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Abstract. The manufacturing industry and, for this research, the auto-
motive manufacturing industry specifically, is always on the lookout for 
opportunities to improve production throughput with a minimum of in-
vestment. Identifying these opportunities often requires the observation 
of the current production process by experts. This paper is the continu-
ation of the previous work ’Automated, Nomenclature Based Data Point 
Selection for Industrial Event Log Generation’. One of its aims is to pro-
vide strategies that can be used to pre-process an in-depth, slightly flawed 
industrial equipment log to allow for further analysis. The pre-processing 
is achieved by identifying the flaws, removing the non-value added events 
and a heuristic methodology to cluster the log into individual sequences. 
Expert knowledge then is encoded into engineering features to extend 
the log matrix and prepare it for machine learning model generation for 
identification of the complete cases. To derive value from the available 
data, the sequences are plotted into Gantt charts, and eight hypotheses 
are introduced that allow for automated annotations within this chart to 
highlight potential areas of improvement. Application of the framework 
to real life logs, obtained from stations considered bottlenecks within the 
evaluated automotive body shop, lead to the discovery of improvement 
potential between two and twelve seconds per cycle. 

Keywords: Industrial Logs Process Mining · Case Clustering · 

Introduction 

This research aims to devise an automated framework that will, provided with 
the code of the programmable logic controller (PLC), monitor the desired pro-
duction equipment and generate a Gantt chart of its actual sequence while high-
lighting areas of improvement. The proposed framework has been structured into 
three distinct approaches. 

© The Author(s) 2021 
J. Beyerer et al. (Hrsg.), Machine Learning for Cyber Physical 
Systems, Technologien für die intelligente Automation 13, 
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The first function required is automated, nomenclature based data point se-
lection and equipment log generation, as described in detail in the authors’ pre-
vious publication [1]. Here the goal is the collection of start and end timestamps 
for all motions within a production cell. The relevant tags to be monitored are, 
based on their nomenclature, extracted from the PLC program and stored within 
a SQL database. The monitoring is done with a centralized workstation utilizing 
an Open Platform Communication (OPC) server. The necessary OPC groups 
and items are automatically generated. Changes within the status of the PLC 
tags will trigger an event which logs those changes in the database. In order 
to evaluate the quality of the obtained data, a quality matrix was devised and 
applied. The evaluation showed that the records’ completeness was above 96% 
for real-life equipment data. 

The second step is machine learning based pre-processing. The obstacle to 
overcome is clustering the event log data into cases as the raw data do not con-
tain a reliable case identifier. Case clustering was achieved with the part present 
status within the station and a heuristic approach that allows for the identifica-
tion of case-related setup, load/unload and reset events. Next, five hypotheses 
were formulated to create additional features for the data set based on expert 
knowledge. After tagging the trace classes manually, six different machine learn-
ing algorithms were applied with cross-validation. More details can be found in 
paragraph 3.1. 

In chapter 3.2, an expert knowledge-based, heuristic generation of improve-
ment suggestions is introduced. The eight hypotheses postulated were imple-
mented using Python and applied to event logs of four real-life framing re-spot 
stations. A sequence chart for every style, based on the pre-processed event log 
was plotted. The issues found were automatically annotated within the same 
chart, and the findings for the four stations summed up. 

Related Works 

Plant floor systems, as described by Lee [2], were the first step towards the 
autonomous observation of manufacturing processes. They are logging critical 
parameters of the process which are used to create KPI (key points of inter-
est) charts and to highlight potential bottlenecks. Next cyber-physical systems 
started to emerge. Their goal, to create a digital clone of the real-life produc-
tion equipment, which can be used to create simulations and derive predictions, 
was also documented by Lee [3]. Jaber et al. [4] showed that predictions regard-
ing required maintenance could also be obtained by applying machine learning 
techniques to vibration sensor data. The results could help to move the time 
of preventive maintenance closer to the predicted time of failure thus realising 
additional savings. Banerjee et al. [5] propose a similar approach. Instead of us-
ing vibration sensors, which normally are not an integral part of manufacturing 
equipment, they are utilising the already available sensors for fault detection. 

