experimentally led investigation

The work presented within this thesis is entirely experimentally focused. Data was gathered from human

subjects performing a series of experimental activity regimes by use of a prototype body sensing system

based on aspects of a posture classification platform developed in the course of this work. The activity

regimes were defined based on the needs of the case study application, reflecting the types of activities

that an EOD operative is expected to perform. The gathered data was used in training and testing

posture classifiers and so it was important that data was gathered from enough subjects and that the

regimes were implemented consistently across trials. The final implemented software algorithms were

implemented on a system derived from the platform described in Chapter 3, forming a full end-to-end

classification system. This allowed them to be experimentally evaluated to demonstrate the functionality

of the complete system and confirm that the overall accuracy matched the results found during offline

testing.

A key aspect of this experimental work is to ensure that results are likely to match those that would

be found when the system is deployed. There are several elements to this:

1. The use of Leave-One-Subject-Out Cross-Validation (LOSOXV), described in Section 4.3 on page 61,

ensures that the estimated system performance is not specific to any group of human subjects. Hu-

man subject specificity is a key problem in this domain. Ordinary stratified cross validation will

tend to overestimate the true performance on unseen human subjects and is thus inappropriate.

2. The experimental regimes are designed to be realistic and involve natural movements. Regimes are

further described in Section 4.4 on page 63.

3. Human subjects with a range of heights and body builds were used, as described in Section 4.6 on

page 67.

4. All the proposed algorithms were further evaluated through deployment on wearable hardware and

used in realistic scenarios involving tasked activities, as described in Sections 4.12 on page 76 and 5.5

on page 94.
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1.4.2 Iterative system prototyping

The investigations presented in this thesis required the implementation of a body sensing system for

data gathering purposes to enable the training and testing of posture classifiers. Furthermore, the full

end-to-end posture classification platform required evaluation through implementation as a prototype

on-body system. This led to an iterative approach to prototyping, starting with a system focused on

gathering the needed data and progressing through iterations as new features and software algorithms were

implemented over the course of the work. This progression allowed the real-time testing and evaluation

of the algorithms.

The hardware and software forming the basis for the prototype instrumentation system are described

in Chapters 3 and 4, with further hardware details in Appendix A.

1.5 Contributions to knowledge

In answering the research questions listed in Section 1.3, this thesis provides several contributions to

knowledge, as follows:

• The design of a platform that allows real-time on-body classification of static and dynamic postures—

a capability not present in existing work. The specific posture set consists of six static postures

(sitting, standing, kneeling, and lying on back, front and one side) and two dynamic postures (walk-

ing and crawling), of which kneeling and crawling are not commonly considered in the literature.

Classification is performed on a small, light embedded device using a simple easy-to-implement algo-

rithm. The classification algorithm used is a C4.5 decision tree, with a temporal feature (windowed

variance) to aid in distinguishing dynamic and static postures. This contribution is presented in

the work in Chapters 3 and 4.

• The design and implementation of several posture filters to prevent rapid (>1 Hz) classifier output

changes during posture transitions. The impact of transitions is often not considered in the posture

classification literature, as described in Section 2.5. The filters are evaluated in terms of their effect

on 1) classification accuracy and 2) the number of posture change events generated. They provide

a solution to handling postural transitions targeted at the case-study scenario but is also applicable

more generally. This contribution is presented in Chapter 5.

• An evaluation of factors that affect posture classification accuracy in a deployed system. The fac-

tors considered are: 1) extracted data feature choice, 2) feature window size, 3) number of sensors,
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4) training set size, 5) sampling rate, and 6) targeting of individual postures. A methodical investi-

gation of parameters such as this is absent in the existing literature. Where investigation is present,

it focuses on a subset of the factors and presents results specific to the system implementation used

(an overview of existing investigation is given in Section 2.4). Optimal parameters are selected for

the application scenario targeted here, but the results and discussion provide more general applica-

bility for similar decision tree based posture classification systems. This investigation is presented

in Chapter 6.

1.6 Publications resulting from this work

This section lists the academic publications by the author resulting from 1) the work presented in this

thesis and 2) related work within a separate research project. Appendix B gives a full list of publications

along with their abstracts.
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1.7 Acknowledgement of contributed work

The following is the contribution made by other researchers which has aided the progress of the work

presented in this thesis:

• Dr John Kemp and Dr Xiang Fei developed the accelerometer sensor board described in Sec-

tion A.1.2 on page 146. Testing of the boards and integration with the posture classification

systems was performed by the author.

1.8 Thesis structure

This thesis is structured as follows: This chapter described the motivation and aims of the work in this

thesis and presented the research questions and the resulting contributions. Chapter 2 provides a review

of the literature surrounding posture classification applications and techniques. Chapter 3 describes the

design of a real-time end-to-end posture classification platform along with two example usage scenarios

and an implementation used for algorithm evaluation in this work. Chapter 4 presents the algorithm

selected for posture classification, describes the data gathering methodology supporting the investigations

in this work, and assesses the suitability of the generated classifiers for the case study application.

Chapter 5 provides an investigation into the effect of transitions and demonstrates the method of handling

them chosen here. Chapter 6 presents an investigation into the design space for a supervised machine

learning based posture classifier, with a focus on C4.5 decision trees. Finally, Chapter 7 concludes on the

work and provides the answers to the research questions outlined in Section 1.3.



Chapter 2

Literature Review

The work in this thesis addresses problems encountered when designing and deploying BSN-based posture

classification systems in realistic (real-life) application scenarios. This chapter thus provides a discussion

of the literature in four main areas: 1) existing applications of BSN-based posture classification, 2) the

hardware platforms used and end-to-end posture classification systems developed, 3) data processing and

the system design space for posture classification algorithms, and 4) methods of approaching the real-life

issue of transitions between postures.

The aim of the literature review is to inform the thesis work, provide background and support for the

developments proposed by the author and reveal the gaps in knowledge and practice in the field. Thus,

the literature is drawn on as follows:

• Chapter 3: primarily, the review demonstrates that wearable systems capable of performing real-

time on-node posture classification are not found in published works. Furthermore, posture classi-

fication for the application class including military and emergency personnel such as infantry and

firefighters does not have a large body of published work available. Finally, the review aided in

determining the common requirements and constraints imposed on BSN-based posture classification

systems.

• Chapter 4: the review establishes a view of the common classifier algorithms used in the literature,

thus informing the author’s choices. The review also examines issues surrounding data gathering

and reporting on classifier training and testing.

• Chapter 5: the review reveals a gap in existing works regarding the handling of transitions in

applications faced with natural movement.

• Chapter 6: the review informs the investigation of the design space for on-body posture classification

systems. Particularly it highlights the range of system parameters used in prior work.

This chapter is structured as follows. Section 2.1 provides an overview of applications that benefit from

or require posture monitoring. Section 2.2 looks into BSN wearability. Section 2.3 presents an overview
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16 CHAPTER 2. LITERATURE REVIEW

of the BSN platforms that have been used for building posture classification systems and investigates the

choices of system parameters such as sensor positioning. Section 2.4 describes data processing techniques

and posture classification algorithms used in the literature as gives an overview of the posture classification

system design space. Finally, Section 2.5 describes the techniques used to classify or otherwise handle

posture transitions.

2.1 Applications of posture and activity monitoring

High accuracy, autonomous, easy-to-wear, real-time BSNs for posture classification can benefit a number

of scenarios in healthcare, leisure activities, and the workplace. The variety of systems and applications

reported in the literature shows that posture monitoring is a relatively well covered research subject with

a number of branches and applications from classification of daily activities [14, 42, 43, 79] to rehabilita-

tion [125] to real time movement recognition for martial arts [54] and manufacturing environments [111].

This section aims to give a broad overview of the types of applications targeted in the literature,

along with the requirements and constraints associated with them. The applications have been broadly

categorised as: daily activities, dance and sport, virtual reality, healthcare, fall detection, and work-

related. The issue of wearability of on-body systems is also discussed.

2.1.1 Daily activities

A common target application in the posture and activity classification domain is that of monitoring

everyday activities. This is a broad application area, potentially encompassing all activities that are

possible for a subject to perform in their day-to-day life. As such, the requirements and constraints

placed on BSNs for this applications tend to be relatively generic, for example focusing on the use of

small lightweight components. Often the primary goal of the research work is to show that the activities

can be classified, and this is investigated using an offline classifier rather than producing a deployable

real-time system. The large amount of freedom of movement and the unpredictable behaviour of humans

make classification of daily activities a challenging goal.

The activities considered are generally taken from one of three main groups: activities within the

home, leisure/fitness activities outside of the home, and office activities. Bao and Intille [14], for example,

developed a classifier targeting twenty different home and leisure activities including walking, sitting while

folding laundry, bicycling, and vacuuming. Huynh et al. [56] also focused on home activities, drawing a

difference between low-level activities (such as walking, sitting, standing, eating, and washing dishes—



CHAPTER 2. LITERATURE REVIEW 17

usually lasting up to several minutes) and high-level activities (such as cleaning the house—composed of

multiple low-level activities and lasting as long as a few hours). Bharatula et al. [18] presented a system

aimed at classifying daily office activities such as fast typing on a keyboard, moving a computer mouse,

writing on a whiteboard, and opening a cupboard.

The system developed by Pansiot et al. [96] integrates an ear-worn activity recognition sensor (e-AR,

which senses tilt and movement frequency spectrum) and ambient blob sensors that process a video

signal to identify blobs or silhouettes and their motion based on optical flow. The system is capable of

differentiating between sitting, sitting (sofa), standing, standing (head tilted), reading, eating, lounging,

walking, and lying down. Although Pansiot’s proposed system can be installed in a home environment,

it is not suitable for deployment in situations where the subject would move to other unplanned locations

due to the dependency on the subject being visible to the blob sensor. This problem motivates the benefits

of developing systems that consist only of body-worn sensors: to enable mobility and functionality in an

unconstrained environment.

Tapia [116] considered three activity categories: 1) static postures (such as lying down, standing, and

sitting), 2) activities with multiple intensities (such as walking, rowing/arm ergometry, and cycling), and

3) other activities (such as running, calisthenics, and moving weights). Similarly, Ermes [42] targeted a

mixture of indoor activities (such as lying, working on a computer, and standing reading a paper) and

outdoor activities (such as playing football, running, rowing, and cycling). Data processing and postural

information extraction is performed offline (rather than in real time during use of the system) which

is common in studies/research in this domain, although Ermes suggests real-time operation as a future

direction.

Laerhoven et al. [74] expanded on classification of daily activities by introducing a rhythm model that

captures the user’s normal daily pattern of behaviour. Activities included having breakfast, relaxing in

the sauna, and watching TV. The rhythm model allows the system to perform classification of otherwise

ambiguous sensor data. An example given in the work is of a user who gives a lecture every Tuesday

afternoon. If the result of activity classification was inconclusive at that time then the rhythm model

could improve the estimate.

To summarise, the primary motivation in this application area is the classification of a large number of

postures and activities. The focus is on the performance of the classifier itself rather than on a deployable,

real-time classification system.
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2.1.2 Dance and sports

Dance and sport often employ motion caption systems to either 1) provide an interactive output based on

the subject’s movements or 2) provide feedback as to whether specific movements have been performed

correctly (usually compared against a professional performing the same movements).

Bellis et al. [16] and Lynch et al. [83] designed wearable systems for an interactive dance environment.

Bellis et al. present a node design based on stackable 25 mm boards, each fulfilling a specific purpose

(such as sensing, power, and processing). Their aim was to produce small, modular, wireless devices with

integrated signal processing to allow the implementation of data processing algorithms to reduce data

transmission. Lynch et al. extend the concept put forth by Bellis et al., designing wireless nodes based

around 10 mm cubes incorporating the same capabilities as the 25 mm system. The primary consideration

is further reduction in size. The inclusion of wireless communication is presented as an advantage as it

avoids tethering the nodes (and thus subject) to a fixed location. They suggest that these same goals

would also make the nodes suitable for site monitoring deployments in industrial plants.

Another system based around motion capture, is that developed by Young et al. [128] (also described

by Arvind et al. [6]). This system is based on the Orient inertial sensor device which is dedicated to

motion capture in fast-movement applications. An on-body network of fifteen devices are used to capture

full body 3D movement in real time, which is translated into a real-time 3D model of the subject’s

motion using a rigid-body model. The on-body devices were designed with the goal of small size and

low weight to increase the wearability, with wireless communication to allow the subject to move freely.

Orientation estimates are calculated by each node in order to reduce the bandwidth requirements of the

wireless communication links. The intended battery life is 1–2 hours to accommodate stage performance

or multiple shorter takes in an animation studio.

For these systems it can be seen that the provision of small, light, wireless nodes is important to

support the application in an unconstrained environment. They increase the wearability of the system,

minimise deployment time, and allow the subject to move freely while wearing the system. Further, given

the high sampling rates and potentially large number of sensors in motion capture applications, on-node

data processing is used to reduce the bandwidth requirements.

2.1.3 Healthcare

Many examples of systems for posture classification exist in the patient care application area. Monitoring

of patients undergoing physical rehabilitation is a common application, as the information required for

assessment of progress is primarily motion-based. Other applications involve monitoring the status of
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Table 2.1: Targeted postures and activities in a sample of healthcare related literature.

Authors Application Targeted postures/activities

Long et al. [79] Healthy life styles Walking, running, cycling, driving, and
various sports

Pansiot et al. [96] Monitoring elderly
people

Walking, standing, reading, eating,
sitting, lounging, lying down

Ying et al. [127] Monitoring of people
with Parkinson’s
disease

Step detection

Motoi et al. [93] Rehabilitation Walking speed, posture changes

Mathie and Celler [85] Patients with
congestive heart
failure or COPD

Walking, falling, sit-to-stand, sit-to-lie,
standing, sitting, and lying on back,
front, and side

Zhang et al. [129] Monitoring of
correct posture

Sitting (back arched, leaning right,
leaning left, normal), standing (upright,
leaning forward), lying (right side, on
back, face down)

Steele et al. [110] Patients with COPD Walking

patients with conditions that either impair their movement or cause involuntary movement. Continuous

monitoring of patients at home is another important application area. Mathie et al. [85] point out that

monitoring a patient at home allows early detection and treatment of health status changes and that

“when monitoring the condition of patients with neurodegenerative or chronic diseases, a knowledge of

their body movement and physical activity levels during the day is important”. Table 2.1 gives a sample

of common applications and targeted postures/activities in the literature, where it can be seen that the

applications are broadly split into two categories: those that require classification of a wide range of daily

activities and those that require classification of a specific subset.

Ying et al. [127] implemented a system that provides automatic step detection for patients with

Parkinson’s disease. The system implemented consisted of two dual axis accelerometers mounted on

the patients’ feet. Other work by Bamberg et al. [12] describes a wireless system for performing gait

analysis (pattern of movement during locomotion). The platform includes two dual-axis accelerometers,

three gyroscopes, four force sensors, and two bidirectional bend sensors integrated into a shoe. While

their system was mounted within a shoe, one of the requirements was that it should not affect the gait

of the subject. They present their system as an alternative to current methods of gait analysis. Gait

analysis is generally carried out in a motion laboratory using expensive computer-based force and optical

tracking sensors that must be attached to the patient or via visual observation by a clinician wherein the



20 CHAPTER 2. LITERATURE REVIEW

results are qualitative, unreliable, and difficult to compare across multiple visits. Their system provides

repeatable quantitative results for longer periods of monitoring and allows gathering of data from subjects

in their home (it is noted that patients often perform better in laboratory tests than in their “natural”

environment, making such tests unreliable indicators of status).

Jovanov et al. [63] developed the ActiS sensor node, designed to be used as part of a wireless Body Area

Network (BAN). This node incorporates a bio-amplifier and two accelerometers, allowing the monitoring

of heart activity as well as the position and activity of body segments. The main focus is the node’s use

for monitoring the activity of physiotherapy patients outside of the laboratory. Jovanov et al. describe

in depth the limitations of existing monitoring systems and the requirements for replacement systems.

They note that current systems are not widely accepted for continuous monitoring primarily because of

the amount of equipment required, the unwieldy wiring between individual components, and the lack of

support for analysis of large banks of gathered data. Wiring has a negative effect on the patient’s comfort

and level of activity. Furthermore, the time taken to deploy such a system on the patient impacts on each

individual monitoring session by adding non-productive time (i.e. time spent not gathering data) to the

session. Clearly, wearable wireless technology could provide a solution to speed up deployment compared

to wired monitoring, and allow attachment to the patient for a prolonged period in an unconstrained

environment.

Motoi et al. [93] presented a method for monitoring posture and walking speed in the sagittal plane

(the vertical plane from front to back dividing the body into left and right halves). The system integrates

a trunk unit (with a sensor unit for measuring trunk angle) and lower body limb sensors (two sensor

units with an accelerometer and gyroscope), and is based on an earlier system that suffered from several

drawbacks (including the subject having to carry multiple pieces of equipment and a large quantity of

cabling). The new revision of the system reduced the number of on-body units from four to two, simplified

the wiring arrangements, and added additional sensors. This resulted in a more comfortable system for

the subject to wear, along with better results due to the additional data made available from the increased

sensor load.

Monitoring of patients with congestive heart failure and Chronic Obstructive Pulmonary Disease

(COPD) was studied by Mathie et al. [85]. A single triaxial accelerometer attached to a belt placed in a

pager casing was used for monitoring postures (such as standing, sitting, and lying on the left side, right

side, front and back), metabolic energy expenditure and movement. It is noted that the placement of

the sensor was not optimal, trading off some clarity in sensor data to improve the comfort and ease of

attachment of the device (as reported by test subjects). Data was transmitted from the sensor node to
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a computer with no on-body processing.

In healthcare monitoring applications the wearability is vitally important, even at the cost of delib-

erately selecting a non-optimal sensing location in order to improve the subject’s experience (Mathie et

al. [85]). In some cases, existing systems are bulky or otherwise uncomfortable, limiting user satisfaction

and the potential for long-term monitoring deployments. The need to address a subject’s comfort be-

comes more apparent when home monitoring is considered as an alternative to short-duration laboratory

or clinical monitoring. In these cases, the subject must wear the system for some large proportion of the

day. Bao and Intille [14] note that subjects often feel self-conscious if the on-body system involves wiring

that may be seen by others.

2.1.4 Fall detection

The area of fall detection is, in many ways, related to the healthcare application area. The primary goal

is usually to detect falls and near falls either as a means of monitoring the progression of an existing

health condition or, particularly with near falls, as a preventative measure for a subject who is suspected

to be at risk of falling (for example elderly patients).

Li et al. [76] present a fall detection system using two sensor nodes (consisting of an accelerometer,

dual-axis gyroscope, and single-axis gyroscope) placed on the chest and thigh. The system is aimed at

classifying daily activities (walking, sitting, jumping, lying down, running, walking on stairs, and running

on stairs), fall-like motions (quickly sitting), flat surface falls (falling forward, backwards, right, and left),

and inclined falls (falling on stairs).

Jeon et al. [61] conducted three different studies looking into posture changes, falls, and daily activities.

An accelerometer was placed on the chest and data was transmitted through Bluetooth to a PDA. The

intention of the system is that when a fall is detected the system will display an alert on the PDA. If the

alert is not responded to then an emergency centre will be automatically contacted. The advantages of

such a system include portability, convenience, and low cost. In addition, the user interaction in normal

situations is minimal, meaning that the device does not intrude on the subject’s activities.

Nyan et al. [94] designed a system for classifying walking, sitting down, standing up, lying down,

getting up, ascending stairs, and descending stairs, along with transitions between the postures (such as

sitting to standing). An accelerometer was placed on the subject’s shoulder and data was transmitted

via Bluetooth to a laptop or a phone. An SMS is sent to a pre-defined phone number if the person falls

or if an emergency button on the sensor node is pressed. Data was recorded from six subjects performing

a predefined set of activities over a period of five hours and the system achieved an overall sensitivity of
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98.83% and specificity of 94.98%. (Sensitivity is calculated as true positives divided by the sum of true

positives and false negatives or tp/ (tp+ fn) while specificity is true negatives divided by the sum of true

negatives and false positives or tn/ (tn+ fp)).

Jafare et al. [60] proposed a methodology to classify four transition movements—sit-to-stand, stand-

to-sit, lie-to-stand and stand-to-lie. The sensing system consisted of a sensor board incorporating a

three-axis accelerometer and a GPS, transmitting the sensed data via Bluetooth to a medical centre via

a laptop and a mobile phone. Two sets of experimentation were performed, the first with two subjects

imitating 68 types of falls and the second with eleven subjects performing a prescribed regime of walking,

sitting down and lying down. An overall classification accuracy of 84% was achieved for the four transition

types.

It can be seen that a common trend in fall detection is to provide an automated call for help

mechanism—Jeon et al. show an alert on a PDA that calls for help if the subject does not respond,

Nyan et al. transmit an SMS message to another phone if a fall is detected, and Jafare et al. transmit

data to a medical centre. This requirement appears more often in fall detection compared to other ap-

plications, likely due to the need for rapid response, because of the old age or fragility of the subjects,

and the intention for the systems to monitor continuously on a subject that is otherwise unsupervised.

2.1.5 Work-related applications

Generally, the work-related activity monitoring applications fall into one of two categories: 1) monitoring

the activities performed by the subject and 2) increasing the safety of the subject (through health or

environment monitoring). This section describes a sample of posture monitoring systems targeting work-

related applications, with a focus on workers operating in harsh environments.

Lukowicz et al. [81] researched the recognition of gestures for workers in a wood shop. The tasks

performed during tests consisted of assembling a simple object made of two wood pieces and a piece of

metal. Acceleration sensors were placed on both wrists and on the upper part of the right arm, along with

a microphone on the chest and on the right wrist. The main activities performed were hammering, sawing,

filing, drilling, sanding, grinding, screwing, and using a vice, for which classification was performed with an

accuracy of 83.5%. Lukowicz et al. describe several advantages of wearable context-sensitive computing

devices in the workplace, including the reduction in cognitive load (compared to accessing information on

a traditional desktop computer) and the ability to automatically record actions performed by the worker.

Recognition of tasks would allow automatic display of manual pages and alerting of the worker if steps

are missed.



CHAPTER 2. LITERATURE REVIEW 23

While not directly treating postures, Sung et al. [112] present a system for detection of shivering

aimed at workers in cold climatic conditions, using the case study of Army Rangers on missions. The aim

is to develop a real-time instrument able to classify cold exposure using non-invasive sensing methods and

minimal processing power. The instrumentation used for testing consists of two accelerometers (on the

right arm and chest), a 12-lead Electrocardiograph (EKG) set, heat flux sensors and rectal/oesophageal

body temperature thermometers. Subjects were submerged between waist and chest deep in cold water

(at either 10 ℃ or 15 ℃) and walked on a treadmill. Several models were tested, with the best—a Hidden

Markov Model (HMM)—being “effectively 100% accurate” when providing core temperature classification

(into “baseline”, “cold”, and “coldest” temperature regions) based on shivering activity. In addition to

offline testing, a real-time evaluation was performed, giving similar results. The system is interesting as

it involves real-time processing of acceleration data as well as mining over mixed physiological sensing

data sets towards arriving at well-being decisions.

Kemp [67] provides details of several wearable body sensor systems for monitoring workers in danger-

ous environments. Of these, two systems utilised accelerometers for monitoring activity. The commercial

LifeShirt system by VivoMetrics [77] includes a lightweight, machine washable chest strap with embed-

ded sensors that monitor the subject’s breathing rate, heart rate, activity level, posture (see description

below), and skin temperature, while the LifeGuard system presented by Montgomery et al. [92] includes

accelerometers and a variety of physiological sensors. In both cases, acceleration is measured at a sin-

gle location on the chest (the LifeGuard system uses two 2-axis accelerometers arranged perpendicular

to each other to capture the three independent axes of movement and one redundant measurement).

The LifeShirt is described as providing postural information (the specifics of this information are not

stated but appear to be the chest rotation relative to vertical), while the LifeGuard system provides only

information on activity level.

Similarly to the LifeShirt, the commercial PSM Responder [101] system by Zephyr Technology Cor-

poration is aimed at monitoring of workers in dangerous environments, including EOD operatives. Mon-

itoring is performed by the BioHarness (available as a chest strap or integrated into a garment) and the

captured data is transmitted to a PC where it is visualised. The specific outputs shown are the rotation

of the chest from vertical, the individual axis readings, and the vector magnitude of the axis readings.

The system thus does not classify posture in the sense considered by this thesis, giving only the angle of

the chest.

Biswas and Quwaider [23] describe a posture classification system for monitoring the activity of

soldiers in the field, which performs classification in real-time but not on-body. Primarily, the focus is on
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transmitting contextual information and safety alerts to other personnel so that appropriate decisions can

be made with regard to rescue attempts or provision of medical aid. The specific postures identified are

sitting, standing, walking, and running, and classification is performed using a PC rather than on-device.

Extension to support online on-body classification of posture is suggested as a future work direction.

The work presented in this thesis is based around the provision of real-time posture classification via

wearable nodes performing on-body processing of data. The primary reasons for this are 1) that on-body

transformation of data into information reduces the transmissions required by the system to an external

base station (as touched on by Curone et al. [35]) and 2) to allow autonomous operation in the event

that the communication link to the base station cannot be maintained. The systems described in this

section either do not perform posture classification (providing either the rotation angle of the device or

the raw accelerometer data itself) or perform the classification using a PC to which all data is transmitted.

