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Abstract

A fall-detection system is employed in order to monitor an older person or infirm
patient and alert their carer when a fall occurs. Some studies use wearable-sensor
technologies to detect falls, as those technologies are getting smaller and cheaper. To
date, wearable-sensor-based fall-detection approaches are categorised into threshold-
and machine-learning-based approaches. A high number of false alarms and a high
computational cost are issues that are faced by the threshold- and machine-learning-
based approaches, respectively. The goal of this thesis is to address those issues by
developing a novel low-computational-cost machine-learning-based approach for fall
detection using accelerometer sensors.

Toward this goal, existing fall-detection approaches (both threshold- and
machine-learning-based) are explored and evaluated using publicly accessible data-
sets: Cogent, SisFall, and FARSEEING. Four machine-learning algorithms are im-
plemented in this study: Classification and Regression Tree (CART), k-Nearest
Neighbour (k-NN), Logistic Regression (LR), and Support Vector Machine (SVM).
The experimental results show that using the correct size and type for the sliding
window to segment the data stream can give the machine-learning-based approach
a better detection rate than the threshold-based approach, though the di�erence
between the threshold- and machine-learning-based approaches is not significant in
some cases.

To further improve the performance of the machine-learning-based approaches,
fall stages (pre-impact, impact, and post-impact) are used as a basis for the feature-
extraction process. A novel approach called an event-triggered machine-learning
approach for fall detection (EvenT-ML) is proposed, which can correctly align fall
stages into a data segment and extract features based on those stages. Correctly
aligning the stages to a data segment is di�cult because of multiple high peaks,
where a high peak usually indicates the impact stage, often occurring during the
pre-impact stage. EvenT-ML significantly improves the detection rate and reduces
the computational cost of existing machine-learning-based approaches, with an up
to 97.6% F-score and a reduction in computational cost by a factor of up to 80
during feature extraction. Also, this technique can significantly outperform the
threshold-based approach in all cases.

Finally, to reduce the computational cost of EvenT-ML even further, the num-
ber of features needs to be reduced through a feature-selection process. A novel
genetic-algorithm-based feature-selection technique (GA-Fade) is proposed, which
uses multiple criteria to select features. GA-Fade considers the detection rate, the
computational cost, and the number of sensors used as the selection criteria. GA-
Fade is able to reduce the number of features by 60% on average, while achieving
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an F-score of up to 97.7%. The selected features also can give a significantly lower
total computational cost than features that are selected by two single-criterion-based
feature-selection techniques: SelectKBest and Recursive Feature Elimination.

In summary, the techniques presented in this thesis significantly increase the
detection rate of the machine-learning-based approach, so that a more reliable fall-
detection system can be achieved. Furthermore, as an additional advantage, these
techniques can significantly reduce the computational cost of the machine-learning
approach. This advantage indicates that the proposed machine-learning-based ap-
proach is more applicable to a small wearable device with limited resources (e.g.,
computing power and battery capacity) than the existing machine-learning-based
approaches.
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Chapter 1

Introduction

Falls can cause several types of injury, including fractures, open wounds, bruises,

sprains, joint dislocations, brain injuries, or strained muscles [138]. These fall-related

injuries are critical, especially for older people, as they get weaker because of ageing.

The World Health Organization (WHO) [121] reports that falls are the second-

leading cause of injury-related deaths worldwide. In the UK, falls are the main

cause of disability and death for people aged over 75 years [3], while in Australia the

number of fall-related hospitalisation patients was relatively high at around 96,000

people in the financial year 2011–2012 [81].

Nowadays, a fall-detection system is employed to notify nurses or healthcare

emergency services when a patient has fallen. Based on Igual et al. [79], a fall-

detection system is defined as: “an assistive device whose main objective is to alert

when a fall event has occurred”. Although a fall-detection system cannot prevent

falls, it may alleviate or reduce complications by going some way toward ensur-

ing that fall victims receive help quickly. Also, fall detection and alerting systems

must work autonomously, as the fall victim may be unable to trigger an alarm [56].

Being left unattended after a fall can be a serious problem for older people. An

older person who has experienced an unattended fall is more likely to be hospit-

alised with diagnoses of volume depletion, gastrointestinal bleeding, urinary-tract
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infections, pneumonia, decubitus ulcer, myocardial infarction, and chest pain [145].

Moreover, based on Tinetti et al.’s study [145], non-institutionalised fall victims who

were unable to get up were reported to have a decrease in their ability to do basic

activities of daily living for three consecutive days after experiencing falls. This

means that help must be provided as soon as the victim experiences a fall to reduce

complications.

Current studies in fall detection have shown that using wearable sensor techno-

logy can give promising results [10, 24, 25, 34, 37, 43, 44, 47, 50, 64, 80, 92, 120, 127].

Advances in wearable sensor technologies, as an impact of the development of micro-

electromechanical systems (MEMS), mean that wearable sensors are getting smaller

and need less power. Although the development of the hardware is improving rap-

idly, that does not mean that the fall-detection system is getting better.

Based on Igual et al. [79], accelerometer-based fall-detection systems are cat-

egorised into two types: threshold-based approaches and machine-learning based

approaches. The threshold-based approaches utilise manually-defined thresholds,

where some studies use a pattern search approach to optimise their threshold [153,

152], to distinguish between falls and activities of daily living (ADLs), while the

machine-learning-based approaches implement machine-learning techniques (e.g.,

decision tree (DT), k-nearest neighbour (k-NN), and support vector machine (SVM))

to build a classifier. This study has identified some knowledge gaps in existing fall-

detection studies using wearable sensors, which are discussed in the next section.

The rest of this chapter is organised as follows: Section 1.1 discusses knowledge

gaps in fall-detection studies. Section 1.2 provides research questions of this study.

Sections 1.3 and 1.4 show contributions to knowledge and the methodology of this

study, respectively. Section 1.5 shows some publications generated from this study.

The thesis structure is explained in Section 1.6.
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1.1. The knowledge gaps 3

1.1 The knowledge gaps

Although there are existing fall-detection approaches that can give promising results

from the studies mentioned above, the following issues have not been considered in

those studies:

• Some existing machine-learning-based approaches use a fixed-size non-overlapping

sliding window (FNSW) or a fixed-size overlapping sliding window (FOSW) to

segment the accelerometer signal before doing the feature extraction [23, 43,

50, 75, 84, 118, 148]. In fact, this sliding-window technique is widely used by

human-activity recognition studies using wearable sensors [20, 74, 94, 122, 107,

113, 114, 131, 142, 151, 159, 160, 161, 162, 164, 169]. This segmentation pro-

cess is critical, as it can increase the classifier’s detection rate [13, 122]. The

existing studies [50, 44, 43, 118, 148] empirically choose their window type

and size. However, these studies do not provide an analysis to support their

choices. Therefore, the impact of the window type and size on the classifier

detection rate (false-alarm and undetected-fall rates) remains unclear. This

impact analysis is critical, as it can give a guidance to fall-detection system

developers to develop their own system, in order to make an improvement on

the classifier detection rate.

• Fall-detection approaches are categorised into two classes: threshold- and

machine-learning-based approaches [79]. Azis et al. [8] showed that machine-

learning-based approaches are able to outperform threshold-based approaches.

However, their study compares threshold-based approaches with only FNSW-

based machine-learning approaches. Also, their dataset is not publicly access-

ible. In fact, most of the current studies in accelerometer-sensor-based fall

detection use their own dataset, where those datasets are not publicly avail-

able. This causes a validation issue, because the results of those studies are not

comparable and the tests of those studies are hard to reproduce [33, 32, 80].
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Thus, it is not clear whether both FNSW- and FOSW-based machine-learning

approaches achieve a better detection rate than the threshold-based approach

on publicly accessible datasets.

• A fall event consists of several stages: pre-impact, impact, and post-impact [89,

118]. These stages are widely used as a basis to extract features by threshold-

based approaches [24, 34, 47, 86, 88, 136, 152]. However, for the sliding-

window-based machine-learning approaches [43, 50, 75, 84, 148], using these

stages as a basis for feature extraction is not yet explored. In fact, Ojetola [118]

and Putra et al. [127] showed that extracting features based on fall stages (pre-

impact, impact, and post-impact) for the machine-learning-based approach

can give a relatively good detection rate (93% of F-score for Ojetola study

and a 93.5% of F-score for Putra et al. study), as every stage has its own

characteristics. The main problem with extracting features from those stages

is that it is hard to estimate the beginning and the end of each stage when

a sliding window is used, and this issue is not investigated in Ojetola and

Putra et al. studies. Abbate et al. [2] utilised high acceleration peaks to es-

timate the impact stage. However, peaks also occur during the pre-impact

stage as a result of protective actions [82] and during the post-impact stage

due to a waist bouncing [2]. These peaks make the data-stream segmentation

process even harder, as it can misalign the segment with the fall stages. An-

other problem that is encountered by the machine-learning-based approaches

is a computational-cost issue. Kau et al. [92] showed that extracting complex

features for the classification process can increase the system’s computational

cost. Having a high-computational-cost system on a wearable device is a disad-

vantage because this device has limited resources (e.g., computing power and

battery capacity). These computational-cost and multi-peak issues remain

unexplored in the previous studies.
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• Another way to reduce the computational cost of the system is by reducing

the number of features using a feature-selection technique [102, 133]. Based

on Guyon et al. [72], feature-selection techniques are categorised into three

classes: filter-, wrapper-based, and embedded. A disadvantage of the current

feature-selection techniques is that most of them are not designed to handle

multiple selection criteria (e.g, classification accuracy, feature measurement

cost, etc.) [165]. This makes most of these techniques only focus on selecting

features that can improve the accuracy, without considering the computational

cost. There are high-computational-cost features which can give a high accur-

acy. As an example, using the tilt angle of the body can give a better detection

rate than using a minimum acceleration vector magnitude [118], where the tilt

angle of the body is calculated by combining tilt angles from accelerometer

and gyroscope using a Kalman Filter. In fact, a Kalman Filter implement-

ation is not suitable for wearable devices with a limited processing unit and

memory [143]. A study from Saeedi et al. [130] proposed a filter-based fall-

detection approach to select features based on the detection rate and energy

consumption. However, their study focuses only on non-fall activities. Wang

et al.’s study [154] proposes a feature-selection technique that is based on

the detection rate and energy consumption for fall detection using wearable

sensors. They propose a wrapper-based feature-selection technique to reduce

the number of features from ten to four features. The problem with this study

is that it does not provides a clear explanation regarding the way a feature

removed from the subset in each iteration. Also, it does not select the best

subset from all evaluated subsets. Another problem with Wang et al’s study

is that it does not compare the proposed approach with other types of feature-

selection techniques. Thus, from their study, it is not clear whether using a

wrapper-based technique is e�ective in finding a subset of features that can

give an equal or higher detection rate and lower computational cost than using
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filter-based or embedded techniques. The last criterion for feature selection

that needs to be considered is the number of sensors. Gjoreski et al. [64] show

that adding more sensors can increase the system detection rate. However,

selecting features from di�erent sensor placements has not been explored in

the existing fall-detection studies.

Based on the gaps above, the next section discusses four research questions which

drive the work in this thesis.

1.2 Research questions

The main aim of this thesis is to reduce the knowledge gaps in fall-detection studies

above. Thus, four research questions have been formulated:

1. RQ1- What is the impact of the sliding-window type and size on the classifier

detection rate (precision, recall, and F-score) when the machine-learning-based

approach is used?

As the role of the sliding window is critical, because it can a�ect the qual-

ity of the extracted features, this question explores the impact of di�erent

sliding-window types and sizes on the classifier’s detection rate (precision, re-

call, and F-score). This question also aims to investigate the advantages and

disadvantages of the existing machine-learning-based approaches.

2. RQ2- Does the sliding-window machine-learning based approach provide a

significantly better detection rate than the threshold-based approach on pub-

licly accessible datasets?

This question aims to investigate the performance of existing fall-detection

approaches (both threshold- and machine-learning-based approaches). Pub-

licly accessible datasets are used to achieve a fair comparison between tech-

niques [80].
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3. RQ3- Does correctly aligning a segment with the fall stages (pre-impact, im-

pact, and post-impact) and using the state of the body of the subject (active or

inactive) to trigger the feature-extraction and classification processes improve

both the system’s detection rate and reduce its computational cost?

Based on previous studies [118, 127], extracting features from fall stages can

improve the classifier’s detection rate. However, estimating the beginning

and the end of each stage of a fall remains problematic. Also, using a tradi-

tional sliding window can increase the computational cost of the system [127].

Therefore, this question evaluates the use of a state machine to correctly align

a segment with fall stages and detect the state of the body to trigger the

feature-extraction and classification processes, with aims to both significantly

increase the classifier’s detection rate and reduce the system’s computational

cost.

4. RQ4- Does a meta-heuristic search technique (genetic algorithm) select fea-

tures that have a higher detection rate and a lower computational cost than

features that are selected by single-criterion-based feature-selection techniques

(filter-based and embedded techniques)?

This question asks whether a meta-heuristic search technique (for example

a genetic algorithm) can be used to find a subset of features from di�erent

sensor placements, that can give the best trade-o� between detection rate and

computational cost (multi-criteria-based feature-selection technique). Having

an accurate and low-computational-cost fall-detection system is important so

that the system can be implemented on a small wearable device with limited

resources (for example memory and battery power).

1.3 Contributions to knowledge

This thesis provides three main contributions to knowledge:
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1. A study of both threshold- and machine-learning-based fall-detection ap-

proaches on publicly accessible datasets. This contribution aims to answer

RQ1 and RQ2. For the impact of the window size on the classifier detection

rate (RQ1), increasing the window size of the fixed-size non-overlapping sliding

window (FNSW) does not necessarily increase the detection rate (in terms of

precision, recall, and F-score), unless the lengths of all falls are fixed and uni-

form. On the other hand, increasing the overlap of the fixed-size overlapping

sliding window (FOSW) can reduce the precision in most cases regardless of the

machine-learning algorithm. This study shows that increasing the overlap of

the FOSW causes an increase in the number of data overlaps between fall and

non-fall activities, where these data overlaps cause a reduction in precision.

To answer RQ2, a comparison, using publicly accessible datasets, between

a threshold-based approach and sliding-window-based machine-learning ap-

proaches is provided. The threshold-based approach can achieve an F-score

of up to 88.6%, while the machine-learning-based approaches can achieve an

F-score of up to 96.5%. These results show that machine-learning-based ap-

proaches achieve a better detection rate than the threshold-based approach.

However, the di�erence is not significant in some cases. This means that

the machine-learning-based approach still needs to be improved, so that it can

achieve a significantly better detection rate than the threshold-based approach

in all cases. More detailed results regarding this investigation are provided in

Chapter 4.

2. An event-triggered machine-learning approach for fall detection

(EvenT-ML). This contribution provides an answer to RQ3 by proposing

a state machine that correctly aligns a segment to fall stages, extracts features

based on those stages, and uses the state of the user’s body to trigger the fea-

ture extraction and classification process. This approach is able to achieve an

F-score of up to 97.6%, where this result is significantly better than threshold-

8
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based, FNSW-, and FOSW-based machine-learning approaches in all cases.

Extracting features based on fall stages is not yet widely used in the sliding-

window-based machine-learning approaches in the literature. However, the

results from this study show that extracting features based on fall stages can

significantly improve the classifier’s detection rate. As an additional advant-

age, EvenT-ML has a significantly lower computational cost than the sliding-

window-based machine-learning approaches. Also, EvenT-ML can solve the

multi-peak issue, which makes EvenT-ML achieve a significantly better F-

score than an existing fall-stage-based machine-learning approach from Putra

et al. [127]. Chapter 5 provides an overview of EvenT-ML, together with its

performance analysis.

3. A genetic-algorithm-based feature selection for fall detection using

wearable sensors (GA-Fade). Extracting features from fall stages (pre-

impact, impact, and post-impact) can cause the computational cost of the

system to increase, because the number of features increases three times. Fea-

ture selection is needed to reduce the dimensionality of the feature space, so

that the computational cost of the system can be reduced. Also, discarding

unnecessary features can increase the classifier detection rate [167]. GA-Fade

is proposed to select features that can give a similar F-score to features that are

selected by other feature selection techniques, with a lower computational cost,

and this is an answer to RQ4. A comparative study between a wrapper-based

(GA-Fade), a filter-based (SelectKBest [125]), and an embedded techniques are

implemented for this study. The results show that these three feature-selection

techniques are able to select features with comparable results in terms of F-

score. However, GA-Fade is superior compared to the other two techniques

because it can select a subset of features that can give a significantly lower

computational cost. This result also confirms that a wrapper-based feature-

selection technique is more e�ective to select features with multiple criteria

9
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than filter-based and embedded techniques.

Table 1.1 shows a summary of the relationships between the problems, the research

questions, and the contributions of this study.

1.4 Research methodology

Much of the work on this thesis is based on experimental work and simulation on

existing publicly accessible fall datasets. Figure 1.1 shows the steps in this research.

Publicly accessible datasets: Cogent [119], SisFall [140], and FARSEEING [1] were

used in this study. Detailed information about the datasets is provided in Chapter 3.

All experiments were carried out o�ine on a personal computer (PC) using well-

known software libraries (for example the Scikit-learn machine-learning library using

the Python programming language [125]), so that all results provided in this thesis

are reproducible (the relevance of this method to real-world sensor motes is further

discussed in Section 5.2 on page 111). Comparison studies were also conducted, to

evaluate the improvement of the proposed techniques over existing techniques.

To measure the performance of the classifier, metrics other than accuracy are

chosen. This is because the number of fall data is less than for other activities

(data imbalance), and using accuracy can overvalue the always-negative classifier (a

classifier that always classifies all samples to the negative class) [55]. Thus, precision,

recall, and F-score are used in this study. A leave-one-subject-out cross-validation

(LOSOCV) technique is implemented across this thesis to evaluate the performance

of the classifier [62, 120], since it intuitively seems to produce an unbiased estimator

of performance with unseen subjects. For fall detection, the main source of variation

is due to characteristics of the subjects or how sensors are attached rather than,

say, the time of day or the temperature in the room. However, it is clear that this

estimator may be subject to variance and, to some extent, this can be observed in

the variance of the test results obtained from cross validation (i.e., with K-folds or

10
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K subjects, K di�erent test results are obtained).

The variance in the LOSOCV estimate may endanger conclusions about whether

one algorithm outperforms another and this issue has been studied, in the context

of K-fold CV by Bengio and Grandvalet [16]. They make it clear that one cannot

obtain an unbiased estimate of the variance from ordinary K-fold CV. They do not

make a claim about LOSOCV – and it may have better characteristics that K-fold

CV. However, until such a result is produced, claims of algorithm superiority based

on confidence intervals derived from the variance in LOSOCV results should be

cautiously analysed.

Chapter 5 uses a hold-out validation technique as an additional check to measure

the e�ectiveness of using data from young and healthy subjects to detect falls in

older people. The hold-out validation technique splits the data into a training and

a testing set. In this case, the hold-out validation technique uses the data from

young and healthy subjects as the training set and the data from older people

as the testing set. A Wilcoxon signed-rank test is applied in order to measure the

significance of the improvement of the proposed techniques, because the distribution

of precision, recall, and F-score values in this study are not normal (the normality

of the variables’ distributions are measured using the Shapiro-Wilk normality test).

Thus, using the Wilcoxon signed-rank test for this study is appropriate since it does

not assume normal distribution or homogeneity of variance, therefore it is safer than

the parametric test (e.g., t-test) [42]. Another reason for using the Wilcoxon signed-

rank test in this study is that the results that are produced by the cross-validation

technique are not-independent [16]. Based on Krauth [97], the Wilcoxon signed-rank

test can be used as an alternative for dependent samples.

The simulation software was built by adopting the extreme-programming soft-

ware development methodology [21, 38]. The extreme-programming development

methodology allows short development cycles, where this methodology can increase

the productivity of the software. An acceptance test (in this case a unit test) was

12
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Figure 1.1: Research methodology

implemented iteratively to ensure that all functionalities of the system are tested

adequately. All software was built using the Python programming language. Fig-

ure 1.2 shows the software development methodology used in this study.

1.5 Publications

This research has fully or partly contributed to the following publications.

1.5.1 Conference papers, poster, and journal articles

• Putra, P. I., Brusey, J., Gaura, E., and Vesilo, R. 2018. An Event-Triggered

Machine Learning Approach for Accelerometer-Based Fall Detection. Sensors.

https://doi.org/10.3390/s18010020

• Putra, P. I., Brusey, J., and Gaura, E. 2015. A Cascade-Classifier Approach

for Fall Detection. In Proceedings of the 5th EAI International Conference on

Wireless Mobile Communication and Healthcare (MOBIHEALTH’15), Akram

Alomainy, William Whittow, Yang Hao, Konstantina S. Nikita, and Clive

G. Parini (Eds.). ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, pp.
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Figure 1.2: Software development methodology. This schematic is a modified version
of an extreme-programming methodology from Choudhari and Suman [38]

94–99.

• Putra, I. P. E. S, Brusey, J., Gaura, E. 2015. An intelligent system for fall

detection using wearable sensors: issues and challenges, In Proceedings of the

10th International Student Conference on Advanced Science and Technology

(ICAST) 2015, Surabaya, Indonesia, pp. 93–94.

• Putra, I. P. E. S, and Vesilo, R. “Genetic algorithm-based feature selection

technique for fall detection using multi-placement wearable sensors”, In Pro-

ceedings of the 12th International Conference on Body Area Networks 2017.

• Putra, I. P. E. S, and Vesilo, R. “Window-size impact on detection rate of

wearable sensor-based fall detection using supervised machine learning”, In

Proceedings of the 1st IEEE Life Sciences Conference 2017.

• Putra, I. P. E. S. A cascade-classifier approach for fall detection. presented as

a research poster in the Coventry University Research Symposium, 2014.
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1.5.2 Presentations

• The inaugural Macquarie University Research Minds Showcase 2016.

• Sydney Research Bazaar (ResBaz), University of Technology Sydney, 2017

(https://2017.resbaz.com/sydney).

1.5.3 Awards

• Macquarie University Postgraduate Research Funding (PGRF) 2017.

Appendix B details further output resulting from this work, including full copies of

the poster, conference and journal papers.

1.6 Thesis structure

Figure 1.3 shows a breakdown of contribution chapters of this thesis. This chapter

provides the background, methodology, research questions, and information about

the contributions to knowledge of this thesis. Several existing studies are discussed in

Chapter 2. More detailed information regarding the Cogent, SisFall, and FARSEE-

ING datasets are provided in Chapter 3. Chapter 4 investigates the performance

(in terms of precision, recall, and F-score) of both the threshold-based and machine-

learning-based fall-detection techniques. A comparison study between threshold-

and machine-learning-based studies is also provided in this chapter. The event-

triggered machine-learning-based approach (EvenT-ML) is described in Chapter 5

together with a comparison study between EvenT-ML, traditional, and state-of-the-

art machine-learning-based fall-detection techniques. Chapter 6 investigates the use

of a genetic algorithm (GA-Fade) to select sub-features from several sensor place-

ments. Chapter 7 gives answers to the research questions, provides conclusions, and

proposes prospective future work.

15
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Chapter 2

Literature review

This chapter discusses existing studies related to falls in older people, fall-detection

systems, wearable-sensor-based fall-detection systems, and issues in developing in-

telligent fall detectors using wearable sensors.

2.1 Falls in older people

2.1.1 Definition of falls

According to the World Health Organization (WHO) [121], a fall is an event that

results in a person abruptly coming to rest on the floor or other lower level. Moylan

and Bender [111] define a fall as an unexpected positional change, that causes the

patient to come to rest on the ground, floor, or other lower surface. Tuunainen

et al. [146] define falls as coming to the ground or a lower level abruptly, with or

without loss of consciousness. Liu and Cheng [104] define a fall as an action when the

centre of gravity of the body descends quickly. Based on these several definitions,

it can be concluded that falls happen unexpectedly. They can cause the centre of

gravity of the body to descend quickly, which makes the subject come to rest on the

ground or other lower level with or without maintaining consciousness.

17



2.1. Falls in older people 18

Falls can cause victims to su�er from several physical consequences, such as:

fracture, open wound, bruise or blood extravasation, sprain, joint dislocation, brain

injury, and muscle strain [138]. Some complications such as hypothermia and pneu-

monia can be a long-term negative e�ect of falls [45].

2.1.2 Stages in falls

Paoli et al. [124] show that falls have 4 main stages: initial free-fall, impact, motion-

less, and position change. The initial free-fall state is a weightlessness phenomenon,

where the vector sum of the acceleration decreases below 1g. The impact state is

a moment when the body hits the ground, and the motionless state is an inactive

condition following the impact phase. The position change is a condition where

the body changes posture after a fall. Kangas et al. [86] define falls into 4 phases

that are: beginning of the fall, falling velocity, fall impact, and posture after fall.

However, later in their study, Kangas et al. [89] determine that falls have three

stages: start of the fall, impact, and horizontal end posture. Similarly, a study from

Ojetola [118] summarises a fall into 3 stages:

• Pre-impact: In this stage, the subject experiences a loss of balance. Though,

a high velocity is not detected during this stage in real falls when the subject

falls from a standing posture [85].

• Impact: The moment when the subject hits the floor or an object. A high

acceleration signal characterises this stage.

• Post-impact: This is the stage when the subject is inactive after making con-

tact with the floor, the ground, or an object. The length of this stage varies,

depending on the subject’s ability to get up after falling.

Becker et al. [15] propose 5 phases of fall that are pre-fall, falling, impact, resting,

and recovery. The di�erences between Becker et al.’s phases and Ojetola’s phases

are the pre-fall and recovery phases. The pre-fall phase indicates any activities (e.g.

18
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walking, climbing stairs, or running), while the recovery phase is usually indicated

by a centre-of-mass (COM) movement after the victim has been resting (inactive).

This recovery phase is used to reduce the number of false alarms because the subject

may not need any emergency help after experiencing a fall. Since the datasets used

in this thesis do not include the recovery phase in their protocol, this phase is not

considered. Thus, this thesis uses the fall stages proposed by Ojetola’s study.

Because of the inability to get up is common in the post-impact stage [56], the

presence of an automated fall-detection system can be useful for older people. A

study conducted by Brownsell and Hawley [27] on the user acceptance of automatic

fall detectors shows that 19 out of 21 subjects who wore an automated fall detector

were happy that they have fall detectors in their home. Moreover, that study also

shows that 18 subjects consider that their safety is increased because of the presence

of the automated fall detectors. Although the number of subjects who prefer having

a fall-detection system in their home is relatively small, Brownsell and Hawley’s

study indicates that the presence of automated fall detectors increases older people’s

confidence. The next sub-section discusses several existing fall-detection approaches.

2.2 Fall-detection approaches

According to Igual et al. [79], a fall-detection system is an assistive device whose

main objective is to issue an alert when falls occur. The increased number of fall-

detection approaches makes it important to have a classification of them. Igual et

al.’s study categorises fall-detection systems into two classes: context-aware systems

and wearable-sensor-based systems. The idea of context-aware systems is to deploy

some sensors/devices (for example: cameras [4, 78, 40, 112, 132], floor sensors [5, 53,

110, 129, 147], radar [46, 51, 60, 134], Kinect [12, 14, 36, 61, 101, 103, 106, 139, 128,

166], infrared ceiling sensor [144], or thermal array and ultrasonic sensor [6]) into the

user’s environment, and using them to detect falls. Some problems of using these

19



2.2. Fall-detection approaches 20

systems are that they are not portable (they cannot detect falls that happen outside

the sensor-equipped environment), they might violate the user’s privacy (especially

for the camera-based systems), and the sensors’ price is high (for example a high-

resolution camera). On the other hand, wearable-sensor-based systems use mostly

accelerometers and gyroscopes to detect human movements and activities. These

systems have several advantages, which are that they are more portable, cheaper,

and less intrusive (not implanted).

Igual et al.’s [79] study shows that the accelerometer-sensor-based fall-detection

approaches have two categories: threshold- and machine-learning-based approaches.

The threshold-based approaches use pre-defined thresholds to distinguish falls and

common activities of daily living (for example: walking, sitting, running, etc.) [24,

86, 136, 47]. The thresholds are generated based on recorded acceleration data from

both falls and activities of daily living (ADLs). The second category is machine-

learning-based approaches, which use machine-learning algorithms such as Decision

Tree [120], Support Vector Machine (SVM) [156, 43, 91, 92], Logistic Regression

(LR) [118], or k-Nearest Neighbour (k-NN) [76] to train a classifier to classify falls.

On the other hand, based on Pannurat et al. [123], the fall- detection approaches are

categorised into three: threshold-, machine-learning-, and rule-based approaches.

The rule-based approach is basically a multi-threshold-based technique which in-

volves several thresholds in a particular order, while the machine-learning-based

approach is based on or partly based on machine learning. This means that the

machine-learning algorithm can be used for building the core classifier or optimising

the manually-defined thresholds from a hand-designed threshold-based decision-tree

classifier (for example: [91, 92]).

This thesis categorises fall-detection approaches into three: threshold-, machine-

learning-, and threshold-machine-learning approaches. Since the number of fall

detection approaches that use only a single parameter is limited [140, 141], the

rule-based approaches are merged with threshold-based approaches in this study.

20
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Figure 2.1: Fall-detection systems taxonomy

Most of the threshold-based approaches manually pre-define their threshold, while

some studies use heuristic-search approaches to optimise their threshold [153, 152].

This category is a combination of threshold-based approaches and machine-learning-

based approaches. Examples of this category can be found in Gjoreksi et al. [64],

Kau et al. [91], and Putra et al. [127]. Gjoreski et al.’s threshold-based part de-

tects high acceleration, which is one of the characteristics of fall events, while the

machine-learning-based part is used to build a classifier that can detect human pos-

ture to indicate a fall. A study from Kau et al. tries to improve the e�ciency of

machine-learning-based approaches by using a cascade-style classification using a

state machine. Putra et al. developed another cascade-style classifier, which uses

the state of the body (active or inactive) to trigger the feature-extraction and classi-

fication processes. This means that the feature extraction is done when the subject’s

body is moving about in an active way.

In summary, a taxonomy of fall-detection systems is shown in Figure 2.1. The

next section reviews several current approaches in fall detection using wearable

sensors.
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2.3. Wearable-sensors-based fall detection 22

2.3 Wearable-sensors-based fall detection

This section discusses current approaches in fall detection using wearable-sensor

technology. This section has three parts: threshold-based, machine-learning-based,

and threshold-machine-learning-based approaches.

2.3.1 Threshold-based fall-detection approaches

Table 2.1 gives a summary of fall-detection studies that use threshold-based ap-

proaches. It is written in ascending order in terms of published year. Threshold-

based approaches use pre-defined thresholds to detect falls, where these thresholds

are usually generated based on recorded data.

Chen et al. [34] in 2005 conducted a study on fall detection using a custom-

made accelerometer sensor. Their study shows that the minimum acceleration of

fall events is 3g (g is the acceleration due to gravity). However, they also found

that several activities such as running, jumping, and sitting abruptly might produce

an acceleration that is similar to that of fall events. As an additional finding, their

study identified that fall events consist of three di�erent stages: free-fall, impact,

and dampening e�ect. The first stage (free-fall) involves a small dip in the accel-

eration. The impact stage is the stage that has a high peak of acceleration, while

the dampening-e�ect stage is the stage when the subject lands and remains lying

on the floor. These fall stages are important for future study in fall detection, as

they show that falls have a particular pattern that is not possessed by most other

activities. Though, the performance of the fall-detection algorithm is not explicitly

reported, another problem that arises from this study is that the thresholds were

determined by empirically analysing the dataset. The results are biased since the

thresholds are determined using all samples, which causes the classifier to “see” the

optimum value to detect fall events beforehand.

A method for defining thresholds was proposed by Kangas et al. [87] in 2007.

22
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Table 2.1: Summary of papers on threshold-based fall-detection approaches using
wearable sensors

Authors
Hardware
Platform

(Sampling frequency)

Sensor
Placement

Number of
Subjects &

Ages (years)

Fall
Types

Chen et al.,
(2005) [34]

ADXL210E
2D accelerometer waist 2 (Ages: N/A) N/A

Kangas et al.
(2007) [87] 3 triaxial accelerometers

waist,
wrist,
head.

2 (Ages: 22 and 38)
forward,

backward,
lateral.

Kangas et al.,
(2008) [86]

3D accelerometer
(400 Hz)

waist, wrist,
head 3 (Ages: 38–48)

forward,
backward,

lateral.

Bourke et al.,
(2010) [25]

3D accelerometer
(200 Hz) waist 10 (Ages: 24–35);

10 (Ages: 73–90).

forward,
backward,

lateral.

Sorvala et al.,
(2012) [136]

ADXL345
3D accelerometer,

LPR530 &
LY530AL

3D gyroscopes.
(50 Hz)

waist,
ankle 2 (Age: 26)

forward,
backward,

lateral,
fail to sit.

