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Abstract

A key barrier in the adoption of Wireless Sensor Networks (WSNs) is achieving long-lived and robust
real-life deployments. Issues include: reducing the impact of transmission loss, node failure detection,
accommodating multiple sensor modalities, and the energy requirement of the WSN network stack. In
systems where radio transmissions are the largest energy consumer on a node, it follows that reducing
the number of transmissions will, in turn, extend node lifetime. Research in this area has led to the
development of the Dual Prediction Scheme (DPS). However, the design of specific DPS algorithms in
the literature have not typically considered issues arising in real world deployments. Therefore, this thesis
proposes solutions to enable DPSs to function in robust and long-lived real-world WSN deployments. To
exemplify the proposed solutions, Cogent-House, an end-to-end open-source home environmental and
energy monitoring system, is considered as a case study. Cogent-House was deployed in 37 homes
generating 235 evaluation data traces, each spanning periods of two weeks to a year.

DPSs presented within the literature are often lacking in the ability to handle several aspects of real
world deployments. To address issues in real-life deployments this thesis proposes a novel generalised
framework, named Generalised Dual Prediction Scheme (G-DPS). G-DPS provides: i) a multi-modal
approach, ii) an acknowledgement scheme, iii) heartbeat messages, and iv) a method to calculate recon-
structed data yield. G-DPS’s multi-modal approach allows multiple sensor’s readings to be combined into
a single model, compared to single-modal which uses multiple instances of a DPS. Considering a node
sensing temperature, humidity and CO
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, the multi-modal approach transmissions are reduced by up to
27%, signal reconstruction accuracy is improved by up to 65%, and the energy requirement of nodes is
reduced by 15% compared to single-modal DPS. In a lossy network use of acknowledgements improves
signal reconstruction accuracy by up to 2◊ and increases the data yield of the system up to 7◊, when
compared to an acknowledgement-less scheme, with only up to a 1.13◊ increase in energy consumption.
Heartbeat messages allow the detection of faulty nodes, and yet do not significantly impact the energy
requirement of functioning nodes. Implementing DPS algorithms within the G-DPS framework enables
robust deployments, as well as easier comparison of performance between di�ering approaches.

DPSs focus on modelling sensed signals, allowing accurate reconstruction of the signal from fewer
transmissions. Although transmissions can be reduced in this way, considerable savings are also possible
at the application level. Given the information needs of a specific application, raw sensor measurement
data is often highly compressible. This thesis proposes the Bare Necessities (BN) algorithm, which
exploits on-node analytics by transforming data to information closer to the data source (the sensing
device). This approach is evaluated in the context of a household monitoring application that reports
the percentage of time a room of the home spends in various environmental conditions. BN can reduce
the number of packets transmitted to the sink by 7000◊ compared to a sense-and-send approach.

To support the implementation of the above solutions in achieving long lifetimes, this thesis explores
the impact of the network stack on the energy consumption of low transmission sensor nodes. Considering
a DPS achieving a 20◊ transmission reduction, the energy reduction of a node is only 1.3◊ when using
the TinyOS network stack. This thesis proposes the Backbone Collection Tree Protocol (B-CTP), a
networking approach utilising a persistent backbone network of powered nodes. B-CTP coupled with
Linear Spanish Inquisition Protocol (L-SIP) decreases the energy requirement for sensing nodes by 13.4◊
compared to sense-and-send nodes using the TinyOS network stack. When B-CTP is coupled with BN
an energy reduction of 14.1◊ is achieved.

Finally, this thesis proposes a quadratic spline reconstruction method which improves signal recon-
struction accuracy by 1.3◊ compared to commonly used linear interpolation or model prediction based
reconstruction approaches. Incorporating sequence numbers into the quadratic spline method allows up
to 5 hours of accurate signal imputation during transmission failure.

In summary, the techniques presented in this thesis enable WSNs to be long-lived and robust in
real-life deployments. Furthermore, the underlying approaches can be applied to existing techniques and
implemented for a wide variety of applications.
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Chapter 1

Introduction

There has always been a need to monitor and understand the world around us. Measurements are used

in every aspect of life from understanding the weather through to monitoring fuel consumption in a car.

Early measurement relied on either manual measurements or complex mechanical systems. For example,

in 1980, Johnson [49] devised a system to monitor the HVAC system in a school. This system was

composed of a number of thermocouples and flow meters wired to a central metering station. To collate

data over time a camera was set up to take a photograph of the meter every 30 minutes, from which

raw data could be extracted. Though it allows understanding of the phenomena, manual or meter based

measurement is often labour intensive, prone to error, and limited in scope.

Advances in microcontrollers, low powered radio technology, and MicroElectroMechanical Systems

(MEMS) sensor technology have given rise to Wireless Sensor Networks (WSNs). WSNs have paved the

way to collect data in a range of fields in a less labour intensive and more accurate and timely manner. A

WSN consists of a number of physically distributed, autonomous, usually battery powered devices (nodes)

equipped with sensing, processing, and communication capabilities. Periodically sensor nodes will sense

the environment through interfaced sensors, process that sensor data using an on-board microcontroller,

and transmit the results wirelessly to a central data store (sink) using an on-board radio chip. The sink

is responsible for storing and processing WSN node sensor readings for eventual data analysis.

Since WSNs are relatively low cost, scalable, and require no fixed infrastructure, they allow the e�cient

collection of vast quantities of data about the world around us, allowing us to improve our understanding

and knowledge about phenomena. To date, WSNs have been implemented in a range of fields. For

example, the monitoring of volcanic eruptions [118], soil moisture tension for irrigation management in

vineyards [42], sniper fire localisation in battlefields [59], and ice quake detection on glaciers [72].

WSNs are commonly acknowledged today as proven research instruments for several application do-

mains. However, WSNs still have many open research issues including energy management, fault tol-

erance, deployment processes, and harsh environments. This thesis addresses the question of how to

provide an integrated solution which enables robust and long-lived real-world WSN deployments.

1
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A WSN deployment can be considered robust if:

1. The sensor network meets the lifetime requirements of the project.

WSNs have a common primary design goal—to ensure the longest possible device lifetime with the

available power budget while meeting application requirements, (performance is usually measured

in terms of accuracy of the reconstructed sensed signal). Deployments can be on the order of days

in the case of sniper fire localisation or years for glacial monitoring. Failing to achieve deployment

lifetime requirements may require node battery changes which could either be expensive, labour

intensive, or even impossible. For example, in the case of glacial monitoring once the sensor nodes

are embedded in the ice there is no way of accessing the probe to change batteries without significant

intervention. Therefore, a WSN developer should consider why, where, and how the energy is used

to maximise node lifetime.

2. The sensor network achieves a high data collection yield.

WSNs are generally considered to be lossy networks. Anastasi et al. [8] and Arora et al. [10] both

report high levels of data loss in WSNs using default settings For an accurate representation of the

environment, the network must be reliable enough to achieve a data yield which allows the end-

users to make inferences about the cause and e�ect of events. A low data collection yield means

that important events may be lost or analysis skewed due to not having the complete dataset. For

example, in the glacial monitoring application, if transmissions were only successful during the day,

a calculation of daily averages would be skewed to be warmer than it was. Therefore, a WSN should

be designed for maximum transmission success.

3. The sensor network is able to detect / be reactive to sensing node failures.

Nodes in a network may fail for a number of reasons including human intervention, battery failure,

or other external influence. For example, glacial monitoring nodes have been known to fall into

lakes [23]. In a WSN each sensing node is generally considered to be of equal importance to the

other nodes in the deployment. Node failure will impact the data collection yield and a�ect the

network topology, potentially reducing the number of available routes to the sink. Therefore, a

WSN should be designed to detect node failure at the earliest instance.

This thesis therefore focuses on techniques and approaches to i) reduce the energy requirement of WSN

sensing nodes and ii) maximise the robustness of deployed WSN nodes.

As previously mentioned, a node’s energy budget is one of the most important considerations for WSN

design. Generally, a WSN node consists of five hardware sub-components: a sensing unit, a processing
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unit, a transceiver unit, a storage unit, and a power unit. The primary energy consumer of a node is,

generally, the use of the on-board radio chip1. Polastre et al. [85] show that a TelosB node’s power

consumption with an active radio is 10◊ greater than when using the Microcontroller (MCU) and 3900◊

greater than when idle. Therefore, an approach to extend the lifetime of a WSN node would be to reduce

the time the radio is used for.

Numerous algorithms have been described in the literature for the purpose of reducing the number

of transmissions a node is required to make. An approach often used in the literature is that of a

Dual Prediction Scheme (DPS) type algorithm [22, 34, 46, 101, 110, 111]. DPSs share a model of the

data between the node and sink. At each sampling interval the node makes a prediction based on

the last state transmitted to the sink. Transmissions are only made if this prediction di�ers from the

current sensor reading by more than a defined threshold. However, DPS algorithms presented within

the literature are often lacking in the ability to handle several aspects of real world deployments. The

aspects include: transmission loss, node failure detection, accommodating multiple sensor modalities, and

reduction of the energy requirement of the WSN network stack. This thesis proposes and evaluates a novel

generalised framework, named Generalised Dual Prediction Scheme (G-DPS), for the implementation of

DPS algorithms in real life WSNs. The goal is to provide a means by which a sensing system designer can

implement DPS algorithms to maximise data yield and signal reconstruction accuracy whilst minimising

transmissions when deployed in real-world lossy networks.

DPSs, in general, use a model of the sensed signal to allow an accurate reconstruction of the signal at

the sink using fewer transmissions. However, end-users tend to work with high-level knowledge. When

considering the high-level knowledge content of each transmission there is redundancy in the signal.

Furthermore, for some applications the ability to reconstruct the entire time series is unnecessary and it

is only important to know the proportion of time spent in a state, or set of states. For example, in human

behaviour monitoring applications, end-users are often only interested in how long is spent in a certain

modality (walking, driving, standing) in a given day. This thesis proposes and evaluates the combination

of DPS with on-node node analytics to significantly reduce the number of transmissions, whilst delivering

the knowledge end-users require.

Multi-hop networks are a common approach to networking in WSNs. This approach allows for WSNs

to be deployed over large geographical areas, routing data through intermediary routing nodes to reach

the sink. While there are large bodies of literature related to multi-hop networks and to DPS algorithms,

few publications attempt to answer the question of how these two technologies interact with each other.

1Note that this applies to the use of passive sensors, discussed in Section 2.2 on page 17, the use of active sensors can
outweigh the energy cost of the radio.
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Raza et al. [93] show that once the number of transmissions a node is required to make is significantly

reduced, the Media Access Control (MAC) and routing layers have the greatest energy requirement.

This thesis evaluates the performance of DPSs coupled with the commonly used TinyOS network stack

which is composed of the Collection Tree Protocol (CTP) and Low Power Listening (LPL). This thesis

also proposes a network topology that minimises listening time to minimise the energy requirement of a

sensing node.

DPS algorithms commonly use either basic linear interpolation or the output of the predictive model

for the purpose of signal reconstruction. It is expected by the author that spline-based reconstruction

methods can provide a higher accuracy than linear interpolation or model prediction. This thesis evaluates

three spline-based methods, and compares their performance to both linear interpolation and model

prediction.

This rest of this chapter is structured as follows: First, Section 1.1, presents the research questions

which this thesis aims to address. Section 1.2 describes the method undertaken for the work in this

thesis. Section 1.4 lists the contributions to knowledge this thesis provides. Section 1.5 details peer-

reviewed publications resulting from this thesis. Finally, Section 1.6 describes the structure of this thesis,

Section 1.7 acknowledges contributed work, and Section 1.8 acknowledges the tools used in this thesis.

1.1 Research questions

The aim of this thesis is to provide generalised methods and protocols for the implementation of DPSs

in deployed WSNs. This thesis aims to answer the following overarching research question:

How can WSN nodes be designed to achieve robust and long-lived real-life WSN

deployments?

Overall 6 questions are posed to answer the overarching research question. These are as follows:

RQ1: What features can improve the robustness of DPSs implemented in deployed WSNs?

Section 2.5 on page 34 shows that DPS algorithms in the literature have not typically considered issues

in real world deployments. The following issues have been identified:

1. DPSs are generally designed with the aim of compressing a single sensing modality, however, gen-

erally nodes include more than one sensing modality.

2. DPSs require the node and sink to have identical copies of the sink state. However, DPSs have not
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been designed to handle lossy networks, therefore, a node cannot determine if a transmission has

failed.

3. The sink is unable to distinguish if a node is suppressing messages as intended or the node has

failed.

Chapter 3 proposes a generalised framework to enable the robust deployment of DPSs in real-life WSN

deployments. This framework was developed by answering the following three subquestions:

RQ1A: Does combining multiple sensor readings into a single model allow a greater re-

duction in the number of packets transmitted and improve signal reconstruction

accuracy compared to compressing each stream individually?

Sensing nodes generally include multiple sensors of di�ering types. However, existing DPS algorithms

only consider a node with one sensor. This thesis will examine how to integrate multiple sensors in DPSs.

In a single-modal approach there are multiple instances of a DPS algorithm and individual sensor model

states are transmitted when there is an event. However, when dealing with multiple signals in a given

environment, the signals are often highly correlated (for example, temperature and relative humidity).

As an alternative a multi-modal approach combines multiple sensor’s readings into a single model. Since

the multi-modal approach will update the sink state for any given modality more frequently compared to

sending individual state updates, the approach is expected to reduce signal reconstruction error. However,

the total number of required transmissions is expected to be reduced compared to multiple single-modal

DPS instances.

Chapter 3 (specifically Section 3.5.3 on page 56) answers this question by comparing the transmission

reduction and reconstruction accuracy of multi-modal to single-modal as a part of the proposed generalised

framework.

RQ1B: Can heartbeat messages allow detection of node failure within a user specified time

period, without producing a large impact on the energy requirement of a functioning

node?

The continuous sequence of packets received from a sense-and-send node at regular, and predictable,

intervals provide a simple mechanism to check the health status of a node. However, DPS algorithms

transmit at irregular and unpredictable intervals and therefore, a packet might not be received either

because the node is functioning but is suppressing messages as intended or because the node has failed.

The end-user is unable to distinguish between transmission suppression and node failure. Specifying
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a maximum allowed time for a node not to transmit should allow node failure to be detected without

impacting on a functioning node’s energy requirement. Chapter 3 (specifically Section 3.5.4 on page 59))

evaluates the use of a heartbeat message to detect node failure.

RQ1C: Can the use of end-to-end acknowledgements with DPSs allow for a greater recon-

structed data yield compared to an acknowledgement-less schemes?

Multi-hop reliability can be very poor, less than 30% in some cases. DPSs rely on a high packet delivery

rate to enable accurate reconstruction of the sensed signal. A mechanism to alleviate the issue with lossy

networks is required to maximise reconstructed data yield. However, as shown by Anastasi et al. [8], this

will come at a cost of a higher energy consumption.

Chapter 3 (specifically Section 3.5.5 on page 61)) answers this question by evaluating an end-to-end

acknowledgement based scheme, comparing the reconstructed data yield, transmissions increase, and

energy use as a part of the generalised framework.

RQ2: Can the lifetime of a WSN node implementing transmission reduction approaches be

increased further by using a persistent backbone network of mains powered routing

nodes?

Section 2.5 on page 34 shows that when transmissions are substantially reduced, the primary energy

consumer for a WSN node is the energy overheads of networking. Specifically the total energy requirement

for listening is greater than any other process. If mains powered nodes can be utilised for routing, battery

powered nodes can reduce their radio duty cycle by removing the need to listen. Reducing the radio duty

cycle of a battery powered node should significantly decrease the overall energy requirement of the node.

Chapter 3 (specifically Section 3.6 on page 71) answers this question by proposing and evaluating a WSN

networking technique for low transmission algorithms.

RQ3: Can a spline-based signal reconstruction method improve the accuracy of reconstruc-

ted signals compared to piecewise linear methods, for example linear interpolation

or model prediction, when using DPS algorithms such as Linear Spanish Inquisition

Protocol (L-SIP)?

Section 2.6 on page 38 shows that the selection of the best method to accurately reconstruct the ori-

ginal signal based on the output of DPS algorithms has received little attention. Traditionally, linear

interpolation is used to reconstruct the sensed signal. However, in addition to the sensed value Spanish

Inquisition Protocol (SIP) provides the signal gradient in the state update. Furthermore, the known
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bounds on the suppressed samples can be inferred. This additional information lends itself to the use

of spline-based methods to reconstruct a signal. If signal reconstruction accuracy can be increased then

a larger error threshold could be used in SIP to give the same final reconstruction accuracy, allowing

a further reduction in transmissions. Chapter 4 answers this question by evaluating three spline-based

reconstruction methods, along with model predictions and traditional linear interpolation.

RQ4: Can a combination of DPS concepts with the calculation of application-level inform-

ation on-node significantly reduce the energy requirements of a node further than the

current state of the art?

This question asks if designing a DPS which models application-level metrics rather than the sensed

signal can provide better performance than the current state of the art, SIP. Compared to the knowledge

output required by end-users there is, generally, much redundancy in the sensed signal. Performing on-

node processing to generate application-level metrics o�ers the opportunity to further compress the raw

signal. Using application-level metrics as a model for a DPS should significantly reduce the number of

transmissions and thus the node energy requirement. Chapter 5 answers this question by proposing and

evaluating an algorithm using this approach.

1.2 Method

Raman and Chebrolu [91] critique the WSN literature from a systems perspective. The authors found

that there are inconsistencies between i) WSN algorithm and protocol design, and ii) WSNs designed

for real-life applications. They conclude, “an application-driven, bottom-up approach is required for

meaningful solution of any networking issues in WSNs”. Although deployments in the field are often time

consuming and expensive, they o�er a real in-situ evaluation of a system revealing issues which would

not be detected through simulation alone.

In this thesis I have taken this bottom-up approach suggested by Raman and Chebrolu. Cogent-House

described in Appendix A is the application for the application-driven approach. Cogent-House, an end-

to-end open-source home environmental and energy monitoring WSN, was developed as a tool to collect

data from real-life deployments. The concept and design of Cogent-House is detailed in Appendix A.

The datasets used to exemplify approaches developed in this thesis and to evaluate performance were

drawn from the deployment of Cogent-House within 37 homes. The deployment homes consist of flats

and houses with between one and five bedrooms, between one and seven occupants, and built between

the 1940s and 2010. These homes represent a wide variety of builds and occupancy patterns. The
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characteristics of these datasets and the performance of the deployment can be found in Appendix B.

This approach allowed the performance of algorithms presented in this thesis to be analysed over many

datasets in the targeted environment.

Much of the work in this thesis is described with reference to G-DPS. The G-DPS framework,

presented in Chapter 3, provides a generic framework to implement DPSs on a WSN node, and provides

a basis within which the contributions to knowledge are evaluated. The G-DPS framework builds upon

the SIP algorithm developed by Goldsmith and Brusey [34] by accounting for the issues discovered

during the deployment of Cogent-House in the field. To evaluate the performance of G-DPS, L-SIP, an

implementation of G-DPS for monitoring linear signals based on SIP, was used as an exemplar using the

Cogent-House datasets. The evaluation methodology is presented in detail in Section 3.5 on page 53.

Chapter 3 also presents Backbone Collection Tree Protocol (B-CTP), an extension to the commonly

used CTP networking protocol. The TOSSIM simulator developed by Levis et al. [64] was used to

evaluate the performance of the new approach. To calculate the energy requirement of B-CTP compared

to CTP, the microbenchmarking approach (see Section 2.2.3 on page 20) was used. Microbenchmarking

is a an approach to calculate the energy requirement of a node in a timely and cost-e�ective way whilst

not imposing hardware constraints. This approach is presented in Section 2.2.3 on page 20.

Chapter 4 presents methods to reconstruct signals from DPSs. To evaluate the e�ectiveness of the

reconstruction methods, each method was applied to all of the Cogent-House datasets to compare and

contrast. The evaluation approach is presented in Section 4.2 on page 85.

Chapter 5 presents Bare Necessities (BN), an approach combining DPS concepts with on-node pro-

cessing to convert data to information. The reports created for Orbit Heart of England included a number

of novel “metrics” to summarise building performance in a way which is readily understood by the end-

user (surveyors at Orbit Heart of England). The time-discounted distribution summary (see Section 5.2

on page 97) was selected from these as an example and baseline for evaluation. This evaluation makes

used of a year long dataset (house 1) from the full set of data collated by Cogent-House. A full

description of the evaluation can be found in Section 5.4 on page 101.

In summary, to develop and evaluate the contributions presented in this thesis, the author has taken

an approach of empirical data-driven evaluation backed up with on-node in-situ evaluation.
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1.3 Research scope

In the field of WSNs there is a wide variety of potential applications with di�ering requirements. Mac-

Ruairi et al. [68] and Römer and Mattern [99] both describe a taxonomy for WSN applications. This

section uses this prior work to describe the scope of applications the work in this thesis applies to. This

criteria will be broadly split into application, devices, and network.

1.3.1 Application

This criteria describes the class of applications such as the type of phenomena to be sensed, sampling

periods and deployment methodologies. The applications considered are that of environmental monitoring

with the following attributes:

Sensed Phenomena: The work here applies to applications sensing multiple or single phenomena.

The sensed phenomena can either be distributed (e.g, temperature in a room), or discrete (e.g.,

cumulative gas consumption).

Temporal Resolution: Low frequency applications are considered, with sample periods between a few

minutes and hours.

Spatial-Resolution / Coverage: The approaches presented in this thesis do not consider spatial res-

olution, however it is assumed each node is in transmission range of at least one other node.

Size: The work in this thesis has been applied to real sensing system with a range of network sizes, from

4 nodes to over 100 nodes.

Deployment: Deployments are manually performed, and can be either iterative or one-time. When

deploying an opportunistic nature is assumed (e.g., if deploying in a home nodes are placed where

possible).

Mobility The work assumes that all nodes and gateways are immobile, and have no mobility.

Lifetime: No lifetime requirements are assumed. However, the aim of this thesis is to achieve lifetimes

on the order of years.

1.3.2 Devices

The class of devices is described by their heterogeneity and energy source.
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Heterogeneity: It is assumed all sensor nodes (and repeaters) will have the same underlying hardware,

however the sensors interfaced to these nodes may vary between nodes.

Energy source: All nodes are considered to be battery powered. The integration of energy harvesting

energy sources would improve the performance of techniques presented here, however, this is beyond

the scope of the work.

1.3.3 Network

The final criteria to describe the application class is the nature of the network:

Communication modality: It is assumed sensor nodes will be using radio communication. Other

techniques such as IR and ultrasound are not considered.

Infrastructure A single gateway per sensor network is considered which will have an internet connection

if available.

Network: A multi-hop network is considered with a single sink node/base station at the trees root.

Connectivity The network is always considered to be connected.

Latency: There are no strict latency requirements, however, it is assumed a message will be received at

the base station within a few seconds after transmission from the sensing node.

Bandwidth: The applications considered have small continuous packet transmissions. A typical packet

is less than 100 bytes,

1.4 Contributions to knowledge

By answering the research questions set forth in Section 1.1, this thesis provides the following contribu-

tions to knowledge:

1. Generalised Dual Prediction Scheme (G-DPS)—A novel, generalised framework for the implement-

ation of DPS in real life deployments. G-DPS is described and evaluated in Chapter 3.

2. Backbone Collection Tree Protocol (B-CTP)—An extension to CTP to utilise a persistent powered

backbone network, which reduces the energy requirement for listening in order to extend node

lifetime. Chapter 3 presents B-CTP.
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3. The use of a dual quadratic spline signal reconstruction method which improves signal reconstruc-

tion accuracy of DPSs This approach is described and evaluated in Chapter 4.

4. Bare Necessities—An algorithm utilising on-node processing to deliver information rather than

data, significantly reducing node transmissions Chapter 5 describes and evaluates BN.

1.5 Publications

The work in this thesis has resulted in the following peer-reviewed publications:

Journal papers

• Elena I. Gaura, James Brusey, Michael Allen, Ross Wilkins, Daniel Goldsmith, and Ramona

Rednic. “Edge mining the Internet of things”. In IEEE Sensors Journal. vol. 13, no. 10, Oct. 2013,

pp. 3816–3825.

Conference proceedings

• Elena I. Gaura, John Halloran, James Brusey, Ross Wilkins, and Ramona Rednic. “Sustain-

able future? Building and life-style assessment”. In Proceedings 2012 International Conference on

Advanced Computer Science and Information Systems, Dec. 2012, pp. 7–11.

• Elena I. Gaura, James Brusey, Ross Wilkins. “Bare necessities—Knowledge-driven WSN design”.

In Proceedings of 10th IEEE Sensors Conference, Oct. 2011, pp. 66–70.

• Elena I. Gaura, James Brusey, Ross Wilkins, and John Barnham. “Wireless Sensing For The

Built Environment: Enabling Innovation Towards Greener, Healthier Homes”. In Proceedings of

Clean Technology 2011, June. 2011, pp. 367–372.

• Elena I. Gaura, James Brusey, Ross Wilkins, and John Barnham. “Inferring Knowledge From

Building Monitoring Systems: The Case For Wireless Sensing In Residential Buildings”. In Pro-

ceedings of Clean Technology 2011, June. 2011, pp. 353–358.

Appendix C on page 163 details further outputs resulting from this work, plus includes the full copies of

these papers.
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1.6 Thesis structure

This chapter has provided an introduction to this thesis, including the motivation for the work, the

research approach adopted, and the research questions and contributions to knowledge. The rest of this

thesis is organised as follows:

Chapter 2 discusses relevant background literature to the topics introduced throughout this thesis,

focusing on power consumption of nodes, techniques to achieve node longevity focusing on data-

driven approaches, and the performances of these approaches in real world deployments.

Chapter 3 proposes and evaluates Generalised Dual Prediction Scheme (G-DPS), a novel generalised

framework to develop DPS-style algorithms. G-DPS aims to solve issues that e�ect the robustness

of DPS algorithms in real life deployments. G-DPS is evaluated using L-SIP, an implementation

of G-DPS for monitoring linear signals, making use of data collated from real world deployments.

This G-DPS framework provides the base for the approaches presented in this thesis. Furthermore,

this chapter proposes B-CTP a modification to CTP which extends node lifetime using persistent

backbone powered nodes. A real world in-situ evaluation of L-SIP coupled with B-CTP is also

presented.

Chapter 4 presents and evaluates a number of reconstruction methods, with a focus on dual quadratic

splines which incorporates the known gradient of the signal state to improve signal reconstruction

accuracy..

Chapter 5 proposes Bare Necessities (BN), an approach to designing WSNs nodes to deliver only the

high-level information an end-user is interested in.

1.7 Acknowledgement of contributed work

This section details the contribution made by other researchers which have aided the work presented in

this thesis:

• The software development work for the open-source house monitoring system, Cogent-House

presented in Appendix A was developed in collaboration with Dr. James Brusey.

• Dr. Ramona Rednic and Dr. Olukunle Ojetola, fellow researchers at the Cogent Computing Applied

Research Center (CCARC), designed and developed the interface boards and additional hardware

required for Cogent-House.
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• Dr. Daniel Goldsmith, a fellow researcher at CCARC, has provided both data from his own de-

ployments of Cogent-House, as well as updating the open-source code where bugs, issues, and

enhancements were identified.

1.8 Acknowledgement of software tools

A number of open-source tools have been used to create the work presented in this thesis. This sections

briefly details the main tools used:

TinyOS TinyOS is an open source embedded operating system. Code was written in NesC for TinyOS

to develop the WSN nodes in the Cogent-House system described in Appendix A.

Python The Python programming language is used two-fold in this work: i) It is used for the server-side

processing in the Cogent-House system, ii) it is also used for developing o�ine versions of the

contributions presented in this thesis for testing.

R R is a programming language for statistical process. In this thesis R has been used to evaluate the

data resulting from running the python scripts for o�ine testing. These R scripts make heavy use

of Hadley Wickham’s suite of tools in particular the ggplot2 package to create all graphs in this

thesis.

LYX LYX is the document processing tool used to create this thesis document.
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Chapter 2

Energy e�cient Wireless Sensor

Networks

The aim of this chapter is to: inform the work presented in this thesis, provide background and support

for the developments proposed, and reveal the gaps in knowledge and practice in the existing work. The

literature review will cover:

1. an introduction to Wireless Sensor Networks (WSNs),

2. the energy consumption of WSN nodes,

3. approaches to energy reduction in WSNs, with a focus on Dual Prediction Scheme (DPS) and,

4. WSN signal reconstruction and data imputation,

This chapter is structured as follows: Section 2.1 provides an overview of WSNs. Section 2.2 discusses

the energy consumption of WSN nodes. Section 2.3 provides an overview of the categories of power

optimisation approaches in WSNs. Section 2.4 describes attempts to reduce energy through data-driven

approaches which forms one of the core themes of this thesis. Section 2.5 describes the performance

of DPS in WSNs in real life deployments. Section 2.6 outlines methods to reconstruct sensed signals

specifically where samples are missing or have been suppressed. Finally, Section 2.7 summarises the

literature surveyed, the gaps found, and their relationship to the work in this thesis.

2.1 Wireless Sensor Networks

Advances in microcontrollers, low powered radio technology, and MicroElectroMechanical Systems (MEMS)

sensor technology have given rise to Wireless Sensor Networks (WSNs). WSNs have paved the way to

collect data in a range of fields in a less labour intensive and more accurate and timely manner. Akyildiz

et al. [3] describes a WSN as a number of autonomous sensor devices distributed over a geographical

15
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Figure 2.1: Typical multi-hop WSN architecture. Reprinted from Reddy [95]

area. This thesis considers the specific case of a static WSN which consists of a (large) number of sensor

nodes deployed in a given environment. The sensor nodes periodically sense the environment through

interfaced sensors, process that sensor data using an on-board microcontroller, and transmit the results

wirelessly using multi-hop communication, to a central sink node, using an on-board radio chip. This

sink node collects and forwards data, from all sensor nodes, to a base station that is responsible for the

storage and processing of sensor readings. Figure 2.1 shows a typical topology for a WSN deployment.

WSNs have become proven research instruments for several application domains including:

Natural Environment A wide range of natural environments have been monitored using WSNs, from

monitoring extreme environments not suitable for human habitation through to more commercial

examples such as farmland. Examples of monitoring include: volcanic eruptions [118], soil moisture

in vineyards [42], and ice quakes on glaciers [72].

Built Environment Building monitoring has been used for a range of applications, including monitoring

the environmental conditions of homes to advise on heating strategies [98], monitoring heritage

buildings for structural movement [19], and monitoring environmental conditions when storing

museum artefacts [115].

Health In health applications, WSNs have been used to: monitor patients with Parkinson’s disease [83],

monitor behaviour in the elderly or vulnerable [69], and detect falls [80].

Defence Several battlefield applications have been developed, such as: sniper detection and localisa-

This item has been removed due to third party copyright. The unabridged version of the thesis can be 
viewed at the Lanchester Library, Coventry University.
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tion [59], battlefield surveillance [13] and monitoring bomb suit operative physiological condi-

tions [30].

WSNs are commonly acknowledged today as proven research instruments for several application domains.

However, WSNs still have many open research issues including energy management, fault tolerance,

scalability, deployment processes, and harsh environments. This thesis focuses on the issues of i) energy

constraints (aiming to maximise node lifetime by minimising the energy requirement of a node) and

ii) fault tolerance (providing mechanisms by which the impact of faults can be reduced).

2.2 Wireless node energy consumption

Due to the often inaccessible nature of WSN deployments, the primary power source for a WSN node is

in most cases batteries. Since batteries have only a finite supply of energy, long term deployments may

require maintenance to replace depleted batteries. Replacing batteries can present problems as nodes may

be inaccessible, or replacement may be costly or time consuming, such as when deployed on a glacier, in a

jet turbine engine, or within a smart home. Due to the limited energy available, the energy requirement

of a node must be minimised in order to maximise node lifetime1.

To optimise a node’s energy use it is useful to start by understanding how the energy is used. This

section describes: the design tradeo�s for developing energy e�cient WSNs, typical lifetimes of existing

WSNs, the di�erent ways in which nodes use their energy.

Römer and Mattern [99] show that the lifetime requirements of WSN vary greatly depending on the

application. They evaluate the characteristics of 15 deployments showing that the lifetimes range from

a few hours, in the case of furniture assembly monitoring, up to five years for a WSN deployed in the

ocean. The average lifetime is shown to be between several months and a year.

Even though the ocean deployment has a lifetime up to five years, it is rare for systems to achieve

longer than a 1 year lifetime. For example, the Torre Aquila project, described by Ceriotti et al.. [19],

deployed a WSN to monitor the structural integrity of a heritage building to better plan maintenance.

The deployment consisted of a number of node types measuring temperature, relative humidity, light,

acceleration and fibre optic sensors all sampling at an interval of 10 minutes. Using two pairs of size C

batteries (7600 mAh), Ceriotti et al. estimate a node lifetime of one year. SensorScope, described by

Schmid et al. [102], is a system for an indoor environmental monitoring network, built around the Telosb

1The phrase node lifetime can refer to several attributes of a node. For example the length of time before a software
failure, or before a hardware component fails, or the lifetime in terms of energy. In this thesis the phrase node lifetime
refers to a node’s battery life given a fixed capacity battery, assuming node hardware/software works indefinitely.
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platform (measuring temperature, relative humidity and light) and uses the B-MAC [86] networking

protocol (commonly referred to as Low Power Listening). With the nodes sampling at a two minute

interval, Schmid and Dubois estimate that the system will run for 61 days on a pair of AA batteries. The

WISE-MUSE project, described by Peralta et al. [84], resulted in a WSN which monitors temperature,

relative humidity and light in an art gallery for the preservation of collections. At a sampling interval

of 10 minutes a lifetime of two months was achieved using a pair of AA batteries. These three examples

show the limited expected WSN node longevity monitoring simple measurands such as temperature and

humidity at relatively low sample frequencies.

