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Abstract 

The random drift particle swarm optimization (RDPSO) algorithm is a PSO variant inspired by the free 

electron model in metal conductors placed in an external electric field. Based on the preliminary work on 

our RDPSO algorithm, this paper makes systematical analyses and empirical studies on the algorithm. 

Firstly, the motivation of the RDPSO algorithm is presented and the design of the particle’s velocity 

equation is described in detail. Secondly, a comprehensive analysis of the algorithm is made, in order to 

provide a deep insight into how the RDPSO algorithm works. It involves a theoretical analysis and the 



simulation of the stochastic dynamical behavior of a single particle in the RDPSO algorithm. The search 

behavior of the algorithm itself is also investigated in detail, by analyzing the interaction between the 

particles. Then, some variants of the RDPSO algorithm are proposed by incorporating different random 

velocity components with different neighborhood topologies. Finally, empirical studies on the RDPSO 

algorithm are performed by using a set of benchmark functions from the CEC2005 benchmark suite. Based 

on the theoretical analysis of the particle’s behavior, two methods of controlling the algorithmic parameters 

are employed, followed by an experimental analysis on how to select the parameter values, in order to obtain 

a good overall performance of the RDPSO algorithm and its proposed variants in real-world applications. A 

further performance comparison between the RDPSO algorithms and other variants of PSO is made to prove 

the efficiency of the RDPSO algorithms. 

 

1. Introduction 

Optimization methods are essential  in machine learning and are usually employed to find the model 

parameters (Sra et al., 2011; Henning and Kiefel, 2013; Bull, 2011). Among the various optimization 

methods available, random search approaches are direct search techniques that incorporate stochastic 

strategies into the search processes to enable the algorithms to jump out of local optima with high probability, 

and they are widely used in machine learning (Bergstra and Bengio, 2012). Metaheuristic methods are an 

important class of random search techniques. They are formally defined as an iterative generation-based 

process, which guides the search by using a subordinate heuristic and  intelligently combining different 

concepts for exploring and exploiting the search space, the most popular methods in this class being the 

evolutionary algorithms (EAs) (Fortin et al., 2012; Pelikan, 2012; Fournier and Teytaud, 2011; Lu, et al., 

2011) 

Particle swarm optimization (PSO) is a metaheuristic method attributed to be originally developed by 



Kennedy and Eberhart (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995). It has been  motivated 

by bird flocking and fish schooling mechanisms, and the swarm theory in particular. Unlike EAs, PSO has 

no evolution operators such as crossover and selection. The PSO algorithm performs an optimization task by 

iteratively improving a swarm of candidate solutions with respect to an objective (fitness) function. The 

candidate solutions, called particles, move through the problem space according to simple mathematical 

formulae describing the particles’ positions and velocities. The movement of each particle is influenced by 

its own experiences, and is also guided towards the current best known position.  

During the last decade, PSO has gained increasing popularity due to its effectiveness in performing 

difficult optimization tasks. The reason why PSO is attractive is that it gets better solutions, in a faster and 

cheaper way compared to other methods, whereas has fewer parameters to adjust. It has been successfully 

used in many research and application areas (Poli, 2007; 2008; Veeramachaneni et al., 2012). The algorithm 

has also been found to be applicable in machine learning problems (Escalante et al., 2009).  

To gain insights into how the algorithm works, some researchers have theoretically analyzed the PSO 

algorithm. These analyses mainly aimed for the behavior of the individual particle in the PSO algorithm, 

which is essential to the understanding of the search mechanism of the algorithm and to the parameter 

selection (Kennedy, 1998; Ozcan, and Mohan, 1999; Clerc and Kennedy, 2002; van den Bergh, 2002; 

Eberhart and Shi, 1998; Trelea, 2003; Emara, and Fattah, 2004; Gavi and Passino, 2003; Kadirkamanathan, 

et al, 2006; Jiang, 2007; Poli, 2009; Bonyadi et al., 2014; Cleghorn and Engelbrecht, 2014). For example, 

Kennedy analysed a simplified particle behavior and demonstrated different particle trajectories for a range 

of design choices (Kennedy, 1998). Clerc and Kennedy undertook a comprehensive analysis of the particle 

trajectory and its stability properties (Clerc and Kennedy, 2002). As for the algorithm itself, Van den Bergh 

proved that the canonical PSO is not a global search algorithm, even not a local one (Van den Bergh, 2002; 

Van den Bergh and Engelbrecht, 2006; Van den Bergh and Engelbrecht, 2010), by using the convergence 



criterion provided by Solis and Wets (Solis and Wets, 1981). 