Dumitrache and Pa�ca,
(2013) [47]

LIS3LV02DQ
3D accelerometer

(40 Hz)
waist 1 (Age: 25) N/A

Kangas et al.
(2015)[88]

3D triaxial
accelerometer (ADXL330)

(50 Hz)
waist 16 (Ages: 88.4 ± 5.2) N/A

Wang et al.
(2016) [152]

digital accelerometer
(ADXL362) and

barometric pressure
sensor LPS25H.

chest
(in a shape of

pendant worn on
a lanyard around

the neck)

First part:
11 (Ages: 25.9±1.7)

Second part:
5 (Ages: 26.2 ±1.3)

forward,
backward,

lateral.

Sucerquia et al.
(2017) [140]

triaxial accelerometer
(ADXL345) Waist

Young subjects:
23 (Ages: 19-30)
Older subjects:

15 (Ages: 60-75)

forward,
backward,

lateral.

23



2.3. Wearable-sensors-based fall detection 24

This method utilises box-plots to determine the threshold. This study shows that

its proposed technique is able to achieve 100% of both sensitivity and specificity.

The sensitivity (recall) and specificity are calculated by

Sensitivity = True positive (TP)
TP + False Negative (FN) , (2.1)

Specificity = True negative (TN)
TN+False positive (FP) ,

where sensitivity and specificity are used to measure false-negative and false-positive

ratios, respectively. Similar to Chen et al.’s study, this study uses all samples to

determine its thresholds to detect falls. This makes the results of this study is

extremely biased. Also, from this study, it can be seen that data overlaps between

falls and other activities exist. These data overlaps exist because some non-fall

activities share similar characteristics with falls and they can cause a high number

of false alarms or false negatives (mis-detected falls).

Kangas et al. [86] in 2008 conducted another study in fall detection using three

threshold-based approaches, where they compare those approaches using simulated

activities. Three types of falls: forward, backward, and lateral falls, were recorded

from three healthy adult subjects. The approaches in Kangas et al.’s study were

developed based on stages in fall events: beginning of the fall, falling velocity, fall

impact, and posture after fall. This study uses several parameters: sum vector of

acceleration from three axes, sum vector of high-pass filtered data, vertical acceler-

ation, di�erence between the maximum and minimum acceleration in a 0.1 s sliding

window, and velocity. Based on their experiments, the approach that uses 3 stages

(beginning of the fall, falling impact, and posture after fall) achieves the highest

accuracy. This study adapts thresholds from Kangas et al.’s [87] study, which makes

the results of this study less biased than studies from Kangas et al. [87] and Chen et

al. [34]. However, this study only measures the sensitivity of the system and ignores

the specificity of the system. This makes the performance of the system in reducing

24
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the number of false alarms unclear. In fact, having a high number of false alarms

can cause a rejection by users [115].

In line with Kangas et al.’s study, Bourke et al. [25] conducted a comparison

study of existing threshold-based approaches in 2010. In their study, Bourke et

al. used data from healthy, young and older subjects. This study involves a total

of 10 older people with ages 73–90 years. However, the older subjects were only

asked to do several scripted and unscripted (real) ADLs, and real-fall data from

the older people were not available for the experiment. The Bourke et al. study

uses the following parameters as thresholds: maximum acceleration, velocity, and

posture. The best parameter combination to detect simulated falls is the maximum

acceleration and velocity, with a 100% sensitivity and a 98.9% specificity. According

to the experiment on the unscripted ADLs, Bourke et al.’s experiment shows that

the number of false alarms ranged from 0.945–45.34 false-alarms/day. This shows

that the threshold-based approach produces a relatively high number of false alarms.

Sorvala et al. (2012) [136] proposed two threshold-based approaches that re-

duced the number of false alarms. Their experiment uses two healthy subjects with

sensors strapped to their ankle and waist. A lesson learned from this study is that

extracting information (body posture) during the impact stage can reduce the num-

ber of false alarms. The results show that their proposed approach achieves up to

95.6% of sensitivity and 99.6% of specificity. However, they do not provide specific

information regarding the protocol used in their study. This makes the results of

this study hard to reproduce. Similarly to Kangas et al. [87] and Chen et al [34],

Sorvala et al.’s study also determines the thresholds using samples from all subjects,

which makes the results biased. Also, this study shows that data overlaps between

falls and non-falls exist.

In 2013, Dumitrache and Pa�ca [47] proposed a threshold-based fall-detection

approach that uses six thresholds: peak value, base length (the length of a fall

activity), ratio between peak and base length (R1), post-impact velocity (V ), ratio
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between V and R1 (R2), and post-impact activity level. They claim that their

approach can achieve 97.05% of sensitivity and 99% of specificity as long as all

parameters are used to classify the activity. Although their approach is able to

achieve relatively good results, the way they determine the thresholds for all the

parameters is not explained.

The issue about using all samples in the threshold determination process was

discussed by Wang et al. [152] in 2016. Thus, in their study, Wang et al. split the

dataset into a training and a testing set, where the thresholds are determined using

the training set. The classifier was built in a binary-decision-tree style, where the

thresholds are optimised using a particle-swarm optimisation (PSO) algorithm. The

approach proposed in this study is able to achieve 93% of sensitivity and 87.3% of

specificity. These results show that the false-alarm and the false-negative rates are

not balanced, while keeping the balance between these two rates (low false alarms

and low false negatives) is important [115]. Also, this study conducted free-living

trials, where the subjects were requested to wear the device while doing their normal

activities (without researcher supervision) for a week. The study claimed that its

approach can produce fewer false alarms than studies from Bagala et al. [10] and

Kangas et al. [88]. However, comparing the results of fall-detection studies, where

these results are taken directly from their paper, is inappropriate because each study

involves di�erent types of sensors, subjects, and types of activities. This issue is

discussed in Igual et al.’s [80] study. To get a fair performance comparison, fall-

detection approaches should be implemented and compared on the same dataset.

Thus, the availability of a publicly accessible dataset for studies in this field of

research is important. Another issue that is discussed in Wang et al.’s study is the

power consumption of the device. This study claimed that their approach can make

the device run for 664.9 days on average. Lessons learned from this study: (1) the

thresholds should be determined from a training set, so that the classifier is not

exposed to the testing set; and (2) the energy consumption is an important aspect
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to be considered in designing a fall-detection approach.

Sucerquia et al. (2017) [140] tried to solve the publicly accessible dataset availab-

ility issue by making their dataset publicly accessible. Sucerquia et al. used ten-fold

cross-validation to evaluate their proposed fall-detection approach. Some features

are used to distinguish falls from other activities, and this study uses a sliding win-

dow to extract features. However, the exact size of the window remains unclear.

The only information provided is that the optimum window lies between 200 ms

and 2 s. In fact, Chapter 4 shows that the size of the window is critical since it can

a�ect the classifier’s performance.

A study that involved real-fall data from older patients was conducted by Kangas

et al. [88] in 2015. In their study, Kangas et al. implemented their custom-made

device and proposed a fall-detection approach for older patients who live in older-

people care units. To detect falls, this study implemented approaches from their

previous study [86, 89]. This study shows that their fall-detection approach can

achieve 80% of sensitivity with a false-alarm rate as low as 0.025 per usage hour.

However, the data from this study are not publicly accessible.

This subsection shows several existing threshold-based fall-detection approaches

together with their advantages and disadvantages, The Sub-section 2.3.2 provides

some information regarding some existing machine-learning-based approaches.

2.3.2 Machine-learning-based approaches

Table 2.2 gives a summary of fall-detection studies that use threshold-based ap-

proaches. It is written in ascending order in terms of published year. The machine-

learning-based fall-detection approaches use a machine-learning algorithm (for ex-

ample: Naive Bayes, Decision Tree (DT), Logistic Regression (LR), Support Vector

Machine (SVM), or k-Nearest Neighbour (k-NN)) to build a classifier to distinguish

falls from ADLs.

Choi et al. [37] in 2011 conducted a study on fall detection using a machine-
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Table 2.2: Summary of papers on machine-learning-based and threshold-machine-
learning-based fall-detection approaches using wearable sensors

Authors
Hardware
Platform

(Sampling frequency)

Sensor
Placement

Number of
Subjects &

Ages (years)
Algorithms Fall

Types

Choi et al.,
(2011) [37]

3D accelerometer,
2D gyroscope chest N/A Naive Bayes (NB)

forward,
backward,

lateral

Gjoreski et al.,
(2011) [64]

3D accelerometer
(6 Hz)

chest,
waist,

right thigh,
right ankle

11 ( Ages: N/A )
threshold-based +
unspecified data-
mining algorithm

falling fast
to the ground,
falling slowly,
falling from

chair

Ojetola et al.,
(2011) [120]

Shimmer sensors:
3D accelerometer
& 3D gyroscope

(100 Hz)

chest,
thigh 8 ( Ages: 21–33 ) C4.5 Decision Tree

forward,
backward,

lateral

Abbate et al.,
(2012) [2]

Shimmer sensors:
3D accelerometer
& 3D gyroscope

(100 Hz)

waist 3 ( Ages: N/A ) threshold-based +
neural network

forward,
backward, and

faint

Erdogan and Bilgin,
(2012) [50]

MTS310CB
Board waist N/A k-Nearest

Neighbour (k-NN)

falling down
without specific

direction

Diep et al.,
(2013) [43]

ADXL330
accelerometer

(100 Hz)
waist 12 ( Ages: N/A ) Support Vector

Machine (SVM) N/A

Vallejo et al.,
(2013) [148].

ADXL345
3D accelerometer waist 21 ( Ages: 18–56 ) Artificial Neural

Network (ANN) N/A

Wang et al.,
(2013) [156]. N/A

right, left up waist;
right, front, left waist;

right, left-thigh;
right, left-knee;
right, left-shank;
right, left-ankle.

5 ( Ages: 21–26 ) SVM
forward,

backward,
lateral

Kau and Chen,
(2015) [92].

3D accelerometer
on Sony Xperia

U-series
(150 Hz)

pocket 5 ( Ages: N/A ) threshold-based +
SVM fall down

Kambhampati et al.,
(2015) [84]

triaxial accelerometer
on Android phone waist 6 ( Ages: N/A )

Decision Tree
NB/

Multi-layer/
Perceptron (MLP)/

SVM

fall front,
fall back,

fall right, and
fall left

Putra et al.,
(2015) [127].

Shimmer sensors:
3D accelerometer
& 3D gyroscope

(100 Hz)

chest 48 ( Ages: N/A )

threshold-based +
J48 Decision Tree/

Logistic Regression (LR) /
MLP

forward,
backward,

lateral

Yuan et al.,
(2015) [168]

triaxial accelerometer
(ADXL345) wrist

Young subjects:
10 ( Ages: N/A )
Older subjects:
3 ( Ages: N/A )

threshold-based+
C4.5 N/A

Bourke et al.,
(2016) [168]

McRoberts Hybrid,
McRoberts MiniMod,

activPAL3,
Samsung Galaxy SII,

Samsung Galaxy S3, and
uSense.

Fifth Lumbar
Spine (L5)

Older subject
(Ages: N/A) C4.5 N/A

Hsieh et al.,
(2016) [77]

triaxial accelerometer
(ADXL325) N/A Young subjects:

10 ( Ages: N/A )
SVM
k-NN N/A

He et al.,
(2017) [75]

triaxial accelerometer
(custom-made device) back 20 ( Ages: 20-45 ) Bayes Network Sideward and

backward
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learning-based approach. Their study shows that the Naive Bayes classifier can

detect falls with a 99.4% accuracy using a sensor node strapped to the chest; the

accuracy is calculated using

Accuracy = (TP+TN)
TP+FP+TN+FN .

This study uses five features that are extracted from the sensor node: accelerations

on x, y, z axes, gyroscope on x and y axes. This study also measured the classifier’s

accuracy when an additional sensor is added, strapped on the subject’s thigh. Four

additional features were calculated from the thigh sensor: acceleration on x, y, z

axes, and from the x-axis of the gyroscope. The classifier can achieve an accuracy

of 99.8% by using two sensors (chest and waist) based on this study. However, it

is not clear how the sensors were placed on the subject’s body since the authors do

not provide this information. This becomes an issue because this makes the results

of this study are hard to reproduce, and this issue is the weakness of Choi et al.’s

study. This study also implemented some feature-selection techniques to reduce the

number of features used. Although the number of features can be reduced (from 9

features to 3 features), the accuracy also reduces.

A decision-tree-based fall-detection algorithm was proposed by Ojetola et al. [120]

in 2011. By strapping sensors on chest and thigh, their algorithm achieves an 81.82%

precision, a 92.19% recall (sensitivity), and a 99.45% accuracy. The precision is cal-

culated using the following formula

Precision = TP
TP+FP , (2.2)

where the precision is another measurement for the false-alarm rate. Following this

study, Ojetola [118] conducted another study in 2013, which proposed the use of fall

stages (pre-impact, impact, and post-impact) as a basis for extracting features. This

study shows that using fall stages as a basis for feature extraction can give better
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accuracy. Thus, this thesis adopts the concept of stage-based feature extraction

from Ojetola’s study. This study also implements the concept of a sliding window

to extract features, using a 12 s overlapping sliding window. However, this study

does not provide a strong justification to support its window size choice. Another

problem with the approach from this study is that it uses an N-1 window overlap size

(N = number of samples in a window), which means that the window slides sample

by sample. This causes a high computational cost [127]. Also, using a higher window

overlap can increase the data overlaps, and can cause an increase in false alarms or

false negatives. This data-overlap issue is discussed in Section 4.5. An advantage of

this study is that its dataset is publicly accessible. Thus, the dataset from Ojetola’s

study is used in this thesis. More-detailed information regarding this dataset is

provided in Chapter 3.

Erdogan and Bilgin [50] proposed a k-NN based algorithm to detect falls in 2012.

To measure the similarity between the segment in the input stream and the segment

on the training set, their k-NN-based algorithm uses the Euclidean distance. The

experiment shows that this algorithm can achieve 89.4% accuracy, 100% recall, and

85% precision. This study uses a sliding window (with a 7-sample size) to segment

the data stream, and features are extracted from each segment. Instances from the

segments are used to train and test the k-NN-based classifier. However, the features

extracted from each segment are not explained.

Studies from Diep et al. (2013) [43] and Wang et al. (2013) [156] proposed SVM-

based algorithms for fall detection. Diep et al. [43] used accelerometers that were

embedded on a Wii remote as the detector. For feature extraction, they implemented

a sliding window with a size of 1.8 s and an overlap of 0.6 s. These numbers were

obtained from their previous study [126], which study focuses on classifying daily

activities. In their study, Diep et al. classify activities into two classes (binary

classification): fall and non-fall, and use an SVM to train their classifier. Their

approach is able to achieve up to 91.9% precision and 94.4% recall in a 10-fold
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cross-validation evaluation setting, and up to 91.8% precision and 90.34% recall in a

leave-one-subject-out evaluation setting. The main problem with this study is that

they use the window size from their previous study, which does not involve any fall

activities.

Wang et al. [156] in 2013 developed an approach that can detect falls with 100%

sensitivity and 94% specificity, by using 13 sensors strapped to a subject’s body. This

approach uses an SVM to build the classifier, with 5 features: maximum resultant

acceleration, maximum acceleration of z-axis, minimum acceleration of z-axis, the

angle between legs and thighs, and the angle between thigh and torso. Although this

approach can achieve 100% of sensitivity, wearing 13 sensors can cause the subject

to feel uncomfortable.

Vallejo et al. [148] proposed a neural-network-based fall-detection approach in

2013. This approach uses a feed-forward network to train the classifier using the

velocities on the x, y, and z axes as features. These features were extracted using a

window of size 10 samples, though there is not a further explanation regarding the

window choice. Vallejo et al.’s approach is able to achieve a 98.4% sensitivity and a

98.6% specificity under a hold-out evaluation scheme. Also, they conducted a test

using unsupervised activity samples recorded during 12 hours, from a subject. The

test results show that not a single false alarm is generated.

Kambhampati et al. [84] used cumulant-based features to detect falls together

with their direction (forward, backward, or lateral) in 2015. This study also uses

a sliding window with a size of 0.25 s to extract its features. Similar to Ojetola’s

study [118], this study uses an N-1 window overlap, which can cause a computational-

cost issue. This study claims that their approach is able to receive an accuracy up

to 97.32% by using an SVM-based classifier.

Bourke et al. [23] proposed a decision-tree-based (C4.5) classifier fall-detection

approach in 2016, where this approach was evaluated using real-fall data from older

subjects. This study uses a triaxial accelerometer to detect impact and a gyroscope
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to detect the angle posture of the subject. This study indicates that detecting the

impact stage of a fall is critical because some features are extracted based on this

stage. For example, this study uses angular velocity from the gyroscope as a feature,

where this feature is extracted 0.5 s before and after the impact peak. This approach

can perform well if the signal is pre-segmented and the impact point is manually

defined. However, in a real-time situation, it is hard to automatically segment the

data and define the impact stage. In fact, Figure 2 from their paper shows two peaks

during a fall, which can confuse the classifier. Later in this thesis, this phenomenon

is defined as multi-peak issue. For this type of approach, detecting the impact stage

precisely is mandatory.

Another sliding-window-based approach was proposed by He et al. [75] in 2017.

This approach uses a 2 s sliding window to extract features, where these features

are used to train and test a Bayes-Network-based classifier. The authors claim that

their approach is able to achieve up to 95.67% of accuracy, 99.00% of sensitivity, and

95% of specificity. Having a static window (especially a short one) for recognising an

activity, where this activity is executed for a long period of time, cannot give a high

accuracy for the classifier. This is because the window produces many identical con-

secutive temporal windows with similar features, which makes the classifier classify

the same instances from a particular activity over and over again [122].

Several studies above show that using machine-learning approaches can give

promising results. However, the main issue of the machine-learning-based approaches

above is the window size and window type (overlap and non-overlap). Every study

has their own window size, where this window size is defined based on their own

dataset (not a publicly accessible dataset) or taken from previous study, making

the results of this study hard to justify. Also, each study uses di�erent types of

features (although some of the features overlap between studies), which means that

the impact of the window and overlap sizes to the classifier’s performance remains

unclear. Important information that is achieved from this subsection is that extract-
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ing features based on fall stages (pre-impact, impact, and post-impact) may give a

better accuracy, since each stage has important characteristics that can distinguish

falls from other activities.

To improve the e�ectiveness and e�ciency of the existing machine-learning-based

fall-detection approaches, several studies developed threshold-machine-learning-based

approaches [64, 92, 127]. These studies apply some manually defined thresholds be-

fore/after classifying the activity using a machine-learning-based classifier, in order

to improve the detection rate or reduce the computational cost of the system. Sub-

section 2.3.3 provides a review of several studies that combine threshold-based al-

gorithms and machine-learning algorithms into a threshold-machine-learning-based

algorithm.

2.3.3 Threshold-machine-learning-based approaches

This section provides some reviews of studies that use combinations of the threshold-

based and machine-learning-based approaches. The purpose of these approaches is

to improve the accuracy or/and reduce the complexity of the system.

Gjoreski et al. [64] in 2011 split their approach into two modules. The first

module is fall detection and is followed by posture recognition. This module uses a

supervised machine-learning algorithm to build the classifier to identify the posture

of the subjects. Their study classifies the data samples into 7 postures: stand-

ing, sitting, lying, standing up, going down (sitting down, lying down, or falling),

on-all-fours position, and sitting on the ground. To recognise the posture of the

subject in real time, some features are extracted from a data stream using a 6 s

sliding window. The results show that combining a threshold-based approach and a

machine-learning-based approach can achieve an accuracy of 94% on average. The

study also shows that attaching more sensors on the subject’s body can increase the

detection rate of the classifier. To detect a fall, this algorithm detects the maximum

acceleration during a 1 s window. If the maximum acceleration exceeds a threshold,
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then the posture is identified. However, the way to define the threshold value or the

value itself for this process is not provided. Another problem about this approach is

the multi-peak issue. Sometimes multiple peaks are produced by an accelerometer

sensor due to a protective action during the fall [82] or a bouncing e�ect [2]. Because

the posture recognition is started after the peak is detected, these multiple peaks

can cause a confusion regarding when to start the posture recognition. In this case,

the timing is important.

Abbate et al. [2] in 2012 developed a smart-phone-based fall-detection system

which combines threshold- and machine-learning-based approaches. In their study,

they considered the multi-peak issue as an important matter. Thus, they proposed

a mechanism to detect multiple peaks by using a finite state machine. Their study

claims that the proposed approach together with a neural-network-based classifier is

able to achieve 100% of sensitivity and 100% of specificity. This proposed technique

mainly uses the finite state machine just to avoid an unnecessary feature extraction

by only extracting features when a fall-like event is detected by the finite state

machine. This idea is adopted by Putra et al. [127] to develop a cascade-classifier

approach for fall detection.

Putra et al. [127] proposed another cascade approach in 2015. This approach

uses the state of the body to trigger the training/testing process of the machine

learning (this idea was inspired by Abbate et al.’s approach). Also, in their study,

Putra et al. tested several machine-learning algorithms. This cascade approach

adopts a concept of fall stages from Ojetola [118], and is able to achieve up to 93.5%

of precision, 94.2% of recall, and 93.5% of F-score on average. An F-score can be

calculated using

F-score = 2.TP
2.TP + FP + FN , (2.3)

where F ≠ score is the harmonic mean of precision and recall (sensitivity). This

approach is able to achieve a significantly better F-score (in their study, Ojetola’s

approach achieves an 87.4% F-score, which is 6.1% lower than the cascade approach)
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and computational cost than the approach proposed by Ojetola. These results show

that the cascade-classifier approach that is proposed by Putra et al. is able to

receive fewer false alarms and false negatives than Ojetola’s technique. Although

this cascade-classifier approach is able to improve the detection rate of the classifier

and reduce the classifier’s computational cost, this approach does not solve the

multi-peak issue, which becomes more critical for this approach because it uses fall

stages as a basis for feature extraction. Mistakenly choosing a peak as an indicator

of an impact stage may cause the segment to misrepresent the fall stages. This

multi-peak issue is discussed in more detail in sub-section 2.5.4.

Kau and Chen (2015) [92] proposed another threshold-machine-learning-based

approach for fall detection called a cascade approach. In their study, they use some

thresholds as part of the pre-processing stage, before the training/classification pro-

cess, where they describe their system as a finite state machine. They implemented a

state machine as a representation of their technique. The system uses the thresholds

to prevent itself from extracting high-computational-cost features, and it uses the

SVM-based classifier to classify falls. Their experiment shows that their proposed

approach can detect falls with 92% of sensitivity and 99.75% of specificity. To

show their reduction in the computational cost, they implemented their proposed

algorithm on a smartphone and investigated the energy consumption of their system.

The results show that their system is able to alleviate the power-consumption burden

of the device, though the amount of energy reduction that is given by implementing

their proposed state machine is not explicitly mentioned.

Hsieh et al. [77] proposed a threshold-machine-learning-based approach in 2016,

where this approach uses two thresholds: maximum acceleration vector magnitude

and maximum acceleration vector magnitude on the horizontal plane. If the accel-

eration value exceeds these two thresholds, a feature extraction is done using an

FOSW. In this study, the authors tested di�erent sizes of the window: 0.1s–0.5s,

with a window overlap of 50%. k-NN and SVM are used to train the classifier. They
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claimed that their proposed approach is able to achieve a 96.26% accuracy when

k-NN is used to train the classifier. In this study, fall stages (free-fall, impact, and

resting on the ground) are used as a basis to extract the features. In the training

phase, the identification of the fall stages is done manually. This is possible since

the data are already pre-segmented. In the testing phase, they have a fixed template

pattern that has to be matched with the accelerometer signal. Once the accelera-

tion signal matches the template pattern, features are extracted based on the fall

stages. The main problem of using this template pattern is that the system does

not know how to correctly align the template pattern on the continues acceleration

data stream. Misaligning the template with the accelerometer signal can cause the

system misses a fall event.

Although most of the approaches explained above give a promising result, there

are some issues that still exist. Section 2.5 explains four important issues regarding

fall-detection approaches using wearable sensors.

2.4 Machine-learning algorithms

This thesis considers four machine-learning algorithms: decision tree (DT), k-Nearest

Neighbour (k-NN), Logistic Regression (LR), and Support Vector Machine (SVM).

Based on the studies from Ojetola [118], Erdogan and Bilgin [50], and Kau et al. [92],

these machine-learning algorithms have been shown to provide a relatively high ac-

curacy, though using k-NN can give a higher computational cost during the classi-

fication process.

This thesis uses modules from the Scikit-learn library [125], so that the results

can be reproduced. Note that the Scikit-learn library provides the decision tree

algorithm as a Classification and Regression Tree (CART). CART is similar to the

C4.5 algorithm [125], which gives a relatively good detection in Ojetola’s study [118].

The following subsections give an overview of the machine-learning algorithms used.
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T1

T3

T4 T5

T2
 x > c1

YesNo

No Yes
 z > c2

Figure 2.2: An example of a classification and regression tree (CART). x and y are
predictors, while c1 and c2 are thresholds

2.4.1 Classification and Regression Tree (CART)

CART was first proposed by Breiman et al. [26] and has been used for about 33

years. CART builds a tree by recursively partitioning the data into smaller pieces.

Figure 2.2 shows an example of CART. T1 is defined as the root of the tree, while

T2 is called a non-terminal node and T3, T4, T5 are defined as terminal nodes. In

a classification case, T3, T4, and T5 are associated with classes. x and z take a

role as a predictor, and both c1 and c2 are thresholds. Then, (x > c1) or (z > c2)

is called a split. For a classification task, x and z are associated with the features

used. Based on Breiman et al. [26], three important elements in constructing the

tree are:

• How the best split is selected.

• When to decide to stop splitting a non-terminal node.

• How to assign a class to terminal nodes.

To build a tree, CART follows these steps [18, 26]:
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(1) CART evaluates all possible splits from all predictors (features), then picks

the best split among all the splits from all predictor variables. The “best”

split can be defined as a split that can most reduce the impurity. An impurity

function is a function „ defined on P = {p1, p2, ..., pJ} where J is the total

number of classes used. For example, in a binary classification case, the value

of J is equal to 2 (J = 2). P satisfies: pj Ø 0, where j = 1, 2, 3, ..., J and
qJ

j=1 pj = 1. The function „ has the following properties:

1. „ is a maximum when all classes are equally mixed together ( 1
J , 1

J , ...,
1
J ).

2. „ is a minimum when only one class achieves 1 while the others achieve

0: (1, 0, 0, ..., 0), (0, 1, 0, ..., 0),..., (0, 0, 0, ..., 1).

3. „ is a symmetric function of p1, p2, ..., pJ .

Given an impurity function „, to measure the impurity (i) of a node t, use

i(t) = „ (p(1|t), p(2|t), ..., p(J |t)) . (2.4)

In this study, „ is defined as the Gini index

i(t) =
Jÿ

j=1
pj(1 ≠ pj). (2.5)

Then, to measure the impurity reduction (∆i) of a split s on t, use

∆i(s, t) = i(t) ≠ pRi(tR) ≠ pLi(tL), (2.6)

where:

• tR is the right child node,

• tL is the left child node,

• pR is the proportion of the data samples in t belonging to tR, and
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• pL is the proportion of the data samples in t belonging to tL.

(2) The second step is partitioning the data based on the best split.

(3) The second step is repeated until all samples have been placed in terminal

nodes.

Beside the Gini index, „ also can be defined as the Bayes error, or the cross-entropy

function [18]. The Gini index is favoured as it tends to split a node into one small

pure node and one large impure node [18, 26].

2.4.2 k-Nearest Neighbour (k-NN)

Algorithm 2.1 shows the classification process using k-NN. In this study, the Minkowski

distance is used. The following formula is used to calculate the Minkowski distance

between two points P1 at (x1, y1) and P2 at (x2, y2).

Minkowski distance = (|x1 ≠ x2|m + |y1 ≠ y2|m)1/m , (2.7)

where m = 2. For this study, three numbers are used for k: 1, 2, and 3. Note that

the Minkowski distance with m = 2 is equal to the Euclidean distance.

Algorithm 2.1 k-Nearest Neighbour (k-NN) algorithm
1: For every instance (x) in testing set:

2: Calculate distance between x and all points in training set.

3: Sort the distances in increasing order.

4: Take the k points that have the shortest distance to x.

5: Find the majority (tie-breaks) class/label among those points.

6: Return the majority class as the classification result.
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2.4.3 Logistic Regression (LR)

Logistic Regression (LR) is a technique which allows the classifier to estimate cat-

egorical outcomes (can be 2 or more categories) from di�erent predictors, where

those predictors can be either categorical, continuous, or both [54]. This can be

done by using

P (Y |x) = 1
1 + e≠(Ê0+Ê1x1+...+Ênxn) ,

where P (Y |x) is a function to estimate the probability of class Y given x, xn is the

predictor, and Ên is a weight (sometimes called a regression coe�cient). For the

two-class case, if P (Y |x) > 0.5, then this outcome is categorised as 1 (or True) by

the classifier. On the other hand, if P (Y |x) Æ 0.5, then the classifier categorises the

outcome as 0 (False). For this study, Y is a binary class that represents Fall (True)

and Non-Fall (False), while X = {x1, x2, ..., xn} is the set of features used. For

the Scikit-learn library, regularisation is implemented to avoid the model/classifier

remembering the training data (called data overfitting). To get the value of Êi for

a feature xi, LR with L2 regularisation minimises the following cost function

min
Ê,c

1
2ÊT Ê + C

nÿ

i=1
log(exp(≠yi(XT

i Ê + c)) + 1),

where n, c, and C are the number of instances, an intercept of the LR, and an inverse

of the regularisation strength (or penalty parameter [52]), respectively. A smaller C

indicates a stronger regularisation, where this regularisation is useful to reduce data

overfitting. Since the value of C does not change during the training process (C is a

hyper-parameter) and the search space for this value is extremely large, some values

of C are arbitrarily chosen: 108, 109, and 1010. More detailed information about the

library can be found in Scikit-learn [125] and Fan et al. [52].
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Table 2.3: Kernel function used [71, 93, 125]

Kernel function Type of classifier

K(x, xÕ) = (xT xÕ) Linear kernel

K(x, xÕ) =
Ë
(xT xÕ) + 1

Èd
Polynomial kernel

K(x, xÕ) = exp
1
≠ Î x ≠ xÕ Î2/“

2
Gaussian radial basis function (RBF)

2.4.4 Support Vector Machine

A support vector machine (SVM) trains its classifier by maximising the margin

between the classes in the training set [22]. Training examples that are close to the

decision boundary are called support vectors, and the decision boundary is called a

hyperplane. Given n training inputs X = x1, x2, x3, ..., xn with labels Y = {≠1, 1},

where

Y
___]

___[

Yk = 1, if xk œ class A

Yk = ≠1, if xk œ class B.

(2.8)

then the decision function D(x) is given by

D(x) =
nÿ

k=1
–kK(xk, x) + b,

where K(xk, x), b, –k are the pre-defined kernel, the error bias, and coe�cients that

need to be adjusted during the training process. This thesis uses 3 kernels (Table

2.3): linear, polynomial (with degree 3), and radial basis function (RBF), where d

is the degree of polynomial and “ is the inverse of the radius of influence of samples

selected by the model as support vectors.
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2.5 Issues in developing an automated

fall-detection system using wearable sensors

2.5.1 The use of publicly accessible datasets

The sub-sections above show several existing fall-detection approaches. Although

most of the studies above show a detection rate of 90% or above, they evaluated

their technique on their own datasets, which are not publicly accessible. This is the

first problem that needs to be covered by this thesis. Using a publicly accessible

dataset is important to get a fair comparison between techniques [80]. Based on

Igual et al. [80], for example a nearest-neighbour classifier, its performance really

depends on the dataset. This type of classifier can only perform well on a particular

dataset. Thus, using a non-publicly accessible dataset means that the results of

those studies cannot be directly compared.

Chapter 3 of this thesis shows detailed information on the three publicly ac-

cessible datasets used in this study: the Cogent [119], SisFall [140], and FARSEE-

ING [1] datasets. Since these datasets provide data from accelerometer and gyro-

scope sensors, data from other types of sensors (e.g. a barometric sensor [152]) are

considered for future work. This thesis focuses on the use of accelerometer sensors

because using a gyroscope can increase the cost and the energy consumption of the

device [2, 35, 67, 66, 105, 130].

The problem of using datasets that are collected from young subjects is that the

results might not represent the performance of the classifier on older patients [10].