2.2.1 The lifetime-accuracy-timeliness trade-o�

WSN nodes often have a limited energy supply. While in some cases nodes can be connected to mains

power, usually the application demands they are powered by batteries. When developing WSN systems

a key design goal is to therefore extend node lifetime by e�ciently using this limited power supply.

Bajwa et al. [12] describes the power-distortion-latency (or lifetime-accuracy-timeliness) trade-o�, in

which the design of a WSN is a trade o� between sensor node lifetime (power), data accuracy (distortion)

and timeliness of data updates (latency).

To increase a node’s lifetime a designer of a WSN could extend a node’s lifetime by:

1. Reducing the accuracy of the sensing node, for example, by reducing the sample rate.

2. Reducing the timeliness of the data being received by, for example, bu�ering data and sending once

per day or even requiring manual data download.

However, the goal of WSN research is to design WSN nodes that use minimal energy to collect and

disseminate an accurate representation of the phenomena being observed.

2.2.2 WSN node power requirements

A WSN node usually incorporates five main sub-components: a sensing unit, a processing unit, a trans-

ceiver unit, a storage unit, and a power unit [3, 90]. Table 2.1 gives an overview of the energy consump-

tion of three widely used commercial node platforms (TelosB, Mica2, and MicaZ) that will be referred

to throughout this section. The remainder of this section describes the sensing, radio, processing, and

storage energy requirements of WSN nodes.

The primary aim of a WSN is to sense the environment and transmit readings to a central store

and therefore a WSN node is equipped with sensors and associated circuitry to interface to the micro-
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Table 2.1: Power consumption of typical commercial nodes [85]

Mode Mica2 (2002) MicaZ (2003) TelosB (2004)
Mote standby (RTC on) 0.06 mW 0.09 mW 0.02 mW
MCU idle (DC0 on) 10.56 mW 10.56 mW 0.18 mW
MCU active 26.40 mW 26.40 mW 5.94 mW
MCU + radio RX 49.83 mW 76.89 mW 71.94 mW
MCU + radio TX 83.82 mW 69.30 mW 64.35 mW
MCU + flash read 31.02 mW 31.02 mW 13.53 mW
MCU + flash write 71.28 mW 71.28 mW 49.83 mW

Table 2.2: Reported energy consumption of selected sensors

Sensor Active / Passive Energy consumption
ELT Inc. B-530 CO

2

sensor module Active 1560 mW
Applied Sensor IAQ2000 VOC sensor module Active 150 mW
Sensiron SHT11 Humidity sensor Passive 1.5 mW
Sensiron SHT11 Temperature sensor Passive 1.5 mW
Hamamatsu S1087 Light sensor Passive 4.8 mW

processor’s inputs. Raghunathan et al. [90] define two categories of sensors: active and passive. For

passive sensors, such as temperature, the phenomena acts on the sensor, causing a change in properties,

for example, changing its resistance (thermistors) or generating a voltage (thermocouple). Active sensors

(such as radar, and Carbon Dioxide (CO
2

)) act on the environment to take a measurement.

Table 2.2 provides a breakdown of the energy use of select sensors. Passive sensors draw little current

compared to other components of sensor nodes. However, active sensors can be large consumers of power.

In the case of the CO
2

sensor module (ELT Inc. B-530), the typical peak current is 130 mA—over five

times more than the radio. Over a single sample period the B-530 CO
2

sensor consumes 0.013 Wh over

its 30 second “active” time compared to the 9 ◊ 10≠6 Wh consumed by the radio over half a second.

Therefore for the node the use of the CO
2

sensor will be the main limiting factor on the node lifetime.

Passive sensors are much more common in WSN deployments, meaning that the cost of sensing is often

minimal.

To communicate data or receive commands, WSN nodes are equipped with a radio chip. From a

simplistic view the radio has three possible states: i) sending packets, ii) listening / receiving packets,

or iii) switched o�. Table 2.1 shows that radio usage has the greatest energy requirement and that to

transmit packets uses as much energy as receiving. Polastre, Szewczyk, and Culler [85] showed that

the TelosB’s radio consumption is ten times greater than processing and 3900 times greater than idle.

Pottie, and Kaiser [88] show that the energy used to transmit 1 kilobyte (kB) of data is the equivalent of

performing 3 million operations. Since the radio is the greatest energy consumer, reducing radio usage
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should increase node lifetime.

Table 2.1 on the preceding page shows that the power consumption for the Microcontroller (MCU) is

small compared to other node subsystems such as the radio. A node’s lowest energy consumption state

is when the node’s MCU is idle. Therefore, when the application permits, the MCU should be in an idle

state to extend the node’s lifetime. Interestingly, the power required for the MCU has decreased over

subsequent platform revisions, whereas the energy required for the radio has stayed approximately the

same.

Some applications may require the storing of historical sensor values. A node o�ers two types of

storage. A small amount of data (often on the order of tens of kilobytes) can be stored in Random Access

Memory (RAM), however this storage is vulnerable to power loss. If the quantity of data to be stored is

large, or requires permanent storage, data can be written to integrated flash memory. Table 2.1 shows

that while the energy to read from flash is small, writing to flash is close to that of radio usage. Nguyen et

al. [77] gives an example of caching data before transmission, in this example more energy is required to

write the data to flash compared with transmitting every sample. Therefore, any use of on-node storage

needs as much consideration as transmission.

2.2.3 Estimating node lifetime

The previous section describe how a node uses its energy. This section describes how the lifetime of a

node can be estimated using these measurements.

The simplest method of determining the lifetime of a node is to allow the node to run until it is no

longer functional. While this is able to give an accurate estimate of lifetime, the approach is impractical

for lifetimes approaching periods of months or years.

Dutta et al. [26] describe iCount. iCount measures energy usage by counting the switching cycles of

the regulator. iCount provides a benefit over other approaches by being simple in design. However, in

terms of accuracy the approach can have errors up to 20% compared to the actual measurement during

constant load.

Kopke and Wolisz [58] describe the energy measuring approach for the SANDbed WSN testbed [41].

Kopke and Wolisz developed a circuit for precise energy measurements in-situ. The energy is derived by

measuring the current draw of a node over a shunt resistor and the supply voltage. This energy is then

reported back to the node. This approach has two disadvantages i) as with iCount measuring the idle

current is inaccurate, and ii) it is unclear what additional energy is required by the node to manage the

measuring circuit. Milenkovic et al. [75] discuss a similar approach, however do not report the accuracy
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or performance achieved.

Jiang et al. [48] describe SPOT, another hardware based approach. Compared to the other three

approaches SPOT achieves a very high resolution (down to 1 mA for constant currents) and is able to

react to the rapidly changing current draw of a WSN node. However, compared to the previous approaches

the set up is much more complex and the paper does not detail the accuracy of the measurement circuit.

Hardware approaches are generally said to be more accurate than software / calculation based ap-

proaches. However, when considering a node using minimal energy, hardware approaches are unable to

accurately measure at the microamp level. As discussed later in this chapter, when implementing trans-

mission reduction algorithm nodes are primarily in a sleep state therefore pure hardware approaches are

not suitable. An alternative to this approach is microbenchmarking.

2.2.4 Microbenchmarking

Microbenchmarking is an alternative approach that takes measurements of tasks to calculate energy

requirements for an application [53, 57, 60, 73]. The energy requirement of a node is derived from the

current consumption I over time t, to calculate the total charge Q.

Current I is the rate of charge flow. Therefore, the total charge, Q, that flows through the two points

over a period of time t, if the current is constant, is given as:

Q = It

The potential di�erence or voltage V across two points is defined as the energy E dissipated or transferred

per coulomb of charge, Q, that moves through a single point:

V = E/Q

Therefore the energy consumed (or dissipated) by an electrical circuit over a period of time and assuming

a constant current for that period is:

E = V Q

In the case of WSN’s the voltage is fixed. For example, the Cogent-House system nodes are powered by

two AA batteries with a capacity of 2400 mAh. Therefore, for all calculations a fixed voltage of 3 V is

assumed (although this method can be used for any supply voltage). Since there is a fixed voltage the

consumed charge is proportional to the energy consumed and therefore will be used to show the relative
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energy improvement.

The microbenchmarking approach calculates the energy requirements of a node from two measures:

1. The average current draws of sleep states Isleep and operations Ioperation. Typical operations

that a node performs are: sensing, processing, listening, and transmissions. The current draw of an

operation is measured by performing an operation continuously and measuring the current draw of

the node using a digital multimeter in series.

2. The time toperation to completion of an operation, recorded from timestamps in the code.

Microbenchmarking uses the two measures of each operation to calculate the energy consumption for a

task, Eoperation,

Eoperation = Ioperation ◊ toperation

The energy consumed by all operations performed during a sample period Esample is the sum of the

energy for all operations performed. For example, for a typical sense-and-send application,

Esample = Esensing + Eprocessing+

Elistening + Esend + Esleep

Since the discharge curve of batteries can vary between manufacturers, this thesis reports on the annual

energy requirement of a node rather than a predicted lifetime. The energy requirement for a node over a

year E

year

is calculated from the energy for a single sample periodEsample and the number of samples

performed in a year n

Eyear = Esample ◊ n

Compared to the hardware approaches microbenchmarking is: less time consuming, cost-e�ective,

and has no node platform constraints. However, some accuracy may be lost due to the consumption not

being measured in-situ and not accommodating the battery model. The approach is accurate enough to

give an annual energy requirement. Microbenchmarking will be used in this thesis to measure the energy

performance of algorithms coupled with in-situ performance analysis.

2.2.4.1 Microbenchmarking method

This section gives a step-by-step method for performing microbenchmarking measurements and evalu-

ation:
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1. For each operation (an operation is defined here as being a contiguous set of processing steps that

use a similar amount of power, such as performing calculation, sensing temperature, or transmitting

wirelessly) in a WSN application:

(a) Create a program that repeats an operation N times (for some large value of N) to estimate

the average running time for that operation.

(b) Place a multimeter in series between the battery pack and WSN node, and record the average

current over a number of iterations

(c) Calculate the charge for an operation using Q = It

2. Calculate the energy required for one sample period by summing all operations from step 2. The

time required for when a node is idle can be calculated by subtracting the total time of all operations

in a sample from the sample period:

tsleep = tsample ≠ (tprocessing+

tlistening + tsend + tsense)

3. Estimate energy use for a year. For example, in a sense-and-send application, with energy require-

ments of 0.011 mAh per sample and sensing at 5 minutes, use the formula stated in the previous

section:

Eyear = Esample ◊ n

Eyear = 0.011 ◊ 105120

Eyear = 1, 156 mAh/year

2.3 Approaches to energy saving in WSNs

Raghunathan et al. [90] state that a key design constraint for many WSN applications is the energy

consumption of the node. Furthermore it has been identified that power optimisation is a key roadblock

to the adoption of the Internet of Things (IoT) [114]. This section examines approaches to energy

conservation in WSNs.

Anastasi et al. [9] defines an energy saving taxonomy for WSNs as shown in Figure 2.2. This taxonomy

defines techniques to be based on either the networking subsystem (the design of e�cient networking

protocols, or duty cycling), or the sensing and processing subsystem (data-driven reduction). Mobile



24 CHAPTER 2. ENERGY EFFICIENT WIRELESS SENSOR NETWORKS
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sensing is also discussed, however this thesis assumes fixed position sensing nodes. Two approaches not

considered by Anastasi et al.’s taxonomy is that of hardware optimisation or energy harvesting.

Hardware Optimisation Refers to either i) the design of energy e�cient components (e.g., low power

radios), or ii) hardware resource management through energy aware operating systems such as

PixieOS [67]. Promising avenues include future low power processors, low power communication

units, and energy harvesting to produce embedded systems that can function with significantly less

energy [74]. Technology in this area is making relatively slow progress, for example while Table 2.1

on page 19 demonstrated that the energy consumption of the MCU was reduced between three

sensor nodes, the power requirements of the radio have remained relatively static.

Energy harvesting extends node lifetime through the conversion of external environment sources (e.g.,

thermal energy [14], vibration [7], or solar power [65]) into electrical energy.

Networking Optimisation The network can be optimised through either i) the design of energy ef-

ficient network protocols [2], or ii) energy-e�cient MAC Layers [27, 86]. Though many di�ering

network protocols have been suggested, these approaches have rarely been implemented or evaluated

in real deployments [31].

Data-driven Optimisation Software-based approaches can reduce energy consumption through ana-

lysis of the sensed signal. Such techniques may take the form of data compression, data aggregation,

or data prediction. The primary benefit of these approaches are that they are not tied to specific

hardware platforms. The main limiting factor of these approaches is the characteristics of the signal

and the e�ciency of the underlying hardware.

These approaches can be implemented individually, however it is often the case that a combination of

these approaches will be used. The approach of data-driven optimisation is the most generic one and can

be applied to a wide range of applications. The following section provides details of the current state of

the art around data-driven optimisation in WSNs.

2.4 Data-driven optimisation in WSNs

The work in this thesis primarily investigates data-driven optimisation in WSNs. The taxonomy shown

in Figure 2.2 splits the data-driven optimisation approach into two sub-approaches:

Energy e�cient acquisition In some cases the energy cost of sensing may be higher than the energy

requirement of the radio, for example the CO
2

sensor module discussed in Section 2.2. Therefore



26 CHAPTER 2. ENERGY EFFICIENT WIRELESS SENSOR NETWORKS

an approach is required that reduces the number of acquisitions (i.e., data samples). Examples of

these approaches include adaptive sampling [5], hierarchical sampling [105], and model-based active

sampling [82].

Transmission reduction This approach reduces the energy requirement of a node by exploiting char-

acteristics of the sensed signal in order to minimise the number of transmissions required.

As previously shown in Section 2.2, in many applications, the energy requirement for sensing is low com-

pared to the energy requirement for radio use. Therefore, the following sections will look at transmission

reduction techniques.

2.4.1 Event detection

One approach to reduce the number of transmissions to the sink is to only transmit when a pre-defined

event occurs, for example a temperature exceeding a set value. Event detection algorithms have been

used in applications such as sniper detection [59] or detection of animal calls for localisation [6], in these

cases a node only reports when a target has been located.

Event detection can reduce the number of transmissions significantly, however, Kapitanova, Son, and

Kang [20] show that specifying event thresholds can be di�cult. The context of the event must be

considered, for example, if a node is deployed to measure air temperature in the summer a temperature

of 0 � would be considered a significant event, whereas in the winter it would not be unusual. Since

WSNs are generally expected to be deployed in environments that change over time (for example, seasonal

variation), the relevance to the application of the predefined event may change. This may result in missing

potentially interesting events that would give additional understanding of the environment.

In an event detection approach the number of transmissions is proportional to the number of events

that occur. Therefore, in applications which experience infrequent events, for example, detecting ice

quakes on glaciers, lifetimes can be substantially increased. However, event-based transmissions are

a destructive approach, only reporting when an event has occurred. WSNs are deployed to gain an

understanding of a environment therefore it is often important to have a view of the signal leading up to

the event to determine how and why an event occurs, for example, is an ice quake due to a faster rate of

melting of the glacier.

Werner-Allen et al. attempt to solve this issue through Lance [119]. Lance calculates a summary of

a window of data on the sensor node. The full data window is stored on the node, and the summary

transmitted to the sink. Through a user specified rule based policy the sink determines if the summary
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indicates data is interesting. If so the full raw data stream is requested from the sensor node. Although

Lance attempts to reduce the number of transmissions to extend node lifetime, Section 2.2 has shown

that storing data in flash is nearly as energy expensive as transmissions.

2.4.2 Data compression

Rather than just reporting events, data compression allows the original signal to be reconstructed. Data

compression is a technique which encodes information using fewer bits than the original representation.

There are two main classes of compression algorithm: lossless compression can exactly reconstruct the

original signal from the compressed signal, whereas lossy compression removes some “less important”

information to achieve greater compression ratios. Lossy compression therefore only allows an approxim-

ation of the original signal.

Run Length Encoding (RLE) is a lossless data compression algorithm, which has been used in the

compression of images, for example palette-based bitmapped images such as computer icons. RLE replaces

repeating sequences of values with a single copy of the sequence and a count of occurrences. For example

the string:

BBBBBBBBBBBBBBBAAAAAAAACCCCCCOOONN

would be represented as 15B8A6C3O2N, from which you can reconstruct the original string. A disad-

vantage to RLE is that it relies on the signal containing repeated sequences. Natural phenomena, such

as temperature, however, do not tend to produce signals with simple repeating patterns. Capo-Chichi,

Guyennet, and Friedt [18] attempted to solve the issue of variability in signals with K-Run Length Encod-

ing (K-RLE). K-RLE is a lossy data compression algorithm which introduces an error budget, allowing

similar readings to be grouped and thus reducing the e�ect of the variability in the signal. Similar

approaches to event detection have been proposed by Lazarus and Mehrotra [62] termed Poor Man’s

Compression (PMC):

Poor Man’s Compression - Midrange (PMC-MR) only transmits when the midpoint of a data

window exceeds twice a defined error threshold. When the segment range exceeds the error

threshold, the midpoint of the range and a count of samples since last transmission is transmitted.

Poor Man’s Compression - Mean (PMC-MEAN) on the other hand reports the mean value of a

data window when it exceeds a threshold rather than the midpoint. This approach reduces the

mean error of the reconstructed data, however it produces a higher number of transmissions than

the PMC-MR.
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Olsten, Loo, and Widom [81] propose the approximate caching algorithm. Instead of transmitting an

actual value the algorithm reports an interval approximation of the sensed value, for example, the value

is guaranteed to lie between 10 and 20. When a sensed value falls outside the range of the previous

approximated interval then the interval is updated to take account of the new value, termed a value-

initiated refresh. On the sink, Structured Query Language (SQL) like queries are registered with a

central stream processor, along with the maximum error permissible for that query. If the transmitted

approximated interval exceeds the threshold for the query then the sink executes a query-initiated refresh

which returns the exact sensor value and an update range. The disadvantage of this approach is that

only a value interval is reported, therefore the original data stream cannot be accurately reconstructed.

This may a�ect any analysis of data gathered, for example, when calculating an average both an upper

and lower bound of that value would need to be calculated and reported.

Rather than compress data at an individual node level, in-network aggregation processes data at

an intermediary node (usually a cluster-head) to attempt to reduce transmissions. Fasolo, Rossi, and

Widmer [28] provide a review of in-network processing techniques. The review defines the process of

in-network aggregation as the process of gathering and routing information through a multi-hop network,

processing data at intermediate nodes with the objective of reducing resource consumption (in particular

energy) and thereby increasing network lifetime.

Heinzelman, Chandrakasan, and Balakrishnan [40] developed LEACH. LEACH is a cluster-based

approach that reduces communication by aggregating data at a intermediate node. All nodes in a cluster

transmit their sensor readings to the cluster head, once all reading are received they are aggregated into

a single packet and forwarded to the sink. This approach will reduce the overall tra�c of the network,

however, each node will still be required to transmit at each sample interval.

Intanagonwiwat et al. [44] describes the directed di�usion approach. In this approach a user specifies

an interest, which comprises of an event definition, the area in which this event is expected, and the

interval (data rate) required. The algorithm disseminates the interest through the network, forming

gradients (or paths) from which the data matching the interest can be drawn back to the sink. Direct

di�usion includes support for data aggregation to happen at neighbouring nodes. Intanagonwiwat et al.

show that when matching reports from neighbouring nodes are suppressed, this approach was shown to

save five times the energy compared to no suppression.

TAG [71], as described by Madden et al., aims to reduce the number of transmissions by producing

user specified summary statistics (such as minimum, maximum or average) at intermediary nodes in the

network tree. Using SQL group by style commands allow for an overall smaller packet, at a cost of
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Algorithm 2.1 On-node algorithm summary for DPS.
At each sensing cycle:

1. obtain sensor reading

2. estimate new state

3. predict state based on last transmitted state

4. if new state estimate is significantly di�erent from predicted state

(a) transmit new state to sink

accuracy, to be transmitted. Although TAG reduces packet size through summarisation Chu et al. [22]

show, that when given the option to produce results using in-network aggregation the approach has been

unpopular, with end-users opting to obtain the raw signal from the nodes. However, the end-users of

the application were domain scientists who are used to working with raw signals, in may applications

non-specialist end-users are more interested in a summary.

Though in-network aggregation looks promising, Gaura et al. [31] observe that WSNs rarely collab-

oratively work together at the application-level—only the Media Access Control (MAC) layers require

cooperation between nodes. Furthermore these approaches mostly reduce transmissions in routing and

so each sensing node will still need to transmit every sensed sample to an intermediate node, which is

the largest drain on energy reserves.

A disadvantage of these compression approaches, generally, is that they do not consider how a signal

evolves over time. Since many environmental phenomena follow a predictable trend (such as outside

temperature) there is often redundancy in the data that could be exploited to reduce the number of

transmissions required. Many approaches have considered modelling the signal to reduce transmissions

further.

2.4.3 Data modelling approaches

Even though sensor data is often highly compressible, the benefit of transmitting smaller data packets

is often outweighed by the energy consumption overheads associated with transmission. For example,

Kim [56] demonstrates that, with the CC2530 radio using Z-Stack, around 60% of the energy to transmit

is the overheads related to switching on and configuring the radio. Therefore reducing the number of

transmissions will reduce energy usage much more than reducing the quantity of data per transmission.

One approach to reduce the number of transmissions is based on the node and sink having a shared

model of the signal, with predictions made using state updates transmitted by the node. Transmissions
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are only made when the predicted state of the signal di�ers from the current sensor reading by a set

condition. This approach, named Dual Prediction Scheme (DPS) [63], is summarised in Algorithm 2.1.

The rest of this section focuses on this approach.

Jain, Chang, and Wang [46] suggest a Dual Kalman Filter (DKF) approach. The DKF approach

makes use of identical Kalman filter models at the node and sink. The estimation stage of the Kalman

filter estimates the next sensor reading. If the error between the actual sensor reading and the prediction

exceeds some given threshold then an update of Kalman filter parameters are sent to the sink. A Kalman

filter may seem a suitable choice for modelling a signal but can introduce significant latency [16], requires

additional computation, and is di�cult to tune [51], often needing extensive historical data from the

intended deployment environment. The need for prior data streams and the di�culty in tuning the

Kalman filter makes it unsuitable for a generic approach to transmission reduction.

Santini and Römer [101] present an alternative approach using a Least Mean Squares (LMS) adaptive

filter for the state estimate. Adaptive filters, such as LMS, are generally used where there is no knowledge

of the phenomena signal (such as the noise-level) available. Therefore, this approach improves upon DKF

by removing the need for a-priori knowledge of the observed phenomena. In addition, LMS is an adaptive

filter, therefore, it reduces the need for significant training compared to filters such as the Kalman filter

in the DKF method. Though this approach provides a large reduction in packets, it has been shown the

LMS adaptive filter has a convergence period where the reported values do not match the sensed signal.

During this convergence period the node will require extra transmissions and have a higher reconstruction

error during this period.

The Ken approach, described by Chu et al. [22], is a DPS approach which uses a pair of probabilistic

models at the node and sink. In this paper Chu et al. uses a model of the signal, an example given is a

linear prediction model, to calculate a probability distribution function, and a transition model to forward

predict. As with other DPS approaches the accuracy of the model is compared against the current model

state—if the error in the model exceeds a user specified threshold then an update of the model state is

transmitted to the sink. The paper also shows that the model can take into account correlation between

neighbouring nodes to improve performance, however, this requires significant intra-node communication.

Furthermore, the KEN approach requires a significant period of training data which ranges from 4–15

days (11520–43200 samples) on the Intel data set, requiring a large amount of additional energy at the

start of the deployment.

Liu, Wu, and Tsao [66] suggest the use of AutoRegressive Integrated Moving Average (ARIMA) [15]

models. Though able to accurately model a signal, this approach requires a long training phase which
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Algorithm 2.2 Pseudocode for node and sink for SIP
Node:
s Ω query sensor()
xÕ Ω estimate new state (s, x
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Sink:
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requires additional computation and storage of historical values. The ARIMA approach is also compu-

tationally expensive. Probabilistic Adaptable Query (PAQ) [111] and Similarity-based Adaptive Frame-

work (SAF) [110] reduce the complexity and computation of ARIMA models by focusing on an AutoRe-

gressive (AR) model. PAQ improves upon SAF, by incorporating a trend component which reduces

the training set required. Both of these approaches allow correlations between nodes to be exploited,

however, they still require a long period of training to derive an accurate model. Borgne, Santini, and

Bontempi [63] present Adaptive Model Selection (AMS), which attempts to reduce the training time for

AR models. While in the training phase, several models are run simultaneously. A racing algorithm

is implemented to select the best performing model for data prediction. This approach, however, still

requires approximately 1000 readings for training.

Rather than make use of complex filtering, ARIMA models, or probabilistic models, Goldsmith and

Brusey propose the Spanish Inquisition Protocol (SIP) [34] (shown in Algorithm 2.2). SIP extends prior

work on DPS by transmitting a state vector rather than individual readings. This state vector consists of

the current reading and rate of change of the phenomena. Accounting for the trends in the data stream

allows the use of a simple piecewise linear model to predict future sensor readings.

Figure 2.3 shows the transmission reduction performance of selected DPS techniques, as reported by

Goldsmith [33]. These protocols were all tested o�ine using the Intel Lab dataset [70] using an error

threshold of 0.5 �. A threshold of 0.5 � is commonly for indoor environment monitoring applications.

However, in applications such as human body monitoring tighter thresholds must be used, however, this

will come at the cost of additional transmissions.

KEN was the worst performer requiring 65% of samples to be transmitted, this value does not consider

the training period required therefore the number of transmission may be significantly higher. Filter-

based approaches such as DKF and LMS improve on this by a factor of 6 and are able to reconstruct

the sensed signal using approximately 10% of the collected samples. Out of these two approaches the
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Figure 2.3: A comparison of data reduction techniques, as applied to the publicly available Intel Lab
dataset [70] using an error threshold of 0.5�. Reprinted with permission from Goldsmith [33].

LMS method is favourable as it does not require extensive tuning or prior data. The SAF approach has

a similar transmission reduction performance to SIP requiring less than 3% of transmissions. However,

for SAF, the Intel dataset was preprocessed to adjust the sampling rate and infer missing values [110]

and thus the results may not be indicative of actual deployed performance.

The work in this thesis builds upon the current work in DPSs. DPS techniques promise significantly

extended lifetimes by reducing the number of required transmissions. However, design and evaluation

of DPS algorithms to respond to the needs of real world deployments has received little attention (see

Section 2.5 on page 34). In Chapter 3, this thesis examines the issues of deploying SIP in real life

deployments and proposes a generalised framework, named Generalised Dual Prediction Scheme (G-DPS),

for the development of DPS algorithms targeted towards real world deployments. Since SIP [34] reduces

transmissions further than any other method within its allowed threshold it has been shown to be the

best performer.Therefore, SIP is used as an exemplifier for implementing a DPS algorithm in terms of

the G-DPS framework.

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed 
at the Lanchester Library, Coventry University.
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2.4.4 On-node processing

As an alternative to modelling the sensed signal there may be benefits to processing on the sensing node

itself. On-node processing algorithms use application specific algorithms to transform or summarise data

and provide a reduced transmission size or number of transmissions to the sink. While this has parallels

to the concepts such as data compression, the focus here is the transformation of data into another form

of information.

Pottie and Kaiser [88] suggest that if application and infrastructure permit, it is beneficial to process

the data locally to reduce tra�c volume and reduce energy costs. End-users are typically interested in

converting raw signals into high-level knowledge [43, 121]. This means that traditional sense-and-send

systems waste energy on the transmission of data with little informational relevance.

Albu, Lukkien, and Verhoeven [4] propose a method of on-node processing of Electrocardiography

(ECG) signals. Rather than transmit a raw ECG signal the algorithm calculates and transmits R-Peaks

(the peak amplitude of a typical ECG signal) which allows for the detection of simple arrhythmia (e.g.,

high/low heart rates or missing beats). This on-node processing leads to a node lifetime increase by a

factor of 3–5◊ compared to a sense-and-send approach, however, this approach does not take account

of the changes between R-Peaks over time. Incorporating an event detection type approach, such as

only transmitting when changes occur in the detected heartbeat, could additionally increase the lifetime.

PEAR [106] takes a similar approach of calculating R-Peaks on-node. Using the interval between peaks,

PEAR derives a person’s activity-level through a decision tree-based activity classifier. The energy

conservation of the approach is dependent on how active the users are. Assuming users are active 18%–

28% of the monitoring period, the approach is able to increase node lifetime up to 2.5◊ compared with

conventional ECG sensing approaches.

The approach proposed by Kasi et al. [54] annotates detected events on sensor nodes and executes

application rules on these events. By performing data processing locally, the sensor nodes makes decisions

quickly and remotely without the need for instructions from gateway nodes. This approach achieved

an energy saving of 33% for a transmission reduction of 60%. This approach was evaluated through

simulation and only for a period of one minute (at 1Hz sampling rate). It could be that over longer

periods the algorithm performs better, but no long-term evaluation has been undertaken.

Histogram-like summaries of time spent in certain states are useful in a variety of applications, and can

be calculated on-node. Reddy et al. [96], uses Global Positioning System (GPS) and accelerometer data

from a mobile phone to determine the percentage of time an individual spends in particular transportation

states (e.g., bike, walk, motor). From the same research group this concept has been used by Ryder et
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al. [96, 100] to monitor the mobility patterns of individuals using mobile phone GPS data. However,

these approaches are often computed from raw data traces at the sink and thus do not explicitly target

node-level data reduction.

When considering a specific application, the knowledge end-users are trying to obtain is a refined

form of the sensed signal [17]. The combination of on-node processing with DPS techniques, should be

able to significantly decrease the number of transmissions required by a node and therefore increase node

lifetime whilst delivering the information required by the end user. This thesis examines this technique

in Chapter 5.

2.5 Use of DPS in WSNs deployed in the field

In this chapter, DPSs have been shown to significantly reduce the number of transmissions required

by a WSN node with the aim of reducing the energy requirement of a node. However, the design and

evaluation of DPSs often does not consider the case of multi-hop networks or lossy networks. This section

explores the literature relating to these two areas.

2.5.1 DPS on multi-hop networks

While there are large bodies of literature related to multi-hop networks and to DPS algorithms, few

publications attempt to answer the question of how these two technologies interact with each other.

Raza et al. [93] investigate the e�ect of a DPS algorithm, Derivative-Based Prediction (DBP), deployed

in an operational road tunnel. This deployed WSN is implemented using a combination of Collection Tree

Protocol (CTP) and Low Power Listening (LPL) (also named Box-MAC [76]). In their experiments they

show that the average radio duty cycle (the fraction of the sensing cycle in which the radio is active) with

a DPS algorithm and good compression is essentially the same as when using CTP with no transmissions.

They conclude that CTP beacons become dominant in terms of transmissions once you can achieve good

compression and therefore, further compression provides little gain unless the MAC and routing layers

can be improved.

Building on their previous work, Raza et al. [94] proposed increasing the wakeup interval for LPL and

decreasing the number of CTP beacons as a solution to reduce the overall power consumption of a multi-

hop network where DPS is used. In a sense-and-send system this would result in longer transmission times

(due to the reduced listening periods), and thus have a much higher energy requirement. However, due to

the compression o�ered by their DPS style algorithm, the listening and the beacons are the overwhelming
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power consumers and therefore the savings gained with their changes outweigh the increased cost of

transmitting.

In conclusion, to further reduce the energy requirement of a node when transmissions have been

su�ciently reduced, network maintenance related to radio usage should be kept to a minimum to reduce

the radio duty cycle.

2.5.2 DPS in real-life deployments

Anastasi et al. [8] looked into reliability and energy e�ciency for 802.15.4 networks as a function of the

sleep/wake cycling and the MAC level settings. They showed that multi-hop reliability can be very poor,

providing less than 60% delivery rate, when using the default settings, regardless of the duty cycling

method (around 5% delivery for the fully synchronised scheme up to around 60% for a ZigBee compliant

scheme). Anastasi et al. showed that by changing the MAC settings, the reliability of all duty cycling

methods they examined can be significantly improved (85% to 100% depending on the scheme), though

with the trade-o� of higher energy consumption and end-to-end latency.

Arora et al. [10], discovered the same result as Anastasi et al. for a di�erent type of network. Using

the distance-vector routing and queue management protocols provided as the default in TinyOS, only

33.7% of packets were delivered across their network. This figure was increased to 81% by implementing

a new routing scheme making use of knowledge about the node deployment.

The Intel Lab dataset [70] is often used to evaluate DPS o�ine. Environmental data was collected

from 54 Mica2Dot nodes deployed in the Intel Berkeley Research lab over a period of 30 days. Data

was collected using the TinyDB in-network query processing system, built on the TinyOS platform.

An analysis of data yield shows that only 30% ± 0.1 of packets were successfully transmitted in this

network—matching the results by Arora et al. and Anastasi et al..

In the case of DPSs, a high packet delivery rate is important to enable an accurate reconstruction of

the sensed signal, and therefore a reliable delivery mechanism is required to alleviate the issue with lossy

networks. However, as shown by Anastasi et al., this might only be achieved as a trade-o� with higher

energy consumption.

Raza et al. [93] point out that additional measures (beyond that o�ered by the network stack) are

required to ensure reliable delivery to provide correct operation of the DPS algorithm. Furthermore,

techniques are required to detect permanent node failure as early as possible.