Furthermore, crawling and kneeling are postures that must be classified in certain applications such as

firefighter monitoring [26, 36], but are not classified by systems presented in the works reviewed.

A consideration in the design of wearable systems is that of wearability. This is particularly the case

in medical applications (as described in Section 2.1.3) as the subject may be wearing the monitoring

system for long durations of time. The next section thus reviews published works on wearability.

2.2 Wearability

As described in Sections 2.1.2 and 2.1.3 the wearability of an on-body system directly affects the user’s

satisfaction with the system and thus the likelihood of them opting to use it. Furthermore, for posture and

activity monitoring applications, it is desirable to avoid impeding or restricting the wearer’s movements.

When considering a system’s wearability, Knight et al. [70] states that the level of comfort may be

affected by a number of factors such as: physical dimensions of the wearable devices (for examples their

size and weight), how they affect movement, and any pain caused either directly (for example rubbing

against the skin or producing heat) or indirectly (for example muscle fatigue).

Gemperle et al. [47] conducted research to locate, understand, and define the locations on the human

body where wearable objects can be placed without interfering with the movement of the wearer. The

most unobtrusive locations found on the body for wearable objects were: (a) collar area, (b) rear of the

upper arm, (c) forearm, (d) rear, side, and front ribcage, (e) waist and hips, (f) thigh, (g) shin, and

(h) top of the foot. A location that is often suggested as suitable is the hip, as it is closer to the center

of gravity and the weight of the object is therefore less perceivable [17, 41, 47, 121]. Dunne [41] states
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that the weight that can be easily carried differs across user groups (men versus women, adults versus

children versus older adults, and so on), meaning that establishing acceptable limits requires the target

user group to first be determined. Overall, while it is accepted that the weight of a wearable object

should not hinder the subject’s movement or balance, there is no precise measure given in the literature

as to what suitable limits are.

The wearability of on-body systems can be enhanced via integration of the devices into clothing and

the use of flexible electronics, both of which have been made possible by advances in miniaturisation of

electronics generally and sensors specifically. Lymberis and Dittmar [82], Meng and Kim [88], and Patel et

al. [98] all provide examples of monitoring systems targeted at health-related applications incorporating

one or both of these techniques in order to increase wearability. Alternatively, sensors may be made both

less intrusive and less visible by disguising them as jewellery. Asada et al. [7], for example, present a

photoplethysmographic (PPG) sensor designed to be worn as a ring, while Degen et al. [37] present a

system for fall detection built into a wrist-watch form factor.

In this thesis the sensor positions (lower arms, upper arms, chest, hip, ankle, thighs and calves) match

those considered by Gemperle et al. [47] to be unobtrusive. The weight of the sensors is distributed across

different parts of the body, while the weight of the on-body nodes is located around the waist in a pouch

closer to the center of gravity. This should allow the system to be unobtrusive to the wearer.

2.3 BSN platforms for posture monitoring

Due to the need to use small and lightweight on-body components as shown in Sections 2.1.2 and 2.1.3,

BSN systems have historically been built around computationally constrained hardware platforms with

low power consumption ([39, 62, 49]). While the increasing popularity of smartphones and tablets has

driven the production of lower cost and more capable platforms, these tend to consume more power and

thus have a shorter battery life.

In surveying the literature in the posture and activity classification area, is clear that there has been

no convergence on a particular hardware platform to support either data acquisition or end-to-end posture

classification systems. Of a sample of 21 papers from the posture monitoring literature, as described in

Table 2.2, 13 used an off-the-shelf monitoring platform, while 8 used custom node designs. In both cases,

hardware platforms based on a range of technologies have been used. In addition, a variety of methods

were used to transmit the data from the on-body nodes or to store it, as shown in Table 2.3.

Farella et al. [43, 44] and Young et al. [128] both developed a bespoke on-body node as the basis
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of their systems (the WiMoCa node and the Orient-2 system, respectively). The WiMoCa is a wireless

sensor node containing an ATmega8 microcontroller, a TR1001 868 MHz radio chip, and an LIS3L02DQ

accelerometer, while the Orient-2 is based around a dsPIC 30F3014 microcontroller, a CC1100 868MHz

radio chip, and incorporates an MMA7260Q three-axis accelerometer, two HMC1052 two-axis magne-

tometers, and three ADXRS300 gyroscopes.

In the case of off-the-shelf hardware, the lack of commonality in platform choice between different

researchers is likely to be due to a combination of reasons, with the main two being: 1) availability of

particular platforms at the time the research was conducted and 2) the researchers’ prior experience

with particular hardware platforms or associated software (such as the OS or programming languages

supported). Bespoke systems, by their nature, are varied and, in addition to the reasons of hardware

availability and familiarity of the researcher with specific technologies, reflect a need to optimise perfor-

mance for a given application. These factors may help to explain the wide variety of platforms (described

in Table 2.2) using a number of different wireless communication protocols (as listed in Table 2.3). Prac-

tically, the criteria for platform selection specified by the researchers are often similar (most commonly

around the devices being small and light and having a low power consumption) and much of the work pre-

sented could feasibly be implemented on a common platform. The devices selected (as listed in Table 2.2)

are usually based around a 8- or 16-bit microcontroller with a small amount of RAM and frequently an

integrated ADC, along with a radio (integrated with the microcontroller or as a separate chip).

Notably, it can be seen in Table 2.2 that in 18 of the 21 works reviewed, classification was performed

on a PC or laptop rather than using an on-body device (two of the remaining three [39, 65] performed

classification partially on the device and partially on a PC, while Maurer et al. [87] performed classification

on the device but did not give any results). As already established in Section 1.1, autonomous operation

is an essential feature for posture classification systems deployed in applications i) requiring a high degree

of mobility for the wearer of the system or ii) where the postural information is used as input to another

subsystem deployed in the on-body system. Deployment of the classifier on an on-body node was noted as

a goal in several works, such as Curone et al. [35] and Zhang et al. [129]. However, the the fact that none of

these algorithms have been deployed and evaluated on-node means that their real-life performance is not

known. Deployment in this way is a crucial step in determining not only their performance generally with

regard to the figures quoted as the state of the art, but also their suitability for deployment in applications

requiring real-time on-body classification (such as the ones presented in Section 2.1.4 and 2.1.5).

The lack of standardisation on a given platform or communication method means that work cannot

easily be shared and thus development effort is likely to be heavily duplicated between projects. Given
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Table 2.3: Methods used for data communication / storage in literature.
Communication / Storage References
802.15.4 [4, 27, 39, 49, 62, 65]
Bluetooth [20, 35, 69, 87]
Bespoke 2.4 GHz protocol [72, 78, 95, 126, 122]
Bespoke 868 MHz protocol [44, 128]
Local storage [42, 79, 129]
Wired comm. [46]
Not stated [103]

no “standard” accepted platform for this type of work and to allow for 1) faster prototype iterations and

2) the deployment of complex algorithms, a relatively powerful hardware platform was chosen for this

work in comparison to the platforms described in this section. The chosen platform is described in detail

in Section A.1. Furthermore, the classification system described in this thesis is capable of real-time on-

body posture classification—of the works reviewed here, only one is presented as having this capability

(described by Maurer et al. [87], though the posture set is smaller than that considered in this thesis and

no results are given for online classification).

2.4 Classification methods for posture monitoring: data pro-

cessing and system design space

Within the posture and activity classification literature, a variety of algorithms have been applied to

the task of processing and classifying sensor data, commonly acceleration and/or gyroscopic data. Most

approaches in the literature make use of some sort of machine learning to support classification, and as

such require training data in addition to data used for validation/testing. This section describes some of

the methods used, along with other relevant details regarding training and testing classifiers.

This section identifies the common steps taken in designing, implementing and evaluating machine

learning based classifiers. The first step in this process is data gathering for training and testing of the

classifier. This data is pre-processed (for example to adjust for sensor calibration and filter out noise in

the samples) and then any required data features (such as variance or Signal Vector Magnitude (SVM),

as described in Section 2.4.3) are extracted. Following classification, additional steps may be taken to

attempt to increase the accuracy of the classifier (as described later in this section).

The literature revealed that the number of subjects used when gathering experimental data to support

classifier training and testing is highly variable. Xue et al. [123] for example used data from 44 subjects,
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while Takeuchi et al. [114] used data from only 3 subjects—using one for training the classifier and two for

testing it—and Huynh et al. [56] used data collected from one subject (performing the set of activities four

times). It is commonly accepted that the training of a classifier that will generalise well to unseen subjects

requires data gathered from a variety of subjects. However, the wide variety of subject numbers found

in the literature and the general lack of justification for employing those numbers of subjects seems to

imply that subject selection is based largely on availability and convenience rather than scientific rigour,

particularly in cases where very low numbers of subjects are used. It is possible that the root cause of

this is that the researchers are focused on designing and implementing a prototype posture monitoring

system rather than performing rigorous validation of the classifier.

It is clearly important that rigour be applied to the data gathering process to ensure meaningful

validation of the classifier. This thesis therefore brings well-evidenced analysis of the optimal number of

subjects to be used for training (see Chapter 6) as well as introducing a robust methodology for testing

and evaluation of classifiers (see Chapter 4).

The processing of acceleration data prior to classification is not commonly considered in the literature

beyond extracted data features. In some cases, however, the data is filtered to remove noise or in an

attempt to separate movement and gravitational signals. Khan et al. [69], for example, apply a moving

average, Kang et al. [64] apply a low-pass filter, Karantonis et al. [65] apply a median filter to remove

noise and a low-pass filter to separate gravitational from movement-related acceleration, Mathie et al. [84]

applied a high-pass filter to remove the gravitational component of the acceleration and then a median

filter to remove noise, and Sharma et al. [106] apply a moving average to remove noise and a high-pass

filter to separate gravitational and movement acceleration. Other types of pre-processing are performed

based on the data gathered and the needs of the analysis performed. Parkka et al. [97] perform calibration

and resampling of the data, while Sharma et al. [106] perform a combined unit conversion and calibration

step. Other than the examples above, sensor calibration is rarely mentioned in the literature. Calibration

was considered by the author here and reported in Section A.1.3 on page 147. An analysis of the effect

of uncalibrated sensor data on decision tree accuracy was performed. It was found that the classification

accuracy was not affected by the lack of sensor calibration (with linear calibration and C4.5 decision tree

classifiers as used here).

The next stage of data processing is feature extraction. The use of data features provides classifiers

with more information than can be observed from the raw samples alone, particularly with regard to the

evolution of the signal over time. Features are fundamental to the work in this thesis and their use in

existing work is investigated in Section 2.4.3. Researchers have investigated a large number of features
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in an attempt to provide sufficient information for the classifier to distinguish the required postures (for

example Frank et al. [46]). Lombriser et al. [78] and Atallah et al. [8], started with a large set of feature

candidates and selected a small number of features based on an analysis of their outputs.

Once the data has been pre-processed and features have been extracted, classification is performed.

There are a large number of classification methods used in the literature, often based around supervised

machine learning algorithms. Methods used include Support Vector Machines [4, 53, 56, 71, 113, 123, 124],

Bayesian techniques [8, 14, 46, 78, 79], Artificial Neural Networks [4, 69, 97, 126], Decision trees [14, 21, 31,

78, 79, 87, 97, 109], Fuzzy rule based methods [4], Hidden Markov Models [22, 39, 50, 56, 59, 90, 95, 114,

103] and K-means clustering [19, 58, 87]. Decision trees are relatively popular as they are computationally

simple compared to many of the other methods, and provide, by and large, high classification accuracy.

This makes them ideal for deployment on resource constrained on-body nodes. Their use in the posture

classification literature is described in more detail in Section 2.4.2.

Following classification, post-processing is occasionally performed to increase the accuracy of the

classification results. Parkka et al. [97], for example, applied a median filter to the output of the classifier

to eliminate short duration postures.

2.4.1 Testing and evaluation

There are two important factors in the testing and evaluation of a classifier: 1) whether the testing is

performed offline, based on data traces, or as part of a deployed classification system and 2) in the offline

case whether the data is truncated to remove transitions, or is fully representative of natural movement.

In the literature surveyed, the majority of the classifier testing was performed offline. There are some

examples of realistic deployments for testing. Karantonis et al. [65] provided the results of online testing

of their classifier with six subjects performing 12 tasked activities, and reported an overall accuracy of

90.8%. Dong et al. [39] presented results for a system deployed on a single subject in real-time, finding

a classification accuracy of around 90% during various physical exercise type activities. Quwaider et

al. [103] deployed their system on a single subject performing several activities such as sitting, standing,

and lying, and reported an accuracy above 90%. Online testing of this type is important in confirming

the performance of the classifier, particularly when performed in realistic (non-laboratory) settings.

In comparison the results above, the author’s work resulted in classifiers that were tested and evaluated

both offline and deployed, using real-time classification in realistic scenarios. An average classification

accuracy of 96.3% was obtained during offline testing using 17 subjects. Real-time classification accuracy

was 97% (as an average for five subjects performing tasked activities while being monitored).
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a > 5

RESULT 1

b > 2

RESULT 3RESULT 2
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b < 2
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a = 6

b = 1

ROOT

NODE 1

Figure 2.1: Simple decision tree example. The dashed arrows indicate the nodes that would be visited
given the example data values.

The second factor, that of truncation, is rarely discussed in the literature surveyed. It is likely that in

most cases only the results belonging to annotated periods of activity are used in calculating the classifier

accuracy, as the technique for determine a “correct” result during a transition is not stated. In some

cases, a particular point during the transition is assigned as the “change over” moment (for example,

Parkka et al. [97] performed annotation via a tablet device during experimentation and created a change

over point when selecting a new posture during each transition). The author here presents an alternative

method in Chapter 5.

2.4.2 Decision Trees

Decision trees are a common classification tool that use a tree-like graph as a predictive model. A

common decision tree based algorithm used in posture classification is C4.5 [14, 21, 31, 78, 79, 87, 97, 109],

developed by Quinlan [102]. A simple example of a decision tree of this type is shown in Figure 2.1. An

advantage of decision trees is that once trained, they are computationally simple and thus suitable for

implementation on constrained embedded platforms (as evaluated by Maurer et al. [87] in terms of clock

cycles and execution time per classification). Additionally, they do not contain loops and thus the time

taken to perform a classification is bounded by the microprocessor specification and the depth of the tree.

This makes decision trees a suitable choice for applications that require real-time classification (such as

those described in Sections 2.1.4 on page 21 and 2.1.5 on page 22).

Based on results reported in the literature, the classification accuracy obtained for posture classifi-

cation when using decision trees is similar across different research projects: for example, 84.3% [14],
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86% [78, 97], and 89.3% [3]. Maurer et al. [87] reported classification accuracies of between 85.2% and

92.8% depending on the sensing location selected. The accuracy found by Tapia et al. [116] was only

56.3% when different intensities of activity were considered (for example, walking at various speeds), in-

creasing to 80.6% when the intensities were merged into a single class per activity. Karantonis et al. [65]

used a method similar to binary trees to distinguish between periods of activity and rest, recognise the

postural orientation of the wearer (sitting, standing, walking, and lying on front, back, and side), and

provide an estimation of metabolic energy expenditure. Recognition of postural orientation was carried

out with 94.1% accuracy. The similarity in classification accuracy across the reported results may reflect

a property of decision trees as applied to realistic data. As a rule, researchers will attempt to produce a

system that matches or exceeds the performance of the work reported in the existing literature. For ex-

ample, if the state of the art consists of classifiers capable of achieving a given accuracy, then researchers

will attempt to create a classifier that either 1) achieves a higher accuracy or 2) achieves the same ac-

curacy but expands upon the capabilities of existing classifiers (for example, classifying a wider range of

postures, running on a more constrained hardware platform, or targeted at use in an application that

imposes additional requirements).

To give an example beyond decision trees, He et al. [53] reported a classification accuracy of 92.3% us-

ing a Support Vector Machine based approach classifying data gathered from an ADXL330 accelerometer.

However, in a publication based on the same work two years later, Xue et al. [123] reported an accuracy

of only 86.8% using the same type of classifier and the same sensing device. A contributing factor for the

decreased accuracy in this case appears to be that a larger number of postures are considered—ten in the

later paper compared to four in the earlier one. Despite the decreased accuracy, the work is considered to

be an advance because it increases the capability of the system while still providing an accuracy similar

to that found elsewhere in the literature.

2.4.3 Posture classification system design space

The design space for posture classification systems is complex, encompassing a variety of system param-

eters that can impact the accuracy of the system (such as the positioning of sensors, the sampling rate,

number of sensors and feature extraction methods used). However, similar to the selection of hardware,

there is little commonality between systems reported in the literature with regard to these parameters.

In addition to causing duplication of investigative work and lack of unification over the classifier design

space, this may also make it difficult to meaningfully compare performance across different work, ob-

scuring the reason for particular systems performing better or worse than others. To demonstrate the
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Figure 2.2: Number of on-body sensors used in posture/activity classification research.

range of options and design parameter settings, 43 papers were selected from the posture classification

literature. This section analyses these papers in terms of five major parameters: the number of sensors

used, the positioning of the sensors, the sampling rate used, the features extracted from the gathered

data, and the postures targeted for classification.

Number and positioning of sensors

Figures 2.2 and 2.3 show the distribution of number of sensors and sensor positions respectively over the

set of papers considered. It can be seen that there is little consistency in sensor number and placement

between different research projects and that:

• The most common number of sensors used was 1. Common locations include the hip [46, 114, 84,

79, 65, 20], wrist [126, 90, 74, 59, 109, 108] and chest [68, 15].

• None of the papers surveyed used more then 9 sensing positions.

• The most common sensor positions are the hip and wrist. This is likely to be due in part to the

method of placing the sensor on the subject, as wearability is increased by designing the node to

be mounted on a belt or building it into a watch style housing.

Table 2.4 provides additional detail on the sensor positions used in the reviewed works, where it can be

seen (in addition to the points already discussed) that there is little consistency between selection of the

left or right side of the body for sensor placement.
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Figure 2.3: Sensor positioning in posture/activity classification research.

Sampling rate

The sensor sampling rates used in the papers surveyed varied from 10 Hz to 100 Hz, as shown in Figure 2.4.

100 Hz appears to be the most common sampling rate. No justification is generally given for the choice

of sampling rate, though it may be related to the capabilities of the hardware platform used to collect

the data. Despite 100 Hz being commonly used it has been shown that posture classification can be

performed at much lower rates. Karantonis et al. [65], for example, stated that almost all measured body

movements involved frequency components below 20 Hz and that even while walking 99% of the energy

is contained below 15 Hz. Antonsson and Mann [5] concluded that 98% of the power for gait analysis is

contained below 10Hz, and Bouten et al. [28] state that “[when] walking at natural velocity the bulk of

acceleration power in the upper body ranges from 0.8–5 Hz”. Using the results of Bouten et al. as an

example, it is possible to conclude that 10 Hz is the lower bound (Nyquist rate) to capture the frequency

components of walking.

In the work here, a sampling rate of 10 Hz was used in the implementation of the deployable real-time

systems and Section 6.7 on page 116 demonstrates that this is sufficient to allow accurate classification

of the set of eight postures considered here.

Extracted data features

As with the other parameters considered, there is little commonality in extracted data features used in the

work surveyed. In some cases (particularly where only offline classification was performed), researchers



36 CHAPTER 2. LITERATURE REVIEW

10Hz 20Hz 25Hz 30Hz 32Hz 45Hz 50Hz 100Hz

Sampling rate

N
u
m

b
e
r 

o
f 
re

s
e
a
rc

h
 p

ro
je

c
ts

0
2

4
6

8
1
0

Figure 2.4: Sampling rates used for accelerometer data gathering in posture/activity classification re-
search.

have used a large number of features simultaneously in an attempt to provide sufficient information for

the classifier to distinguish the required postures. Frank et al. [46], for example, selected 19 features

from a larger set. Other researchers have started with a large set of feature candidates and selected a

small number of features based on an analysis of their outputs for the different postures. Lombriser et

al. [78], for example, evaluated 8 features and selected 3 (mean, variance, and energy), while Atallah et

al. [8] analysed a set of 13 features and determined that entropy, covariance, and energy provided the

best results.

Over the set of papers surveyed, the most popular features were: mean (17 papers), variance (15

papers), energy (10 papers), Root Mean Square (RMS) (6 papers), and Signal Magnitude Area (SMA)

(4 papers). Note that these features and others have been considered by the author here and are fully

described in Section 6.4 on page 105, along with an analysis of classification accuracy delivered.

Targeted postures

Figure 2.5 shows the postures and activities classified in the work surveyed. The five most common

postures are walking, standing, sitting, running, and lying, followed by more complex activities that

add additional movements to (or combine) these five (for example, vacuuming will involve standing and

walking, while cycling is similar to sitting but with additional leg movement). The choice of postures and

activities to classify is heavily dependent on the application researched—whether it is focused on daily

activities or sports for example.
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Figure 2.5: Postures and activities classified in the literature.

In the work here, the postures selected include four of the common postures studied by others (walking,

standing, sitting, and lying), and add kneeling and crawling to these. The two additional postures

appear to be rare in posture classification research and yet are required for applications such as firefighter

monitoring [26, 36].

To summarise the discussion in this section, the design space for posture classification systems has

a large number of options available (in the number of sensors used, the positioning of the sensors, the

sampling rate used, the features extracted from the gathered data, and the postures targeted for classi-

fication) and little standardisation has occurred to date with regard to the best selections for any given

purpose. Chapter 6 provides an in-depth analysis of the design space and gives advice with regard to

selection of the optimal system parameters.

2.4.4 Main limitations of existing posture classification research

A workshop [80] highlighted the main areas in which existing posture classification literature was lacking.

Primarily, the issues identified were related to inadequate or incomplete reporting, a lack of reasoning

and justification for the work, and the use of unrealistic evaluation methods. For example, Amft [2]

states that “the particular kind of work (e.g. user study, algorithm development, etc.) and deployed

algorithm class (e.g. activity classification, repetitive or single-instance recognition, activity spotting) is

typically not sufficiently specified upfront” and that “aspects of how evaluations are performed, are often

left unspecified, unconsidered, or are just omitted in reports”. Of the problem areas identified by the
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workshop participants, the following are investigated in this thesis:

1. Moving from laboratory-based evaluation towards addressing realistic challenges. This includes

analysis of the proposed solution on realistic data, assessment of system robustness to realistic

conditions, and establishing a link between what was studied and the real-world applications it

could be applied to [24]. More fundamentally, a suitably defined motivating scenario or reasoning

for the work presented is required [100]. The theme throughout this thesis is the requirements and

constraints set by a class of applications including, as the driving case study, monitoring of EOD

operatives during missions. Chapters 4 and 5 include realistic evaluation of a prototype posture

classification system incorporating the algorithms proposed in this thesis.

2. Clear and detailed reporting of methodology (including annotation methods [29]) and evaluation

methods (including analysis/performance metrics [2]) [34]. Chapter 4 describes in detail the data

gathering and evaluation methodology followed for the work presented in this thesis.

3. Justification of system design considerations, including sensor placement, classification algorithms,

and calculated data features [99, 100]. Each of these items is discussed in this thesis: system design

is detailed in Chapter 3, sensor placement and calculated data features (among other system and

data gathering parameters) are investigated in Chapter 6, and the selected classification algorithm

is justified in Chapter 4. Furthermore, Chapter 5 gives an in-depth discussion of an extension to

the classification algorithm to handle postural transitions in a meaningful way.

The concerns summarised above are related to the way in which results are reported—justifying why

design choices were made, evaluating classifier performance on realistic data, and clearly stating how

the experimentation was performed and the results were analysed. This information is important in

allowing other researchers to reproduce the work or adapt elements of it and apply them to a different

usage scenario. Furthermore, as pointed out by Amft [2], the results presented are often the “best case”

results and do not take into account, nor do the authors explicitly report, realistic limitations. The

areas of concern summarised here are thus a major driver for the reporting in this thesis, demonstrated

in Chapters 4 (data gathering and evaluation methodology), 5 (transitions handling, an inherently real-

world challenge), and 6 (system design parameters).
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2.5 Handling transitions between postures

The handling of transitions is an aspect of posture classification that is not commonly considered during

the classifier design stage. The focus of classifier research is often purely on creating a system that can

perform classification of the selected postures. Data gathered to support the offline design and testing of

the classifier is thus truncated to include only the postures of interest. This means that the accuracy is

not as high as anticipated when the classifier is deployed for real-life monitoring, because the classifier is

presented with data samples that it was not trained to classify.

There has been some effort within the literature to: 1) analyse specific types of transition to directly

perform classification of them, and 2) develop fall detection systems based around transitions from a

given posture to lying down.

A transition that is often targeted for detection or classification is that of sitting-to-standing (and the

inverse, standing-to-sitting). Atallah et al. [8], Barralon et al. [15], and Jiang et al. [62] all looked into

detecting such transitions. Godfrey et al. [48] investigated detection of sitting-to-standing and standing-

to-sitting transitions to aid in classifying standing and sitting when using only a single sensor placed

on the chest. Aloqlah et al. [1] looked into transitions between standing, sitting, and lying using data

gathered from a three axis accelerometer mounted in a headband. A discrete wavelet transform is used in

combination with a fuzzy logic inference system to detect the transitions and infer the current posture.