However, a study from Jamsa [82] shows that acceleration signals from young sub-

jects share some similarities with acceleration signals from older subjects. Thus,

Chapter 5 provides an evaluation of using data from young subjects (the Cogent

and SisFall datasets) on the data from older subjects (FARSEEING dataset).
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2.5.2 The use of sliding windows in the fall

detection/activity-recognition studies using a

machine-learning-based approach

Generally, human activity recognition consists of four steps: data preprocessing,

segmentation, feature extraction, and classification [155]. For a real-time human-

activity recognition system, since wearable sensors (for example an accelerometer)

produce a continuous data stream, some activity recognition studies (especially stud-

ies that use a machine-learning algorithm to build their classifier) use a fixed-size

sliding window to segment the data stream. Then, some features are extracted from

each segment, where those features are used to classify the activity. This sliding-

window technique is widely used to segment data streams by real-time human-

activity recognition systems. Table 2.4 summarises sliding-window-based activity

recognition systems using wearable sensors. The segmentation process is critical,

as it can produce di�erentiable feature values, which can increase the classifier’s

detection rate [19, 69]. In view of the fact that falls are part of human activity, this

segmentation process becomes an important matter to be investigated.

Based on Banos et al. [13], the sliding window is one of two types: Fixed-size Non-

overlapping Sliding Window (FNSW) and Fixed-size Overlapping Sliding Window

(FOSW). Figures 2.3 and 2.4 show illustrations of FNSW and FOSW respectively

in a real-time situation, where the system does not have any knowledge regarding

the start or the end of an activity.

A serious problem arises when the length of the sliding window does not fit the

length of the activity. A study from Gu et al. [69] shows that an error in segmenting

a data stream of an activity can seriously a�ect the detection accuracy. For example,

a short window can truncate an activity while a large window can overlap two con-

secutive activities. The current studies of fall detection/activity recognition using

sliding-window-based machine-learning approaches rely on the figures from previous
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studies [13]. Thus, the impact of the window size on the detection rate, especially

for fall detection, is not clear. Although Bersch et al. [19] provide a comprehensive

study on the impact of the sliding-window length and overlap size for activity re-

cognition, they do not include any fall activity. Therefore, an analysis of the impact

of a sliding window on the classifier’s performance is needed, and this becomes the

second issue. This analysis is also important as it can be a basis to make a per-

formance improvement of the machine-learning-based approach. Chapter 4 covers

an investigation of this issue.

2.5.3 Threshold-based approach vs machine-learning-based

approach

The third issue in fall-detection studies is an investigation into threshold-based and

sliding-window-based machine-learning approaches’ performance. Vallejo et al. [148]

show that generating thresholds for a fall detector is di�cult, as there are overlaps

between fall and non-fall data. However, their study does not provide any comparat-

ive analysis between threshold- and machine-learning-based approaches in terms of

the detection rate. A study from Aziz et al. [8] shows that machine-learning-based

approaches provide a better overall recall and specificity than the threshold-based

approach. However, their dataset is not publicly accessible and their study does not

include the FOSW-based machine-learning approach. Thus, a performance compar-

ison between threshold- and sliding-window-based machine-learning approaches on

a publicly accessible dataset has not been conducted. This issue is addressed in

Chapter 4.
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Table 2.4: Sliding-window-based activity recognition system using wearable sensors

Authors Window type
(FNSW/FOSW/dynamic)

Window size /
Window overlap size Algorithm(s)

Yang et al.
(2008) [164] FOSW 5.12 s / 50%

Multilayer
feedforward

neural network
Khan et al.
(2010) [94] FNSW 3.2 s / - ANN

Mannini et al.
(2010) [107] FOSW 6.7 s / 50% Hidden Markov Model

(HMM)
Laguna et al.
(2011) [122] dynamic - / - Dynamic Bayesian

Network
Bhattacharya et al.

(2014) [20] FOSW 1 s / 50% En-Co-Training [70]

Wan et al.
(2015) [151] dynamic - / -

Naive Bayes,
Bayesian Network,

C4.5,
Naive Bayes Tree, and

HMM

Ni et al.
(2016) [113] FOSW 2.5 s / 50%

Random Forest,
k-NN,
MLP,
NB,

J48, and
SVM.

Wen and Wang,
(2016) [161] FOSW 2.56 s / 50% and

5 s / 50% AdaBoost

Xu et al.
(2016) [162] FOSW 5.12 s /

shifted by 1s

Multi-layer
feed-forward neural

network
Wannenburg and Malekian

(2017) [160] FOSW 1 s / 50% k-NN and
k-Star

Noor et al.
(2017) [114] dynamic - / - Threshold-based

Savvaki et al.
(2017) [131] FOSW 128 samples / 50% k-NN and SVM

Sztyler et al.
(2017) [142] FOSW 1 s / 50% Random forest

Wang et al.
(2017) [159] FOSW 0.3 s / 50%

Mixed and Reduced
kernel extreme
learning model
(M-RKELM)

Yurtman et al.
(2017) [169] FNSW and FOSW

5 s (FNSW) /
2.56 s and 50%

overlap (FOSW)

Bayesian Decision Making,
k-NN,
SVM,
ANN

Hassan et al.
(2018) [74] FOSW 2.56 s / 50% Deep Belief Network
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2.5.4 Data segmentation for a stage-based

machine-learning approach for fall detection

Ojetola [118] and Putra et al. [127] show that extracting features based on fall stages

can improve the detection rate. However, estimating the beginning and the end of

each stage in a real-time setup has not been investigated by these studies. Studies

from Abbate et al. [2], Bai et al. [11], Putra et al. [127], and Ojetola [118] use high

acceleration peaks to determine the beginning of the impact stage (the moment

when the body hits an object). Although it is simple in theory, using peaks as an

indicator for the impact stage during a real-time implementation is challenging due

to the multi-peak issue. In fact, multiple peaks appear in real fall data from an

older subject [85].

The multi-peak issue (the fourth issue), which is caused by protective actions

when the victim falls [82], can cause a misleading determination of the impact stage.

To explain this issue, approaches from Ojetola [118] and Putra et al. [127] are chosen

as an illustration. Both approaches use a 2 s non-overlapping window to detect the

state of the human body (active/inactive). If there are peaks exceeding a threshold

(1.6g) during the 2 s window, another 12 s window is placed around the highest peak

(P’) of that 2 s window and that peak is determined as the impact moment, where

this can cause a confusing determination of the impact stage. The illustration of

this process is shown in Figure 2.5a. Some readers might argue that this misleading

problem can be solved by finding the highest peak during the 12 s window, and

determining that highest peak as the impact moment. However, this solution can

only be used when a larger window is used. Figure 2.5b shows an illustration of

a situation when a shorter window is used; the impact stage is truncated and the

post-impact stage cannot be captured. Although using a larger window size can

solve the issue for this situation, it can be a disadvantage because the system needs

to “wait” longer to get more samples. Note that this multi-peak issue exists only in
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a real-time situation, while aligning the window with the impact stage can be easily

done in an o�ine mode.

In fact, this multi-peak issue is shown in Abbate et al.’s study [2] (this issue is

referred to as a bouncing problem), where multiple peaks usually appear from the

waist bouncing after a victim falls from bed. In their study, Abbate et al. proposed

an approach that can solve the multi-peak issue hoping to reduce the number of false

alarms, though the accuracy of their approach is quite low with 61.6% of accuracy,

90.9% of sensitivity, and 31% of specificity.

To solve this multi-peak/misalignment issue while improving the detection rate

of the classifier, this thesis proposes a novel machine-learning-based approach. This

approach is able to solve the multi-peak issue and to correctly estimate the beginning

and the end fall stages (pre-impact, impact, and post-impact). Chapter 5 provides

more detailed information regarding this novel approach.

2.5.5 Feature-selection technique for fall detection

In theory, using more features can increase the classifier’s detection rate [167]. How-

ever, using more features can make the learning process slower or even can reduce the

classifier detection rate, as there may be some irrelevant or redundant features [167].

Moreover, extracting more features can also increase the system’s computational

cost [92], which can increase the energy consumption of the device. Therefore, the

number of features needs to be reduced by using a feature-selection technique.

Broadly speaking, feature-selection techniques consist of three categories: wrap-

per, filter, and embedded. Both the wrapper and embedded techniques involve a

learning algorithm for selecting features. The wrapper methods [102, 158] involve

a learning algorithm and choose a subset of features based on the machine-learning

performance, while the embedded methods select features during the training process

of the learning algorithm [73]. The filter methods [7] do not have any dependency

on learning algorithms. To select a subset of features, the filter methods require
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Figure 2.5: Multi-peak issue illustrations
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less computation than the wrapper methods. However, the filter methods appear to

ignore features that can give more information when they are used together [158].

This disadvantage can reduce the accuracy of the classifier. The main drawback

of the wrapper methods is that they have a higher computational cost than the

filter-based methods [158], as the wrapper methods need to test all possible feature

subsets and select a subset of features that can give the optimal accuracy. Doing

an exhaustive search in a feature space of N features requires an evaluation of 2N

possible feature combinations [99].

To further reduce the computational cost of the fall-detection system, studies

from Li et al. [102] in 2015 and Wang et al. [158] in 2016 implemented a feature-

selection technique to reduce the dimensions of the features. Li et al. [102] use a

Bayes framework and receiver-operating-characteristic (ROC) curve to select fea-

tures. Their technique is able to achieve 86.08%, 94.31%, and 95.75% accuracies

with 4 features, 8 features, and 12 features, respectively. On the other hand, Wang

et al. [158] proposed a game-theory-based feature selection with a k-NN and an

SVM as the machine-learning algorithms. Their approach can achieve up to 74.42%

of accuracy with 21 features. The proposed feature-selection techniques from Li

et al. [102] and Wang et al. [158] only focus on selecting features that can give an

optimal detection rate, without considering their computational cost. This is be-

cause most of the existing feature-selection techniques are designed to select features

based on only a single criterion, namely the detection rate. In fact, there are features

that improve the accuracy but have a high computational cost. For example, the

Ojetola [118] study shows that the tilt angle of the body, where this is calculated

by combining tilt angles from an accelerometer and a gyroscope using a Kalman

Filter, gives a better F-score than using a minimum acceleration-vector magnitude.

It is obvious that finding a minimum acceleration-vector magnitude requires less

computation than calculating tilt angles using a Kalman Filter. Also, implementing

a Kalman Filter in wearable devices can be di�cult, as these devices have limited
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processing units and memory [143]. Furthermore, having a high-computational-

cost system can drain the battery of the device quickly [92]. Thus, a fall-detection

system needs features that can give a maximum detection rate with a minimum

computational cost.

Saeedi et al. [130] in 2014 proposed a filter-based feature-selection technique,

where this technique can select features from di�erent sensor locations (waist, wrist,

arm, and ankle), that can give a relatively good accuracy and low computational

cost. Their feature selection technique can select features that can achieve a 70%

to 99% accuracy and save an 88% to 99.% of energy. However, this study does not

include fall activities.

Wang et al. [154] in 2017 proposed a wrapper-based feature-selection technique

that considers both the accuracy and the power consumption of the device. They

claim that their proposed approach is the first feature-selection technique that con-

siders both accuracy and power consumption. The main idea of their technique

is to remove a feature in each iteration when the energy consumption and clas-

sification error reduce. However, they do not provide a clear step for selecting a

candidate-removed feature for each iteration. The next limitation of their approach

is that it does not select the best feature subset from all evaluated feature subsets.

This is because it does not provide a mechanism to compare the results of the final

output with all results from the previously evaluated feature subsets. Another prob-

lem with Wang et al.’s study is that they do not provide any comparative analysis

between their proposed technique and other feature-selection techniques from other

categories (filter based and embedded). There is a chance that using filter-based or

embedded techniques can give better or similar results than the wrapper method.

Since using either filter-based and embedded techniques requires less time to run

than the wrapper method, it is better to use one of these techniques rather than the

wrapper method when the results are similar.

Chapter 6 proposes a genetic-algorithm-based feature-selection technique (GA-
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Fade), where this technique is able to choose low-computational-cost features from

several di�erent sensor placements, where those features can give an optimum de-

tection rate. A comparative analysis between GA-Fade, filter-based (SelectKBest),

and embedded (Recursive Feature Elimination) techniques [125] is provided.

2.6 Chapter Summary

This chapter reviews some definitions of falls together with their stages and some

existing approaches in fall-detection studies. A taxonomy of fall-detection systems

is provided in this chapter. In general, falls can be defined as an unexpected event

that can cause the centre of gravity of the body to descend quickly, which makes the

subject come to rest on the ground or other lower level with or without consciousness.

A fall consists of three stages: pre-impact, impact, and post-impact.

Fall-detection systems consist of two major classes: context-aware and wearable-

devices based systems. The wearable-device based systems can be divided into three

classes: threshold-based, machine-learning-based, and threshold-machine-learning-

based approaches. Some issues that exist in current fall-detection studies are:

• Most of the existing studies use a non-publicly-accessible dataset, which means

that the results of those studies cannot be directly compared. Using a publicly-

accessible dataset is recommended to evaluate the fall-detection approaches to

get a fair comparison result. Also, using a publicly accessible dataset makes

the results provided in this thesis are easy to reproduce.

• Because the way data are segmented can a�ect the detection rate of a machine-

learning-based fall-detection system, it is important to choose an appropriate

window type (FNSW or FOSW) and size. However, an investigation on the

impact of the sliding-window technique on the detection rate, where this in-

vestigation is done using publicly accessible datasets, has not been done.
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• A comparison between threshold-based approaches and sliding-window-based

machine-learning approaches using publicly accessible datasets has not been

done. This comparison is used to determine the advantages and disadvantages

of both threshold- and sliding-window-based machine-learning approaches,

where these advantages and disadvantages can be used as a basis for improving

the detection rate of a fall-detection system.

• Although using fall stages as a basis for feature extraction can increase the

system detection rate, it is di�cult to define the beginning and the end of each

stage because of the multi-peak issue. Also, extracting complex features for

the sliding-window-based machine-learning approach can increase the compu-

tational cost of the system.

• Because existing feature-selection techniques in fall detection are designed to

select features based on only one criterion (detection rate), they cannot select

low-computational-cost features that can give an optimum detection rate.

The next chapter discusses the publicly accessible datasets used in this study.
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Chapter 3

Falls and activities of daily living

datasets

The previous chapter discusses existing studies in fall detection, together with their

limitations. This chapter reviews publicly accessible datasets that are used in this

thesis. As using a publicly-accessible dataset can give a fair comparison between

techniques [80], this study uses three publicly accessible datasets: (1) Cogent data-

set1 [119], (2) SisFall dataset2 [140], and (3) FARSEEING dataset3 [1]. Four ad-

vantages of using the Cogent and SiSFall datasets are:

• Cogent and SisFall have more subjects than three other publicly accessible

datasets: DLR [57], tFall [109], and mobiFall [149].

• The Cogent dataset has near-fall activities, where these activities are mostly

mis-detected as falls, which can produce a high number of false alarms in the
1
The dataset can be downloaded at: http://skuld.cs.umass.edu/traces/mmsys/2015/paper-

15/.
2
The SisFall dataset can be downloaded at: http://sistemic.udea.edu.co/en/

investigacion/proyectos/english-falls/.
3
This dataset is not fully publicly accessible. Instead, this dataset is available by request.

Information related to this dataset request can be found at:http://farseeingresearch.eu/
the-farseeing-real-world-fall-repository-a-large-scale-collaborative-database-
to-collect-and-share-sensor-signals-from-real-world-falls/ .
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real-world case [100]. These activities are important to evaluate the e�ective-

ness of the fall-detection approach on handling false alarms.

• The Cogent dataset has data from three sensor placements. This can allow

fall-detection approaches to be tested on di�erent sensor placements. Using

more than one sensor placement has been shown to be able to increase the

system’s detection rate [64].

• The SisFall dataset has more types of falls. This dataset has 15 di�erent types

of falls, which is more fall types than the Cogent, DLR, and tFall datasets.

Another dataset used in this study is the FARSEEING dataset. This dataset con-

tains real falls from older patients, and those falls are important to justify the use of

data from young and healthy subjects to evaluate fall-detection approaches, which

is debatable. Bagala et al. [10] show that using data from younger subjects to de-

termine thresholds for detecting falls in older people is not e�ective. This is because

some factors (such as body mass, age, clinical history, and diseases) might a�ect

the value of the thresholds. On the other hand, a study from Jamsa et al. [82]

shows that real falls present a similar pattern to laboratory-based falls. Their study

also confirms that real forward, sideways, and backward falls show the existence of

pre-impact and impact stages. Thus, to support Jamsa et al.’s finding, this chapter

provides a discussion about the comparison between fall acceleration signals from

young subjects and from older patients.

3.1 Cogent dataset

3.1.1 Subject profile

As some data from some subjects are corrupt (incomplete data or inappropriate

annotation), this thesis uses 46 subjects from this dataset (see Table 3.1), where

those subjects include males and females. Sensors were strapped to the chest and
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Table 3.1: Subjects’ body profiles from Cogent dataset

Profile
Subjects with chest

and thigh sensors.

Subjects with chest, waist,

and thigh sensors

Number of males 37 13

Number of females 9 5

Age (years) 23.5 ± 5.5 22 ± 2.8

Height (cm) 172.7 ± 7.7 172.4 ± 10.1

Weight (kg) 69.7 ± 12.8 66.1 ± 13.7

thigh of each subject. Eighteen subjects (including males and females) had a sensor

strapped to their chest, waist, and thigh. The thigh placement is considered because

some studies use a smartphone placed in the thigh pocket to detect falls [91, 92].

3.1.2 Hardware

The Cogent dataset used Shimmer sensors with a sampling rate of 100 Hz for its data

collection. The sensor consists of a 3D accelerometer, a 3D gyroscope, a Bluetooth

device, and an MSP430F1611 microcontroller. More details about Shimmer are

provided in [31]. The Shimmer sensors transfer the data to a personal computer (PC)

using Bluetooth and these data were manually annotated with LabView. Figure 3.1

shows the sensor placement and a Shimmer device.

3.1.3 Protocol

Each of the subjects staged 14 falls (including 6 forward, 4 backward, and 4 lateral

falls) and several ADLs for 23 minutes on average. The length of both falls and

ADLs for this dataset varies and Figure 4.2 shows the length of falls of the Cogent

dataset. More detailed information regarding the length of both falls and ADLs can

be found in Ojetola et. al. [119]. In total, this dataset has 644 fall and 1,196 ADL
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Figure 3.1: Sensor placements (left and right) and the shimmer sensor (middle) for
the Cogent dataset

samples. Those numbers show that this dataset has a larger number of samples

than both Noury et al. [115] (600 data points for both falls and ADLs) and Abbate

et al. [2] (86 fall-like samples with 44 falls included). Although Noury et al.’s study

provides more complex activity scenarios, their data are not publicly accessible.

Table 3.2 shows the type of falls and ADLs (followed by their numbers of samples)

while Figure 3.2 shows the staged falls and some ADLs of this dataset. More detailed

information on the protocol can be found in Ojetola et al. [119].

3.2 SisFall dataset

3.2.1 Subject profile

This dataset has two groups of subjects: young adults and older people. This thesis

uses the data from the young-adult group because the older-people group does not

involve any fall activities. This young-adult group consists of 10 males and 11 females

(age 25.0±8.6 years, height 165.7±9.3 cm, and weight 57.7±15.5 kg). This dataset

has 1 subject aged 60. The number of subjects used in this thesis is fewer than the

published dataset, as some subjects were removed due to incomplete samples.
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Figure 3.2: ADLs and staged falls for the Cogent dataset [118]
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Table 3.2: Types of falls and ADLs (together with their counts) in the Cogent
dataset

Category Activity
Number of

events

ADLs

Standing while doing some other activities (e.g. making a phone call)

Sitting on a chair while doing some other activities (e.g. reading a book)

Near fall

Sitting on the floor (not a result of falling)

Lying on a bed while doing some other activities (e.g. reading a book)

Walking while doing some other activities (e.g. making a phone call)

184

184

276

276

92

184

Falls

Forward

Backward

Left-side

Right-side

276

185

91

92

3.2.2 Hardware

To collect the data, Sucerquia et al. [140] used a custom-made device that consists of

a Kinetis MKL25Z128VLK4 microcontroller (NPX, Austin, Texas, USA), an Ana-

log Devices (Norwood, Massachusetts, USA) ADXL345 accelerometer, a Freescale

MMA8451Q accelerometer, an ITG3200 gyroscope, an SD card for recording, and

a 1000 mAh generic battery. The device was placed on the subjects’ waists. This

thesis uses only data gathered from the ADXL345 accelerometer.

3.2.3 Protocol

Each subject performed 15 types of falls, each five times, and 19 types of ADLs.

Thus, this dataset has 1,575 fall and 1,659 ADL data points in total. Table 3.3

shows the type of falls and ADLs (followed by their number of instances) in this

dataset. The length of all fall events in this dataset is 15 seconds (uniform), while

for the ADLs events the lengths are 12, 25, 100 seconds. Fall events are started with

an activity such as walking, jogging, or sitting.
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Table 3.3: Types of fall and ADLs (together with their counts) in the SisFall dataset

Category Activity
Number of

events

ADLs

Walking slowly (D01),

Walking quickly (D02),

Jogging slowly (D03),

Jogging quickly (D04),

Walking upstairs and downstairs slowly (D05),

Walking upstairs and downstairs quickly (D06),

Slowly sitting in a half-height chair, waiting a moment, and standing up slowly (D76),

Quickly sitting in a half-height chair, waiting a moment, and standing up quickly (D08),

Slowly sitting in a low-height chair, waiting a moment, and standing up slowly (D09),

Quickly sitting in a low-height chair, waiting a moment, and standing up quickly (D10),

Sitting a moment, trying to get up, and collapsing into a chair (D11),

Sitting a moment, lying down slowly, waiting a moment, and sitting up again (D12),

Sitting a moment, lying down quickly, waiting a moment, and sitting up again (D13),

Being on one’s back, changing to lateral position, waiting a moment, and changing to one’s back (D14),

Standing, slowly bending at knees, and getting up (D15),

Standing, slowly bending without bending knees, and getting up (D16),

Standing, getting into a car, remaining seated then getting out of the car (D17),

Stumbling while walking (D18),

Gently jumping without falling, while trying to reach a high object (D19).

21

21

21

21

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

Falls

Falling forward while walking caused by a slip (F01),

Falling backward while walking caused by a slip (F02),

Falling laterally while walking caused by a slip (F03),

Falling forward while walking caused by a trip (F04),

Falling forward while jogging caused by a trip (F05),

Falling vertically while walking caused by fainting (F06),

Falling while walking, with use of hands on a table to dampen fall, caused by fainting (F07),

Falling forward when trying to get up (F08),

Falling laterally when trying to get up (F09),

Falling forward when trying to sit down (F10),

Falling backward when trying to sit down (F11),

Falling laterally when trying to sit down (F12),

Falling forward while sitting, caused by fainting or falling asleep (F13),

Falling backward while sitting, caused by fainting or falling asleep (F14),

Falling laterally while sitting, caused by fainting or falling asleep (F15).

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105
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3.3 FARSEEING dataset

This dataset consists of 22 older subjects, where those subjects experienced real

falls. Table 3.4 shows the body profiles of the subjects of this dataset. This dataset

is available on request from the FARSEEING project [1]. Some subjects had sensors

attached on their sacrum near L5, while the others had a sensor attached on their

thigh. However, no subject had sensors attached on multiple body parts.

Regarding the hardware specification, ActivPal34 were used as the thigh sensor

with a 20 Hz sampling rate. For the L5 sensor, a MiniMod5 device was placed on the

L5 segment of some of the subjects. For some subjects, a hybrid device is used as the

L5 sensor. However, more detailed information regarding this hybrid device is not

provided. This dataset has signals from an accelerometer (ms≠2), a gyroscope (°/s),

and a magnetometer (µT). For this thesis, only signals from the accelerometer are

used. This study focuses on using just accelerometer sensors (see subsection 2.5.1).

Because the FARSEEING dataset uses ms≠2 as its unit while the other datasets use

g as their unit, a data conversion was done on the FARSEEING dataset by assuming

1g = 9.8 ms≠2.

This dataset has the following fall types: backward, forward, side forward, and

backward on the left. Some activities were reported before the fall: walking, stand-

ing, and bending down. Falls are labeled as a single point in this dataset, thus they

do not have a length. More detailed information about the FARSEEING dataset

can be found in Appendix A.

3.4 Discussion

Bagala et al. [10] show that using data from younger subjects to determine thresholds

to detect falls in older subjects is not e�ective, since some fall phases that are de-
4
ActivPal is a product of the PALtechnologies company (http://www.paltechnologies.com/)

5
MiniMod is a product of the McRoberts company (https://www.mcroberts.nl/)
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Table 3.4: Subjects’ body profiles of the FARSEEING dataset

Profile Subjects with L5 sensor Subjects with thigh sensor

Number of females 10 2

Number of males 5 5

Height (cm) 164.3±9.6 173.3±14

Weight (kg) 76.7±10.0 73.6±19.8

Age (years) 66.8±6.3 75.3±7.7

tected in younger subjects does not exist in acceleration signals from real falls that

are experienced by older subjects. In contrast to Bagala et al.’ study, Kangas et

al. [85] and Jamsa et al. [82] show that data from younger subjects share a similar

pattern to data from real falls of older subjects. Based on Ojetola’s study [118]

(this study uses data from younger subjects), during the pre-impact stage, the ac-

celeration drops below 1g since the subject is (briefly) in a weightless state after

losing their balance. This is followed by the impact stage where several high ac-

celeration peaks occur as an indicator of the moment when the subject’s body hits

the ground. An inactive state is shown after the impact stage, where this condi-

tion is a characteristic of the post-impact stage. These fall stages are shown to

exist on the staged-fall acceleration signal on simulated/staged falls from the Co-

gent and SisFall datasets (Figures 3.3 and 3.4) and the real-fall acceleration signal

from the FARSEEING dataset (Figure 3.5). This finding can be an indication that

real falls have a similar pattern to laboratory-based falls in terms of the fall stages.

Thus, to be precise, subsection 5.4.7 provides a performance comparison between

using data from young subjects (the Cogent and SisFall datasets) and older subjects

(FARSEEING dataset).

Another issue that arises from the laboratory-based dataset is the use of a mat-

tress during a data collection, by the Cogent and SisFall datasets. Kangas et al. [85]

show that some real falls produce higher impacts than staged falls, because the
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Figure 3.3: Fall acceleration magnitude (g) from the Cogent dataset

staged falls use a mattress during the data collection. Based on Klenk et al.’s

study [96], using a mattress when performing a fall can damp the impact signal.

However, their study does not investigate the e�ect of using a mattress on the data.

Also, based on Casilari et al. [33], there is not yet a study investigating the impact

of using a mattress on collecting data for a fall-detection study. Thus, this issue is

still open for future work.

3.5 Summary

This chapter reviews the publicly-accessible datasets in this study: Cogent, SisFall,

and FARSEEING. The aim of using publicly-accessible datasets is to get a fair

comparison between techniques. The data were mostly gathered from young and

healthy subjects (there is one subject whose age is 60 in the SisFall dataset) for

the Cogent and SisFall datasets, while the FARSEEING dataset gathered data from

older people. For the Cogent and SisFall datasets, their subjects staged some falls

and activities of daily living (ADLs) in a laboratory environment. The results of this

study still can be an indication of the performance of the fall-detection technique in
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real-world cases, because the laboratory-based falls (the Cogent and SisFall datasets)

share similar patterns with real falls from older people (the FARSEEING dataset).

The next chapter provides an analysis of the performance of the current fall-detection

approaches using the Cogent and SisFall datasets.
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Chapter 4

An analysis of fall-detection

approaches

4.1 Introduction

The previous chapter discusses three publicly-accessible datasets: Cogent, SisFall,

and FARSEEING. This chapter focuses on analysing threshold- and sliding-window-

based machine-learning approaches on these publicly accessible datasets. This chapter

covers: an analysis of the impact of the window and overlap sizes of the sliding

window for machine-learning-based approaches, and a comparison between sliding-

window-based machine-learning and threshold-based approaches, using publicly ac-

cessible datasets.

Machine-learning-based approaches (to do both learning and testing from a data

stream) need to segment the data sequence and extract features from each segment.

For traditional machine-learning-based fall-detection approaches, the segmentation

techniques are categorised into two: Fixed-size Non-overlapping Sliding Window

(FNSW) [50, 148] and Fixed-size Overlapping Sliding Window (FOSW) [43, 44, 118].

Although studies have been done for machine-learning based approaches, there is a
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lack of information regarding the impact of the window size for the FNSW-based

machine-learning approach and the overlap size for FOSW-based machine-learning

approaches. Therefore, this chapter focuses on investigating the impact of window

and overlap sizes on the classifier’s detection rate (precision, recall, and F-score)

using two publicly accessible datasets: Cogent and SisFall (see Chapter 3 for detailed

information about the datasets).

A study from Vallejo et al. [148] shows that defining thresholds to detect falls is

di�cult, because there are data overlaps between falls and activities of daily living

(ADLs). However, their study does not compare the detection rate of threshold-

and machine-learning-based approaches. Azis et al. [8] show that using machine

learning to build the classifier can give a better sensitivity and specificity than us-

ing pre-defined thresholds. However, their dataset is not publicly accessible. Thus,

this chapter also covers a detection-rate comparison between threshold- and sliding-

window-based machine-learning approaches using publicly accessible datasets (Co-

gent and SisFall), where these datasets have a relatively large number of subjects

and type of activities.

The structure of this chapter: Section 4.2 provides the methodology of this

chapter. Sections 4.3 and 4.4 discus the detection rate of threshold- and machine-

learning-based approaches, respectively. Section 4.5 discusses and analyses the res-

ults of the experiments on both threshold- and machine-learning-based approaches

and the limitations of this chapter. A chapter summary is provided in Section 4.6.

4.2 Method

This chapter uses the Cogent and SisFall datasets. Three evaluations were con-

ducted: an evaluation of a threshold-based approach, an evaluation of machine-

learning-based approaches, and a comparison between a threshold-based approach

and machine-learning-based approaches. A threshold-based approach called IM-
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PACT+POSTURE from Kangas et al. [86] is used, because this algorithm is simple

and provides a relatively high accuracy. Although this technique is relatively old

in terms of time of publication (Kangas et al. published their paper in 2008), it

is still used as a comparison in Aziz et al.’s [8] study. In fact, this chapter shows

that this simple and relatively old technique can achieve similar performance to

machine-learning-based approaches when the Cogent dataset is used. All thresholds

are determined based on the dataset using an approach from Kangas et al. [87].

In this chapter, although recorded datasets were used, the experiment was im-

plemented in a real-time-style simulation where the sample appears one by one.

The FNSW and FOSW techniques were implemented from the beginning of the

record. This means that the window does not necessarily centred on the accelera-

tion peak. An illustration of the real-time-style simulation is shown in Figure 4.1.

Both FNSW- and FOSW-based machine-learning approaches use several machine-

learning algorithms in their implementation. For training and testing the classifier,

four machine-learning algorithms from the Scikit-learn library [125] were used: Clas-

sification and Regression Tree (CART), Logistic Regression (LR), Support Vector

Machine (SVM), and k-Nearest Neighbour (k-NN). The following parameters are

used for the machine-learning algorithms:

• k = 1, 2, and 3 together with the Euclidean distance for k-NN;

• an inverse of the regularisation strength (C) of 108, 109, and 1010 for LR;

• linear, radial basis function (RBF), and polynomial (with d = 3, where this

value is the default value of the Scikit-learn library) kernels for SVM.

The Cogent dataset shows that falls mostly last 2 seconds or longer. Figure 4.2

shows the length of falls from the Cogent dataset. This length is obtained based

on the label of the fall event. Thus, 2 to 12 s was used as the range of used size

to assess the Cogent dataset, as the largest window size from current fall-detection

studies is 12 seconds [118]. For the SisFall dataset, this thesis considers windows
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Samples from a recorded dataset

S10

Sliding window

Figure 4.1: An illustration of the use of a sliding window in a real-time-style simu-
lation

with lengths of 2 to 15 s, because the length of all fall events from this dataset is

15 s (uniform). The FOSW-based machine-learning approaches implement several

window overlaps: 25%, 50%, 75%, and 90% [19].

This study uses leave-one-subject-out cross-validation (LOSOCV) as the classi-

fier evaluation method. For the threshold-based approach, LOSOCV means using

N ≠ 1 subjects (N is the total number of subjects) to adjust thresholds and using

one subject as a test case. That process is repeated until all subjects have been used

as a test case in turn. LOSOCV for the machine-learning-based approach means

using N ≠ 1 subjects (N is the total number of subjects) to train a classifier us-

ing a machine-learning algorithm, and using one subject as a test case. Then, this

validation technique does iterations until all subjects have been used as a test case.

As the number of fall data is very small compared to those of ADLs, accuracy

cannot be used to measure the classifier’s performance because it overvalues the

always-negative classifier [55]. Thus, this study uses precision, recall, and F-score.