The rest of this section investigates node health monitoring in WSNs. Node health monitoring has

a wealth of research and a variety of systems have been proposed. However, these approaches generally
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apply to WSNs implementing a sense-and-send approach. Node health monitoring for WSNs implement-

ing event-driven or transmission suppression approaches are less covered. In DPS algorithms, detecting

node failure is more crucial since the approach relies on both the node and the sink having a synchronised

state of the model for accurate signal reconstruction.

Node failures can be either transient, intermittent, or permanent. Transient issues include packet loss

due to a collision of packets in a network, and are usually short term. Intermittent failures include a node

losing a route to the sink, which are usually longer in duration, but can fix themselves. Permanent failures

are unrecoverable without intervention, for example, the exhaustion of a node’s energy supply, theft of

a node, or damage to the hardware. In event-based systems, such as DPS algorithms, transmissions are

intermittent compared to sense-and send where packets are received on a regular basis. This leads to

two issues i) it is not possible to detect when transmissions have been lost, and ii) it is not possible to

detect that a node has failed. The rest of this section focuses on the use of acknowledgements, sequence

numbers, and heartbeat messages to detect node failures.

DPS algorithms rely on both the sink and node having identical copies of the sink state. Therefore a

node must be able to detect when the sink fails to receive and store a state update transmission. In WSNs

acknowledgements have been used in sense-and send systems to detect transmission failure. Dam and

Langendoen [113] present T-Mac a contention-based Medium Access Control protocol for wireless sensor

networks. In their design they include the use of acknowledgements to confirm the delivery of packets but

do not evaluate their use. In the same vain WiseMAC (Wireless Sensor MAC) presented by El-Hoiydi

and Decotignie [27], use acknowledgements to confirm delivery of packets. The Monnit Corporation2

use acknowledgements in their system to confirm the reliable transmission of sensor readings—if an

acknowledgement is not received from the sink the node attempts to transmit a further three times.

When considering event and DPS algorithms acknowledgements have received little attention. Tezcan

et al. [107] present end-to-end reliable event transfer schemes for WSNs. Tezcan et al. show that the use

of acknowledgements improves delivery of events by 20%, trading o� against additional computational

requirements. However there is no discussion of the increase in energy required for this improvement.

End-to-end acknowledgements enable a node and sink to keep their state models synchronised, meaning a

better data yield and improved reconstruction accuracy. However, this is a traded o� against an increase

in required transmissions.

This thesis investigates the use of acknowledgements with DPSs and their impact on energy require-

ments, data yield, and signal reconstruction accuracy.

2http://www. monnit.com/support/faqs.php.
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Further to a node being able to detect when one of its transmissions have failed, it is important

for the sink to detect transmission failure. The sink must be able to detect this to know when it is

unable to trust the model state for a node. The use of sequence numbers to tag packets is a common

feature of WSN design. The continuity of sequence numbers received from a node can provide a means

of detecting packet loss. Zhao and Govindan [122] used sequence numbers to investigate packet delivery

performance in a dense sense-and-send WSN. Detecting gaps in a monotonically increasing sequence

number tagged to a packet allowed for the calculation of packet loss. Iyer et al. [45], Wan et al. [116],

Wang et al. [117] among others all used sequence numbers in the same way to detect transmission loss.

Since WSNs are often lossy, using a sequence number in model state updates should allow for the sink to

detect where transmissions have failed. In turn this will allow for the calculation of data yield, and show

where reconstructed data may not meet accuracy requirements.

The use of a heartbeat message is another common feature in WSNs and distributed systems to detect

failure. A heartbeat message indicates that a node is still functional when the node has not reported for

a defined period. Athanassoulis et al. [11], Cunah et al. [25], Gobriel et al. [32], and Sharaf et al. [103] all

describe the use of a uniform heartbeat message to detect failures. If a heartbeat message (or a number

of heartbeat messages) is not received by the sink within a user specified time period then the node is

deemed to be faulty.

Haas et al. [37] and Yadav and Khilar [78] describe a method where nodes inter-communicate to check

neighbours are still functional. A node requests a heartbeat message from its neighbours, if there is no

response from the target node then it is deemed to be faulty. Once a node has queried its neighbours

the information about the state of the network is disseminated to every node. Since this approach will

require many more transmissions than the heartbeat approaches described in the previous paragraph this

approach will not be suited for DPS algorithms.

Ramanathan et al. [92] describe Sympathy, a heartbeat (or metric period) based tool for detecting

and debugging node failures devised for sense-and-send monitoring applications. However rather than

just send a keep-alive message, Sympathy includes debug information. When a heartbeat message is sent

the node gathers information such as the number of packets transmitted, and transmits it to the sink.

The sink determines failure if insu�cient data has been received from the sensing node on receiving a

heartbeat packet. If a node is deemed to have failed the information in the heartbeat packet is used in a

decision tree to decide the nature of the failure.

Heartbeats are also used in commercial wireless sensing devices, for example, the Monnit Corporation

include a heartbeat period in their sensing devices. Monnit defined two heartbeat types depending on
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if the sensor node is event-based or continuous. The event-based heartbeat is a keep alive mechanism.

Monnit Corporation recommend a heartbeat of an hour for event-based heartbeats. However, in Sec-

tion 2.4 it is shown that DPSs can achieve a reduction of 98.2% in the case of the Intel lab dataset. Over

a 24 hour deployment this equates a packet around every 5 hours at a five minute sample interval, and

therefore heartbeats will be received more often than state updates themselves.

Heartbeats are a well established tool for detecting node failure in WSNs, however their use has so far

been limited to pure event-based applications or sense-and-send based WSNs. This thesis will evaluate

the use of heartbeats within DPS algorithms, evaluating their impact on the energy requirement of nodes.

Finally, in the instances of the DPSs that have been discussed in this chapter [22, 34, 46, 101, 110, 120],

all only consider the case of a single sensing modality. However, sensing nodes generally include multiple

sensors of di�ering types. Furthermore, when dealing with multiple signals in a given environment, the

signals are often highly correlated (for example, temperature and relative humidity).

Transmitting the packet payload is typically a small proportion of each packet. For example, assuming

a single sensor state per transmission, the packet size for a CTP packet would be 48 bytes—composed of

40 bytes of management data and eight bytes of payload sensor state data. In a multi-modal approach

if another sensor state is added (doubling the payload size) there is only a 17% increase in packet size.

Kim [56] demonstrates that, for the CC2530 radio using Z-Stack, approximately 60% of the energy to

transmit is related to switching on and configuring the radio. Therefore, the energy cost of sending a

larger packet with additional data values in the payload is often minimal compared to the overheads of

sending a packet at all. The additional energy required to transmit a larger packet will be o�set by a

reduction in the overall number of transmitted packets.

2.6 WSN signal reconstruction

DPS algorithms provide a significant reduction in the number of transmissions from a node. However,

selection of the best method to accurately reconstruct the original signal based on the output of these

algorithms has received little attention in the literature.

A common technique to interpolate missing values in a signal is to use linear interpolation. How-

ever, this linear reconstructions does not consider the signal gradient and therefore can result in high

reconstruction errors. Splines improves on linear interpolation reconstruction by including this trend

component. Splines have been used in existing work to provide smooth estimates of signals based on

noisy input samples [50, 112] and for samples gathered at a nonuniform rate based on the characteristics
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of the signal [36]. Spline based methods take into account the values at a start and end points along with

the gradient at both points.

Aggarwal and Parthasarathy [1] present the Conceptual Reconstruction approach. The Conceptual

Reconstruction approach calculates missing data from correlated signal streams to create a model of the

signal. The evaluation of this approach assumes that missing data is lost randomly. The remaining data

is said to representative of the original signal, however this may not be true for DPSs where the missing

data is somewhat engineered based on the event detection rules [104]. Furthermore, this approach relies

on the sensor readings in a network being correlated.

Tropp and Gilbert [108] describe an approach of reconstructing signals using the orthogonal matching

pursuit (OMP) reconstruction algorithm. OMP is a greedy reconstruction algorithm that computes

the best nonlinear approximation to a signal. However, Ji, Sun, and Shen [47] found the approach is

computationally expensive when considering a large scale sensor network.

Silberstein et al. [104] propose a Bayesian approach to infer the value of suppressed or missing data-

points. This approach may be useful in some applications as it allows estimation of uncertainty in addition

to the probabilistic inference of the suppressed / missing datapoints. However, for applications not re-

quiring this capability, a splines based approach is simpler in terms of implementation and computation

and takes advantage of the information already provided by DPSs to provide accurate reconstruction of

the sensed signal.

Spline-based methods are well suited to DPSs as many approaches transmit the value of the sensed

reading, and the additional energy cost of computing and transmitting the signal gradient is slight.

This thesis investigates the use of splines, to move beyond the existing literature to improve signal

reconstruction by taking advantage of additional information inherent in the use of SIP—signal gradient

estimates, bounds on the suppressed samples, and sequence numbers to detect failed transmissions.

2.7 Summary

Numerous algorithms in the literature provide methods to reduce the number of transmissions a node is

required to make. An approach often used in the literature is that of a DPS type algorithm. DPSs share

a model of the data between the node and sink. The node makes a prediction of the sink’s state based on

the last state transmitted to the sink. Transmissions are only made if this predicted state di�ers from the

current sensor reading by more than a defined threshold. Based on the literature, SIP (a DPS making use

of a linear model) is shown to have the best performance in terms of the accuracy of the reconstructed
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signal and the transmission reduction o�ered. The work presented within this thesis will therefore build

upon the prior work in developing SIP by Goldsmith and Brusey [34].

Within the literature there is little evaluation of the performance of DPSs on-node in real life de-

ployments, and therefore have not been designed to handle issues such as: the energy requirement of the

WSN network stack, lossy networks, node failure, and accommodating the use of multiple sensing types

on a single node. Furthermore, the selection of the best method to accurately reconstruct the original

signal based on the output of these algorithms has received little attention. Finally transformation of

data into knowledge on the node coupled with DPSs techniques should significantly reduce the number

of transmissions a node is required to perform, and thus reduce the energy requirement of a node.

This thesis focuses on the following areas:

1. There is no general framework to implement DPS on WSNs deplyed in the field that react to

transmission failure, node failure, and the need for multiple sensor modalities on a single node.

This discussed is discussed and solved in Chapter 3.

2. An investigation into an approach which allows for an energy usage reduction which is proportional

to the transmission reduction is required. This investigation is also presented in Chapter 3.

3. An investigation into methods of DPS signal reconstruction techniques. This is presented in

Chapter 4.

4. An evaluation of an approach which combines DPS concepts with the calculation of application-level

state (knowledge generation) on-node. This approach is presented and evaluated in Chapter 5.

The next chapter proposes and evaluates G-DPS, a novel generalised framework to implement DPS-style

algorithms on-node for use in real life deployments.



Chapter 3

G-DPS: A generalised framework for

Dual Prediction Schemes

The previous chapter described Dual Prediction Schemes (DPSs), a type of data reduction algorithm

where a model of the data is shared between the node and sink. Transmissions are only made when the

predicted state of the model (based on the last state transmitted to the sink) di�ers from the current

state by more than a defined threshold. From these approaches the Spanish Inquisition Protocol (SIP)

was found to be the best performing algorithm, achieving a high reconstruction accuracy while reducing

transmissions by a factor of 20◊ in environmental datasets. However, the design of DPS algorithms

presented in the literature has not considered issues with real life deployments. Therefore, DPS algorithms

as an o�-the-shelf software component are unable to handle several aspects of real world deployments

including: the energy requirement of the node’s wireless network stack, lossy networks, node failure, and

accommodating the use of multiple sensing modalities.

This chapter proposes the Generalised Dual Prediction Scheme (G-DPS), a novel generalised frame-

work to develop DPS-style algorithms as described in Chapter 2. The G-DPS framework includes ap-

proaches to i) implement DPS with multiple sensors, ii) detect node and transmission failure, iii) calculate

reconstructed data yield, and iv) use acknowledgements to maximise model synchronisation time when

transmission failure occurs. G-DPS enables a reduction in transmissions, an increase in reconstruction

accuracy, and improves reconstructed data yield. The G-DPS framework serves as the base from which

the algorithms presented in the remainder of this thesis are derived.

This chapter also presents the Backbone Collection Tree Protocol (B-CTP). Since few nodes are

responsible for routing, most nodes do not need to listen for incoming packets. B-CTP reduces the number

of nodes involved in listening for packets by utilising a persistent backbone network of permanently

powered nodes. Battery powered nodes are only required to transmit a packet to their closest backbone

node. Coupling Linear Spanish Inquisition Protocol (L-SIP)—G-DPS implemented with a linear model—

with B-CTP reduces the time the radio is used and as a result decreases the annual energy requirement

41
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for a TelosB node by a factor of 13.4◊.

The evaluation of G-DPS allows the following research questions to be answered: RQ1: What features

can improve the robustness of DPSs implemented in deployed Wireless Sensor Networks (WSNs)?

Furthermore, the evaluation of B-CTP allows the following research question to be answered: RQ2:

Can the lifetime of a WSN node implementing transmission reduction approaches be increased further by

using a persistent backbone network of mains powered routing nodes?

This rest of this chapter is structured as follows: Section 3.1 motivates the work presented in this

chapter, followed by definitions of terms in Section 3.2. Section 3.3 presents G-DPS, a novel, generalised

framework for the implementation of DPSs on-node. Section 3.4 provides an example implementation of

G-DPS in the form of L-SIP. Section 3.5 evaluates the G-DPS framework. Finally, Section 3.6 proposes

and evaluates B-CTP, a low-power networking approach.

3.1 Motivation

When applied to data-traces, DPSs promise to significantly extended node lifetimes by reducing the

number of required transmissions. In the previous chapter, SIP was shown to be the best performer in

terms of transmission reduction and signal reconstruction accuracy. However, the design and evaluation

of SIP and other DPS algorithms in the literature has not considered issues with real life deployments.

When SIP was implemented on hardware and deployed in real-life scenarios a range of issues were re-

vealed and these were: lossy networks, node failure, the need to integrate multiple sensors, excessive

energy consumption. This chapter explores solutions to inform robust deployments of DPS algorithms in

deployments.

WSNs deployed in the field are often lossy. That is, one cannot guarantee the delivery of each

transmitted packet. Anastasi et al. [8] looked into reliability and energy e�ciency for 802.15.4 networks

as a function of the sleep/wake cycling and the MAC level settings. They showed that multi-hop reliability

can be very poor, with between 5%–60% delivery rate for a multi-hop ZigBee network. Arora et al. [10]

found similar results with less than 35% delivery rate for a multi-hop network using the Mica2 platform

with TinyOS. The Intel Lab Data [70] is commonly used to evaluate DPS algorithms [22, 34, 46, 101,

110, 120], however, the deployment of 54 nodes for a period of 37 days achieved average yield of only

30% ± 0.1.

DPSs require that both the node and the sink have identical states of the model to reconstruct the

signal accurately. However, there is no way for the sink to detect when transmission failure has occurred,
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or the node to detect when a state update packet has failed to be received and stored.

DPS algorithms transmit at irregular and unpredictable frequencies. Therefore, a node not reporting

data may be either because the node is functioning but is suppressing messages as intended or because

the node has failed. The end-user is unable to distinguish between transmission suppression and node

failure. Therefore a method is required to distinguish between failed nodes and nodes that are suppressing

messages as intended.

DPSs are generally designed with the aim of compressing one sensing modality. However, sensing nodes

generally include multiple sensors of di�ering types. When dealing with multi-modal signals in a given

environment, the signals are often highly correlated (for example, temperature and relative humidity).

Therefore, a method which combines all sensors into a single model could reduce the number of required

transmissions and increase reconstruction accuracy.

Further power savings could be obtained by considering the interaction between the compression

algorithm and the network stack. SIP promises significant energy savings by reducing the number of

transmissions. While there is a large body of literature related to multi-hop networks and to DPS

algorithms, few publications attempt to answer the question of how these two technologies interact with

each other. SIP is able to reduce the number of transmission of node by a factor of 20◊. However, SIP

implemented on a TelosB only decreases the energy requirement by a factor of 1.3◊ due to the networking-

related overheads. Therefore the Media Access Control (MAC) layer and communication protocols must

also be considered to maximise potential energy savings. Section 3.6 proposes an alternative network

topology to significantly decrease the energy requirement of nodes.

The next section provides the definitions for the algorithms, SIP, G-DPS, L-SIP, and B-CTP that

are central to this chapter.

3.2 Definitions

The following definitions will be used in the rest of this thesis:

Spanish Inquisition Protocol (SIP) This is the algorithm presented by Goldsmith and Brusey [34]

and used here as a starting point for implementing a DPS algorithm within the proposed framework.

SIP is described in Algorithm 2.2 on page 31.

Generalised Dual Prediction Scheme (G-DPS) This is a novel generalised framework for imple-

menting DPS style algorithms and forms a contribution of the work in this thesis. This framework

is described in Section 3.3.
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Algorithm 3.1 G-DPS node algorithm. This is a generalised framework within which DPS algorithms,
such as the previously published SIP algorithm, can be implemented [34].
function G-DPS

Step 1. z Ω obtain vector of sensor readings

Step 2. t Ω current time

Step 3. x
new

Ω estimate new state (z, x
old

, t, t

old

)

Step 4. y
new

Ω simplify (x
new

)

Step 5. y
s

Ω predict sink state (y
sink

, t

sink

, t)

Step 6. if eventful (y
new

, y
s

) or t ≠ t

sink

Ø t

heartbeat

(if the state is eventful or if time since the last transmission exceeds a threshold)

(a) transmit (y
new

, n, t)
(b) n Ω n + 1
(c) when acknowledgement received:

i. y
sink

Ω y
new

ii. t

sink

Ω t

Step 7. x
old

Ω x
new

Step 8. t

old

Ω t

Linear Spanish Inquisition Protocol (L-SIP) This is an implementation of G-DPS with a linear

model similar to SIP. Section 3.4 presents this implementation of G-DPS.

Backbone Collection Tree Protocol (B-CTP) This is an extension to Collection Tree Protocol (CTP)

to utilise a persistent powered backbone network, which reduces sensing node energy requirements

for listening. This networking approach is described in Section 3.6.

3.3 The Generalised Dual Prediction Scheme

G-DPS, presented in Algorithm 3.1, is a generalised framework to implement DPS algorithms to reduce

the number of transmissions a node is required to make.

1. Sense the environment

In the G-DPS algorithm the node takes a reading from its integrated sensors. The algorithm uses a vector

of sensor readings z rather than an individual reading.

Step 1. z Ω obtain vector of sensor readings
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DPS algorithms in the literature are often defined for use with one sensor signal, whereas sensing nodes

generally include multiple sensors of di�ering types. The G-DPS algorithm integrates all sensor readings

into a single vector. Since the sink state for any given sensor will be updated more frequently compared

to sending individual state updates, the approach will reduce signal reconstruction error. However, the

total number of required transmissions will be reduced compared to multiple single-modal DPS instances.

Once the sensor readings have been taken, the node also records the current time t.

Step 2. t Ω current time

Estimate the new state

The current state is estimated using the vector of readings z, the previous state x
old

, and the previous

time t

old

.

Step 3. x
new

Ω estimate new state (z, x
old

, t, t

old

)

This component estimates the current state of the phenomena, transforming the vector of sensor readings

into an estimate of the state x
new

. The component relies on the selection of appropriate models and

state. In the SIP algorithm, for example, the new state is estimated using an Exponentially Weighted

Moving Average (EWMA) filter.

The model describes the evolution of the phenomena over time. Usually simple models such as constant

or linear models are appropriate choices for a wide variety of phenomena, for example, temperature or,

the state of a light switch. More sophisticated models may be required for other signals, for example,

Electrocardiography (ECG) signals. In this case, it may make more sense to derive a summary (such as

heart rate rather than the full ECG signal).

The state estimate should provide enough information to predict future state. Since a node has limited

storage space, a full history of sensor readings cannot be stored1. Therefore, based on current hardware

capabilities, a state estimation method should be selected which has the Markov property (future state

only depends on present state) or only requires a small subset of historical data.

3. Simplify the new state

When producing the state estimate, additional information may be required for the calculation that is not

necessarily required by the end-user. Simplify is an optional transformation component used to remove

unnecessary information from the state estimate before transmission. The estimated state vector x
new

may contain more information than must be transmitted. Thus it is often useful to generate a simplified

form y
new

.
1Clearly this will not be true for all possible WSN systems, but is a common constraint reported in the literature.
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Step 4. y
new

Ω simplify (x
new

)

The main limitation of the simplify step is that it can be a destructive process—it is not possible to

reconstruct the original signal. Using the example of human posture, the system will only report on the

posture the monitored person was classified as being in and not the raw accelerometer data. Therefore,

it is often the case the application will need to be well defined to use this simplify step. However, when

the simplify step transforms data into narrowly-specified information, the number of potential ways this

information may be further mined is reduced, thus improving privacy.

4. Predict the sink state

The sink state y
s

is predicted using the last transmitted state vector ysink, the current time t, and

the time of the last successful state transmission tsink. SIP, for example, achieves this through linear

extrapolation.

Step 5. y
s

Ω predict sink state (y
sink

, t

sink

, t)

This estimated state is used as an input to the event detection component.

5. Detect events

If either the state is eventful, or if the time since last transmission exceeds a threshold, or if no acknow-

ledgement was received on the last transmission then a state transmission is triggered.

Step 6. if eventful (y
new

, y
s

) or t ≠ t

sink

Ø t

heartbeat

Event detection is based on a comparison of the current state estimate and the predicted state. If the

comparison satisfies the conditions for an event to be detected, then a state update containing the current

state is transmitted.

In addition to detected events, transmissions may be triggered via expiration of a heartbeat period.

The predictability of data collection from a sense-and-send node provides a simple mechanism to check the

health status of a node. However, DPS algorithms transmit at irregular and unpredictable frequencies.

For example, in the case of Bare Necessities (BN), presented in Chapter 5, a node may suppress messages

for months at a time. The end-user is unable to distinguish between transmission suppression and node

failure.

The G-DPS framework defines a maximum time period, t

heartbeat

, allowed without a transmission. If

the node has not transmitted in this defined period a state transmission is triggered. This transmission is

called a heartbeat, and indicates the node is still functional. The sink checks for failure by checking that
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a state update is received within the allotted heartbeat time. Any nodes that do not report in the time

period are reported to be faulty. The heartbeat approach is to prevent long-term failures. Intermittent

failures are treated by sequence numbers and end-to-end acknowledgements described in the next step.

6. Transmit a state update

If a transmission is required then all sensor states y
new

are transmitted along with a sequence number n

and the current time t.

Step 6 (a.) transmit (y
new

, n, t)

The sequence number is incremented for each transmission.

Step 6 (b.) n Ω n + 1

Practicalities of implementation dictate that the sequence number will wrap around to some zero at some

value N . The sequence numbers are therefore in the range [0, N) where N = 2Ÿ for a sequence number

of Ÿ bits. The use of sequence numbers to calculate yield is discussed in Section 3.3.3 on page 49.

When a node transmits a packet, the delivery of the packet to the sink cannot be guaranteed. To

accurately reconstruct the sensed signal when using a DPS, both the sensing node and the sink re-

quire identical copies of the state estimate. If the state estimate di�ers between the sensing node and

the sink then the reconstruction will not accurately represent the node’s true readings. Therefore the

reconstruction could exceed the defined error threshold until the next state estimate is received.

To verify that both the sink and nodes are using identical state estimates, software-level end-to-

end acknowledgements, (referred to simply as acknowledgements from here) are used to indicate when

transmissions have failed. The sensing node’s copy of the sink state ysink will only be updated if an

acknowledgement is received from the sink. The approach for acknowledgements is end-to-end as an

acknowledgement will only be transmitted when the state estimate has been successfully stored. If the

acknowledgement is received before some timeout then the transmission is successful and the state is

updated, otherwise the transmission has failed and the node should not update its copy of the sink state.

If the state update transmission fails the node will transmit the latest state on subsequent sample periods

until a packet has successfully been acknowledged.

Step 6 (c.) when acknowledgement received:

Step 6 (c.i.) y
sink

Ω y
new

Step 6 (c.ii.) t

sink

Ω t
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Algorithm 3.2 G-DPS sink functions
function OnReceive (i,y

t

, n)
y

i,t

Ω y

t

(store received state for node i at time t)
l

i

Ω t (update last received time for node i)
acknowledge(i, n)

function Estimate (i,t)

if t Ø l

i

extrapolate from y

i,l

i

to y

i,t

else
t

prev

= last state received before t

t

next

= next sample received after t

interpolate between y

i,t

prev

and y

i,t

next

to calculate y

i,t

function IsFunctional (i, t)

return t ≠ l

i

Ø t

heartbeat

7. Update previous state estimate with current state

Finally, the previous stored state vector and time is updated with the current state vector and current

time to be used in the next sample period,

Step 7. x
old

Ω x
new

Step 8. t

old

Ω t

3.3.1 G-DPS Sink Algorithm

Algorithm 3.2 describes the G-DPS sink algorithm. The sink provides three functions:

1. OnReceive (i, y

t

, n)

The sink maintains a set of application-level state y and timestamp t pairs for each node i. Upon

receipt of a new packet from a node, the sink stores the application-level state along with its

associated timestamp. If the application-level state is successfully stored then the sink transmits

an acknowledgement to the sensing node including the received packet’s sequence number n.

2. Estimate (i, t)

The estimate function is used to estimate sensor readings from the stored node states. An end user

would use this function in two cases:
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(a) If the end user requires the current state of a node, then the state is extrapolated from the

last received state update for that node.

(b) If the end user requires a past value the sensor value is estimated using interpolation between

the two neighbouring states of that time.

3. IsFunctional (i, t)

This function checks that a node i is still functional at the current time t. If the time since

the last received application-level state l does not exceed the heartbeat period t

heartbeat

then the

function returns true indicating the node is still functional. Otherwise false is reported indicating

a potential fault. As an example this function us used in Cogent-House in automated reporting

of performance.

3.3.2 G-DPS Assumptions

G-DPS is intended to be a generalised approach to DPSs. However, the principals on which it is based

require the following assumptions to be made:

The energy cost of sensing and processing the phenomena is less than that of radio trans-

missions Common to DPS techniques, G-DPS assumes that the energy cost of sensing and processing

is small compared to use of the radio. It was shown in Section 2.2 that this is generally true. However,

when a node is integrated with active sensors such as Carbon Dioxide (CO
2

) it can be the case that sens-

ing can be the greatest energy cost. When the sensing cost is greater than transmission cost techniques

that reduce the sample frequency, for example compressive sensing [21], will provide greater savings in

transmissions/energy.

Events in the phenomena are not independent Section 3.5.3 shows that a multi-modal approach

can be advantageous to DPSs. However, if considering a phenomena where events for di�erent modalities

have no relationship then multi-modal will provide no benefit over single-modal.

3.3.3 Detecting transmission loss and calculating data yield

Calculating the yield of a node implementing DPS techniques, such as G-DPS, is not as straight forward

as with sense-and-send. With sense-and-send nodes, each sample period has a corresponding transmission

and therefore the data yield can be calculated from the number of packets received and the number of



50 CHAPTER 3. GENERALISED DUAL PREDICTION SCHEME

expected packets for a deployment period:

y|b
a

= samples receieved
t

b

≠ t

a

However, as previously discussed, DPSs remove this regular period. Therefore, there is no way of

knowing when packets have been lost. Furthermore, DPSs have a one-to-many relationship between a

packet and the number of data points that can be reconstructed from that packet. Therefore the yield

cannot be calculated using the formulation above. By incorporating a sequence number into packets, the

sink can detect transmission loss and infer times where data can be accurately reconstructed.

Consider the case where a node implementing a DPS algorithm sends no sequence numbers with a

transmission. If transmissions are received at time t

1

and t

10

there is no possible way to know if any

transmissions were attempted from t

2

to t

9

. Including sequences numbers allows for the calculation of

the number of attempted transmissions between sample periods.

If the di�erence between the sequence number received at t

a

, and sequence number received at t

a+1

is greater than one, this indicates the number of transmissions that have failed. With the inclusion of

end-to-end acknowledgements, discussed in the next section, these failures occur one after another until

successful transmission. The di�erence in sequence numbers directly translates to the number of data

points that cannot be accurately reconstructed. Therefore sequence numbers provide a simple mechanism

to help calculate the data yield of a node implementing a DPS algorithm.

One complication is that sequence numbers have a limited size and can wrap-around. For example, an

8-bit sequence number has a maximum value of 255. When wrap around occurs it can be ambiguous how

many packets have been lost—wrap-around may have occurred more than once. The remainder of this

section describes a new method to calculate the data yield of a WSN node employing DPS techniques.

To limit ambiguity, the yield calculation calculates the possible upper and lower bounds on the number

of wrap-arounds.

For a finite period for which a yield is to be calculated, packets with sequence numbers s

a

, s

a+1

, . . . , s

b

are received at time t

a

, t

a+1

, . . . , t

b

. A packet received at time t

i

can be weighted based on the number

of data points the packet can reconstruct. This weighting w

i

of a packet i is,

w

i

= q

i

≠ m

i

Where q is the number of sample periods between two subsequent transmissions, and m is the number of

transmissions that are missing. The number of missed transmissions is less than the number of sample



CHAPTER 3. GENERALISED DUAL PREDICTION SCHEME 51

periods m

i

< q

i

, and therefore the weighting is always non-zero w

i

> 0. The number of sample periods

q is the di�erence in sample times between the current and subsequent packet,

q

i

= t

i+1

≠ t

i

When a node transmits a state update that is not acknowledged the node continues to transmit state up-

dates on subsequent sample periods until an acknowledgement is received. Each transmission increments

the sequence number until a transmission is successfully acknowledged. Therefore, the number of data

points that cannot be reconstructed m is ordinarily the di�erence in sequence numbers between between

the current and subsequent packet. Therefore the number of missed transmissions is,

m

i

= s

i+1

≠ s

i

However, the sequence numbers wrap-around and are thus in the range [0, N) where N = 2Ÿ for a sequence

number of Ÿ bits. Furthermore, the number of wrap-arounds j‘Z may be greater than one during long

periods of failure, if the period is su�ciently long to allow it. Since the number of elapsed sample periods

is known, and the number of missed data points is less than the number of sample periods, the number

of wrap-arounds has an upper bound,

j Æ
7

q

i

≠ s

i+1

+ s

i

+ 1
N

8

Furthermore, the lower bound must be 1 if the ending sequence number is lower than or equal to the

starting one,

j Ø [s
i+1

Æ s

i

]

Iverson brackets are used in the above formulation2, this gives a result of 1 if the condition is true or

0 otherwise.

The number of wrap-arounds j may be more than one possible value, for example, if the lower bound

is zero and the upper bound is 4 the node could have wrapped around between 0–4 times (j‘{0, 1, 2, 3, 4}),

and therefore is ambiguous. In the case where the number of wrap-arounds is ambiguous the number of

missed packets should be calculated conservatively using the upper bound with a flag reported to indicate

this is a conservative estimate.

2http://en.wikipedia.org/wiki/Iverson_bracket
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Algorithm 3.3 L-SIP phrased in terms of G-DPS (See Algorithm 3.1).
estimate new state

dEWMA filtering:

x

Õ
1 Ω –z + (1 ≠ –) (x1 + x2�t)

x

Õ
2 Ω —

!
x

Õ
1 ≠ x1

"
/�t + (1 ≠ —) x2

(Update filtered estimates of value x1 and rate of change x2. The time interval between samples is denoted by

�t.)

simplify
ynew Ω x (no simplification)

predict sink state

ys Ω
3

1 t ≠ tsink
0 1

4
ysink (linear extrapolation)

detect events
|ynew ≠ ys| > Á

(The measurement is eventful if the value estimate ynew di�ers from the prediction ys by at least some

threshold Á.)

The data yield percentage between times t

a

and t

b

can thus be calculated:

y|b
a

= 1
t

b

≠ t

a

ÿ

aÆi<b

w

i

3.4 The Linear Spanish Inquisition Protocol

Linear Spanish Inquisition Protocol (L-SIP), shown in Algorithm 3.3, is an enhanced implementation of

the original SIP algorithm [34] using the G-DPS template, encoding the state as a point in time value

and rate of change (y = (x, ẋ)T ). Throughout the rest of this chapter L-SIP is used to exemplify and

evaluate the benefit of each G-DPS feature.

When implementing an algorithm based on G-DPS for a given application, four components must be

defined: estimate new state, simplify, predict sink state, and detect events. The following describes the

implementation of L-SIP, shown in Algorithm 3.3, using G-DPS as a framework.

Estimate new state

Many methods can be used to estimate the current state of a sensed phenomena such as: EWMA,

Normalised Least Mean Squares (NLMS), or a Kalman filter. Kalman filters are a popular choice in the

literature for modelling data from WSNs. However, Brusey et al. [16] show that the use of a Kalman
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filter introduces latency into systems because it is slow to process. In addition Julier and Uhlmann [51]

show Kalman filters are more di�cult to tune than the other methods listed, often requiring a large

quantity of data from the intended deployment environment. Furthermore, the Kalman filter requires

more computational power compared to simpler methods such as EWMA, whereas in WSNs the amount

of computational power is often limited.

SIP as originally designed uses an EWMA filter. However, due to the diurnal nature of typical

environmental data, the Dual Exponentially Weighted Moving Average (dEWMA) [52], the second order

form of EWMA, is used for state estimation in L-SIP. dEWMA is an extended version of EWMA which

accounts for trends in the data. It is su�ciently simple to be implemented e�ciently on low powered nodes

and often provides a comparable result to a Kalman filter without the added complexity or computational

overhead.