Fleury et al. [45] investigated transitions that occur in daily life such as sitting-to-standing and

standing-to-lying down. A MMA7260Q accelerometer and a HMC1053 magnetometer are integrated into

a data acquisition board, which is placed under the subject’s left armpit. Classification is performed

by first segmenting the signal using thresholds and then applying a wavelet analysis. Thirteen subjects

performed a prescribed regime that involved sitting on a chair, moving around and lying on a bed,

recorded by five webcams for verification. An accuracy of 70% correct classifications was achieved over

the 13 subjects. Jafare et al. [60] also proposed a methodology to detect transitions between sitting,

standing, and lying. Two sets of experimental data were analysed: 1) two young subjects imitated 68

types of falls, and 2) four young subjects and seven elderly subjects performed a prescribed regime of

walking, sitting down and lying down. An overall accuracy of 84% was achieved for the four transitions.

Khan et al. [68] investigated transitions between sitting, standing, walking, and lying, along with several

postures, achieving an average classification accuracy of 97.9%.

Li et al. [76] present a fall detection system using two sensor nodes placed on the chest and thigh.

Data was collected from three male subjects undertaking the following activities for 5 seconds each: daily

activities (walking on stairs, walking, sitting, jumping, lying down, running, running on stairs), fall-like
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motions (quickly sitting down upright and reclined), falls on a flat surface (falling forward, backward,

right, and left), and falls on an inclined surface (falling on stairs). When a transition to lying is detected,

the acceleration and angular velocity are analysed to determine if the transition was intentional. If the

transition was not intended then it is classed as a fall.

Detection of transitions can be useful in some applications such as detecting falls or as additional

information to aid in classifying postures. However, the work in this thesis required a different approach

to that found in the literature surveyed. Here, the goal is not to detect the transitions as such, but

to diminish their negative impact on the accuracy of a classifier when used in a real-life deployment.

Chapter 5 describes the method used to achieve this goal.

2.6 Summary

Posture classification using a BSN-based system is the topic of a wide variety of research projects, targeted

at applications ranging from providing long-term remote healthcare to increasing work safety. In these

applications, the benefit of such systems lies in either 1) replacing bulky existing equipment with smaller

lighter on-body sensing nodes or 2) in providing postural information where none was previously available.

The systems presented in the literature generally focus on two areas of BSN-based posture classification:

evaluation of posture classifier performance (usually offline), and the use of small and light on-body devices

to increase wearability. Real-time on-node classification of posture is required for several applications

(such as monitoring of firefighters) but is generally not performed, despite being noted as a goal in some

cases.

Despite the wide range of applications and the number of research projects targeting them, the design

space for posture classification systems has not been extensively analysed and there is little commonality in

the hardware platforms used. For example, a survey of 21 papers showed that 13 of them used off-the-shelf

devices (12 different devices in total) and the remaining 8 each developed their own hardware platforms.

Of the projects, 17 used wireless communication: 802.15.4 (6 projects), Bluetooth (4 projects), generic

2.4 GHz (5 projects), and 868 MHz (2 projects) radios. The system parameters selected in the literature

also showed little commonality in terms of the number of sensors used, the positioning of the sensors,

the sampling rate used, the features extracted from the gathered data, and the postures targeted for

classification. Chapter 6 presents an investigation into the design space for posture classification systems

and provides guidelines for developing a posture classification system targeted at real-life application

deployment. Reporting of data gathering methodologies and robust classifier evaluation methods are
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considered to be lacking in the posture classification literature. The methodology used here is described

in Chapter 4.

Handling of transitions within the literature surveyed is focused on detecting specific types of transition

either as an end in itself, to aid in classifying other postures, or as a step towards detecting falls. Detection

of transitions involving sitting and standing is particularly common within the literature surveyed. The

approach taken within this thesis, however, is to target the classifier only at the specific postures required

and to implement a means of reducing the negative impact of transitions on the classifier accuracy.

Chapter 5 provides details of the technique used.

The work in this thesis builds upon works from the literature with regard to the system design and

classifier selection. Specifically, the C4.5 decision trees used here (see Chapter 4) were also used for

classification by Bao and Intille [14] and Tapia [116], the positioning of accelerometers on the body (as

shown in Chapter 6) are similar to those used by Guenterberg et al. [49] (and match those later used by

Xu et al. [122]), and the set of features extracted from the raw sensor data (presented in Chapter 6) was

based on the work of Ermes [42], Bao and Intille [14] and Mathie et al. [85].
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Chapter 3

Posture classification platform

3.1 Introduction

It was shown in Sections 2.3 on page 25 and 2.4 on page 28 that the literature provides no standard way

of designing and building posture classification systems, though there are some commonalities in broad

terms with regard to the processing stages implemented. This chapter presents the concept and design

of a general end-to-end platform for real-time posture classification. The platform presented is named

Class-act, since it is a classifier of activity. The platform is targeted at two usage scenarios:

• A self-contained system providing postural information to an external system (for further process-

ing/modelling or visualisation).

• A configurable investigative instrument for posture-related investigations.

The Class-act platform architecture specifies two roles that individual BSN sensor nodes can perform:

1) Primary Nodes responsible for classification and relaying configuration commands to the Secondary

Nodes and 2) Secondary Nodes that are responsible for gathering data and passing it to the Primary

Node. The architecture allows for a single Primary Node along with any number of Secondary Nodes as

required by the application. The hardware used is not specified by the platform design, allowing flexibility

in specific implementations (in the use of less-wired or completely wireless communication, the number

of sensors per node, and so on). Section 3.2 describes the platform design in detail.

The work in this chapter, in combination with Chapter 4, forms one of the three contributions brought

by this thesis (to quote from Section 1.5):

• The design of a platform that allows real-time on-body classification of static and dynamic postures—

a capability not present in existing work. The specific posture set consists of six static postures

(sitting, standing, kneeling, and laying on back, front and one side) and two dynamic postures (walk-

ing and crawling), of which kneeling and crawling are not commonly considered in the literature.

Classification is performed on a small, light embedded device using a simple easy-to-implement algo-

43
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rithm. The classification algorithm used is a C4.5 decision tree, with a temporal feature (windowed

variance) to aid in distinguishing dynamic and static postures.

The chapter is structured as follow: Section 3.2 presents the Class-act platform design and archi-

tecture. Section 3.3 describes two application examples demonstrating the additional requirements that

such applications can impose. Section 3.4 presents a prototype system implementation example. Finally,

Section 3.5 summarises the work presented in this chapter.

3.2 Design/architecture

This section presents the design and architecture of an end-to-end posture classification system, along

with the hardware requirements for such a platform.

External SystemFeature extract ClassifySense Pre−process Post−process

Figure 3.1: Generic data processing chain for posture classification systems.

Figure 3.1 shows the general data flow specified by the Class-act platform design, derived from systems

presented in the literature (as described in Section 2.4 on page 28), with the following stages:

Sense Acceleration/gyroscope data is sampled from the attached sensors.

Pre-processing The sampled values are processed to prepare them for use by the classifier. This may

involve steps such as filtering or adjusting for calibration.

Feature extraction Data features (such as variance) are extracted to aid in classification. Chapter 6

presents an investigation of the effect of a number of features on classification accuracy.

Classification The sampled values and extracted features are used to determine the current posture of

the monitored subject. Chapter 4 describes the classifier used in the work here.

Post-processing The classifier output is manipulated to achieve goals such as reducing the number of

posture changes identified. For example, Chapter 5 presents transition smoothing filters—a post-

processing step to solve the problem of rapid classifier output changes during postural transitions.

The postural information generated via this processing chain is provided to an external system. The

external system may be one of several different devices such as a remote PC used for observation of the
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subject or another on-body system that performs further processing/modelling using posture as an input.

To simplify the discussion here, these will all be referred to as “external system” unless the distinction is

important to the discussion.

In order to provide the described processing stages, the Class-act platform architecture specifies two

roles for BSN nodes:

Secondary Nodes A Class-Act system1 contains any number of Secondary Nodes. The actual num-

ber of these nodes in an implemented system will be based on the application requirements (such

as a need to keep system components at different locations on the body physically separate) and

hardware constraints (such as the maximum number of sensors a given node can support). The Sec-

ondary Nodes are responsible for gathering data, performing pre-processing and feature extraction,

and passing the data to the Primary Node.

Primary Node A Class-act system contains one Primary Node. The Primary Node enables the system

to meet the need for on-body classification of posture. The node is responsible for gathering

data and performing pre-processing and feature extraction (as with the Sensing Nodes), but also

1) aggregates data from all nodes, 2) performs classification, 3) transmits postural information

and/or sensed data to an external system, and 4) relays configuration commands from an external

system to the Secondary Nodes (for the investigative system usage scenario).

Figures 3.2 and 3.3 demonstrate the data flow for each of the two usage scenarios specified (self-

contained posture classifier and investigative instrument). The data flow through the Class-act system in

each scenario consists of stages representing data gathering, pre-processing of the data (calibration, filter-

ing, and so on), feature extraction, posture classification, post-processing (such as transition smoothing

filters), transmission of the data, and remote configuration capability. It can be seen that the processing

chain shown in Figure 3.1 is suitable in both cases. In fact, the only difference in node capabilities be-

tween the two scenarios relates to the external system—the investigative instrument is capable of being

reconfigured during use. Examples of configuration options that may be implemented are:

• Selection between a set of classifiers.

• Selection of the data feature to extract.

• Selection of the transmission mode to use: 1) transmission of all sensed data and postural informa-

tion, 2) transmission of postural information only, or 3) transmission of posture changes only (i.e.

an event-driven transmission mode).
1“Class-act system” is used as shorthand to refer to any system implemented based on the Class-act platform design.
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Figure 3.2: Self-contained system usage scenario data flow.
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The self-contained system, on the other hand, will be pre-configured with a particular configuration and

will only transmit posture changes—this avoids transmission of redundant information and, will therefore

extend the battery life. Section 5.4 on page 91 demonstrates the transmission reduction obtained in this

mode for a prototype system implemented based on the Class-act platform.

The Class-act platform design does not specify the hardware needed to implement Primary and

Secondary nodes. However, there are several generic requirements that can be derived from the literature

and from practical system implementation considerations:

• The BSN hardware must include sensors that can provide data relevant to posture classification.

Usually this will be accelerometers and/or gyroscopes.

• The BSN hardware must be capable of sampling at a sufficient rate to allow accurate classification,

particularly where time-dependent data features are extracted.

• The BSN hardware must not restrict the subject to a certain area, leading to two sub-requirements:

– When classified posture is provided to an external system or base station (not located on the

subject’s body), communication of postural information must be performed wirelessly.

– The system must be battery powered (or self-powered in some alternative way).

• The BSN hardware must be light and unobtrusive so that the subject’s comfort and mobility/natural

movement are not affected by use of the system.

• In the case of the self-contained system usage scenario, the system must be capable of real-time

operation (as defined in Section 1.1 on page 2).

• The BSN hardware must be capable of supporting the pre-processing, classification, and post-

processing to be performed (while maintaining real-time operation in the self-contained system

usage scenario).

3.3 Class-act platform application examples

This section provides concrete examples of how a system based on the Class-act platform architecture

can be targeted at specific applications. The first is targeted at use in EOD operative monitoring (see

Section 1.2 on page 4), where postural information is supplied to a second system that performs heat stress

prediction and helmet CO2 concentration modelling. The second is targeted at use as an investigative

laboratory instrument.
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Medusa2

Class−act

Physiological sensing

Postural sensing 

Take decision & act

Configuration commands

Health state indication

Support team Actuation

Figure 3.4: Self-contained system application example: EOD operative monitoring. Sensor types shown
on the operative for demonstration purposes: white: skin temperature; yellow: accelerometer; blue: helmet
CO2; green: pulse oximeter (pulse rate and blood oxygenation).

3.3.1 Self-contained system

Figure 3.4 gives an overview of an application example for the self-contained system usage scenario—that

of EOD operative monitoring. As described in Section 1.2 on page 4, the EOD operative monitoring

example is only one possible application of the work here, with the broader class including applications

such as monitoring of firefighters and infantry. The expectation is that the EOD application can be

generalised to the other applications within this class. In this example, the Class-act system provides

postural information to the Medusa2 system [66], which performs further modelling and prediction with

regard to the health status of the operative. The Medusa2 system was developed as a monitoring system to

enable increased safety of EOD operatives through: 1) monitoring of physiological parameters, 2) inference

of health state information from the gathered data, 3) autonomous actuation of the in-suit cooling system,

and 4) provision of appropriate data, information and alerts to both a remote observer and the operative.

Two of the algorithms implemented within the Medusa2 system (specifically, real-time prediction of 1) the

risk of UHS occurring in the operative and 2) helmet CO2 concentration) require posture as an input due

to the large influence that posture has on the evolution of the state of the system.

The EOD application brings several requirements beyond the generic ones described in Section 3.2:

• The eight postures specified for classification in the work here map to the postures required in the

EOD application—the system must therefore be capable of classifying these.

• Any instrumentation on the upper and lower body must be physically separate. This is to aid the

operative in donning and removing the EOD suit and to prevent damage to the system at those
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Figure 3.5: Investigative instrument application example.

times.

• The wireless communication method used by the Class-act system must match that used by the

Medusa2 system.

• Co-location of sensors between the Medusa2 and Class-act systems would be preferable in order to

reduce wiring for data and power.

3.3.2 Investigative instrument

Figure 3.5 gives an overview of an example implementation for the investigative instrument. This maps

directly to one of the usage scenarios for the platform and so does not introduce new requirements to

the extent that the self-contained system example does. The only additional requirement, for the sake of

convenience in investigations, is:

• The hardware platform should allow the number of attached sensors to be varied as required between

deployments.

3.4 Prototype implementation example

A prototype system was implemented meeting the requirements of the two example implementations

described in Section 3.3. Due to the use of the Class-act platform design, both application examples

were supported via a single prototype implementation. Full integration with the EOD suit was not a

goal for the prototype system, it serves as a proof-of-concept for the EOD application. The implemented

prototype has been deployed in the work here for evaluation of the algorithms presented in Chapters 4
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and 5. Full hardware details are given in Appendix A.

In response to the requirements presented in Section 3.2 and 3.3, several system design choices were

made with regard to: 1) the number of on-body nodes, 2) the communication methods used (sensor to

node, node to node, and node to other components in the system), 3) the types of data/information

transmitted from the on-body nodes, and 4) the number and location of the on-body sensors.

3.4.1 Number of on-body nodes required

The EOD application requires physical separation of upper and lower body sensing, while the investigative

instrument application does not specify a requirement with regard to the number of nodes. Based on

this, the decision was made to use two on-body nodes (one for the upper body and one for the lower

body) in the prototype system for consistency across both applications. During initial testing of the

implemented prototype, it was found experimentally that a single node could not reliably gather data

simultaneously from more than eight of the sensor boards used. The decision to use two on-body nodes

when building the prototype system therefore means that a total of up to 16 sensors can be supported.

Note that Section 6.6 demonstrates that accurate classification can be performed using only two sensors

(on the thigh and calf) and therefore only one node is needed for a final implementation of the system

for the EOD application.

3.4.2 Communications

A generic requirement of the Class-act platform is that of wireless communication from the on-body nodes

to the external system/base station. This applies for the investigative instrument as the base station is

located away from the subject and to the EOD application as the communication method must match

that of the Medusa2 system (in this case, Bluetooth). Bluetooth was selected as it meets the needs of

both applications. For simplicity, Bluetooth was also used for node-to-node communication. Neither of

the applications are expected to involve communication distances greater than that allowed by Bluetooth.

Based on the scenario descriptions given, there are two transmission modes that must be supported by

the on-body system: 1) transmission of postural changes only (for the EOD application), and 2) all three

communication modes with online selection (for the investigative instrument). The prototype system

supports each of these modes.

A wired connection was selected for sensor-to-node communication since: 1) wired links are simpler

and less error-prone than wireless links, and 2) power could be supplied to the sensors alongside the data

connections, reducing the size, weight, and complexity of the sensors compared to a self-powered wireless
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Figure 3.6: Positioning of sensors and nodes on the body for the prototype system.

solution.

3.4.3 Sensor positioning

The position of sensors for the prototype system is a superset of the Medusa2 locations to simplify tight

integration of the two systems. If the two systems were to be merged into a single combined monitoring

system (sharing the same hardware nodes), co-location of the sensors would reduce the amount of wiring

needed between the sensors and nodes. The temperature sensors for Medusa2 are located at the subject’s

neck, upper arms, chest, abdomen, thighs, and calves. The final locations selected correspond to the

distinct body segments: upper arms, lower arms, chest, thighs, and calves. These locations match those

used by Xu et al. [122] and are similar also to those used by Guenterberg et al. [49]. An investigation was

conducted (described in detail in Section 6.6 on page 111) towards determining the optimal set of sensor

placements to provide sufficient data for accurate posture classification while also minimising the number

of worn body sensor. Figure 3.6 shows the sensor locations and connections to the on-body nodes given

sensor placements on the subject’s chest, upper arms, forearms, calves, thighs, hip, and ankle. Each of

these eleven locations is considered as a potential mounting position for a triaxial acceleration sensor (see
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Figure 3.7: Data and information flow for the Primary Node and Secondary Node.

Section 6.6 for discussion of the effect of choosing specific location subsets).

Due to the directional nature of acceleration measurement, consistency of orientation of the sensors

is important for accurate classification. In order to ensure this consistency, reference diagrams were

produced to show the location and orientation of each sensor (the boards were not packaged for the

prototype, so their orientation was clear visually). While every effort was made to match the diagrams

closely, it is natural that some small errors in orientation would occur from one trial to the next, partic-

ularly across subjects with varying body builds. The trials conducted therefore established an informal

test of the effect of small inconsistencies in mounting, which was found to have little noticeable impact

on classification accuracy—the variation in accuracy results was generally small, with a standard devia-

tion of 3.7% when WVar was used. This forms an upper bound for the effect of mounting inconsistency

(assuming the experimenter is following the diagrams correctly).

3.4.4 On-body node software

Figure 3.7 shows the data flow and processing steps for the Primary and Secondary Node within the

prototype system. The stages are as follows:

Sense At the Sense stage, data are gathered from the attached acceleration sensors. The classification
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Figure 3.8: Median filter applied to x-axis of an accelerometer placed on a subject’s calf while sitting.
Top: original accelerometer data. Bottom: filtered data.

accuracy obtained with varying numbers of sensors is described in Section 6.6 on page 111.

Pre-process The Pre-processing stage consists of two data manipulation steps: median filtering and

calibration. First, a median filter with a window size of three samples is applied to remove spurious

data “spikes”. The median filter was also used in this way by Karantonis et al. [65]. The median of

an array of values, x̃, is calculated as

x̃ =


Y(w+1)/2 if w is odd

1
2
(
Yw/2 + Y1+w/2

)
otherwise

where Y is a sorted array of values and w is the number of values in the array. Given w = 3 (a

fixed window of three values), x̃ is thus always obtained from Y2. Figure 3.8 shows an example of

the median filter applied to sample data gathered from the x-axis of an accelerometer placed on

a subject’s calf while sitting. It can be seen that the data are smoothed to an extent, removing

“spikes” that could lead to misclassification of the subject’s posture.

The second step is to adjust the accelerometer sensor data in order to compensate for sensor

calibration errors. The process used for calibration is discussed in detail in Section A.1.3.
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Feature extract The Feature extraction stage consists of features such as Windowed Variance (WVar)

being extracted from the calibrated raw data. An analysis of the classification accuracy benefits

gained from feature extraction is given in Section 6.4 on page 105.

Classify Prior to classification being performed, the data from the Primary and Secondary Node are

appended together (or concatenated) to form a single data vector containing all of the body ac-

celeration data and data features. The data is then provided to a classification mechanism. The

method used here is a C4.5 decision tree trained using experimental data, as described in detail in

Chapter 4.

Post-processing The Post-processing stage consists of applying a transition smoothing filter to the

classified postural information to improve the overall accuracy and output stability. The particular

filter used may be selected by the user and the filters implemented here are described in Chapter 5.

Transmit Transmission from the Secondary Node to the Primary Node is performed wirelessly and

includes all of the gathered acceleration data from the attached sensors. Transmission from the

Primary Node to the base station has several modes as described in Section 3.2. In all cases, the

postural information itself is transmitted (continuously or only when the posture changes) and the

acceleration data may be transmitted depending on the application.

3.4.5 Base station software (visualisation and system configuration)

As part of the prototype system implementation, a visualiser was developed to support the investigative

instrument application. The EOD application is already provided with a visualiser developed as part of

the implementation of the Medusa2 system [66]. The visualiser developed for the investigative instrument

application is described in this section and provides several options with regard to system configuration.

A screenshot of the visualiser developed is shown in Figure 3.9. The visualiser is split into three

areas. The left-hand side is dedicated to sensors and communications, the central area shows the current

classification result, and the right-hand side shows options related to data acquisition and processing.

The visualiser is implemented in Python using the wxPython Graphical User Interface (GUI) libraries,

providing portability between operating systems. As the set of postures that the system can classify

is pre-defined, the current posture is displayed using one of a set of images (one for each classifiable

posture).

The specific functions supported by the visualiser are:
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Figure 3.9: Interactive visualisation and configuration software running at the base station.

1. display of the active sensors for the specific classification tree selected (a stick man with coloured

sensor markers—green for active, red for inactive),

2. configuration of the data transmission mode (as detailed in Section 3.2),

3. indication of whether data is currently being received (green when data is received, red if a defined

period—one second as implemented here—has passed with no received data),

4. display of the current posture of the subject using a 3D human graphic,

5. configuration of the posture classification tree that the Primary Node should use,

6. configuration of the transition smoothing filter to apply to the classifier output, and,

7. configuration of the sampling rate in Hz to be used by the sensors.

3.5 Summary

The design and architecture of an end-to-end platform enabling on-body posture classification was pre-

sented. The platform was devised to meet the requirements of two usage scenarios described in Section 3.2:

1) self-contained system and 2) investigative instrument scenarios. These scenarios impose a number of

requirements that are generic to all implementations of a Class-act system, such as on-body classification

and use of battery power. A data flow was devised for each usage scenario to demonstrate the inherent

similarities in system design. The specific hardware used is not specified by the platform design, allowing
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flexibility in specific implementations (in the use of less-wired or completely wireless communication, the

number of sensors per node, and so on).

The needs of two example applications that are suitable candidates for Class-act systems were de-

scribed: EOD operative monitoring and investigative instrument. These application examples introduce

additional requirements beyond those generically specified for the platform.

A prototype system was implemented based on the platform design. This prototype system was used

for online evaluation of the algorithms described in this thesis (see Sections 4.12 on page 76 and 5.5 on

page 94). Additional detail on the prototype hardware system is given in Appendix A.

The Class-act platform and example instrument implementation described form the basis of the contri-

bution in this chapter and Chapter 4—a wearable real-time instrument performing on-body classification

of posture. To the author’s knowledge, as described in Section 2.3 on page 25, no such system has

previously been demonstrated in the literature.



Chapter 4

Posture classification algorithm and

data gathering process

The previous chapter presented the design of an end-to-end on-body posture classification platform to

address two usage scenarios (self-contained and investigative system), along with two application examples

and an example implementation.

This chapter continues the work described in Chapter 3 through: 1) a posture classification algorithm

suitable for deployment in a wearable (resource constrained) system such as one implemented based on

the Class-act platform, 2) a method for gathering empirical data for training and testing of posture clas-

sification algorithms, 3) a demonstration of the fitness for purpose of the algorithm (used in conjunction

with a suitable data feature) for the EOD application considered in this work and the wider class of

related applications generally, and 4) an evaluation of the algorithm’s accuracy in classifying the defined

set of eight postures considered in this work. Section 2.4.4 showed that one of the main limitations of the

current literature is the lack of a clear and detailed description of the design and evaluation methodology

used when reporting on posture classification systems. This chapter addresses this gap with regard to

the design and evaluation methodology used in this work.

The chapter is structured as follows: Section 4.1 provides an overview of the classifier testing and

evaluation process. Section 4.2 describes the classification algorithm and classifier training algorithm

adopted by the author. Sections 4.3 to Section 4.10 describe the experimental regimes, data gathering

tools, experimental subjects, data annotation method, classifier training method, and testing method

used in the work here. Section 4.11 presents findings related to the suitability of the chosen classification

algorithm for the work here, specifically with regard to classifying the set of required postures and the

effect of wearing an EOD suit on classification accuracy. Section 4.12 provides a real-time, real-life

functional evaluation of the classifier. Finally, Section 4.13 summarises the work in this chapter.

57
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4.1 Classifier testing and evaluation process

Figure 4.1 on the next page shows the relationship between the data gathering process and classifier

testing and evaluation, as reported on in this chapter. The Class-act platform requirement of on-body

classification (on a potentially resource constrained node) guided the selection of an appropriate algorithm

for classifying the target postures (Section 4.2). The EOD case study application guided the design of

the regimes (Section 4.4) and selection of the subjects (Section 4.6) for the experimental trials.

The next section describes and justifies the algorithm chosen for posture classification. It also intro-

duces two central aspects of the design of the classifier and the data gathering process that affect the

suitability of the classifier for the application.

4.2 Classification algorithm—C4.5 decision trees

Decision trees are a natural choice for the work in this thesis given the requirement for real-time classi-

fication on an embedded system. Once trained, decision trees are computationally simple and thus easy

to accommodate on constrained embedded platforms (as demonstrated by Maurer et al. [87]). A further

advantage of decision trees is that there are no loops within the tree. Thus, the time taken to perform

a classification has a natural limit based on the depth of the tree. This aids in real-time classification of

posture as the time required for classification has an upper limit that can be determined, and particu-

larly the lack of loops means that there can never be a situation wherein a classification attempt does not

complete. Prior examples of the use of decision trees in posture classification applications were discussed

in Section 2.4.2 on page 31.