When a sequence (annotated as a particular activity) is segmented for online pro-

cessing by a fall-detection approach (e.g. a threshold-based approach or an (FNSW-

or FOSW-based) machine-learning approach), several segments are usually produced
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Figure 4.2: The length of fall events from the Cogent dataset (this length is defined
based on the annotation of the data)

from that particular activity. Since the classifier does the classification on each seg-

ment, those segments might produce di�erent results (Figure 4.3). To obtain a single

classification result, the following rules are implemented:

• A data sequence is detected as an FP if this data sequence is annotated as

a non-fall activity and at least one segment out of all the segments produced

from this data sequence is detected as a fall.

• A data sequence is detected as a TP if this data sequence is annotated as a

fall activity and at least one segment out of all the segments produced from

this data sequence is detected as a fall.

• A data sequence is detected as an FN if this data sequence is annotated as a

fall activity and no segment is detected as a fall.

At a certain time, a segment may include samples from both fall and non-fall activ-

ities. This segment is annotated as a fall if it has samples from a fall activity. Note

that the total number of segments that are produced by an activity varies depends
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on the length of the activity, the length of sliding window, and the type of sliding

window (FNSW or FOSW). A Wilcoxon signed-rank test was used to evaluate the

significance of the improvement in the detection rate. This method is chosen be-

cause the precision, recall, and F-score values are not normally distributed. This

study uses the Shapiro-Wilk normality test to assess the distribution of precision,

recall, and F-score values.

4.3 Threshold-based fall-detection approach

The main idea of a threshold-based fall-detection approach is using manually pre-

defined thresholds to distinguish falls from ADLs. This chapter implements a

threshold-based approach from Kangas et al. [86] called IMPACT+POSTURE.

4.3.1 IMPACT+POSTURE approach

IMPACT+POSTURE detects falls by finding an impact followed by monitoring the

posture of the subject’s body. To find an impact, several thresholds are used:

• Total sum vector (SVtot). First of all, this approach filters the accelerometer

signal using a median filter with a window length of three samples to reduce

noise. Then SVtot is calculated using

SVtot =
Ò

(Ax)2 + (Ay)2 + (Az)2, (4.1)

where Ax, Ay, and Az are the accelerations (g) of the x-, y-, and z-axes, respectively.

This parameter contains both dynamic and static acceleration components.

• Dynamic sum vector (SVD). In the beginning, this approach filters the accel-

erometer signal using a median filter with a window length of three samples,

followed by a high-pass filter (fc = 0.25 Hz) using a digital second-order But-
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terworth filter. After that, formula (4.1) is used to calculate SVD as it can

detect fall-related impacts.

• The di�erence between the maximum and the minimum of the total sum vector

(SVmaxmin) is calculated by constructing a sliding sum vector, generated by

calculating the di�erence between the maximum and the minimum values of

the total sum vector in a 0.1-second sliding window for each axis.

• Vertical acceleration (Z2). This approach calculates this parameter using

Z2 = SV 2
tot ≠ SV 2

d ≠ G2

2G
, (4.2)

where G is the gravitational acceleration (G = 1g).

If one of the parameters above exceeds the thresholds, the approach measures

the posture of the subject’s body. The thresholds are calculated using a technique

from Kangas et al. [87]. To avoid biased results, the thresholds are defined from the

training set and they are evaluated on the test set. Figure 4.4 shows the evaluation

steps of the IMPACT+POSTURE algorithm using LOSOCV. To calculate posture,

similarly to the previous parameters, the approach filters the signal from the z-axis

using a median filter with a window length of three samples [86, 90]. Then the data

is low-pass filtered (fc = 0.25 Hz) using a digital second-order Butterworth filter.

Two seconds after the impact, the approach gathers samples in a 0.4 s time interval

for posture detection. If the average of the samples in that interval is equal to or

lower than 0.5g, the approach detects this data as a lying posture [86, 90]. Because

this parameter relies on the signal from the z-axis, the sensor position needs to

be unchanged during the data collection. In fact, for both the Cogent and SisFall

datasets, the sensors were strapped on the subject’s body, which means that the

position of the sensor is unlikely to have changed.
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Figure 4.4: Evaluation of IMPACT+POSTURE algorithm using leave-one-subject-
out cross-validation (LOSOCV)

4.3.2 Performance analysis

4.3.2.1 Cogent dataset

Figure 4.5 shows the distributions of all the parameters (SVtot, SVD, SVmaxmin,

and Z2) extracted from the Cogent dataset. Figures 4.5a–4.5d indicate that there

are data overlaps between falls (FALL) and ADLs (NON-FALL). The data overlap

means an overlap between the feature values of fall and non-fall events in the feature

space. These overlaps can cause both false alarms (false positive) and undetected

falls (false negatives). Instances of NON-FALL that exceed the threshold can cause

false alarms, while instances of FALL that have values below the threshold can

cause undetected falls. For this study, the lowest value from falls is defined as the

threshold, aiming to detect all falls. Table 4.1 shows the detection rate, in terms of

precision, recall, and F-score, of IMPACT+POSTURE. In general, it can be seen

that IMPACT+POSTURE can achieve up to 88.6% for the F-score on average.
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Table 4.1: IMPACT+POSTURE performance

Metric Cogent dataset (%) SisFall dataset (%)

Precision 90.9±10.2 54.1±1.7

Recall 87.6±11.9 100±0

F-Score 88.6±9.2 70.2±1.4

4.3.2.2 SisFall dataset

Figure 4.6 shows the distribution of all the parameters (SVtot, SVD, SVmaxmin, and

Z2) extracted from the SisFall dataset, while Table 4.1 shows the performance of IM-

PACT+POSTURE tested on the SisFall dataset. Although all falls from the SisFall

dataset are correctly detected (100% recall) by IMPACT+POSTURE, the number

of false alarms is relatively high, as can be seen from the classifier’s precision. The

precision achieved is very poor, at 54.1% on average. Overall, IMPACT+POSTURE

is able to achieve a 70.2% F-score on average.

A lesson learned from this section is that manually defining the threshold [25,

34, 47, 87, 86, 88, 136, 140] is not a trivial task, and might cause the number of un-

detected falls or the number of false alarms to increase. Sub-section 4.4 investigates

existing machine-learning-based approaches for fall detection.

4.4 Machine-learning-based fall-detection

approach

Most of the machine-learning-based approaches use FNSW or FOSW to segment the

data stream before doing a feature-extraction process (see subsection 2.3.2). This

sub-section investigates the use of FNSW and FOSW on several machine-learning

algorithms (CART, k-NN, LR, and SVM). The following features are used in this

study:
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1. Minimum, maximum, and average acceleration-vector magnitudes [2, 118,

127].

2. Velocity:

�V = 1
f

nÿ

m=1
am, (4.3)

where am and f are the acceleration-vector magnitude and sampling frequency,

respectively [24, 118, 127].

3. Energy expenditure [39, 108, 118, 157], where the energy expenditure is related

to the acceleration signal (with 89% correlation based on Mathie et al. [108])

by:

E = –

A
nÿ

i=1
a2

x +
nÿ

i=1
a2

y +
nÿ

i=1
a2

z

B

,

where – is a constant of proportionality, where in this study – = 1. The term

energy expenditure is used in a loose sense – it does not necessarily correspond

to the expended kinetic energy. Nonetheless, it is a useful feature that is easy

to calculate.

4. Variance of the acceleration-vector magnitude [29, 118, 127].

5. Root mean square (RMS) of the acceleration-vector magnitude [24, 64, 127].

6. Acceleration exponential moving average (EMA) [29, 118, 127]:

st = –Vm + (1 ≠ –)st≠1,

where st and Vm are the EMA value and acceleration-vector magnitude, re-

spectively.

7. Signal-magnitude area (SMA) [90, 118, 127, 164]:

“ = 1
n

A
nÿ

i=1
|aix| +

nÿ

i=1
|aiy| +

nÿ

i=1
|aiz|

B

,
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Variables ax, ay, az, and n from the formulas above are the outputs of the accelero-

meter on the x, y, z axes, and the number of samples in a segment, respectively.

4.4.1 Classification and Regression Tree (CART)-based

fall-detection approach

4.4.1.1 Sliding-window+CART performance on the Cogent dataset

Figure 4.7 shows the impact of the window size on the precision, recall, and F-

score of the FNSW and FOSW with a CART-based classifier tested on the Cogent

dataset. The FNSW+CART-based classifier achieves a better precision when the

window size is increased. On the other hand, to get a better recall, a smaller window

is needed by the classifier. This means that using a larger window might increase

the number of undetected falls while a smaller window increases the number of false

positives. Overall, using the window size of 12 seconds gives 64.8±12.7%, 87±15.2%,

and 73.6±12.2% of precision, recall, and F-score, respectively.

Table 4.2 shows the overall performance of the FOSW+CART-based classifier on

its window overlaps (25%, 50%, 75%, and 90%) in terms of precision, recall, and F-

score. From this table, it can be seen that increasing the data overlap can increase

the recall to 99.1% on average. However, the precision decreases when the data

overlap increases. This means that increasing the data overlap can cause a classifier

to increase its number of false alarms, while reducing its number of undetected

falls. In terms of F-score and precision, increasing the overlap size can degrade

the classifier’s performance. In terms of the window overlap size, the classifier can

achieve the best result when the overlap is 25%. The classifier can achieve the best

overall result when the window size is 11 seconds with 25% of data overlap, with a

58.3±10.3% precision, an 89.8±13.1% recall, and a 70.2±9.8% F-score.
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Figure 4.7: FOSW+CART precision, recall, and F-score (%) for di�erent window
overlap sizes (Cogent dataset)

Table 4.2: Overall FOSW+CART performance (average and standard deviation)
based on the overlap size using the Cogent dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 49.8±12.5 91.6±12 63.7±11.7

50 43.7±10.5 94.8±8.6 59.1±9.9

75 34.0±7.9 97.3±6.2 49.9±8.6

90 25.2±4.9 99.1±3.1 39.0±6.1
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Figure 4.8: FOSW+CART precision, recall, and F-score (%) for di�erent overlap
sizes (SisFall dataset)

4.4.1.2 Sliding window+CART performance on the SisFall dataset

Figure 4.8 shows the impact of the window size on the precision, recall, and F-score

of FNSW and FOSW with a CART-based classifier. The FNSW+CART-based

classifier can get a better precision when the window size is increased. An increase

in the size of the window can cause a slight reduction in recall. Overall, the classifier

can achieve the best result when the window size is 15 seconds, with a 91.6±2.4%

precision, a 99.7±0.7% recall, and a 95.5±1.5% F-score.

Table 4.3 shows the precision, recall, and F-score of FOSW with a CART-based

classifier tested on the SisFall dataset. From these results, it can be seen that increas-

ing the overlap of the FOSW can reduce the precision of the classifier. Although

most of the overlaps can detect all falls, they produce a relatively low precision,

which is a sign of an increase in false alarms. Overall, for the FOSW+CART ap-

proach, the classifier can achieve the best result when the overlap size is 25% and

the window size is 15 seconds (see Figure 4.8), with 88.6±2.7%, 99.9±0.4%, and

93.9±1.5% of precision, recall, and F-score, respectively.
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Table 4.3: FOSW+CART performance (average and standard deviation) based on
the overlap size using the SisFall dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 69.0±14.5 99.9±0.4 82.2±12.0

50 65.6±14.4 100±0.1 78.3±10.3

75 61.9±14.3 100±0.0 75.6±10.4

90 59.2±14.1 100±0.0 73.4±10.4

4.4.2 k-nearest neighbours (k-NN)-based fall-detection

approach

4.4.2.1 Sliding window + k-NN performance on the Cogent dataset

Figure 4.9 shows the impact of the window size on the precision, recall, and F-score

values of FNSW and FOSW with the k-NN machine-learning algorithm tested on

the Cogent dataset. These results show that increasing the window size can cause

the FNSW+k-NN-based classifier’s precision to increase. On the other hand, the

classifier’s recall decreases when the window size is increased. In terms of F-score,

the classifier’s performance improves when a bigger window is used. Figure 4.10

shows the F-scores of FNSW+k-NN for di�erent k values. The classifier is able

to achieve the best result when k = 3 and the window size is 9 seconds, with an

83.9±10.8% precision, an 89.3±12.8% recall, and an 85.9±9.5% F-score.

Table 4.4 shows the performance (in terms of precision, recall, and F-score)

using FOSW with k-NN on several window overlaps. Increasing the overlap size

tends to decrease the precision. This means that increasing the window size of

the FOSW+k-NN-based classifier can produce more false alarms. On the other

hand, increasing the overlap size tends to increase the recall, which means that the

number of undetected falls is reduced. In general, in terms of F-score, reducing the
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Figure 4.9: FOSW+k-NN precision, recall, and F-score (%) for di�erent window
and overlap sizes (Cogent dataset)
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Figure 4.10: FNSW+k-NN F-score (%) for di�erent k values (Cogent dataset)
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Table 4.4: FOSW+k-NN overall performance (average and standard deviation)
based on the overlap size using the Cogent dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 70.1±19.1 88.1±15.1 76.1±15.0

50 64.5±19.6 91.8±12.1 73.7±15.2

75 53.0±18.8 95.3±9.3 66.0±16.0

90 37.7±14.3 97.7±6.3 52.9±14.3

data overlap size tends to degrade the classifier’s performance. In terms of window

overlap size, the classifier can achieve the best overall performance when the overlap

size is 25%. Figure 4.11 shows the F-scores of FOSW+k-NN for di�erent k values

when the window overlap is 25%. Overall, the classifier can achieve the best result

when k = 3, the window size is 10 seconds, and the overlap size is 25%, with an

82.3±12% precision, a 90.2±14.5% recall, and an 85.4±11.3% F-score.

4.4.2.2 Sliding window + k-NN performance on the SisFall dataset

Figure 4.12 shows the impact of the window size on the precision, recall, and F-

score values of FNSW and FOSW with a k-NN-based classifier implemented on

the SisFall dataset. These results show that the FNSW+k-NN-based classifier can

achieve better precision and F-score when the window size increases. On the other

hand, the recall decreases slightly when the window size increases. To find the best

k for the classifier, Figure 4.13 shows the F-score of the classifier with di�erent k

values. The classifier is able to achieve the best result when the window size is 15

seconds and k = 2, with a 94.2±2.2% precision, a 98.9±1.3% recall, and a 96.5±1.4%

F-score.

Table 4.5 shows the overall precision, recall, and F-score of FOSW from a k-

NN-based classifier using the SisFall dataset. Similarly to the FOSW+CART-based
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Figure 4.11: FOSW+k-NN F-score (%) for di�erent k values when overlap size is
25% (Cogent dataset)
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Figure 4.12: FOSW+k-NN precision, recall, and F-score (%) for di�erent overlap
sizes (SisFall dataset)
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Figure 4.13: FNSW+k-NN F-score (%) for di�erent k values (SisFall dataset)

classifier, increasing the window overlap does not necessarily improve the classifier’s

performance in general (in terms of F-score). The precision is decreased when the

overlap size increases. This means that the number of false alarms increases when

the window overlap increases. The FOSW+k-NN-based classifier achieves the best

result when the window overlap is 25%, the window size is 15 seconds, and k = 2

(see Figure 4.14), with 91.4±2.6%, 99.6±0.9%, and 95.3±1.4% of precision, recall,

and F-score, respectively.

4.4.3 Logistic-regression (LR)-based fall-detection

approach

4.4.3.1 Sliding window + LR performance on the Cogent dataset

Figure 4.15 shows the impact of the window size on the performance (in terms

of precision, recall, and F-score) of using FNSW and FOSW with an LR-based

classifier. The precision tends to fluctuate when the window size increases for the

FNSW+LR-based classifier. In terms of recall, increasing the window size tends to
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Table 4.5: FOSW+k-NN overall performance (average and standard deviation)
based on the overlap size using the SisFall dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 70.4±13.8 99.7±0.8 81.7±9.5

50 67.0±14.2 100±0.2 79.4±10.0

75 62.8±14.2 100±0.0 76.2±10.3

90 59.6±14.2 100±0.0 73.8±10.4
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Figure 4.14: FOSW+k-NN F-score (%) for di�erent k values when overlap size is
25% (SisFall dataset)
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Figure 4.15: FOSW+LR precision, recall, and F-score (%) (Cogent dataset)

degrade the approach’s performance, although it is a relatively high improvement

when the window is 6 seconds. By looking at the F-score, the overall classifier

performance tends to degrade when the window size is increased to 7 seconds, and

remains stable afterwards. Figure 4.16 shows the F-scores of FNSW+LR on di�erent

window sizes and di�erent C values. The classifier achieves the best result when the

size of FNSW is 2 seconds and C = 109, with a 91.2±11.4% precision, an 89.4±16.2%

recall, and an 89.6±12.7% F-score.

Table 4.6 shows the classifier’s performance (in terms of precision, recall, and

F-score) when FOSW and LR are used, for di�erent overlap sizes. Increasing the

overlap size tends to reduce the precision and increase the recall. In terms of F-

score, increasing the overlap size tends to improve the classifier’s performance. In

terms of the window overlap size, the classifier is able to achieve the overall optimal

F-score when the data overlap is 50%. Based on this overlap size, the classifier can

achieve the best result when the window size is 2 seconds and C = 109 (see Figure

4.17), with an 89.1±10.9% precision, a 95.3±10.7% recall, and a 91.5±8.7% F-score.

Although using 75% of window overlap and a 2-second window can give a better
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Figure 4.16: FNSW+LR F-score (%) for di�erent C (Cogent dataset)

F-score than using 50% of window overlap and a 2-second window, the di�erence is

not significant (p-value = 0.05).

4.4.3.2 Sliding window + LR performance on the SisFall dataset

Figure 4.18 shows the precision, recall, and F-score of FNSW and FOSW with an

LR-based classifier, while Figure 4.19 shows the F-score of FNSW with an LR-

based classifier using di�erent values of C. The FNSW+LR-based classifier is able

Table 4.6: FOSW+LR overall performance (average and standard deviation) based
on the overlap size using the Cogent dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 89.6±11.6 88.8±17.1 88.2±13.1

50 88.6±12.2 90±16.3 88.4±12.8

75 87.3±13.0 90.9±15.8 88.1±12.7

90 86.1±13.8 91.3±15.4 87.7±12.8
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Figure 4.17: FOSW+LR F-score (%) for di�erent C when overlap size is 50% (Co-
gent dataset)

to achieve better precision and F-score by increasing the window size, while the value

of recall remains almost stagnant regardless of the window size. Regarding the value

of C, Figure 4.19 shows that the results are similar for three di�erent values of C.

The classifier is able to achieve the best result by using a 15-second FNSW with an

87.7±1.1% precision, a 100±0% recall, and a 93.5±0.6% F-score.

Table 4.7 shows that increasing the window overlap for the FOSW+LR-based

classifier does not necessarily increase the classifier’s performance in terms of pre-

cision and F-score. The classifier achieves a lower precision when a bigger window

overlap is used. This means that the number of false alarms increases when the

window size increases. Figure 4.20 shows the F-score values of FOSW+LR with

various inverse-regularisation-strength values when the window overlap is 25%. The

classifier can get the best result when the window overlap is 25% and the window

size is 15 seconds regardless of C, with an 84.1±1.4% precision, a 100±0% recall,

and a 91.4±0.8% F-score.
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Figure 4.18: FOSW+LR precision, recall, and F-score (%) for di�erent overlap sizes
(SisFall dataset)
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Figure 4.19: FNSW+LR F-score (%) for di�erent C values (SisFall dataset)
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Table 4.7: FOSW+LR overall performance (average and standard deviation) based
on the overlap size using the SisFall dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 65.5±13.4 100±0.1 78.4±9.6

50 63.6±13.8 100±0.0 76.9±10.0

75 61.2±13.8 100±0.0 75.1±10.0

90 59.4±14.1 100±0.0 73.6±10.3
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Figure 4.20: FOSW+LR F-score (%) for di�erent C when overlap size is 25% (SisFall
dataset)
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Figure 4.21: FOSW+SVM F-scores (%) for di�erent overlap sizes (Cogent dataset)

4.4.4 Support vector machine (SVM) based fall-detection

approach

4.4.4.1 Sliding window + SVM performance on the Cogent dataset

The impact of the window size on the precision, recall, and F-score of the FNSW+SVM-

and FOSW+SVM-based classifier is shown in Figure 4.21. In terms of precision, the

classifier’s performance tends to degrade when the window size increases. The re-

call tends to remain stable when the window size is increased. Overall, the F-score

decreases when the window size increases from 2 seconds to 3 seconds and tends

to remain stable afterwards. The classifier can achieve the best result when the

window size is 2 seconds. Figure 4.22 shows the FNSW+SVM-based classifier F-

scores for di�erent window sizes and di�erent kernel types. Based on these scores,

the classifier is able to get the best performance when the window size is 2 seconds

and the kernel type is RBF, with a 93.1±10.7% precision, an 87.4±18% recall, an

89.2±13.8% F-score.
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Figure 4.22: FNSW+SVM F-scores (%) for di�erent kernels (Cogent dataset)

Table 4.8 provides precision, recall, and F-score values for the FOSW+SVM-

based approach. In terms of precision, the classifier performance decreases when

the overlap size increases. On the other hand, the recall increases when the overlap

size increases. Overall, the classifier performance, in terms of F-score, remains stable

when the overlap size increases. The classifier is able to reach the optimal result when

the data overlap is 90%. Figure 4.23 shows the F-scores of the FOSW+SVM-based

classifier for di�erent kernel types. The classifier can achieve the best performance

when the window size is 2 seconds and the kernel type is RBF, with a 92.1±10.1%

precision, a 93.6±12.6% recall, and a 92.3±9.7% F-score on average.

4.4.4.2 Sliding window + SVM performance on the SisFall dataset

Figure 4.24 shows the precision, recall, and F-score values of di�erent sizes of FNSW

and FOSW with an SVM-based classifier, while Figure 4.25 shows the F-score values

of the FNSW+SVM-based classifier with di�erent kernels. By increasing the window

size, the precision and F-score of the FNSW+SVM-based classifier increases, while

the recall remains stable. This classifier can reach the optimum performance when
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Table 4.8: FOSW+SVM performance (average and standard deviation) analysis
based on the overlap size using the Cogent dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 92.3±10.6 85.8±18.7 87.8±14.4

50 91.7±11.4 86.5±18.4 87.9±14.2

75 90.8±12.4 87.0±18.0 87.8±14.3

90 90.3±88.1 88.1±17.6 88.1±14.3

86

88

90

92

2 3 4 5 6 7 8 9 10 11 12

Window size (seconds)

F
−

sc
o

re
 (

%
) Kernel

Linear

RBF

Polynomial

Figure 4.23: FOSW+SVM F-scores (%) for di�erent kernels when overlap size is
90% (Cogent dataset)
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Figure 4.24: FOSW+SVM F-scores (%) for di�erent overlap sizes (SisFall dataset)

15 seconds of window size and a polynomial kernel are used. With this setup, the

classifier can achieve a 90.1±1.8% precision, a 99.9±0.4% recall, and a 94.7±1.0%

F-score.

Table 4.9 shows the precision, recall, and F-score of FOSW with an SVM-based

classifier. Similarly to the previous results, these results show that increasing the

window overlap does not necessarily improve the classifier’s performance. The best

window overlap to use is 25%. With regard to the SVM kernel, the polynomial

kernel can give the best performance (see Figure 4.26) with an 86.5±2.6% precision,

a 100±0% recall, and a 92.8±1.5% F-score on average, when the window size is 15

seconds.
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Figure 4.25: FNSW+SVM F-score (%) for di�erent kernels (SisFall dataset)

Table 4.9: FOSW+SVM overall performance (average and standard deviation)
based on the overlap size using the SisFall dataset

Overlap

size (%)

Metric (%)

Precision Recall F-score

25 65.2±13.9 100±0.1 78.1±10.0

50 63.4±14.2 100±0.0 76.7±10.2

75 61.1±14.1 100±0.0 75±10.3

90 59.1±14.3 100±0.0 73.5±10.5
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Figure 4.26: FOSW+SVM F-scores (%) for di�erent kernels when overlap size is
25% (SisFall dataset)

4.5 Analysis, discussion, and limitations

4.5.1 Threshold-, FNSW-, and FOSW-based approaches’

performance

For the machine-learning-based fall-detection approaches, the following tendencies

are retrieved from the results of both the FNSW- and FOSW-based machine-learning

approaches tested on the Cogent dataset:

• Precision tends to increase when the window size increases for the FNSW-

based machine-learning approach when it uses CART or k-NN. However, the

precision tends to decrease when the window size increases if the FNSW-based

machine-learning approach uses LR or SVM. For the FOSW-based machine-

learning approaches, the precision decreases when the overlap size increases

for most cases.

• Recall tends to decrease when the window size increases for the FNSW-based
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machine-learning approach, except when it uses an SVM. For the FOSW-

based machine-learning approaches, the recall increases when the overlap size

increases, in all cases.

• In terms of the F-score, increasing window size is only e�ective to increase

the classifier’s performance when the FNSW-based machine-learning approach

uses CART or k-NN. For the FOSW-based machine-learning approaches, the

F-score tends to decrease when the overlap size increases and CART, k-NN,

or LR is used as the machine-learning algorithm. On the other hand, when

the FOSW-based machine-learning approach uses an SVM, the F-score tends

to increase when the window overlap size increases.

The following tendencies are retrieved from the results of both FNSW- and FOSW-

based machine-learning approaches tested on the SisFall dataset:

• Precision and F-score tend to increase when the window size increases for the

FNSW-based machine-learning approach, regardless of the machine-learning

algorithm. However, the precision tends to decrease when the window overlap

increases for the FOSW-based machine-learning approaches in all cases.

• Recall tends to be steady for both FNSW- and FOSW-based approaches.

From the information above, it can be seen that increasing either the window size or

the overlap size does not necessarily improve the classifier’s performance (in terms of

precision, recall, and F-score) for the Cogent dataset. Figure 4.27 shows a summary

of the F-score for each machine-learning algorithm tested on the Cogent dataset.

For the SisFall dataset, increasing the window size can increase the precision and F-

score. This is because the lengths of falls are uniform (15 seconds). Therefore, using

a larger window size can increase both the precision and the F-score. In reality, the

lengths of falls are unpredictable. This makes the results from the SisFall dataset

not able to represent the performance of the classifier in a real-world case. Thus,
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the results from the Cogent dataset are more relevant to represent the classifier’s

performance in real-world cases. For the Cogent dataset, the best window size for

both FNSW and FOSW that can give the optimum F-score is 2 seconds. This size

is also recommended by Banos et al. [13], where they recommend a window size

that range from 0.25 to 3.25 seconds for recognising an energetic activity (including

falls).

Another finding from this study suggests that increasing the overlap size can

cause the number of false alarms to increase for both datasets. Figure 4.28 shows

the feature distributions when the FOSW-based machine-learning approach uses

25% and 90% window overlap size. These figures show that increasing the overlap

of the window can increase the number of data overlaps between fall and non-fall

data. This can cause the classifier to mistakenly learn that the non-fall samples are

falls during the training, and can make the classifier mistakenly classify non-falls as

falls during the testing. Figure 4.28 also shows that choosing a correct window size

is important. Ideally, fall activities produce higher acceleration-magnitude-mean

values than some other non-fall activities such as lying on the bed or sitting on the

chair (Sub-figures 4.28a and 4.28b). However, an anomaly arises when the SisFall

dataset is used (shown in Sub-figures 4.28c and 4.28d). This is caused by a gap

between the window size and the length of the fall (a 3-second FOSW is used to

generate these figures, while the length of the fall is 15 seconds). This gap allows a

segment to not have any peak at all, although that segment is annotated as a fall.

This condition happens during the post-impact stage, where the data are annotated

as a fall but the body of the subject produces low acceleration values. Segments 3,

4, 5 in Figure 2.4 are examples of this condition.

In response to RQ1- increasing the window size of the FNSW does not necessarily

improve the classifier’s performance (in terms of precision, recall, and F-score),

unless the lengths of all falls are fixed and uniform. Increasing the overlap size of

the FOSW can decrease the precision in general.
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Figure 4.27: A summary of F-scores of FNSW for each machine-learning algorithm.

In general, from the experiments above, both FNSW- and FOSW-based machine-

learning approaches are unable to give a balanced performance between precision

and recall. Having a balanced precision and recall is important, as detecting falls

accurately and reducing the number of false alarms is important. Having a high

number of false alarms can cause the users to reject the system [115]. When the

number of false negatives increases, then the number of recalls decreases. A re-

duction in the recall can cause the system to mis-detect falls, and it can cause the

patient to be left helpless.

Table 4.10 shows a comparison between the IMPACT+POSTURE and sliding-

window approaches’ F-scores using two publicly accessible datasets (the Cogent and

SisFall datasets). This comparison uses the best results from the sliding-window-

based approaches. The FNSW-based machine-learning approaches take results from

the LR-based classifier (with C = 109) for the Cogent dataset, while results from the

k-NN-based (with k = 2) classifier are taken for the SisFall dataset. The FOSW-

based machine-learning approach takes results from the SVM-based classifier (with
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an RBF kernel) for the Cogent dataset, while results from the k-NN-based classifier

(with k = 2) are taken for the SisFall dataset.

For the Cogent dataset, by looking at the F-score, the FNSW+LR-based ap-

proach is able to outperform POSTURE+IMPACT, although the di�erence is

not significant (with p-value = 0.8). Compared to IMPACT+POSTURE, the

FOSW+SVM-based approach is able to achieve a slightly better performance, with

p-value = 0.3. This means that the machine-learning-based approaches are able to

outperform IMPACT+POSTURE on the Cogent dataset, although the di�erence is

not significant. For the SisFall dataset, the FNSW+k-NN-based approach is able

to significantly outperform IMPACT+POSTURE (with p-value = 4.3 ◊ 10≠5). The

FOSW+k-NN-based approach is also able to achieve a significantly better F-score

than IMPACT+POSTURE (with p-value = 4.3◊10≠5) tested on the SisFall dataset.

The results in Table 4.10 show that using either FNSW- or FOSW-based ap-

proaches can give a better overall performance (F-score) than POSTURE+IMPACT.

In response to RQ2- yes, the sliding-window-based machine-learning approach out-

performs (in terms of F-score) the threshold-based approach on publicly accessible

datasets, although the di�erence is not significant when the Cogent dataset is used,

regardless of the sliding-window technique. This result is also supported by the

results provided in Aziz et al.’s [8] study, where their study compares FNSW-based

machine-learning approaches and five di�erent threshold-based approaches. Another

study about the optimum window size for the machine-learning-based fall-detection

approaches was conducted by Aziz et al. [9]. However, this study focuses only on

finding the optimum window size for the pre-impact stage of the fall.

4.5.2 Limitations

This study found that there is an annotation problem, especially for the SisFall

dataset, for which the fall-events data are not precisely annotated. Figure 4.29 shows

the annotation problem of the SisFall dataset. This problem becomes a critical issue
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Table 4.10: F-scores comparison between IMPACT+POSTURE and sliding window-
based approaches

Approach
F-score (%)

Cogent SisFall

IMPACT+POSTURE 88.6±9.2 70.2±1.4

FNSW-based 89.6±12.7 96.5±1.4

FOSW-based 92.3±9.7 95.3±1.4

when the simulation is implemented in a real-time style, while it is not a big issue for

an o�-line style simulation. This is because the data stream is pre-segmented based

on its annotation in the o�-line style simulation. A re-annotation process cannot be

done in this thesis because the SisFall dataset does not provide videos of all subjects,

where these videos are the ground truth. In fact, annotating accelerometer data is

more di�cult than annotating data from a camera [30]. The Cogent dataset has

a better annotation than the SisFall dataset. Thus, the results from the Cogent

dataset can represent the performance of the classifier in real-world cases better

than the results from the SisFall dataset. A lesson learnt from this problem is that

annotating the data stream precisely is very important.

Since the features can a�ect the performance of the classifier, the results that

are provided in this chapter may be di�erent with studies that use di�erent types

of features. The type of machine-learning algorithm used to train the classifier can

also produce di�erent results. Since the main focus of this chapter is to examine

the impact of the window size and overlap, improving the classifier performance by

tuning its parameters is out of the scope of this study and it is considered for future

work.
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Figure 4.29: The annotation issue on the SisFall dataset

4.6 Chapter summary

This chapter provides an analysis of two types of fall-detection approach: threshold-

and sliding-window-based machine learning. To extract features from a data se-

quence, a machine-learning-based fall-detection approach uses either a fixed-size

non-overlapping sliding window (FNSW) or a fixed-size overlapping sliding window

(FOSW). For the FNSW-based fall-detection approach tested on the Cogent data-

set, the best result is achieved when the window size is 2 seconds and the machine

learning used is LR (with C = 109), with an 89.6% F-score. For the SisFall dataset,

the best result is achieved when the window size is 15 seconds and the machine

learning used is k-NN (with k = 2), with a 96.5% F-score. For the SisFall dataset,

having a larger window can increase the precision, recall, and F-score. However,

this result is biased, as the length of an activity in real cases is unpredictable. Thus,

using the SisFall dataset to define the optimum window size is not appropriate.