Simplify

L-SIP requires the transmission of both the point in time value and rate of change. Therefore L-SIP

requires no simplification for the state vector.

Predict sink state

The predict sink state component predicts the current state through linear extrapolation of the last

transmitted state estimate.

Detect events

The detect events component calculates the absolute di�erence of each component in the current state

vector and the predicted state vector. If any di�erence in a component exceeds an error threshold Á then

an event is said to have occurred.

3.5 Evaluation of G-DPS

This section evaluates the benefit of each feature provided by G-DPS. The following features are evalu-

ated: i) multi-modal processing, ii) heartbeat messages, iii) end-to-end acknowledgements.

A new feature is deemed to be a benefit to the G-DPS framework if there is an improvement in any

of the following:

1. the number of transmissions is decreased,

2. the accuracy of the reconstructed signal is increased,
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Table 3.1: Summary of datasets used

Dataset period Number of datasets Equivalent trace-days
Two-weeks 235 3290

One-months 170 5100
Six-months 40 7300

Year 9 3240

3. the yield of the system is increased, or

4. the energy requirement of a node is decreased.

3.5.1 G-DPS evaluation method

The evaluation makes use of data traces from a total of 235 sensors nodes, sensing air temperature

and relative humidity, deployed in 38 homes. The homes monitored include a mix of flats and houses,

with between 1 and 5 bedrooms, between 1 and 7 occupants, and built between the 1940s and the

2010s. These homes therefore represent a wide variety of builds and occupancy patterns. These datasets

consist of data from deployments from two-weeks to two years. For evaluation over di�ering durations,

example periods of two-weeks, one-month, six-months, and a year were extracted from each dataset where

deployment periods allowed. The number of datasets for each duration is summarised in Table 3.1, and

details of their properties can be found in Appendix B. The data collected from the Cogent-House

(Appendix A) deployments is used instead of the commonly used Intel Lab Data due to larger quantity

of available data, the nature of the deployments within a real life (non-laboratory) application, and the

availability of datasets with 100% yield allowing for an accurate baseline.

To evaluate a feature, selected datasets were compressed using L-SIP configured with thresholds of

0.5 � for air temperature and 2% for relative humidity. A dEWMA (see Section 3.4) filtered the sensed

signal to estimate the state using the parameter values – = 0.2 and — = 0.2. To reconstruct the sensed

signal, the suppressed values between state estimates transmitted by L-SIP were derived through linear

interpolation.

The following measures are used to evaluate the features of G-DPS:

1. Transmission reduction (or compression ratio)—The percentage of suppressed transmissions.

2. Reconstructed signal accuracy—The accuracy of the reconstructed signal compared to the

sensed signal measured by Root Mean Squared Error (RMSE).

3. Transmission yield—The percentage of successful node transmissions.
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Figure 3.1: Example L-SIP (– = 0.2, — = 0.2, Á = 0.5 �) output for temperature of a House 1’s (See
Appendix B) dining room over 24 hours. Changes of temperatures are due to occupants trying to maintain
a temperature using a radiator thermostat. Transmissions are indicated by the dotted vertical lines.

4. Reconstruction data yield—The percentage of data points that can be reconstructed based on

the successful transmissions.

5. Node energy annual requirement—This measures the annual energy requirement of a TelosB

node using the microbenchmarking approach. It is calculated based on the basis of the nodes using

B-CTP as described in Section 3.6 on page 71. B-CTP is a modification to CTP to use a persistent

powered backbone network. B-CTP is shown to significantly reduce the energy requirement of a

leaf node compared to CTP.

3.5.2 Example L-SIP algorithm output

To explain the terms used in this evaluation, this section examines the output of the L-SIP algorithm

over an example day of data.

Figure 3.1 shows the output of L-SIP for a node deployed in a dining room considering a single day’s

output from the year long dataset. The following terms are used to describe this output:

Raw signal represents the values reported by the sensor. In this case 288 samples were taken during

the 24 hour period.
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Table 3.2: Example L-SIP performance metrics, for a temperature signal compressed with L-SIP

Packets Transmission Reconstruction Transmission Reconstruction Estimated
transmitted reduction (ratio) RMSE yield yield energy

requirement
19 93.4% (◊15) 0.14 � 100% 100% 87 mAh/year

Filtered signal is the filtered signal from the dEWMA filter estimating the new state.

Reconstructed signal is the reconstruction of the filtered signal, from the transmitted state updates

from the node. The reconstructed signal is compared to the filtered signal using RMSE. In this

example, the signal is reconstructed with an RMSE error of 0.14 � compared to original raw signal.

Transmission represent points where the node transmits a state update to the sink. In this example,

a total of 19 state updates are transmitted, a transmission reduction of 93.4% (15◊ compression

ratio in terms of number of packets). No transmissions are lost and therefore transmission yield

and reconstructed data yield are both 100%.

The performance metrics for the example in this section are summarised in Table 3.2.

3.5.3 Multiple sensor compression

G-DPS allows multiple sensor’s readings to be combined into a single model, termed a multi-modal

approach. Each transmission contains a model state for each monitored sensor. Single-modal is an

alternative where there are multiple instances of the DPS algorithm and individual sensor model states

are transmitted when there is an event. This section answers RQ1A by evaluating the multi-modal

approach compared to a single-modal approach, considering the number of packet transmissions, signal

reconstruction accuracy, and the energy requirement of the node. It is hypothesised that:

H3.1: A multi-modal approach (in which all model states are transmitted) will significantly reduce the

number of transmissions compared to treating the sensors individually in a single-modal approach.

H3.2: A multi-modal approach (in which all model states are transmitted) will maintain or improve the

accuracy of the reconstructed signals when compared to a single-modal approach.

To evaluate the multi-modal approach both single-modal and multi-modal L-SIP were used to compress

datasets in accordance with the methodology laid out in Section 3.5.1 on page 54. Initially the approach

was tested with a node sensing temperature and humidity. A further evaluation with CO
2

was also per-
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Table 3.3: Comparison of multi-modal and single-modal approaches for a node sensing temperature and
humidity performance statistics. The results show multi-modal improves performance in all measures.
Results are given with ± a standard deviation it is used to show the standard deviation. This format
will be used in subsequent tables in this thesis.

Estimated
Dataset Transmissions ± s.d State Temperature Humidity energy
Period updates RMSE RMSE requirement

(�) (%) (mAh)
Two Single 260 ± 20 280 ± 20 0.19 ± 0.006 0.82 ± 0.02 5.9 ± 0.2

weeks Multi 210 ± 20 420 ± 30 0.11 ± 0.005 0.62 ± 0.02 5.4 ± 0.2
Change ≠19% 50% ≠42% ≠24% ≠8.4%

One Single 480 ± 40 520 ± 40 0.19 ± 0.007 0.8 ± 0.03 12 ± 0.4
month Multi 400 ± 30 790 ± 60 0.11 ± 0.006 0.61 ± 0.03 11 ± 0.3

Change ≠17% 52% ≠42% ≠24% ≠8.3%
Six Single 3300 ± 600 3600 ± 600 0.18 ± 0.02 0.79 ± 0.08 75 ± 6

months Multi 2700 ± 400 5300 ± 900 0.1 ± 0.01 0.64 ± 0.07 68 ± 5
Change ≠18% 47% ≠44% ≠19% ≠9.3%

One Single 7700 ± 2000 8000 ± 2000 0.22 ± 0.006 0.9 ± 0.04 160 ± 20
year Multi 6100 ± 1000 12000 ± 2000 0.14 ± 0.01 0.62 ± 0.05 140 ± 10

Change ≠21% 50% ≠36% ≠31% ≠12.5%

formed. The approaches of single-modal and multi-modal L-SIP were compared in terms of reconstruction

accuracy, the number of transmissions and the energy requirement of a node.

Table 3.3 shows the results of using both a single-modal and multi-modal approach with L-SIP and

the factor improvement of the multi-modal approach. Over each measure and all dataset periods the

multi-modal approach improves the performance of L-SIP. Overall, the multi-modal approach reduces

transmissions, increases state updates which, in turn, reduces signal reconstruction error, and reduces

the energy requirement of a node compared to single-modal.

Table 3.4: Comparison of multi-modal and single-modal approaches on a node sensing temperature, hu-
midity, and CO

2

. The results show that the multi-modal approach improves performance in all measures.
Due to occupants tending to switch CO

2

nodes o�, only dataset periods of two-weeks and one-month are
considered

Estimated
Dataset Transmissions State Temperature Humidity CO

2

energy
Period updates RMSE RMSE RMSE requirement

(�) (%) (ppm) (mAh)
Two Single 410 ± 50 450 ± 60 0.22 ± 0.01 0.89 ± 0.04 46 ± 2 7.4 ± 0.5

weeks Multi 300 ± 30 590 ± 70 0.083 ± 0.007 0.36 ± 0.03 35 ± 2 6.2 ± 0.4
Change ≠27% 31% ≠62% ≠59% ≠24% ≠16%

One Single 750 ± 80 810 ± 80 0.22 ± 0.01 0.86 ± 0.05 45 ± 2 15 ± 0.8
month Multi 560 ± 50 1100 ± 100 0.078 ± 0.007 0.35 ± 0.03 35 ± 2 13 ± 0.6

Change ≠25% 36% ≠65% ≠60% ≠22% ≠13%
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Figure 3.2: Example of a signal where multi-modal would provide no overall benefit compared to single-
modal.

The same evaluation was repeated with 80 nodes from the two week datasets, and 60 nodes from

the one-month datasets. The selected nodes all sense temperature, relative humidity, and CO
2

. The

parameters used for CO
2

were threshold Á

c

= 100ppm, and filter parameters – = 0.2, — = 0.2. Since

the CO
2

nodes used were prone to be switched o� by residents, only dataset periods of two-weeks and

one-month were available. As in the previous case Table 3.4 shows that the multi-modal approach reduces

transmissions, signal reconstruction error and the energy requirement of a node. Since CO
2

requires more

transmissions than either of the other parameters, the inclusion of CO
2

improves the signal reconstruction

accuracy of temperature and humidity by a larger factor.

Table 3.4 shows H3.1 and H3.2 to be true—when multi-modal is used with a node sensing temper-

ature and humidity and CO
2

transmissions are reduced by up to 27%, signal reconstruction accuracy is

improved by up to 65%, and the energy requirement of nodes is reduced by 15% compared to single-

modal. However, if considering a phenomena where events for di�erent modalities have no relationship,

then multi-modal will provide no benefit over single-modal. For example, see Figure 3.2—-in this case

both a single-modal and multi-modal approach would transmit at the same time. Therefore multi-modal

will not reduce transmissions but will still need to send a larger packet.

To answer RQ1A—Yes, when signals are likely to change at the same time (e.g, temperature and

humidity) combining multiple sensor modalities into a single model allows for a greater reduction in the
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number of packet transmissions and improves signal reconstruction accuracy compared to compressing

each stream individually.

3.5.4 Node health check—Heartbeats

This section evaluates the e�ect of heartbeat messages upon the transmission, energy, and reconstruction

performance of G-DPS, and answers RQ1B. The evaluation examines i) whether or not use of a heartbeat

significantly increases the number of transmissions for a correctly functioning system, and ii) whether

the model state should be included in the heartbeat message.

Three cases may occur when a heartbeat packet is transmitted:

1. The node is functioning, however, the state model is able to predict accurately and therefore no

state update is required. The heartbeat message indicates the node is still functioning.

2. The heartbeat message fails to transmit. The node will continue to transmit on subsequent sample

periods until a successful transmission and acknowledgement. From the sink’s point of view no

heartbeat message has been received and therefore the node is experiencing problems

3. A transmission has failed sometime between the last transmission to the sink t

sink

and when a

heartbeat should be triggered t

sink

+ t

heartbeat

. In this case, a node will continue to transmit on

subsequent sample periods until an acknowledgement is received. The sink is only aware that a

heartbeat has not been received and therefore the node is experiencing problems.

Only the first case is considered in this evaluation of heartbeat messages, as the heartbeat messages are

considered a “still alive” message. The other two cases primarily involve the end-to-end acknowledgements

protocol and are discussed in Section 3.5.5. In all failure cases, the sink does not receive a message and

thus assumes that failure has occurred. In essence, the absence of a heartbeat message is important

for the sink to indicate node failure. The goal of the evaluation is to demonstrate that heartbeats have

minimal impact on a functioning node.

The heartbeat approach is evaluated considering a lossless network. Multi-modal L-SIP was first

used to compress the datasets as described in the evaluation method in Section 3.5.1. The heartbeat

transmitted is of the same form as a state update with the exception that a flag is set to indicate the

packet is a heartbeat.

In an ideal situation, a heartbeat period should be selected that produces a minimal number of extra

packets but allows the detection of a failed node in a timely manner. Section 3.5.3 shows that multi-

modal L-SIP transmits approximately 5% of the total number of samples. Therefore, a packet can be
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Figure 3.3: Graph showing percentage of transmissions which are heartbeat messages for a given heartbeat
period.

expected to be received on average once every 1.7 hours given a five minute sampling period. Therefore it

would be expected that 1.7 hours would provide the lower limit of a heartbeat period, setting below this

would cause heartbeat transmissions to become a significant percentage of all transmissions sent. From

personal experience of deploying these systems, the state of node might get checked at most once a day

through an email status update. Furthermore, when implementing L-SIP it is envisaged deployments

will be long-term and therefore missing a day of data is not informationally expensive. Based on this

experience of deploying and managing WSNs, the remainder of this evaluation will use a heartbeat period

of t

heartbeat

= 12 hours. This evaluation tests the following hypotheses.

H3.3 The use of heartbeats will not increase the number of transmissions of a functioning node in a

lossless network when considering application requirements (i.e., the allowable data loss for a sys-

tem).

Figure 3.3 shows that even when setting at this lower limit 40% of packet transmissions are that for

heartbeats. Therefore the heartbeat period should be carefully considered to minimise data loss and and

transmissions. Figure 3.3 also shows that where t

heartbeat

= 12 hoursonly 3.6% of transmissions are that

for heartbeat, equating to an extra 3 transmission in a 2 week period.

. L-SIP was evaluated over all datasets with a heartbeat of 12 hours, and compared against using
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no heartbeat. These experiments show that in all cases, other than the one month duration, the use of

heartbeats do not significantly increase the number of transmissions or reduce the reconstruction accuracy

when considering lossless transmissions.

Therefore H3.3 is true when considering application requirements, balancing possible data loss and

the expected number of transmissions the use of a heartbeat will not significantly increase the number

of transmissions, or significantly increase the energy consumption of a node. In the literature review it

was shown that a number of existing heartbeat approaches include the state information in the heartbeat

message. However in a lossless system, such as presented here, including the state in the heartbeat

message will not improve reconstruction accuracy since no additional transmissions occur. Therefore, in

response to RQ1B—Yes, heartbeat messages can detect node failure within a user specified time period,

without significantly impacting the energy requirement of a functioning node.

In the case of a lossy network, heartbeats will have much less impact on the node than the need to

retransmit. This is evaluated in the next section in the context of acknowledgements.

3.5.5 End-to-end Acknowledgements

This section evaluates the use of end-to-end acknowledgements as a part of the G-DPS framework, and

answers RQ1C. The evaluation of end-to-end acknowledgements is evaluated in terms of two networks:

A lossless network A WSN in which no transmissions are lost.

A lossy network A WSN in which transmissions fail. In a deployed WSN it is likely that some trans-

missions fail. As previously discussed in Chapter 2, several deployments achieved transmission

yields as low as 35%.

3.5.5.1 Transmission Model

Lossy networks can be modelled by a transmission model that determines the likelihood of transmission

success. In the evaluation here, this is based on a two-state model:

1. The previous transmission succeeded,

2. the previous transmission failed.

These two cases have been considered since the success of transmissions is, generally, related to the the

last transmissions state. For example, a node that has transmitted successfully on the last sampled

period is likely to succeed in the next transmissions, and the reverse for failure. This allows simulation

of a larger number of transmission failure types, compared to a randomised failure model.
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Successful
P(1t)

Failed
P(0t)

P(1t|1t-1) P(0t|0t-1)

P(0t|1t-1)

P(1t|0t-1)

Figure 3.4: Transmission model

Figure 3.4 illustrates the transmission model. The probability space is described in terms of:

P (1
t

|1
t≠1

) The probability of transmission succeeding given that the previous transmission was success-

ful.

P (0
t

|0
t≠1

) The probability of transmission failing given that the previous transmission failed.

P (1
t

|0
t≠1

)and P (0
t

|1
t≠1

)were not explicitly calculated, but can be determined based on the other two

probabilities. To evaluate the whole range of the probability space state, combinations of P (1
t

|1
t≠1

)

and P (0
t

|0
t≠1

) were selected at 5% intervals. The evaluation in this section is presented in terms of the

resulting yields.

The state of the model is updated on each time-step rather than each transmission attempt. The reason

for this is that transmissions will be a�ected by the radio environment which is independent of the need

to send a L-SIP state update.

3.5.5.2 E�ect of end-to-end acknowledgements on a lossy network

This section evaluates the e�ect of acknowledgements on transmission reduction, reconstruction accuracy,

data yield, and power consumption when a network is lossy.

To evaluate the e�ect of acknowledgements in the case of transmission failure, one year3 of data

from nine sensors with 99.98%4 yield (9 traces, 3285 trace-days) was compressed using L-SIP with the

parameters defined in Section 3.5.1 (– = 0.2, — = 0.2, Á

temp

= 0.5 �, Á

hum

= 2%). The traces were

required to be of a long duration and to have close to 100% yield such that transmission failure could be

meaningfully simulated with a variety of durations. When a transmission is required, the transmission

model determines whether the transmission is successful or not. In addition to L-SIP the transmission

model was also applied to a sense-and-send approach. The results shown in this section are for one dataset

(house 1, master bedroom) which is a representation of the overall performance of the tested datasets.
3Actually 360 days but for brevity will be stated as a year. Taken from House 1 described in Appendix B
4Missing values (average 1200 per sensor) are imputed via linear interpolation to avoid discontinuities: the majority of

data loss instances were infrequent failures of short duration (e.g, one missing sample)
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Figure 3.5: The e�ect of transmission failure on the number of required transmissions for multi-modal
L-SIP with and without end-to-end acknowledgements.

When using end-to-end acknowledgements the number of required transmissions will increase as the

number of successful transmissions decrease. This ensures that an up-to-date state message is sent as

soon as possible, which minimises the error of the reconstructed signal. It is hypothesised:

H3.4 End-to-end acknowledgements will increase the number of transmissions as failure rates increase

(for a fixed sampling frequency). However, they will result in an improvement to the accuracy of

the reconstructed signal compared with using no acknowledgements.

Figure 3.5 shows that the number of transmissions increase as the transmission yield decreases. For

example, 20% of state updates are transmitted when the transmission yield is 25% but over 50%

transmission are required when the transmission yield is approximately 5%. In the no acknowledgement

approach the number of transmissions do not change as the node is unaware of failure and does not

attempt to retransmit.

Figure 3.6 shows that with no acknowledgements the reconstruction RMSE increases as the trans-

mission yield decreases. However, when using end-to-end acknowledgements the reconstruction RMSE

degrades at a much slower rate, due to state updates being received earlier compared to using no acknow-

ledgements. Considering a system where yield is less than 35% (in line with Anastasi et al. [8], Arora
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Figure 3.6: The e�ect of transmission failure on the accuracy of the reconstructed temperature signal for
multi-modal L-SIP with and without end-to-end acknowledgements.

et al. [10], and the Intel Lab Data [70]) the use of end-to-end acknowledgements approximately halves

the RMSE. Furthermore, when 65% of packets fail (35% transmission yield) the reconstruction RMSE

exceeds the set error threshold when using no acknowledgements, whereas the threshold is never exceeded

when using acknowledgements. This same e�ect has been found with both relative humidity and CO
2

signals.

Figure 3.5 and Figure 3.6 show H3.4 to be true: acknowledgements cause transmissions to increase

as failure rates increase, however, this results in improved signal reconstruction accuracy compared to

using no acknowledgements

Since using end-to-end acknowledgements increases the number of transmissions in a lossy network it

can be expected that the energy requirement of a node is increased. It is hypothesised:

H3.5 End-to-end acknowledgements have an increased energy requirement compared to using no ac-

knowledgements as transmission failure increases, however both approaches still show a significant

decrease in energy consumption compared to sense-and-send.

Figure 3.7 shows that the node energy requirement, calculated using microbenchmarking, increases

as the transmission yield decreases (based on results in Figure 3.5). This is due to the increased number

of transmissions required. In the no acknowledgement approach the energy requirement does not change
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Figure 3.7: The e�ect of transmission failure on the annual energy requirement of a L-SIP node with and
without end-to-end acknowledgements. A nominal radio duty cycle of 0.05% (160 ms) with acknowledge-
ments and 0.005% (16 ms) without acknowledgements is assumed.

as the node is unaware of failure and does not attempt to retransmit, therefore no additional energy is

required. Considering the case where yield is approximately 35%, when using acknowledgements (90 mAh)

the node requires a factor of 1.13◊ more energy than when using no acknowledgements (80 mAh). In

the worse case where transmission yield is in the region of 5%, L-SIP with acknowledgements uses a

factor of 1.5◊ more energy than no acknowledgements (120 mAh vs 90 mAh) . However, this is still an

energy decrease by a factor 10◊ compared to CTP sense-and-send (1200 mAh, see Table 3.6 on page 70)

and a factor 1.4◊ compared to B-CTP sense-and-send (170 mAh). The small decrease compared to

B-CTP sense-and-send is due to the idle state now accounting for 90% of the energy. If the idle energy

requirement is disregarded, assuming future hardware improvements, the energy decrease would be a

factor of 6◊.

Figure 3.7 shows H3.5 to be true: the energy requirement for a L-SIP node increases as transmission

failure increases when using acknowledgements, however in the worse case this energy requirement is still

10◊ less than CTP sense-and-send.

When transmission failure occurs end-to-end acknowledgements coupled with sequence numbers can

identify which data points cannot be reconstructed accurately. However, when not using acknowledge-

ments it is not possible to determine where the failure occurred and therefore all data points between the
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With acknowledgements

Without acknowledgements

Figure 3.8: Demonstration of failed transmissions in acknowledgement and acknowledgement-less cases.
The red boxes indicate transmission failure. The boxes with crosses in are data points which must be
discarded, as they cannot be guaranteed to be within the error threshold.

last successful and the next successful packet following failure must be discarded. Since the failed state

update could have occurred on the sensing cycle following the previous successful update, no points can

be guaranteed to be within the error threshold. Figure 3.8 demonstrates this issue.

Since the use of acknowledgements allows the detection of points where the accuracy of the data

cannot be guaranteed, and the low transmissions rates of DPS reduce the chance of transmissions failing

it can be hypothesised:

H3.6 Using end-to-end acknowledgements coupled with sequence numbers improves the number of data

points that can be reconstructed compared to using no acknowledgements.

H3.7 Using end-to-end acknowledgements and sequence numbers with L-SIP results in less susceptibility

to data loss compared to sense-and-send.

Figure 3.9 shows the reconstructed data yield, as calculated using the method in Section 3.3.3, versus

the transmissions yield for L-SIP with and without acknowledgements and for sense-and-send.

Since sense-and-send has a one-to-one relationship between transmissions and data points, the data

yield is equal to the transmission yield. L-SIP without acknowledgements does not perform favourably

compared to the other two options. The issue with using no acknowledgements is the one-to-many

relationship—if a transmission fails it must be assumed that all data between the next received state

update and the previous potentially exceeds the defined error threshold and thus must be discarded.

However, when using end-to-end acknowledgements the data yield is still high even when transmission

yield is low. Considering the case of a node achieving a 35% yield using no acknowledgements results in a

data reconstruction yield of 12%, however, when using acknowledgements 85% of data is still recoverable—

this is an improvement by a factor of 7◊. This approach of using L-SIP with acknowledgements can be

seen to have two advantages:

1. The infrequent transmissions mean L-SIP may simply not need to transmit during periods of radio
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Figure 3.9: The e�ect of transmission failure on the reconstructed data yield for multi-modal L-SIP with
and without end-to-end acknowledgements and sense-and-send.

interruption.

2. When transmission failure occurs L-SIP with acknowledgements uses a pseudo sense-and-send mode,

therefore only loses as many packets as sense-and-send would during that period.

Figure 3.9 shows H3.6 and H3.7 to be true: using acknowledgements means L-SIP is less susceptible

to data loss and, when coupled with sequence numbers, can improve the amount of data that can be

accurately reconstructed.

3.5.5.3 E�ect of end-to-end acknowledgements on a lossless network

In a lossless network, the di�erence between using and not using acknowledgements is the radio duty time.

When using acknowledgements it is expected the radio will be on for a longer period. To evaluate the

e�ect of acknowledgements on the radio duty cycle, two nodes were programmed using L-SIP and B-CTP

with one node using acknowledgements and the other without. Both nodes made use of multi-modal

sensing, heartbeats, and sequence numbers. These nodes were deployed next to each other in an o�ce

environment for a week with a sample period of one minute. The error threshold Á for both temperature

and humidity was set to ≠1 to force a transmission every sample period.

When using acknowledgements, a node has a median radio duty cycle of 0.05%±0.006 (160 ms), which
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is an increase of 10◊ compared to using no acknowledgements, which gave 0.005% ± 0.0002 (16 ms). The

increase in time for acknowledgements results from the time taken for the sink to receive a packet, decode

and store the data, and send the resulting acknowledgement. As previously shown in Table 3.9, using the

microbenchmarking approach a node uses 87 mAh/year when using acknowledgements using the duty

cycle calculated here. However, when considering the median duty cycle for no acknowledgements the

node requires 83 mAh/year, a decrease of only a factor of 1.05◊.

3.5.5.4 End-to-end acknowledgements summary

This section has shown that end-to-end acknowledgements slightly increase the node energy requirement.

However, this increase is o�set by an increase in data yield, and improved signal reconstruction accuracy.

It should be noted, however, that there are a few system design considerations when implementing

acknowledgements:

1. Acknowledgements should not be used when the round trip time of sending a packet and receiving

an acknowledgement is greater than the defined sample period.

2. In applications where the frequency of transmissions is high, end-to-end acknowledgements will

have a higher energy requirement due to increased radio duty cycle.

This section has shown that the use of acknowledgements in a lossy network can bring several improve-

ments. Assuming a node achieving a 35% yield, as reported in the literature, the use of acknowledgements

improves signal reconstruction accuracy by a factor of 2◊ and increases the data yield of the system up to

a factor of 7◊, when compared to acknowledgement-less L-SIP. In a lossless system, acknowledgements

only increase a node’s annual energy requirement by a factor of 1.05◊. In a lossy network acknowledge-

ments only increase a node’s annual energy requirement by a factor of 1.16◊ when the node’s yield is

35%. In the worst case of 5% yield, L-SIP with acknowledgements uses a factor of 1.5◊ more energy

than no acknowledgements.

Therefore to answer RQ1C—Yes, end-to-end acknowledgements increase reconstructed data yields

compared to an acknowledgement-less schemes.

3.5.6 On-node evaluation of L-SIP

Since simulation approaches do not necessarily show the real performance of algorithms, this section

evaluates two deployments of nodes implementing L-SIP. The first deployment (D1) was a four bedroom
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Table 3.5: Summary of L-SIP deployments

Transmission Transmission Reconstruction
reduction yield yield

D1 85% ± 4% 74% ± 5% 95% ± 1%
D2 97% ± 2% 77% ± 19% 98.9% ± 2%

detached home5, gathering data for 38 weeks. The second deployment comprised ofan unoccupied home

(D2) for a period of 3 months. The nodes in these deployments were all programmed with L-SIP, using

the same parameters as defined in section 3.5.1 on page 54 (– = 0.2, — = 0.2, Á

temp

= 0.5 �, Á

hum

= 2%).

The evaluation of on-node L-SIP is based on four measures of performance: i) transmission reduction,

ii) transmission yield, iii) Reconstructed data yield, and iv) battery consumption.

Table 3.5 shows a summary of the evaluated L-SIP deployments. Deployment D1 achieved an average

transmission reduction per node of 85% ± 4% and an average per node transmission yield of 74% ± 5%

(the transmission yield was a�ected by sink failure in week 10 of the deployment). From these successful

transmissions an average of 95% ± 1% of the data per node could be accurately reconstructed within the

defined error thresholds of 0.5 � for temperature and 2% for relative humidity—using the data yield

calculation presented in Section 3.3.3.

In D2 the conditions in the unoccupied home were much more stable than for D1 with a per node

average transmission reduction of 97% ± 2%. The transmission yield was marginally better with an

average of 77% ± 19% per node, and the average per node reconstruction yield was 98.9% ± 2%.

Figure 3.10 shows the battery discharge curve of a sense-and-send node, and node implementing L-SIP.

It is shown that the battery discharges significantly faster when using sense-and-send with CTP and Low

Power Listening (LPL) compared to using L-SIP and B-CTP. This demonstrates the significantly longer

lifetime achievable with L-SIP.

This section shows that, when deployed, L-SIP performs as expected—reducing energy usage and the

number of required transmissions. However, occupants tended to switch backbone nodes o�, which shows

that a battery backup or hard-wired power connection is required for AC powered nodes.

5House 38 described in Appendix B
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Figure 3.10: Typical battery voltage of a node running CTP with sense-and-send, and a node using L-SIP
with B-CTP. The shaded grey area is where sink failure occurred during the deployment.

Table 3.6: Baseline microbenchmark estimates for a sense-and-send approach on TelosB node with a five
minute sampling cycle. CTP send time is based on logs from a 200+ node network and include retries.

Process Annual samples Time (ms) mA mAh/year
Sense 105120 ◊ 295 ◊ 0.458 = 3.9

Processing 105120 ◊ 1 ◊ 0.182 = 0.01
CTP send 105120 ◊ 473 ◊ 18.920 = 260
LPL listen 105120 ◊ 1, 500 ◊ 18.920 = 830

Idle 105120 ◊ 297, 732 ◊ 0.009 = 78
Totals 1171.9

Table 3.7: Annual energy consumption of a TelosB node implementing L-SIP with CTP and LPL on a
five minute sampling cycle. CTP send time is based on logs from a 200+ node network and includes
retries.

Process Annual samples Time (ms) mA mAh/year
Sense 105120 ◊ 295 ◊ 0.458 = 3.9

Processing 105120 ◊ 44 ◊ 0.182 = 0.2
CTP send 5256 ◊ 473 ◊ 18.920 = 13
LPL listen 105120 ◊ 1, 500 ◊ 18.920 = 830

Idle 105120 ◊ 297, 732 ◊ 0.009 = 78
Totals 925.1
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Figure 3.11: Annual energy usage compared to achieved transmission reduction when using CTP and
LPL. The primary energy use is for listening.

3.6 The Backbone Collection Tree Protocol for low transmission

WSNs

The aim of DPS algorithms is to increase the lifetime of a node. Since L-SIP reduces transmissions by

95% compared to sense-and-send it can be hypothesised:

H3.8: A node implementing L-SIP will have significantly lower energy requirement than a node imple-

menting sense-and-send using a network stack comprised of CTP and LPL.

The microbenchmarking method has been used to estimate the annual energy use of TelosB nodes in order

to compare the use of L-SIP versus sense-and-send. The TelosB nodes are assumed to make use of the

commonly used network stack comprised of CTP and LPL implemented within TinyOS. This experiment

assumes a sampling interval of five minutes for both algorithms. Using microbenchmarking the TelosB

node energy use for L-SIP was calculated assuming a factor of 20◊ (or 95%) packet reduction. Table 3.6

shows the results of microbenchmarking for sense-and-send while Table 3.7 shows the results for L-SIP.

The annual energy requirement of a TelosB node implementing L-SIP and CTP (925.1 mAh/year) is

reduced by a factor of 1.3◊ compared to a sense-and-send approach (1171.9 mAh/year).
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Figure 3.11 shows the annual energy requirement for a node using CTP and LPL over a range of

transmission reductions. Since the node has to always listen, sense, and sleep during each sample period

the energy requirement for these processes are constant regardless of the number of transmissions that

are suppressed. It is clear to see from Figure 3.11 that the energy requirement for listening is greater than

any other process. When transmissions are significantly reduced, listening accounts for over 90% of the

annual energy requirement. Therefore, in addition to reducing the number of required transmissions the

energy requirement of the MAC layer must be considered. Raza et al. [93] evaluated a similar algorithm

and also concluded the MAC layer is a major consideration.

Figure 3.11 shows H3.8 to be false. When transmissions have been substantially decreased, focus must

be on reducing the energy overhead of networking. The largest energy consumer is the radio listening for

packets in LPL. Therefore, removing the need to listen where possible will increase node lifetime.

3.6.1 The Backbone Collection Tree Protocol

In a tree-based multi-hop network, such as CTP, nodes act as either leaf nodes or routing nodes. These

classifications are typically assigned when the network is formed based on factors such as signal strength.

The routing nodes are required to have their radio turned on for longer periods to perform the routing

duties. However, if the state of the network changes nodes may change from leaf to routing nodes and

vice-versa. Therefore, all nodes are required to listen periodically for incoming packets.

A typical deployment usually consists of more leaf nodes than routing nodes. Since most nodes do

not need to be involved in the routing process they do not necessarily need to listen for incoming packets.

Furthermore, especially within the built environment, a large percentage of nodes can be powered from

the mains electricity or other high capacity energy source. In the case of the deployment, described in

Appendix A, 54% of nodes are mains powered. These mains powered nodes can leave their radios on

permanently, with no penalty to the lifetime, to form a dense permanent network backbone.