Of several other algorithms considered by the author, Hidden Markov Model based classifiers are used

often in existing works [22, 39, 50, 56, 59, 90, 95, 114, 103]. These are generally relatively computa-

tionally complex, however, and the literature does not indicate a clear benefit in terms of classification

accuracy [56, 95, 113].

The algorithm chosen for classifying the set of eight postures considered in this work was the C4.5

algorithm [30]. Generically, the C4.5 algorithm creates a decision tree by finding, at each node, the

attribute (and threshold for that attribute) that allows the data samples to be most effectively divided

into subsets containing particular classes. The effectiveness of a given attribute in achieving this is

determined via the difference in entropy (or “information gain”) resulting from choosing one attribute

instead of another. Quinlan [102] provides an in-depth description of the method of creating decision

trees via the C4.5 algorithm. The process of selecting attributes at each node based on the information
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Figure 4.1: Process for data gathering and posture classifier testing and evaluation. The links represent
the way in which the different aspects of the work support each other.
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gain means that important attributes (that is, sensor locations) appear closer to the root of the tree, and

redundant sensor locations are likely to be excluded from the tree. This can aid in system development

by highlighting sensors that provide useful data towards classifying the required postures.

The Waikato Environment for Knowledge Analysis (WEKA) toolkit [120] was used to generate C4.5

decision tree classifiers (via the Java implementation of the C4.5 algorithm as used in WEKA, named J48).

Weka is a free, easy to use, cross-platform tool implemented in Java, providing a comprehensive range

of machine learning algorithms. Testing was performed using the LOSOXV method in almost all cases

(as described in Section 4.3). The testing procedure was implemented outside of WEKA. LOSOXV was

selected in preference to 10-fold cross-validation since the aim was to determine the expected classification

accuracy of the classifier on unseen subjects. There is considerable variation in how different human

subjects move. Furthermore, there will be slight variations in how sensors are fitted from one subject to

the next. These two factors mean that LOSOXV forms a more stringent test of a posture classifier than

ordinary 10-fold cross-validation.

In the process of developing the classifier, two main questions required investigation with regard to

the suitability of the classifier for the work here:

1. Is it possible to classify the full set of required postures with a high accuracy?

2. Is it possible to train on subjects wearing light clothing and still provide a high classification

accuracy when deploying the Class-act system on a subject wearing heavy protective clothing such

as an EOD suit?

Classification of the full set of postures required by real-world applications such as EOD operative moni-

toring requires the ability to classify not only static postures (such as sitting or standing) but also dynamic

postures (in this case walking and crawling). Information in addition to raw acceleration data is required

for classifying dynamic postures in order to capture some of the history of the subject’s movements. The

solution applied here is the use of extracted data features to capture the history of the data and form

part of the posture classifier’s input set. Section 4.11.1 on page 74 demonstrates that use of features

when classifying static and dynamic postures results in similar accuracy to using only raw data when

classifying only static postures. The effects of eight different data features on classification accuracy were

investigated in this work as described in Section (6.4).

The ability to train the classifier based on subjects wearing light clothing is important in the case

study application since, for cost and convenience reasons, it would be preferable to train the classifier

without needing to obtain application-specific clothing such as an EOD suit. Section 4.11.2 on page 75
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Figure 4.2: LOSOXV training and testing data selection process.

provides the results of this analysis, showing that classification accuracy is not hindered by the type of

clothing the subjects wear.

The following sections provide a description of the data gathering process used in this work. This

is composed of the following phases: experimental planning, data collection, pre-processing, training,

testing and evaluation phases. The resulting data sets were used in the analysis in this chapter, as well

as in Chapters 5 and 6.

4.3 Data gathering and classifier evaluation process overview

When developing machine learning based classification algorithms, a generic process is usually followed

consisting of data gathering, training, testing, and evaluation. Details of this process, however, are lacking

in the literature, as discussed in Section 2.4.4. A description of this process is given starting in this section

and following on to Section 4.10, focusing on the types of testing and evaluation used in the work here.

The steps are as follows: experimental planning, data collection, pre-processing, training, testing and

evaluation.

1. Prior to experimental data gathering:

(a) An experimental protocol is designed that will allow the experimenter to gather data repre-
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sentative of that which the classifier is expected to encounter during real-life system use.

(b) Data gathering instrumentation is selected from the available instruments based on its ability

to supply the required data for classifier training. For example, the system should support use

of the number and type of sensors that will be used in system deployments using the trained

classifier.

(c) A group of subjects are selected to provide adequate coverage of the range of body types, ages,

and so on that is expected for monitored subjects within the application.

2. Data is gathered via experimentation and accurately annotated (manually or automatically), pro-

viding the means to apply supervised learning techniques and to evaluate the accuracy of the

classification algorithm.

3. Following the data gathering experimentation, the data is pre-processed into a form that is suitable

for training decision trees (as described in Section 4.9).

4. After pre-processing the data, classifier training, testing and evaluation are performed via one of

the following methods:

(a) LOSOXV is performed in order to assess the overall accuracy of the classification algorithm

based on the data gathered. For LOSOXV, the following process is applied (summarised in

Figure 4.2 on the previous page).

i. A subject is selected as the testing subject (the subject “left out”).

ii. The data from the remaining subjects is combined to form the training data subset and a

classifier is trained using this.

iii. The classifier is tested using the data from the “left out” subject.

iv. This process is repeated for each of the subjects in the set and the classification accuracy

results from each iteration are summarised.

(b) Real-time evaluation

i. The best classifier obtained using the steps above is deployed as part of the Class-act

system and the classification accuracy is evaluated in real-life.

The remainder of this chapter describes each of the steps given above in detail with regard to how

they were applied in training, testing and evaluating the classifier. The next section describes the data

gathering regimes for the work here (part of the experimental planning phase).
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4.4 Data gathering regimes

Predefined regimes are used in the work here to ensure that the data is gathered and archived in a

controlled manner. A regime is a description of a sequence of postures and their durations, along with

the duration of the transition periods between the postures. An appropriate regime specification aids in

ensuring that: 1) the data gathered is consistent between subjects with regard to instructions given to

the subjects and the experimental conditions, 2) all the required postures are fully represented in the

training and testing sets, and 3) correct annotation of the data is applied. Eight postures are targetted

in this work. Six of the eight postures (walking, sitting, standing and lying on back, on front and on

one side) are commonly targeted in the literature (as demonstrated in Section 2.4.3), while kneeling and

crawling are rarely encountered in the literature but are required for applications such as monitoring of

EOD operatives or firefighters. An important consideration while planning the experimentation was that

data be gathered while the subjects are performing the required postures and also other activities (such

as kneeling while also unpacking objects from a rucksack). This is expected to be important regardless

of the specific application considered as it represents the need to train and evaluate classifiers using data

gathered in realistic conditions and to prevent overfitting of machine learning based classifiers.

The regimes used here were based on existing research in the area of EOD operative safety [118] and

on feedback from an EOD suit manufacturer regarding the types of activities that would be performed

during EOD missions. Three increasingly complex regimes were developed by the author, progressively

as the research advanced, focusing on: 1) the eight postures alone (R1), 2) the eight postures combined

with natural movement (R2), and 3) mission-like activity (R3). The three regimes were as follows:

R1 Regime R1 was posture focused, requiring the subject to sit, stand, walk, kneel, crawl, lie on one

side, lie on their front, and lie on their back. Each posture was maintained for one minute, with

the subject performing light arm movement tasks combined with variations from the set positions

(such as, for example, leaning slightly back, forth, or sideways whilst standing). The postures are

exemplified in Figure 4.3 on the following page.

R2 Regime R2 was posture and natural movement focused, and expanded on R1 by including natural

movements (such as lifting weights whilst standing, or moving objects from a rucksack whilst kneel-

ing) as shown in Figure 4.4 on the next page. The aim with this regime was to provide the decision

tree training process with data that more accurately represented movements performed by people

in real-life situations (i.e. free movement).

R3 Regime R3 was mission activity focused, matching experimentation presented in existing EOD-
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Figure 4.3: Overview of Regime 1 posture timing.

Figure 4.4: Overview of Regime 2 posture timing.
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Figure 4.5: Overview of Regime 3 posture timing.

Figure 4.6: Sensor placement on the outside of the EOD suit.

related physiological research [117]. The aims of this regime were to reflect the activities that are

most likely to be performed during EOD missions (a subset of the eight described previously) and

also to reflect the expected relative durations of the activities (whereas R1 and R2 aimed to provide

equal coverage of all eight postures). The activities performed were: walking (3 minutes); kneeling

while moving weights into and out of a rucksack or reading (2 minutes); crawling (2 minutes); arm

exercise while standing (4 minutes); sitting (3 minutes). These activities are shown in Figure 4.5.

During the experimentation, efforts were made to duplicate the environment of EOD missions and

acquire data from subjects wearing the EOD suit. Variations of regimes R1 and R3 were thus performed

with the subjects wearing an EOD suit. In the EOD suit trials the sensors were placed on the outside
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of the suit (rather than directly on the subject) as shown in Figure 4.6 on the previous page. However,

analysis of the data showed that use of the EOD suit did not have a significant effect on the results

obtained (Section 4.11.2 on page 75 demonstrates the effect of the suit on classification accuracy).

The investigation of transitions in Chapter 5 required variations of R1 and R2:

RT30 A combination of R1 and R2 where each posture was maintained for 30 seconds.

RT40 A combination of R1 and R2 where each posture was maintained for 40 seconds.

4.5 Data gathering tools

Data gathering was performed using three BSN systems based on two distinct hardware platforms: two

systems, named DG1 and DG2 (for Data Gathering instrument), based on Gumstix Verdex devices and

similar to the Class-act platform described in Chapter 3 but lacking the ability to perform on-body

classification (which was not needed for data gathering purposes), and one system using an off-the-

shelf hardware platform named Sensing Health with Intelligence, Modularity, Mobility and Experimental

Reusability (SHIMMER) [107]. The hardware components of the DG1 and DG2 systems are described

in Section A.1 on page 145 while the SHIMMER platform is described in Section A.3 on page 154.

Acceleration readings were taken at a rate of 10 Hz for DG1 and DG2 and at 100 Hz for the SHIMMER-

based system. DG1 and DG2 were synchronised with the base station using Network Time Protocol

(NTP) [89], while the SHIMMER-based system used a different method of synchronisation described in

Section A.3.

4.5.1 Sensing location configurations

During the course of experimentation, several combinations of body sensor positions were used. The

SHIMMER based tool used 7 sensing positions, while DG1 and DG2 used 9 or 11 sensing positions as

required by the analysis performed. These locations reflect those in the literature used by Xu et al. [122]

and Guenterberg et al. [49]. The sensor locations for each system (illustrated in Figure 4.7 on the next

page) were:

SHIMMER-based system The SHIMMER-based system used seven sensors due to a limitation on

the number of devices that can be part of a single Bluetooth network. The sensors were placed on

the ankle, lower leg, upper leg, hip, lower arm, and upper arm on the right side of the body, plus

the chest.
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Figure 4.7: Sensor positioning for DG1/DG2 and SHIMMER systems.

DG1/DG2—9 sensors The most commonly used number of sensors was 9, selected to correspond to

each distinct body segment except for the head (each segment is assumed to be rigid and thus

multiple sensors at several locations on a single segment would not add additional information).

The locations were: thighs, calves, upper arms, forearms, and chest.

DG1/DG2—11 sensors When analysing the classifier accuracy with differing numbers of sensor lo-

cations, two additional sensors were added to evaluate locations as used in the literature [50, 65,

95, 116]. The locations were the same as for the 9 sensor configuration, with the addition of two

sensors placed on the hip and the ankle.

Based on the data gathered by these systems, Section 6.6 on page 111 investigates the number of sen-

sors required to allow accurate posture classification, concluding that two is sufficient for the postures

considered here.

4.6 Subject selection

Over the set of experimental trials, data was collected from 7 females and 15 males with a range of ages,

heights and weights as shown in Table 4.1 on the next page. From the application point of view the range

of experimental subjects selected were expected to provide sufficient coverage in terms of sex, age, height
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Table 4.1: Experimental subject characteristics.

Subject Age Sex Height (m) Weight (kg)
S1 20 Male 1.79 76
S2 20 Male 1.82 73
S3 22 Male 1.78 62
S4 22 Male 1.80 73
S5 22 Male 1.83 89
S6 22 Male 1.84 82
S7 22 Male 1.85 70
S8 22 Male 1.87 70
S9 23 Female 1.60 49
S10 23 Female 1.63 53
S11 23 Female 1.64 60
S12 23 Male 1.70 74
S13 23 Male 1.72 72
S14 23 Male 1.75 72
S15 24 Female 1.67 62
S16 25 Male 1.80 75
S17 26 Female 1.59 54
S18 27 Male 1.86 72
S19 28 Male 1.80 77
S20 29 Female 1.68 64
S21 31 Male 1.64 56
S22 36 Female 1.60 60
Min 20 - 1.59 49
Max 36 - 1.87 89
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and weight. Particularly, it was assumed that the operatives monitored by a deployed system are likely

to be males between 20 and 30 years old. A large group of subjects were used as this is important during

training to help reduce the possibility of over-training (associating a posture with a restricted range of

readings that do not generalise well) and thus increase the accuracy of the system when classifying data

from unseen subjects.

4.7 Summary of data sets gathered

All of the classifier training and testing in this work were based on experimentally gathered data. Table 4.2

on the following page summarises the experimentation performed to support this work.

4.8 Data annotation

The data gathered for classification algorithm training and testing must be annotated with the correct

posture for each sample. An example of data annotation is shown in Figure 4.8 on page 71. In this

example, the subject begins by sitting for 30 seconds, followed by transition to lying on their side. An

example of annotated acceleration data over all eight postures for an accelerometer placed on a subject’s

right calf is shown in Figure 4.9 on page 71.

Over the course of the work presented in this thesis, three methods of annotation were used:

1. Manual annotation was performed based on notes taken during the experimentation. In this case

the start and end times of each posture were noted by the experimenter.

2. Manual annotation was performed based on video footage filmed during the experimentation. To

ensure data annotation was performed correctly, a reference point was established in the data—the

subject made a particular movement at the start of the test that showed up clearly within the

sensor data and on the video. In the experimentation here, the subject held both arms in the air

for several seconds.

3. Automatic annotation was performed by a script that prompted the subject to change posture

at defined intervals. A visual and audio countdown was provided to allow the subject to change

posture at the correct time as defined by the regime.
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Figure 4.10: Classifier training process overview.

4.9 Data pre-processing and classifier training

Decision trees, as a machine learning based approach to data classification, require training. However,

before a decision tree can be trained on the gathered data, the data must be pre-processed into the

required form. Figure 4.10 shows the data pre-processing and classifier training. Starting with the raw

3D acceleration data logged during experimentation, several pre-processing stages are applied:

Data annotation Data annotation is performed via one of the methods described in Section 4.8.

Median filter The data is filtered using a median filter with a window size of three samples. This

eliminates single-sample spurious readings as demonstrated in Section 3.4.4 on page 52.

Calibration Calibration coefficients are applied to the data, as described in Section A.1.3 on page 147.

While the decision was made to apply calibration correction to the data, it should be noted that

the accuracy of a decision tree will not generally be affected by a linear data transform applied to

both the training and testing data. However, calibration allows for sensors to be swapped between

body locations without causing classification errors (not applying calibration correction means that

two sensors will produce different values for the same body location in the same situation).

Feature extraction A selected data feature is extracted and appended to the raw data. For the analysis
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here, WVar was used (calculated over a 30 sample sliding window) as it was found to provide the

highest classification accuracy (more in-depth analysis is provided in Section 6.4).

Data segmentation The data is segmented as needed for the particular investigation and unneeded

segments are discarded. For example, in some of the investigations, transitions are not considered

(transitions are discussed in detail in Chapter 5), while in other cases only specific postures are

considered.

Once the data has been processed and is suitable for decision tree training, an ARFF format file is created.

This is the format required by WEKA, consisting of a header section describing the input variables and a

data section which has each of the samples to be considered. This file is then supplied to WEKA, which

trains the decision tree.

4.10 Decision tree testing methods

Decision tree testing is performed with experimentally gathered data via two methods: 1) LOSOXV and

2) training on one group of data sets and testing on a different group.

• LOSOXV is used to determine the effect of different parameters on accuracy (for example, selecting

the data feature that provides the highest accuracy) and results in the training of a tree, and the

calculation of metrics such as classification accuracy, for each iteration (each subject “left out”).

The mean classification accuracy across these iterations is referred to in this work as the overall

accuracy. Section 4.3 provides a description of the LOSOXV testing process.

• Training and testing on two different groups of data sets is used as an alternative to LOSOXV in

specific investigations, such as training on data from subjects wearing light clothing and testing on

data from subjects wearing an EOD suit (Section 4.11.2). With this method a tree is trained using

all of the training data and is then applied to each of the unseen testing data sets. This results in

an accuracy result for each testing data set.

4.11 Classifier suitability evaluation

As described in Section 4.2 on page 58, there were two main criteria for determining the suitability of

the chosen classification algorithm for the work here: 1) the ability to accurately classify the required

set of eight postures and 2) the ability to accurately classify the posture of EOD suit wearers based on
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training data from subjects wearing light clothing. This section analyses C4.5 trained decision trees to

answer these questions based on the data sets described in Section 4.7 on page 69.

4.11.1 Ability to classify the full set of postures

Of the eight postures considered in this work, six are classed as static postures (sitting, standing, kneeling,

and three variations of lying down) and two are classed as dynamic postures (walking and crawling).

It is expected that static postures can generally be classified using only raw acceleration data as they

each involve different orientations of the body segments. Dynamic activities such as walking, however,

require knowledge of the history of the data as they involve movement that cannot be evaluated based

on single time step data samples. As an example of this, walking produces acceleration values that

at some time instances cannot be distinguished from standing. During walking, the motion of the leg

is similar to a pendulum and thus one can expect the acceleration to be roughly sinusoidal along the

axis closest to the direction of motion. Conversely, standing produces near to zero acceleration in the

forward axis. This effect is demonstrated in Figure 4.11 where it can be seen that acceleration readings

generated by walking overlap at some points in time with readings generated by standing. Information

about the history of the data can be provided by extracting data features (such as variance) that provide
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a significantly different output trace for static and dynamic postures. For the example case of standing

and walking, calculating WVar for standing results in an output of around zero (as there is little variance

in the values), while calculating it for walking results in output values that are usually between around

2
(
ms−2)2 and 3

(
ms−2)2 (and always above zero).

This section demonstrates the effect of the different posture types on classifier accuracy and the

benefit of using an extracted data feature. In doing this, it shows that the use of an appropriate feature

allows the classifier to classify the set of eight postures considered in the work here. A LOSOXV-based

evaluation was performed over data sets D1, D2, D3, and D5 (7.5 hours of data from 17 subjects).

First, the data was truncated to include only the static postures: sitting, standing, kneeling, and the

three variations of lying down. The overall classification accuracy obtained was 98.0% when using only

sensor data as input to the classifier. This accuracy is considered here to be sufficiently high to confirm

that static postures can be correctly classified using only raw data. Next, the same test was performed

with all of the postures included in the data sets, giving a reduced accuracy of 90.5%. Finally, a test

was performed using all postures and with WVar as an extracted data feature added to the sensor data

inputs (the analysis given in Section 6.4 shows that the use of WVar provides the best classification

accuracy overall). This resulted in a classification accuracy of 96.3%. While not as high as the accuracy

for classifying only the static postures, it is sufficiently high to conclude that all eight postures can be

accurately classified if an extracted data feature is used.

4.11.2 Simplifying data gathering for the EOD scenario

When devising a method for gathering data to train a classifier, it is helpful to minimise the complexity

of the exercises and the equipment required. Particularly, for the application case study here, it is

desirable to require minimal use of an EOD suit. Wearing such a suit is very strenuous for the subject

and in the context of this research such use required consent from volunteers and additional supervision.

Furthermore, depending on the resources available to the experimenter, access to EOD suits is not

necessarily guaranteed.

Given the issues described, the ideal scenario is to collect training data from subjects wearing their

normal clothing. Therefore, it is important to understand the impact of clothing type on the accuracy

of the classifier when deployed on EOD suit wearers. A significant reduction in accuracy would render

the above method unsuitable for system training. The analysis in this section thus tests the suitability

of gathering data from subjects wearing normal clothing to train a classifier for deployment in EOD

missions.
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Figure 4.12: Impact of wearing an EOD suit on classification accuracy.

A decision tree was trained using data sets D1, D2, D3, and D5 (7.5 hours of data from 17 subjects)

with the subjects wearing light clothing (for example, a shirt and jeans). This is the same group of data

sets as used for the analysis in Section 4.11.1 on page 74. For testing purposes, eight sets of data (from

data set D4) were used. These were gathered from four subjects with nine sensors placed over an EOD

suit. The analysis here is based on the data gathered by two of those sensors (left thigh and calf) as

Section 6.6 establishes that two sensors on the thigh and calf are sufficient for accurate classification.

Figure 4.12 shows the results of this analysis. The testing results were compared with the results

given in Section 4.11.1 for subjects not wearing an EOD suit and it was found that testing on subjects

wearing an EOD caused little effect on the classification accuracy—the difference in the mean accuracy

between the two cases was 0.1%. These results indicate that a classifier trained on subjects wearing light

clothing will be suitable for deployment on subjects wearing an EOD suit.

4.12 Real-life functional evaluation

This section presents an evaluation of the Class-act system implementation (described in Section 3.4 on

page 49) performing real-time on-body classification. The system was deployed on five subjects performing

tasked activities with classification being performed in real-time on the Primary Node. The five subjects

were two females and three males with a range of ages, heights and weights as shown in Table 4.3.
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Figure 4.13: Tasked activities for real-life real-time prototype system evaluation. From top-left: crawling,
sitting, kneeling, walking, standing, lying on front, lying on back, lying on side.
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Table 4.3: Experimental subject characteristics for real life trial.

Subject Age Sex Height (m) Weight (kg)
S1 27 Female 1.63 67
S2 26 Male 1.72 79
S3 44 Female 1.54 56
S4 25 Male 1.8 73
S5 25 Male 1.7 74
Min 25 - 1.54 56
Max 44 - 1.72 79

The subjects performed a series of activities as shown in Figure 4.13 on the preceding page, based on

regime 2 as described in Section 4.4. The specific activities performed were: crawling under a table,

sitting, kneeling while moving items out of and back into a box, standing and drawing on a whiteboard,

lying on their front and using a laptop, lying on their side and moving items out of a box, lying on their

back and writing on a piece of paper above them. The subjects walked between each activity station.

The Primary Node was loaded with a decision tree trained using data sets D1, D2, D3, and D5

(7.5 hours of data from 17 subjects). The parameters for training were: 9 sensor locations, WVar as

the extracted feature, and a window size of 30 samples (details of the optimal parameters are given

in Chapter 6). A video camera was used to record the experimentation and the manual video based

annotation method was used as described in Section 4.8. The total experiment time over the five sub-

jects was 1.2 hours. Though Section 6.6 on page 111 shows that two sensors are sufficient for accurate

classification, this test was performed using nine sensors (the full sensor load for the Class-Act system

implementation used) in order to capture the highest accuracy configuration available. As classification

was performed on-node and only the final postural information was reported, it is not possible to give

the results for these tests based on the use of only two sensors. However, as demonstrated in Section 6.6,

the classification accuracy for two sensors and nine sensors was similar (95.5% average for the two versus

96.3% for all nine).

The system was evaluated in terms of the classification accuracy and the information yield. The

classification accuracy for each test was calculated by comparing the actual posture performed by the

subject (using the annotations) with the classified posture determined by the Primary Node. This was

calculated over truncated data (with transition periods removed). Yield was calculated by comparing

the number of classified postures over the course of the test with the expected number based on the test

duration. The primary aim of this experimentation was to show that the classification accuracy during

deployment in a realistic environment with a subject performing tasked activities was consistent with the
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Table 4.4: Summary of real-time evaluation results for five subjects.

S1 S2 S3 S4 S5
Test duration (minutes) 13.6 15.7 14.3 17.7 9.6
Classification accuracy (%) 98.5 98.1 94.2 97.1 97.3
Accuracy reduction w/transitions (%) 2.6 4.3 3.9 3.8 4.3
Information yield (%) 99.8 100 99.2 99 99.9

accuracy found during offline testing and that the yield was acceptable.

Offline testing using LOSOXV over data sets D1, D2, D3, and D5 with the parameters used here

provided an accuracy of 96.3%. Based on the results presented in Table 4.4, it can be seen that the

classification accuracy was within the range found during offline testing, meaning that the training process

used is also applicable outside the laboratory environment. When transitions are considered (with both

the initial and final posture counted as a correct classification during a transition) the accuracies are

reduced by between 2.6% and 4.3%. Chapter 5 discusses transitions in depth and described the method

used to reduce their impact on the classification accuracy and stability of the output of the system. The

information yield for the system in the “information” transmission mode was above 99%, which is an

acceptable yield for the applications considered in this work. The literature implies that a 99% yield is

generally acceptable [38].