The FOSW-based machine-learning approach can achieve its best performance

on the Cogent dataset when this approach uses the window size of 2 seconds, the
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overlap size of 90%, and SVM (with an RBF kernel) to train the classifier. For the

SisFall dataset, this approach is able to achieve an up to 95.3% F-score when the

length of the window is 15 seconds, the size of the window overlap is 25%, and a

k-NN-based classifier (k = 2) is used to build the classifier.

As a summary, this thesis retrieves two important findings related to the sliding-

window technique from the analysis of the machine-learning-based approaches:

• Using a larger FNSW does not necessarily increase the precision, recall, and

F-score of the classifier, unless the lengths of the falls are fixed and uniform.

• Using an FOSW with a larger overlap size can cause the precision and the

F-score to decrease in most cases.

Those findings above can cause the current machine-learning-based approaches to

have a gap between precision and recall values, while having balanced precision and

recall is important for real-world implementation.

The main drawback of the threshold-based approach is the di�culty in defining

its thresholds. Manually defining thresholds can cause the number of false alarms

or undetected falls to be high, as there are overlaps between fall and non-fall data.

The experiments show that POSTURE+IMPACT (one of the threshold-based ap-

proaches) can achieve up to 88.6% F-score. In general, using the sliding-window-

based machine-learning approach can give a better F-score than using the threshold-

based approach. However, the di�erence is not significant when the Cogent dataset is

used. Thus, the next chapter proposes a novel machine-learning-based approach that

can significantly improve the precision, the recall, and the F-score of the machine-

learning based approach for fall detection. This novel approach is also able to reduce

the computational cost of the system, and can give an advantage when this approach

is implemented on a real wearable device.
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Chapter 5

Event-triggered machine-learning

approach (EvenT-ML)

5.1 Introduction

The previous chapter analyses both threshold- and machine-learning-based approaches

using the Cogent and SisFall datasets. Since the main issue of the machine-learning

based approaches is the way data are segmented and features are extracted, this

chapter provides a novel approach called Event-triggered machine-learning approach

(EvenT-ML) that proposes a fall-stage-based segmentation approach. This approach

can improve the detection rate of the classifier (in terms of precision, recall, and F-

score) and reduce the computational cost (in terms of running time).

To improve the classifier’s detection rate (in terms of precision, recall, and F-

score), Ojetola [118] and Putra et al. [127] have shown that features should be

extracted based on fall stages (pre-impact, impact, and post-impact), as every stage

has its own characteristic. During the pre-impact stage, acceleration drops below

1g as the subject experiences free fall after losing their balance. The impact stage

usually yields one or more high peaks as a result of an impact between the subject’s
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body and the ground. The post-impact stage is usually characterised by inactivity,

corresponding to reduced variation in the accelerometer reading.

Although Ojetola’s technique is able to improve the precision and recall of the

machine-learning-based approach, this technique has a high computational cost [127].

It uses an FOSW with an overlap of N ≠ 1, where N is the total number of samples

in the window. A study from Bersch et al. [19] found that using an overlapping

sliding window with a high o�set can increase the computational cost, as the system

needs to do the feature extraction and classification processes more often. Kau et

al. [92] show that calculating complex features can increase the system’s computa-

tional cost. Having a high-computational-cost system on a wearable device can drain

the battery quickly. Beside the computational cost, the previous chapter shows that

using a sliding window with a relatively large window overlap is not e�ective, as it

can increase the data overlaps between fall and non-fall activities.

To reduce the computational cost of Ojetola’s technique, Putra et al. [127] de-

veloped a cascade-classifier approach (CCA). The main idea of the CCA is to prevent

the system from doing the feature extraction all the time, by checking the state of

the subject and performing the feature extraction only when the system detects an

energetic event. The system determines an energetic activity by checking whether

the data sequence has any peaks higher than 1.6g during 2 seconds of window. By

using the peak-detection mechanism, CCA is not only able to reduce the compu-

tational cost but also can increase the classifier performance compared to Ojetola’s

technique. Although CCA is able to improve the performance of the system in terms

of computational cost and detection rate, the identification of the temporal position

of stages is not simple.

Segmenting a data stream based on fall stages is a challenging task as it is

di�cult to determine the beginning and the end of each stage in a segment. use

high acceleration peaks to estimate the impact stage. In fact, during the fall, the

body of the subject produces several high peaks of acceleration which can confuse
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the segmentation process. Furthermore, Jamsa et al. [82] show that peaks can also

appear during the pre-impact stage as a result of protective actions. The presence

of multiple peaks (called the multi-peak issue, see subsection 2.5.4 for a detailed

explanation of the multi-peak issue) makes the estimation of the impact stage even

harder, because it can cause a misalignment of this stage. Although this multi-peak

issue is critical for the feature-extraction process, it has not been considered in either

of Ojetola and Putra et al.’s studies.

To reduce the computational cost and resolve the multi-peak issue, this thesis

developed a new technique called the event-triggered machine-learning approach

(EvenT-ML). This technique consists of:

• The use of a finite state machine to segment a data sequence based on three

fall stages: pre-impact, impact, and post-impact, where the feature extraction

process uses these stages as its basis. This concept is relatively new in machine-

learning-based fall-detection studies, since only the studies from Ojetola [118]

and Putra et al. [127] from Table 2.2 use this concept. Although the Ojetola

and Putra et al. approaches also use fall stages as a basis for feature extrac-

tion, their approaches do not provide a mechanism to correctly estimate the

beginning and the end of each stage. In fact, the multi-peak issue can cause a

misalignment of the impact stage.

• A mechanism to resolve the ambiguity caused by multiple peaks so that the

alignment of each stage of the fall can be estimated. Although Abbate et

al.’s [2] study provides a mechanism to avoid the multi-peak issue, their ap-

proach does not provide a mechanism to estimate the beginning and the end

of the fall stages and extract features from the stages. This chapter shows that

extracting features based on fall stages can significantly improve the F-score

of the classifier.

An event-based-type technique is common in the machine-learning-based fall-detection
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Table 5.1: Comparison of EvenT-ML with literatures

Approach Fall-stage-based
feature extraction

Multi-peak
detection

Gjoreski et al. [64] (impact and post-impact)
Abbate et al. [2]

Ojetola [118] (pre-impact, impact, and post-impact)
Putra et al. [127] (pre-impact, impact, and post-impact)

Kau et al. [92]
EvenT-ML

approaches (this type of approach is similar to the threshold-machine-learning-based

approach in Subsection 2.3.3), Table 5.1 shows the comparison between EvenT-ML

with the literatures from Subsection 2.3.3.

This chapter includes:

1. Event-triggered machine-learning approach (EvenT-ML).

2. Five comparative evaluations. The first evaluation aims to compare FNSW-

and FOSW-based machine-learning approaches with EvenT-ML. To see the

improvement of EvenT-ML that is made by solving the multi-peak issue, the

second evaluation compares CCA with EvenT-ML. Then, the third evaluation

compares the EvenT-ML and IMPACT+POSTURE approaches. The fourth

evaluation evaluates the performance, in terms of precision, recall, and F-score,

of EvenT-ML with three di�erent sensor placements. This fourth evaluation

only applies to the Cogent dataset, as the SisFall dataset only has one sensor

placement. The last evaluation provides an evaluation of the precision, recall,

and F-score of EvenT-ML on real-fall data from older patients by using the

FARSEEING dataset.

The structure of this chapter is as follows: Section 5.2 provides the method of

this chapter. Section 5.3 explains Event-ML, while Section 5.4 provides results and

analysis of the experiments. Section 5.5 provides a discussion and the limitations of

this chapter, and Section 5.6 concludes this chapter.
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5.2 Method

This chapter reports experiments to evaluate EvenT-ML, where the Cogent, Sis-

Fall, and FARSEEING datasets were used in this evaluation. See Chapter 3 for

information regarding those datasets. The evaluation consists of four parts:

• A comparison between EvenT-ML, FNSW-, and FOSW-based machine-

learning approaches on both the Cogent and SisFall datasets;

• A comparison between EvenT-ML and existing fall-detection approaches

(CCA-based machine-learning approaches from Putra et al. [127] and IM-

PACT+POSTURE from Kangas et al. [86]) on both Cogent and SisFall data-

sets. The comparison between EvenT-ML with CCA aims to show that solv-

ing the multi-peak issue can significantly improve the classifier performance

(in terms of F-score), while the comparison between EvenT-ML with IM-

PACT+POSTURE aims to show that a machine-learning-based approach (re-

gardless of the machine-learning algorithm) can outperform a threshold-based

approach only when the data is segmented correctly based on the fall stages;

• EvenT-ML’s performance with di�erent sensor placements. To evaluate this

performance on several di�erent placements, a subset from the Cogent dataset

is used, as not all subjects have waist-sensor data. Table 3.1 shows the body

profiles of the subjects in this subset.

• EvenT-ML’s performance on real-fall data from older patients. This part

involves the FARSEEING dataset.

This chapter uses the same machine-learning algorithms as in the previous chapter:

Classification and Regression Tree (CART), Logistic Regression (LR), Support Vec-

tor Machine (SVM), and k-Nearest Neighbour (k-NN), for training and testing the

classifier. Also, this chapter uses a real-time style simulation, where the sample ap-
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pears one by one (see Figure 4.1). To evaluate the performance of EvenT-ML com-

pared to sliding-window-based approaches (Subsection 5.4.1), CCA-based machine-

learning approach (Subsection 5.4.2), and IMPACT+POSTURE (Subsection 5.4.3),

LOSOCV is used. For evaluating EvenT-ML’s performance on the FARSEEING

dataset, the following schemas are used:

• Using the Cogent dataset to build the classifier, then using the FARSEEING

dataset as the test set (Figure 5.1),

• Using the SisFall dataset to build the classifier, then using the FARSEEING

dataset as the test set (Figure 5.1), and

• Using the FARSEEING dataset for both training and testing using the LO-

SOCV technique (Figure 5.2).

The hold-out method is suitable for measuring the e�ectiveness of using data from

young and healthy subjects to detect falls in older people, by assuming that the data

from older people are not available during the training process. Figure 5.2 shows

the hold-out technique from this study. This evaluation method uses the data from

young and healthy subjects as a training set and uses the data from older patients

as a testing set.

This study uses precision, recall, and F-score as the performance metrics. See

formulas (2.2), (2.1), and (2.3) to calculate precision, recall, and F-score. To evaluate

activities that are often misclassified as falls and falls that are often misclassified

as non-falls, this study uses the false positive ratio (FPR) and false negative ratio

(FNR):

FPRi = FPi

p
, (5.1)

FNRi = FNi

q
, (5.2)

where FPi, FNi, p, q, and i are the number of times that the ith type of activity is
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misclassified as a fall, the number of times that the ith type of fall is misclassified as

a non-fall, the total number of samples of the ith type of activity, the total number

of samples of the ith type of fall, and the type of fall or activity. An activity/fall

with a higher FPR/FNR means that that particular type of activity/fall is harder

to detect.

Beside focusing on improving the accuracy of the classifier, EvenT-ML also aims

to reduce the computational cost of the sliding-window-based (FNSW and FOSW)

machine-learning approaches. According to Bersch et al. [19], the computational

cost of the classification system consists of two parts:

CC = Stage1 + Stage2, (5.3)

where Stage1 and Stage2 are the computational costs of the data pre-processing

(data segmentation and feature extraction) and the classification, respectively. As

this chapter focuses on the segmentation and feature-extraction issues, only Stage1

is considered. The experiment was done o�ine on a PC with the following specific-

ations:

• Operating system: 64-bit Linux Ubuntu 14.04 LTS,

• Memory: 15.6 GB,

• Processor: Intel Core i7-3770K CPU @ 3.5 GHz.

As the experiment was done o�ine on a PC, this study considers the running time

as a measure of the computational cost of the system. To see the impact of the

running time on the energy consumption, this study refers to the total energy E

model from Dunkels et al. [48]:

E

V
= Imtm + Iltl + Ittt + Irtr +

ÿ

i

Icitci , (5.4)
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where V is the supply voltage, and Ix and tx are the current draw and the running

time, respectively, for x, where x can be:

• the microprocessor in normal mode m,

• the microprocessor in low-power mode l,

• the communication device in transmit mode t,

• the communication device in receive mode r, and

• other components c.

The energy consumption of the microprocessor in all modes except the m mode were

assumed to be zero (Il = It = Ir = Ic = 0), because the simulation is done in a PC

using recorded datasets. Assume that there are are two segments S1 and S2, where

two set of di�erent features F1 = {f11, f12, ..., f1n} and F2 = {f21, f22, ..., f2n}

are extracted from S1 and S2, respectively. These segments refer to periods of time

and the associated raw sensor measurements. Then the relative energy between two

segments (S1 and S2) implemented on the same device is

E1
E2

= Im1tm1V1
Im2tm2V2

. (5.5)

Because those two segments are assumed to be implemented on the same sensor

device, the current draw and the supply voltage are assumed to be the same as well

(Im1 = Im2 and V1 = V2). Then, the energy is proportional to the running time

E Ã t. This chapter uses a Wilcoxon signed-rank test to evaluate the significance

of the improvement in both the detection rate and the computational cost. This

method is chosen because the precision, recall, F-score, and computational cost

values are not normally distributed. The normality of those data was tested using

the Shapiro-Wilk normality test.
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5.3 Event-triggered machine-learning approach

(EvenT-ML)

The event-triggered machine-learning approach (EvenT-ML) can be described as a

finite state machine. This is helpful as it ensures that EvenT-ML can be executed

on-line with minimal memory requirements.

5.3.1 Event-triggered machine-learning approach

(EvenT-ML) state machine

EvenT-ML consists of four states: Initial bu�er, Peak detection, Multi-peak

detection, and Sample gathering. EvenT-ML’s state machine is shown in Figure

5.3.

Initial bu�er: When the system is started, this state is executed once, and

collects samples as a bu�er. The idea of this bu�er is to provide enough samples to

be considered as the pre-impact stage, when a sudden fall appears after the system

is started. This state uses a timer called the bu�er timer (bft) with a length of tpre.

Peak detection: This state looks for peaks in the acceleration vector magnitude

(avm). A peak is an avm that is higher than a threshold · . If a peak occurs, it is

assumed that the subject is active and the state of the system is changed to Multi-

peak detection.

Multi-peak detection: During a fall, several acceleration peaks can be pro-

duced. EvenT-ML assumes that if a fall has occurred then the highest peak cor-

responds to the moment when the body hits an object (impact stage) [2, 11, 118].

EvenT-ML identifies the alignment of the impact stage by finding the highest peak

during a particular length of time tmp. If there is another peak higher than the re-

corded peak, this is taken as the new highest peak and the counter (mp timer) of this

state is reset. This counter ensures that the length of the impact stage is equal to
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Figure 5.3: EvenT-ML’s state machine

117



5.3. Event-triggered machine-learning approach (EvenT-ML) 118

tmp. The pre-impact stage is defined as all samples before the recorded peak, where

the length of this stage is tp.

Sample gathering: After detecting the highest peak, further samples during a

certain amount of time tsg are collected so that a complete fall segment (including

pre-impact, impact, and post-impact stages) can be captured. If there is an avm

higher than · , that avm value is stored as a temporary recorded peak and the current

time is recorded. Both the temporary recorded peak value and its time are updated

if another higher peak occurs. The temporary recorded peak concept is important

in order to avoid missing any peaks, as those peaks could be an indicator of a

fall. When the counter for this state has ended, feature extraction is executed.

This counter is called the sg timer. After performing feature extraction, if the

value of the temporary recorded peak is equal to 0, the state is changed to Peak

searching. Otherwise, the state is changed to Multi-peak detection and the

temporary recorded peak is set as a new recorded peak. Then, the mp timer is set to

tmp ≠ (current time ≠ peak time).

The state machine above produces a segment where:

• all samples during tpre (in seconds) before the highest peak are considered as

the pre-impact stage,

• all samples during tmp (in seconds) starting from the highest peak are con-

sidered as the impact stage, and

• all samples during tsg (in seconds) after the impact stage are considered as the

post-impact stage.

Then the features are extracted from the pre-impact, impact, and post-impact stages

(see Subsection 4.4 for more detailed information regarding the features). Because

these features are extracted from each stage, the total number of features used is 27.

A feature selection is not done in this chapter because one of the purposes of this

chapter is to evaluate the e�ectiveness of using fall stages (EvenT-ML) compared to
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without using fall stages (FNSW- and FOSW-based machine-learning approaches)

as a basis for feature extraction. The issue regarding the feature reduction is invest-

igated in Chapter 6.

5.3.2 Parameter selection for EvenT-ML

Section 5.3 shows that EvenT-ML has some parameters to define: the pre-impact

(tpre), impact (tmp), post-impact (tsg) intervals, and the threshold (·). This sub-

section discusses a selection process of those parameters, to maximise the F-score

of EvenT-ML. This selection process uses the Cogent dataset because it has more

variations, in terms of length, of both falls and ADLs than the SisFall dataset.

Using the SisFall dataset for the selection process might not be appropriate as it

has a uniform length of fall data (15 seconds). By using a 15-second window, the

classifier can predictively achieve the highest F-score (see Chapter 4 for the analysis

of the window-size impact on the SisFall dataset). However, the lengths of human

activities are unpredictable in real cases, and the result from the SisFall dataset

might not be able to represent the performance of the classifier in the real cases.

This means that the SisFall dataset might not be appropriate to define the window

size. Thus, this section uses the Cogent dataset to select the parameter values of

EvenT-ML.

5.3.2.1 Choice of threshold (·)

The aim of the threshold · is to ensure that only energetic activities are forwarded

for feature extraction, where it is important to prevent the system from extracting

features from all possible segments. This prevention mechanism allows the system

to reduce the computational cost of the feature-extraction process, as it is clear that

extracting complex features can increase the computational cost of the system [92].

Table 5.2 shows thresholds (1.6g, 1.8g, and 1.9g) that are proposed by some existing

studies for detecting an active state.
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Table 5.2: Thresholds for detecting active state from existing studies

Reference(s) Threshold

Abbate et al. [2]

Ojetola [118]

Putra et al. [127]

1.6g

Kau et al. [92] 1.8g

Chen et al. [34] 1.9g

Based on the Cogent dataset, the minimum impact-peak value (the highest peak

that is produced when the body of the subject hits the ground) of the fall data

across the Cogent dataset is 1.8g. This means that the threshold from Chen et

al. [34] (1.9g) can cause some falls to be not captured for further processing. Thus,

this study considers thresholds of 1.6g [2, 120, 127] and 1.8g [92].

5.3.2.2 Choice of the size of the fall stages

As both the Cogent and SisFall datasets do not provide annotation or video to

di�erentiate between the pre-impact and impact stages, it is di�cult to estimate

the precise length of those stages. Thus, a 1-second window of tpre was used based

on Ojetola’s [118] and Aziz [9].

As the pre-impact stage is to be estimated as 1 second and most of the fall

data (including both pre-impact and impact stages) from the Cogent dataset span

2 seconds or longer (Figure 4.2), the minimum impact-stage time is 1 second.

Ojetola [118] suggests 6 seconds as the impact-stage length to optimise the F-score.

Thus, this study considers the use of 1–6 seconds of window for the impact stage.

The post-impact stages from the Cogent dataset are supervised; for example the

protocol suggested the subjects to remain lying down for 10 seconds after falling.

This causes the length of the post-impact stage to be less natural, as in the real

case its size is unpredictable (the victim can lie on the floor for a long period of
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time if he/she loses his/her consciousness). Thus, this study evaluates a range of

1–6 seconds for the post-impact stage, where this range is suggested by Banos et

al. [13].

5.3.2.3 Parameter selection results

This section uses four machine-learning algorithms: CART, k-NN, LR, and SVM

tested on the Cogent dataset to select the values of the parameters tmp, tsg, and

· of EvenT-ML in order to maximise its F-score. The following parameters were

considered for tuning k-NN, LR, and SVM:

• k-NN with k = 1, 2, and 3;

• LR with an inverse regularisation strength (C) of 108, 109, and 1010;

• SVM with linear, polynomial, and radial-basis-function (RBF) kernels.

To choose the best value of k for k-NN, C for LR (where these parameters are called

hyper-parameters), and the best kernel for SVM, the parameter values above were

tested, and the ones that give the best F-score were selected. The test was done by

evaluating each combination of the parameters values above using LOSOCV, and

the F-score of each combination is reported.

Tables 5.3 and 5.4 show the F-scores of EvenT-ML (on average) with 1.6g and

1.8g thresholds on di�erent impact (tmp) and post-impact (tsg) window sizes using

CART, k-NN, LR, and SVM on the Cogent dataset. These results show that increas-

ing either the impact or the post-impact window size does not necessarily increase

the F-score. The best window size for both the impact (tmp) and post-impact (tsg)

stages is 1 second. In terms of F-score, using 1.8g of threshold (when impact and

post-impact window sizes are 1 second) gives a significantly better result than using

1.6g of threshold (p-value = 0.02). Based on these parameters, Figure 5.4 shows an

example of a fall segmentation (with annotation added) produced by EvenT-ML.
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Figure 5.4: A data segment produced by EvenT-ML

With regard to the machine-learning algorithm parameters, Table 5.5 shows F-

scores of k-NN-, LR-, and SVM-based classifiers when tmp = 1s, tsg = 1s and

· = 1.8g. Based on these results, this study chooses the following parameters, as

they can give the highest F-score:

• k = 3 for k-NN,

• C = 109 for LR,

• Linear kernel for SVM.

In fact, for the LR-based classifier, there is not a significant di�erence between using

C = 108, C = 109, or C = 1010, with p-valuesØ 0.4. EvenT-ML uses those selected

parameters for a comparison analysis with the sliding-window-based (FNSW and

FOSW) approaches, CCA [127], and IMPACT+POSTURE [87] in Section 5.4.
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5.4 Results and analysis

This section consists of three sub-sections. The first sub-section aims to compare

EvenT-ML and both FNSW- and FOSW-based machine learning. The second

sub-section analyses the improvement of EvenT-ML compared to CCA and IM-

PACT+POSTURE. The last sub-section covers the evaluation of EvenT-ML with

di�erent sensor placements.

5.4.1 A comparison between EvenT-ML and

sliding-window techniques

The aim of this comparison is to investigate the e�ectiveness of EvenT-ML in increas-

ing the performance (precision, recall, and F-score) of the machine-learning-based

approach, while decreasing its computational cost (running time).

5.4.1.1 Cogent dataset

This sub-section conducts a comparison study between EvenT-ML, Fixed-size Non-

overlapping Sliding Window (FNSW), and Fixed-size Overlapping Sliding Window

(FOSW). For a fair comparison, 3 seconds of FNSW and FOSW (with 25%, 50%,

75%, and 90% of data overlap) were compared to EvenT-ML. The machine-learning

algorithms use the parameters that are selected in the previous section (k = 3 for

k-NN, C = 109 for LR, and linear kernel for SVM).

Tables 5.6–5.8 provide results of the experiment in terms of precision, recall,

and F-score. In terms of precision, EvenT-ML performs better than FNSW and

FOSW regardless of the machine-learning algorithm. This implies that EvenT-ML

has fewer false alarms than both FNSW and FOSW. EvenT-ML has better recall

than FNSW and FOSW when LR and SVM are used to build the classifier, while

FNSW achieves a lower detection rate than FOSW regardless of its overlap size and

the machine-learning algorithm.
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Overall, EvenT-ML is able to significantly outperform both FNSW and FOSW

by having the best F-score (harmonic mean between precision and recall) in all cases

regardless of the machine-learning algorithm. Compared to both FNSW and FOSW,

EvenT-ML can achieve a significantly better F-score (p-values Æ 2.9 ◊ 10≠6). These

results show that EvenT-ML can maintain the balance between the number of false

alarms and undetected falls better than FNSW and FOSW.

Table 5.9 shows the number of segments, the running time for each segment,

and the total computational cost for Stage1 of FNSW, FOSW, and EvenT-ML.

EvenT-ML has significantly fewer segments over which it runs feature extraction

than FNSW and FOSW. Per segment, EvenT-ML has a larger running time than

FOSW and FNSW, as it extracts features from three stages (pre-impact, impact,

and post-impact). Although having a higher computational cost per segment than

FNSW and FOSW due to a higher number of features, EvenT-ML still has a total

lower computational cost (Stage1). This is because EvenT-ML produces fewer seg-

ments than FNSW- and FOSW-based machine-learning approaches. Compared to

FNSW, EvenT-ML can reduce the total computational cost by a factor of 8, and

of up to 80 compared to FOSW. Based on the Wilcoxon signed-rank test, EvenT-

ML is able to achieve a significantly lower computational cost than both FNSW

and FOSW, with p-values Æ 4.9 ◊ 10≠27. Note that the running-time values can

be di�erent for every iteration. This is because the running-time calculation can

be interrupted by other processes in the background. Since the feature extraction

was done several times for all subjects, the standard deviation of the running time

of the feature extraction is provided in Table 5.9 to show the distribution of the

running time. Also, for this comparison, both the running time and the number of

segments produced are considered since the number of segments is not a�ected by

the interruption.
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Table 5.6: Average and standard deviation of precision (%) of machine-learning
approaches on Cogent dataset

Segmentation

technique
CART k-NN LR SVM

EvenT-ML 91.4±8.8 95.6±7.2 97.2±4.1 97.2±5.6

FNSW 44.5±9.4 72.6±12.6 91.7±11.3 94.5±8.4

25%-FOSW 41.2±8.2 66.3±13.3 90.1±11.6 93.2±9.5

50%-FOSW 35.3±6.4 59.3±12.7 89.8±11.4 93.4±9.8

75%-FOSW 27.8±4.3 44.7±9.3 88.6±11.4 93.1±10.2

90%-FOSW 21.4±2.4 29.4±5.4 87.5±12.3 92.5±10.8

Table 5.7: Average and standard deviation of recall (%) of machine-learning ap-
proaches on Cogent dataset

Segmentation

technique
CART k-NN LR SVM

EvenT-ML 92.4±11.2 93.2±12.1 98.1±3.8 94.7±11

FNSW 92.4±10.1 89.9±13.9 87.3±17.9 83.9±20.7

25%-FOSW 94.6±7.7 91.1±12.8 90.4±15.4 85.6±20.2

50%-FOSW 97±4.9 95.2±8.8 92.9±13.1 85.7±20.1

75%-FOSW 98.8±3.8 98.1±5.3 94.4±10.8 86.3±20

90%-FOSW 99.7±1.5 99.7±1.5 95.2±10.7 86.6±19.8
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Table 5.8: Average and standard deviation of F-score (%) of machine-learning ap-
proaches on Cogent dataset

Segmentation

technique
CART k-NN LR SVM

EvenT-ML 91.6±9.3 94±8.8 97.6±3.3 95.7±8.2

FNSW 59.6±9.5 79.7±11.5 88.3±13.3 87.2±15.7

25%-FOSW 56.9±8.2 76.1±11.8 89.2±11.6 87.9±15.5

50%-FOSW 51.5±7.1 72.5±10.7 90.6±10.4 87.9±15.3

75%-FOSW 43.2±5.3 60.9±9.5 90.8±9 88.2±15.5

90%-FOSW 35.2±3.2 45.2±6.4 90.5±9.3 88±15.4

Table 5.9: Average and standard deviation of number of segments, computational
cost for each segment, and running time for each segmentation technique on a subject
(Cogent dataset)

Segmentation

technique

Number of

segments

Computational cost

for each segment

(ms)

Stage1

(ms)

EvenT-ML 38.4±9.9 0.9±0.1 34.3±8.7

FNSW 429.4±84.8 0.6±0.2 269.5±54.6

FOSW 25% 572.3±113.1 0.6±0.6 367.3±79.9

FOSW 50% 858.2±169.6 0.6±0.7 555.2±113.1

FOSW 75% 1715.8±339.2 0.6±0.6 1098.9±219.8

FOSW 90% 4288.8±848.4 0.6±0.4 2528.3±498
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5.4.1.2 SisFall dataset

A similar setup of EvenT-ML is used for this dataset (· =1.8g, 1-second windows for

the pre-impact, impact, and post-impact stages). Moreover, the same parameters

are applied to the machine-learning parameters. Tables 5.10–5.12 show the precision,

recall, and F-score of EvenT-ML and sliding-window-based approaches on di�erent

machine-learning algorithms.

EvenT-ML is able to achieve a better performance than both FNSW and FOSW

in terms of precision. However, EvenT-ML achieves lower recalls than both the

FNSW- and FOSW-based approaches. In general, by looking at the F-score, EvenT-

ML is able to significantly outperform both FNSW- and FOSW-based machine-

learning approaches regardless of the machine-learning algorithm (p-values Æ 4.9 ◊

10≠5).

Table 5.13 shows the average number of segments produced, the running time

for each segment, and the total computational cost (Stage1). EvenT-ML is able

to use significantly fewer segments than both FNSW and FOSW (p-values Æ 4.3 ◊

10≠5). Similarly to the results from the Cogent dataset, EvenT-ML has a larger

computational cost for each segment than both FNSW and FOSW on the SisFall

dataset. This is because EvenT-ML needs to extract features from each fall stage.

In terms of the Stage1 cost, EvenT-ML achieves significantly less computational

cost than both FNSW (by a factor of 2) and FOSW (by a factor of up to 20) with

p-values Æ 9.5 ◊ 10≠13.

5.4.2 A comparison between EvenT-ML and the

cascade-classifier approach (CCA)

Algorithm 5.1 shows the process of the cascade-classifier approach that was de-

veloped by Putra et al. [127]. This technique uses a 2-second FNSW to check the

state of the body (Check_act). If the highest peak occurring during that 2-second
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Table 5.10: Average and standard deviation of precision (%) of machine learning
approaches on SisFall dataset

Segmentation

technique
CART k-NN LR SVM

EvenT-ML 83.5±4.8 87.5±5.1 88.4±5.1 90.3±5

FNSW 52.3±1.3 53.5±2.1 51.9±1.7 50.7±0.6

25%-FOSW 51.1±1.3 52.3±2.1 51.4±1.7 50.3±0.5

50%-FOSW 49.5±0.6 50.2±0.9 50.6±1.4 49.9±0.4

75%-FOSW 48.9±0.3 49.2±0.5 50±0.8 49.7±0.3

90%-FOSW 48.7±0 48.8±0.1 49.6±0.3 49.6±0.2

Table 5.11: Average and standard deviation of recall (%) of machine learning ap-
proaches on SisFall dataset

Segmentation

technique
CART k-NN LR SVM

EvenT-ML 92.5±7.7 94.5±5.8 94.6±4.8 92.7±8.9

FNSW 99.8±0.9 99.9±0.3 99.9±0.3 100±0

25%-FOSW 99.9±0.3 100±0 100±0 100±0

>25%-FOSW 100±0 100±0 100±0 100±0

131



5.4. Results and analysis 132

Table 5.12: Average and standard deviation of F-score (%) of machine learning
approaches on SisFall dataset

Segmentation

technique
CART k-NN LR SVM

EvenT-ML 87.7±5.5 90.7±4.2 91.3±3.3 91.1±5.2

FNSW 68.6±1.1 69.7±1.8 68.3±1.4 67.3±0.5

25%-FOSW 67.6±1.1 68.6±1.8 67.9±1.5 66.9±0.5

50%-FOSW 66.2±0.5 66.8±0.8 67.2±1.2 66.5±0.3

75%-FOSW 65.7±0.3 66±0.4 66.7±0.7 66.4±0.3

90%-FOSW 65.5±0 65.6±0.1 66.3±0.3 66.3±0.2

Table 5.13: Average and standard deviation of number of segments, computational
cost for each segment, and running time for each segmentation technique on a subject
(SisFall dataset)

Segmentation

technique

Number of

segments

Computational cost

for each segment

(ms)

Stage1

(ms)

EvenT-ML 323.7±38.7 1.5±0.1 473.5±53.7

FNSW 873±0 1.2±1.8 1000±35

FOSW 25% 1163.9±0.3 1.2±0.7 1300±48

FOSW 50% 1745±0 1.1±1.9 2100±51

FOSW 75% 3489.9±0.3 1.1±1.5 3800±25

FOSW 90% 8723.8±0.7 1.1±1.1 94500±52
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Table 5.14: State and transition occurrences (average and standard deviation) on
each subject on both datasets

Dataset Transition 5’s counter

Cogent 36.5 ±8.3

SisFall 159.5±18.5

window is higher than the threshold of 1.6g, the state of the body is considered as

active. Then, when the state of the body is active, the 1 second before the highest

peak and the 11 seconds after the peak are captured as a segment for feature extrac-

tion. Figure 2.5 shows an illustration of the segments produced by CCA. It is hard

to determine the beginning and the end of each fall stage on those two segments

because they are not aligned. This section shows the improvement that is caused

by solving that multi-peak issue.