Using the concept of a backbone network, a network infrastructure named Backbone Collection Tree

Protocol (B-CTP) is proposed. B-CTP is based on the combination of a backbone of powered nodes with

CTP. Figure 3.12 shows this approach. Two types of node are defined:

Leaf nodes are sense-and-send battery powered nodes, which forward their data to a neighbouring

backbone node. These leaf nodes only switch their radio on long enough to transmit a packet and

receive the subsequent acknowledgement packet.

Backbone nodes are mains powered nodes and have their radios on continuously. Additionally to their
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Figure 3.12: Proposed B-CTP network infrastructure: Battery powered leaf nodes send data packets to
powered backbone nodes which are responsible for forwarding data to sink nodes.

own sense-and-send cycle, they have the added responsibility of routing packets using CTP, along

with associated tasks such as determining link quality.

To implement B-CTP, CTP has been modified to only use backbone nodes for routing. CTP uses a

distance vector routing protocol with a four-bit link estimator [29] to calculate the Expected Transmissions

(ETX) link quality between nodes. The route cost is the sum of all link costs in a particular route. The

four-bit link estimator has been modified for B-CTP to avoid using leaf-to-leaf links and give priority to

backbone nodes. When a link quality is requested, and the link is leaf-to-leaf (determined in the current

implementation by the node id), the maximum (worst) ETX value is returned to avoid the link being

used. This resembles the way collection tree roots advertise a cost of zero ETX. The change means the

leaf nodes only need to listen for packets when awaiting acknowledgements. Thus radio is only switched

on when a transmission is required, then switched o� when either an acknowledgement is received or a

predetermined time out time is triggered.

The number of backbone nodes required, as with the deployment of any WSN, depends upon the

environment and the application needs. For example, deploying in an open-space would require less

than deploying in a construction site with no direct line of site. In the home deployments it was found

that conditions such as, Wi-Fi and Zigbee channels overlapping can degrade a signal, therefore possibly
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Table 3.8: Annual energy consumption of a TelosB B-CTP leaf node node with a five minute sampling
cycle implementing sense-and-send. B-CTP send time is based on experimentation described in Sec-
tion 3.5.5.

Process Annual samples Time (ms) mA mAh/year
Sensing 105120 ◊ 295 ◊ 0.458 = 3.9

Processing 105120 ◊ 44 ◊ 0.182 = 0.2
B-CTP send 105120 ◊ 160 ◊ 18.920 = 88.4

Listening 0 ◊ 0 ◊ 0 = 0.0
Idle 105120 ◊ 297, 732 ◊ 0.009 = 79.0

Totals 171.5

Table 3.9: Annual energy consumption of a TelosB B-CTP leaf node node with a five minute sampling
cycle implementing L-SIP. B-CTP send time is based on experimentation described in Section 3.5.5.

Process Annual samples Time (ms) mA mAh/year
Sensing 105120 ◊ 295 ◊ 0.458 = 3.9

Processing 105120 ◊ 44 ◊ 0.182 = 0.2
B-CTP send 5256 ◊ 160 ◊ 18.920 = 4.4

Listening 0 ◊ 0 ◊ 0 = 0.0
Idle 105120 ◊ 297, 732 ◊ 0.009 = 79.0

Totals 87.5

warranting the need for more back bone nodes. From my experience in deploying nodes implementing

this protocol in homes, typically one or two backbone nodes are deployed, depending on the properties

size6. WSN building deployments are often opportunistic, therefore where permitted a backbone node

should be deployed in place of a leaf node.

Table 3.8 shows the annual energy requirement of a TelosB node implementing sense-and-send and

B-CTP is 171.5 mAh/year, this a reduction by 6.7◊ compared to using CTP alone.

Since mains powered nodes are prioritised for routing and leaf nodes can switch their radios o� for

much longer periods it can be hypothesised that:

H3.9: B-CTP will significantly lower the energy requirement of a node when coupled with L-SIP, com-

pared to CTP with L-SIP.

Table 3.9 shows the annual energy requirement of a TelosB node implementing L-SIP and B-CTP is

87.5 mAh/year, assuming a sample rate of 5 minutes and a packet reduction of 95%. When compared to

sense-and-send with CTP, the combination of B-CTP and L-SIP reduces the annual energy requirement

by a factor of 13.4◊.
62 backbones nodes are currently being used in a seven bedroom home which has a footprint of 364.7 m2, a single

backbone node has been used in homes up to 120 m2



CHAPTER 3. GENERALISED DUAL PREDICTION SCHEME 75

0

50

100

150

0 25 50 75 100
Transmission reduction (%)

An
nu

al
 e

ne
rg

y 
re

qu
ire

m
en

t (
m

Ah
)

Listen Sense Processing Idle Send

Figure 3.13: Annual energy usage compared to achieved transmission reduction when using B-CTP and
LPL.

Table 3.10: Summary of microbenchmark estimates for using sense-and-send and L-SIP on TelosB for
the MAC approaches of LPL and B-CTP.

Protocol
Estimated Energy reduction factor relative

energy consumption to LPL
(mAh/year) sense-and-send

LPL sense-and-send 1171.9 1.0
LPL L-SIP 925.1 1.3
B-CTP sense-and-send 171.5 6.8
B-CTP L-SIP 87.5 13.4

Figure 3.13 shows the annual energy requirement for a leaf node using B-CTP over a range of trans-

mission reductions. As with CTP, B-CTP still has a constant energy draw for a node being idle, and for

sensing. However, there is no longer a requirement for listening—reducing the overall energy requirement

considerably. Considering a L-SIP node, with a factor of 20◊ reduction in transmissions, the node being

in an idle state now accounts for 90% of the energy requirement. To reduce this requirement, improve-

ments to the node hardware are required (for example, more e�cient voltage conversion or parts with

lower power sleep modes).

Table 3.10 summarises the estimated relative improvement in power use of sense-and-send and L-SIP

using the two MAC approaches of LPL and B-CTP. With a sense-and-send approach, B-CTP networking

can reduce the annual energy requirement by a factor of 6.8◊, while implementing L-SIP with B-CTP
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decreases the annual energy requirement for a leaf node by a factor of 13.4◊.

Table 3.10 shows H3.9 to be true: coupling L-SIP with B-CTP to reduce the time the radio is used,

for both listening and transmissions, decreases the annual energy requirement for a node by a factor of

13.4◊. From Tables 3.8 and 3.9 it can be seen that these significant energy reductions are due to the

reduced use of the radio (both transmissions, and listening).

In response to RQ2—Yes, the lifetime of a WSN node implementing transmission reduction ap-

proaches can be increased further by using a persistent backbone network of mains powered routing

nodes.

Compared to CTP, however, B-CTP is unable to react to changes in the network, for example,

introducing a new backbone node. CTP broadcasts a control beacon with routing information at an

adaptive interval. When a node is first switched on this control beacon is sent at regular frequency,

however, as the network becomes stable it is eventually backed o� to be sent at a maximum of once every

8 minutes. Since leaf nodes have their radios o� for long durations, if a new backbone node is introduced

to the network it is unlikely a leaf node will detect control beacon. Therefore when introducing a new

node in a formed network, leaf nodes will be required to be reset to detect the new backbone node.

This section has therefore shown that B-CTP can significantly reduce the annual energy requirement

for a node.

3.7 Summary

This chapter has presented two contributions to knowledge:

1. G-SIP: a novel, generalised framework for the implementation of DPSs.

2. B-CTP—An extension to CTP to utilise a persistent powered backbone network, which reduces the

energy requirement for listening in order to extend node lifetime.

3.7.1 Generalised Dual Prediction Scheme summary

The G-DPS framework provides solutions to enable DPS algorithms to function in real life deployments.

This will lead to deployments which are more robust to transmission failures, can detect node failures, and

support multiple sensing modalities. This results in deployed WSNs being easier to maintain, providing

lower maintenance costs, and producing a higher data yield compared to what is currently possible with

DPSs in real-life networks. The G-DPS framework includes:
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1. A multi-modal approach that allows DPSs to be implemented with multiple sensors. Considering a

node sensing temperature, humidity and CO
2

, the multi-modal approach transmissions are reduced

by up to 27%, signal reconstruction accuracy is improved by up to 65%, and the energy requirement

of TelosB nodes is reduced by 15% compared to single-modal DPS.

2. The use of acknowledgements in a lossy network, assuming a node achieving a 35% yield, improves

signal reconstruction accuracy by a factor of 2◊, increases the data yield of the system a factor of

7◊, and only increases a node’s annual energy requirement by a factor of 1.13◊. when compared to

acknowledgement-less L-SIP. In a lossless system, acknowledgements only increase a TelosB node’s

annual energy requirement by a factor of 1.05◊.

3. Using a heartbeat period of 12 hours, heartbeat messages are shown to only increase the number

of transmissions by a factor of up to 1.02◊ on a functioning node compared to using no heartbeat

messages. Heartbeats allow the detection of faulty nodes.

4. The use of sequence numbers in state update transmissions, allows for the calculation of reconstruc-

ted data yield.

3.7.2 Backbone Collection Tree Protocol summary

To support the G-DPS framework a network topology to increase the lifetime of sensing nodes was pro-

posed. B-CTP makes use of a persistent powered backbone network to significantly extend node lifetime.

The proposed B-CTP coupled with L-SIP was shown to decrease the annual energy requirement for a

TelosB node up to a factor of 13.4◊. This networking approach will allow for much longer lived deploy-

ments, reducing the need to change batteries resulting in unobtrusive WSNs.

As shown in Section 2.6 the process of accurately reconstructing the original signal based on the output

of DPSs has received little attention. The next chapter investigates techniques to provide an accurate

reconstruction of signals from DPS algorithms.
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Chapter 4

Spline-based data reconstruction in

Wireless Sensor Networks

The previous chapter described the Generalised Dual Prediction Scheme (G-DPS) which was evaluated

in terms of an implementation named Linear Spanish Inquisition Protocol (L-SIP). L-SIP is a Dual

Prediction Scheme (DPS) algorithm which utilises a linear model that encodes the state as a filtered

estimate of the value and rate of change. L-SIP significantly reduces the number of transmissions over

sense-and-send. However, selection of the best method to accurately reconstruct the original signal based

on the output of DPS algorithms has received little attention in the literature.

The following research question is therefore answered in this chapter: RQ3: Can a spline-based signal

reconstruction method improve the accuracy of reconstructed signals compared to piecewise linear methods,

for example linear interpolation or model prediction, when using DPS algorithms such as L-SIP?

This chapter shows that considering the signal gradient and the known bounds on the suppressed

samples allows the sensed signal to be more accurately reconstructed. Five reconstruction methods are

evaluated—three spline-based methods proposed here, along with model predictions and traditional linear

interpolation as baselines (the latter of which does not consider the gradient and bounds). The three

spline-based reconstruction methods are:

1. a cubic polynomial spline,

2. a quartic polynomial spline, and

3. a pair of quadratic splines with a discontinuity at the join.

The evaluation of the five reconstruction methods (implemented with L-SIP in a home environment mon-

itoring application) shows that dual quadratic splines provide lower Root Mean Squared Error (RMSE)

than the other methods. The chapter also shows that when transmission failures occur, an extension to

the dual quadratic spline based method (“adjusted quadratic splines”) allows reconstruction with signi-

ficantly lower error than would otherwise be possible. Overall, dual quadratic splines are shown to be
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the preferable method for reconstructing a signal based on the output of a DPS algorithm.

This chapter is structured as follows: Section 4.1 describes the reconstruction methods considered

in this chapter. Section 4.2 provides the results of the reconstruction method analysis, following this

Section 4.3 evaluates the best performing method on a lossy network. Section 4.4 investigates the e�ect

of spline-based reconstruction on further analysis of gathered data (using the case study of exposure

graphs). Finally, Section 4.5 summarises the results.

4.1 Reconstruction methods

This chapter provides an evaluation of whether spline-based reconstruction techniques can provide higher

accuracy than linear interpolation or model prediction. Specifically, it is expected that splines can improve

on linear interpolation by incorporating the following information:

1. the estimated gradient of the signal, and

2. the known bounds on predicted data values.

Figures 4.1 and4.2 show an example of the linear interpolation, predictive model, and dual quadratic

spline methods applied to a sample of home air temperature data.

The three spline-based methods have the requirement that the state estimate consists of a timestamp,

value, and gradient. Additionally, in common with DPS generally, there is the requirement of no loss of

state updates (due, for example, to sensor or network failures), otherwise the reconstruction may not be

accurate. Relaxing this lossless network requirement is considered in Section 4.3.

4.1.1 Linear interpolation

Linear interpolation is a simple well-known reconstruction method, using only the data value provided in

each update. A disadvantage of linear interpolation is demonstrated in Figure 4.3—a period of suppressed

samples followed by a rapid change in signal trend can result in high reconstruction errors as the bounds

for the suppressed samples are not considered. This problem is also examined by Silberstein et al. [104].

4.1.2 Predictive model

A natural choice for reconstruction when using a DPS algorithm is to use the output of the predictive

model implemented at the sink. The reconstruction will therefore follow the predictions from each

state update. This has the disadvantage that it introduces discontinuities into the reconstruction as
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Figure 4.1: Faceted plot showing linear interpolation, predictive model, and dual quadratic spline signal
reconstruction methods applied to a sample of 5 minute sense-and-send home air temperature data. The
black points indicate where L-SIP transmissions occur.
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This example is based on gas turbine engine temperatures, with a threshold of 5 �.
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the predictions diverge out to the error threshold and then “snap back” when an update occurs, as

demonstrated in Figure 4.2. This e�ect results in a visually unappealing reconstruction and introduces

more error than other methods. This method does, however, bound the error of every datapoint to be

within the defined threshold—a property that the other methods do not have. In certain applications

this may be a requirement.

4.1.3 Cubic splines

The lowest order polynomial that accommodates the demand of matching the gradients at two arbitrary

points is a cubic of the form,

f (t) = At

3 + Bt

2 + Ct + D

The corresponding function of the signal x is h (x) = f (t (x)). It is desirable that the signal h (x) is

defined for all points [x
j

, x

k

] and that the first point x

j

corresponds to the initial state t(x
j

) = 0, while

the second point x

k

corresponds to the next transmitted state t(x
k

) = 1. This can be ensured by making

t (x) the linear function:

t (x) = (x ≠ x

j

)
(x

k

≠ x

j

)

where x

k

”= x

j

, t

Õ(x) = 1/(x
k

≠ x

j

), and x

Õ(t) = x

k

≠ x

j

. Given the two points defined by tuples

(a, b) = (f (t
j

) , f

Õ (t
j

)) and (c, d) = (f (t
k

) , f

Õ (t
k

)) , solutions can be found:

A = 2a + b ≠ 2c + d

B = ≠3a ≠ 2b + 3c ≠ d

C = b

D = a.

We typically know the gradient of the signal with respect to real time x (or df

dx

) instead of with respect

to parametric time t (or df

dt

), so it is helpful to apply the chain rule:

df

dt

= df

dx

· dx

dt

= (x
k

≠ x

j

) df

dx

4.1.4 Quartic splines

When sensing cycles occur between x

j

and x

k

, the reconstruction might be improved by incorporating

the knowledge that (assuming that messages were not lost) the previous sensing cycle to x

k

(denoted
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x

k≠1

) produced a state estimate that could be linearly predicted from the state at x

j

plus or minus an

allowed threshold Á. That is,

|r (x
k≠1

) ≠ h (x
k≠1

)| Æ Á

where r (x
k≠1

) = a + b (x
k≠1

≠ x

j

) is the extrapolated estimate based on the state at x

j

.

If the basic form h (x
k≠1

) given by the spline meets this criteria, then no adjustment is needed.

However, if it does not meet the criteria, then an additional constraint can be added to require the curve

to pass through either the maximum or minimum error possible, depending on which one is closer,

h

2

(x
k≠1

) =

Y
______]

______[

r (x
k≠1

) + Á if h (x
k≠1

) > r (x
k≠1

) + Á

r (x
k≠1

) ≠ Á if h (x
k≠1

) < r (x
k≠1

) ≠ Á

h (x
k≠1

) otherwise.

A higher order polynomial is needed to incorporate this constraint,

f

2

(t) = At

4 + Bt

3 + Ct

2 + Dt + E

As with the cubic spline in Section 4.1.3, the spline can be derived by solving for A,B,C,D,E given

(a, b) = (f
2

(t
j

) , f

Õ
2

(t
j

)), (c, d) = (f
2

(t
k

) , f

Õ
2

(t
k

)) and the additional constraint e = f

2

(t
k≠1

).

4.1.5 Dual quadratic splines

In Section 4.1.4, a spline control point is calculated at x

k≠1

that is linearly predicted from the state at

x

j

plus or minus an allowed threshold Á. Rather than producing a curve that fits through this point two

quadratic splines are calculated, one that goes through h(x
j

), h(x
k≠1

), with the gradient h

Õ(x
j

), and one

that goes through h(x
k≠1

), h(x
k

) with the gradient h

Õ(x
k

) at x

k

. These two new splines take the form:

f

3

(x) = Ax

2 + Bx + C

f

4

(x) = Dx

2 + Ex + F

The first quadratic spline is calculated with parameters a = f

3

(t
j

) , b = f

3

(t
k

) , and c = f

Õ
3

(t
k

). Simil-

arly, once h(x
k≠1

) has been estimated, a quadratic spline with parameters d = f

4

(t
j

) , e = f

4

(t
k

) , and f =

f

Õ
4

(t
j

) helps provide a smooth line.



CHAPTER 4. SPLINE BASED DATA RECONSTRUCTION 85

4.2 Evaluation

Due to the large number of di�erent applications and sensing modalities that DPS algorithms may be

used for, the context of the evaluation must be clearly defined. Particularly, the evaluation presented here

focuses on periodic low frequency signals that would be encountered when monitoring air temperature

in occupied homes. Data composed of high frequency waveforms, such as vibration and acoustic data, is

not within the scope. When analysing these types of data it is often important that frequency and phase

information can be correctly extracted. Furthermore, the linear model used by L-SIP is not suited to

high frequency cyclic data, providing a relatively low data reduction.

The data used for the analysis in this chapter consists of two sets drawn from the same pool. The

complete pool of data is made up of traces from a total of 235 air temperature sensors deployed in 37

homes. The homes consist of flats and houses with between 1 and 5 bedrooms, between 1 and 7 occupants,

and built between the 1940s and the 2010s. These homes therefore represent a wide variety of builds and

occupancy patterns. The two sets of data extracted from these are:

Dataset 1

Two weeks of data from each sensor with 100% yield (235 traces, 3290 trace-days). The duration was

selected to allow the same period to be extracted from each sensor trace given the limits of di�ering

deployment durations and yields over time. The evaluation of the five reconstruction methods considered

here is based on these traces.

Dataset 2

One year1 of data from nine nodes in a home with 99.98%2 yield (9 traces, 3240 trace-days). This

was selected to allow demonstration of the adjusted splines method (see Section 4.3). The traces were

required to be of a long duration such that transmission failure could be meaningfully simulated with a

variety of durations. The specific sensors selected were located in an end-terrace 4 bedroom house with

5 occupants. The data contains variation on a number of time scales—seasonal cycle, daily cycle, and

occupant driven transients.

This section evaluates the following hypothesis:

H4.1: Dual quadratic spline-based reconstruction for L-SIP will increase the accuracy of the reconstructed

signal compared to linear interpolation or model prediction reconstruction.
1Actually 360 days but for brevity will be stated as a year. Taken from House 1 described in Appendix B
2Missing values (average 1200 per sensor) are imputed via linear interpolation to avoid discontinuities: the majority of

data loss instances were infrequent failures of short duration (e.g, one missing sample)
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Figure 4.4: Comparison of average temperature reconstruction accuracy (with 95% confidence interval)
of linear interpolation, predictive model, and the three spline-based reconstruction methods.

To evaluate the proposed reconstruction methods, L-SIP (with a range of error thresholds from 0.1 � to

1 �) was applied to Dataset 1. Each trace was reconstructed using each of linear interpolation, predictive

model, cubic splines, quartic splines, and dual quadratic splines. The performance of the reconstruction

methods were compared using the RMSE between the original (smoothed) signal and the reconstructed

signal.

Figure 4.4 shows the average reconstruction error (along with the 95% confidence interval) for each

method over a range of error threshold values. The results show that cubic splines provide the least

accurate reconstruction in all cases and that the confidence interval for this method becomes larger as

the error threshold increases (meaning that the results for any given trace become less predictable the

greater the error threshold). At thresholds of 0.9 � and 1 �, the RMSE for cubic splines can exceed the

error threshold—a result not seen for any other reconstruction method.

The dual quadratic spline approach provides the lowest reconstruction error for all thresholds considered—

approximately 25% lower than linear interpolation and approximately 15% to 30% lower than the predict-

ive model. Over all traces, the performance of linear interpolation, predictive model, and dual quadratic

splines was highly predictable—indicated by the small confidence intervals. The increase in RMSE for

dual quadratic splines is approximately 0.03 � per 0.1 � increase in threshold, compared to 0.04 � for

linear interpolations. The largest confidence interval for dual quadratic splines was 0.015 �, compared
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Figure 4.5: Comparison of average relative humidity reconstruction accuracy (with 95% confidence in-
terval) of linear interpolation, predictive model, and the three spline-based reconstruction methods.
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Figure 4.7: Example of large curves created by the cubic spline and quartic spline methods. The black
dots represent when state transmissions have occurred.

to 0.021 � for linear interpolation. This indicates that, overall, dual quadratic splines provide a better

reconstruction than linear interpolation for air temperature data of the type used here. The predictive

model provided the smallest confidence interval of the reconstruction methods but a higher RMSE than

linear interpolation at higher thresholds.

The results shown do not appear to be particular to air temperature. Figure 4.5 shows that the

results for reconstruction for relative humidity match that of air temperature. Figure 4.6 shows the

results for reconstruction of Carbon Dioxide (CO
2

) data from the homes (80 nodes, of the full 235 node

set, that included CO
2

sensors). The same ordering of methods from most to least accurate can be seen

for CO
2

as with air temperature with the exception of the predictive model, which performed better than

linear interpolation for this data type. Overall, dual quadratic splines continue to provide the lowest

reconstruction RMSE of the methods considered.

A problem observed with both of the higher order polynomial-based splines (cubic and quartic) is

that if the state at either end of the spline has a large gradient then the polynomial will create a large

looping curve that may be drastically di�erent to the original signal. Figure 4.7 demonstrates this e�ect;

the large gradient in the state estimate at sample period 3974 creates a large loop in the cubic and quartic

reconstruction method. However, when using the quadratic splines, clamping at x

k≠1

, is not subject to

this problem. . The dual quadratic spline method is therefore more accurate in signal reconstruction.
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The combination of low and predictable reconstruction RMSE with avoidance of the “large loop”

problem exhibited by the other spline-based methods indicates that dual quadratic splines are the best

option of those considered here for reconstructing data such as interior air temperatures.

This evaluation has shown H4.1 to be true, the dual quadratic splines reconstruction method provides

the most accurate reconstruction of signals (versus linear interpolation, predictive model, cubic splines,

and quartic splines) resulting in a RMSE approximately 25% lower than linear interpolation and approx-

imately 15%–30% lower than the predictive model.

4.3 Dual quadratic splines on a lossy network

Section 4.1 listed “no loss of state updates” as a requirement of the spline-based reconstruction methods

presented in this chapter and of DPS signal reconstruction more generally. In a real-world scenario this is

often unlikely to be the case. The loss of transmitted packets will impact the accuracy of the reconstruc-

tion. This section investigates the e�ect of failure to transmit updates and proposes an extension to the

dual quadratic spline reconstruction method to minimise the e�ect of transmission loss or reconstruction

error. Note that the technique described here has the requirement that the original sensing period is

fixed—it does not apply to systems with a variable sensing period.

One of the requirements imposed by DPS, is that the node and sink share the same model of the

sensed data. Specifically, Spanish Inquisition Protocol (SIP) requires the sink to acknowledge receipt of

state updates and only performs prediction using the new state when such an acknowledgement has been

received. This means that when packet loss occurs, state updates (including an incrementing sequence

number) will continue to be transmitted following every sensing cycle until an acknowledgement is received

from the sink (Note: there is a special case where the state reverts and thus the sink state is again

considered accurate. This case is ignored for the purpose of this analysis.) . It is hypothesised:

H4.2: Using sequence numbers in the dual quadratic spline reconstruction algorithm to detect transmis-

sion failure will increase the accuracy of the reconstructed signal following a network failure

State predictions are accurate (within the defined error threshold) until the point at which the subsequent

state update should have been transmitted. Taking a state update u

j

received at x

j

with sequence number

s

j

and a second state update u

k

received at timestamp x

k

with sequence s

k

, the timestamp up to which u

j

is valid is x

k≠(s

k

≠s

j

)

, referred to hereafter as x

m

for clarity. The point at x

m

with predicted value v

p

can

therefore be used as the join between the two splines in place of the point at x

k≠1

. In the implementation

used here, the predicted value at the join is calculated based on a weighted combination of a forward
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Figure 4.8: Demonstration of the benefit of using the adjusted dual quadratic spline method (RMSE of
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Figure 4.8 shows the e�ect of packet loss based on a trace where state updates failed to transmit for

25 sample periods, with success on the 26th transmission attempt. Using the adjusted dual quadratic

splines method reduces reconstruction RMSE for this period by a factor of 2.

Figure 4.9 shows a comparison of the results for the original and adjusted dual quadratic spline meth-

ods applied to temperature data in Dataset 2 (9 traces of one year each). In total, splines were computed

for 500 simulated transmission failure periods for each of 15 possible failure durations (7500 total simu-

lations). The RMSE for each method was calculated over the failure period. Overall, the adjusted dual

quadratic splines method provides a lower RMSE than the original dual quadratic splines method during

periods of transmission loss. For example, for failure durations between 10 to 25 samples, the adjusted
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Figure 4.9: Reconstruction accuracy over 9 data traces (500 communication failure simulations per trace
per failure duration).

dual quadratic splines method improves reconstruction by 0.13 �. The original dual quadratic spline

method can provide a reconstruction within the error threshold (0.5 �) for up to 40 failed transmissions

(3 hours, 20 minutes), whereas the adjusted dual quadratic spline provides an accurate reconstruction

for up to 60 failed transmissions (5 hours)—an increase by a factor of 1.5◊. Beyond this duration, the

two methods cannot guarantee accuracy within the allowable threshold limits. This is because neither

method is able to extract su�cient information from the received state updates to allow more accurate

reconstruction over such long periods.

The evaluation has shown H4.2 to be true—integrating sequence numbers in the dual quadratic spline

reconstruction algorithm can improve signal reconstruction accuracy. The adjusted method allows an

accurate reconstruction of data when transmissions fail for up to 5 hours (for the system and environment

studied here). Beyond this duration it provides similar reconstruction accuracy as the original method,

although is consistently better. The conclusion therefore is that the adjusted dual quadratic spline method

can provide a lower RMSE for short duration failures and performs no worse than the dual quadratic

spline method for longer duration failures.
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Table 4.1: Error introduced into exposure graph bands by the reconstruction process. Values not given
where no datapoints (original or reconstructed) fell within the given band. The two largest errors are
indicated in bold.

Error per band due to reconstruction process (%)
Health issues Cold Comfort Warm Overheating

Bathroom 1 0.56 0.14 0.54 0.16 -
Dining room - 0.17 0.23 0.06 -
Bedroom 1 - 0.40 0.32 0.06 0.01
Bedroom 2 0.04 0.25 0.10 0.23 0.03
Bedroom 3 0.22 0.07 0.07 0.34 0.01
Kitchen 0.01 0.71 0.81 0.09 -
Living room 0.01 0.22 0.39 0.16 0.00
Sitting room 0.00 0.13 0.22 0.08 -
Spare room - 0.09 0.45 0.44 0.08

4.4 The e�ect of reconstruction on statistical summaries

An important question for monitoring systems utilising data reduction algorithms is how the reconstruc-

tion process a�ects the analysis performed by the end-user. Any error introduced by the reconstruction

process will propagate through to the analysis, potentially changing the conclusions reached or prompting

incorrect decision making. However, the e�ect of reconstruction error for individual points is likely to

be lessened by any summarisation process applied to the data, for example when generating exposure

graphs (showing the percentage of time the sensed values fell within particular ranges).

To analyse the e�ect of the reconstruction on statistical summaries, temperature time-discounted

distribution summaries (See Section 5.2 on page 97) created from each trace of Dataset 2 (9 traces,

one year duration each) were compared based on the original traces and reconstructed traces using dual

quadratic splines. The temperature exposure graphs show the percentage of data points that fell into each

of five ranges (or bands), labelled “overheating”, “warm”, “comfort”, “cold”, and “health issues”. These

ranges are important for home monitoring purposes as they show the e�ectiveness of a given heating

strategy for the home and allow problematic rooms to be easily identified.

Table 4.1 provides the results of the comparison, showing the error per band for each room. The

errors are relatively low as demonstrated by Figure 4.10, which compares the exposure graphs generated

for data from the kitchen sensor. The reconstruction of this data resulted in the highest band error of any

of the traces—0.8% for the comfort band. Even for this highest error, the di�erence in the band values

is visually almost imperceptible. This indicates that spline based reconstruction does not significantly

impact the further analysis of home monitoring data.
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Figure 4.10: Comparison of temperature exposure graphs using original data and reconstructed data.
Trace used was the kitchen sensor, giving the largest band error (0.8%).

4.5 Summary

This chapter has demonstrated the benefit of using splines for signal reconstruction, and specifically the

use of dual quadratic splines. These make use of two pieces information provided by L-SIP: i) gradient

estimates and ii) bounds on suppressed samples. The results show that the dual quadratic splines recon-

struction method provides more accurate reconstruction of signals than linear interpolation, predictive

model, cubic splines, and quartic splines, resulting in an RMSE approximately 25% lower than linear

interpolation and approximately 15% to 30% lower than the predictive model. Indoor air temperature

monitoring was used as the application for evaluation, however, the reconstruction method is suitable for

a range of data types.

In the case of transmission failure it was shown that the dual quadratic spline reconstruction method

can be extended to use sequence numbers to determine the limits of prediction for the last received state.

The original dual quadratic spline method can provide a reconstruction within the error threshold for

up to 40 failed transmissions (3 hours, 20 minuets), whereas the adjusted dual quadratic spline provides

an accurate reconstruction up to 60 failed transmissions (5 hours)—an increase by a factor of 1.5◊. The

conclusion therefore is that the adjusted dual quadratic method provides a more accurate reconstruction
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in a lossy network.

Finally, it is important to understand the e�ect of reconstruction on the further analysis of gathered

data. The case study of exposure graphs was considered here to compare knowledge generated from

Sense-and-send and L-SIP reconstruction. It was demonstrated that even for this highest error, the

di�erence in the band values is visually imperceptible.

This chapter aimed to answer RQ3. To answer—yes, dual quadratic splines improves the accuracy

of reconstructed signals compared to the output of simpler methods, for example linear interpolation or

model prediction, when using data suppression algorithms such as SIP.

The next chapter describes how the data can be transformed on-node to produce information rich

metrics which reduce the need for transmissions, thus extending node lifetime.



Chapter 5

Bare Necessities—Knowledge driven

design

The previous chapters in this thesis have focused on Dual Prediction Schemes (DPSs), which model the

sensed signal to allow an accurate reconstruction of the signal at the sink using fewer transmissions.

Although transmissions can be reduced through modelling the signal in this way, considerable savings

are also possible by considering the context of a specific application.

This chapter presents and evaluates Bare Necessities (BN), an approach which pushes the calcula-

tion of application-level state on-node. BN is so called as it only transmits the “bare necessities”—the

application-level information required by the end-user.

The description and evaluation of BN in this chapter allows the following research question to be

answered: RQ4: Can a combination of DPS concepts with the calculation of application-level information

on-node significantly reduce the energy requirements of a node further than the current state of the art?

BN is evaluated in the context of a household monitoring application that reports the percentage

of time a room spends in various environmental conditions. BN provides packet reduction by a factor

of 7000◊ compared to a sense-and-send approach, and a factor of 190◊ compared to Linear Spanish

Inquisition Protocol (L-SIP). When implemented on-node with the Backbone Collection Tree Protocol

(B-CTP) (as described in Chapter 3), BN reduces a TelosB node’s annual energy requirement by a factor

of 14.1◊.

This chapter is structured as follows: The next section motivates the work presented in this chapter.

Section 5.2 then introduces the concept of application state, and describes the example used for evaluation

of BN. Section 5.3 describes the BN algorithm, which is then evaluated in Section 5.4.

95
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5.1 Motivation

Given the information needs of a specific application, raw sensor measurement data is often highly

compressible. For some applications the ability to reconstruct the entire time series is unnecessary and

it is only important to know the proportion of time spent in a state, or set of states. For example,

human behaviour monitoring applications usually contain high data rate sensors such as accelerometers

and gyroscopes with sampling rates from tens to hundreds of hertz per sensor [80, 97]. However, to

understand the subject’s general behaviour the end-user is often only interested in how long is spent in a

certain state (walking, driving, standing) in a given day. This information is often much smaller in terms

of number of bits (or more compressible) than the raw signal used to generate it.

In addition to the size of the data, application-level information tends to be more stable over time

than the raw signal. For example, in building monitoring applications the ratio of energy consumption to

degree days (ratio which bears a rough correspondence to the building heat loss) is expected to remain

the same season after season, year after year. As a result, any significant change in the value may

be of importance. For example, a change may indicate: a refurbishment improved the insulation, or

new tenants have adjusted the heating system. Identifying when key metrics change can be insightful.