4.13 Summary

Given a requirement for real-time on-body classification on a resource constrained system, a natural

choice for the posture classification algorithm was decision trees. Decision trees are computationally

light and suitable for deployment on constrained platforms such as the ones that would be required by

Class-act. The algorithm chosen for training of the decision trees was the C4.5 algorithm. The WEKA

toolkit was used to generate C4.5 decision tree classifiers. A complete method for data gathering and

training and testing of classifiers were described, including annotation and data preprocessing.

The methods of gathering data for tree training, testing and various analyses performed in this thesis

were standardised around a series of regimes based on existing research in the area of EOD operative

safety and on feedback from an EOD suit manufacturer. These regimes focused on: 1) the eight defined

postures alone, 2) the eight postures combined with natural movement, and 3) mission-like activity. Data

was collected from 7 females and 15 males with a range of ages, heights and weights. From the application

point of view the range of experimental subjects selected were expected to provide sufficient coverage in
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terms of sex, age, height and weight. A total of 22.2 hours of data was collected for use in training and

testing the decision trees. Decision tree testing was performed with experimentally gathered data via two

methods: LOSOXV and direct comparison of a trained tree’s output against the correct posture when

tested on unseen data.

The suitability of the classifier required investigation in two main regards. Classification of the full

set of postures considered in the work here requires the ability to classify not only static postures (such

as sitting or standing) but also dynamic postures (specifically walking and crawling). Furthermore, these

postures must be classified while the subject is performing other activities during the posture (such as

unpacking items form a rucksack while kneeling). The ability to train the classifier based on subjects

wearing light clothing is important for the EOD application since, for cost and convenience reasons, it

would be preferable to train the classifier without needing to obtain an EOD suit. The testing results

showed that all eight postures can be accurately classified if an extracted data feature such as WVar is

used (classification accuracy of 96.3%), and that a classifier trained on a subject wearing light clothing

will produce accurate classification when deployed on a subject wearing an EOD suit.

The end-to-end Class-act system implementation was also evaluated when deployed and classifying

posture in real-life and real-time for five subjects performing tasked activities. The classification accuracy

was shown to be consistent with the results found during offline testing , and the information yield was

sufficient for the applications considered here (above 99%).

Analysing the results of the real-life evaluation showed that transitions reduced the overall classifi-

cation accuracy by between 2.6% and 4.3%. The next chapter investigates transitions and describes a

method of 1) reducing their impact on classification accuracy and 2) maintaining a more stable posture

output.



Chapter 5

Transition smoothing filters

Natural human movement and activities are composed of well-defined postures along with transitions

between those postures. In relation to transitions, the goals for a system such as the one developed in

this thesis are 1) to provide high classification accuracy of natural human movement in the field (i.e. for

sequences of postures with transitions between), and 2) minimise the number of transmissions required

by an event-based system (transmitting only posture updates).

It has been shown in the previous chapter and elsewhere in the literature that well-defined postures

may be accurately classified (96.3% accuracy for truncated data was demonstrated in Chapter 4). How-

ever, the classification of posture and transitions poses two additional problems (the first of which was

demonstrated in the previous chapter) in the context of the goals described above :

1. Classifiers trained on truncated, well-defined posture data will see a degradation in accuracy due

to transitions when deployed in realistic scenarios. The results here show that the classification

accuracy of tree-based classifiers, when evaluated on untruncated data, degrades at a rate of 2%

for each transition/minute encountered in the evaluation protocol.

2. Rapid changes in the classifier output will occur during transitions (also observed by Parkka et

al. [97]). The primary benefits of an event-based system are a lower bandwidth requirement and

reduced power consumption, both resulting from reduced transmissions. Rapid posture changes

will prompt a higher number of transmissions and thus counteract these benefits.

This chapter presents a method of reducing the negative impact of transitions with regard to the effects

described above. Three transition smoothing filters were designed, implemented and evaluated, corre-

sponding to the Post-process stage of the processing chain described in Section 3.2 on page 44. They

act on the classifier output and limit the accuracy loss to a predictable rate of 1% per transition/minute

when deploying the classifiers in realistic scenarios. When applied to an event-driven postural classifi-

cation system, the filters further reduce the number of events transmitted in realistic scenarios by 75%.

When compared to a continuous posture-reporting system, the number of posture updates transmitted

is reduced by 99.6% (a 270-fold reduction).

81
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Figure 5.1: Effect of transition frequency on classification accuracy.

The contribution to knowledge in this chapter is brought by an investigation into posture transitions.

Three posture filters that remove such transient posture changes are designed, implemented and tested

on experimental data. The best performing filter, Exponentially Weighted Voting (EWV), is shown

to reduce posture change events by 75.2% and increase accuracy by 1% (over unfiltered results). The

reduction in change events is in addition to the transmission reduction for switching from a continuous

reporting system to an event-based system (98.5%, a 66-fold reduction).

The structure of the chapter is as follows: Section 5.1 describes the issues related to handling transi-

tions in a posture classification system and the goals of the methods developed by the author. Section 5.2

proposes three transition smoothing filters. Section 5.3 presents the implementation of the filters within

the prototype system and describes the testing method used to select the best filter, followed in Sec-

tion 5.4 by the test results. Section 5.5 presents a realistic evaluation of the benefits of the selected

transition smoothing filter when implemented into the real-time, event-based prototype classification

system. Finally Section 5.6 gives a summary of the work in this chapter.

5.1 Handling transitions in posture monitoring systems

In the literature, a common approach to training, testing and evaluation when using supervised learning

is to truncate the datasets and consider only periods of stable posture or activity [14, 46, 53, 65, 123].
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The focus for the majority of work is on classifying a set of well-defined, stable postures; the effect of

transitions on classification accuracy in a realistic deployment is not considered or evaluated. Reported

systems are therefore likely to deliver poorer classification accuracy when deployed in realistic scenarios,

particularly if the regimes monitored present a high number of transitions per minute. Figure 5.1 on the

facing page demonstrates the effect on classification accuracy of the number of transitions per minute for

a tree trained on truncated data (following the methodology presented in Chapter 4). It can be seen that

classification accuracy decreases as the frequency of transitions increases. The accuracy of the classifier

can thus only be predicted using knowledge of the expected frequency of transitions.

To avoid such performance degradation and variability in realistic scenarios, one solution could be

to provide both well-defined postures and transition data to the machine learning algorithm. Each

posture would be annotated correspondingly while the change between one posture and another would be

annotated as a separate “transition” class. However, this approach is flawed as transitions are themselves

composed of a variety of short-lived postures, many of which are from the very set of postures which need

to be classified.

In essence, not only is the learning algorithm being instructed that data samples in particular ranges

will sometimes belong to a specific posture class and other times will belong to the “transition” class,

but also that almost any sample could belong to the “transition” class. Depending on the algorithm in

use this can have different effects, including ignoring the less commonly occurring class or constructing

a classifier that uses very small (such as single measurement unit) differences in the readings to make

the decision. In the case of the decision trees used in this work, a classification accuracy of 62.4% was

found when testing this method of annotation using data sets D5, D6, and D7 (9.6 hours of data from 8

subjects). This is clearly unacceptable when compared to the state of the art.

Some researchers have looked at the classification of specific transitions related to their application,

for example Godfrey et al. [48] looked into sitting-to-standing and standing-to-sitting transitions in order

to aid in classifying standing and sitting using a single sensor placed on the chest. Similarly, Li et al. [76]

and Jafare et al. [60] considered transitions such as standing to lying, which are important in classifying

falls. Methods considered in relation to classification of transitions include segmentation of the signal

using thresholds [60] and discrete wavelet transform [1, 48]. However, it is desirable to handle transitions

in a way that is generally applicable, whereas these types of method require, for example, knowledge of

specific types of transitions that may occur.

In applications such as the EOD operative monitoring case study, it is more important to provide

a consistent, stable view of the operative’s posture (that is, minimise the posture fluctuations during
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Figure 5.2: Classification output sequence when a subject is transitioning from sitting to lying on one
side. Labels indicate the correct annotations.

transitions) than to specifically determine that they are in any given type of transition. Fluctuation in

the classification output will cause fluctuations in both the automated processing/modelling performed

by an external subsystem and also the visualisation shown to an observer. This requirement can thus

be seen to arise generally where postural information is to be visualised or used as input to a control

system. The need for stability means that the previously described issues related to detecting transitions

in real-time between the postures can be side-stepped entirely and a different approach used with the goal

of providing a posture output that does not fluctuate during transitions. The desired output from the

system here during transition periods is therefore either one of 1) the posture immediately prior to the

transition (the initial posture) or 2) the posture immediately following the transition (the final posture).

Figure 5.2 shows a classified sequence of data where the subject transitioned from sitting to lying on

one side. During this transition the classified posture changed a total of 11 times. An unstable visual

output of this type leads to more transmissions from an event-based system, as well as presenting an

external modelling subsystem or visualiser with several different posture inputs in a short space of time.

In this case, the ideal output would be for the classification to switch from sitting and lying on one side

at some point (and only once) during the transition.

The justification for the work proposed in this chapter is therefore as follows:
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1. Over a period of time around a transition, the output from a classifier trained on truncated data

will consist of: 1) two stable postures, pre and post transition, and 2) short-lived postures from

the defined set during the transition. This work proposes the use of a transition smoothing filter

that outputs a posture estimate on the basis that the postures of interest will be of relatively

long duration and that fast changes are not a desirable output. Ideally, this would result in the

output during the transition consisting of only the postures observed before and after the transition

occurred. This filter would be applied to all of the classifier output resulting also in the removal of

spurious incorrect classifications during stable postures.

2. In many cases it is desirable to implement an event-based system instead of a continuous monitoring

one, particularly when: 1) the system’s battery life is impacted by the number of transmissions made

or 2) the application implies long periods where the classifier output values will be constant. In

the former case a continuously reporting system will quickly drain the batteries, while in the latter

almost all of the postural information transmitted will be redundant. In the case of a battery-

powered on-body posture monitoring system, both of these conditions are true. Thus, an event-

based system would be preferable, where only updates to the subject’s posture are transmitted

instead of every classified posture. The method of handling transitions (such as the filter described

here) influences the number of posture change events that will be generated by such an event-based

system.

In summary, the approach proposed here is to define the initial and final postures around a transition

as being “correct” for the duration of the transition, and apply a filter to the classifier output that will

satisfy this criteria and achieve a stable view of posture (maintaining high classification accuracy and

reducing the number of the posture changes that are detected by the system). Three different filter

candidates were designed, deployed and evaluated using experimentally gathered data. The following

sections describe them, the experimental data used, and the results of the evaluation.

5.2 Candidate transition smoothing filters

Three options were considered for the transition smoothing filters: a voting filter, a weighted voting filter,

and a Bayes filter. Conceptually, these filters take a time-series of classified postures as input and attempt

to “smooth” them (that is, produce a more stable series of output postures) based on the assumption

that posture tends to be static over time.
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Voting filter

The voting filter uses a sliding window where the last n classification results are summarised to find the

posture that appears most frequently. This is based on the assumption that stable postures are likely to

appear more frequently in the recent classifications than transient/spurious postures (such as observed

during transitions). Given a set of past unfiltered posture estimates d(t), d(t − 1), ..., d(t − n + 1) the

posture chosen c∗ at time t is given by,

c∗voting(t) = arg max
c∈C

n−1∑
i=0

[c = d(t− i)]

where the term in square brackets yields 1 if true and 0 otherwise (following Iverson’s bracket notation)

and the set C denotes the possible postures.

Exponentially weighted voting

EWV is inspired by the Exponentially Weighted Moving Average (EWMA) filter. Although the Voting

filter is simple and robust, it makes the assumption that all votes are equal. The EWV filter improves on

this by attributing greater weight to recent posture estimate inputs. This is based on the assumption that

more recent posture estimates are likely to be a better indicator of actual posture than less recent ones.

This also means that the filter will be faster to respond to an actual posture change than the Voting filter

would. In operation, each posture class c is associated with a separate EWMA-based filter wc. Given

the current unfiltered posture estimate d(t) and the prior filter output wc(t− 1), the new output for each

posture is calculated as,

wc(t) = wc(t− 1) + α([c = d(t)]− wc(t− 1))

for all c ∈ C. A constant α controls the relative weight of newer values over old. Once wc(t) has been

calculated for each c, the posture with the largest filter output is chosen.

Bayes filter

A Bayes filter is a general algorithm for filtering on the basis of a Dynamic Bayesian Network model [119].

The Bayesian net model for this filter is shown in Figure 5.3 on the facing page and consists of a time-based

dynamic net where the postural state x evolves over time and also affects sensor readings z.

The model contains two causal links: First, the posture x causes accelerometer sensor readings z.

Second, posture xt – 1 at time t – 1 influences the posture xt at time t. In principle, the intentions of
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xtxt−1

ztzt−1

· · · · · ·

Figure 5.3: Dynamic Bayesian Network for postural state x and corresponding sensor reading z.

the wearer form a “control” causal link, however it is assumed that this is unobservable and thus is not

included in the model. There may be some point to modelling intention since intermediary postures are

gone through when going, say, from kneeling to walking. Therefore, a uniform set of intentions yields a

non-uniform distribution between subsequent postures. It is not clear, though, what the distribution of

intentions might be.

In the approach here, a further link exists between the sensor values and the unfiltered estimated

posture. We collapse the two-stage link between actual posture and estimated posture into a single

causal link. The estimated posture at time t is thus denoted zt in this description. This necessarily

ignores some information that would be available by considering individual accelerometer readings. The

key difference between a Bayes filter approach and the HMM approaches used elsewhere [22, 55] is that

in the Bayes filter, the state (which is hidden in an HMM) corresponds to a known attribute, such as

the wearer’s posture. In our approach, we start with an existing decision tree-based classifier that infers

posture from acceleration sensor readings and that has known classification accuracy.

The filter requires us to identify the set of conditional probabilities associated with changing or keeping

posture P (xt|xt–1) and those associated with the sensor identifying a posture, given an actual posture

P (zt|xt). These are referred to here as the transition model and sensor model, respectively. One way to

obtain these conditional probabilities is to derive them from experience. In this case, it is important that

the environment and behaviour of the subject is as natural as possible. Also, extensive trials are required

to produce a good estimate of the true conditional probability distributions. An alternative approach

is to use existing knowledge to estimate the transition and sensor model distributions. For example, it

can reasonably be assumed that posture does not tend to change rapidly. Furthermore, the accuracy of

the estimated posture (and thus the associated conditional probability distributions) can be derived from

the precision and recall of the classifier. In this work, we fix the conditional probability of the posture
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Table 5.1: Experimental data used in training the classification tree used in the transition smoothing
filters evaluation. This is a subset of data sets gathered listed in Section 4.7 on page 69.

No. of Regimes performed Hours
subjects R1 R2 R3 available of data

D1 4 " " - 1.2
D2 1 " " " 0.5
D3 5 " " " 2.6

staying the same according to,

P (xt = u|xt−1 = v) =


p if u = v

(1− p) / (N − 1) otherwise

for all combinations of postures u, v and where N is the number of postures. The sensor model is set

according to,

P (zt = u|xt = v) =


q if u = v

(1− q) / (N − 1) otherwise

for all combinations of postures u, v. Thus the entire set of conditional probabilities is defined by two

constants p and q.

5.3 Transition smoothing filter implementation and testing

method

In terms of the classification system software architecture, the processing stage responsible for handling

transitions is located as shown in Figure 5.4 on the next page (labelled “Transition smoothing filter”).

The filtering follows the “Posture classification” stage so that it can operate on the classifier output. All

three filters described in the previous section were implemented using Python, matching the other system

software components. In the implementation used in the evaluation here (as described in Section 3.4 on

page 49) all three filters are made available to the classification software on the Primary Node and the

visualiser provides the user with the ability to switch between them.

For testing and evaluation of the filters, a decision tree was trained using data gathered from 10

subjects as summarised in Table 5.1. The subjects wore nine sensors (located on the calves, thighs,

upper arms, lower arms and chest) and WVar was used as the extracted data feature (see Section 6.4



CHAPTER 5. TRANSITION SMOOTHING FILTERS 89

 To/From
Secondary Node

calibrated data + feature

Posture Classification

Transition Smoothing Filter

filtered posture class

 To/From
Base Station

3D Acceleration

Median Filter

Calibration

Data

Primary Node

calibrated data

raw data

Transmit

Configuration
commands

Sense

Feature extract

Post−process

 Data

Pre−process +

Classify +

Feature extract

Figure 5.4: Location of transition smoothing filter in the system data flow.

Table 5.2: Summary of experimental data used for testing the transition smoothing filters. This is a
subset of data sets gathered listed in Section 4.7 on page 69.

No. of Regimes performed Total time
subjects R1 R2 RT30 RT40 (hours)

D5 7 " " - - 2.5
D6 7 - - " - 4.2
D7 5 - - - " 2.9
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for details). While the results here are based on the full set of nine sensors used in data gathering, the

optimal filter parameters were found to be the same when tested with data from only two sensors (thigh

and calf). Testing data was gathered from a total of 8 individual subjects performing R1, R2 and two

other regime variants (RT30 and RT40, with set transition frequencies). A summary of the testing data

is given in Table 5.2 on page 89. The data was annotated using the automated method described in

Section 4.8 on page 69 and the decision tree training process detailed in Section 4.9 on page 72 was

followed. Figure 5.5 shows the transition testing method used here. The data from each subject was

tested by passing it through the trained tree followed by a transition smoothing filter. Classification

results during transitions were considered correct if they matched either the initial or final posture.

Two metrics were selected to evaluate the impact of the filters on the system classification performance:

classification accuracy and number of posture change events generated. Accuracy is a common metric for

this purpose and so allows comparison of different classification systems in a broad sense. As one of the

goals of the filters presented here is that they provide a stable view of posture, even during transitions,

the number of posture changes identified during a given set of data is used as the second metric. As

the system is anticipated to send only posture updates (rather than continuously reporting), this metric

corresponds to the potential improvement in battery life.

5.4 Transition smoothing filter testing results

Classifiers were trained and tested using the method described in the previous section. The output of the

classifier was filtered using each of the algorithms described in Section 5.2, and the classification accuracy

and number of posture change events generated were calculated for a variety of algorithm parameter

values (window size for the voting filter, α for EWV, and q for the Bayes filter). The results are shown

in Figures 5.6 to 5.8. The classification accuracy and number of events are calculated as an average

over all the data samples from the 26 tests (not as averages of the accuracy and events from individual

tests). Comparisons are performed against a continuous reporting system, and a basic events filter (which

simply compares the current output with the previous one and transmits if different). For each filter,

the parameter giving the largest accuracy gain was selected as the optimum. In all cases, the number of

events generated using the selected filter parameter were near to the lowest found for that filter.

All three proposed transition smoothing filters improved the performance in terms of classification

accuracy and the number of events generated. From the graphs, it can be seen that the optimal parameters

were:
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Figure 5.6: Classification accuracy and generated events for Voting filter with various window sizes.
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Figure 5.8: Classification accuracy and generated events for Bayes filter with various values of q (p =
0.998).

Table 5.3: Classification accuracy and number of events generated for optimal transition smoothing filter
parameters. Total transmissions for a continuous monitoring system were 343,140 for the data shown.
RCMT=Reduction against continuous reporting transmissions.

Filter type and parameter value
Basic events filter Vote EWV Bayes

window = 30 s α = 0.04 q = 0.70
Accuracy (%) 92.6 93.3 93.7 93.0

Events 5182 1512 1285 2586
RCMT (%) 98.5 99.6 99.6 99.2
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• a window size of around 30 samples (corresponding to 3 seconds) for the voting filter,

• an α of around 0.04 for the EWV filter, and,

• low values of q for the Bayes filter (values near to 1 resulted in more posture change events being

generated).

A summary of the results for the optimal parameters is given in Table 5.3 on the previous page. The EWV

filter had the best overall performance of the three smoothing filters, increasing the accuracy by 1.1%

(compared to systems which do not cater for transitions) and reducing the number of events generated

to around a quarter compared to using a basic events filter.

The increase in accuracy is dependent on the frequency of transitions. Figure 5.9 on the facing

page shows the effect of the number of transitions per minute on the overall classification accuracy (for

untruncated data) with no filter and when the best filter is used (EWV filter with α = 0.04) on the

output of the tree. These results are calculated using the accuracy on truncated data as the baseline for

comparison. It can be seen that the classification accuracy decreases more rapidly when no filters are

used (around 2% for every transition/minute) compared to when the EWV filter is used (less than 1%

for every transition/minute).

Figures 5.10 and 5.11 show the effect of the EWV filter (with α = 0.04) on the output of the classifier in

terms of the postures classified during a sample sequence of data samples in which a subject transitioned

from sitting to lying on one side. When no filter is used there are 11 posture changes identified, while

use of the EWV filter reduces this to 3 posture changes. This is consistent with the results shown earlier,

where a reduction of 75.2% was seen overall in the events generated when using this filter. It is expected

that battery life will also be improved by the reduced number of transmissions.

5.5 Real-life evaluation of implemented filter

This section presents an evaluation of the EWV transition smoothing filter based on data gathered from

five subjects performing tasked activities. The evaluation was performed using data gathered from the

same experimental trials described in Section 4.4 on page 63. The details will not be repeated here but

in summary the best performing classification tree was selected and deployed on the system hardware to

classify the posture of five subjects (three males and two females) while they performed a series of tasked

activities. The DG1 prototype system variant was used, with the Primary Node configured to transmit

only posture information to the base station.
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Figure 5.10: Classification output sequence when a subject is transitioning from sitting to lying on one
side when no transition filters are applied.
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Figure 5.11: Classification output sequence when a subject is transitioning from sitting to lying on one
side when EWV filter is used.

Classification accuracy was calculated over both untruncated data (as received from the node and

annotated using a video based method) and truncated data (with periods annotated as transitions re-

moved). The number of posture change events generated was counted using the untruncated data. The

data yield was calculated by comparing the number of classified postures over the course of the test with

the expected number based on the test duration and the sampling frequency of 10 Hz. The accuracy

and number of posture change events was also calculated using untruncated data after filtering using the

EWV filter with α = 0.04 (giving the best overall performance as described in Section 5.4).

Table 5.4: Summary of real-time evaluation results for five subjects when the implemented transition
filter is used. A is the accuracy on untruncated data, ∆AU is the overall accuracy loss due to transitions
without filtering (comparing truncated and untruncated data), and ∆AF is the overall accuracy loss due
to transitions when the smoothing filter is used.

Event reduction
Subject Transitions/min A ∆AU ∆AF due to filter (%)

Test 1 1 1.6 98.5 -2.6 -0.6 82.9
Test 2 1 3.9 96.8 -7.4 -3.9 74.5
Test 3 2 1.7 98.1 -4.3 -1.6 76.7
Test 4 3 2.7 94.2 -3.9 -0.8 75.6
Test 5 4 1.6 96.2 -3.8 -0.5 82.3
Test 6 5 1.8 97.3 -4.3 -2.2 75.6
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Figure 5.12: Change in classification accuracy against transitions/minute for real-time evaluation. Lines
shown are fits to the data in Figure 5.9 on page 95.

Table 5.4 on the facing page presents the results for all five subjects. Additionally, the reduction

in transmissions for an event-based system compared to a continuous monitoring system was found to

be similar to the results shown in Table 5.3 on page 93—an average of 97.2% without the filter applied

and 99.4% with the filter applied. Figure 5.12 shows the change in accuracy going from truncated to

untruncated data based on the rate of transitions. It can be seen that the results match relatively well

to the fit lines shown in Figure 5.9 on page 95, with similar RMS errors against the fit line for the values

here and the values for the offline evaluation. This validates the relationship found between the reduction

in accuracy and the frequency of transitions.

Based on the results, it can be concluded that:

• The relationship between transition frequency and accuracy loss is maintained in online evaluation

of the classifier.

• The accuracy loss when moving from truncated to untruncated data is reduced when the smoothing

filters are used.

• Use of the proposed filters significantly reduced the number of events generated.

The results found with real-time classification and the subjects performing tasked activities match with

the results presented in Section 5.4 (where the data was processed offline).
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5.6 Summary

Transitions between postures can be difficult to accommodate when using classification methods such

as supervised learning. In the EOD case study application here and other similar applications, it is

important to suppress high frequency transition reports as they are likely spurious and do not represent

useful information. Based on this, transition smoothing filters were introduced as a means of achieving

two main goals:

1. an improvement of the accuracy of classification for data containing both stable postures and

transitions, and,

2. a reduced number of generated posture updates, providing benefits in battery life and required

network bandwidth as well as providing more stable input to an external subsystem.

The approach used was based on three filters: a simple voting filter, an EWV filter, and a Bayes filter.

The filter candidates were tested using experimentally gathered data.

The filter evaluation was based on two metrics: 1) classification accuracy and 2) the number of

posture change event messages generated. Classification accuracy during transition periods is calculated

here by assuming that the classifier should output either the initial posture or the final posture. All

filters delivered an increase in classification accuracy and a significant reduction in the number of events

compared to an unfiltered system. The EWV filter with α = 0.04 provided the best overall performance

of the three post-processing filters with an overall increase in classification accuracy of 1.1% and a 75.2%

reduction in events generated.

The effect of transition frequency on classification accuracy was also considered. It was shown that,

as the transitions frequency increased, the accuracy decreased approximately linearly. When using the

best performing filter (EWV) the decrease in overall classification accuracy was less than 1% per transi-

tion/minute, compared to 2% if no filter is used.

The EWV filter was also evaluated as deployed in a realistic scenario (presented in Section 4.12 on

page 76). The results confirmed the predictions derived from prior off-line analyses data in terms of:

1) change in accuracy with transition rate for both filtered and unfiltered data and 2) reduction in the

number of posture change events generated when a filter is used.