To investigate the existence of the multi-peak issue on the Cogent and SisFall

datasets, a counter is placed in Transition 5 (see Figure 5.3). Table 5.14 shows the

number of multi-peak occurrences when tpre = 1s, tmp = 1s, tsg = 1s and · = 1.8g

for both datasets. Table 5.15 shows that, compared to CCA, EvenT-ML is able to

achieve improved precision and recall. In terms of F-score, EvenT-ML can achieve

significantly better performance than CCA (p-values Æ 5.6 ◊ 10≠5). EvenT-ML

is also able to outperform CCA in terms of precision and recall, regardless of the

machine-learning approach, on the SisFall dataset (Table 5.15). In general, based

on the F-score, EvenT-ML achieves a significantly better performance than CCA

(p-value Æ 2.4 ◊ 10≠4).

The results above (from both the Cogent and SisFall datasets) show that appro-

priately handling the multiple acceleration peaks leads to a significant improvement

in the classification performance (in terms of precision, recall, and F-score).
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Algorithm 5.1 Cascade-classifier approach
1: i Ω 1 second Û index for the active-state-checker window

2: vm Ω record of acceleration vector magnitude

3: instances Ω[]

4: while datastream do

5: seg Ωvm[i : i + 2 seconds]

6: if any samples in seg >1.6 then

7: peak Ω the highest peak in seg

8: segfeat Ω vm[i ≠ 1 second : i + 12 seconds]Û window size = 12 seconds

9: instance Ω Feature_Calculation(segfeat)

10: instances Ω add(instance)

11: i = i + 2 seconds

12: end if

13: end while

Table 5.15: Cascade-classifier approach (CCA) on di�erent machine-learning al-
gorithms

Approach
Precision (%) Recall (%) F-score (%)

Cogent SisFall Cogent SisFall Cogent SisFall

CCA+CART 86.6±12.3 82.9±3.9 84.6±14.9 84.6±11.3 83.9±7.1 83.3±7.5

CCA+k-NN 83.1±11.5 81.1±4.2 88.8±13.5 87.7±9.5 84.5±6.5 84.1±6.4

CCA+LR 89.6±6.9 86.3±5 89.3±15.6 83.8±13.8 84.6±9.8 84.4±10

CCA+SVM 87.2±8.3 83.1±4.9 88.5±15.9 86.1±14.7 84±10.3 83.8±10.2
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5.4.3 A comparison between EvenT-ML and

IMPACT+POSTURE’s performance

Although EvenT-ML applies a threshold, its approach is di�erent from IM-

PACT+POSTURE (threshold-based approach). The main di�erence between

EvenT-ML and IMPACT+POSTURE is that EvenT-ML utilises a machine-learning

algorithm to build the classifier, while IMPACT+POSTURE uses manually defined

thresholds to build the classifier.

Compared to IMPACT+POSTURE using the Cogent dataset, EvenT-ML is able

to achieve a significantly better precision (p-values Æ 2.4 ◊ 10≠8), except when

Event-ML uses CART to train the classifier (p-value = 0.8). In terms of recall,

EvenT-ML can achieve better performance than IMPACT+POSTURE, regardless

of the machine-learning technique. In general, by looking at the F-score, EvenT-

ML is able to outperform IMPACT+POSTURE regardless of the machine-learning

algorithm, with p-values Æ 0.03.

Although EvenT-ML achieves less recall than IMPACT+POSTURE on the

SisFall dataset, the EvenT-ML precision is significantly higher than with IM-

PACT+POSTURE (p-values Æ 4.3 ◊ 10≠5). In terms of F-score, EvenT-ML is able

to significantly outperform IMPACT+POSTURE (p-values Æ 4.9 ◊ 10≠5). These

results show that EvenT-ML is able to reduce the number of false alarms, while

still maintaining a recall comparable to IMPACT+POSTURE. Also, these results

show that the machine-learning-based approach can significantly outperform the

threshold-based approach, regardless of the machine-learning algorithm, when the

data are correctly segmented based on fall stages (pre-impact, impact, and post-

impact). Since Bagala et al. [10] show that IMPACT+POSTURE algorithm does

not give a better detection rate (in terms of sensitivity and specificity) than al-

gorithms proposed by Bourke et al. [25] and Chen et al. [34], future work of this

thesis is to evaluate algorithms proposed by Bourke et al. and Chen et al. on
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publicly-accessible datasets and compare them with EvenT-ML.

5.4.4 Analysis and discussion of EvenT-ML’s performance

on the Cogent and SisFall datasets

Figures 5.5a and 5.5b show the false-positive and false-negative ratios for each non-

fall activity and fall, respectively (see formulas (5.1) and (5.2) to calculate the false-

positive and false-negative ratios, respectively). Figure 5.6b shows the ratio of false

negatives for each type of fall of the SisFall dataset. With regard to false alarms,

Figure 5.6a shows the false-positive ratio of each non-fall activity from the SisFall

dataset. The near-fall is the activity that produces the highest number of false

alarms (Figure 5.5a), while fall-to-the-right-side becomes the hardest fall to detect

from the Cogent dataset for most of the classifiers (Figure 5.5b).

For the SisFall dataset, the hardest fall to detect is fall-forward while sitting

(F13). Figure 5.6b shows the ratio of false negatives for each type of fall of the

SisFall dataset. With regard to false alarms, di�erent classifiers find di�erent types

of activities hard to detect (Figure 5.6a). These results imply that a near-fall shares

similar features with a fall, while fall-to-the-right-side and fall-forward-while-sitting

(F13) share similar features with non-fall activities. Lee et al.’s study [100] shows

that the classifier often misclassifies near-fall as a fall mainly because it accompanies

an abrupt movement, where this abrupt movement is similar to a fall. Due to the

limited information (for example: videos of all of the subjects performing falls, a

subject’s preferred hand, or any preventing actions when the subject senses they are

about to fall) and a complex interaction between fall dynamics and the machine-

learning algorithm used, a further investigation regarding the fall or activity that

produces the highest false negative or false positive cannot be thoroughly made.

This is a limitation of this study.
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Figure 5.5: The ratio of false alarms/misclassifications from the Cogent dataset
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Figure 5.6: The ratio of false alarms/misclassifications from the SisFall dataset (see
Table 3.3 for the activity index)
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5.4.5 A comparison between di�erent placements of the

sensor

This subsection uses only the Cogent dataset, because the SisFall dataset only has

sensors placed on the subjects’ waists. Table 5.16 shows the precision, recall, and

F-score of EvenT-ML on each placement. These results show that the chest is the

best place to put a sensor to get the optimum detection rate. It is followed by the

waist and thigh, respectively. This result is supported by a study from Gjoreski et

al. [64]. Their study shows that the chest and waist are better places to put the

sensor, where the chest placement has a small advantage over the waist placement,

though, the waist can give more comfort to the user [163].

5.4.6 Performance analysis using the hold-out technique

Since the performance of EvenT-ML in Tables 5.6–5.8 are results of the parameter

tuning of EvenT-ML on the Cogent dataset, this can make the results are biased

because some information may “leak” during the process [116]. Thus, this section

provides a comparative analysis of EvenT-ML, CCA, IMPACT+POSTURE, FNSW-

, and FOSW-based approaches using the hold-out technique. In this case, the Cogent

dataset is used for the training set and the SisFall dataset is used for the testing

set. For this analysis, only subjects that have data from the waist sensor from

the Cogent dataset (see Table 3.1 for the Cogent dataset’s subjects body profile)

is used because the SisFall dataset only has waist-sensor placement. The results of

this experiment are less biased since the testing data have never been used to tune

the parameters. Also, this hold-out technique is recommended by Igual et al. [80]

and Aziz et al. [8] to avoid biased results. Table 5.17 shows the hyper parameters

used for this sub-subsection. The hyper parameters for FNSW- and FOSW-based

approaches are defined in the previous chapter (see Subsection 4.5.1).

Table 5.18 shows the precision, recall, and F-score of the evaluation using the
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Table 5.16: Average and standard deviation of precision, recall, and F-score (%) for
each placement using machine-learning algorithms

(a) Precision

Placement CART k-NN LR SVM

Chest 95.3±7.8 96.2±6.3 97.1±5 98.2±3.5

Waist 90.6±9.6 90.8±8.7 96.4±9 94.3±9.9

Thigh 74.6±11.2 77.6±13.6 86.1±9.2 86.8±8.6

(b) Recall

Placement CART k-NN LR SVM

Chest 96±8.9 94.4±10.6 97.2±6.1 96±10.5

Waist 91.7±10.5 90.5±14.3 94.8±7.7 92.9±12

Thigh 79.8±8.9 72.6±12.6 85.7±14.9 78.6±18.3

(c) F-score

Placement CART k-NN LR SVM

Chest 95.2±6.4 94.8±6.7 97±3.8 96.9±7.3

Waist 90.4±6.7 89.8±9.3 95.2±6.4 92.8±8.6

Thigh 76.6±8.3 74.2±10.5 85.3±10.6 81.6±13.2

Table 5.17: Hyper parameters used for performance evaluation using the hold-out
technique.

Fall-detection
approaches

Window
size

Machine-learning
algorithm

Machine-learning
hyper parameter

EvenT-ML 3 seconds LR C = 109

FNSW 2 seconds LR C = 109

FOSW 2 seconds SVM kernel = rbf
CCA 12 seconds LR C = 109
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Table 5.18: Precision, Recall, and F-score (%) of fall-detection approaches using the
hold-out technique

Fall-detection
approaches Precision Recall F-score

EvenT-ML 82.5±4.8 79.7±14.8 80.6±10.5
FNSW 74.5±7.3 65.2±18.8 68.8±14.1
FOSW 75±5.2 75.4±16.4 74.7±11
CCA 0.3±0.8 0.2±0.7 0.2±0.7

IMPACT+POSTURE 77±4.6 67.4±10.3 71.5±6.9

hold-out technique. These results show that EvenT-ML can give a better preci-

sion, recall, and F-score on average than FNSW-, FOSW-based, CCA, and IM-

PACT+POSTURE approaches. Based on Wilcoxon signed-rank test, EvenT-ML

can achieve a significantly better F-score than FNSW- (p-value= 4.3◊10≠5), FOSW-

based (p-value= 1.1◊10≠4), CCA (p-value= 4.3◊10≠5), and IMPACT+POSTURE

(p-value= 1.1 ◊ 10≠3). Furthermore, these results also show that using IM-

PACT+POSTURE algorithm can achieve similar F-score to FNSW- (p-value= 0.5)

and FOSW-based approaches (p-value= 0.2). These results show that when dif-

ferent datasets are used for training and testing, the precision, recall, and F-score

decrease dramatically. This trend is also found in Igual et al.’s study [80].

5.4.7 Performance analysis on the FARSEEING dataset

This subsection examines the performance of EvenT-ML on the FARSEEING data-

set using only data from the waist, as chest placement is not available from the

FARSEEING dataset and the waist placement is the second-best placement (see

Table 5.16).

The main aim of these evaluations is to evaluate whether data from young and

healthy subjects can be used to train the classifier, to detect falls in older people.

Tables 5.19– 5.21 show precisions, recalls, and F-scores of EvenT-ML tested on the

FARSEEING dataset. These results show that using the Cogent dataset to train

the classifier can give better F-scores than using the SisFall dataset.
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Table 5.19: Average and standard deviation of precision of EvenT-ML tested on the
FARSEEING dataset

Dataset used

for training
CART (%) k-NN (%) LR (%) SVM (%)

Cogent

(hold-out)
67.2±39.1 56.7±49.5 71.7±43.2 66.7±48.8

SisFall

(hold-out)
31.4±30.5 40.4±39.1 30.4±31.4 45.9±38.1

FARSEEING

(LOSOCV)
83.3±36.2 63.3±44.2 62.2±40.6 66.7±48.8

Overall (in terms of F-score), there is no significant di�erence between using the

Cogent dataset (evaluated using the hold-out technique) to train the classifier and

using the FARSEEING dataset (evaluated using LOSOCV technique), with p-values

Ø 0.5 when EvenT-ML uses CART, k-NN, or LR to build the classifier. In fact,

the results are similar when SVM is used to build the classifier. On the other hand,

using the SisFall dataset in the training process gives a lower F-score (evaluated

using the hold-out technique) than using the FARSEEING dataset (evaluated using

LOSOCV technique). The di�erences are significant when CART or LR is used to

build the classifier, with p-value = 3.2 ◊ 10≠3 and p-value = 0.02, respectively.

The results provided in this section indicate that using the Cogent dataset to

train the classifier is as e�ective as using the real-fall data from the FARSEEING

dataset. These results also give an indication that using data from young and healthy

subjects in a fall-detection study can represent the performance of the classifier in

detecting falls on older people.
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Table 5.20: Average and standard deviation of recalls of EvenT-ML tested on the
FARSEEING dataset

Dataset used

for training
CART (%) k-NN (%) LR (%) SVM (%)

Cogent

(hold-out)
86.7±35.2 60 ±50.7 80±41.4 66.7±48.8

SisFall

(hold-out)
86.7±35.2 90±28.0 90.0±28 83.3±36.2

FARSEEING

(LOSOCV)
83.3±36.2 73.3±45.8 80±41.4 66.7±48.8

Table 5.21: Average and standard deviation of F-scores of EvenT-ML tested on the
FARSEEING dataset

Dataset used

for training
CART (%) k-NN (%) LR (%) SVM (%)

Cogent

(hold-out)
72.7±36.1 57.8±49.5 73.8±41.7 66.7±48.8

SisFall

(hold-out)
41.6±29.4 48.2±36.3 39.9±30.7 54.1±36.7

FARSEEING

(LOSOCV)
82.2±35.3 66.7±43.6 67.8±39.1 66.7±48.8
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5.5 Discussion and limitations

Although this chapter shows that using the Cogent dataset can give comparable

results with using the FARSEEING dataset, these results cannot be applied in

general since the number of FARSEEING subjects is relatively small (15 subjects).

In fact, Table 5.21 shows that the standard deviation of the classifier in all cases are

high. This means that the classifier is unstable due to a small number of samples

(only 15 falls from 15 subjects). Thus, a larger real-fall publicly-accessible dataset

is still important for evaluating the fall-detection approach.

The next limitation of this study is the use of running time to measure the

computational cost. The running time of the feature extraction running on the

PC can be a�ected by other processes in the background. As an alternative, this

chapter provides the number of segments produced by each segmentation technique

to be compared. A bench-top test is intended to be used to measure the real energy

consumption of the feature extraction on a real wearable device in the future [28,

63, 154].

Since the Cogent and SisFall datasets are publicly accessible, recent studies from

Khan and Taati [95] evaluate their proposed approach using the Cogent dataset,

while Sucerquia et al. [141] use the SisFall dataset. Khan and Taati’s study shows

that a one-class-classification-based approach is able to achieve 100% of sensitivity

with 0 false alarms on the Cogent dataset, though this study does not report the

computational cost of their approach. On the other hand, Sucerquia et al.’s study

shows that a simple threshold can give a 99% sensitivity and a 99.51% specificity.

The results of Khan and Tati and Sucerquiea et al.’s studies are obviously better

than the results provided in this study. Thus, it indicates that di�erent types of

features can increase EvenT-ML’s detection rate.

The number of features remains high because features are extracted from each

stage. Thus, Chapter 6 provides a genetic-algorithm-based feature-selection tech-
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nique aiming at reducing the number of features. With regards to the machine-

learning algorithm, di�erent algorithms or parameters can a�ect the classifier per-

formance. However, the main purpose of this chapter is to evaluate the improvement

of the classifier when EvenT-ML is implemented. Thus, a comprehensive study to

compare and tune the parameters of the machine-learning algorithms is left for fu-

ture work.

5.6 Chapter summary

This chapter describes a novel fall-detection approach called event-triggered machine-

learning (EvenT-ML). EvenT-ML is described as a state machine to align fall stages

(pre-impact, impact, and post-impact) to the acceleration signal, where the feature-

extraction process uses these stages as a basis. Two publicly accessible datasets,

Cogent and SisFall, were used to evaluate the fall-detection approaches.

Compared to FNSW and FOSW, EvenT-ML achieves significantly better preci-

sion and F-score and still can maintain a relatively good recall on both datasets. The

best machine-learning technique for EvenT-ML in this study is LR with C = 109.

By using LR, a 97.2% precision, a 98.1% recall, and a 97.6% F -score can be achieved

for the Cogent dataset, while for the SisFall dataset an 88.4% precision, a 91.3%

recall, and a 91.3% F-score can be achieved. As an additional advantage, EvenT-ML

is able to significantly reduce the computational cost of Stage1 for both datasets.

EvenT-ML is able to achieve a reduction by a factor of 8 (on average) compared to

FNSW and of up to 80 compared to FOSW on the Cogent dataset, while it achieves

a reduction by a factor of 2 (on average) compared to FNSW and of up to 20 com-

pared to FOSW on the SisFall dataset. The degree of energy reduction in a real

wearable device might be di�erent from the results presented in this study. This is

because there are other processes that might increase the energy consumption of the

real wearable device. An implementation of EvenT-ML on a real wearable device is
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considered as future work.

From these results, this chapter concludes that EvenT-ML is able to strike a

balance between precision and recall, which means that EvenT-ML can reduce both

false alarms and undetected falls. Compared to CCA and IMPACT+POSTURE,

EvenT-ML can achieve a significantly better F-score. In response to RQ3- yes,

EvenT-ML can significantly improve the detection rate of the classifier when a seg-

ment is correctly aligned with the fall stages, where, as an additional advantage,

this approach is able to significantly reduce the computational cost of the system.

Regarding the sensor placement, the chest gives the highest precision, recall, and F-

score compared to waist and thigh. The waist is the second-best placement followed

by the thigh.

Another important finding from this chapter is that using the Cogent dataset

and EvenT-ML to train the classifier is as e�ective (not significantly di�erent) as

using the real-fall data from the FARSEEING dataset. This finding shows that

using young and healthy subjects to train the classifier to detect falls in older people

is appropriate, and the results presented in this study can be used as an indication

of the classifier’s performance in real-case scenarios.

As the number of features remains high, feature selection is needed to reduce

the computational cost by reducing the number of features, and to optimise the

accuracy by filtering out irrelevant features. The next chapter proposes a genetic-

algorithm-based feature selection that can find a subset of features from di�erent

sensor placements that can give an optimum detection rate while reducing the com-

putational cost of the system.
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Chapter 6

Genetic-algorithm-based

feature-selection technique for fall

detection (GA-Fade)

6.1 Introduction

The previous chapter provided a novel machine-learning-based approach for fall

detection called EvenT-ML. Although EvenT-ML is able to significantly increase the

accuracy of the classifier and reduce the computational cost, the number of features

being used by this technique remains high. This chapter evaluates a novel genetic-

algorithm-based feature-selection technique for fall detection using multiple wearable

sensors, where this technique considers F-score, computational cost, and number of

sensors used as the selection criteria. Also, this chapter provides a comparative

study between wrapper-, filter-based, and embedded techniques to select features

for fall-detection application using wearable sensors.

Since filter-based feature-selection techniques ignore features that can give more

information when they are used together [158] and use a single criterion to select

147



6.1. Introduction 148

features, this chapter considers a wrapper-based feature-selection technique. To se-

lect the best subset of features using a wrapper-based feature selection technique

from one sensor in this study, an investigation of 227 (134,217,728) possible com-

binations are needed, because every stage of a fall produces 9 di�erent features and

there are 3 fall stages used in this study (pre-impact, impact, and post-impact).

Based on Gjoreski et al. [64], using more than one sensor placement can give a

better accuracy in detecting falls. Thus, if wrapper-based feature selection is used

to find a subset of features from 3 sensor placements (chest, waist, and thigh),

~2.4 ◊ 1024 possible combinations need to be investigated. Exhaustively evaluat-

ing these combinations requires a huge amount of time, which is a disadvantage of

the wrapper-based feature-selection technique. Therefore, a heuristic search is often

used to reduce the complexity of an exhaustive search in wrapper methods. Genetic

algorithms have been shown to be e�ective in multi-criteria-based feature selection in

some studies such as heart disease, cancer, and handwriting recognition [117, 165], as

most other feature-selection techniques are not designed to handle multiple selection

criteria [165].

The problem of fall-detection approach is not only to improve the detection rate,

but also to reduce the computational cost [154]. Wang et al. [154] have proposed a

multi-criteria-based feature-selection technique, where the detection rate and energy

consumption become the selection criteria. The first issue of this technique is that

the way a candidate removed feature being selected for each iteration is not clear.

Another issue with this technique is that it does not compare the result of the final

output with all results of all evaluated combinations. For example, from Table VI

of their paper, it shows that the best result is given when f1, f3, f6, and f8 are

used. In fact, a better result is given when f1, f2, f3, f5, f6, and f8 are used.

The main aim of this chapter is to select features that can give a higher detec-

tion rate (F-score) and a lower computational cost (optimisation problem). Since

the feature dimension of this study is large, the genetic algorithm is chosen to re-
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duce the complexity of the brute-force wrapper-based feature-selection technique

since the genetic algorithm has been shown to be e�ective in multi-criteria-based

feature selection in some studies such as heart diseases, cancer, and handwriting

recognition [117, 165]. Using the genetic algorithm to improve the e�ciency of

wrapper-based feature selection in searching the optimum subset of features based

on multiple criteria for fall detection using wearable sensors has not been investig-

ated. Thus, the contribution of this chapter is a genetic-algorithm-based feature-

selection technique for fall detection (GA-Fade) to select sub-features from a large

space based on three criteria: detection rate (in terms of F-score), computational

cost, and number of sensors used. These criteria are chosen to select features that

have lower computational cost, high detection rate, and use as few sensors as pos-

sible. Using fewer sensors can increase the user’s comfort and reduce the energy con-

sumption [98]. SelectKBest (filter-based feature-selection technique) and Recursive

Feature Elimination (embedded feature-selection technique) from the Scikit-learn

library are chosen as a comparison.

The structure of this chapter is as follows: Section 6.2 provides an overview of

GA-Fade. Section 6.3 explains methods used in this study, while Section 6.4 provides

the results and an analysis of the experiment. Section 6.5 provides a discussion and

limitations. Section 6.6 concludes this chapter.

6.2 Genetic-algorithm-based feature-selection

technique for fall detection (GA-Fade)

In this study, a steady-state genetic algorithm is proposed (Algorithm 6.1). The

genetic-algorithm-based feature-selection technique for fall detection (GA-Fade) con-

sists of five main functions: Initial population generation, fitness function, selection

function, crossover function, and mutation function.
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Algorithm 6.1 A steady-state genetic algorithm
1: Initialise population P

2: Non-increasingly sort individuals in P based on fitness value

3: while number of generation < desired generation do

4: Select two parents p1 and p2 from P

5: child1, child2 = crossover(p1, p2)

6: mutation(child1, child2)

7: Insert child1 and child2 into P

8: Sort P

9: Eliminate individual with the lowest fitness from P

10: end while

6.2.1 Initial population generation

A genetic algorithm is a searching technique to solve optimisation and searching

problems, by using genetics as its model [135]. In its process, the genetic algorithm

handles a pool of solutions, where each solution is represented as a chromosome.

Each chromosome consists of genes, where a gene is a representation of a value that

corresponds to the fitness of the solution it represents. The fitness itself shows how

good the solution is.

For feature selection using a genetic algorithm, an individual consists of a se-

quence of features where each feature is represented by a binary number (either 1

or 0) [117]. Values of 1 indicate selected features while values of 0 show removed

features. Figure 6.1 and Algorithm 6.2 show an illustration of the encoding of a

chromosome and the algorithm of chromosome encoding, respectively.

Before searching for the optimal sequence of features using the genetic algorithm,

several initial chromosomes are needed. Algorithm 6.2 shows the process of chro-

mosome generation of the initial population P . This algorithm makes unlikely that

there are not two (or more) similar chromosomes in P by comparing the newly gen-
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f1
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A chromosome

f2 f3 f4 f5 f6

Figure 6.1: Encoding process for GA-based feature selection

erated chromosome with all existing chromosomes in P , to increase the diversity of

individuals. This thesis uses 50, 100, and 200 as the number of generations.

Algorithm 6.2 Chromosome encoding
1: for i = 0 to length of a chromosome do

2: j = random.uniform()

3: if j < threshold then

4: digit = 1

5: else

6: digit = 0

7: end if

8: end for

6.2.2 Fitness function

The fitness function has the most important role in the genetic algorithm. This

function decides which individual is kept in the population or removed from the

population. Based on Venkatraman et al. [150], the fitness function of the genetic

algorithm can be categorised into three techniques:

1. methods based on penalty functions;
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Algorithm 6.3 Controlled initial population generation
1: for i = 1 to I do Û I : Initial size of population P

2: Generate a chromosome C

3: while C is exist in P do

4: Re-generate C

5: end while

6: Put C into P

7: end for

2. methods based on preference of feasible solutions over infeasible solutions;

3. methods based on multi-objective optimisation.

In this study, a penalty-based function is adopted. To construct the fitness function

of our technique, three aspects from Lara and Labrador [98] are considered: level of

energy consumption (E), the overall detection rate for fall activities (A), and the

number of sensors being used (N). Since all experiments for this study were done

o�ine on a PC and energy is proportional to running time (see the explanation

in Section 5.2), the running time is considered to represent E. Because the fall-

detection system needs to have low false positives and false negatives [115], the

F-score is considered to represent A. The F-score is calculated using formula (2.3).

Since the units of variables A, E, and N are di�erent (multi-objective optimisation

problem), some weights are implemented [41, 58].

Thus, the fitness function for this study is

fitness(x) = w1.A ≠ w2.E ≠ w3.N, (6.1)

where:

• x = a chromosome from the population

• A = accuracy in terms of F-score
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• w1 = weight for accuracy

• E = total computational cost of the system for a chromosome

• w2 = weight for total computational cost

• N = number of sensors chosen

• w3 = weight for number of sensors used

To compute the total computational cost (E), the following formula is used:

E = wc.tc + ww.tw + wttt, (6.2)

where both wx and tx are the weight and running time of x, where x can be a chest

placement (c), a waist placement (w), or a thigh placement (t). Since the running

time might be interrupted by other background processes, the minimum running

time is used to get the lowest bound of how fast the machine can run given a code

snippet1.

Reducing the number of sensors (N) is critical for the user’s comfort [98]. Also,

having fewer sensors (e.g. switching them o� when they are not needed) may reduce

the energy consumption of the device [28]. Since the E and N values are not

bounded, this causes the state space to be infinite. Using an exhaustive search is

impossible in this case. Thus, using a genetic algorithm to explore a very large state

space can be a better option [65].

The units of A is a percentage (%) and of E is milliseconds (ms). As N is the

number of sensors being used, it does not have a unit. Thus, for the implementation,

the fitness function is changed into:

fitness(x) = (w1 ◊ A/100) ≠ (w2 ◊ E/2.4) ≠ (w3 ◊ N/3),
1
see https://docs.python.org/2/library/timeit.html to see how the Python programming lan-

guage handles this issue.
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where 2.4 and 3 is the least time (in millisecond) of the machine (in this case a

PC) to extract all features from all sensors and the total number of sensors used in

this study, respectively. w1 is set to be 1 while w2 and w3 is set to be 0.5, where

these numbers are empirically chosen. The value of w1 is set to be higher than w2

and w3 because accuracy (A) is more important than energy (E) and number of

sensors (N). An equal value is given to wc, ww, and wt, thus wc = ww = wt = 1, as

the importance of all sensor placements is assumed to be the same. Therefore, the

optimum sequence is a sequence that has the highest detection rate with the lowest

computational cost and the lowest number of used sensors. Those weights above

can be adjusted to fit the needs of the application.

6.2.3 Selection Function

To select parents from the population, a roulette-wheel technique is implemented,

adopted from Oh and Lee [117]. This technique is chosen to ensure that fitter

chromosomes/individuals have a higher probability of being chosen. The probability

P (i) of selecting the ith item from a pool of n items is weighted more highly for

lower numbered items according to:

P (i) = q (1 ≠ q)i≠1 / (1 ≠ (1 ≠ q)n) (6.3)

where q = 1/4 is the probability of selecting the first item for infinite n [117]. The

form of this equation is set to ensure that it sums to unity q
1ÆiÆn P (i) = 1 while

decreasing the probability geometrically for subsequent items P (i+1) = (1≠q)P (i).

It is possible to find an inverse of the cumulative probability distribution to

help generate random numbers sampled from this distribution. Specifically, setting

A = (1 ≠ (1 ≠ q)n)

Q(k) =
ÿ

0ÆiÆk

q (1 ≠ q)i≠1 /A = 1/A
1
1 ≠ (1 ≠ q)k

2
(6.4)
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Crossover point

Parent A

Parent B

Child 1

Child 2

1 0 1 1 1 1 10

1 0 1 1 1 1 10

0 0 0 0 0 0 10

1 0 0 0 0 0 00

1 0 1 1 1 1 10 1 0 0 0 0 0 00

1 0 1 1 1 1 10 0 0 0 0 0 0 10

Figure 6.2: An illustration of a one-point crossover operator between parents for one
sensor

which has a simple inverse of,

k(Q) = Álog (1 ≠ AQ) / log (1 ≠ q)Ë (6.5)

6.2.4 Crossover function and mutation function

For the crossover function, this study uses a single-point crossover function. Figure

6.2 shows an illustration of the one-point crossover function. For the mutation func-

tion, this study adopts a mutation function from [117]. An algorithm for mutating

the new individual is shown in Algorithm 6.4. The mutation rate that is used in this

study is 0.1, which is adopted from Oh et al. [117]. The next sub-section provides

the experimental method of this study.

6.3 Method

6.3.1 Experimental Method

The Cogent dataset is used for this chapter, as it has 3 di�erent sensor placements,

and EvenT-ML is used to build the classifier. Only 18 subjects are used in this

chapter since they have sensors strapped on their chest, waist, and thigh. Inform-

ation about the body profile of the subjects is provided in Table 3.1. Because
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Algorithm 6.4 Mutation process
1: for each gene g in the chromosome do

2: Generate a random number r within [0, 1]

3: if g = 0 and r < p then

4: g = 1

5: else if g = 1 and r < p then

6: g = 0

7: end if

8: end for

EvenT-ML extracts the features (see subsection 4.4 for more detailed information

regarding the features) based on signal peaks, the number of instances produced

from each placement is di�erent for some activities. Figure 6.3 shows examples of

acceleration-vector-magnitude signals of a walking activity from chest, waist, and

thigh sensors. This figure shows that the thigh sensor produces more peaks, where

those peaks are higher than the threshold (1.8g), compared to the chest and waist

sensors. The chest sensor produces no peak higher than 1.8g. This makes the thigh

sensor have more instances than chest and waist, so that fusion of the feature values

between the three sensor placements for feature selection cannot be done directly.

Therefore, a data imputation is done, so that all sensors have an equal number of

instances. Since an activity is iterated more than one time for each subject, the

imputation is done by using the median value of the samples from the same activity.

The median value is used for the imputation process because the feature values are

not normally distributed. An illustration of this process is shown in Figure 6.4.

Since each subject produces a di�erent number of peaks, the number of instances

generated for each subject varies.

The data were processed o�ine using a PC. To train the classifier, LR with the

inverse regularisation strength (C) of 109 from the Scikit-learn library [125] was used.

156



6.3. Method 157

0.50

0.75

1.00

1.25

1.50

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (seconds)

A
cc

e
le

ra
tio

n
 m

a
g
n
itu

d
e
 (

g
)

(a) Chest

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (seconds)

A
cc

e
le

ra
tio

n
 m

a
g
n
itu

d
e
 (

g
)

(b) Waist

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (seconds)

A
cc

e
le

ra
tio

n
 m

a
g
n
itu

d
e
 (

g
)

(c) Thigh

Figure 6.3: Acceleration vector magnitude signals for a walking activity from chest,
waist, and thigh sensors taken from a subject.

157



6.3. Method 158

F11, F12, ..., F1n

Chest sensor Waist sensor Thigh sensor

Existing instances 
of an activity (A1) 
from Subject 1 (S1)
for iteration 1,2,...,N

F21, F22, ..., F2n

Fm1, Fm2, ..., Fmn

.

.

.

F11, F12, ..., F1n

F21, F22, ..., F2n

Fm1, Fm2, ..., Fmn

.

.

.

F11, F12, ..., F1n

F21, F22, ..., F2n

Fm1, Fm2, ..., Fmn

.

.

.

Chest sensor Waist sensor Thigh sensor

Instances 
of A 1

from S1

for iteration N+1
.
.
.

F11, F12, ..., F1n

.

.

.

F11, F12, ..., F1n

F21, F22, ..., F2n

Fm1, Fm2, ..., Fmn

.

.

.