Processes can not only be found in manufacturing but also for business trans-
actions. Van der Aalst [6] started at the beginning of this century the develop-
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ment of the research field of Process Mining. The aim is to discover the under-
lying process model of such business transactions based on logged transaction 
data. Hu et al. [7] realised that the proposed algorithms might also be benefi-
cial for the discovery of process models within ’flexible manufacturing systems’. 
They proclaim that the derived model not only allows for validation of the actual 
process against the design intent but also can be used for further process improve-
ments. These improvements were mainly focused upon the resources available. 
The literature review did not reveal any additional attempts to apply Process 
Mining algorithms to industrial equipment logs until 2014 when Son et al. [8] 
presented their research into discovering process models for the product flow 
from the first step of manufacturing to final shipment. Due to a lag of detailed 
data, these models, however, cannot be used to enhance the performance of the 
individual machines involved. Yahya’s research [9] was also focused on the path 
of the product through manufacturing. He noted that the granularity needs to 
be chosen and the process model customised to the analysis’ goal. Yang et al. 
[10] propose the enhancement of such high-level production data with the help 
of unstructured data like emails. Although the technical approach is presented 
in detail, it remains unclear what added benefits such approach yields. 

Farooqui et al. [11] realised that the implementation of additional code within 
industrial robot programs allow them to record more details relating to their 
work sequence. They are proposing to apply Process Mining algorithms to the 
resulting log to discover a matching process model which is helpful for mainte-
nance work and also supports decision making. Brzychczy et al. [12] also see the 
benefits of utilising low-level machine data for their research. They indicate that 
one of the significant hurdles to overcome is the grouping of activities into cases. 
According to their work, this is best achieved through knowledge-based identifi-
cation of the beginning and the end of a case. Nowaczyk et al. [13] are tapping 
into the ’wisdom of the crowd’ by evaluating groups of peers. Deviates one of 
the observed systems from the behaviour of the remaining, similar systems, it 
can be concluded that maintenance is required. 

Hypothesis 

3.1 Log Pre-Processing 

As shown in figure 1, a machine sequence can be split up into five distinct 
sections. A part being present in the machine is a signal common to all man-
ufacturing equipment. Therefore the load event must be the event just before 
the part is present. Analog the unloading activity is observed while the part no 
longer is present in the machine. In cases where a machine manufactures mul-
tiple different parts, a setup, just prior to the load, might be required. If the 
same events always happen before a load event for a given part type, then it can 
be reasoned that those activities must be setup related. Finally, some machines 
require some additional motions so that the part can be unloaded. In figure 1 
this is shown as pin 1 returning. This event has to be reset before the next part 
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is loaded. Therefore a reset event is present if the same activity can be found 
after each unload event. Identifying the five sections described above allows for 
case identification within the equipment log. 

Several hypotheses were devised that allow conclusions regarding the com-
pleteness of a case within an event log for automated production equipment. 
Within every cycle, there must be a load and an unload event. If a part is just 
passing through a station, it is even possible that those two activities are the 
only activities. Most non-robotic activities within the sequence have opposing 
motions. A typical example in figure 1 would be the closing and opening of clamp 
C01. If one of those two actions is missing, that could be an indicator for the 
logs incompleteness. Although robotic events do not have opposing motions, it 
is expected that a process follows the robots initiation and vice versa. Since log 
completeness is expected to be at a high level, it can be assumed that the most 
occurring trace class is complete. These knowledge-based rules can be used to 
annotate the log, and after manually tagging example logs, a machine learning 
model can be created which allows for the classification of the remaining cases. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

return dump 2 

advance dump 1 

skid load part 

close C01 (V1) 

close C02 (V1) 

close C03 (V2) 

init robot R01 

init robot R02 

R02 weld/repo 

robot R01 weld 

open C03 (V2) 

robot R02 weld 

open C01 (V1) 

open C02 (V1) 

return pin 1 

skid unload part 

advance pin 1 

part present 

a 

b 

c 
d e 

f 

setup load part present unload reset 
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3.2 Automated Improvement Potential Detection 

Excessive manual cycles: During production, the equipment typically is in 
automatic mode unless a problem occurs that requires manual intervention. The 
machines within an automotive body shop often are specified to provide an up-
time of 80+%. If excessive manual cycles are recorded daily, it can be concluded 
that there is a systematical problem which needs to be addressed. 