Therefore on-node analytics to generate application-level state lend themselves to DPS-based techniques.

The transmission reduction allowed by DPS algorithms should, theoretically, considerably extend the

network life while having minimal e�ect on the usefulness of the information gathered.

Dasu and Johnson [24] state that 80% of data analysis e�ort is spent on the process of cleaning and

preparing the data. Therefore, if the calculation of application-level information is performed on-node,

then the only processing required by the end-user is to visualise the received information in a meaningful

format. This minimises the amount of time required for post-processing.

An additional benefit achieved by transmitting only application-level information is that of privacy.

Privacy issues are often not considered in the design of Wireless Sensor Network (WSN) systems. Col-

lected data may be misappropriated for other uses beyond the original monitoring specification. For

example, when monitoring humidity in a bathroom to assess mould risk, the raw signal could then be

used for unauthorised purposes such as identifying when and for how long showers or baths are used.

Langheinrich [61] states that use limitation should be placed on information that is clearly not part of the

original intent of monitoring. Therefore, in the case of BN, transforming the data into application-level

information at the first opportunity makes it di�cult to misuse data, and aids in providing a measure of

privacy.
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Table 5.1: Temperature exposure bands, derived from the work of Hacker et al. [38], and Nurse et al.. [79]

Range (�) Description
T Æ 16 Room presents a health risk to occupants

16 < T Æ 18 Room is too cold (slight health risk)
18 < T Æ 22 Optimal thermal comfort
22 < T Æ 27 Room is warm (wasting energy on heating)

T > 27 Room is overheated (wasting energy on heating)

5.2 Application-level state: the time-discounted distribution sum-

mary

The previous section motivated pushing the calculation of application-level information (or “metrics”)

closer to the data source. In this thesis the application-level metric is termed application-level state.

Application-level state is so called, since it is both at an application-level (in terms of context) and refer-

ring to the condition of the environment at a point in time. This section describes one such application-

level state: the time-discounted distribution summary.

As part of the case study used in this thesis, home performance reports created for Orbit Heart of

England required a number of novel metrics to summarise building performance in a way which can be

readily understood by the end-user. One proposed metric, the time-discounted distribution summary, is

used as an exemplar for BN. The time-discounted distribution summary will be used throughout this

chapter to evaluate the performance of the BN approach.

Generally, time-series plots are used to graphically represent environmental data. However, the end-

users for the case study used throughout this thesis (surveyors at Orbit Heart of England) were more

interested in the frequency of conditions in the home. For example, for what proportion of the time was

the living room in a thermally comfortable state? Tufte [109] showed that time-series plots are ideal

for showing trends in the data, however, when considering the time apportioned to a condition, Tufte

recommends bar charts over time-series plots. The time-discounted distribution (see Figure 5.1 on the

next page) uses the concept of bar-charts to group readings into similar bands of readings. For example,

a cold band which represents all temperatures below 16 �.

The time-discounted distribution summarises the relative amount of time that a set of observations

fall into a number of value ranges (bands), and is visualised using a stacked bar chart. In the case

of environmental monitoring, measurements are split by each well-defined space in the home (rooms,

corridors, etc.), and the conditions within that room (cold, comfortable, warm, etc.).

While it is expected that a home monitoring system will sense several types of data, for demonstration
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Figure 5.1: Temperature time-discounted distribution summary indicating comfortable living areas but
cold utility and transition areas.

purposes this example will consider only the case of temperature sensing. The temperature band ranges

have been derived considering literature in the application domain, such as the work by Hacker et al. [38]

and Nurse et al. [79], and are presented in Table 5.1.

The time-discounted distribution summary is usually presented in the form of stacked bar charts with

each band coloured appropriately. For example, using red for hot and blue for cold. Intuitive colouring

allows a quick understanding of the environmental conditions within the home by the end-user.

Figure 5.1 presents an example of the time-discounted distribution output for temperature in a home.

The figure shows that the main living areas (living room, bedrooms and kitchen) are mostly in thermally

acceptable conditions. The two transition rooms (hall, landing), and the bathroom are areas for concern

since the rooms are cold or in a state where potential health risks can occur. The graph suggests that

the heating strategy employed by the occupants favours the living areas and provides minimal heating

to the remaining rooms.

In the motivation of this chapter it was stated that raw sensor measurement data is often highly

compressible in terms of application-level information. As an example, consider a WSN node monitoring

temperature and humidity in a room at a five minute sensing interval. A sense-and-send approach would

require 6.8 ◊ 106 bits to be transmitted to the sink over a period of a year. However, when using time-

discounted distribution summaries the number of bits required for temperature and humidity monitoring
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Algorithm 5.1 Online time-discounted histogram encoding algorithm for estimating the exposure dis-
tribution phrased in terms of G-DPS (described in Algorithm 3.1).
estimate new state

xi Ω “xi + b (i, z) , (update band count)

for all i œ B.

The predicate function b (i, z) gives 1 if the reading z is in band i and zero otherwise. The update decays

the current count estimate by decay constant “ and then increments the active band.

simplify
yi Ω xi/

q
iœB xi, (update distribution)

for all i œ B.

This normalises the distribution such that the band counts sum to 1.

predict sink state
y

Õ Ω ysink (static distribution assumption)

detect events
yes if ÷i œ B : |yi ≠ y

Õ
i| > Á

The distribution is eventful if at least one component has changed by at least some threshold Á

is reduced to (5 bands ◊ 32 bits) ◊ 2 parameters = 320 bits per update. Assuming summary information

is transferred only once per month1 (3840 bits per year), the information reduction would be of the order

of 1750◊. Given that transmission of bits is the main energy cost for wireless nodes this analysis suggests

that performing the processing of the time-discounted distribution summary on-node will extend node

lifetime.

5.3 The Bare Necessities algorithm

BN is an evolution of the DPS approach. BN takes the concept of DPS and adds on-node analytics.

Compared to previous approaches discussed in this thesis (L-SIP and sense-and-send), BN is closely tied

to the application and thus is able to make stronger assumptions about the informational content. This

enables the majority of raw data to be summarised and thus reduce the number of packets sent by a node.

BN imposes some penalties, such as the need for calculation to occur on the node and a slight loss in

the accuracy of the resulting transmitted information, compared to post-processing sense-and-send data.

However, in the context of the application these penalties are slight.

Algorithm 5.1 shows the BN node algorithm using time-discounted distribution summaries as an

implementation of Generalised Dual Prediction Scheme (G-DPS). Each node senses the environment and

converts the measured values into application-level state. The application-level state is then normalised

1Evaluation of BN (see Section 5.4) shows monthly transmissions to be a reasonable assumption.
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such that the per-band proportions (or probabilities) sum to 1. The event detection component checks

for changes in each element of the state beyond some threshold compared to the predicted sink state.

When an event is detected, a packet is transmitted to the database. A more detailed description of each

step within the G-DPS framework follows:

Estimate new state

The estimate new state component converts data into application-level state, which, in the case of BN,

is the time-discounted distribution summary. Time-discounted distribution bands can be thought of as a

discrete form of a probability distribution or histogram. For each node, when a measurement of a sensed

phenomena is made, the current band distribution is updated to account for new reading.

Let b(i, z) æ {0, 1} be a predicate function that yields 1 if the measurement z œ Z is in band i œ B

where B is the set of bands and Z is the set of possible sensor values. It is assumed at least one band

is always applicable and bands do not overlap. For a finite deployment period involving k time intervals

the probability that a band i is applicable is the average,

1
k

ÿ

0Æt<k

b

t

(i, z)

Generally, environments in which WSNs are deployed are not static, and are influenced by a number

of factors. For example, the built environment is a�ected by the number of occupants, heating schedules,

and the weather. Since the time-discounted distribution summaries are a cumulative measure, older

measurements are discounted to give more importance to newer measurements based on an exponential

decay constant 0 < “ < 1 (this resembles the use of – in Exponentially Weighted Moving Average

(EWMA)), giving,

x

k

(i) = 1
–

k

ÿ

0ÆtÆk

b

t

(i, z) “

k≠t

where the normalising value –

k

is chosen such that
q

i

x

k

(i) = 1. The decay half-life2 is,

t

1/2

= T ln 2
(1 ≠ “)

where T is the sensing period. Therefore, to achieve a specific half-life, the decay factor can be set to:

“ = 1 ≠ T ln 2
t

1/2

2Half-life (t1/2) is the amount of time required for a quantity to fall to half its value as measured at the beginning of
the time period
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Selection of a half-life depends on the variability of the model used and the requirements of the

application. If the application-level state experiences frequent meaningful changes then a short half-life is

required to react to changes in a timely manner, though this will generate additional packet transmissions.

If the application-level state is expected to be relatively stable over time then a longer half-life can be

used, reducing the number of required transmissions.

Simplify

Rather than report band counts, the simplify component converts the band counts to a distribution by

normalising their sum to 1,

y

i

Ω x

iq
iœB x

i

Predict sink state

Since the distribution is slow changing, the predict sink state component assumes the distribution is

constant over time. Therefore the last transmission is used as a comparison in the event detection

component.

Detect events

Since BN is an implementation of G-DPS, transmissions are only required when a significant change is

detected in the distribution of bands. The simplified vector is used as the application-level state. When

compared to the predicted sink state, the node state is considered to be eventful if any element changes

by some threshold Á (for example, 10%).

5.3.1 BN Assumptions

The following assumption is made for implementing BN:

The sensing frequency is fixed A variable sensing frequency would require each sample to be

weighted proportionally to the period that it is applied to.

5.4 Evaluation of BN

This section evaluates the suitability of BN, using the home environment as a case study. The BN

algorithm is evaluated using o�ine datasets with regard to three key performance measures:
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1. the percentage of state updates transmitted (the compression ratio),

2. the accuracy of the reconstructed information compared to the state information generated by

post-processing sense-and-send data (measured by average Root Mean Squared Error (RMSE) in a

band), and

3. the node energy consumption.

5.4.1 Method

BN is envisaged to be deployed in long duration deployments, therefore it has been evaluated considering

data collected from a home for a period of a year. The home is an end-terrace 4 bedroom house with 5

occupants built in the early 1900’s . The properties of the home and occupants ensured that there was

variation on a number of time scales—seasonal cycle, daily cycle, and occupant driven transients. Within

the home nine nodes were deployed monitoring temperature, and humidity. These nine deployed nodes

had an average yield of 99.98% and equate to data for 3240 trace-days. The nodes were set to sample

the environment with a 5 minute sensing period (288 samples per day).

To evaluate BN, the year long datasets were compressed using BN configured with a band error

threshold of Á = 10%. To reconstruct the sensed signal, the suppressed values between state estimates

transmitted by BN were derived through linear interpolation. The following measures were used to

evaluate BN:

1. Transmission reduction (or compression ratio)—The percentage of state update packets

transmitted compared to a sense-and-send approach.

2. Reconstructed signal accuracy—The accuracy of the reconstructed BN distribution compared

to the BN distribution calculated by the node. Accuracy is measured by average RMSE of the

bands.

3. Post-processing accuracy—The accuracy of the reconstructed distribution signal compared to

the distributions created from post-processing sense-and-send data every month. Accuracy is meas-

ured by average RMSE of the bands.

4. Node energy annual requirement—The annual energy requirement of a node measured using

the microbenchmarking approach. The node is assumed to be implementing B-CTP as previously

described in Section 3.6 on page 71.

The next section shows an example of the BN algorithm output and how these measures are calculated.
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Figure 5.2: BN distribution signal with a decay of t

1/2

= 1 month.

5.4.2 Example BN algorithm output and post-processing summary

To illustrate the terms used in the rest of this chapter, this section demonstrates and discusses the output

of the BN algorithm over an example dataset. The following terms are used to describe this output:

Raw signal is the underlying signal reported by the sensor before any processing is undertaken (not

shown in Figure 5.3). In this example 103680 samples were taken during the dataset period.

Distribution signal represents the processed sensor readings. In this case the raw signal is summarised

as a time-discounted distribution of temperature with a half-life of one month applied. An example

was previously shown in Figure 5.2.

Reconstructed distribution signal is the reconstruction of the distributed signal, from the transmit-

ted state updates from a node. In Figure 5.3 the distribution signal is reconstructed using linear

interpolation between transmitted state updates. In this evaluation the reconstructed distribution

signal is compared to the original distribution signal. At each time-step the distribution signal has

5 values, one for each band, therefore the RMSE of the signal is reported as an average RMSE error

of the 5 values. In this example, the distribution signal is reconstructed with an average RMSE

error of 2.6% compared to the original distribution signal.

Transmissions represents points where the node transmits an update to the application-level state to
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Figure 5.3: Example BN (t
1/2

= 1 month, Á = 10%) time-discounted temperature distribution summary
over time for a monitored bedroom. Transmissions are indicated by the dotted vertical lines.
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Figure 5.4: Example post-processed time-discounted temperature distribution summary generated at
monthly intervals for a monitored bedroom. The dotted vertical lines indicate when post-processing
takes place.
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Table 5.2: Example BN performance metrics

Transmission statistics Reconstructed RMSE
Samples Packets Transmission vs. vs.

transmitted reduction (ratio) distribution signal post-processing
103680 17 99.98% (6100◊) 2.6% 12.3%

the sink. In this example a total of 17 state updates would be transmitted to the sink, a transmission

reduction of 99.98% (6100◊ compression ration)

Post-processed distribution summary is the time-discounted distribution summary created from

post-processing sense-and-send data. Sense-and-send data is processed into time-discounted distri-

butions with non-overlapping periods of two weeks, one month, three months, or six months. Fig-

ure 5.4 shows an example of post-processed distribution summary generated at monthly intervals

for the same dataset used in Figure 5.3. BN is compared against the post-processed distribution

summary since BN is intended to replace the need for any post-processing of data. Each post-

processed distribution summary is compared to the output of the reconstructed distribution signal

at that time to give an average RMSE error. In this example the average RMSE error of the bands

is 12.3%.

The performance metrics for BN described in this section are summarised in Table 5.2.

5.4.3 E�ect of error threshold

BN can be tuned for a specific application by setting the error threshold allowed between the predicted

sink state and the current estimated state. Setting a higher error threshold will sacrifice some accuracy

for fewer transmissions. Furthermore, since larger error thresholds are expected to lower the number of

transmissions, it is expected that this will also reduce the reconstruction accuracy.

BN was used to compress the raw temperature signals from the nine nodes in the year long dataset.

A range of thresholds Á = {1%, 2%, . . . , 20%} and half-life values ⁄ = {two weeks, one month, three

months, six months} were used and the percentage of state update packets that require transmission

was recorded. To derive the reconstruction accuracy, the RMSE is calculated between the reconstructed

distribution signal and the distribution signal calculated on-node.

Figure 5.5 shows that the number of transmissions decrease as the error threshold increases, with less

than 0.4% transmissions required when Á = 1% and an average of 0.014% when Á = 10%. Figure 5.6

shows that the reconstruction error increases linearly with the size of the error threshold. Furthermore,



106 CHAPTER 5. THE BARE NECESSITIES ALGORITHM

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Error threshold (band %)

Tr
an

sm
is

si
on

s 
(%

 o
f s

en
si

ng
 p

er
io

ds
)

Half−Life ● One month Six months Three months Two weeks

Figure 5.5: Percentage of annual BN packet transmissions over a range of error thresholds.
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Figure 5.6: RMSE of the BN reconstruction error over a range of thresholds.
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Table 5.3: Average number of BN temperature information packet transmissions and compression ratio,
for nine rooms (Á = 10%). The transmission percentage and compression ratio is calculated using the
average number of transmissions over all datasets. This method is used in subsequent tables in this
chapter.

Half-life Transmissions and compression by deployment period
One week Two weeks One month Six months Year

One day 3.3 ± 3 8.3 ± 5 13 ± 6 63 ± 13 208 ± 12.5
610◊ 480◊ 650◊ 830◊ 510◊

One week 3.3 ± 3 6.2 ± 4 7.0 ± 4.5 13 ± 6 37 ± 10.5
610◊ 650◊ 1300◊ 3900◊ 2800◊

One month 3.3 ± 3 5.7 ± 4 6.2 ± 4 8.3 ± 5 15 ± 6.5
610◊ 700◊ 1400◊ 6300◊ 7000◊

Six months 3.3 ± 3 5.7 ± 4 6.1 ± 4 7.5 ± 4.5 9.4 ± 5
610◊ 700◊ 1400◊ 7000◊ 11000◊

the reconstruction error never exceeds the defined error threshold, remaining at approximately a quarter

of the threshold. When increasing the error threshold beyond a certain point, little to no additional

transmission reduction will be achieved (as shown in Figure 5.5), yet more error will be introduced into

the reconstructed distribution signal.

To conclude, this evaluation has demonstrated that small values for the error threshold will provide a

more accurate representation of the data, but require more transmissions to be made. Selecting a higher

error threshold will reduce the number of transmissions, however this will also reduce the accuracy of the

reconstructed signal.

5.4.4 E�ect of half-life on transmissions

In addition to tuning the error threshold Á, the half-life ⁄ is also a tuneable parameter for BN. The

resulting decay constant has the e�ect of weighting current behaviour more highly than past behaviour.

Using a larger half-life means that short term transient events will be filtered out, therefore reducing

transmissions. The following hypothesis is tested:

H5.1: The choice of half-life a�ects the number of required transmissions when using the BN algorithm.

With a shorter half-life, a large percentage of sampling cycles cause transmission. As the half-life

increases, the percentage of transmissions required decreases (for a fixed sampling interval).

BN was used to compress the raw temperature signal from the nine nodes in the year long dataset.

This dataset was split into overlapping deployment periods to check how the half-life a�ects transmission

reduction for di�ering deployment lengths.
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Table 5.4: Comparison of the performance of BN (t
1/2

= 1 month, Á = 10%) with L-SIP (Á = 0.5 �) for
one year of temperature data.

Transmissions % of raw (compression ratio) RMSE in band %
Sense-and-send 102236 100% (1◊) n/a

L-SIP 2900 ± 700 2.80% (36◊) 0.9% ± 0.2%
BN 15 ± 7 0.015% (7000◊) 7.8% ± 1%

As shown in Table 5.3, the transmission performance of BN depends on the half-life parameter and

the deployment period. When the half-life is longer than the deployment period, little decay in the signal

occurs and, therefore, has no e�ect on the number of transmissions. However, when a short half-life is

used on long term deployments, a larger number of transmissions are required as the state reacts more

to transient changes.

This experiment has shown H5.1 to be true: larger half-life values result in a lower number of

transmissions as long as the half-life does not exceed the deployment period.

Since the threshold, rather than half-life, a�ects the accuracy of the reconstructed distribution signal

compared to the original distribution signal the accuracy was not considered in this evaluation. The half-

life will primarily a�ect the accuracy of the reconstructed signal when compared to the post-processed

distribution summaries. The next section evaluates this.

5.4.5 BN compared to post-processing summaries

BN is intended to replace the need for any post-processing of data other than visualisation. This evalu-

ation tested how the reconstructed distribution signal from BN compares to post-processed distribution

summaries calculated from L-SIP and sense-and-send. BN has the most specific application requirements

that enables most of the data to be discarded and thus greatly reduces the number of transmissions. To

compare BN and L-SIP, the state updates from L-SIP are reconstructed to form the raw signal, from

which post-processed distribution summaries are created. This is then compared to the sense-and-send

post-processed raw summaries in the same manner as BN. It is expected that BN transmits significantly

less than L-SIP and sense-and-send but at a cost of some accuracy.

Table 5.4 compares the message reduction between sense-and-send, L-SIP and BN. In the case of

the one year dataset L-SIP reduces the number of transmissions by 97.2% (36◊) and BN reduces the

number of transmissions by 99.985% (7000◊). Since a node implementing BN transmits significantly

less compared to L-SIP, the node is less likely to su�er from transmission failure. Therefore, considering

G-DPS the penalty of an increased energy requirements for end-to-end acknowledgements will also be
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Table 5.5: Number of transmissions and reconstruction results for the single-modal and multi-modal
approach to BN

Transmissions Temperature Humidity
RMSE RMSE

Single-modal 35 ± 6 8.6 ± 0.7 13 ± 2
Multi-modal 32 ± 5 8.5 ± 1 8.6 ± 2

Improvement ≠8.6% ≠1.2% ≠33.9%

reduced. Though BN reduces the number of transmissions to a much larger degree the average RMSE

in a band is a factor of 7 greater than that of L-SIP and sense-and-send. However, the average RMSE

in a band is within the allowed threshold limit of BN, and therefore would have minimal e�ect on the

usefulness of the information gathered.

5.4.6 Multi-modal BN

A natural extension to BN is to support additional sensing modalities alongside temperature, such as

relative humidity. A multi-modal approach was shown to be a benefit to G-DPS in Chapter 3. However,

it is unclear how multi-modal will e�ect BN since the measures will often use a di�ering number of bands

which will behave di�erently. The following hypothesis is tested:

H5.2: Combining BN distributions into a single state vector will reduce transmissions and improve the

accuracy of the distributions.

To evaluate this approach both single-modal and multi-modal BN were used to compress the raw temper-

ature and relative humidity signals of the year long dataset. BN was configured with an error threshold

of Á = 10% and a half-life of ⁄ = 1 month. This evaluation only considers a half-life of a month since it

provided the lowest error when compared with one-month post-processed summaries. The approaches of

single-modal and multi-modal BN were compared in terms of reconstruction accuracy and the number

of transmissions. Recall that in the multi-modal approach each state update transmission includes all

monitored parameters.

Table 5.5 shows that the multi-modal approach reduces BN transmissions by compared to single-

modal. In terms of reconstruction accuracy, Table 5.5 shows an improvement to reconstruction accuracy

for relative humidity by when using a multi-modal approach. However, the temperature reconstruction

accuracy receives no significant improvement. Since humidity produces more events than temperature,

indicating it is less stable, the additional state updates generated from temperature state updates im-

proves the overall reconstruction accuracy. A paired single-tail Student’s t-tests, shows that at the 95%



110 CHAPTER 5. THE BARE NECESSITIES ALGORITHM

Table 5.6: Microbenchmark annual energy requirement estimates for a TelosB node with a five minute
sampling cycle running BN with B-CTP. Transmission time is based on logs from a 200+ node network
and includes retries.

Process Annual samples Time (ms) mA mAh/year
Sense 105120 ◊ 295 ◊ 0.458 = 3.9

Processing 105120 ◊ 44 ◊ 0.182 = 0.2
Transmissions 45 ◊ 160 ◊ 18.920 = 0.038

Idle 105120 ◊ 299, 231 ◊ 0.009 = 79
Totals 83.1

Table 5.7: Microbenchmark estimates for using sense-and-send, L-SIP, and BN on a TelosB mote.

Algorithm Percentage of Estimated energy Energy reduction
transmissions (%) consumption factor relative to

(mAh/year) LPL sense-and-send
LPL sense-and-send 100% (1◊) 1171.9 1.0
B-CTP L-SIP 2.80% (36◊) 87.5 13.4
B-CTP BN 0.02% (7000◊) 83.1 14.1

confidence there is only a significant improvement to the humidity accuracy (p=0.0009). However, it is

expected multi-modal will perform no worse than single-modal.

Therefore H5.2 is shown to be true: a multi-modal approach to BN is advantageous, reducing trans-

missions and improving reconstruction accuracy compared to single-modal BN.

5.4.7 Annual energy usage

The aim of the BN algorithm is to increase the lifetime of a node. Since BN reduces the number of

required transmissions compared to L-SIP and sense-and-send the following hypothesis can be formed:

H5.3: BN will have a lower energy requirement than both L-SIP and sense-and-send.

The microbenchmarking method has been used to estimate the annual energy use of a node. This

evaluation assumes a sampling interval of five minutes for all algorithms. Using microbenchmarking the

TelosB node energy use for L-SIP was calculated assuming a factor of 20◊ packet reduction. The annual

energy consumption of a TelosB node implementing BN (t
1/2

= 1 month, Á = 10%) is evaluated assuming

BN achieves a factor of 2300◊ packet reduction.

Table 5.6 shows the microbenchmark calculation for a BN node using the B-CTP approach, while

Table 5.7 compares the number of transmissions and energy requirement for sense-and-send, L-SIP, and

BN. BN coupled with B-CTP networking provides an annual energy decrease by a factor of 14.1◊

compared to sense-and-send. However, BN only reduces the energy requirement of a node by a factor of
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Figure 5.7: Annual energy usage for BN (t
1/2

= 1 month, Á = 10%) and L-SIP. It can be noted that the
dominant energy use is the idle consumption of the node.

1.05◊ compared to L-SIP. As discussed in Section 3.6 on page 71, when transmissions are substantially

reduced the limiting factor to further energy improvements is the node’s hardware. In this case, Figure 5.7

shows that 95% of the node’s energy requirement is for the node being in an idle state. As work towards

reducing hardware energy requirements progresses, the gains by BN will have a greater e�ect on the node

lifetime achieved.

Table 5.6 has shown H5.3 to be true. Compared to sense-and-send, BN reduces the energy require-

ment of a node by a factor of 14.1◊. However, when compared to L-SIP the decrease in annual energy use

is small, a factor of 1.05◊, despite a factor of 190◊ reduction in transmissions. The limiting factor to the

improvement of BN over L-SIP is baseline hardware energy requirements such as the idle consumption.
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5.5 Summary

This chapter presented an evolution of DPSs that focuses the WSN system on transmitting the “bare

necessities”—the context-specific information that end-users require to gain an understanding of the

phenomena under study.

Understanding the application domain can lead to the establishment of knowledge generation tech-

niques. The Bare Necessities algorithm combines the calculation of this knowledge on-node with event

detection to drastically reduce the number of transmissions required. Though, BN imposes some penal-

ties, such as the need for calculation to occur on the node and a slight loss in the accuracy of the resulting

information compared to post-processing sense-and-send data, these penalties are slight in the context

of the application considered here. BN is able to reduce the number of transmissions by a factor up to

7000◊. The transmission reduction achieved by BN is 190◊ greater than existing techniques such as

Spanish Inquisition Protocol (SIP). Though BN reduces the number of transmissions to a much larger

degree, the average RMSE in a band is a factor of 7◊ greater than that of L-SIP and sense-and-send

approaches followed by post-processing.

Combined with the B-CTP networking approach, BN leads to a reduction of annual energy use

compared to sense-and-send by a factor of 14.1◊. Compared to L-SIP, BN only reduces the energy

requirement of a TelosB node by a factor of 1.05◊. Improvements to the node hardware are required

(for example, more e�cient voltage conversion or, parts with lower sleep modes) to maximise the savings

possible by reducing transmissions as much as BN.

This chapter has demonstrated that designing DPSs with application requirements in mind, rather

than modelling the raw signal, can significantly reduce the number of transmissions required by a node.

When combined with G-DPS and B-CTP node lifetimes can be significantly increased, with nodes deliver-

ing information the end-user requires, and being robust to issues which arise in real-life WSN deployments.

This chapter aimed to answer RQ4. To answer—yes, combining of DPS concepts with the calculation

of application-level information on-node can reduce the energy requirement of a node further than the

current state of the art.

The next chapter concludes this thesis, summarising the work presented and providing answers to the

research questions posed at the start of this thesis.



Chapter 6

Conclusions

This thesis has investigated approaches to the design of long-lived and robust Wireless Sensor Networks

(WSNs) for use in real-life deployments. The work presented in this thesis has therefore focused on the

development of generalised methods and protocols for the implementation of Dual Prediction Schemes

(DPSs) in WSNs deployed in the field.

WSNs are useful for a variety of applications including the monitoring of volcanic eruptions [118], soil

moisture tension for irrigation management in vineyards [42], sniper fire localisation in battlefields [59],

and ice quake detection on glaciers [72]. When designing WSNs, the node’s energy budget, and thus

lifetime, is one of the most important considerations. DPSs promise significantly extended node lifetimes

by reducing the number of required transmissions. However, there remain problems with achieving robust

and long-lived real-world deployments of nodes implementing DPSs. These problems include: the energy

requirement of the WSN network stack, lossy networks, node failure, and accommodating the use of

multiple sensing modalities. This thesis set out to answer the overarching research question: How can

WSNs nodes be designed to achieve robust and long-lived WSN deployments?

The work presented in this thesis resulted in the following contributions to knowledge:

1. Generalised Dual Prediction Scheme (G-DPS)—a novel, generalised framework for the implement-

ation of DPSs in real-life deployments.

2. The Backbone Collection Tree Protocol (B-CTP)—an extension to the Collection Tree Protocol

(CTP) to significantly extend node lifetime via a persistent powered backbone.

3. A dual quadratic spline method to reconstruct signals which uses the gradient of the signal, and

known error bounds to increase the accuracy of the reconstructed signal compared to linear inter-

polation, predictive model, cubic spline, and quartic spline reconstruction techniques.

4. Bare Necessities (BN)—an implementation of G-DPS that uses on-node analytics to deliver inform-

ation (rather than data) to significantly reduce transmissions.

At the start of this thesis it was identified that a key barrier to the adoption of WSNs is achieving

113
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long-lived and robust real-life deployments. Issues include: reducing the impact of transmission loss,

node failure detection, accommodating multiple sensor modalities, and the energy requirement of the

WSN network stack. The generalised solutions presented in this thesis enable the design and real-life

deployment of a WSN which has an extended lifetime (potentially 14.1◊ times greater than using a sense-

and-send approach), is able to limit the e�ect of transmission failure to maximise data yield, can detect

node failure, and allows the integration of multiple sensors. This is accomplished while still providing

timely delivery of the information the end users are interested in.

Cogent-House, a full end-to-end open-source home environmental and energy monitoring system

(see Appendix A), was developed to exemplify and evaluate the proposed solutions presented in this

thesis. A total of 37 real life deployments, performed by the author and colleagues, of the Cogent-

House system were performed to generate 235 evaluation datasets of periods between two week and a

year. To further demonstrate the benefits of these proposed solutions the Cogent-House system was

deployed and evaluated in-situ in two deployments.

This chapter is structured as follows: Section 6.1, provides answers to the research questions posed

in Chapter 1. Section 6.2 proposes future research topics. Finally, Section 6.4 concludes this thesis.

6.1 Answers to research questions

This thesis has answered the following research questions:

RQ1: What features can improve the robustness of DPSs implemented in deployed WSNs?

When designing WSNs a sensing node’s energy budget is one of the most important considerations. The

largest consumer of energy in a WSN node is often1 the radio, therefore reducing the use of the radio

should improve node lifetime. A common approach found in the literature is that of a DPS algorithms.

DPSs model the sensed signal to allow an accurate reconstruction of the signal at the sink using fewer

transmissions. However, DPS algorithms presented within the literature are often lacking in the ability

to handle several aspects of real world deployments. The aspects include: transmission loss, node failure

detection, accommodating multiple sensor modalities, and reduction of the energy requirement of the

WSN network stack.

To address the issue of robustness of DPSs in real life deployments, this thesis proposes a novel gen-

eralised framework named G-DPS. G-DPS provides: i) a multi-modal approach, ii) an acknowledgement

scheme, iii) heartbeat messages, and iv) a method to calculate reconstructed data yield. G-DPS was the
1Note that power consumption of active sensors swamps radio usage.
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result of the following sub-questions:

RQ1A: Does combining multiple sensor modalities into a single model allow a greater re-

duction in the number of packets transmitted and improve signal reconstruction

accuracy compared to compressing each stream individually?

Yes, if sensor signals are likely to change at the same time. For example, temperature and humidity.

Section 2.5 on page 34 shows that DPSs are generally designed with the aim of compressing one

sensing modality. However, when designing a WSN for deployment, sensing nodes generally include

multiple sensors of di�ering types. G-DPS allows multiple sensor’s readings to be combined into a single

model, named a multi-modal approach. Each transmission contains a model state for each monitored

sensor. Single-modal is an existing technique where there are multiple instances of the DPS and individual

sensor model states are monitored separately.

The multi-modal approach was evaluated in Section 3.5.3 on page 56. The multi-modal and single-

modal approaches were applied to data traces collected from 80 nodes (sensing temperature, relative

humidity, and Carbon Dioxide (CO
2

)) deployed in 37 homes. The evaluation showed that a when a multi-

modal approach is used transmissions are reduced by a factor of 1.4◊, signal reconstruction accuracy is

improved by a factor of 2◊, and the node energy requirement of nodes is reduced by a factor of 1.2◊

compared to single-modal.

The limitation with this approach is when events for di�erent modalities have no relationship, then

multi-modal will provide no benefit over single-modal. Larger packets will be transmitted with no saving

in the number of transmissions that are required.

RQ1B: Can heartbeat messages allow detection of node failure within a user specified time

period, without producing a large impact on the energy requirement of a functioning

node?

Yes, it is possible to balance acceptable data loss with the expected number of additional transmissions

from heartbeats, to minimise the impact on a nodes energy requirement.

DPS-based algorithms transmit at irregular and unpredictable frequencies. Therefore, a node not

reporting data may be either because the node is functioning but is suppressing messages as intended

or because the node has failed. The end-user is unable to distinguish between transmission suppression

and node failure. The G-DPS framework therefore defines a maximum time period allowed without a

transmission. If the node has not transmitted in this defined period an update transmission is forced.

This transmission is called a heartbeat, and indicates the node is still functional.
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The use of a heartbeat message was evaluated using Linear Spanish Inquisition Protocol (L-SIP) in

Section 3.5.5 on page 61. Since heartbeat messages are considered a “still alive” message, the evaluation

only considers the case of the impact of heartbeats on a functioning node. All dataset periods extracted

from the 235 datasets were compressed with L-SIP using heartbeats and without heartbeats. Using a

heartbeat period of 12 hours, derived from the experience of deploying and managing long term WSNs,

the use of heartbeat messages was shown to increase the number of transmissions by a maximum of

1.02◊ on a functioning node compared to using no heartbeat messages. Therefore, since heartbeats do

not increase the number of transmissions, node energy requirements are not significantly increased.