Median values Median values

F'1, F'2, ..., F'n F'1, F'2, ..., F'n

F'11, F'12, ..., F'1n

F'21, F'22, ..., F'2n

F'm1, F'm2, ..., F'mn

F'21, F'22, ..., F'2n

F'm1, F'm2, ..., F'mn

Figure 6.4: Data imputation process
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Table 6.1: Average and standard deviation of number of features selected by GA-
Fade with di�erent initial population sizes and di�erent numbers of generations

Number of

generations

Size of the

initial population (P )

40 60 80

50 33.1±4.0 33.6±4.5 33.4±4.5

100 28.7±4.3 31.5±3.3 32.3±4.5

200 25.6±3.5 26.4±5.1 25.6±5.5

This algorithm is shown in the previous chapter to be more e�ective in training a

classifier for detecting falls than the other machine-learning algorithms. LOSOCV

was used in this experiment. This chapter implements SelectKBest (filter-based

feature selection) and Recursive Feature Elimination (embedded feature selection)

techniques as a comparison. The significance of the improvement in the detection

rate was evaluated using a Wilcoxon signed-rank test with a significance level of

0.05 (– = 0.05).

To avoid biased results, a validation step from Nowotny [116] is adopted. Fig-

ures 6.5 and 6.6 show the validation steps for the GA-Fade and filter-based methods

(SelectKBest and RFE).

6.3.2 SelectKBest feature-selection technique

SelectKBest is a library for feature selection from Scikit-learn using the Python

programming language [125]. This library represents one of the filter-based methods,

where this technique gives a score to each feature, then non-increasingly ranks them.

The number of selected features (K ) is defined by the user. A score function is used

to measure each feature. This study investigates several score functions: chi-square

test (chi2 ) and ANOVA F-value (f_classif ). In this study, K is equal to 30, as the

number of selected features by GA-Fade is about 30 (Table 6.1).
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Figure 6.5: GA-Fade validation using LOSOCV
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Figure 6.6: Feature-selection techniques (SelectKBest and RFE) validation using
LOSOCV

6.3.3 Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) was proposed by Guyon et al. [73]. This

technique consists of three main steps:

• Train a classifier.

• Compute the ranking (r) of each feature based on its coe�cient (w) in the

decision function.

• Remove the feature with the lowest rank.

Those steps above are iteratively done until the desired number of features is achieved.

Algorithm 6.5 shows the feature-selection process using RFE. In this study, an RFE

library from Scikit-learn was used. With regard to the classifier, Logistic Regression

(LR) with C = 109 was used to train the classifier.
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Algorithm 6.5 Recursive feature elimination (RFE)
1: X = [x1, x2, x3, ..., xn] Û Training samples

2: Y = [y1, y2, y3, ..., yn] Û Class labels

3: F = [f1, f2, f3, ..., f5] Û Features

4: while length of F > desired number of features do

5: w = classifier.train(X, Y ) Û w= features’ coe�cients in the decision function

6: ri = (wi)2 Û ri = rank of the i-th feature

7: F= sort(F ) Û non-increasingly sorted

8: F = F [1 : length(F ) ≠ 1] Û remove the feature with the lowest rank

9: end while

10: Return F

6.4 Results and Analysis

6.4.1 GA-Fade results

Figure 6.7 shows the distribution of fitness values produced by GA-Fade for each

number of generations. From this figure, it can be seen that increasing the number

of generation can increase the fitness value. Based on the Wilcoxon test, increasing

the number of generations can significantly increase the fitness value, with p-values

Æ 0.05. Having a high fitness value can lead to the optimal solution. Increasing

the size of the initial population does not give a significant improvement in the

fitness value (p-values Ø 0.4). These results show that increasing the number of

generations is more important than increasing the initial population to improve

the classifier detection rate (precision, recall, and F-score) and reduce the feature-

extraction computational cost.

In terms of precision, increasing the number of generation does not significantly

a�ect the classifier performance (p-valuesØ 0.1), except when the initial population

is 80 and the number of generations is increased from 100 to 200 (p-value = 4 ◊
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Table 6.2: Average and standard deviation of precision, recall, and F-Score of GA-
based feature selection with di�erent initial population sizes and di�erent numbers
of generations

(a) Precision (%)

Initial
population

Number of
generations

50 100 200
40 96.4±7.9 99±2.3 98.4±3.9
60 98.1±6.5 96.6±6.2 96.8±7.6
80 97.5±7.9 97.3±5.3 96.9±5.1

(b) Recall (%)

Initial
population

Number of
generations

50 100 200
40 97.8±3.7 96.6±6.3 97.2±5.5
60 97.1±6.6 97.3±6.1 96.9±5.8
80 97±5.4 96.1±6.6 97.6±5.4

(c) F-score (%)

Initial
population

Number of
generations

50 100 200
40 96.9±4.8 97.7±3.4 97.7±3.9
60 97.4±4.9 96.8±5.1 96.7±5.5
80 97±5.5 96.6±5.3 97.1±4.2

10≠3). The recall of the classifier is not significantly a�ected by the number of

generations (p-values Ø 0.05). The performance of the classifier (in terms of F-score)

can be significantly improved when the initial population is 80 and the number of

generations is increased from 100 to 200. Increasing the number of generations can

significantly a�ect the computational cost of feature extraction (p-values Æ 0.02),

except when the initial population is 60 and number of generation is increased from

50 to 100 (p-value = 0.08).
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Figure 6.7: Fitness-value distributions of GA for several initial population values
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Table 6.3: Average and standard deviation of minimum running time (ms) for se-
lected features of GA-based feature selection with di�erent initial population sizes
and di�erent numbers of generations

(a) Chest

Initial
population

Number of
generations

50 100 200
40 0.3±0.1 0.2±0.1 0.2±0.1
60 0.3±0.1 0.2±0.1 0.2±0.1
80 0.3±0.1 0.2±0.1 0.2±0.1

(b) Waist

Initial
population

Number of
generations

50 100 200
40 0.3±0.1 0.2±0.1 0.2±0.1
60 0.3±0.1 0.2±0.1 0.2±0.1
80 0.3±0.1 0.2±0.1 0.2±0.1

(c) Thigh

Initial
population

Number of
generations

50 100 200
40 0.3±0.1 0.2±0.1 0.2±0.1
60 0.3±0.1 0.2±0.1 0.2±0.1
80 0.3±0.1 0.2±0.1 0.2±0.1
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6.4.2 Performance comparison

6.4.3 Classifier performance (precision, recall, and F-score)

Table 6.4 shows the average of the precision, recall, and F-score of the subset of

features that are selected by each feature-selection technique and by using all fea-

tures. Compared to using all features, using features that are selected by GA-Fade

does not give a significant improvement in terms of precision (p-values Ø 0.2), recall

(p-values Ø 0.3), and F-score (p-values Ø 0.2). Using either a filter-based or an

embedded technique also does not give a significant improvement in terms of pre-

cision (p-values Ø 0.6), recall (p-values Ø 0.3), and F-score (p-values Ø 0.3). The

experimental results also show that features that are selected using GA-Fade, Se-

lectKBest, or RFE give similar results in terms of precision (p-values Ø 0.06), recall

(p-values Ø 0.01), and F-score (p-values Ø 0.08). These results show that using

wrapper-based, filter-based, or embedded techniques can give comparable results.

Also, reducing the number of features in this study does not significantly improve

the performance.

6.4.4 Features computational cost comparison

Table 6.5 shows the computational cost of selected features by each feature-selection

technique on each sensor placement. For the chest sensor placement, GA-Fade is

able to select features that give a significantly lower computational cost than features

that are selected by other feature-selection techniques (p-values Æ 1.7 ◊ 10≠4). GA-

Fade is also able to select features those can give a significantly less computational

cost than features that are selected by SelectKBest and RFE from both waist and

thigh sensors (p-valuesÆ 1.8 ◊ 10≠4), except when SelectKBest with f_classif score

function is used for the thigh placement. These results show that GA-Fade is able

to select features that have a significantly lower computational cost than features

that are selected by other feature-selection techniques, in most of the cases. This
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Table 6.4: Classifier performance (average and standard deviation) on selected fea-
tures

Feature-selection

technique
Precision (%) Recall (%) F-score (%)

Full features 97.3±6.2 96.4±7.6 96.6±5.2

SelectKBest

+ chi2
96.3±9.1 96±8.4 95.7±5

SelectKBest

+ f_classif
96.6±9.4 97±4.4 96.5±6.5

RFE+Logistic

Regression-based

classifier

96.9±6.8 98±3.7 97.3±4

becomes an advantage of GA-Fade compared to other feature-selection techniques,

since computational cost is critical for wearable-sensor-based applications, since a

wearable device has limited resources (e.g. battery power, memory, and CPU).

6.5 Discussion and limitations

6.5.1 Discussion

6.5.1.1 Performance comparison

This chapter aims to investigate the performance of a proposed genetic-algorithm-

based feature-selection technique in selecting features that can give an equal or

better detection rate (precision, recall, and F-score) and have less computational

cost. The idea of considering both detection rate and computational cost is discussed

in Wang et al. [154]. Their study uses a wrapper-based feature-selection technique to

select features. The first problem of their approach is that they do not provide any
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Table 6.5: Computational cost (average and standard deviation) for selected features
for each placement

Feature selection

technique
Chest (ms) Waist (ms) Thigh (ms)

Full features 0.8±0.0 0.8±0.0 0.8±0.0

SelectKBest + chi2 0.3±0.0 0.3±0.0 0.4±0.0

SelectKBest + f_classif 0.5±0.0 0.3±0.0 0.1±0.0

RFE+Logistic Regression-

based classifier
0.7±0.1 0.5±0.1 0.4±0.1

justification of a feature removal in each iteration. For example, they do not provide

any explanation regarding the removal of f10 in the second iteration (see Table VI

from their paper). In GA-Fade, the removal of features is done through crossover

and mutation processes from the selected subsets. The second problem of Wang et

al.’s approach is that it does not select the best feature subset among the evaluated

feature subsets, while GA-Fade always chooses the best subset (chromosome) among

the evaluated subsets. Another issue of Wang et al.’s study is that they do not

compare their approach with other feature selection techniques. Thus, it is not clear

whether it is worthwhile to implement a wrapper-based feature-selection technique

in this case (note that, since the wrapper-based feature-selection technique has a

more complex process, it takes more time to select features than using a filter-based

or an embedded technique).

This study compares GA-Fade with other feature-selection techniques from each

category (SelectKBest is a filter-based technique and RFE is an embedded tech-

nique). The results of this comparison show that GA-Fade, SelectKBest, RFE have

an equal capability of choosing features that can give a detection rate (precision,

recall, and F-score) equal to the condition when all features are used. However,

Tables 6.3 and 6.5 show that GA-Fade is able to select features that have a sig-
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nificantly lower computational cost than features that are selected by SelectKBest

and RFE. This causes GA-Fade to become superior to SelectKBest and RFE. A

lesson learned from this chapter is that the wrapper-based feature-selection tech-

nique is preferred when the selection process involves multiple criteria (detection

rate, computational cost, number of sensors). This study also shows that a heuristic

search approach such as a genetic algorithm can be used to select features to get an

optimum detection rate with less computational cost.

6.5.1.2 Selected features and a risk of overfitting

Since each validation is done using inner and outer cross-validation (see Figure 6.5),

each iteration produces a di�erent set of sub-features. Figure 6.8 shows the fre-

quency of each feature on each placement, while Table 6.7 shows the 12 most-picked

features from each sensor placement. Table 6.7 shows that using domain knowledge

in selecting features is less useful than using a feature-selection technique in this case.

For example, studies from Bourke et al. [25], Dumitrache et al. [47], and Sorvala et

al. [136] use maximum acceleration during the impact stage of fall as a feature to

classify falls from other activities. Note that these studies place their sensor on the

waist of the subject. Based on the results of Table 6.7, the maximum acceleration

during the impact stage is not included in the twelve-most-picked features (see the

waist column). Thus, selecting features using a feature-selection technique performs

better than selecting features manually using domain knowledge in this case.

Since the F-score of using all features and selected features (regardless of the

feature selection technique) are similar, this shows that there are redundant features

used in this thesis. Thus, doing a feature selection, in this case, is necessary to reduce

the computational cost of the system. Another issue that appears in this thesis is

a risk of overfitting because the number of features is high. Since this chapter

uses only the Cogent dataset, the risk of overfitting in this chapter is reduced by

implementing the inner and outer cross-validation [116]. Another way to reduce
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Figure 6.8: Frequency of each feature being chosen by GA-Fade. Pr, Im, and Po
mean pre-impact, impact, and post-impact, respectively, and the number represents
the feature index. Table 6.6 shows the features that are used for this study together
with their indices.

the risk of overfitting is by tuning the hyper-parameters of the machine-learning

algorithm [125]. However, this is out of the scope of this thesis and is left for future

work.

6.5.2 Limitations

6.5.2.1 Data pre-processing and the machine-learning algorithm choice

The first limitation of this study is the choice of the machine-learning algorithm and

features. The results of this study might change when the feature or the machine-

learning algorithm is changed. Because a data-imputation process is implemented

before the feature-selection process, the results provided in this chapter may be

di�erent from the results from the real implementation. However, by comparing the

results of this chapter with the results from Table 5.16, the di�erence should not be

expected to be significant. To avoid the data-imputation process, a synchronisation
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Table 6.6: Index of the used features

Feature name Index

Mean acceleration (Mean) 1

Variance of acceleration (Variance) 2

Maximum acceleration (Max) 3

Minimum acceleration (Min) 4

Root-mean-square acceleration (RMS) 5

Velocity 6

Signal-magnitude area (SMA) 7

Exponential moving average (EMA) 8

Energy 9

process is needed. Data synchronisation is one of the important problems in the

data pre-processing stage, especially for sensor-based healthcare technology [137],

and some studies proposed a time-based synchronisation approach to synchronise

data from multiple sensors [17, 49, 59]. This synchronisation issue is left for future

work. Also, because this chapter uses data from the Cogent dataset only, the results

cannot be generalised. Thus, more data (especially data from older subjects) are

needed for the evaluation.

6.5.2.2 A multi-sensor system for fall detection

Lara and Labrador [98] suggest using as few sensors as possible to increase the user

comfort and to reduce the complexity and energy consumption of the system since

fewer data are processed. However, this study shows that all the feature-selection

techniques (GA-Fade, SelectKBest, RFE) choose to select features from all sensors.

This means that better features are needed to get a better detection rate with fewer

sensors. Also, an in-garment technology (e.g. Jung et al. [83]) can be implemented to

get the benefits of the multi-sensor-based system without sacrificing user’s comfort.
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6.5.2.3 Power e�cient design

The energy consumption of the real implementation on the real device can be very

di�erent. This is because the highest energy consumption comes from the radio

transmission module [154], where this energy consumption is assumed to be zero in

this thesis. Since this thesis uses the runtime to represent the computational-cost

without considering other possible aspects (for example the radio transmission), this

is very limited to the computational cost of the feature extraction.

6.6 Chapter summary

This chapter provides a genetic-algorithm-based feature-selection technique (GA-

Fade) for fall detection using wearable sensors. This technique tackles the multi-

criteria issue, which considers F-score, computational cost, and number of sensors

as the selection criteria. GA-Fade has an ability to select a subset of features from

three di�erent sensor placements, which can give a significantly better F-score, while

having a relatively low computational cost.

GA-Fade is able to select features that can reduce, by around 60%, the total

number of features, and achieves a precision of up to 99%, a recall of up to 97.8%,

and an F-score of up to 97.7% on average. This result is equal to results from

features that are selected by the SelectKBest and RFE techniques. Regarding the

computational cost, features that are selected by GA-Fade have the significantly

lowest total computational cost among the techniques. This is an advantage of

GA-Fade.

In response to RQ-4, using a genetic algorithm with a penalty-based fitness

function is able to select a subset of features that have comparable precision, recall,

and F-score but significantly lower computational cost than with all features and

features that are selected by both the SelectKBest and RFE techniques, where

these techniques use a single criterion (detection rate). Because GA-Fade adopts
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the wrapper-based feature-selection technique, the results shown in this chapter

indicate that the wrapper-based feature-selection technique performs better than

both filter-based and embedded feature-selection techniques, when multiple criteria

are used (detection rate, computational cost, and number of sensors).
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Having a reliable fall-detection system for older people is highly desirable, as it

can reduce the complications that might be produced by unnoticed falls. As the

size of wearable sensors is getting smaller and their price is getting lower, these

technologies become convenient to be used for fall detection. Key research in fall

detection using wearable sensors is developing a fall-detection approach that can give

a high detection rate, while reducing the system’s computational cost. Having a less-

computational-cost approach is an advantage, as the wearable sensors have limited

resources such as memory and battery capacity. This thesis aimed to investigate

and develop a machine-learning-based approach that is suitable for wearable-sensor-

based fall detection. To ensure the reproducibility and the fairness of the results,

publicly accessible datasets: Cogent, SisFall, and FARSEEING, were used in this

thesis. A leave-one-subject-out cross-validation (LOSOCV) is mainly used to eval-

uate the performance of the classifier, since for fall detection, the main source of

variation is due to characteristics of the subjects or how sensors are attached rather

than, say, the time of day or the temperature in the room.
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This thesis has addressed the issue of both the detection rate and the computa-

tional cost, and it provides the following contributions:

1. A study of both threshold-based and machine-learning-based fall-detection

approaches using publicly accessible datasets. This study aims to analyse the

use of the sliding-window technique for data segmentation on the machine-

learning-based approach. The experiments show that using a larger Fixed-size

Non-Overlapping Sliding Window (FNSW) does not necessarily increase the

classifier’s precision, recall, and F-score. Moreover, using a larger window

overlap for a fixed-size overlapping sliding window (FOSW) can increase the

number of false alarms (reduction in precision). Also, a fair comparison has

been done in this study to analyse whether the sliding-window-based machine-

learning approach can perform better than a threshold-based approach. The

experiment shows that the sliding-window-based machine-learning approach

is able to outperform the threshold-based approach, though the di�erences

are not significant when the Cogent dataset is used, regardless of the sliding

window technique. The machine-learning-based approach can achieve an F-

score of up to 96.5%, whereas the threshold-based approach can only achieve

up to an 88.6% F-score.

2. An event-triggered machine-learning approach (EvenT-ML), where this ap-

proach extracts features based on the state of the body (active or inactive)

and fall stages (pre-impact, impact, and post-impact) aiming to increase the

performance of the classifier. This approach achieves a significantly better per-

formance than the sliding-window-based (Fixed-size Non-overlapping Sliding

Window (FNSW) and Fixed-size Overlapping Sliding Window (FOSW)) ap-

proach, an existing fall-stage-based [127] approach, and an existing threshold-

based approach (IMPACT+POSTURE [86]) with an F-score of up to 97.6%.

Also, as an additional advantage, Event-ML has a significantly lower computa-

tional cost than both FNSW- and FOSW-based machine-learning approaches.

176



7.2. Answers to research questions 177

3. A genetic-algorithm-based feature-selection technique for fall detection (GA-

Fade), to select a subset of features based on the detection rate (F-score),

computational cost (running time), and number of sensors being used. Com-

pared to features that are selected by filter (SelectKBest [125]) and embed-

ded (Recursive Feature Elimination (RFE) [73]) feature-selection techniques,

where these techniques are examples of single-criterion-based feature-selection

techniques, GA-Fade can select features from three di�erent placements of

sensors that are able to give a comparable F-score (with an F-score of up to

97.7%) and a significantly lower total computational cost in most of the cases.

The next section provides answers to the research questions posed in Chapter 1.

7.2 Answers to research questions

This thesis has examined the following research questions:

RQ1: What is the impact of the sliding-window type and size on the

classifier detection rate (in terms of precision, recall, and F-score) when

the machine-learning based approach is used?

For the FNSW-based machine-learning approach, using a larger FNSW does not

necessarily increase the performance of the classifier in terms of precision, recall,

and F-score, unless the length of the activity is uniform. A larger window size (15

seconds) is suitable for the SisFall dataset as it has a uniform length of fall, while 2

seconds of FNSW is suitable for the Cogent dataset which has a more varied length

of fall. With the FOSW-based machine-learning approach, increasing the window-

overlap size can cause an increase in false alarms (decrease in precision) in most

cases. This is because the number of data overlaps between fall and non-fall data

is increased when the window overlap size is increased. Another important finding

from this investigation is that there is a relatively big gap between precision and
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recall, which makes the FNSW- and FOSW-based machine-learning approaches still

not applicable for real-world situations.

RQ2: Does the sliding-window machine-learning based approach

provide a significantly better detection rate than the threshold-based

approach on publicly accessible datasets?

By using Logistic Regression (LR) with an inverse of regularisation strength (C )

equal to 109 and a 2-second Fixed-size Non-overlapping Sliding Window (FNSW),

the machine-learning based approach is able to outperform the threshold-based ap-

proach in terms of F-score using the Cogent dataset. By using an SVM algorithm

with a radial-basis-function (RBF) kernel, a 2-second Fixed-size Overlapping Sliding

Window (FOSW), and a 90% data overlap, the machine-learning based approach is

able to outperform the threshold-based approach in terms of F-score. However, both

FNSW- and FOSW-based approaches are unable to achieve significantly di�erent

results using the Cogent dataset. On the other hand, for the SisFall dataset, by

using a k-NN-based classifier (with k=2), both FNSW- and FOSW-based machine

learning approaches are able to significantly outperform IMPACT+POSTURE in

terms of F-Score.

Overall, the machine-learning-based approach can provide a better performance

than the threshold-based approach. But the di�erence is not significant when the

Cogent dataset is used, regardless of the sliding-window technique. A more detailed

investigation about this comparison is provided in Section 4.5.

178



7.2. Answers to research questions 179

RQ3: Does correctly aligning a segment with the fall stages

(pre-impact, impact, and post-impact) and using the state of the body

of the subject (active or inactive) to trigger the feature-extraction and

classification processes improve both the system’s detection rate and

reduce its computational cost?

Yes.

Correctly aligning a segment of accelerometer signal with fall stages before doing

feature extraction can significantly improve the classifier’s detection rate (F-score),

while reducing its computational cost. In order to answer this question, a novel

event-triggered machine-learning approach (EvenT-ML) was developed. EvenT-ML

correctly aligns a segment with fall stages by resolving the multi-peak issue (Figure

2.5). To reduce the computational cost of the system, EvenT-ML has an ability

to prevent the feature extraction from being executed for all possible segments, by

triggering the feature-extraction and classification processes only when the state of

the subject is active.

Compared to the FNSW- and FOSW-based machine-learning approaches, EvenT-

ML can achieve a significantly better precision and F-score, while still maintaining

a relatively good recall on both datasets. EvenT-ML is able to achieve up to 97.6%

(Cogent dataset) and 91.3% (SisFall dataset) F-scores. In terms of computational

cost, EvenT-ML is able to achieve a reduction by a factor of 8 (on average) compared

to FNSW and of 80 (on average) compared to FOSW for the Cogent dataset. For the

SisFall dataset, a reduction by factor of 2 compared to FNSW can be achieved when

EvenT-ML is used. Compared to FOSW on the SisFall dataset, EvenT-ML is able

to achieve up to a factor of 20 reduction. EvenT-ML is also able to reduce the gap

between precision and recall, making this approach more applicable to real-world

cases than both the FNSW- and FOSW-based machine-learning approaches.

Compared to the threshold-based approach, EvenT-ML is able to achieve a better

precision, a better recall, and a better F-score in most cases. In general, EvenT-ML
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is able to significantly outperform IMPACT+POSTURE on both datasets regardless

of the machine-learning algorithm, in terms of F-score. Regarding the sensor place-

ment, chest placement produces the best results for EvenT-ML, followed by the waist

and thigh placements. This study also found that the Cogent dataset is better used

to train the classifier than is the SisFall dataset. This is because using the Cogent

dataset (evaluated using the hold-out technique) can give similar results to using

the FARSEEING dataset (evaluated using leave-one-subject-out cross-validation),

whereas using the SisFall dataset can give a significantly lower performance (in terms

of F-score) when CART or LR is used to train the classifier. This finding also con-

firmed that using the Cogent dataset, where all the subjects are young and healthy,

can give comparable results with using real-fall data from older people. Chapter 5

provides a detailed investigation of EvenT-ML and its performance.

RQ4: Does a meta-heuristic search technique (genetic algorithm) select

features that have a higher detection rate and a lower computational

cost than features that are selected by single-criterion-based

feature-selection techniques (filter-based and embedded techniques)?

Using a genetic algorithm (GA-Fade) to select a subset of features using a penalty-

based function can select features that have a comparable F-score, with a signific-

antly lower computational cost than features that are selected by SelectKBest (filter-

based technique) and Recursive Feature Elimination (embedded feature-selection

technique). These results confirm that the wrapper-based feature-selection tech-

nique (with a multi-criteria-based fitness function) is better than both filter-based

and embedded techniques for fall detection using wearable sensors. For its penalty

function, F-score (detection rate), running time (computational cost), and number

of sensors used are implemented. With a Logistic Regression (LR)-based classifier,

an F-Score of 97.7% (on average) can be achieved by a subset of features that are

selected by GA-Fade.
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7.3 Future Work

This thesis has successfully met the research aims proposed in Section 1.2, by an-

swering all the research questions. However, there are several areas of future work

that can be investigated as an expansion of the work presented in this thesis. This

section provides several areas that can be investigated to extend the scope of this

study.

7.3.1 An implementation of EvenT-ML on a real device

This thesis tries to develop an automated fall-detection and alerting system using

sensors that are attached to clothes. All experiments conducted in this study are

based on simulations, which were all done on a PC. Thus, the impact of EvenT-

ML on battery life has not been explicitly evaluated. Therefore, future work will

investigate the energy consumption of EvenT-ML on a real wearable device.

7.3.2 An investigation on more possible features and an

improvement of the machine-learning algorithm

This study uses 9 types of features: minimum, maximum, average, variance, root

mean square of acceleration vector magnitude, velocity, energy, acceleration expo-

nential moving average, and signal-magnitude area. Gonzáles et al. [68] summarise

features for human-activity recognition. Some features from Gonzáles et al.’s study

that could be investigated to improve the classifier detection rate are:

• Tilt of the body : 1
w

qi+w
t=i | ay

i | + | az
i |,

• The intensity of the movement (InMo): 1
w

qw
i=1 | a

{x,y,z}
t≠i ≠a

{x,y,z}
t≠i≠1

∆xt
|,

• Time between peaks,
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where a, w, and ∆xt are the acceleration signal, number of samples in a segment, and

a representation of the time between samples (this can be ignored if the sampling rate

is constant). The next improvement that can be made is increasing the detection

rate by tuning the hyper-parameters of the machine-learning algorithms.

7.4 Summary

In conclusion, this thesis has demonstrated that the detection rate of a fall-detection

system (in terms of precision, recall, and F-score) can be significantly increased,

while its computational cost can be reduced. An event-triggered machine-learning

based fall-detection approach (EvenT-ML) has been proposed, where this technique

is able to segment features and correctly align fall stages (pre-impact, impact, and

post-impact). Then those stages are used as a basis for feature extraction. Three

publicly accessible datasets have been used, so that the comparison can be fairly

done. Also, this study shows that using data from young subjects (the Cogent

dataset) to train the classifier is as e�ective as using data from older people (the

FARSEEING dataset). To increase the detection rate of the system, a feature

reduction has to be done to eliminate a number of redundant features. Also, reducing

the number of features can reduce the computational cost of the system. This study

proposes a genetic-algorithm-based feature selection (GA-Fade). This technique is

able to select a significantly better sub-set of features, with a lower computational

cost, from various sensor placements.
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Appendix A

FARSEEING dataset subjects

profiles

Table A.1 shows detailed information of the FARSEEING dataset. The information

includes: hardware name, sampling rate, age, gender, height, weight, fall direction,

activity before falling (pre-activity), and fall description. Regarding the hardware

specification, this dataset does not provide a complete information. Also, some data

do not provide the direction of fall.
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Appendix B

Publications, presentations, and

attended conferences

The following outputs have been presented/published/accepted/submitted to sym-

posium/conferences/journal/competition.

B.0.1 Conference proceedings and poster

A cascade-classifier approach for fall detection.

I Putu Edy Suardiyana Putra. Presented as a research poster in the Coventry

University Research Symposium, 2014.

A Cascade- Classifier Approach for Fall Detection

I Putu Edy Suardiyana Putra, James Brusey, and Elena Gaura. In Proceedings

of the 5th EAI International Conference on Wireless Mobile Communication and

Healthcare (MOBIHEALTH’15), Akram Alomainy, William Whittow, Yang Hao,

Konstantina S. Nikita, and Clive G. Parini (Eds.). ICST (Institute for Computer

Sciences, Social-Informatics and Telecom- munications Engineering), ICST, Brus-

sels, Belgium, Belgium, 94-99.
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An intelligent system for fall detection using wearable sensors: issues

and challenges

I Putu Edy Suardiyana Putra, James Brusey, and Elena Gaura. In Proceedings

of the 10th International Student Conference on Advanced Science and Technology

(ICAST) 2015, Surabaya, Indonesia, pp 93-94.

Genetic algorithm-based feature selection technique for fall detection

using multi-placement wearable sensors

I Putu Edy Suardiyana Putra and Rein Vesilo. In Proceedings of the 12th Interna-

tional conference on Body Area Networks 2017.

Window-size impact on detection rate of wearable sensor-based fall

detection using supervised machine learning

I Putu Edy Suardiyana Putra and Rein Vesilo. In proceedings of the 1st IEEE Life

Sciences Conference 2017.

B.0.2 Journal publication

An event-triggered machine learning approach for fall detection using

wearable sensors

I Putu Edy Suardiyana Putra, James Brusey, Elena Gaura, and Rein Vesilo. Pub-

lished in MDPI Sensors Journal.

B.0.3 Presentations

• The inaugural Macquarie University research minds showcase (2016)

– Macquarie University, Sydney, Australia.
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• Sydney research bazar (ResBaz 2017) – University of Technology Sydney,

Sydney, Australia.

B.0.4 Awards

• Macquarie University Postgraduate Research Funding (PGRF 2017)

– Macquarie University, Sydney, Australia.
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Appendix C

Ethical approval

The work in this thesis has been approved through Coventry Universities ethical

approval process. The ethical approvals follows:
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Record of Approval 
Principal Investigator 
 
I request an ethics peer review and confirm that I have answered all relevant 
questions in this checklist honestly. X 

I confirm that I will carry out the project in the ways described in this checklist.  I will 
immediately suspend research and request new ethical approval if the project 
subsequently changes the information I have given in this checklist. 

X 

I confirm that I, and all members of my research team (if any), have read and agreed 
to abide by the Code of Research Ethics issued by the relevant national learned 
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I confirm that I, and all members of my research team (if any), have read and agreed 
to abide by the University’s Research Ethics, Governance and Integrity Framework. X 
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Student’s Supervisor (if applicable) 
I have read this checklist and confirm that it covers all the ethical issues raised by this project 
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Name: James Brusey .............................................................................................................  
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Project Information 
 

Project Ref P28811 

Full name I Putra 
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Supervisor James Brusey 

Module Code ECAAE 

EFAAF Number  

Project title Fall Detection Algorithm Development 

Date(s) 27/05/2015 - 31/12/2015 
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Project Summary 
This research will develop an automated fall detection system for the elderly. A number of 
such systems have been proposed, with claims of fall detection accuracy of over 90% based 
on accelerometers and gyroscopes. However, most such fall detection algorithms have been 
developed based on observational analysis of the data gathered, leading to thresholds 
setting for fall/non-fall situations. Whilst the fall detection accuracies reported in prior studies 
appear to be high, there is a little evidence that the threshold based methods proposed 
generalise well with different subjects and different data gathering strategies or experimental 
scenarios. Moreover, some studies show that postural sway become an pre-impact indicator. 
However, there are few studies that investigate the use of wearable sensors to detect 
postural sway. Thus, this research will develop machine learning algorithms to discriminate 
between falls, postural sway, and Activities of Daily Living (ADL). Secondary dataset will be 
used in the development process. 

 
Names of Co-Investigators and their 
organisational affiliation (place of 
study/employer) 

 

Is the project self-funded? YES 

Who is funding the project? Coventry University 
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Are you required to use a Professional 
Code of Ethical Practice appropriate to 
your discipline? 

NO 

Have you read the Code? NO 
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Project Details 
 

What is the purpose of the project? The purpose of this project is to design a 
system that uses machine learning 
algorithms to discriminate between falls 
and ADL. Using acceleration and 
gyroscopic sensors, the movement, 
rotation and orientation of the body can be 
measured. A secondary dataset will be 
used for training and testing the algorithm. 

What are the planned or desired outcomes? A machine learning based fall detection 
algorithms will be developed and 
evaluated for both offline and real-time 
applications. 

Explain your research design The research will be started by analysing 
the raw data from the dataset using some 
softwares. Then, the information from that 
analysis will be used for developing the 
machine learning algorithm. The 
developed algorithm will be tested through 
some simulations. 

Outline the principal methods you will use The method that will be used in this 
research is:  

 

1: Review literatures to keep abreast of 
state of the art. 

2: Analysis the raw data from dataset. 