In summary, the transition smoothing filters described here (and specifically EWV, the best per-

forming filter) provide an increase in classification accuracy when integrated with a deployed system.

Furthermore, they provide a significant reduction in the number of posture change events generated,

which is beneficial when designing an efficient event-based system.
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The next chapter provides an in-depth analysis of the system design and data gathering factors and

provides guidance as to selection of an appropriate set of parameter values to maximise classifier accuracy.
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Chapter 6

The design space for a C4.5 decision

tree based classifier

When building a machine learning based posture classification system, there are a large number of factors

to be considered such as sensor sampling rates, optimal (and minimal) sensor positioning and optimal

time-based and frequency-based features. Such factors can have a large impact on the accuracy of the

classifier. Despite this, there appears to be little published investigation into the impact of these factors.

Consequently much work is duplicated by different system developers while building and evaluating

posture classification systems. This further results in little commonality between systems reported in the

literature. The development effort for new applications can thus be considerable.

The focus of this chapter is thus to investigate and evaluate the impact of various system related factors

and training process factors on the accuracy of a machine learning-based posture/activity classifier,

specifically one based on C4.5 decision trees as proposed in Chapter 4. The factors considered are:

1) extracted data feature choice, 2) data feature window size, 3) number of sensors, 4) training set size,

5) sampling rate, and 6) targeting of individual postures. The design space is explored such that the

results and discussion provide guidance for posture classification system design in a range of applications

with differing constraints. From these results, the optimal configuration for the case study application is

extracted. This evaluation and the subsequent recommendations form the contribution of this chapter

and define a decision tree classifier design space.

The chapter is structured as follow: Section 6.1 describes the classifier and data gathering factors

around which the design space is formed. Section 6.2 presents the data sets used in the analysis in

this chapter. Section 6.3 lists the hypotheses guiding the analysis. Sections 6.4 to 6.9 present the

investigations into the various factors and the resulting conclusions about the classifier design space.

Finally, Section 6.10 summarises the work presented in this chapter.

101
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6.1 Factors affecting classification accuracy

When designing and implementing a classifier for real life applications, it is important to consider all of

the factors that can impact its accuracy when deployed in the field. Despite the large number of options

with regard to, for example, sensor placement and data feature extraction, the impact of these factors has

not yet been subject to extensive research. Furthermore, the design and tuning of a classification system

involves application-specific considerations such as the specific set of postures that must be classified. The

expectation that researchers have is that system performance in a real-life deployment will be similar

to that observed within the laboratory or assessment through offline testing. However from a BSN

perspective, when critically evaluating the works presented in the literature, it has become clear that:

• bespoke systems and parameter settings are reported for each application treated,

• the systems reported are commonly validated only in laboratory settings,

• the performance of these systems is evaluated in well-controlled scenarios and the performance indi-

cators vary over the research community (with precision, recall, and accuracy being most common),

• a large degree of variability exists in the system design, with factors such as sampling rate and the

number and type of accelerometers used, for example, being related more to hardware availability

and capability than the requirements of the application, and,

• the ability of such reported systems to perform and generalize in real-world scenarios is largely

unexplored to date.

Based on these perceived gaps in the literature, this chapter presents an investigation into the following

factors.

• Extracted data features. A variety of data features (such as windowed variance) can be used to

capture information about the dynamic nature of some postures. When used in addition to sensor

data, the classification accuracy for some postures can thus be increased. However, the impact and

benefits of various data features are dependent on the set of postures that must be classified. Data

features are investigated in Section 6.4.

• The data feature window size. Some features are calculated over a window of data and the size of

this window will affect the classification accuracy. In particular, the larger the window size, the

longer it will take for certain features (such as windowed mean) to react to a rapid change in sensed

data, potentially leading to a period of incorrect classifications. Section 6.5 demonstrates this effect.
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• The number and location of sensors deployed on the subject. The sensors form the basis of the

system operation and thus selecting a suitable number of sensors and optimal locations for those

sensors is a vital part of the system design. The results of this analysis are given in Section 6.6.

• The sensor sampling rate. The sampling rates used in the literature are often based on the capabil-

ities of the hardware platform available, without an analysis of the need for a given rate. Sampling

at a lower rate often allows the use of cheaper components and reduces the required communica-

tion bandwidth and is thus preferable as long as classification accuracy is not compromised. The

classification accuracies obtained here at several sampling rates are shown in Section 6.7.

• The number of subjects forming the training set for the classifier. The goal of training a machine

learning based classifier is to allow it to form rules that generalise well to unseen data. While it is

not necessarily possible to train a classifier that will generalise to all possible future subjects, the

greater the number of subjects that are included the more likely it is that the generated rules will

be suitable for a large spread of subjects.The effect of training set size is investigated in Section 6.8.

6.2 Data sets used for design space investigation

Table 6.1 on the next page lists the data sets used in this chapter, showing the relevant data sets taken

from Table 4.2 on page 70. The data was collected using all three data gathering systems (described in

Section 4.5 on page 66. A description of the data collection process is given in Section 4.3 on page 61.

The analysis in this chapter is based on the use of LOSOXV across data from a number of subjects. The

exception to this is the investigation into the number of subjects to use in the training set (Section 6.8);

for this, the test method used is described separately. The particular data sets used in each analysis are

listed in the appropriate section, referring back to Table 6.1 on the next page.

6.3 Summary of hypotheses

In order to guide the analysis presented in this chapter, several hypotheses were formulated in relation

to the various identified factors affecting classification accuracy. These hypotheses describe the expected

results for a number of tests, with the expectation based, in part, on results found in related work from

the literature. The hypotheses are listed below, and the following sections treat them individually.

H1 To classify accurately dynamic postures, time domain features, such as windowed variance, are

essential.



104 CHAPTER 6. THE DESIGN SPACE FOR A C4.5 DECISION TREE BASED CLASSIFIER

Table
6.1:

Sum
m
ary

ofexperim
entaldata

used
in

the
analysis

in
this

chapter.

D
ata

acquisition
N
o.

of
N
o.

of
A
nnotation

R
egim

es
perform

ed
H
ours

U
sed

in
system

sensors
subjects

m
ethod

R
1

R
2

R
3

RT
40

ofdata
sections

D
1

D
G
1

9
5

M
anual

"
"

-
-

1.9
6.4,6.6,6.8

D
2

D
G
1

9
1

M
anual

"
"

"
-

0.5
6.4,6.6,6.8

D
3

D
G
1

11
5

M
anual

"
"

"
-

2.6
6.4,6.6,6.8

D
5

D
G
2

9
7

A
utom

atic
"

"
-

-
2.5

6.4,6.5,6.6,6.8,6.9
D
7

D
G
2

9
5

A
utom

atic
-

-
-

"
2.9

6.5
D
8

D
G
2

4
6

M
anual

"
-

"
-

3.0
6.6

D
9

SH
IM

M
ER

7
7

M
anual

"
"

-
-

2.2
6.7

D
10

SH
IM

M
ER

7
1

M
anual

"
-

-
-

0.2
6.7



CHAPTER 6. THE DESIGN SPACE FOR A C4.5 DECISION TREE BASED CLASSIFIER 105

H2 When using the windowed variance feature, classification accuracy will be highest with a window

size of several seconds, decreasing for smaller and larger window sizes (below 0.5 seconds and above

5 seconds).

H3 Increasing the number of sensing locations beyond two sensors (situated on the thigh and calf)

produces an increase in classification accuracy but with diminishing return as the number of sensors

increases.

H4 When using time domain features, increasing the sampling rate beyond 10 Hz will not provide an

increase in classification accuracy.

H5 Obtaining a consistently high classification accuracy will require a certain minimum number of

subjects in the training set. However, further increase in the dataset size will not show a matching

increase in the classification accuracy.

H6 The posture classifier can classify specific targeted postures with a similar accuracy to the results

found when classifying all postures.

6.4 Selection of an appropriate data feature

Hypothesis 1 To classify accurately dynamic postures, time domain features, such as windowed vari-

ance, are essential.

The need for feature extraction is explained in Section 4.11.1 on page 74. In summary: an algorithm that

considers only data samples from one time step cannot capture the dynamics or history of the measured

phenomenon. As a concrete example, standing and walking will result in similar or identical raw data

values at some points in time. A solution to this is to extract temporal features from the data. It was

shown (in Section 4.11.1 on page 74) that the classifier algorithm used achieved an accuracy of 98.0%

when classifying only static postures, reducing to 90.5% when both static and dynamic postures were

considered (using only raw data). The goal of using a feature such as the ones described here would thus

be to counteract that loss of accuracy when classifying dynamic postures alongside static ones. Ideally,

classification based on the raw data and extracted feature data would be able to achieve an accuracy

similar to the 98.0% observed for static postures, across both static and dynamic posture sets.

The two primary types of data feature are time domain and frequency domain features. However,

as Bharatula [18] points out, frequency domain features alone yield relatively poor classification results

for accelerometer-based activity classification of the type treated in this thesis. Since the aim here is
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to perform all processing on a low-power microcontroller/microprocessor, and since frequency domain

feature extraction is computationally complex, there seems little advantage in considering a large number

of frequency domain features. Furthermore, the additional information provided by frequency domain

features are not called for in this application—it is not required, for example, to distinguish between slow

and fast walking rates. The one exception made was for Energy as it was the most common frequency

domain feature encountered in literature and was thus included for comparative purposes.

This section presents the effect of various extracted data features on classification accuracy. The

features considered, based primarily on their use in the literature, were: Windowed Mean (WM) [14,

42, 56, 97, 126], magnitude [15], SVM [35], WVar [42, 56, 97, 116, 126], RMS [9, 32, 46, 59, 87, 126],

Energy [4, 39, 57, 116, 126], SMA [84, 65, 68, 126], and EWMA. Data was collected at 10 Hz with a

30 sample window used for WM, SVM, WVar, RMS, Energy, and SMA. In each case the raw data was

used along with the additional calculated values for the feature as inputs to the classifier. The feature

descriptions follow.

Windowed Mean WM is the mean acceleration for a particular axis over a fixed period of time (or

window) and can be used to minimise the effect of movement. Unfortunately, this also causes a

tendency to confuse periodic movement with similar stationary postures. WM is calculated as

xwm = 1
n

n∑
i=1

xi

where xi is sample i from the window of values, and n is the size of the window in samples.

Root Mean Square Similarly to WM, the RMS value over a window represents a trade-off between

minimising the impact of sudden movement and incorrectly identifying periodic movements. RMS

is calculated as

xrms =

√√√√ 1
n

n∑
i=1

x2
i

Exponentially Weighted Moving Average EWMA is an average that gives higher importance to

new observations while not discarding old observations. This means that it is potentially capable

of responding faster to changes in the data than a windowed mean type feature such as WM or

RMS. Strictly speaking, it is a weighted mean where the weights for older data points decrease

exponentially. EWMA is often calculated recursively as follows:

st = st−1 + α (xt − st−1)
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where xt is the sensed data point at time t, st is the weighted sum of the data points, st−1 is the

previous weighted sum, and α is a constant determining the degree of weighting applied.

Windowed Variance WVar is a calculation of the variance of the gathered data over a window. This

feature provides an indication of the degree to which the acceleration is oscillating but is independent

of the mean value. WVar is calculated as

xwvar = 1
n

n∑
i=1

(xi − x̄)2

where x̄ is the mean data value over the window.

Signal Magnitude Area SMA is the sum of the mean magnitudes of the x, y, and z values from a

single accelerometer over a window. It gives an indication of the overall acceleration being applied

to a given sensor. Prior to the SMA calculation, the individual signals are passed through low-pass

and high-pass filters to attempt to isolate frequencies relevant to movement (the cut-off frequencies

for the low-pass and high-pass filter were both 0.25 Hz). SMA is calculated as

xsma = 1
n

(
n∑

i=1
|xi|+

n∑
i=1
|yi|+

n∑
i=1
|zi|

)

Energy Energy is calculated as the sum of the squared discrete Fast Fourier Transform (FFT) component

magnitudes of the signal within a window, divided by the length of the window for normalisation.

This is used by Ravi et al. [104], and is calculated as

xenergy = 1
n

n∑
i=1
|Fi|2

where Fi =
√
a2

i + b2
i , where ai is the real part of the FFT and b is the imaginary part of the FFT.

Magnitude For the purpose of feature extraction here, Magnitude is defined as the vector magnitude

of the signal derived from the three axes of a triaxial accelerometer. It is calculated as

xmag =
√
x2 + y2 + z2

Signal Vector Magnitude SVM is the sum of the vector magnitudes of the signal from the three axes

of an accelerometer within a window, divided by the length of the window. Essentially, it provides

the average magnitude of the signal over the window. It is calculated as
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Figure 6.1: Classification accuracy when using extracted data features.

xsvm = 1
n

n∑
i=1

√
x2

i + y2
i + z2

i

LOSOXV (detailed in Section 4.3 on page 61) was used for testing purposes over data sets D1, D2,

D3, and D5 (7.5 hours of data from 17 subjects). Figure 6.1 shows the classification accuracy for each

extracted data feature when considering the set of eight static and dynamic postures treated in this

thesis. It can be seen that the best accuracy overall was obtained from WVar. The overall classification

accuracy with WVar was 96.3%, which is a reduction of only 1.7% compared to the accuracy obtained

when considering static postures alone and using only raw data. WVar thus appears to be the best

performing feature for the set of postures defined in this work.

In addition to the above, it is useful to know the best and worst features for each posture and the

accuracies achieved in each case. This information will allow a feature to be chosen in applications

requiring a subset of the postures used here and provide a starting point for investigation of additional

postures. This analysis was performed using the results of the testing presented previously but with the

results for each posture extracted from the overall results.

Table 6.2 on the facing page presents the best and worst performing feature for each posture. While

almost every posture appears to have a different best associated feature, in reality the results are very

similar for each feature in some cases, as can be seen by observing the accuracy given for the worst
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Table 6.2: The best and worst performing feature per posture. PPV = Positive Predictive Value
(TP/(TP+FP) where TP is true positives and FP is false positives).

Lying on
Crawling Kneeling back front side Sitting Standing Walking

Best feature Mean RMS SVM Mean WVar RMS WVar WVar
PPV 98.6 90.4 96.3 99.9 98.7 97.8 98.2 96.2
Std. dev. 1.2 15.6 9.5 0.2 3.1 4.2 1.7 6.0

Worst feature Mag EWMA Mean RMS EWMA EWMA Mean Mean
PPV 96.6 83.6 88.0 85.6 92.64 95.9 68.9 88.0
Std. dev. 6.1 28.7 27.0 32.8 16.1 10.8 26.7 16.3

feature. The main difficulty in classifying the postures appears to be for standing and walking, which

are mistaken for each other by many of the features. Note particularly the 68.9% accuracy for standing

when using Mean. For both of these, WVar produced the best results. Notably, the worst classification

accuracy for six of the eight postures was produced by Mean and EWMA.

6.5 Selection of window size for data features

Hypothesis 2 When using the windowed variance feature, classification accuracy will be highest with

a window size of several seconds, decreasing for smaller and larger window sizes (below 0.5 seconds

and above 5 seconds for example).

This section provides an analysis of the effect of window size on classification accuracy. Time-domain

data features are generally applied over a fixed or sliding window of data. The expectation is that larger

window sizes will cause a period of incorrect classifications after each postural transition while the window

becomes populated with data in the new range of sensed values. The new posture will not be classified

correctly until the window includes sufficient post-transition data samples for it to be recognised. On

the other hand, a small window will not allow the feature to be calculated meaningfully (as an extreme

example, variance calculated over a window of one sample will always be zero). It is necessary, therefore,

to quantify the bounds within which a high classification accuracy can be obtained.

This investigation was performed over data sets D5 and D7 (5.4 hours of data from 8 subjects). The

WVar feature was extracted over window sizes starting at 5 samples and then increasing in steps of 5

up to 200 samples. The LOSOXV process was performed for each window size in turn over the dataset.

Classification accuracy was calculated based on the truncated data by comparing the data annotation with

the classifier output. Classification delay was evaluated by counting the number of samples between the
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Figure 6.2: The effect of window size on classification accuracy.

end of an annotated transition to the first time that the posture was classified correctly. If the annotated

posture changed before any correct classifications were encountered then the count was discarded and a

new one started.

Figure 6.2 shows the effect of window size on classification accuracy. A size of between 5 and 75 samples

(0.5 to 7.5 seconds) appears to result in relatively consistent accuracy results. Window sizes above

75 samples show greater variation in the results along with a decreasing median accuracy as the window

size increases.

Figure 6.3 on the facing page shows the impact of window size on the time period in which incorrect

classifications are output following a postural transition. While the results are variable, it can be seen

that the period length tends to increase with larger window sizes, giving an average period of 0.5 seconds

for a window size of 5 samples and 1.0 seconds for a window size of 200 samples. Inspecting the average

period for each trial conducted, the highest for a single trial was found to be 3.37 seconds (for a window

size of 200 samples). Overall, it can be seen that the window size does impact the period of incorrect

classification following a posture change, though the period does not increase rapidly with increasing

window sizes.



CHAPTER 6. THE DESIGN SPACE FOR A C4.5 DECISION TREE BASED CLASSIFIER 111

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Window size (samples)

T
im

e
 (

s
e
c
)

0 50 100 150 200

Figure 6.3: Time to first correct classification after a postural transition when using a range of window
sizes.

6.6 Selection of number and positioning of sensors

Hypothesis 3 Increasing the number of sensing locations beyond two sensors (situated on the thigh and

calf) produces an increase in classification accuracy but with diminishing return as the number of

sensors increases.

In the literature related to classification of postures and activities, the justification for selecting particular

number and placement of the sensors is not generally reported, though some commonality is evident. The

hip and ankle, for example, are often used and there are several examples of posture classification using

data gathered only from a single sensor. Common locations include the hip [20, 46, 65, 79, 84, 114],

wrist [59, 74, 90, 109, 108, 126] and chest [15, 68]. More details of sensor locations from the literature are

given in Section 2.4.3 on page 32. Reducing the number of sensors deployed in a posture classification

system that uses multiple sensors wired to a wireless node can reduce the current draw from the batteries

and increase the wearability of the instrument. Moreover for fully wireless solutions, the number of

sensors that may be used is limited by the wireless bandwidth available on the gateway or processing

node.

In the analysis here, eleven sensor positions were investigated in various combinations of between 1

and 11 sensors. The selection of the eleven locations is justified in the context of the EOD operative
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Figure 6.4: Overall accuracy for classification using one sensor location.

monitoring application by Section 3.4.3 on page 51. These locations provide coverage of the commonly

investigated body segments as described in Section 2.4.3 on page 32. For each combination of sensors,

the classification accuracy was tested for the set of eight postures considered here.

Data sets D1, D2, D3, and D5 (7.5 hours of data from 17 subjects) were used for training for all

combinations of nine or fewer sensors. Data set D3 (2.6 hours of data from 5 subjects) was used for the

11 sensor combination and data sets D3 and D8 (5.6 hours of data from 11 subjects) were used for the

individual hip and ankle sensor tests. As the focus of the data gathering was on nine sensor locations,

these form the basis of the majority of the discussion here. In all cases, WVar was used as the extracted

data feature with a sliding window of 30 samples at 10 Hz and testing was performed via LOSOXV.

The first step of this investigation was to determine the accuracy of individual sensors when classifying

the eight postures. Figure 6.4 shows the classification accuracy results when using each individual sensor

location to classify all eight postures. The optimal position for a single sensor is the calf, with the arm

sensors performing worst for this posture set, as expected. The chest sensor appears to perform less

well than expected from the literature. The hip sensor provides adequate (but lower than calf) accuracy.

Upon inspection of the generated confusion matrices, it appears that the chest location cannot be used

to discriminate between standing and sitting, which is a conclusion supported by Barralon et al. [15].
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Table 6.3: Sensors which provide an MCC greater than 0.8 when classifying individual postures.
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As the results given are specific to the set of postures considered for the application here, and so

may not represent the overall results for other applications, each sensor was also tested for its suitability

for classifying each posture. This should provide a basis for sensor selection for alternative posture sets

(particularly subsets of the postures here). For this purpose, accuracy was not used as an evaluation

metric. This is because, for any given posture considered in isolation, a relatively high accuracy can be

obtained by never outputting that posture from the classifier. Consider, for example, the case where

the accuracy of classification for sitting is being analysed based on a dataset with equal representation

of all 8 postures—a classifier which only output “other” as the result would obtain a 87.5% accuracy

despite having no practical use. For this reason, the Matthews correlation coefficient (MCC) [11] was

used. This coefficient is considered to be appropriate even in situations where the classes are of quite

different sizes. The output is between −1 and +1, with +1 indicating perfect prediction, 0 indicating

results equivalent to random prediction, and −1 indicating complete disagreement between the predicted

and observed values. MCC is calculated as

MCC = TP× TN− FP× FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives. To

complete the example above, the classifier outputting only “other” would produce an MCC value of 0.

For the purpose of the investigation here, the LOSOXV process was performed using each sensor in turn.
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Table 6.4: Use of each sensor when classifying as a percentage of total comparisons (one comparison per
decision tree node). Bold text indicates results above 20%, arbitrarily chosen to indicate high values
based on the maximum result found of 33.4%.

Left
lower
arm

Left
upper
arm

Right
lower
arm

Right
upper
arm

Chest Left
calf

Left
thigh

Right
calf

Right
thigh

All postures
(aggregate)

1.5 3.4 0.6 2.7 15.0 22.8 14.5 18.0 21.5

Crawling 0.5 9.3 0.3 0.7 13.4 29.3 6.3 10.9 29.4

Kneeling 0.5 7.1 0.6 5.8 17.7 21.2 15.8 11.3 20.0

Lying on
front

14.0 3.8 0.0 0.0 0.4 19.4 18.3 18.8 25.2

Lying on
back

0.0 0.9 0.0 0.0 19.4 20.2 28.7 24.4 6.3

Lying on
one side

1.0 2.6 1.4 0.0 8.1 15.3 31.8 22.2 17.6

Sitting 0.1 0.1 0.0 0.1 32.8 14.2 17.5 17.2 18.2

Standing 0.1 0.0 0.0 0.2 2.4 33.4 17.8 22.0 24.0

Walking 3.5 0.6 1.7 7.9 21.8 15.6 7.5 23.7 17.8

The number of true positives, false positives, and so on from each iteration of LOSOXV were summed

(for each posture). A sensor was deemed to be suitable for classifying a particular posture if the MCC

value for the summed results was greater than 0.8. Table 6.3 on the previous page shows the results

of this investigation. It can be seen that sitting, standing and kneeling were not classified accurately

using any single sensor. Using only a hip or chest sensor (as seen in the literature) resulted in accurate

classification of crawling, walking, and lying on front, on back and on one side. The upper and lower arms

did not allow accurate classification of any of the selected postures, reflecting the low overall accuracy

shown previously for them.

The final per-sensor test looked at the importance of each sensor when classifying all eight postures.

This was investigated by logging which sensor was used for each tree node visited when classifying the

data described previously. The idea here is that more important sensors, such as those that appear closer

to the root of the decision trees, will be used more frequently when classifying, providing a simple metric

of importance. The results are shown in Table 6.4, and reflect the results given previously for individual

sensors. The arm sensors are used very little, with the leg and chest sensors being responsible for the

majority of comparisons made during classification.



CHAPTER 6. THE DESIGN SPACE FOR A C4.5 DECISION TREE BASED CLASSIFIER 115

Number of sensors

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
 c

o
rr

e
c
t)

70

80

90

100

1 2 9

Figure 6.5: Classification accuracy when using 1 sensor (left calf), 2 sensors (left thigh and calf) and 9
sensors.

The classification accuracy found for individual sensors is significantly lower than that found when

using the set of all nine sensors, so the next step of the investigation was to find the smallest set of sensors

that gave a similar accuracy to using all nine. The first attempt was with two sensors, specifically the

left thigh and calf as they gave the highest overall accuracies in Figure 6.4. The classification accuracy

when using these two sensors was found to be 95.5%. The results are summarised in Figure 6.5. It can be

seen that using these two sensors gives a similar accuracy to all nine sensors, meaning that it is possible

to provide accurate classification using only two well-chosen sensors.

In conclusion, it is not sufficient to use only one sensor to recognise all eight of the postures investigated

here. At least two sensors are required to recognise all postures (crawling, kneeling, sitting, standing,

walking, and lying on front, on back and on one side) with a high accuracy, with two sensors on the thigh

and calf giving comparable accuracy to the use of nine sensors. When using a single sensor, the best

overall locations for the posture set here are the thigh and calf, though the chest will allow classification

of a greater number of postures than either of these (at a lower overall accuracy) and may be preferable

when targeting those specific postures.
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6.7 Selection of sensor sampling rate

Hypothesis 4 When using time domain features, increasing the sampling rate beyond 10 Hz will not

provide an increase in classification accuracy.

The most common sampling rates encountered in the literature are 100 Hz [32, 71, 114] and 20 Hz [22, 42,

103]. However, there are several reasons that a low sampling rate might be preferred in a given system

implementation, including:

• Subjects do not normally change posture multiple times per second.

• In a continuous monitoring (rather than event based) system, a higher transmission rate can reduce

battery life.