Identical units: Several pneumatic cylinders are often connected to a single 
solenoid. The grouped cylinders typically have the same bore and stroke and 
therefore should require the same time to advance and return. Setup can impact 
the synchronous movement of the units. This fact can be found in the event log. 
An example is shown in figure 1 where cylinders C01 and C02 are attached to 
the same valve, but their closing time is different. This improvement potential is 
marked in red and labelled with (a). With ΔτSe being the duration of a station 
event, ΔτSe� being the duration of an equivalent event triggered by the same 
solenoid and λτ(Seref ) the mean duration of an identical reference event, setup 
problems are present if 

ΔτSe � ΔτSe� � λτ(Seref )= ∨ ΔτSe = (1) 

Opposing motions: If a motion in one direction takes longer than into the 
opposing direction, a setup problem is present as well. A nomenclature based 
algorithm can identify which activities are opposing motions. The open events 
for C01 and C02 in figure 1 take longer than their corresponding closing events. 
Therefore the potential improvement is labelled with (e). Let ΔτSe be the du-
ration of station event Se and ΔτSe the duration of the events opposing motion 
then the setup is correct if: 

ΔτSe = ΔτSe (2) 

Double triggers: If there are programming errors, an equipment motion may 
be started, interrupted and restarted again. Such behaviour causes increased 
cycle time and is responsible for excessive mechanical wear. In the log, this 
can be identified by an event which has a start timestamp but no complete 
timestamp followed shortly after by another event for the same activity that has 
both timestamps. Since events can happen twice within a case, the detection 
algorithm has to consider that the opposing motion did not happen in between. 
If  the start  timestamp of a station event  Se  is  defined as  τs(Sen), the complete 
event as τc(Sen) and the opposing motion of that event as Sen then a double 
trigger is present if 

τs(Sen � ∅ ∧ τc ) =  ∅) = (Sen (3) 

is followed by an identical event with 
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τs(Sen+x) � ∅ ∧ τc(Sen+x) = ∅ (4)= �
as long as 

= (5)Sen+1 . . . Sen+(x−1) � Sen 

Bouncing motions: The term ’bouncing motion’ was coined for a motion that 
reaches its end position but, due to the mechanical setup, bounces back so that 
it needs to be triggered once again to arrive at the stop position. In the event 
log, this can be identified by an event with start and complete timestamps fol-
lowed shortly after by again the same event with start and complete timestamps 
without the opposing motion being recorded in between. Double triggers and 
bouncing motions manifest themselves in figure 1 similar to the opposing mo-
tion hypothesis mentioned previously (figure 1 (c)). However, the underlying 
data allow the discovery of the actual root cause. Based on above definitions a 
bouncing motion can be detected if 

τs(Sen) � ∅ ∧ τc(Sen) = ∅ (6)= �
is followed by an identical event with 

τs(Sen+x) � ∅ ∧ τc(Sen+x) = ∅ (7)= �
as long as 

= (8)Sen+1 . . . Sen+(x−1) � Sen 

Gaps: In the automotive body shop domain, there should be no period within 
a sequence, where there is no motion occurring. Considering that for this ex-
periment, a variance of  100ms within the timestamps was found, it can be 
concluded that any gap >200ms marks an area of possible improvement. Gaps 
can be caused either by programming errors or by external circumstances which 
are not recorded. A typical example of a gap is marked with the letter (d) within 
figure 1. Gaps can be detected by splitting up the timeline t of a case into bins. 
Then the number of events that fall within one such bin are counted and repre-
sented by ξt. Based on these definitions, a gap is present if 

x+200ms � 
ξt = 0  (9) 

t=x 

with x being any value between the start timestamp τs(Sei) of the incoming 
event Sei and the start timestamp τs(Seo) of the outgoing event Seo of a case. 
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Station blocked: A particular case of the above described external circum-
stances, is the station being blocked. A blockage is caused by the next station 
not being ready to receive the completed part. In that case, the event data will 
show a gap before the unload event. A blocked condition has been highlighted 
within figure 1 with the letter (f). Let Δτp(Seo) be the distance from the out-
going station even Seo to the second last event then a blocked condition exists 
if 

Δτp(Seo) > 0 (10) 

Special Event - Robot Initiation: The duration of the robot initiation pro-
cess was found to be varying substantially. During this timeframe, the robot 
receives its program number and a start signal which triggers it to move to a 
pounce position. Typically this routine takes a maximum of two seconds what 
leads to the assumption that a robot initiation lasting more than two seconds is 
suspicious. Such a situation is shown in figure 1 with the letter (b). With ΔτRinit 

being the duration of a robot initiation event a reason for suspicion is present if 

ΔτRinit > 2sec. (11) 

Evaluation 

4.1 Log Pre-Processing 

To prepare the log for further processing the activities stemming from a double 
trigger or bouncing motion event, as described in chapter 3.2 were combined by 
merging the start timestamp of the first with the end timestamp of the second 
record. Next, the first activities, along with other, incomplete log items were 
removed. Python algorithms were developed to identify the five sections defining 
a case. 