3: Develop a machine learning algorithm 
for fall detection. 

4: Run some simulations for testing. 

5: Analyse the result and write a report 
about it. 

 

Are you proposing to use an external research instrument, validated scale or follow 
a published research method? 

NO 

If yes, please give details of what you are using  

Will your research involve consulting individuals who support, or literature, 
websites or similar material which advocates, any of the following: terrorism, armed 
struggles, or political, religious or other forms of activism considered illegal under 
UK law? 

NO 

Are you dealing with Secondary Data? (e.g. sourcing info from websites, historical 
documents) 

YES 

Are you dealing with Primary Data involving people? (e.g. interviews, 
questionnaires, observations) 

NO 

Are you dealing with personal or sensitive data? YES 
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campus work or other activities which pose significant risks to researchers or 
participants) 

YES 

Are there any other ethical issues or risks of harm raised by the study that have not 
been covered by previous questions? 

NO 

If yes, please give further details  

 

 



Fall Detection Algorithm Development P28811 

I Putra Page 5 of 8 31 July 2015 

External Ethical Review 
 

Question Yes No 
1 Will this study be submitted for ethical review to an external 

organisation? 

(e.g. Another University, Social Care, National Health Service, Ministry 
of Defence, Police Service and Probation Office) 

 X 

 If YES, name of external organisation  

2 Will this study be reviewed using the IRAS system?  X 

3 Has this study previously been reviewed by an external organisation?  X 
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Risk of harm, potential harm and disclosure of harm 

 

Question Yes No 
1 Is there any significant risk that the study may lead to physical harm to 

participants or researchers? 
 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

2 Is there any significant risk that the study may lead to psychological or 
emotional distress to participants? 

 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

3 Is there any risk that the study may lead to psychological or emotional 
distress to researchers? 

 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

4 Is there any risk that your study may lead or result in harm to the 
reputation of participants, researchers, or their employees, or any 
associated persons or organisations? 

 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

5 Is there a risk that the study will lead to participants to disclose 
evidence of previous criminal offences, or their intention to commit 
criminal offences? 

 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

6 Is there a risk that the study will lead participants to disclose evidence 
that children or vulnerable adults are being harmed, or at risk or 
harm? 

 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

7 Is there a risk that the study will lead participants to disclose evidence 
of serious risk of other types of harm? 

 X 

 If YES, please explain how you will take 
steps to reduce or address those risks 

 

8 Are you aware of the CU Disclosure protocol? X  
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Question Yes No 
1 Will any part of your study involve collecting data by means of 

electronic media (e.g. the Internet, e-mail, Facebook, Twitter, online 
forums, etc)? 

 X 

 If YES, please explain how you will obtain 
permission to collect data by this means 

 

2 Is there a possibility that the study will encourage children under 18 to 
access inappropriate websites, or correspond with people who pose 
risk of harm? 

 X 

 If YES, please explain further  

3 Will the study incur any other risks that arise specifically from the use 
of electronic media? 

 X 

 If YES, please explain further  

4 Will you be using survey collection software (e.g. BoS, Filemaker)?  X 

 If YES, please explain which software  

5 Have you taken necessary precautions for secure data management, 
in accordance with data protection and CU Policy? 

X  

 If NO, please explain why not  
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Before you begin

Human Ethics
Ethics application type*

Human

MQ Application ID

5201600506

I have read and understood each of the guidelines below.*

No

Yes

This online form applies to all human research ethics applications requiring submission to Macquarie University (MQ). As a result, some questions, pages and sections will open or
close based on your answers as you complete the form.

Further information is available in the user guide for human ethics applicants. For all other forms and templates, please visit the Forms page at the MQ Human Ethics website.

Please familiarise yourself with the National Statement on Ethical Conduct in Human Research (2007) (Updated March 2014) as well as the Australian Code for the
Responsible Conduct of Research (2007) (if you have not already done so).

Please consider allowing popup windows for this site before continuing with your application.

If you are unfamiliar with any acronyms or abbreviations in this form, simply roll your mouse onto the text to reveal the full version or access the MQ Glossary.

If you run into any problems while completing this application, please try using another browser before contacting MQ for help.

For all other technical issues, please contact:
(web) OneHelp (MQ's IT Help Desk)
(email) help@mq.edu.au
(phone) +61 2 9850 4357 (HELP)

For issues specific to the MQ ethics application process:
(web) Human Ethics FAQs
(email) ethics.secretariat@mq.edu.au
(phone) +61 2 9850 4459.

Before attempting to submit your application, please complete all mandatory questions (marked with a *) and ensure that you have not made any conflicting checklist responses
(e.g. selecting 'None of the above' and 'All of the above' at the same time).

You can submit your application at any time, however applications will not be processed between November 30 and February 1 of each year. If this form has not been submitted
within six (6) weeks of the creation date (and you have not submitted an appropriate extension request), the project will be considered withdrawn and you will be required to
resubmit the project as a new application.

Once ethics approval has been confirmed (i.e. via an approval letter attached to this application form), the Principal Investigator (or Coordinating Investigator) is required to inform
MQ if their approved research project is discontinued before the expected date of completion, and to give reasons for this change. This is in accordance with best practice models
of ethical review (see National Statement items 5.5.6 to 5.5.8). Please refer to the relevant section in the user guide for human ethics applicants for further information on
this process.

Click the green arrows (at the top and bottom of the screen) to move throughout the application.

1. Key aspects

Title
Department of application creator
This field is automatically populated and represents the department associated with the initial applicant (or creator) of this form.*

Engineering

1.1 What is the formal title of this research proposal?*

Human activity recognition and fall detection using wearable sensors

1.1.1 Abbreviated title (if applicable)

This question is not answered.

1.2 Has this proposal been previously submitted to, or previously approved by, a Macquarie University HREC?*

Yes

No
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1.3 What is the main purpose of this research?*

Staff research

Student research

1.3.1 Please indicate the level of study being undertaken by the student(s).*

Undergraduate

Honours

Postgraduate

1.3.2p Which of the following study options are relevant to the student(s) involved?*

Doctor of Philosophy (PhD)

Other doctoral degree(s)

Master of Philosophy (MPhil)

Master of Research (MRes)

Masters by coursework

Other postgraduate option(s)

2. Research personnel

Personnel details
To begin adding personnel:

Place the cursor in the textbox and type the MQ OneID (or full name) that you wish to search for
Click on the magnifying glass to begin the search
(If applicable) select the appropriate person from the list provided or, if they do not appear in the list, please select "Add External Person"
Respond to all of the mandatory questions/fields in that person's record
Click on the green tick to add the record to your personnel list (and repeat the process as necessary).

2.1 Personnel table (please open, complete and save each record)*

1 Full name Mr I Putu Edy Suardiyana Putra

Qualifications and relevant experience

Qualifications:  Bachelor degree in Computer Science Major  Master degree in Computer
Science Major  Currently I am pursuing my PhD under Cotutelle agreement between
Coventry University, United Kingdom and Macquarie University, Australia. Experience:  I
was a junior lecture at Faculty of Computer Science, Universitas Indonesia from 2013
2014.  I was a junior researcher at Faculty of Computer Science, Universitas Indonesia
from 20132014.  I was a project leader for a project called mSHAKERS. This project
worked on creating a smart system to detect an earthquake using smartphone.  I have
been working on wearable sensors since 2014. I started my work in wearable sensor
technology at Cogent Lab, Coventry University, United Kingdom.

Position Student

Primary contact? Yes

Type Student

Given name (in database) I Putu Edy Suardiyana

Surname (in database) Putra

Current email address (in database)

Dept/affiliation 4321

Faculty 4000

Primary contact (selected in Personnel table)
This field will be completed by the system when a primary contact has been assigned in question 2.1.

Mr I Putu Edy Suardiyana Putra

Before progressing to the next page, please ensure you have opened each research personnel record and completed all of the mandatory fields appropriately.

3. Ethical review

Purpose of review
3.1 Regarding the ethical oversight to be provided by MQ, at which locations will the research be conducted? Please select all that apply.*
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Not applicable  external review only

Macquarie University (including MGSM, City Campus, etc.)

At participants' place of work

Public schools

Private/independent schools

Other locations in Australia

Overseas (i.e. not in Australia)

Other universities in Australia (one or more)

Macquarie University Hospital

Other private hospitals in Australia (one or more)

Private health practices/clinics in Australia (one or more)

Public hospitals in Australia (one or more)

Other public health/justice health sites in Australia (one or more)

Australian Department of Defence sites (one or more)

In participants' homes

Personnel (other)
3.1.3 Is it intended that other people, not yet known, will play a specified role in the conduct of this research project?*

Yes

No

3.1.4 Do the research personnel (including any students) or others involved in any aspect of this research project require any additional training in order to undertake this
research?*

Yes

No

External committees
3.2 Has this research proposal been submitted to any external HRECs?*

Yes

No

3.2.4.1a Please provide the research start date for which you are asking a Macquarie University HREC to provide ethical review.
(dd/mm/yyyy)*

01/09/2016

3.2.4.1b Please provide the research end date for which you are asking a Macquarie University HREC to provide ethical review.
(dd/mm/yyyy)*

01/08/2017

3.3 Do you intend to submit this research proposal (or some variation of it) to any other HRECs?*

Yes

No

4. Funding & support

Funding sources
4.1 Which of the following characterises the type(s) of funding being utilised by this research proposal?*

Grant(s)  External competitive

Grant(s)  Internal competitive

Sponsor(s)

Department/Faculty funding

Employer/organisation funding

Still seeking funding

No funding

4.2 Will the project be supported in other ways? e.g. inkind support or equipment by an external party*

Yes

No

Other interests
4.8 Have conditions been imposed upon the use, publication or ownership of the results including the review of data, manuscript draft or scientific presentation by any party?*
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Yes

No

Conflicts of interest
The NHMRC defines conflict of interest (in a research context) as a situation:

"where a person's individual interests or responsibilities have the potential to influence the carrying out of his or her institutional role or professional obligations in research;
or
where an institution's interests or responsibilities have the potential to influence the carrying out of its research obligations."

4.9a In undertaking this research at MQ, do any conflict of interest issues arise?*

Yes

No

5. Nature of research

Summary
5.1 Be sure to save your content regularly (using the "Save" icon) to avoid losing any information  the system will timeout after one (1) hour of inactivity.

Please describe the project using lay terms, including:

aims of the project
hypothesis/research question
research methods, and
research plan.

Please provide references as evidence that the study has a clear rationale.

Please refrain from using abbreviations and acronyms without providing the full version in the first instance (e.g. 'National Health and Medical Research Council (NHMRC)'
subsequently becomes 'NHMRC').*

Aims : Falls are a serious problem in Australia where around 30% of adults over 65 experiencing at least one fall per year, according to NSW
Health 2010. Falls account for 40% of injuryrelated deaths and 1% of total deaths in this age group. This is set to increase as Australia¿s
population ages with the proportion of people aged over 65 predicted to increase from 14% (3 million people) in 2010 to 23% (8.1 million
people) in 2050. As the number of elderly is increasing while the number of health care services is limited, the need of a monitoring system,
especially fall detection system, is an urgent matter to reduce the loads of healthcare services provider without sacrificing the quality of the
services. 

Traditionally, medical alert systems in a shape of pendant or button that must be pressed by elderly to get the emergency assistance were used.
However, these systems are ineffective under certain circumstances (e.g. fainted, unconscious, paralyzed, etc.) when the person are unable to
press the button. The current systems are more advance as they are equipped with technology that can automatically detect falls and send
emergency alerts. Nevertheless, these advanced systems usually produce a high number of false alarms. Theses issues result in the need of more
reliable automated fall detection systems. 

The aim of this project is to design and develop InSuit (Intelligent suit and assistive technology): a wearable sensorbased system for activity
recognition and emergency assistance (i.e. during critical events such as falling).The proposed technology consists of wearable wireless sensors
combined with an artificial intelligence algorithm. Considering the accuracy and convenience of the subject, the wearable sensors will be
integrated into the daily attires, i.e., shirt, belt, and pants. The sensors will detect the activity of the subjects, send it wirelessly to be recognised
by the artificial intelligence algorithm on the server accurately. 

Hypothesis/ Research questions: 
1. Can the proposed system distinguish between fall and activities of daily living? 
2. What is the best placement of the sensors to attain the optimum accuracy for fall detection? 
3. What is the minimum number of sensors needed to get the optimum accuracy for fall detection? 

Research method: This study is a pilot study for developing a smart fall detection system using wearable sensors. This research uses experimental
design. The experiment will involve several human subjects to wear the clothes equipped with the sensors. 

Research plan: The experiment is conducted in two parts. The first part will involve several subjects to wear the clothes (shirt, pants, and belt)
that have equipped with the sensors. Then, the subject will be asked to do their daily activities as natural as possible. The researcher will monitor
the subject from distance to make sure there is no hardware/software failure during the session. The second part will involve several subjects to
stage some falls on the soft mattress/ air bed. The subject will be requested to wear the clothes (shirt, pants, and belt) and they are required
to perform several artificial falls including: fall forward, fall backward, fall on the right side, and fall on the left side on a soft mattress/ air bed.
During this session, the subjects will be fully monitored by the researcher. The participants also will be equipped with head, wrist, elbow, and
knee protectors during this session.Some additional information will be provided in the attachment.

5.2 Please describe the participation details using lay terms, including:

what participation will involve
the projected number, sex and age range of participants, and
any inclusion and exclusion criteria.

*

For the purpose of this study, 5 people of young and healthy participants from [faculty of science engineering] Macquarie University will be
recruited with the following criteria: 
 He/she must be an adult (2030 years old) with no physical impairment. 
 He/she must be able to independently provide informed consent

Type of research
5.3 The nature of this project is most appropriately described as involving: (please select all that apply)*
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Questionnaires, surveys, interviews and/or focus groups

Film, audio and/or video

Exposure to ionising radiation

Use of medical imaging/equipment

Gametes or use/creation of embryos

Other

Participant observation

Databanks

A clinical trial

Clinical research

Collection/use of human biospecimens

Genetic testing/research

A cellular therapy

Workplace practices/relationships

5.4 This question asks whether the true purpose of the research will be concealed from the participants to any extent.

Does the research with participants involve:*

Limited disclosure

Active concealment

Planned deception

None of the above

Obtaining information
5.5 What method(s) will be used to obtain participants' consent?*

Written consent (signed Participant Information and Consent Form)

Consent via return email

Online consent (selecting relevant questionnaire response option)

Oral consent (e.g. facetoface, telephone or audio/visual recording)

Conduct implying consent (e.g. return of a survey)

None, I will not be obtaining consent

5.5.1 Please provide further details about how these methods will be used to inform participants (or those deciding for them) about the nature of the project.*

At first the participant information sheet will be given to the participant to read. Then the researcher will also explain the experiment and it's
purpose. The participant who is willing to be involved in the study is required to inform the researcher at iputuedy
suardiyana.putra@students.mq.edu.au or at +61 (0) 410 254 489. Then, he/she is requested to sign the Consent Form. The signed consent
form can be given to the researcher via email or the participant can give it directly.

5.5.2 Please indicate whether the source of the information about participants which will be used in this research project will involve:*

Collection directly from the participant

Collection from another person about the participant

Use or disclosure of information by an agency/authority/organisation other than your own

Use of information collected previously by you/your organisation for a different purpose/proposal

Benefits & risks
5.7 Benefits of research may include, for example, gains in knowledge, insight and understanding, improved social welfare and individual wellbeing, and gains in skill or expertise for

individual researchers, teams or institutions.

What expected benefits (if any) will this research have for the wider community?*

Mainly the elderly people will be benefited. This system can be implemented in agecare, nursing homes, retirement villages where few staffs are
available to take care of many elderly people. This system will alert the staffs automatically if any elderly person needs help when they fall
unattended.

5.8 What expected benefits (if any) will this research have for participants?*

The expected benefits for the participants is to be able to try the prototype and hence to gain an insight on the emerging wearable technology
and how it works. Furthermore, another advantage for the participants is the opportunity in participating in the development of future
technology of the health monitoring system.

5.9 A risk is a potential for harm, discomfort or inconvenience and involves:

the likelihood that a harm (or discomfort or inconvenience) will occur, and
the severity of the harm, including its consequences.

Are there any risks to participants as a result of participation in this research project?*

Yes

No
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5.10 Are there any other risks involved in this research? e.g. to the research team, the institution/site, others, etc.*

Yes

No

5.10.1 You answered "Yes" to question 5.7p, 5.9 and/or 5.10.

What are these risks?*

Participants will be required to perform several falls including forward fall, backward fall, leftside fall, and rightside fall. There is minimal risk of
injury associated with these activities.

5.10.2 Please explain how these risks will be minimised and managed.*

To minimise the risk of being injured during the session, the participants will be required to perform falls on the soft mattress/air bed to reduce
the impact between the surface and the participants' body. Furthermore, the participants will be required to wear head, wrist, elbow, and knee
protectors to avoid physical harms. The risk of physical discomfort will be managed by close monitoring of the participant during the experiment.
The participants are encourage to inform the researcher whenever they feel discomfort or pain. The participants are also allowed to withdraw
their participation without any consequence.

5.10.3 Please explain how these risks will be monitored.*

During the falls experiment, all participants will be monitored closely by the researcher. If any issues arise, the session will be stopped immediately.

5.10.4 Please explain how any harm to participants  resulting from these risks  will be reported.*

Any harms to the participants will be reported directly to to our collaborators from Macquarie Hospital: Ruth Green (she is nursing coordinator for
orthopaedics and Bone & Joint programs at Macquarie University Hospital) and A/Prof. Desmond Bokor ( Associate Professor in Orthopaedic
Surgery).

Monitoring
5.11 Please indicate who will be primarily responsible for dealing with any unexpected events (e.g. serious adverse events, etc.).*

Research personnel (from this application)

Other

5.11.1 Which of the research personnel will be primarily responsible for dealing with any unexpected events?*

Mr I Putu Edy Suardiyana Putra

5.11.3 Please provide details of this person's experience in managing risks and adverse events.*

The researcher has an experience about conducting research in activity recognition study using wearable sensors at Cogent Labs, Coventry
University, UK. The researcher also will contact A/Prof. Desmond John Bokor and Miss Ruth Green from Macquarie University Hospital when the
issues arise. Ruth Green is nursing coordinator for orthopaedics and Bone & Joint programs at Macquarie University Hospital and Desmond John
Bokor is Associate Professor in Orthopaedic Surgery and the head of Orthopaedics and Musculoskeletal Medicine at The Australian School of
Advanced Medicine, Macquarie University. Both are health and medical specialists who have experiences in handling fallrelated injuries.

5.12 How will the researchers monitor the progress and conduct of the project?*

The researcher will monitor the participants during the sessions. For the first session, the researcher will monitor the participants from distance to
avoid any interferences that are caused by the monitoring activities. For the second session, the researcher will closely monitor the participants.
All incidents will be reported by A/Prof. Rein (Chief Investigator) using online form at :
http://staff.mq.edu.au/human_resources/health_and_safety/ . Any serious injuries will be reported to HREC using the appropriate form within 72
hours.

6. Participant Information and Consent

Participant sample
6.1 Please indicate which of the following 'types of research participants' are likely to be included in your research proposal due to the project design.*
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Women who are pregnant and/or the human foetus

Children and/or young people (i.e. under 18 years)

Refugees or asylum seekers

Members of the Police Force

Members of the Defence Force

People highlydependent on medical care

People with a cognitive impairment, an intellectual disability or a mental illness

People who may be involved in illegal activity

Aboriginal or Torres Strait Islanders

People residing outside Australia

People whose primary language is not English

None of the above

Wards of state

MQ students, MQ staff, MUH staff and/or MUH patients

People in teacherstudent relationships

People in employeremployee relationships

People with chronic conditions/disabilities and their carers

Healthcare professionals and their patients/clients

People in other professionalclient relationships

Prisoners or detainees

6.2 What is the expected maximum number of total participants to be involved in this project at all sites under review by MQ? If you cannot provide an exact number, an
approximate number will suffice.*

5.00

6.2.1a What is the age range of participants involved in this study?

Lower age limit (in years)*

20.00

6.2.1b Upper age limit (in years)*

30.00

6.2.2 Are there any other relevant characteristics of the participants involved in this study?*

Yes

No

Recruitment methods
6.3 Who will be involved in the recruitment of participants?*

Research personnel (from this application)

Organisation(s)

Other

6.3.1 Which of the research personnel will be involved in participant recruitment?*

Mr I Putu Edy Suardiyana Putra

6.3.1.1 Does recruitment involve a direct personal approach from the research personnel to the potential participants?*

Yes

No

6.3.1.2 Please list the precautions that will be taken to minimise any real or perceived pressure on individuals to enrol.*

An email will be sent to a faculty mailing list to explain the details of the study to candidates. Students who are willing to voluntarily participate
are advised to contact the researcher via email. Only the students who are willing to participate will be involved with the experiment. The
participants will be requested to read the participant information sheet before signing the consent form. There is no consequence in rejecting
the request for being the participant in this study. There is no consequence in withdrawing the participation if the participant feels discomfort.

Recruitment approach
6.3.4 Does recruitment involve the circulation, publication and/or use of:*
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Advertisement or flyer

Email or letter

Social media

Telephone call

Website

None of the above

6.3.4.2 Please indicate how often/for how long it will be published/distributed.*

The email will be sent once every 3 days to the faculty mailing list.

6.3.5 Please describe how and where the initial contact will be made with potential participants.*

The recruitment will be done by asking the candidates by person. The researcher will come to the candidates by person and explaining the
experiment's procedure and asking their willingness to participate in this study. The participants will also be given the researcher's contact details
(email and phone number) if it is needed.

6.3.6 Will participants be involved in any related studies?*

Yes

No

Consent methods
6.4 Will consent be obtained for all participants involved in the research?

Where relevant, this includes consent from parents of children and/or young people, from legal guardians, and from people responsible for participants*

Yes

No

6.5 If a participant (or person on behalf of a participant) chooses not to participate or decides to withdraw from the research, are there specific consequences they should be
aware of prior to making these decisions?*

Yes

No

6.6 Is there a possibility that individual participants may be identifiable by others and thereby be exposed to risks?*

Yes

No

Consent specifics
6.7 Do you intend to share the data/tissue collected as part of this research project for any future HRECapproved research?

i.e. future research projects that may be conducted by other researchers and/or personnel from this project*

Yes

No

6.7.1 What type of consent will you be obtaining?*

Extended (use of
data/biospecimens in extensions of
this original project/similar future
research)

6.7.1.1 Do you wish to deposit the original data/biospecimens collected as part of this research project into a databank/biobank?*

Yes

No

6.8 Will participants receive any financial or other benefits as a result of participation?*

Yes

No

7. Participant specifics

Participant types
7.5.1 You indicated that your research will involve participants who are in dependent or unequal relationships (as selected on the "Participant sample" page).

For more details, refer to Chapter 4.3 of the National Statement on Ethical Conduct in Human Research (People in dependent or unequal relationships).

Regarding these participants, please describe the steps that will be taken to ensure that each participant's consent and participation in the project is free and voluntary.*

The participant will be informed that their participation in this project is voluntary and free before they sign the consent form.
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7.5.2 Will there be any specific risks to these participants as a result of their dependent/unequal relationship(s)?*

Yes

No

8. Privacy & confidentiality

Privacy and access
8.1.1 Please describe the information that will be collected directly from participants.*

The sensor readings will be collected during the session. Some personal information (such as: age, weight, and height) will be collected as well. A
camera will be used to record the fall activities.

8.1.1.1 The information collected by the research team about participants will be in the following form(s):*

Individuallyidentifiable

Reidentifiable

Nonidentifiable

8.1.1.2 Please explain why this information is being collected in individuallyidentifiable or reidentifiable form.*

The personal information from the participant will help the researcher to validate the experiment result.

8.1.5 As this project will be making information available for future HRECapproved research (as indicated in "Consent specifics"), please indicate the form(s) in which this
participant information will be shared.*

Individually identifiable

Reidentifiable

Nonidentifiable

8.2 Please indicate which of the research personnel who  for the purposes of this research  will have access to the information or authority to use the information.

Mr I Putu Edy Suardiyana Putra

8.2.1 Are there any others (e.g. student supervisors, research monitors, pharmaceutical company monitors) who  for the purposes of this research  will have authority to use or
have access to the information.*

Yes

No

8.2.1.1 Please name these other people.*

A/Prof. Rein Vesilo, A/Prof. Desmond John Bokor, and Ruth Green

8.2.2 Please describe the nature of the access or use for each person.*

A/Prof. Rein Vesilo is the supervisor for this study. A/Prof. Desmond John Bokor and Ruth Green are the advisors of this project.

Storage & disposal
8.3.1 In what formats will the information be stored during the research project? (e.g. paper copy, computer file on USB, audio device, etc.)*

The data from sensor readings will be stored in digital format and will be stored on computer file. The consent form and participant profile's
information (age, height, weight, and fall history) will be stored on paper copy.

8.3.2 Please provide details about where and how the hard and/or electronic copies of data will be securely stored during the project (i.e. to ensure the security of information
from misuse, loss, or unauthorised access).*

The data will be stored on the researcher's computer with password protected. The paper copybased information will be stored in a
researcher's drawer and the only key is held by the researcher.

8.3.3 Please provide details about where and how the hard and/or electronic copies of data will be securely stored after completion of the project (i.e. to ensure the security of
information from misuse, loss, or unauthorised access).*

The paper copybased information will be converted to digital form. Then, the digitised participant personal information will be stored together
with the data from sensor readings. Both information will be stored on researcher's personal computer with password protected.

8.4.1 As per the Australian Code for the Responsible Conduct of Research, are you planning to retain the research data for the minimum period of five (5) years from the date
of publication (or longer)?*

Yes

No

8.4.1.1 For how long will the information be stored after the completion of the project and why has this period been chosen?*

5 years. The data is very valuable for further research in fall detection.

8.4.2 Are there plans to formally dispose of the research data (in all forms)?*
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Yes

No

Reporting results
8.5.1 Is it intended that the results of individual participants from the research will be reported to those participants?*

Yes

No

8.5.1.2a Please indicate which of the research personnel will be responsible for communicating the project results to participants.*

Mr I Putu Edy Suardiyana Putra

8.5.1.3 Please explain why the results will not be reported to participants.*

The aims of this study is to develop the accurate and reliable system to monitoring elderly. Therefore, reporting the results to the participants,
who are young and healthy, is inappropriate.

8.5.2 Is the research likely to produce information of personal significance to individual participants?*

Yes

No

8.5.3 As this research will be obtaining "unspecified" or "extended" consent from participants, will you be recording individual participants' results with their personal records?*

Yes

No

8.5.4 Will the results relating to specific participants be reported to anyone other than those participants?*

Yes

No

Disseminating results
8.6.1 Is the research likely to reveal a significant risk to the health/wellbeing of persons other than the participant? e.g. family members, colleagues, etc.*

Yes

No

8.6.2 Is there a risk that the dissemination of results could cause harm of any kind to individual participants or to their communities?*

Yes

No

8.6.3 How is it intended to disseminate the results of the research? e.g. report, publication, thesis, etc.*

The results will be disseminated on the PhD thesis, relevant conference papers, and relevant journal papers.

8.6.4 Will the confidentiality of participants and their data be protected in the dissemination of research results?*

Yes

No

8.6.4.1 Please explain how confidentiality of participants and their data will be protected in the dissemination of research results.*

The data will be presented anonymously. If there is pictures/videos of participant, the face of her/him will be blurred using computer application.

Attachments

Documentation
Your application is nearly complete. Please attach all the necessary documents below and accept the terms of submission on the next page.

To begin attaching items:

1.  click Add New Document
2.  place the cursor in the textbox and type the name of the attachment (as listed above)
3.  click on the green tick to confirm the name
4.  click on the Soft copy icon to open the browsing window and select a file
5.  press OK to attach (and repeat the process as necessary).

10.1 Attachments table (limit = 40MB per attachment)

This question is not answered.
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Based on your responses, you will need to attach the following items on this page as a minimum requirement:

l. Recruitment information/invitation(s)*

Attached Not attached
This question is not answered.

m. Participant and Consent information (e.g. PICF on MQ letterhead)*

Attached Not attached

o. Statement (in consent information) regarding future use of data/biospecimens and the form(s) in which it will be shared (e.g. nonidentifiable)*

Attached Not attached

10.2 Is there anything other than the items listed above that the applicants wish to attach to this application?

Yes No

10.2.1 Please explain the nature of these additional attachments.*

The experimental design is attached as well. This documents contains the information about the experimental design of this study in more
details.

Signoff

Metadata
In order to leverage publicallyfunded research and sharing of results (where appropriate), the Australian National Data Service (ANDS) is encouraging the discovery, access and
reuse of research data.

MQ is participating in this process by collecting metadata associated with projects completed by MQ researchers (i.e. descriptions of datasets collected through ethicallyapproved
research projects).

This information will, ultimately, be forwarded to Research Data Australia (RDA), where researchers will be able to search for a description of your dataset among many other
datasets currently available to be shared. Click here to see some examples of MQ datasets/collections already described in RDA.

For more information, please visit the Researcher toolkit page on the Research Office website.

11.1m Do you consent to being contacted by MQ's ResearchOnline staff at the conclusion of your research to discuss sharing a description of your dataset (for
potential use in future research projects)?*

Yes

Investigators
Prior to submission, students should consult with their supervisor(s).

Similarly, all other internal applicants are strongly encouraged to seek feedback on their application from the relevant Research Ethics Advisor prior to
submission  please refer to the MQ Human Ethics website for your relevant contact.

11.1 This question relates to all research personnel listed on this application.

Please declare any conflict of interest that is likely to occur as a result of the signoff and ethical review process by indicating which of the following statements apply to you:
(please select all that apply)*

I am a Head of Department or other signoff party

I am/have been supervised by my Head of Department or other signoff party

I am related to/in a spousal relationship with the relevant signoff party

I am a member of a MQ HREC or Faculty Ethics Subcommittee

I am related to/in a spousal relationship with a member of the relevant HREC/Subcommittee

I am/have been a supervisor for a member of the relevant HREC/Subcommittee

I am/have been supervised by a member of the relevant HREC/Subcommittee

Other (not listed above)

I foresee no potential conflict of interest in submitting this research proposal to MQ

11.2 Are there any further ethical considerations that you wish to raise? (optional)

Yes

No

11.3 Signoff table (please open, complete and save your own record)*

This question is not answered.

Once the signoff process has been completed by each investigator in the list above, please click the "Save" icon and proceed to the "Action" tab on the left
hand side of the screen for further options.
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Dear Associate Professor  

Reference No: 5201600506 
 
Title:   Human activity recognition and fall detection using wearable sensors 
 
Thank you for submitting the above application for ethical and scientific review. Your 
application was considered by the Macquarie University Human Research Ethics 
Committee (HREC (Medical Sciences)). 
 
I am pleased to advise that ethical and scientific approval has been granted for this project 
to be conducted at:  
 

x Macquarie University 
 
This research meets the requirements set out in the National Statement on Ethical Conduct 
in Human Research (2007 – Updated May 2015) (the National Statement). 
 
 

Standard Conditions of Approval: 

1. Continuing compliance with the requirements of the National Statement, which is 
available at the following website: 
 
http://www.nhmrc.gov.au/book/national-statement-ethical-conduct-human-research  
 
2. This approval is valid for five (5) years, subject to the submission of annual reports. Please 
submit your reports on the anniversary of the approval for this protocol. 
 
3. All adverse events, including events which might affect the continued ethical and scientific 
acceptability of the project, must be reported to the HREC within 72 hours. 
 
4. Proposed changes to the protocol and associated documents must be submitted to the 
Committee for approval before implementation.  
 
It is the responsibility of the Chief investigator to retain a copy of all documentation related 
to this project and to forward a copy of this approval letter to all personnel listed on the 
project.  
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9850 4194 or by email ethics.secretariat@mq.edu.au  
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available from the Research Office website at: 
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_research_ethics  
 
The HREC (Medical Sciences) wishes you every success in your research.  
 

Yours sincerely 

 

Chair, Macquarie University Human Research Ethics Committee (Medical Sciences) 
 
 
 
This HREC is constituted and operates in accordance with the National Health and Medical 
Research Council's (NHMRC) National Statement on Ethical Conduct in Human Research 
(2007) and the CPMP/ICH Note for Guidance on Good Clinical Practice. 
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The following documentation has been reviewed and approved by the HREC (Medical 
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Macquarie University Ethics Application Form  Received 
7/9/2016 

Correspondence responding to the issues raised by 
the HREC (Medical Sciences) 

 Received 
10/10/2016  

Recruitment letter 1* 7/9/2016 

MQ Participant Information and Consent Form 
(PICF) entitled  

1.1* 10/10/2016 

Experiment Design 1* 7/9/2016 

 
*If the document has no version date listed one will be created for you. Please 
ensure the footer of these documents are updated to include this version date 
to ensure ongoing version control. 
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