Furthermore, in the EOD Operative Monitoring application here, the Medusa2 system performs mod-

elling at 1 Hz. Given these reasons, a low sampling rate is thus generally preferred, as long as it does

not negatively impact the classification accuracy. It is expected that static postures can be accurately

classified at low sampling rates as there is no movement involved and so the data will be very similar

throughout a given instance of the subject performing that posture. Classification of dynamic postures

(walking and crawling in this application), on the other hand, requires extraction of data features that

incorporate some knowledge of the history of the data. These features are calculated over a window of

data. The size of the window is set to a time interval as a trade-off between providing sufficient samples

and reducing the time to provide correct classification after a transition (this effect is discussed for the

WVar feature in Section 6.5).

In testing the effect of sampling rate, data was collected using the SHIMMER-based system and

LOSOXV was performed over data sets D9 and D10 (2.4 hours of data from 8 subjects). WVar was

extracted over window sizes adjusted to operate over the same time period in each case (a 3 second

window was used, meaning that when data was gathered at 10 Hz, the window was 30 samples wide

whereas when data was collected at 20 Hz, the window was 60 samples wide, for example). Resampling

was performed by selecting the appropriate number of equally spaced samples from the original data that

was collected at 100 Hz (for example, to test at 20 Hz, every fifth sample was used). In this analysis, only

walking and crawling are considered since the static postures are expected to be classified accurately at

low sampling rates.

Figures 6.6 and 6.7 on the facing page show the classification accuracy at various sampling rates for

walking and crawling, respectively. It can be seen that classification accuracy appears to be relatively
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Figure 6.6: Effect of different sampling rates when classifying walking.
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Figure 6.7: Effect of different sampling rates when classifying crawling.
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Figure 6.8: Classification accuracy when using different numbers of subjects in the training set.

insensitive to sampling rate, with similar median accuracies obtained at each of the rates tested. However,

for walking, 10 Hz appears to provide the most consistent results and for crawling the same can be seen

for 2 Hz to 50 Hz (represented by the smaller inter-quartile ranges in each case). The use of a 10 Hz

sampling rate is thus justified for the postures considered in the work here. It is expected that other

applications with different sets of postures will see similar results, though in an application requiring

classification of both walking and running a higher sampling rate may be required.

6.8 Selection of training set size

Hypothesis 5 Obtaining a consistently high classification accuracy will require a certain minimum num-

ber of subjects in the training set. However, further increase in the dataset size will not show a

matching increase in the classification accuracy.

The size of the training set used to train a machine learning based classifier affects its ability to

generate rules that generalise well to unseen data. A larger training set thus increases the likelihood that

the classifier will provide a high classification accuracy when deployed on a subject that was not involved

in training. The disadvantage to having a large training set, though, is the time and expense required

to obtain it. There has been little effort reported towards creating a “standard” database of posture
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classifier training data, and so one of the first tasks of the system implementer must almost always be

to gather their own data. This section thus aims to determine the minimum appropriate size of such a

training set in order to ensure high classification accuracy.

The investigation was performed using data sets D1, D2, D3, and D5 (7.5 hours of data from 17

subjects). The feature extracted from the data for this investigation was WVar over a 30 sample window.

Figure 6.8 on the preceding page shows the results obtained when training the classifier on N subjects

(for 1 ≤ N ≤ 16) and testing on an unseen subject. This was repeated 10 times for each N with training

and test subjects randomly selected (without replacement). It can be seen that for the set of training

subjects used there is no significant increase in classifier accuracy when training on more than eight

subjects. The subjects available for this analysis did not cover all possible body builds as they were

focused around the typical age range expected for EOD operatives (20 to 36 years old). This is to be

expected in many applications however—monitoring of the daily activities of elderly people is a clear

example where the range of subjects is limited. In applications that are expected to cover a wide range

of people of all ages, heights and weights, it is likely that the minimum required number of subjects for

the training set will be larger.

6.9 Classification of individual postures

Hypothesis 6 The posture classifier can classify specific targeted postures with a similar accuracy to

the results found when classifying all postures.

The posture classification method developed here is intended to be generic and support classification of

any defined group of postures with a high accuracy, including the case of classifying single individual

postures. A system that is able to classify one specific posture or a small group of postures would be

beneficial in monitoring a subject undergoing an at-home physical rehabilitation regime. For example, a

system for monitoring an elderly person may only require classification of lying rather than classification

of all of their daily activities. The system would, however, require the ability to distinguish the targeted

postures from the remainder of the subject’s activities.

An investigation was performed, targeting the case of classifying specific individual postures, using

untruncated data collected from data set D5 (2.5 hours of data from 7 subjects). WVar was used as the

extracted feature over a 30 sample window.

The classification performance for each posture in the set of eight used in this work was analysed in

two ways:



120 CHAPTER 6. THE DESIGN SPACE FOR A C4.5 DECISION TREE BASED CLASSIFIER

Posture classified

F
−

m
e
a
s
u
re

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Crawling Kneeling Lying 

on front

Lying 

on back

Lying 

on side

Sitting Standing Walking

All postures included

Isolated postures

Figure 6.9: Classification F-measure when targeting specific postures.

1. the data was annotated as per the rest of the thesis using the annotation method described in

Section 4.8 on page 69, and,

2. a separate set of annotations was performed that took each posture in turn and marked the rest of

the data with “other”.

For annotation method 1, LOSOXV was used to find the F-measure for the targeted posture. For anno-

tation method 2, LOSOXV was performed for each iteration (that is, for each posture being individually

classified). F-measure was used in preference to accuracy as the classes were not equally represented (i.e.

the data contained many more instances of the “other” class than instances of the targeted posture).

Figure 6.9 shows the classification F-measure for each posture using the two methods. The F-measure

was similar for each posture when classified as one of the set of eight and when targeted individually

except in the case of kneeling and (to a lesser extent) lying on one side. This demonstrates the capability

of decision trees to distinguish a particular class from a set of aggregated classes at least as well as they

distinguish it from the set of individual classes in most cases.

In conclusion, if the intention is to only classify a specific posture or small group of postures then the

remaining postures can be simply annotated in a generic “other” class. This can greatly simplify the data

gathering process as large amounts of data for the other postures can be collected without annotation

being a concern.
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6.10 Summary and design space definition

When building a machine learning based posture classification system there are a large number of options

available that can have a significant impact on the accuracy of the classifier. Despite this, there appears

to be little published investigation into the impact of the factors and little commonality between systems

reported in the literature (as shown in Section 2.4.3 on page 32). This chapter presented an investigation

of the design space for C4.5 classification trees and an evaluation of the impact of system configuration

and training process factors on the accuracy of the posture/activity classifier. The design space is explored

such that the results and discussion provide guidance for posture classification system design in a range

of applications with differing constraints. From these results, the optimal configuration for the case study

application is extracted. The factors considered were: extracted data feature choice, feature window size,

number of sensors, training set size, sampling rate, and targeting of individual postures.

For the set of postures defined in this thesis the extracted data feature providing the highest overall

accuracy was WVar. For this set of postures the main difficulty appeared to be distinguishing between

similar static and dynamic postures, particularly standing and walking. The worst classification accuracy

for each of the posture was generally produced by either Mean or EWMA.

The window size selected for feature extraction influences the classification results in two ways: in-

troducing delays if the window is too large or not providing sufficient historical data if the window is

too small. A window size of between 5 and 75 samples (0.5 to 7.5 seconds) appears to provide relatively

consistent classification accuracy results when using WVar over data collected at 10 Hz. Window sizes

above 75 samples show greater variation in the results along with a decreasing median accuracy as the

window size increases. A period of incorrect classification is introduced following a posture transition

based on the window size, though the length of this period does not increase rapidly.

Classifier accuracy is not significantly sensitive to the number of sensors used, towards a minimal

configuration of 2 sensors (left thigh and calf). The accuracy degrades significantly, however, if only a

single sensor is used—the mean accuracy decreases by 15.9% for one sensor on the left calf (the best

performing individual sensor) compared to two sensors on right calf and thigh. The optimal position for

a single sensor is the calf, with the arm sensors performing worst for this posture set. Sitting, standing

and kneeling were not classified with an accuracy higher than 95% using any single sensor. For the set of

postures monitored in this work, two correctly placed sensors provide classification at a high accuracy.

The sampling used will effect classification accuracy for dynamic postures. Walking is best classified

at 10 Hz while crawling is best classified between 2 Hz and 50 Hz.

Classification accuracy was found to be highest when training on at least eight subjects, though
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little benefit was found beyond this number. The subjects selected were based on the EOD operative

monitoring application and so did not cover all ages and body builds (other applications are expected to

also have specific “target” populations in this way).

The ability to monitor individual postures is a possibility. It was found that, using the data gathering

method and the classification algorithm described in this chapter, individual postures could be classified

with a similar performance to when classified as part of the full set of eight.

In conclusion, the parameters selected as giving the highest accuracy for the case study scenario were:

WVar as the extracted feature, a window size of 5 to 75 samples, a minimum of two sensors (on the thigh

and calf), and 10 Hz sampling.

The next chapter concludes on the work presented in this thesis and summarises the answers to the

research questions posed in Chapter 1.



Chapter 7

Conclusions and further work

This thesis investigated the feasibility of delivering high accuracy posture classification in real-time,

through an autonomous, on-body, wireless end-to-end system. The work was concerned with several key

aspects of this research domain:

1. Concepts, designs and implementations for successful deployable systems meeting generic and

application-based requirements.

2. Solutions for handling transitions between postures in order to ensure high classification accuracy

in the context of natural movement.

3. The definition and analysis of the design space for tree-based posture classifiers and identification

of optimal design parameters.

Chapter 3 described a platform design for real-time on-body posture classification systems, including

a set of generic requirements applicable to all applications. The platform is targeted at two basic usage

scenarios: 1) a self-contained system providing real-time postural information to an external system and

2) an investigative instrument focused on remote reconfigurability. Two example applications were de-

scribed, following from the usage scenarios, and a prototype posture classification system was implemented

based on the platform design. This system was used in the evaluation of the algorithms developed during

the work. One of the applications considered in the prototype system implementation—EOD operative

monitoring—guided the development of the data gathering regimes used in Chapter 4.

Chapter 4 presented the chosen posture classification algorithm and detailed the method used to

gather and process the data sets required for the investigations in this thesis. Given the application

requirement for real-time classification using potentially resource constrained on-body nodes, a natural

choice of posture classification algorithm was decision trees. The algorithm chosen was C4.5, and the

WEKA toolkit was used to generate the classifiers using this algorithm. The trained classifiers provided

an average accuracy of 96.3% when using WVar as a data feature. The results showed that the full set

of required postures can be accurately classified if an extracted data feature such as WVar is used, and

123
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that a classifier trained on a subject wearing light clothing is still suitable when used with a bulkier suit,

such as those used by EOD operatives.

The methods of gathering and handling data (further used for all of the analysis work in the thesis)

were standardised and automated around a series of regimes guided by existing research in the area of

EOD operative safety and on feedback from an EOD suit manufacturer. These regimes focused on: 1) the

eight defined postures alone, 2) the eight postures combined with natural movement, and 3) mission-like

activity. Twenty two experimental subjects were employed to provide sufficient coverage on sex, age,

height and weight. A total of 22.7 hours of data was collected for use in training and testing the decision

trees. Decision tree testing was performed via two methods: LOSOXV and direct comparison of a trained

tree’s output against the correct posture when tested on unseen data.

The end-to-end system resulting from the work was further evaluated when deployed and classifying

posture in real-time for five subjects performing tasked activities in a realistic scenario. The classification

accuracy was shown to be consistent with the results found during offline testing (between 94.2% and

98.5% for the five subjects), and the information yield was sufficient for the applications considered (above

99% in all cases).

Chapter 5 presented an investigation into transitions and described the method of handling them to

reduce their negative impact on both accuracy and the number of posture change events generated. Three

transition smoothing filters (a simple voting filter, an EWV filter, and a Bayes filter) were proposed and

evaluated as a means of achieving two main goals:

1. an improvement of the accuracy of classification over data containing both stable postures and

transitions, and,

2. a reduced number of generated posture updates, providing benefits in battery life and required

network bandwidth as well as providing more stable input to an external subsystem.

.

All filters showed an increase in accuracy and a significant reduction in the number of posture change

events compared to the unfiltered data. The EWV filter with α = 0.04 had the best overall performance

of the three post-processing filters with an overall increase of classification accuracy of up to 1.1% (when

compared with classifier accuracy during natural movement regimes) and a 99.6% reduction in postural

events generated (when compared with continuously reporting postural systems). The filter’s perfor-

mance was in-line with prediction based on offline testing, when deployed in realistic scenarios with high

frequency of transitions within the tasked activities.
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Chapter 6 presented an in-depth investigation into the design space of a supervised machine learning

based posture classifier, with a focus on C4.5 decision trees. When building such a classification system

there are a number of design parameters that will impact on the accuracy of the classifier. The factors

identified and further analysed were: extracted data feature choice, feature window size, number of sensors

and their potion, training set size, sampling rate, and targeting of individual postures.

The results showed that:

• WVar provides the highest overall accuracy for the set of postures considered here, and with the

worst performing features being Mean and EWMA.

• A window size of between 0.5 to 7.5 seconds results in the best classification accuracy when using

WVar.

• Acceptable classifier accuracy can be achieved with 2 sensors (on the right thigh and calf). Should

only a single sensor be available, the optimal position is the calf for this posture set (with the arm

sensors performing worst); however, a considerably lower classification accuracy results.

• Systems sampling at 10 Hz will deliver the best accuracy for walking. For crawling, the range is

between 2 Hz and 50 Hz. Overall, 10 Hz provides the best classification accuracy for the set of 8

postures.

• There was no significant increase in classifier accuracy when training on more than eight subjects.

7.1 Research questions

The research questions posed by this thesis were as follows:

1. Can the defined set of postures, namely sitting, kneeling, crawling, standing, walking, and lying on

front, back and one side, be accurately classified in real-time using an on-body wearable sensor-based

system?

2. How do transitions between postures affect classifier accuracy, and can any negative impact be

reduced or eliminated?

3. What is the design space for a posture classifier targeted at specific application requirements?

The following subsections present the answers to these questions as found in the relevant chapters.
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7.1.1 Can the defined set of postures, namely sitting, kneeling, crawling,

standing, walking, and lying on front, back and one side, be accurately

classified in real-time using an on-body wearable sensor-based system?

Chapter 4 demonstrated that a C4.5 decision tree based posture classifier can provide a real-time, on-

body, autonomous classification accuracy of 96.3% for the full set of eight postures considered here when

WVar is used as a data feature. Realistic evaluation of the system, deployed on five subjects performing

tasked activities, showed accuracies of between 94.2% and 98.5% (reducing to between 92.9% and 97.9%

when transitions are included and transition filters are used). A data gathering process to support the

training and testing of posture classifiers was detailed. Chapter 3 presented a design for a platform

supporting real-time on-body classification of posture.

7.1.2 How do transitions between postures affect classifier accuracy, and can

any negative impact be reduced or eliminated?

When classifiers trained on well defined, truncated posture data were tested on data representing natural,

continuous movement, classifier accuracy was observed to decrease. Chapter 5 showed that a consistent

degradation in the classifier accuracy should be expected, linked to the frequency of transitions: 2%

accuracy reduction for each transition/minute.

Posture smoothing filters were presented and evaluated as a solution to this problem, with the EWV

filter (voting with exponential weighting in favour of recent postures) delivering the best results. Using

this filter the degradation in accuracy when including transitions in the testing data was less than 1%

per transition/minute, with posture change events reduced by around 75.2%. Real-time evaluation with

the deployed system confirmed these results.

7.1.3 What is the design space for a posture classifier targeted at specific

application requirements?

Chapter 6 defined and assessed the following design space parameters (provided here together with their

optimal values/ranges):

• Extracted data feature: WVar.

• Window size: between 5 and 75 samples (at 10 Hz sampling rate).

• Number of sensors: at least 2.



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 127

• Sensor positions: calf and thigh.

• Sampling rate: 10 Hz.

• Number of subjects for training: at least 8.

Additional results were also provided to aid in designing classifiers for other applications requiring similar

postures or a subset of the eight postures considered here.

It is thus considered that all research questions have been answered by the author.

7.2 Further work

There are several avenues of further work that would benefit from investigation based on the results

presented in this thesis.

Investigation of a larger number of postures

The analysis throughout this thesis was based on classification of eight specific postures: sitting, kneeling,

crawling, standing, walking, and lying on front, back and one side. It would be beneficial to researchers

pursuing other applications if the analysis were extended to include additional postures or activities.

Furthermore, specific activities or variations on the basic postures could be analysed separately. An

example of this would be if an application required classification of several broad movement speeds (such

as standing, walking, jogging, running, and sprinting).

Transition handling mechanism

The current approach to handling transitions is to define the postures prior to and following the transition

to be “correct” and to attempt to maintain a stable output consisting of these two postures. There are,

however, instances where additional postures should be considered as valid. For example, a subject

transitioning from sitting to lying on their front is likely to kneel during the transition. Based on this,

the output of the classifier during a transition could provide additional information regarding the final

posture. To continue the previous example, if the subject was sitting and then enters a transitional

period involving kneeling, then the transition filter could assign a higher weight to classifications of lying

on their front soon after. This could increase classification accuracy and output stability by biasing the

output towards the more likely postures. This is an approach that would benefit from the application
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of a Bayesian Network or Markov Model approach, where the links between particular postures can be

modelled explicitly. Laerhoven and Cakmakci [73], for example, used this principle to model the links

between activities on a broader scale.
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Appendix A

Instrumentation system

This appendix hardware details for the instrumentation systems implemented during the course of the

research described in this thesis. The hardware implementation (a mix of off-the-shelf and in-house

components) is described, along with the method of calibrating the accelerometers used (Section A.1).

The implemented instrumentation systems are evaluated in terms of battery life, communication range,

communication bandwidth, end-to-end latency, information yield and wearability (Section A.2). A sup-

plementary data gathering system based on SHIMMER hardware is also described (Section A.3).

A.1 Prototype on-body hardware implementation

This section describes the hardware used in the implementation of the prototype system described in

Section 3.4 on page 49. The choice of system hardware platform for the prototype was influenced partly

by the prototype implementation of Medusa2. One of the future goals is the tight integration of the

two systems, which would be likely to include dual-use of the physical nodes (as both systems include

upper-body and lower-body nodes). Furthermore, the platform used for the Medusa2 system (the Gum-

stix Verdex embedded computer [51]) is relatively powerful and is thus capable of handling complex

data processing algorithms that may be deployed during system development and during posture-related

investigations.

The node hardware platform is described in Section A.1.1, the accelerometer sensor boards are de-

scribed in Section A.1.2, and the accelerometer calibration procedure given in Section A.1.3. Note that

the DG1 and DG2 systems used for data gathering (without the ability to perform on-body classification)

were also built using the same hardware platform.

A.1.1 Node hardware platform

The Class-act system implemented consists of two on-body processing nodes (the Primary Node and

Secondary Node) providing data to an external system. Gumstix Verdex XM4-bt devices (shown in

145
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Figure A.1: Node hardware platform—Gumstix Verdex device (top) and expansion board (bottom).

Figure A.1 (top)) are used as the main processing and communications platform for the on-body nodes.

These devices are fully-functional single-board computers with a footprint of 80 × 20 × 6.3 mm3 and a

weight of 8 grams (14 grams with the Bluetooth antenna attached). The devices include a 400 MHz

Marvell PXA270 XScale CPU and a Bluetooth radio. At the same time, the Verdex devices are small

and light enough to be easily carried in a pouch or pocket. The device is enhanced with an expansion

board (shown in Figure A.1 (bottom)) with a footprint of 100× 30× 17 mm3 and a weight of 16 grams.

This board provides connections for I2C devices and a battery.

A.1.2 Accelerometer sensor boards

A bespoke acceleration sensor board was designed and produced, as shown in Figure A.2 on the facing

page. Several of these boards are connected to each Verdex device via the expansion board. The I2C bus

allows more than one sensor to share the same bus, reducing the number of wires and I/O ports needed.

Each sensor board consists of a Microchip PIC24FJ64GA002 microcontroller, an Analog Devices

ADT75A temperature sensor, and a STMicroelectronics LIS3LV02DQ triaxial accelerometer (with a

selectable range of ±2 g or ±6 g). The board was designed as a low-cost, small size, low-power wearable

solution based on commodity components, and has a footprint of 41×30×7 mm3 and a weight of 4 grams.
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Figure A.2: Acceleration sensor board, which includes a PIC microcontroller, triaxial accelerometer, and
digital temperature sensor.

Table A.1: Calibration constants for the set of sensors used in the prototype system. Offset is given
in raw sensor output units (a correctly calibrated sensor outputs a value of 1024 when experiencing an
acceleration of 1 g).

X Y Z
Sensor Slope Offset Slope Offset Slope Offset

L1 legrd 0.979 21.50 0.951 2.67 0.941 20.67
L2 legru 0.967 -36.33 0.964 -7.17 0.936 -97.17
L3 leglu 0.964 20.83 0.953 -30.00 0.933 40.33
L4 legld 0.976 77.00 0.942 -20.83 0.926 -0.50
L5 hip 0.974 3.50 0.942 -31.17 0.941 -95.50
L6 ankle 0.968 -18.33 0.948 -24.33 0.933 -19.67
U1 armld 0.972 18.00 0.949 -21.17 0.942 13.33
U2 armlu 0.957 -28.17 0.957 -27.50 0.934 -58.50
U3 body 0.967 1.00 0.951 -20.83 0.942 -29.00
U4 armrd 0.968 -18.33 0.948 -24.33 0.933 -19.67
U5 armru 0.970 -15.33 0.943 -19.50 0.939 -11.83

The accelerometer range used in this work was ±2 g. The provision of a temperature sensor in the board

design eases the future integration of the Medusa2 and Class-act systems by reducing the total number

of body sensors required—reducing overall system complexity and helping to increase wearability.

A.1.3 Accelerometer static calibration and unit conversion

For the purpose of accelerometer calibration, each sensor board was mounted in turn on a camera stand.

The stand provided angle indications to allow accurate orientation of the sensor (as is shown in Fig-

ure A.3). Mounting was performed using a bespoke fixture. Each axis was oriented to observe +1 g,

−1 g, +sin(45) g, −sin(45) g and zero acceleration. A single reading was obtained in each orientation

by averaging one minute of samples taken at 10 Hz (600 samples total). Calibration was performed as

a linear transformation based on the measurements in the +1 g, −1 g, +sin(45) g, −sin(45) g and zero
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Figure A.3: Sensor board mounting for accelerometer calibration

orientations. Adjustment of raw readings is thus performed as

x′ = mx+ c

where x′ is the calibrated acceleration value in sensor units, x is the raw measured value of acceleration

in sensor units, m is the calculated slope constant for the axis, and c is the calculated offset constant

for the axis. Table A.1 shows the calculated slope and offset for the accelerometers used in the system

implemented here.

Once raw readings have been adjusted based on the calibration constants found, they are converted

into SI units (ms−2) by dividing the values by 1024 (the output given by a correctly calibrated accelerom-

eter of this type when experiencing an acceleration of 1 g) and multiplying by 9.8.

A.2 Class-act prototype instrument evaluation

This section provides a functional evaluation of the prototype instrumentation system described in this

appendix with regard to: battery life (Section A.2.3), communication range (Section A.2.4), communi-

cation bandwidth (Section A.2.5), end-to-end latency (Section A.2.1), information yield (Section A.2.2)

and wearability (Section A.2.6).

A.2.1 End-to-end latency

End-to-end latency is defined here as the time taken between gathering a set of data samples at the sensor

and receiving either the data or the processed postural information at the base station. In the EOD
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Figure A.4: Yield measurement locations for the prototype system.

application, for example, low latency is important to ensure that the Medusa2 system (external system)

uses, in its prediction and control algorithm, the most recent postural information available—incorrect

postural information will increase the error in the output of the predictive modelling performed. The

importance in evaluating the end-to-end latency of the instrument is in demonstrating that the system

provides real-time on-body classification—part of the contribution of Chapter 3.

For latency measurement purposes, the clocks on each node were synchronised to the base station via

NTP [89]. This generally results in synchronisation to within around 10−2 seconds—at least an order

of magnitude smaller than the sampling rate. The timestamp attached to the data (set when it was

collected at the Secondary Node) was compared with the time that the data was received at the Primary

Node and then at the base station. The time taken to perform a classification was also tested separately

via a benchmarking algorithm that performed a large number of classifications in order to get an accurate

estimate of the average time per classification. Experimentally, the average latency measured was 30 ms

for Secondary Node to Primary Node and Primary Node to base station communication and 0.8 ms to

perform posture classification on the Primary Node. Thus the end-to-end latency is 60.8 ms. This latency

is satisfactory as it is around half the sampling period (at 10 Hz), meaning that the samples received at

the base station will be the most recently gathered samples (that is, there is not a more recently gathered

sample that has yet to be received). This meets the real-time requirement as defined in Section 1.1 and

demonstrates that the system provides real-time on-body classification of posture.

A.2.2 Information yield

Yield is an end-to-end system measure and is defined here as the number of samples received by the

Medusa2 system or base station as a percentage of the number of samples expected in a given time
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period. In this case, a “sample” refers to a sensor data vector or a classified posture as required by the

transmission mode in use. Figure A.4 on the previous page shows the points in the system data flow

at which various types of yield may be measured. However, as Class-act is intended to be deployed as

an end-to-end posture monitoring solution, only the system information (posture) yield of the system is

considered here (in bold in Figure A.4).