The limitation with this approach is that the method requires data to already be collected from a

node, without this heartbeats may become a significant energy expenditure,

RQ1C: Can the use of end-to-end acknowledgements with DPSs allow for a greater recon-

structed data yield compared to an acknowledgement-less schemes?

Yes, end-to-end acknowledgements works in applications where the sample period is significantly greater

than the round trip time of a transmissions

Section 2.5 on page 34 shows that multi-hop networking reliability can be very poor—evaluations of

system performance, in the literature, have shown yields less than 35% [8, 10, 70]. In the case of DPSs,

reliable packet delivery is important to enable an accurate reconstruction of the sensed signal. Therefore,

an approach is required to allow nodes to detect when a transmission fails. To verify that both the

sink and nodes are producing identical state predictions, software-level end-to-end acknowledgements are

included in G-DPS to indicate when transmission and storage of a state update has failed. The sensing

node’s copy of the sink state will only be updated if an acknowledgement is received from the sink.

The end-to-end acknowledgement approach was evaluated using L-SIP in Section 3.5.5 on page 61.

The evaluation of end-to-end acknowledgements considered two types of networks: i) lossless and ii) lossy.

A lossless network was considered to evaluate if acknowledgements had an adverse e�ect on the energy

consumption of a functioning system. The only di�erence between acknowledgement and acknowledgement-

less schemes is the radio duty cycle, which translates to a potential usage energy increase. When using

acknowledgements on-node evaluation shows a median radio duty cycle of 0.05% ± 0.006 (160 ms) an

increase of 10◊ compared to using no acknowledgements, which gave 0.005% ± 0.0002 (16 ms). Using

this information the microbenchmarking approach shows a node not implementing acknowledgements

uses 83 mAh/year, compared to a node implementing acknowledgements requiring 87 mAh/year—an

increase of only a factor of 1.05◊.
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In a deployed network it is very unlikely that every transmission will be successful. Therefore, the use

of acknowledgements were also evaluated in a lossy network. To evaluate the e�ect of acknowledgements

in the case of transmission failure, one year of data from nine sensors with 99.98% yield (house 1, 9

traces, 3240 trace-days) was compressed using L-SIP, with the success of state update transmissions

being decided by a probabilistic model. In a lossy network, for a node achieving a 35% transmission yield

(as reported in the literature), the acknowledgement scheme improves signal reconstruction accuracy by

a factor of 2◊ and increases the data yield of the system up to a factor of 7◊ when compared to an

acknowledgement-less scheme. Furthermore, node annual energy requirements are only increased by a

factor of 1.13◊ when using acknowledgements.

The approach of using end-to-end acknowledgements do not work when considering applications with

high-frequency transmissions. When the round trip time of sending a packet and receiving an acknow-

ledgement is greater than the defined sample period the sensing nodes knowledge of the sink state will

not be updated in time. An alternative approach to solve this is discussed in Section 6.2.

RQ2: Can the lifetime of a WSN node implementing transmission reduction approaches be

increased further by using a persistent backbone network of mains powered routing

nodes?

Yes, when there is a persistent or large capacity power source (e.g., a car battery) for some of the nodes

are available.

This thesis evaluated the energy consumption of a node implementing DPSs along with the commonly

used TinyOS network stack which is composed of CTP and Low Power Listening (LPL). DPSs promise

a significant reduction in transmissions which should reduce the energy requirement of a node. However,

microbenchmarking shows that when a factor of 20 transmission reduction is achieved there is only a

factor of 1.05 reduction in the energy requirement. An evaluation of the energy use per node process

shows that listening for packets using LPL accounts for 90% of a nodes energy requirement. Therefore

an approach was required to reduce the radio duty cycle of nodes implementing DPSs. Section 3.6 on

page 71 proposed the B-CTP networking topology, an extension to CTP which reduces a node’s energy

requirement for listening. This is achieved by reducing the number of nodes required for routing and

listening for packets via the use of a persistent backbone network of mains powered nodes.

To evaluate the energy requirement for a node implementing B-CTP the annual energy requirement for

a leaf node using B-CTP over a range of transmission reductions was calculated using microbenchmarking.

Compared to sense-and-send using the CTP and LPL network stack, use of B-CTP reduces the energy

requirement of a node by a factor of 7◊. Considering a L-SIP node, with a factor of 20◊ reduction



118 CHAPTER 6. CONCLUSIONS

in transmissions, use of B-CTP decreases the energy requirement of a node by a factor of 13.4◊. The

microbenchmarking approach shows that with B-CTP, when transmissions are significantly reduced, 90%

of the energy requirement is for the sleep state. Therefore, to reduce the energy requirement any further,

improvements to the node hardware are required (for example, more e�cient voltage conversion or parts

with lower power sleep modes). A limitation of the B-CTP approach is that since leaf nodes perform

no listening they do not receive control beacons from their neighbours therefore are unable to react to

changes in the network, such as the introduction of new backbone nodes. Therefore, when introducing a

new node in a formed network, leaf nodes will be required to be reset to detect the new backbone node.

B-CTP has two limitations i) it is unable to react to changes in the network, for example, introducing

a new backbone node. CTP broadcasts a control beacon with routing information at an adaptive interval.

ii) It relies on a multi-tiered network with the network level requiring a large capacity or persistent power

source, ideally in a WSNs all nodes should have the same responsibilities.

RQ3: Can a spline-based signal reconstruction method improve the accuracy of reconstruc-

ted signals compared to piecewise linear methods, for example linear interpolation or

model prediction, when using DPS algorithms such as L-SIP?

A dual quadratic spline-based signal reconstruction method outperforms both linear interpolation and

model prediction.

Selection of the best method to accurately reconstruct the original signal based on the output of

DPS algorithms has received little attention in the literature. Chapter 4 on page 79 examined five

reconstruction methods—three spline-based methods along with model predictions and traditional linear

interpolation as baselines.

To evaluate the proposed reconstruction methods, L-SIP (with a range of error thresholds from 0.1 �

to 1 �) was applied to 235 temperature data traces. Each trace was reconstructed using each of the

methods, from which the Root Mean Squared Error (RMSE) between the original (smoothed) signal

and the reconstructed signal was recorded. The evaluation of the reconstruction methods presented in

Section 4.2 shows dual quadratic splines to be the most accurate in reconstructing a signal. The RMSE

for dual quadratic splines is a factor of 1.3◊ lower than the RMSE for linear interpolation and model

predictions. The dual quadratic spline approach provides the lowest reconstruction error for all thresholds

considered—around 25% lower than linear interpolation and around 15%–30% lower than the predictive

model. In the case of transmission failure an extension to the dual quadratic spline was proposed which

takes into account the number of failed transmissions. This adjusted dual quadratic spline method was

shown to provide an accurate reconstruction for up to 60 failed transmissions (5 hours)—an increase by
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a factor of 1.5◊ compared to the standard dual quadratic splines method.

The limitation with this approach is that the approach does not work when significant transmission

loss occurs. In the example presented in this thesis, transmission loss over 5 hours still cannot be

reconstructed accurately. Considering other measures such as correlation between nodes may improve

accuracy further.

RQ4: Can a combination of DPS concepts with the calculation of application-level informa-

tion on-node reduce the energy requirements of a node further than the current state

of the art?

Yes, when the information requirements of an application area are well known, and raw data is not

required, calculation of application-level information on-node reduces the energy requirements of a node

DPSs, in general, use a model of the sensed signal to allow an accurate reconstruction of the signal

at the sink using fewer transmissions. Although transmissions can be reduced through modelling the

signal in this way, considerable savings are also possible at the application level. Chapter 5 on page 95 an

implementation of G-DPSs which transmits the “bare necessities”—the context-specific information that

end-users require to gain an understanding of the phenomena under study. The proposed BN algorithm

is an implementation of the G-DPS framework that utilises on-node processing to deliver information

rather than data, significantly reducing the number of transmissions a node is required to make.

Comparing the performance of BN (t
1/2

= 1 month, Á = 10%) with L-SIP (Á = 0.5 �), and sense-

and-send for one year of temperature data, BN is able to reduce the number of transmissions by a factor

of up to 7000◊ compared to sense-and-send and up to 190◊ greater than existing techniques such as the

L-SIP. Though BN reduces the number of transmissions to a much larger degree, the average RMSE in a

band is a factor of 7◊ greater than the distribution summaries calculated using L-SIP or sense-and-send

data. Compared to L-SIP, BN only reduces the energy requirement of nodes by a factor of 1.05◊, this is

due to the idle consumption accounting for 90% of the energy consumption.

This thesis has also shown how the BN approach can be generalised to other domain areas, for

example, Kemp et al. [55] have already explored the use of BN to monitor an elderly person’s activity at

home using wearable devices.

The limitation with this approach is that even though the number of transmissions is reduced signific-

antly, the relative energy reduction is only small when compared to L-SIP. Therefore, for this approach

to be more beneficial, improvements to the node hardware are required to maximise the savings possible

by reducing transmissions.
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6.2 Future work

There are several areas of future work that can be investigated to expand on the work presented in this

thesis. This section presents such areas related to improving the performance of DPS-based algorithms

such as L-SIP and BN.

Bu�ering DPS-based algorithms during transmission failure

An alternative approach to the acknowledgement approach described in Section 3.3 on page 44, is to bu�er

readings when transmissions fail. One of the major benefits of the Spanish Inquisition Protocol (SIP)

is the reduced storage space required to record the sensed phenomena (assuming reconstruction occurs

when analysing data). The TelosB node is equipped with 1 MB of flash memory for applications which

require local storage. By using SIP, a node could potentially store an estimated 1.4 years of data for

five parameters (assuming five minute sampling, 90% message reduction and 70 bytes per record). If

a transmission failure occurs, rather than retransmit as per the end-to-end acknowledgement scheme, a

node could bu�er the state until the next successful state transmission. Once a successful transmission

occurs all bu�ered states would be sent. This potentially would increase the reconstructed data yield,

however, the time synchronisation of transmitted packets and the impact of energy consumption would

require investigation.

Solving the issue would allow signal events to be recorded when they actually occurred, removing any

lag from end-to-end acknowledgements, and allow for a greater data yield.

Transmission loss with high-frequency signals

To verify that both the sink and nodes are using identical state estimates, software-level end-to-end

acknowledgements are included in the G-DPS framework to indicate when transmissions have failed.

However, the acknowledgements have only been evaluated with low-frequency signals. When using an

end-to-end acknowledgement approach in an application with high-frequency signals, such as jet engine

temperature monitoring with a sample rate of 10 Hz2, an acknowledgement will only be received after

the next sensing cycle starts. Therefore, the node has no knowledge whether or not the transmission

was successful and therefore the current state of the sink. Furthermore in applications where the fre-

quency of transmissions is high, end-to-end acknowledgements will have a higher energy requirement due

to increased radio duty cycle. Therefore, an investigation is required into i) the impact of not using
2Though the temperature of a jet engine is usually stable in flight, when there is a change in engine speed jet engines

have large and rapid changes in temperature, warranting the need for a high sampling frequency
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acknowledgements in high-frequency applications, and, ii) alternative acknowledgement approaches. One

alternative would be to make use of the bu�ering approach described previously in this section, e�ectively

using flash storage as a “temporary sink”. This temporary sink would have a separate management pro-

cess for the transmission of states (either individually, or as a window). The issues raised in the previous

discussion of bu�ering (time synchronisation and the impact of additional energy consumption) require

consideration in this case.

Solving this issue will allow the G-DPS framework to be expanded for additional high-frequency signal

applications, such as the jet engine monitoring example. Furthermore, in applications with high frequency

transmissions, the number of transmissions could potentially be reduced further than using a DPS alone,

reducing the load on the network and chance of transmission failure.

Support beaconing update in B-CTP

Chapter 3 shows that B-CTP can substantially decrease the energy requirement of a node by making

use of a persistent powered network. However, since leaf nodes do not perform any listening they are

unable to alter routing tables when new powered nodes are introduced into the network. Therefore, to

detect a new backbone node the sensing nodes will need to be reset. A method is therefore required to

allow B-CTP to react to any changes to the network. One solution would be for the leaf nodes to issue a

beacon request when a node attempts a transmission. This may increase the radio duty cycle, however

it would allow for the node to react to changes in the network and radio environment, creating stronger

links to the sink resulting in improved data yield and less failed transmissions. However, this increased

radio duty cycle will come at the cost of additional energy.

Solving the issue would allow for reactive networks similar to CTP, it would all the maintainer of

the deployment to include additional backbone nodes to enhance the network in problem ares, leading to

increased data yields, and less node failure.

Data imputation with Gaussian Process Regression

In Chapter 4 the use of a dual quadratic spline reconstruction method to reconstruct a signal resulting

from L-SIP transmissions was described. Section 4.3 considered the case of signal reconstruction during

transmission failure. Evaluation shows that when coupled with sequence numbers, the dual quadratic

spline method was shown to provide an accurate reconstruction of for up to 60 failed transmissions

(5 hours). Beyond this 5 hour transmission loss duration, however, the accuracy of the reconstructed

signal cannot be guaranteed to be within allowable error threshold limits. As an alternative, Gaussian
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process regression (GPR) could be used to impute missing data. Goldsmith et al. [35] have demonstrate

the implementation of a Virtual Sensor implemented using GPR, which combines the historical data

collected by a temporarily deployed node with correlated data from a subset of permanent sensor nodes.

While the approach has been demonstrated for a sense-and-send approach, the approach may work well

in conjunction with L-SIP during long periods of node failure. If a GPR approach could impute missing

data in a signal this could remove the need for acknowledgements in the G-DPS design, and removing

the need for two way software-level communication in the network.

6.3 Generalising to other applications

This thesis has presented techniques to implement long-lived indoor environment monitoring WSNs by

generating application-level information on-node. This section shows how these techniques can be imple-

mented for other applications. The following are examples of potential feasible applications:

Human behaviour Kemp et al. [55] have explored the use of BN in monitoring an elderly person at

home using wearable devices. The example given is to detect behavioural changes that might

indicate that assistance is required. A distribution of time spent performing daily activities is

generated. If at any point this distribution changes by more than 10% this indicates a change in

behaviour. The number of transmissions made is equivalent to approximately one transmission per

month following the initial settling period during which the subject’s routine is characterised.

GPS dwell regions Rather than tracing activities, another possibility is to track the time spent at

specific locations. Madan et al. [69] show that the more time spent at home the more likely it is

that the subject is ill. Monitoring the distribution of dwell regions for a change in behaviour may

suggest the subject has a problem. for example, the subject spending more time at home.

Room occupancy In the domain of built environment monitoring, the pattern of room occupancy can

be useful for building control systems. Tracking a distribution of when a room is occupied, based

on time and day of week, can lead to the development of e�ective heating strategies leading to a

potential reduction in the energy requirements of a building. Tracking this distribution will only

require a transmission of an update when the use of the room changes significantly.

Energy per degree day Another application for building monitoring, compares the overall (externally

provided) energy usage (combining gas and electricity) with the number of heating (or cooling)

degree days for the same period. Heating degree days are defined as the integral over time of the
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di�erence between the external temperature and a base temperature. Typically 15.5 °C is used as

the base temperature. Roughly speaking, the ratio of heat energy used to heating degree days is

proportional to the specific heat loss of the building. Generally, energy meters are situated outside

of a property therefore a single node would be required to monitor external temperature and energy

consumption. As previously mentioned in this chapter, the Energy per degree day metric tends

to remain the same season after season, year after year. Therefore using the BN approach would

significantly reduce transmissions.

In Chapter 3 the B-CTP networking approach is introduced to significantly extend the lifetime of a

node. For the built environment case study presented in this thesis, a large percentage of nodes can

be powered from the mains electricity. However, many WSN applications required outdoor deployments

[cite, volcano, glacier, redwood, fire]. If B-CTP is to be used in these applications an approach would be

required where nodes with ease of reach would be powered by a larger capacity battery. For example,

in the case of detecting forest fires [39] nodes are placed at di�erent locations within a forrest, nodes

deployed near fire tracks are easier to reach than those deeper in the tree line. Therefore nodes on the

fire-track could be installed with a high-capacity car battery (topped-up with solar energy harvesting)

which could be changed more often, whilst nodes deeper in the tree line would have 2 AA batteries as

standard but can be left alone for years (depending on sensing modalities and application requirements).

6.4 Concluding remarks

This thesis set out to answer the overarching research question: How can WSN nodes be designed to

achieve robust and long-lived real-life WSN deployments?

The G-DPS framework provides solutions to enable robust deployments of DPS algorithms in real life

deployments, compensating for transmission-loss, detecting node failure, providing data yield calculations,

and allowing DPS to be implemented with multiple sensors. To maximise the lifetime of a node the

proposed B-CTP utilises a persistent powered backbone network to reduces a node’s energy requirement

for listening. On the server side, spline based reconstruction is shown to improve reconstruction accuracy

compared to the commonly used linear interpolation. Finally, to further reduce transmissions and extend

node lifetime the BN algorithm demonstrates that designing DPSs with application requirements in mind,

rather than modelling the raw signal, can significantly reduce the number of transmissions required by a

node. These techniques enable WSNs to be long-lived and robust in real-life deployments. Furthermore,

the underlying approaches can be applied to existing techniques and implemented for a wide variety of
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applications. Application-driven WSN design, such as BN, supported by implementation frameworks, as

presented in this thesis, will not only improve performance for existing applications but also enable many

new ones that were previously impractical.
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Appendix A

Cogent House: A WSN for the Built

Environment

This appendix details the concept and design of a Wireless Sensor Network (WSN) to monitor a building’s

environment conditions and energy consumption. Cogent-House is a full end-to-end open-source home

environmental and energy WSN monitoring system which aims to meet this purpose. Cogent-House is

designed to gather sensor data (such as temperature, humidity, electricity usage, gas usage, heat metering,

CO2, VOC, etc) from all types of buildings and to transmit that data to a central database where it can

be viewed with a web-browser.

This appendix is structured as follows: Section A.1 provides a high level conceptual description of the

system. Section A.2 describes the aims and requirements of the system. Section A.3 describes the design

choices of the system. Section A.4 gives a high-level overview of the system, which is presented in more

detail regarding the hardware in Section A.5, and software in Section A.6. Finally, Section A.7 provides

an evaluation of the system.

A.1 System concept

Figure A.1 on the next page shows a conceptional view of the system. The following stages are performed:

Sense Environmental and energy data such as temperature, relative humidity, Carbon Dioxide (CO
2

),

Volatile Organic Compounds (VOC), air quality, electricity consumption, and heat metering is

gathered.

Send Data from all sensing points is wireless sent to a central store. Due to the ad-hoc and short-term

nature of the deployments wired transmissions cannot be used.

Store The data in the sense component is stored on-site for collection post the deployment period.

O�-Site Transfer Datasets are transferred o� site for storage and data analysis. This is through either

139
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Figure A.1: Conceptual design of building monitoring system. The blue square indicates the autonomous
system components. Outside the blue square are tasks undertaken by the stakeholders.

physically collecting systems, or data transfer over 3G.

Data Analysis The data analysis stage converts the raw sensor data into information metrics. During

the data analysis, data cleansing techniques are applied to the raw data to create a clean dataset,

from this the data samples are ran through various processing techniques to create the metrics.

The analyses produced at this stage are presented to the stakeholder for review.

Stakeholder Decision From the reported analysis the stakeholder makes a decision on if and how a

property should be altered. For example, if the stakeholder knows mould is likely to be present in

the bathroom and the data backs this up, the stakeholder may decide to install better ventilation.

Act At this stage all decisions have been made and any remedial changes are performed on the property.

The properties are then either monitored again to check whether the changes have made a positive

change.

A.2 System aims

From the system concept, a number of high level requirements for the system have been identified:

1. Loss of individual sensing devices (due to power or communication reasons) should not impact other

devices within the network.

2. The system should be portable and reusable, so that it can be flexibly redeployed.
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3. The system should be robust to failure such that the system can be left unattended while in

deployment.

4. The lifetime of the node should be a minimum of six months.

From these requirements a list of main features have been identified as key components of the system:

1. Integration of sensors to monitor the following parameters: temperature, relative humidity, air

quality (CO
2

and VOC), electricity usage, and gas consumption.

2. Ability to form ad-hoc wireless networks for the transportation of the sensed data for central storage.

3. The sensing devices should be configurable in terms of sensing modalities and sample frequency.

4. The system needs su�cient reports, error checking and fault tolerance to allow faults to be detected.

5. The energy requirement of the sensing device should be minimised by limiting the radio usage.

Given the nature of the built environment and the requirements as outlined, WSNs are a suitable tech-

nology to be used as part of the system design for several reasons:

1. Protected, indoors deployment environment.

2. Communication ranges are short, as servers and router / gateways can be situated in close proximity

of the deployed sensing nodes within buildings and networks tend to be dense.

3. Mains power proximity to ensure long-lived deployments.

4. Data rates are low, given the slow changing nature of most environmental parameters, leading to

low network tra�c and the use of low power techniques.

5. Wide availability, at low cost, of appropriate micro sensors for physical phenomena of interest.

A.3 System design

Figure A.2 shows an overview of how the system would be used. First, based on business needs a

site for monitoring would be identified. The systems is deployed for a minimum of two weeks up to

a number of years, depending on application needs. A WSN collects environmental and energy data

which is transmitted to and stored on a local server. This local server is connected to the Internet
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Figure A.2: System flow overview.

and the collected data is pushed to a remote server1. Periodically the data is analysed to produce two

performance reports, which are:

Site Performance This report is passed on to a variety of di�ering stakeholders, who use the report

two-fold 1) take remedial action on the monitored site, 2) help direct future policies and business

decisions based on the results of the report.

Occupant Summary This reports to occupants how well they are controlling the environment in their

property and how much energy they are consuming.

A.4 Cogent-House overview

Cogent-House is the result of development work to meet the system design and concept. Cogent-

House is an open-source, low-cost, wireless building monitoring solution that supports a wide variety of

sensor types, provides a web-interface, e-mail alerts, and can push data to the cloud. Unlike many other

building monitoring solutions, the Cogent-House solution is open source. All source code is available

from: https://code.google.com/p/cogent-house. This has a number of benefits to the end-user:

1. the software and any upgrades are freely available;

2. any part of the solution can be extended in non-standard ways (although the resulting system must

remain ‘open-source’);
1If an Internet connection is not available, data is transmitted to the remote server when the deployment is ended and

the local server collected
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3. the end-user is not ‘locked-in’ to the solution and can readily export / convert data to other

solutions;

4. multiple hardware providers exist guaranteeing a low-cost solution.

Cogent-House employs WSN mesh networking, which means that the network is not limited by the

distance to the base station and repeater stations are, generally, not required. Instead, each node can

act as a repeater. Furthermore, the network automatically adapts its routing tree to best suit changing

environmental conditions, node movement and node loss. Since Cogent-House is wireless, there are no

wiring costs and ‘live’ sensor data is always available. The ‘live’ aspect has three key benefits:

1. The ‘health’ and data yield of the system can be monitored during the deployment;

2. It is not necessary to recover the system before making use of the data;

3. It is possible to automate processes based on the sensor measurements (for example, to send alerts

when sensor measurement values exceed certain bounds).

Cogent-House has been proven to easy and quick to deploy. Tests with end-users demonstrate that

the system can be deployed in a typical residential home within one hour.

The next two sections provide an overview of the hardware (Section A.5) and software (Section A.6)

components.

A.5 System hardware description

This section provides an overview of the hardware of the Cogent-House system.

A.5.1 Local Server

Either a Raspberry Pi or Ubuntu PC can be used as a local server. The local server is responsible for

the storage of data received from the WSN.

This server can optionally be connected to the Internet (via ethernet or 3G dongle) to support ‘pushing’

the data to the cloud (see Section A.6.4). The key advantage of this approach is to enable aggregation

of data from a number of parallel deployments. Furthermore, it means that the data can be more easily

accessed over the Internet. Providing an Internet connection allows for remote access allowing debugging

in-situ.
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A.5.2 Remote Server

Currently the Cogent Computing Applied Research Centre provide ‘cloud’ aggregation services that

allow any number of deployments to be monitored simultaneously. Data is transferred from the Local

Server through the use of a developed push synchronisation / aggregation software through as Internet

connection.

A.5.3 Base node

The system comprises of a number of di�ering node types. All nodes are built around the TelosB hardware

platform, which is an all in one communication (CC2420 Radio) and processing platform (MSP430 F1611

Microcontroller) which includes integrated temperature and relative humidity sensors (Sensirion SHT11).

The TelosB node was selected as the basis of the system due to its low energy consumption, small form

factor, ease of integration, and proven use in research.

A.5.4 Sink node

The sink node is attached to the Local Server, this node is a base node programmed with the Sink Node

Software (Appendix A.6.2)
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A.5.5 Sensor Extensions

The base node can be extended to implement a variety of additional sensing modalities. A number of in-

house sensor-boards have been developed to interface additional sensors to the TelosB’s microcontroller.

Additional sensing includes:

A.5.5.1 Electrical power sensing

To understand occupant electricity usage and consumption an extension to the basic node is provided to

interface with the Current Cost EnviR electricity clamp display unit. This sensor requires AC mains power

(power converter is not shown in the diagram). A further variant supports interfacing to the OptiSmart

pulse reader. This pulse reader can be attached to electricity meters with optical pulse output. This

approach provides greater accuracy.

A.5.5.2 Air Quality

To monitor the air quality of a room, CO2, and VOC sensors are interfaced to the base node. These

sensors require additional power and thus must be AC mains powered to operate their full sensor set. The

sensor system duty cycles the sensor to minimise the e�ect of drift and reduce overall power consumption.

In the case of AC mains power loss, the node can continue to operate (without CO2, VOC or AQ sensing)

using a battery backup.

A.5.5.3 Gas

Occupant gas usage and consumption sensing is provided by integration with the Magpeye Opto / Ferro.

These devices provide an ATEX compliant solution that is suitable for most commonly available gas

meters.

A.5.5.4 Heat metering

Heat metering can be used to disaggregating heating energy consumption between thermal environment

heating and hot water heating. Interfacing is provided for heat meters that provide an electrical pulse

output. has been tested with the Zenner Zelsius heat meter.

A.6 System software description

This section describes the software components of the Cogent-House system.
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Figure A.4: WSN data flow overview

A.6.1 Node Software

Figure A.4 shows the data flow of the node software at each sampling interval a node will i) sample

it’s interfaced sensors, ii) process sensor data (For example, parse the xml received from the current cost

unit) iii) pack sensor samples into a data packet, and iv) transmit the data packet wirelessly to the sink.

The Cogent-House nodes have been implemented using TinyOS. TinyOS has been selected as

the development environment due to the ease of use, proven track record, readily available software

components, and the community support available. Mesh networking is achieved through commonly used

network stack comprised of Collection Tree Protocol (CTP) and Low Power Listening (LPL) provided

by TinyOS

A.6.2 Sink node Software

The Sink Node has the role of wirelessly receiving packets from each individual sensor node, and for-

warding these messages through serial-over-USB to the Local Server which is read by the base logging

software.

A.6.3 Base logging

The Base Logging component receives sensor data from the sink node, extracts the relevant data, and

‘logs’ it to a MySQL database.

A.6.4 Push synchronisation / aggregation

The ‘push synchronisation’ system provides a way to synchronise between a local and remote data to

‘push’ logged data from the local to the remote. This system can be used in one of two ways:



APPENDIX A. COGENT HOUSE: A WSN FOR THE BUILT ENVIRONMENT 147

1. if the local system is connected to the Internet, ‘push’ can be run periodically to keep the remote

up-to-date, or

2. if the local system is not connected to the Internet during deployment, ‘push’ can be run when the

system is returned from the deployment to upload the gathered data.

A key benefit of the ‘push’ system is to bring logged data from multiple deployments into a single database.

Furthermore, pushing logged data to a database ‘in the cloud’ simplifies access to that data (it need no

longer be hidden behind a firewall, for example).

A.6.5 Web interface

The web interface to the server provides a way to interact with the monitoring system and to see live

sensor readings as they are gathered. The key features of the web interface to the server are:

• The web interface supports deployment allowing discovery of nodes as they are installed in the

house and configuring of them.

• The health of the monitoring system can be displayed, including data yield, battery levels, network

tree, etc.

• Main data types supported (i.e. temperature, humidity, CO2, VOC, electricity) can be displayed

live. The graph display supports zooming in or out (from 1 hour to 3 months).

• Logged data can be exported to the CSV (comma separated values) file format which can then be

loaded by a statistical package such as Microsoft Excel or R.

A.6.6 Calibration support

The system supports per sensor calibration post-collection. This means that it is possible to supply linear

calibration constants for each sensor on each node either before, during or after the data is collected.

Note that most sensors (including the TelosB temperature and humidity sensors) are factory calibrated.

The additional calibration support can be used to provide enhance accuracy over the default factory

calibration.

A.6.7 Data Analysis

Alongside the Cogent-House Building Monitoring System a set of analysis tools have been developed.

The key features include:
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• Exposure analysis (for temperature, humidity, CO
2

, etc)

• Energy versus degree days

• Comfort assessment

• Energy benchmarking

• Tornado plots

A.7 System evaluation

This section provides an evaluation of the cogent-house system described in this appendix. A number

of existing projects [19, 87, 89] define the metrics to evaluate WSN systems as: i) the useful data yield

of the system and ii) the energy consumption of a node.

The system is primarily evaluated in terms of the deployment at a Passivhaus housing estate com-

prising of five homes and 18 flats. As illustrated in Figure A.5 the site comprises of three blocks:

1. Block one to the right of the site comprising of two houses and twelve flats (Houses 15–28),

2. Block two in the centre, comprises of three houses (Houses 29–31),

3. Block three to the left of the site, comprises of six flats (Houses 32–37).

Details of the homes can be found in Appendix B

Three servers, with Internet access for remote data collection, were deployed in the communal areas of

Blocks one and three, and in one of the houses in Block two. A total of 176 sensing nodes were deployed

with each server supporting between 27 and 107 sensing nodes.

A.7.1 Data yield

The analysis presented here assigns data loss according to the following categories:

Overall Yield Total yield percentage of data successfully received.

Theft/Server Fault Loss It is assumed if the server is in place it will receive packets. Therefore if zero

nodes are reporting for a period of time this loss is down to a faulty server or the server was stolen.

Powered o� Loss If the server is functioning but a powered node has not reported it is assumed the

node has been switched o� at the socket.
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Figure A.5: Overview of deployment area: (A) Wireless Sensor Nodes, (B) Data collection server with
Internet access, (C) A zoomed in version of a property showing the deployment strategy can be seen in
Figure A.6
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Figure A.6: Typical node deployment in an example two bedroom home. (* Multi-hop networking with
suitable tree structure – note: multiple homes are served by the shown server)
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Table A.1: Summary of the yield achieved and source of packet loss by the three servers deployed at the
Passivhaus site

Server 1
(14 properties)

Server 2
(3 properties)

Server 3
(6 properties)

Overall Yield 61% 55% 50%
Server Theft Loss 19% 11% 2%
Powered-o� Loss 11% 29% 43%
Low battery Loss 3% 0% 4%

Network Loss 6% 5% 1%

Low battery Loss The percentage of packets sent where the battery voltage is less than 2.3V .

Network Loss The remaining loss is due to dropped/corrupt packets.

The main source of data loss resulted from 2 causes: i) physical access to server (one occurrence of

theft, 2 occurrences of vandalism), ii) residents being able to switch the Air-Quality nodes o� at the

socket (this issue has been further rectified by a revised version of the air quality interface board, which

switches to battery power if switched o� at the socket). Table A.1 gives a break down of the yield of the

site split by the three deployed servers between July 2011–October 2012.

Rather than using tables, another form of analysing server performance in terms of yield is the use of

heat-maps, which graphically represents daily yield percentages. From Figure A.7 it is clear to see before

the 21st September 2011 there was an issue a�ecting the entire network, which was later found to be the

flooding of corrupted dissemination packets. As a further example between May 9th 2012 to July 3rd

2012 no data was recorded at all, due to an instance of theft resulting in a major loss of data. In August

the server’s hard-drive became corrupt and had to be replaced. Since there was a large amount of down

time, between May–August 2012, the batteries in the nodes failed much earlier than anticipated, leading

to a lower yield until they were replaced on 14th September 2012. Further vandalism occurred on the

21st September 2012 with the server being switched o�.

A.7.2 Node lifetime

When the node’s battery level falls below 2.3 V the ability to transmit uncorrupted packets becomes

unreliable. Table A.2 shows the annual energy requirement of a Cogent-House node (1200 mAH)

using microbenchmarking. Assuming a node is powered by two standard AA batteries (3000 mAh) the

estimated lifetime of a Cogent-House node is 2.5 years. However, from an analysis of six nodes which



152 APPENDIX A. COGENT HOUSE: A WSN FOR THE BUILT ENVIRONMENT

January
February

March
April
May

June
July

August
September

October
November
December

January
February

March
April
May

June
July

August
September

October
November
December

2011
2012

0 10 20 30
Day Of Month

M
on

th

0

25

50

75

100
yield

Figure A.7: Yield HeatMap for Server 1 at the Passivhaus site showing daily yields for a 15 month period
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Table A.2: Baseline microbenchmark estimates for a Cogent-House TelosB node with a five minute
sampling cycle. CTP send time is based on logs from a 200+ node network and include retries.