The five hypotheses introduced in section 3.1 created the basis for Python al-
gorithms that can add engineering features to an industrial log. For ’load/unload 
present’, ’station in bypass’ and ’robot initiate & process present’ a binary value 
of 0 or 1 was chosen. For the remaining features ’most occurring’ and ’opposing 
motions present’ a percentage, expressed as value between 0 and 1, was used. 
Manual tagging was performed for 500 random cases within the log available. 
Various machine learning algorithms, included in the Python scikit-learn package 
[14], were applied with cross-validation to the resulting matrix. Table 1 shows 
that a simple decision tree classifier, after tuning the hyperparameters, already 
achieves a 99% accuracy with +/-1% deviation. The associated confusion matrix, 
shown in figure 2, also exhibits no false positives. 

4.2 Automated Improvement Potential Detection 

For evaluation purposes, reasoning based algorithms for all of the above hypothe-
ses (chapter 3.2) were implemented using Python and applied to event logs of 
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Table 1. Accuracy Of Classifier Models 

accuracy 
without hyper 
parameter 
tuning 

accuracy with 
hyper param-
eter tuning 

gradient boosting 
classifier 

94% +/- 8% 99% +/- 1% 

random forest 
classifier 

93% +/- 8% 99% +/- 1% 

decision tree 93% +/- 8% 99% +/- 1% 

gaussian naive bayes 87% +/- 5% 87% +/- 5% 

support vector 
classifier 

91% +/- 8% 95% +/- 3% 

logistic regression 91% +/- 12% 95% +/- 2% 

k-nearest neighbors 90% +/- 7% 99% +/- 2% 
Fig. 2. The Confusion Matrix 

four real-life framing re-spot stations. The issues automatically discovered for 
the four stations are summed up in the table 2. 

Table 2. Evaluation Results For Four Body Shop Re-spot Stations 

station 1 station 2 station 3 station 4 

number of cycles recorded 1157 1181 1185 1184 

excessive manual cycles < 0.5% < 0.5% < 0.5% < 0.5% 

time differences for identical units 0 sec.  0.2 sec. 0.2 sec. 0 sec.  

time differences for opposing motions 1 sec.  2.3 sec. 1.2 sec. 1.9 sec. 

double triggers events (# of times) 7 (88)  13 (1033) 9 (203) 11 (2045) 

bouncing motions events (# of times) 0 2 (104) 0 0 

gaps 0.8 sec. 6.4 sec. 10.7 sec. 0.4 sec. 

station blocked 0.3 sec. 5.5 sec. 0.4 sec. 0.2 sec. 

difference typical to fastest variant 0 sec.  0 sec.  0 sec.  10 sec. 

Conclusion And Future Works 

In a typical automotive body shop, one can almost always find a few stations 
which do not meet their expected throughput. This shortcoming might be due 
to long cycle times or increased maintenance activities. These stations are hold-
ing back the output of the body shop and therefore are termed ’bottlenecks’. 
Removing those few bottlenecks can increase the output of the body shop as a 
whole. 

In this paper, hypotheses were formulated that allow for the automated gen-
eration of equipment logs and the subsequent discovery of hidden manufacturing 
potential. As proof, the prepositions were encoded and applied to real life equip-
ment logs taken from bottleneck stations within an automotive body shop. The 
insight gained was automatically marked within Gantt charts. The results pre-
sented show that there is, for the evaluated stations, an improvement potential 
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ranging from 2.1 seconds to 12.5 seconds. These findings lead to the conclusion 
that the analysis effort is worthwhile, even if it is assumed, that the current 
production process is well understood. 

It is believed that more discoveries are possible. Therefore research will con-
tinue to focus on potential information gain based on more elaborate Process 
Mining techniques initially developed for business process analysis. 
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