The information yield for the system was determined by analysing the experimental data gathered

through deployment of the prototype system during the development and evaluation process. Specifically,

the system was analysed in the “analysis” transmission mode (transmitting both data and posture). In

this mode, the system achieved a yield of 83%. Yield in the “information” transmission mode (transmit-

ting only posture) was demonstrated in Section 4.12 on page 76 to be greater than 99%. The conclusion

drawn is that the low yield for the system in the “analysis” transmission mode is related to the Gumstix

Verdex platform—the Primary Node has only one Bluetooth chip and so it has to switch between trans-

mitting and receiving modes as required, which results in delays in receiving data from the Secondary

Node and potentially dropped packets or missed classifications. The EOD application requires use of the

“information” transmission mode, for which a high yield is provided.

A.2.3 Battery life

In this section, the battery life of the system is evaluated in relation to the minimum acceptable system

life for the two application scenarios. A basic requirement is that the battery life of the system must be

longer than the duration of the mission/activity/experiment engaged with by the subject. For the EOD

application, the system battery life should be at least 1 hour since the typical EOD mission is expected to

be carried out in stages of up to that duration, after which time the EOD operative returns to the support

team (which would allow a change of batteries). In the investigative instrument application (taking, as

an example, deployment during the work performed here) the battery is also required to last up to 1 hour

in order to perform data gathering experimentation.

To maintain consistency with expected normal usage of the system when evaluating battery life:

1. Acceleration data was sampled at 10 Hz from each sensor axis by both the Primary and Secondary

Nodes. Five sensors were connected to the Primary Node and four sensors were connected to the

Secondary Node.

2. Acceleration data and extracted features were transmitted from the Secondary Node to the Primary

Node, where posture classification was performed.
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Three transmission modes from the Primary Node to the base station were tested: data and posture,

posture only, and posture updates only. The effective life of the system was defined as the life of the

Primary Node, which was the first node to fail in all cases due to the additional transmission/processing

requirements compared to the Secondary Node. For each transmission mode, the test was performed five

times and the results were averaged to obtain the reported figure.

The resulting system battery life (using four 1100 mAh batteries) was: 1 hour 50 minutes when

transmitting data and posture, 2 hours when transmitting only posture, and 2 hours 20 minutes when

transmitting only posture updates. This meets the requirement for both applications.

Scenarios other than those considered here may require longer operating lifetime. This could be

obtained via the use of more batteries, however the batteries are the heaviest items in the system and

thus can be expected to have an impact on wearability/comfort. Instead, solutions must be found in

the system design to reduce power consumption. Two possible avenues for this are related to the sensor

devices and radio communications. As described previously, the battery life testing performed essentially

provides a lower bound on the expected lifetime as it includes the full set of nine sensors and the radio

is always on. The first solution to increasing lifetime is therefore to reduce the number of sensors used,

and thus their total power draw. As shown in Section 6.6 on page 111, posture classification can be

performed using only two sensors (on the calf and lower leg). Doran [40] showed that the use of two

sensors as opposed to nine provides an increase in battery life of around 30 minutes. The use of only

two sensors would, additionally, mean that only one on-body node is required, further reducing the total

weight of the system by eliminating a node and the associated battery pack. The possible second solution

for increasing battery life is to power off the node radios when not in use. This would primarily be of

use in an event-based system where transmissions would be expected to be less frequent. Doran [40]

demonstrated a 40% reduction in power consumption when the radio is deactivated for nodes of the

type used here. The disadvantage of this method is the additional latency incurred in establishing the

communications link when the radio is powered on, the impact of which is application-dependent. This

would not be suitable for the EOD application, for example, as the posture information is required for

predictive modelling of heat stress and so any delay decreases the accuracy of the prediction and the

effectiveness of any countermeasures employed.

A.2.4 Communication range

Communication range was tested to determine the distance at which the base station or gateway is still

capable of receiving data from the monitored subject.
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Table A.2: Node transmission rates for the prototype system.

Transfer rate (kB/s)
Primary Node to Secondary Node 106.7
Secondary Node to Primary Node 116.9
Primary Node to base station 62.3
Secondary Node to base station 54.0

Only on-body communication is required in the EOD application (around 30 cm) as Class-act only

needs to transmit to the Medusa2 processing node, which is located on the operative’s body in close

proximity to the Class-act nodes. The investigative instrument application, on the other hand, places

importance on the communication range of the system due to the inherent mobility of the subjects. The

communication range in the investigative instrument application must be around 10 m, as in the intended

usage the subject would be in the same room as the base station.

The specified communication range for a Bluetooth class 2 device (as used in the Class-act and

Medusa2 systems) is approximately 10 m when working at a maximum permitted broadcast power of

2.5 mW. Testing was performed in a variety of environments similar to those that may be encountered

in the two applications. In all cases, the base station was fixed in a static location, while the nodes were

gradually moved away until communication was observed to become unreliable (for example, missing data

or high latency spikes). In summary, the experimentally observed ranges were: 14 m with several walls

and some light office machinery between the nodes and base station, 49.4 m within a straight corridor

with line of sight, and 63.5 m outdoors with clear line of sight. The requirements for both application

examples are thus clearly met.

A.2.5 Communication bandwidth

Bandwidth is a measure of the number of bits transmitted per second. It is an important metric since it

is one of the factors that determines the system’s ability to provide postural information in real-time—if

the available bandwidth is exceeded then the output will be delayed. For the EOD application, the

communication bandwidth required is 100 bytes/second (at a sampling rate of 10 Hz) since the system

is only required to transmit posture information. In the investigative instrument application, any of the

transmission modes could be used for different types of experimentation and thus the mode considered

for evaluation here combines data and postural information—the most bandwidth-consuming mode, at

around 1.6 kB/s (at a sampling rate of 10 Hz).

The theoretical available transfer rate for Bluetooth 2.0+EDR is 2.1 Mb/s (263 kB/s), which is sufficient
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to transmit the data required. However the available bandwidth is lower than the theoretical maximum.

This was tested by transferring a large (10 MB) file from the Primary Node to Secondary Node, from

Secondary Node to Primary Node and from both nodes in turn to the base station. This test was repeated

five times for each sender/receiver pair. Table A.2 on the facing page shows the measured average transfer

rate. While lower than the theoretical maximum, the transfer rate is still sufficient to transmit the full

set of data and posture when sampling acceleration at 10 Hz.

A.2.6 Wearability

Wearability was discussed previously in Section 2.2 where several aspects related to establishing the

wearability of a system for a specific target user group are described, including the physical dimensions of

the devices in the system, the way in which it affects movement and so on. While no explicit requirements

have been specified here per-scenario for wearability, it can be assumed that in both cases, subject comfort

is a concern.

In terms of system weight, a full deployed prototype system with nine sensing locations weighs a total

of 483 g, with the majority of this weight being the on-body nodes and battery packs (which are carried

in a pouch worn by the subject). Each of the sensor boards weighs only 4 g. As the majority of the weight

of the system is carried in the pouch it is less noticeable than, for example, the case where each sensor

has a separate battery pack (as implemented in other systems described in the literature [39, 49, 59, 62]).

For the prototype system presented, the focus was on data gathering and algorithm development.

Thus a thorough investigation into wearability was not pursued at this stage. However, at the conclusion

of each experiment performed, the subject was asked about their general comfort and whether the system

restricted their movement or was felt to be cumbersome. It was found that the subjects could move freely

without discomfort caused by the system. However, care needed to be exercised for particular postures

which were likely to apply pressure upon the nodes (in the postures studied here this was primarily the

lying on one side and lying on front postures). The sensors are easy to place and their small footprint

allows for them to be taped to a subject with minimal effort. The shape of the underside of the sensor

board however means that padding was required to be applied onto the subject’s skin prior to the sensors

being mounted to avoid bruising. Typical set-up time (inclusive of start-up and fitting to subject) for

the system is around 18 minutes.
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Figure A.5: SHIMMER node.

A.3 SHIMMER-based data gathering instrument

In addition to the prototype monitoring instrumentation described in this chapter, an additional instru-

ment was implemented by the author to support experimental data acquisition at a higher sampling rate

(required for the sampling rate investigation in Section 6.7 on page 116). This system is based around

SHIMMER devices [107], one of which is shown in Figure A.5. Seven of these devices were used, commu-

nicating wirelessly through Bluetooth with each device transmitting data directly to the base station (a

laptop computer). The SHIMMER devices include a three-axis accelerometer, the Freescale MMA7260Q

with a range of ±6g, along with an MSP430F1611 microcontroller running at up to 8 MHz and a 280 mAh

battery. The devices are packaged into a 53.3×31.8×17.8 mm3 enclosure.

At the time that the experimentation was performed, there was no existing implementation of the

NTP time synchronisation method for the SHIMMER devices when using Bluetooth. An alternative

method was thus used to allow the samples from each device to be time-aligned for processing. The

following process was performed for each device at the start of a data gathering experiment:

1. The average latency for the connection is determined.

(a) A message is sent to the SHIMMER device, which immediately responds. The latency in each

direction is assumed to be half of the total time between transmission of the message and

reception of the response.

(b) This is repeated 20 times and the one-way latencies found are averaged.

2. The offset between the time on the SHIMMER device and the base station is determined.

(a) A message is sent to the SHIMMER device requesting the current timestamp.

(b) The average latency found in step 1 is added to the timestamp received.

(c) The difference between this modified timestamp and the base station time is the offset.
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3. The determined offset is stored and applied to each sample received.

The data gathered using this system is processed in the same way as described in Section 4.9 on page 72

for the Class-act system.

A.4 Summary

In this chapter the hardware details for the prototype system implemented during the work in this

thesis was described. The implementation is based on the Class-act platform architecture described in

Chapter 3 and uses the Gumstix Verdex hardware platform. The hardware platform selected provides

several benefits including provision of sufficient processing power to allow real-time classification using

a variety of algorithms during system development and ease of future integration with other systems

such as the one implemented by Kemp [66] to monitor EOD operatives. The system implementation was

evaluated in terms of battery life, communication range, communication bandwidth, end-to-end latency,

information yield and wearability. An additional system for data gathering was also developed based on

SHIMMER devices that allow data gathering at 100 Hz. This alternate system was used in the analysis

in Section 6.7 on page 116.



156 APPENDIX A. INSTRUMENTATION SYSTEM



Appendix B

Publications

B.1 Journal publications

Edge mining the Internet of Things

Elena Gaura, James Brusey, Michael Allen, Ross Wilkins, Dan Goldsmith, Ramona Rednic. Edge mining

the internet of things. IEEE Sensors Journal May 2013 , To appear

This paper examines the benefits of edge mining— data mining that takes place on the wireless,

battery-powered, smart sensing devices that sit at the edge points of the Internet of Things. Through

local data reduction and transformation, edge mining can quantifiably reduce the number of packets that

must be sent, reducing energy usage and remote storage requirements. Additionally, edge mining has the

potential to reduce the risk to personal privacy through embedding of information requirements at the

sensing point, limiting inappropriate use. The benefits of edge mining are examined with respect to three

specific algorithms: Linear Spanish Inquisition Protocol (L-SIP), ClassAct, and Bare Necessities (BN),

which are all instantiations of General SIP (G-SIP). In general, the benefits provided by edge mining

are related to the predictability of data streams and availability of precise information requirements;

results show that L-SIP typically reduces packet transmission by around 95% (20-fold), BN reduces

packet transmission by 99.98% (5000-fold) and ClassAct reduces packet transmission by 99.6% (250-fold).

Although energy reduction is not as radical due to other overheads, minimisation of these overheads can

lead to up to a 10-fold battery life extension for L-SIP, for example. These results demonstrate the

importance of edge mining to the feasibility of many IoT applications.

A Web-Based System for Home Monitoring of Patients with Parkinson’s Disease Using

Wearable Sensors

Bor-rong Chen, Shyamal Patel, Thomas Buckley, Ramona Rednic, Doug McClure, Ludy Shih, Daniel

Tarsy, Matt Welsh, and Paolo Bonato. A Web-Based System for Home Monitoring of Patients With

157
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Parkinson’s Disease Using Wearable Sensors. IEEE Transactions on Biomedical Engineering (TBME)

Letters Special Issue on Emerging Technologies in Point-of-Care Health Care, 58(3):831–836, March 2011.

This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson’s

disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection

engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and

a web-based graphical user interface client with video conferencing capability. Besides, the platform has

the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing

the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of

less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when

800 kB/s of bandwidth were available and we used a 40% video compression, and data feature upload

requiring 1 min of extra time following a 10 min interactive session. These results indicate that the

proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the

late stages of the disease.

Classifying transition behavior in postural activity monitoring

James Brusey, Ramona Rednic, and Elena Gaura. Classifying transition behaviour in postural activity

monitoring. Sensor & Transducers Special Issue, 17(10):213–223, October 2009.

A few accelerometers positioned on different parts of the body can be used to accurately classify steady

state behaviour, such as walking, running, or sitting. Such systems are usually built using supervised

learning approaches. Transitions between postures are, however, difficult to deal with using posture

classification systems proposed to date, since there is no label set for intermediary postures and also

the exact point at which the transition occurs can sometimes be hard to pinpoint. The usual bypass

when using supervised learning to train such systems is to discard a section of the dataset around each

transition. This leads to poorer classification performance when the systems are deployed out of the

laboratory and used on-line, particularly if the regimes monitored involve fast paced activity changes.

Time-based filtering that takes advantage of sequential patterns is a potential mechanism to improve

posture classification accuracy in such real-life applications. Also, such filtering should reduce the number

of event messages needed to be sent across a wireless network to track posture remotely, hence extending

the system’s life. To support time-based filtering, understanding transitions, which are the major event

generators in a classification system, is key. This work examines three approaches to post-process the
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output of a posture classifier using time-based filtering: a naïve voting scheme, an exponentially weighted

voting scheme, and a Bayes filter. Best performance is obtained from the exponentially weighted voting

scheme although it is suspected that a more sophisticated treatment of the Bayes filter might yield better

results.

Postural activity monitoring for increasing safety in bomb disposal missions

James Brusey, Ramona Rednic, Elena I. Gaura, John Kemp, and Nigel Poole. Postural activity monitor-

ing for increasing safety in bomb disposal missions. Measurement Science and Technology, 20(7):075204

(11pp), July 2009.

In enclosed suits, such as those worn by explosive ordnance disposal (EOD) experts, evaporative cool-

ing through perspiration is less effective and, particularly in hot environments, uncompensable heat

stress (UHS) may occur. Although some suits have cooling systems, their effectiveness during missions

is dependent on the operative’s posture. In order to properly assess thermal state, temperature-based

assessment systems need to take posture into account. This paper builds on previous work for instrument-

ing EOD suits with regard to temperature monitoring and proposes to also monitor operative posture

with MEMS accelerometers. Posture is a key factor in predicting how body temperature will change

and is therefore important in providing local or remote warning of the onset of UHS. In this work, the

C4.5 decision tree algorithm is used to produce an on-line classifier that can differentiate between nine

key postures from current acceleration readings. Additional features that summarize how acceleration is

changing over time are used to improve average classification accuracy to around 97.2%. Without such

temporal feature extraction, dynamic postures are difficult to classify accurately. Experimental results

show that training over a variety of subjects, and in particular, mixing gender, improves results on un-

seen subjects. The main advantages of the on-line posture classification system described here are that

it is accurate, does not require integration of acceleration over time, and is computationally lightweight,

allowing it to be easily supported on wearable microprocessors.

B.2 Conference proceedings

Long-term Behavioural Change Detection Through Pervasive Sensing

John Kemp, Elena Gaura, Ramona Rednic, James Brusey, Long-term behavioural change detection

through pervasive sensing. In Proceedings of the 14th ACIS International Conference on Software Engin-
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eering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2013), Honolulu

Hawai, U.S.A., 1–3 July 2013.

The paper proposes an information generation and summarisation algorithm to detect behavioural

change in applications such as long-term monitoring of vulnerable people. The algorithm learns the

monitored subject’s behaviour autonomously post-deployment and provides time-suppressed summaries

of the activity types engaged with by the subject over the course of their day to day life. It transmits

updates to external observers only when the summary changes by more than a defined threshold. This

technique substantially reduces the number of transmission required by a wearable monitoring system,

both through summarisation of the raw data into useful information and by preventing transmission of

duplicated or predictable data and information. Based on evaluation using simulated activity data, the

proposed algorithm results in an average of one transmission per month following an initial convergence

period (reaching less than 1 transmission per day after only three days) and detects a change in behaviour

after an average of 1.1 days.

Fielded Autonomous Posture Classification Systems: Design and Realistic Evaluation

Ramona Rednic, John Kemp, Elena Gaura, James Brusey. Fielded autonomous posture classification

systems: Design and realistic evaluation. In Proceedings of the 14th ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD

2013), Honolulu Hawai, U.S.A., 1–3 July 2013.

Few Body Sensor Network (BSN) based posture classification systems have been fielded to date,

despite laboratory based research work confirming their theoretical suitability for a range of applica-

tions. This paper reports and reflects on two algorithms which i) improve the accuracy of real-time,

multi-accelerometer based posture classifiers when dealing with natural movement and transitions and

ii) maximize a wearable system’s battery life through distributed computation at nodes. The EWV

transition filters proposed here increase the classification accuracy by 1% over unfiltered results in real-

istic scenarios and significantly reduces spurious classifier output in real-time visualizations. A 200 fold

transmission reduction from the on-body system to an outside system was achieved in practice by com-

bining the transition filters with an event-based design. Furthermore, a method of reducing transmissions

between on-body data gathering nodes based on distributed processing of the classifier rules (but main-

taining a one-way flow of communications during system use) is also described. This provides a 3.3
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fold reduction in packets and a 13.5 fold reduction in data transmitted from one node to the other in a

two-node wearable system.

Wearable posture recognition systems: factors affecting performance

Ramona Rednic, Elena Gaura, James Brusey, and John Kemp. Wearable posture recognition systems:

factors affecting performance. In Proceedings of the IEEE-EMBS International Conference on Biomedical

and Health Informatics (BHI 2012), pages 200–203, Shenzhen, China, 5–7 January 2012.

This paper presents an investigation into the design space for real-time, wearable posture classification

systems; specifically, it analyses the impact of various factors/design choices on classification accuracy

when using C4.5 decision trees. The factors can be broadly divided into: 1) system factors (such as

sensor sampling rate and number of sensors used) and 2) algorithm and training factors (such as quantity

of training data and temporal data features used). These factors are analysed in the context of a case

study involving postural activity monitoring of Explosive Ordinance Disposal (EOD) operatives. The

case study involves classifying a set of eight postures commonly encountered in EOD missions: sitting,

walking, crawling, lying (on all sides) and kneeling. Design guidelines and generic lessons for a wider

class of applications can be drawn from the work.

Networked Body Sensing: Enabling real-time decisions in health and defence applications

Ramona Rednic, John Kemp, Elena Gaura, and James Brusey. Networked body sensing: Enabling real-

time decisions in health and defence applications. In Proceedings of the Annual International Conference

on Advance Computer Science and Information Systems 2011 (ICACSIS 2011), pages 17–24, Jakarta,

Indonesia, 17–18 December 2011

This paper presents the application scenario, conceptual overview and implementation of a monitoring

system targeted at monitoring EOD suit wearers during missions. The system’s aim is to deliver prediction

of heat stress risk in the operative and provide actuation of a cooling system integrated within the suit.

Prior work established that such prediction requires real-time autonomous processing of skin temperature

and body acceleration data, and thus a system implementation is presented based on two interacting

subsystems that perform the required sensing and data processing. Posture classification is performed

with an accuracy of 96.1%, and a heat stress prediction algorithm is demonstrated with an overall accuracy

of 88.5% when predicting the occurrence of heat stress within the next 2 minutes



162 APPENDIX B. PUBLICATIONS

Home monitoring of patients with Parkinson’s disease via wearable technology and a web-

based application

Shyamal Patel, Bor-rong Chen, Thomas Buckley, Ramona Rednic, Doug McClure, Daniel Tarsy, Ludy

Shih, Jennifer Dy, Matt Welsh, and Paolo Bonato. Home monitoring of patients with Parkinson’s dis-

ease via wearable technology and a web-based application. In Proceedings of the Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4411–4414, Buenos

Aires, 31 August–4 September 2010. IEEE.

Objective long-term health monitoring can improve the clinical management of several medical con-

ditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work

toward the development of a home-monitoring system. The system is currently used to monitor patients

with Parkinson’s disease who experience severe motor fluctuations. Monitoring is achieved using wireless

wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work

herein presented shows that wearable sensors combined with a web-based application provide reliable

quantitative information that can be used for clinical decision making.

MercuryLive: A Web-Enhanced Platform for Long-Term High Fidelity Motion Analysis

Bor-rong Chen, Thomas Buckley, Ramona Rednic, Shyamal Patel, Paolo Bonato, and Matt Welsh. Mer-

curyLive: A Web-Enhanced Platform for Long-Term High Fidelity Motion Analysis. In Proceedings of

the 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications

and Networks (SECON), pages 1–2, Boston, USA, 21–25 June 2010.

We present MercuryLive, a web-enhanced extension to a body sensor network platform for continuous

home-based body motion sensing, interactive supervised data collection sessions, and long-term activity

data analysis. The major goal of MercuryLive is to enable practical long-term health monitoring in a home

setting and henceforth reduce the effort and cost for collecting clinically relevant quantitative measures on

patients’ health conditions during daily activities. MercuryLive contains three tiers: a central web server

for streaming and storage of sensor data, a sensor data collection engine, and a user-friendly web-based

GUI client. The platform is currently used in clinical studies on Parkinson’s disease.
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ClassAct: Accelerometer-based Real-Time Activity Classifier

Ramona Rednic, Elena Gaura, and James Brusey. ClassAct: Accelerometer-based real-time activity clas-

sifier. In Sensors & Instrumentation KTN: Wireless Sensing Demonstrator Showcase (WiSIG), 2 July

2009.

In enclosed bomb disposal suits, posture affects the air flow and is thus a key indicator for predicting

the onset of Uncompensable Heat Stress (UHS). In order to allow the exploration of this effect, a system

was developed to monitor the posture of human subjects during bomb disposal missions using only low

cost accelerometers. Decision trees are used to identify in real-time, within the suit, eight mission-like

postures: standing, kneeling, sitting, crawling, walking and lying on front, back, and one side. A variety

of time domain features were explored to aid differentiation between static and dynamic postures. An

average classification accuracy of 97.2% over the nine postures are obtained when using windowed variance

and nine accelerometers. Similar performance was obtained with as little as two accelerometers, whilst

a single hip accelerometer was shown to classify standing, walking and sitting with an average accuracy

of 96.4%. Overall the instrument exhibits a suitable level of performance for the application at hand, in

terms of wearability, accuracy, timeliness and data yield. The classification technique developed could be

extended to the classification of other task oriented activities.

Wireless sensor networks for activity monitoring in safety critical applications

Ramona Rednic, Elena Gaura, James Brusey, and John Kemp. Wireless sensor networks for activity mon-

itoring in safety critical applications. In Proceedings of NSTI Nanotech 2009, volume 1—Fabrication,

Particles, Characterization, MEMS, Electronics and Photonics, pages 521–525, Houston, Texas, USA,

May 3–7 2009. ISBN: 978-1-4398-1782-7.

The ability to monitor posture is essential to many application areas, including virtual reality, health,

and sports applications. The work here focuses on the use of postural monitoring in safety critical

missions such as explosive ordnance disposal (EOD) missions. The operatives undertaking these missions

are commonly placed under a high level of physical and psychological strain due to the weight of the

protective armoured suit and the potential risk of their work. Remote monitoring of posture may allow

a better understanding of the operative’s status. When combined with additional health information,

posture can enhance the accuracy of operative’s global state estimation. Previously, a Body Sensor

Network-based (BSN) posture monitoring system consisting of nine accelerometers was designed and
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implemented by the authors here. The system was able to recognise six specific postures (sitting, kneeling,

crawling, and three variations of lying on the ground) with high accuracy. However, the system was unable

to consistently distinguish between a subject standing, walking or running. In order to counteract this

limitation, a new prototype utilising additional sensors and an augmented data processing method has

been implemented and evaluated and is reported here.

B.3 Technical reports

COGENT.006: Posture Determination Using a Body Sensor Network

Ramona Rednic, John Kemp, Elena Gaura, James Brusey. Posture Determination Using a Body Sensor

Network. Technical Report COGENT.006, Coventry University, 2008.

http://cogentee.coventry.ac.uk/tech_reports/COGENT.006.pdf

Due of the large number of degrees of freedom of the human body, posture monitoring of human during

activity regimes presents many research challenges. Several research groups world wide have engaged

with the development of low-power wireless body sensor networks that are capable of providing real-time

posture tracking for a variety of applications, such as dance and sports. The work reported here is

concerned with the development of a wireless body sensor network that, as opposed to posture tracking,

can: a) provide the identification and classification of eight human postures (standing, kneeling, sitting,

crawling, walking, lying down on front and back, and lying on one side) in real-time and b) is able to

relate this information wirelessly to a remote monitoring point. Posture information is an essential part of

monitoring operatives in safety critical missions. The work sits within a larger project aiming to increase

general safety of operatives in bomb disposal missions.

The goal of the posture body sensor network developed here is to identify the eight named postures using

data from nine accelerometers placed at various sites on the human body. A prototype implementation

which fulfills the goal has been produced and evaluated and is reported here.

Selected publications follow.
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