Process Annual samples Time (ms) mA mAh/year
Temperature 105120 ◊ 220 ◊ 0.458 = 2.9

Relative humidity 105120 ◊ 75 ◊ 0.458 = 1
Voltage 105120 ◊ 0.017 ◊ 0.536 = 0.00027

CTP send 105120 ◊ 473 ◊ 18.920 = 260
LPL check 105120 ◊ 1, 500 ◊ 18.920 = 830

Idle 105120 ◊ 297, 732 ◊ 0.009 = 78
Totals 1200

missed their scheduled battery change, batteries fell below 2.3 V in an average time of 300 days with

a standard deviation of 10 days. This is a performance of 33% as compare to the microbenchmarking

theoretical estimate, the reason for the performance di�erence is due to the microbenchmarking approach

assuming the node will function until it is fully drained, 0 V, rather than the functional range of 2.3 V.

This is why the measure of annual energy requirement has been used throughout this thesis. Battery life

was acceptable for the application, as batteries could be changed every six months in accordance with

scheduled system maintenance and tenant audits.

A.8 Summary

This appendix has described the design and development of Cogent-House a full end-to-end open-source

home environmental and energy monitoring system. Cogent-House, was developed to exemplify and

evaluate algorithms presented in this thesis.

The next appendix provides detail on the 37 Cogent-House deployments from which data extracted

from 235 nodes have been used as evaluation datasets in this thesis.
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Appendix B

Deployments and datasets

The proceeding table shows information regarding the deployments which produced the datasets used for

evaluation throughout this thesis. The table includes the following details:

1. House Id—A unique identifier for the deployment.

2. House type—An identifier for the house type formed of <HouseType><No. Bedrooms><Heating

Source>. A house type can be either a house (H), flat (F), or bungalow (B). Heating source can

either be electricity (E), gas (G), ground source heat pump (GS), Air source heat pump (A), or

district heating system (D). For example, considering a 4 bedroom bungalow heated by a ground

source heat pump the house type would be–B4GS.

3. Monitoring duration—This is the number of days the deployment was performed over.

4. Data yield—The yield of data usable for analysis.

5. Sensor type—Which phenomena were sensed in the home.

6. Min—Minimum value sensed by the phenomena.

7. Mean–Average value, and standard deviation, sensed by the phenomena.

8. Max—Maximum value sensed by the phenomena.

9. Evaluation dataset periods—The evaluation dataset periods the deployment is used in.
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Appendix C

Publications, presentations and

attended conferences

The work in this thesis has resulted in the following peer-reviewed publications, presentations, and

technical reports.

C.1 Journal publications

Edge mining the Internet of Things

Elena I. Gaura, James Brusey, Michael Allen, Ross Wilkins, Daniel Goldsmith, and Ramona Rednic.

“Edge mining the Internet of things”. In IEEE Sensors Journal. vol. 13, no. 10, Oct. 2013, pp.

3816–3825.

C.2 Conference proceedings

Sustainable future? Building and lifestyle assessment.

Elena I. Gaura, John Halloran, James Brusey, Ross Wilkins, and Ramona Rednic. “Sustainable future?

Building and life-style assessment”. In Proceedings 2012 International Conference on Advanced Computer

Science and Information Systems, Dec. 2012, pp. 7–11.

Bare necessities—Knowledge-driven WSN design.

Elena I. Gaura, James Brusey, Ross Wilkins. “Bare necessities—Knowledge-driven WSN design”. In

Proceedings of 10th IEEE Sensors Conference, Oct. 2011, pp. 66–70.
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Elena I. Gaura, James Brusey, Ross Wilkins, and John Barnham. “Wireless Sensing For The Built
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Technology 2011, June. 2011, pp. 353–358.

C.3 Technical reports
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Ross Wilkins, James Brusey. “Holistic Assessment of Building Thermal Insulation—Post-Refurbishment

In Use Test”. Technical Report COGENT-ETI.002, Coventry University, 2014

COGENT-ETI.001: Holistic Assessment of Building Thermal Insulation—In

Use Test

Ross Wilkins, James Brusey. “Holistic Assessment of Building Thermal Insulation—In Use Test”.

Technical Report COGENT-ETI.001, Coventry University, 2014

COGENT-ORBIT-11: Sampson Close Monitoring Report: Final Overview

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, James Brusey, and John Halloran. “Sampson

Close Monitoring Report: March 2013 to June 2013”. Technical Report COGENT-ORBIT.11, Coventry

University, 2013
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COGENT-ORBIT-10: Sampson Close Monitoring Report: June 2013 to Septem-

ber 2013

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, James Brusey, and John Halloran. “Sampson

Close Monitoring Report: June 2013 to September 2013”. Technical Report COGENT-ORBIT.10, Cov-

entry University, 2013

COGENT-ORBIT-08: Sampson Close Monitoring Report: March 2013 to

June 2013

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, James Brusey, and John Halloran. “Sampson

Close Monitoring Report: March 2013 to June 2013”. Technical Report COGENT-ORBIT.08, Coventry

University, 2013

COGENT-ORBIT-07: Sampson Close Monitoring Report: September 2012

to March 2013

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, James Brusey, and John Halloran. “Sampson

Close Monitoring Report: September 2012 to March 2013”. Technical Report COGENT-ORBIT.07,

Coventry University, 2013

COGENT-ORBIT-06: Sampson Close Monitoring: Annual Report (Septem-

ber 2011 – September 2012)

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, James Brusey, and John Halloran. “Sampson

Close Monitoring: Annual Report (September 2011 – September 2012)”. Technical Report COGENT-

ORBIT.06, Coventry University, 2012

COGENT-ORBIT-05: Sampson Close Monitoring: May to September 2012

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, James Brusey, and John Halloran. “Sampson

Close Monitoring: May to September 2012”. Technical Report COGENT-ORBIT.05, Coventry Univer-

sity, 2012
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COGENT-ORBIT-04: Sampson Close Monitoring: May 2012

Elena Gaura, John Kemp, Ramona Rednic, Ross Wilkins, and James Brusey. “Sampson Close Monit-

oring: May 2012”. Technical Report COGENT-ORBIT.04, Coventry University, 2012

COGENT-ORBIT-03: Sampson Close Monitoring: Winter Report and Ten-

ant Survey

Elena Gaura, James Brusey, John Halloran, Ross Wilkins, Ramona Rednic, and John Kemp. “Sampson

Close Monitoring: Winter Report and Tenant Survey. Technical Report”. Technical Report COGENT-

ORBIT.03, Coventry University, 2012

COGENT-SC.001: Baseline Occupant Survey and Energy Consumption Ana-

lysis

Elena Gaura, James Brusey, John Halloran, Ross Wilkins, Ramona Rednic, and John Kemp. “Sampson

Close Monitoring: Baseline Occupant Survey and Energy Consumption Analysis”. Technical Report

COGENT-SC.01, Coventry University, 2011

COGENT-ORBIT-02: Sampson Close Monitoring: Benefits and First Results

Elena Gaura, James Brusey, John Halloran, Ross Wilkins, Ramona Rednic, and John Kemp. “Sampson

Close Monitoring: Benefits and First Results”. Technical Report COGENT-ORBIT.02, Coventry Uni-

versity, 2011

COGENT-ORBIT-01: Orbit Deployments Winter and Summer 2010: Tem-

perature, Humidity and Comfort Exposure Report

Ross Wilkins. “Orbit Deployments Winter and Summer 2009: Temperature, Humidity, and Comfort

Exposure Report”. Technical Report COGENT-ORBIT.01, Coventry University, 2010

COGENT.008: The Need For Home Environment Monitoring For The In-

crease In Energy E�ciency And Indoor Environment Quality

Ross Wilkins. “The Need For Home Environment Monitoring For The Increase In Energy E�ciency

And Indoor Environment Quality”. Coventry University, 2009



APPENDIX C. PUBLICATIONS, PRESENTATIONS AND ATTENDED CONFERENCES 167

C.4 Presentations and demos

• Buildings Performance Evaluations Using Wireless Sensor Networks, NTU – Coventry

Research Exchange – Nottingham Trent University, UK

• DECENT Homes: Distributed Evaluation of Carbon Emissions through NeTworked

sensing in Homes (September 2012), Southampton – Coventry Research Exchange – Coventry

University, UK

• Implementing the Passivhaus concept: Towards Lower Carbon and Increased Comfort

Housing (September 2011), Southampton – Coventry Research Exchange – Coventry University,

UK

• Introducing the Passivhaus Project (June 2010), Southampton – Coventry Research Exchange

– Coventry University, UK

• Poster: Wireless Sensor Networks For Building Monitoring (May 2010), Coventry Univer-

sity Research Symposium 2010 – Coventry University, UK

C.5 Conferences attended

• The Building Performance Gap closing it through better measurement (December 2012)

– London, UK

• WiSIG: Advances in Wireless Sensor Networks for Hostile Environments (May 2012) –

Derby, UK

• M&E – The Building Services Event 2011 (October 2011) – London, UK

• Clean Technology 2011 (June 2011) – Boston, MA, USA

• WiSIG: Wireless Sensing for Smart Buildings (February 2011) – Coventry University, UK

• ACM Sensys 2010 (November 2010) – ETH Zurich, CH

• WiSIG: Sensing Technology 2010 (September 2010) – Birmingham, UK

• Wireless Communications to Enable the Internet of Things (March 2010) – Surrey Uni-

versity, UK
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• Workshop in Speckled Computing (Environment Monitoring) (December 2009) – Univer-

sity of Edinburgh, UK

• Ecif: Introduction to Wireless Sensor Networks (October 2009) – Coventry University, UK

Selected publications follow.



Wireless Sensing For The Built Environment: Enabling Innovation
Towards Greener, Healthier Homes
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Coventry University, Coventry, CV1 5FB
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john.barnham@orbit.org.uk
Abstract

Worldwide carbon reduction targets for the built en-
vironment are staggeringly ambitious. If they are to be
achieved, orders of magnitude performance increases are
required from HVAC systems, construction techniques
and insulating materials. Given the limited understand-
ing of many of the newer materials and techniques, ob-
jective measurement is fundamental to meeting these
targets in time. This paper presents the case for a holis-
tic approach to measurement within the built environ-
ment and shows how Wireless Sensor Networks (WSNs)
are a prime candidate technology to support such an
approach.

WSNs are readily enablers of understanding in do-
mains characterised by spatio-temporal, multivariate com-
plexity. Simple, portable and non-intrusive WSN sys-
tems, deployed for weeks or years, are powerful tools for
empirical environmental and energy performance eval-
uation of occupied dwellings. Coupled with structured
deployment processes and novel empirical evaluation met-
rics, WSNs enable, for old stock, focused actions towards
reduced energy consumption, improved internal environ-
ment, lower maintenance costs and maintaining the cost
viability of the building asset. They are equally valuable
in the context of new builds, for generic and apportioned
energy consumption evaluations against the delivered
environmental quality and design expectations.

Keywords: WSN, Built Environment, Energy Perfor-
mance, Occupant Comfort
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Inferring Knowledge From Building Monitoring Systems: The Case For
Wireless Sensing In Residential Buildings

Elena I. Gaura*, James Brusey*, Ross Wilkins*, John Barnham**

* Cogent Computing Applied Research Centre, Faculty of Engineering and Computing,
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Abstract

The built environment offers the Wireless Sensor Net-
works (WSNs) research and commercial communities,
potentially, the best set of applications yet, in terms
of market size, revenue and strength of the business
cases. The merits of using WSNs, however, to routinely
perform empirical evaluations of old and new building
stock have not been, as yet, fully appreciated by the do-
main’s specialists (developers, construction contractors,
surveyors, stock owners/users and regulatory bodies).
It is hypothesised here that, in spite of their technologi-
cal suitability, evident ability to generate vast amounts
of data and commercial readiness, WSNs success (and
thus their adoption) as tools for the built environment
relies on negotiating the data to knowledge gap. The pa-
per proposes a number of empirical metrics for holistic
assessment of stock performance in terms of its heat-
ing and cooling systems, fabric and estimated occupant
comfort. The metrics were developed iteratively in con-
sultation with built environment practitioners.

Keywords: WSN, Built Environment, Energy Perfor-
mance, Occupant Comfort, Metrics
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Bare necessities—Knowledge-driven WSN design
Elena I. Gaura, James Brusey and Ross Wilkins

Cogent Computing, Coventry University
Priory Lane, Coventry CV1 5FB

{e.gaura,j.brusey,wilkin24}@coventry.ac.uk

Abstract—The viability of wireless sensor applications often
hinges on minimising power consumption whilst maximising the
informational output. Although many low-level platform-oriented
energy saving mechanisms have been developed, considerable
savings are possible at application level. This work presents
an approach to pushing the calculation of application-level
state closer to the information source. The context in which
this approach is evaluated is a residential building monitoring
application. Combined with the Spanish Inquisition Protocol
(SIP), this is shown, based on deployment data, to reduce the
average transmission period for temperature data from once
every 5 minutes to an average of once every 38 days for an allowed
error threshold of 10% on any component of the application-level
state. For combined sensing of temperature, relative humidity
and CO2, the average transmission period drops to 13 days. This
transmission reduction should considerably extend network life
while having minimal effect on the usefulness of the information
gathered. Most importantly, the underlying approach generalises
to a wide variety of applications.

Index Terms—Wireless Sensor Networks
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1

Sustainable future? Building and life-style
assessment

Elena I. Gaura, John Halloran, James Brusey, Ross Wilkins, Ramona Rednic
Cogent Computing Applied Research Centre, Coventry University, Coventry, UK

e.gaura@coventry.ac.uk

Abstract—Energy, both in terms of its production and its
usage has occupied a prime place in research as well as politics
and world economy for the past few years. The majority of
nations are aiming to deliver severe carbon cuts in the next
few years. However, achieving a carbon-free future needs more
than infrastructure investment and novel efficient technologies
for buildings, transportation and other large consumer domains.
It needs a better understanding of people as consumers, as well
as a better understanding of energy waste across the multitude
of socio-techical systems around us.

With regards to the built environment and particularly resi-
dential buildings, the authors propose that dual, quantitative and
qualitative approaches to characterising, assessing and improv-
ing occupied buildings are necessary. Such approaches would
synchronously cater for understanding i) buildings technical
performance (fabric and building heating, cooling and ventilation
systems) and ii) occupant’s motivation, ability, knowledge and
efficacy for adopting low carbon lifestyles. When deployed at
scale, the above will enable cost effective, targeted interventions
for both building fabric and systems improvement and towards
empowering their occupants to live sustainably.

The paper describes such a quantitative and qualitative
approach and proposes assessment tools. Further, the authors
comment on the potential benefits from monitoring campaigns
when deployed at scale.

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.
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Edge mining the Internet of Things
Elena I. Gaura, James Brusey, Michael Allen, Ross Wilkins, Dan Goldsmith, and Ramona Rednic

Abstract—This paper examines the benefits of edge mining—
data mining that takes place on the wireless, battery-powered,
smart sensing devices that sit at the edge points of the Internet
of Things. Through local data reduction and transformation,
edge mining can quantifiably reduce the number of packets that
must be sent, reducing energy usage and remote storage re-
quirements. Additionally, edge mining has the potential to reduce
the risk to personal privacy through embedding of information
requirements at the sensing point, limiting inappropriate use.
The benefits of edge mining are examined with respect to three
specific algorithms: Linear Spanish Inquisition Protocol (L-SIP),
ClassAct, and Bare Necessities (BN), which are all instantiations
of General SIP (G-SIP). In general, the benefits provided by
edge mining are related to the predictability of data streams
and availability of precise information requirements; results show
that L-SIP typically reduces packet transmission by around 95%
(20-fold), BN reduces packet transmission by 99.98% (5000-
fold) and ClassAct reduces packet transmission by 99.6% (250-
fold). Although energy reduction is not as radical due to other
overheads, minimisation of these overheads can lead to up to a
10-fold battery life extension for L-SIP, for example. These results
demonstrate the importance of edge mining to the feasibility of
many IoT applications.
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Medium to High Risk Research Ethics Approval Checklist 
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Project Ref:  P26330 
Full name:  Ross Wilkins 
Faculty:  [EC] Faculty of Engineering and Computing 
Department:  [UE] Cogent 
Module Code:   
Supervisor:  Elena Gaura 

Project title:  Generalised approaches to transmissions reduction protocols in 
fielded Wireless Sensor Networks 

Date(s):  01/09/2009 - 12/09/2014 
Created:  13/08/2014 11:33 
 
Project Summary 
The project investigates the use of transmissions reduction protocols in Wireless Sensor 
Networks. The work presented makes use of secondary data, and data collected about the 
building environment to evaluate developed protocols. 

 

Names of Co-investigators (CIs) and their 
organisational affiliation: 

Elena Gaura (Coventry University), James 
Brusey (Coventry University), John Halloran 
(Coventry University) 

How many additional research staff will be 
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Names and their organisational affiliation 
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Who is funding the project? EPSRC 
Has the funding been confirmed? Yes 
Code of ethical practice and conduct most 
relevant to your project: British Computer Society 
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2. Does this project need ethical approval? 
Questions Yes No 

Does the project involve collecting primary data from, or about, living human 
beings?  X 

Does the project involve analysing primary or unpublished data from, or about, 
living human beings?  X 

Does the project involve collecting or analysing primary or unpublished data 
about people who have recently died other than data that are already in the 
public domain? 

 X 

Does the project involve collecting or analysing primary or unpublished data 
about or from organisations or agencies of any kind other than data that are 
already in the public domain? 

 X 

Does the project involve research with non-human vertebrates in their natural 
settings or behavioural work involving invertebrate species not covered by the 
Animals Scientific Procedures Act (1986)?1 

 X 

Does the project place the participants or the researchers in a dangerous 
environment, risk of physical harm, psychological or emotional distress?  X 

Does the nature of the project place the participant or researchers in a 
situation where they are at risk of investigation by the police or security 
services? 

 X 

Does the project involve the researcher travelling outside the UK?  X 

 

 

3 Does the project require Criminal Records Bureau checks? 
Questions Yes No 

Does the project involve direct contact by any member of the research team 
with children or young people under 18 years of age?   

Does the project involve direct contact by any member of the research team 
with adults who have learning difficulties?   

Does the project involve direct contact by any member of the research team 
with adults who are infirm or physically disabled?   

Does the project involve direct contact by any member of the research team 
with adults who are resident in social care or medical establishments?   

Does the project involve direct contact by any member of the research team 
with adults in the custody of the criminal justice system?   

Has a Criminal Records Bureau (CRB) check been stipulated as a condition of 
access to any source of data required for the project?   

 

If you answered Yes to any of these questions, please: 

• Explain the nature of the contact required and the circumstances in which contact will be 
made during the project. 

                                                        
1 The Animals Scientific Procedures Act (1986) was amended in 1993. As a result the common 
octopus (Octopus vulgaris), as an invertebrate species, is now covered by the act. 
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4  Is this project liable to scrutiny by external ethical review arrangements? 
Questions Yes No 

Has a favourable ethical opinion been given for this project by an external 
research ethics committee (e.g. social care, NHS or another University)?   

Will this project be submitted for ethical approval to an external research 
ethics committee (e.g. social care, NHS or another University)?   

 

 
5  More detail about the project 
What are the aims and objectives of the project? 

 

Briefly describe the principal methods, the sources of data or evidence to be used and the 
number and type of research participants who will be recruited to the project. 

 

What research instrument(s), validated scales or methods will be used to collect data? 

 

If you are using an externally validated research instrument, technique or research method, 
please specify. 

 

If you are not using an externally validated scale or research method, please attach a copy of 
the research instrument you will use to collect data.  For example, a measurement scale, 
questionnaire, interview schedule, observation protocol for ethnographic work or, in the case 
of unstructured data collection, a topic list. 
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6 Confidentiality, security and retention of research data 
Questions Yes No 

Are there any reasons why you cannot guarantee the full security and 
confidentiality of any personal or confidential data collected for the project?   

Is there a significant possibility that any of your participants, or people 
associated with them, could be directly or indirectly identified in the outputs from 
this project? 

  

Is there a significant possibility that confidential information could be traced 
back to a specific organisation or agency as a result of the way you write up the 
results of the project? 

  

Will any members of the project team retain any personal or confidential data at 
the end of the project, other than in fully anonymised form?    

Will you or any member of the team intend to make use of any confidential 
information, knowledge, trade secrets obtained for any other purpose than this 
research project? 

  

 

If you answered No to all of these questions: 

• Explain how you will ensure the confidentiality and security of your research data, both 
during and after the project. 

 

 

If you answered Yes to any of these questions: 

• Explain the reasons why it is essential to breach normal research protocol regarding 
confidentiality, security and retention of research data. 
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7 Informed consent 
Questions Yes No 

Will all participants be fully informed why the project is being conducted and 
what their participation will involve and will this information be given before the 
project begins? 

  

Will every participant be asked to give written consent to participating in the 
project before it begins?   

Will all participants be fully informed about what data will be collected and what 
will be done with these data during and after the project?   

Will explicit consent be sought for audio, video or photographic recording of 
participants?   

Will every participant understand what rights they have not to take part, and/or 
to withdraw themselves and their data from the project if they do take part?   

Will every participant understand that they do not need to give you reasons for 
deciding not to take part or to withdraw themselves and their data from the 
project and that there will be no repercussions as a result? 

  

If the project involves deceiving or covert observation of participants, will you 
debrief them at the earliest possible opportunity?   

 

If you answered Yes to all these questions: 

• Explain briefly how you will implement the informed consent scheme described in your 
answers.  

• Attach copies of your participant information leaflet, informed consent form and 
participant debriefing leaflet (if required) as evidence of your plans. 

 

 

If you answered No to any of these questions: 

• Explain why it is essential for the project to be conducted in a way that will not allow all 
participants the opportunity to exercise fully-informed consent. 

• Explain how you propose to address the ethical issues arising from the absence of 
transparency. 

• Attach copies of your participant information sheet and consent form as evidence of your 
plans. 
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8 Risk of harm 
Questions Yes No 

Is there any significant risk that your project may lead to physical harm to 
participants or researchers?   

Is there any significant risk that your project may lead to psychological or 
emotional distress to participants or researchers?   

Is there any significant risk that your project may place the participants or the 
researchers in potentially dangerous situations or environments?   

Is there any significant risk that your project may result in harm to the reputation 
of participants, researchers, their employers, or other persons or organisations?   

 

If you answered Yes to any of these questions: 

• Explain the nature of the risks involved and why it is necessary for the participants or 
researchers to be exposed to such risks. 

• Explain how you propose to assess, manage and mitigate any risks to participants or 
researchers. 

• Explain the arrangements by which you will ensure that participants understand and 
consent to these risks. 

• Explain the arrangements you will make to refer participants or researchers to sources of 
help if they are seriously distressed or harmed as a result of taking part in the project. 

• Explain the arrangements for recording and reporting any adverse consequences of the 
research. 
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9 Risk of disclosure of harm or potential harm  
Questions Yes No 

Is there a significant risk that the project will lead participants to disclose 
evidence of previous criminal offences or their intention to commit criminal 
offences? 

  

Is there a significant risk that the project will lead participants to disclose 
evidence that children or vulnerable adults have or are being harmed or are at 
risk of harm? 

  

Is there a significant risk that the project will lead participants to disclose 
evidence of serious risk of other types of harm?   

 

If you answered Yes to any of these questions:  

• Explain why it is necessary to take the risks of potential or actual disclosure. 
• Explain what actions you would take if such disclosures were to occur. 
• Explain what advice you will take and from whom before taking these actions. 
• Explain what information you will give participants about the possible consequences of 

disclosing information about criminal or serious risk of harm. 
 

 
 
10 Payment of participants 
Questions Yes No 

Do you intend to offer participants cash payments or any other kind of 
inducements or compensation for taking part in your project?   

Is there any significant possibility that such inducements will cause participants 
to consent to risks that they might not otherwise find acceptable?   

Is there any significant possibility that the prospect of payment or other rewards 
will systematically skew the data provided by participants in any way?   

Will you inform participants that accepting compensation or inducements does 
not negate their right to withdraw from the project?   

 

If you answered Yes to any of these questions:  

• Explain the nature of the inducements or the amount of the payments that will be offered. 
• Explain the reasons why it is necessary to offer payments. 
• Explain why you consider it is ethically and methodologically acceptable to offer 

payments. 
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11 Capacity to give informed consent 
Questions Yes No 

Do you propose to recruit any participants who are under 18 years of age?   

Do you propose to recruit any participants who have learning difficulties?   

Do you propose to recruit any participants with communication difficulties 
including difficulties arising from limited facility with the English language?   

Do you propose to recruit any participants who are very elderly or infirm?   

Do you propose to recruit any participants with mental health problems or other 
medical problems that may impair their cognitive abilities?   

Do you propose to recruit any participants who may not be able to understand 
fully the nature of the research and the implications for them of participating in 
it? 

  

 

If you answered Yes to any of the first four questions:  

• Explain how you will ensure that the interests and wishes of participants are understood 
and taken in to account. 

• Explain how in the case of children the wishes of their parents or guardians are 
understood and taken into account. 
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12 Is participation genuinely voluntary? 
Questions Yes No 

Are you proposing to recruit participants who are employees or students of 
Coventry University or of organisation(s) that are formal collaborators in the 
project? 

  

Are you proposing to recruit participants who are employees recruited through 
other business, voluntary or public sector organisations?   

Are you proposing to recruit participants who are pupils or students recruited 
through educational institutions?   

Are you proposing to recruit participants who are clients recruited through 
voluntary or public services?   

Are you proposing to recruit participants who are living in residential 
communities or institutions?   

Are you proposing to recruit participants who are in-patients in a hospital or 
other medical establishment?   

Are you proposing to recruit participants who are recruited by virtue of their 
employment in the police or armed services?   

Are you proposing to recruit participants who are being detained or sanctioned 
in the criminal justice system?   

Are you proposing to recruit participants who may not feel empowered to refuse 
to participate in the research?   

 

If you answered Yes to any of these questions: 

• Explain how your participants will be recruited. 
• Explain what steps you will take to ensure that participation in this project is genuinely 

voluntary. 
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13  On-line and Internet Research 
Questions Yes No 

Will any part of your project involve collecting data by means of electronic media 
such as the Internet or e-mail?   

Is there a significant possibility that the project will encourage children under 18 
to access inappropriate websites or correspond with people who pose risk of 
harm? 

  

Is there a significant possibility that the project will cause participants to become 
distressed or harmed in ways that may not be apparent to the researcher(s)?    

Will the project incur risks of breaching participant confidentiality and anonymity 
that arise specifically from the use of electronic media?   

 

If you answered Yes to any of these questions: 

• Explain why you propose to use electronic media. 
• Explain how you propose to address the risks associated with online/internet research. 
• Ensure that your answers to the previous sections address any issues related to online 

research. 
 

 
 
14 Other ethical risks 
Question Yes No 

Are there any other ethical issues or risks of harm raised by your project that 
have not been covered by previous questions?   

 

If you answered Yes to this question: 

• Explain the nature of these ethical issues and risks. 
• Explain why you need to incur these ethical issues and risks. 
• Explain how you propose to deal with these ethical issues and risks. 
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15 Research with non-human vertebrates2 
Questions Yes No 

Will any part of your project involve the study of animals in their natural habitat?   

Will your project involve the recording of behaviour of animals in a non-natural 
setting that is outside the control of the researcher?   

Will your field work involve any direct intervention other than recording the 
behaviour of the animals available for observation?   

Is the species you plan to research endangered, locally rare or part of a 
sensitive ecosystem protected by legislation?   

Is there any significant possibility that the welfare of the target species or those 
sharing the local environment/habitat will be detrimentally affected?   

Is there any significant possibility that the habitat of the animals will be damaged 
by the project such that their health and survival will be endangered?   

Will project work involve intervention work in a non-natural setting in relation to 
invertebrate species other than Octopus vulgaris?   

 

If you answered Yes to any of these questions: 

• Explain the reasons for conducting the project in the way you propose and the academic 
benefits that will flow from it. 

• Explain the nature of the risks to the animals and their habitat. 
• Explain how you propose to assess, manage and mitigate these risks. 
 

  

                                                        
2 The Animals Scientific Procedures Act (1986) was amended in 1993.  As a result the common 
octopus (Octopus vulgaris), as an invertebrate species, is now covered by the act. 
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16 Blood Sampling / Human Tissue Analysis 
Questions Yes No 

Does your project involve blood sampling or human tissue analysis?  X 

If your study involves blood samples or body fluids (e.g. urine, saliva) have you 
clearly stated in your application that appropriate guidelines are to be followed 
(e.g. The British Association of Sport and Exercise Science Physiological 
Testing Guidelines (2007) or equivalent) and that they are in line with the level 
of risk? 

  

If your study involves human tissue other than blood and saliva have you clearly 
stated in your application that appropriate guidelines are to be followed? (e.g. 
The Human Tissues Act, or equivalent) and that they are in line with the level of 
risk? 

  

 

If you answered No to any of these questions, please provide more information: 

 

 

 
Note:  This checklist is based on an ethics approval form produce by Research Office of the College of Business, 
Law and Social Sciences at Nottingham Trent University.  Copyright is acknowledged. 
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PARTICIPANT(INFORMATION(SHEET(!
COGENT(COMPUTING(ARC(DEPARTMENT(!
COVENTRY(UNIVERSITY!
!
!
!
!
Thank(you(for(considering(participating(in(this(research(work.(This(information(explains(what(you(will(be(

asked(to(do.(If(you(have(any(questions(about(this(please(contact(Dr(James(Brusey(
(j.brusey@coventry.ac.uk(;(+44((0)(24(7765(9184).((

!
Please(note(that(you(are(free(to(stop(taking(part(in(this(investigation(at(any(time.!
!
!

Information(about(the(project/Purpose(of(the(project!

The! aim! of! the! research! is! to! develop! a! low! cost,! robust! and! long! lived! energy! and! environmental!
monitoring!system!which!allows!for!automated!profiling!of!resident!behaviour,!particularly!associated!with!
space!heating!and!heating!energy!miss9use.!
It! is! envisaged! that!monitoring! systems! such! as! the! one! to! be! developed,! prototyped! and! trialled! here!
(based!on!current!Cogent!design)!will!become!permanent!fixtures!of!new!builds!to!allow!for!both!building!
performance!monitoring!and!occupiers!empowerment!towards!sustainable!living.!
It!is!foreseen!that!the!following!parameters!will!be!part!of!the!monitoring!solution:!

Electricity!at!meter!level!
Temperature!(at!several!locations)!
Relative!humidity!(at!several!locations)!
Air!quality!(CO2)!
Gas!consumption!
Heating!(measured!through!a!heat!meter)!
Window!opening!(measured!intermittently!with!a!window!sensor)!

!
Why(have(I(been(chosen?!

You!have!been!approached!to!take!part!as!you!are!living!in!a!set!of!flats!that!are!being!renovated!with!an!
innovative!approach!to!improve!their!thermal!performance.!!
!
Do(I(have(to(take(part?!

You!do!not!have!to!take!part!in!this!research!project!if!you!do!not!want!to!and!you!do!not!need!to!give!any!
reason!if!you!decide!not!to!take!part!at!any!time!of!your!involvement.!
!
What(do(I(have(to(do?(

If!you!agree!to!take!part,!please!sign!and!date!at!the!end!of!the!form.!No!other!action!is!needed.!!

!
What(are(the(risks(associated(with(this(project?!

There!are!no!risks!associated!with!this!study.!
!
What(are(the(benefits(of(taking(part?!

You! are! potentially! contributing! to! help! improve! the! energy! efficiency! of! your! home! and! other! similar!
homes.!
!



Withdrawal(options!

You!are!free!to!stop!taking!part!in!this!study!at!any!time!and!you!do!not!have!to!give!any!reason!for!this!but!
you!should!contact!the!team!(see!below)!and!provide!opportunities!for!removal!of!equipment.!!
!
Data(protection(&(confidentiality(!

Participant! confidentiality! will! be! maintained! at! all! times.! ! For! the! purpose! of! confidentiality! all! data!
collected!will!remain!anonymous!and!therefore!will!be!coded.!!Data!will!only!be!accessible!to!the!research!
team.!Data!will!be!stored!on!a!secured!computer.!Upon!completion!of!the!study!any!electronic!file!or!hard!
copy!containing!personal!details!and!anonymity!coding!will!be!destroyed.!
!
Who(should(you(talk(to(if(you(have(questions(or(you(wish(to(make(a(complaint!

If!you!have!any!questions!or!queries!a!member!of!the!research!team!will!be!happy!to!answer!them.!If!they!
cannot!help!you!can!speak!to!any!of!the!key!contacts!listed!below.!If!you!have!any!questions!about!your!
rights!as!a!participant!or!feel!you!have!been!placed!at!risk!please!contact!James!Brusey!(details!below).!
!

What(will(happen(with(the(results(of(the(study?!

Any!data/!results!from!your!participation!in!the!study!will!be!used!by!Cogent!Computing!to!produce!a!
report!for!e2Rebuild!(an!EU!project).!It!may!also!be!published!in!scientific!works.!In!all!cases,!your!name!or!
identity!will!not!be!revealed.!!
!

!
Key(contact(details(!

!

Dr(James(Brusey,(Coventry(University!

j.brusey@coventry.ac.uk!

+44((0)(24(7765(9184!

!

Mr(Ross(Wilkins,(Coventry(University(

ab7438@coventry.ac.uk(

(

!
! !



Please!confirm!that!you!have!seen!the!(attached)!participant!information!sheet!and!that!you!consent!to!be!
part!of!the!study!by!signing!and!dating!below.!
!
Please!note!that!you!may!still!subsequently!withdraw!from!the!study!at!any!time.!!
!
!
!
Signature!_____________________________!!!!!!!Date!__________________!
!
!
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