In addition to the analyses mentioned above, there has been a considerable amount of work performed in 

improving the original version of the PSO through empirical studies. The original PSO proposed in 

(Kennedy and Eberhart, 1995) appeared to have weak local search ability, due to the slow convergence 

speed of the particles. It is universally known that the tradeoff between the local search (exploitation) and 

the global search (exploration) is vital for the performance of the algorithm. As such, the original PSO needs 

to accelerate the convergence speed of the particles in order to achieve a better balance between exploitation 

and exploration. The work in this area, first carried out by Shi and Eberhart, involved introducing an inertia 

weight into the update equation for velocities, in order to control the explosion in velocity values and 

partially help accelerate the convergence of individual particles (Shi and Eberhart, 1998). Clerc proposed 

another acceleration method by adding a constriction factor in the velocity update equation, in order to 

release the restriction on the particle’s velocity during the convergence history (Clerc, 1999). The 

acceleration techniques were shown to work well, and the above two variants of PSO have laid the 

foundation for further enhancement of the PSO algorithm.  

In general, two types of neighborhood topologies are used when the PSO algorithm is implemented. One 

is known as the global best topology or global best model (essentially the star model), which is employed in 

the PSO with inertia weight (PSO-In) and the PSO with constriction factor (PSO-Co). In this topology 

model, the search of the particles is guided by the global best position as well as  their personal best 

positions. Although the algorithm with this model is able to efficiently obtain the best approximate solutions 

for many problems, some researchers argued that this model may be prone to encounter premature 

convergence when solving harder problems. If the global best particle sticks to a local or suboptimal point, it 

would mislead the other particles to move towards that point. In other words, other promising search areas 

might be missed. This had led to the investigation of other neighborhood topologies known as the local best 



(lbest) models, first studied by Eberhart and Kennedy (1995) and subsequently in depth by many other 

researchers (Suganthan, 1999; Kennedy, 1999; 2002; Liang and Suganthan, 2005; Mendes, et al., 2004; 

Parrott and Li, 2006; Bratton and Kennedy, 2007; Kennedy and Mendes, 2002; van den Bergh and 

Engelbrecht, 2004; Lane et al., 2004; Li, 2004). The objective there was to find other possible topologies to 

improve the performance of the PSO algorithm. Engelbrecht (2013) carried out a comprehensive and 

elaborate empirical comparison of the gbest PSO and lbest PSO algorithms, on a suite of 60 benchmark 

boundary constrained optimization problems of varying complexities. The statistics of their experimental 

results show that neither of the two types of algorithms can be considered to outperform the other, not even 

for specific problem classes in terms of convergence, exploration ability, and solution accuracy.  

Another way to possibly improve the PSO algorithm is to directly sample new positions during the 

search. Thus, some researchers proposed several probabilistic PSO algorithms, which simulate the particle 

trajectories by directly sampling according to a certain probability distribution (Kennedy, 2003; 2004; Sun, 

et al., 2012; Krohling, 2004; Secrest and Lamon, 2003; Richer and Blackwell, 2006; Kennedy, 2006). The 

Bare Bones PSO (BBPSO) family is a typical class of probabilistic PSO algorithms (Kennedy, 2003). In 

BBPSO, each particle does not have a velocity vector, but its new position is sampled “around” a supposedly 

good one, according to a certain probability distribution, such as the Gaussian distribution in the original 

version (Kennedy, 2003). Several other new BBPSO variants used other distributions which seem to 

generate better results (Kennedy, 2004; 2006). Recently, some researchers employed stochastic process 

models, such as Markov chains, to analyse the convergence of the Bare Bone PSO (Poli and Langdon, 2007; 

Zhang et al., 2014) 

This paper is focused on the so-called random drift particle swarm optimization (RDPSO), which is 

inspired by the free electron model in metal conductors in an external electric field (Omar, 1993). The basics 

of the original concept of the random drift model for PSO were sketched in our previous work (Sun et al., 



2010). In the limited initial version of the algorithm (Sun et al., 2010), the velocity of the particle’s drift 

motion is simply expressed by the summation of the cognition part and the social part in the velocity update 

equation of the original PSO, which is not consistent with the physical meaning of the random drift model. 

This paper is to use a more concise form for the drift velocity, which is more in line with the physical 

meaning of the model, as well as a novel strategy for determining the random velocity, and thus it presents a 

new and different version of the RDPSO algorithm. In (Sun et al., 2014a), an RDPSO version with double 

exponential distribution was validated by testing the algorithm on biochemical system identification 

problems, while in this paper, a Gaussian distribution is employed to sample the particles’ random velocities 

in the RDPSO algorithm. In (Sun et al., 2014b), this version of RDPSO, along with two improved variants, 

were applied for training Hidden Markov Models for biological multiple sequence alignment, which is an 

important machine learning problem in bioinformatics. 

This paper presents the extension of our work on the RDPSO algorithm. Its purpose is to gain an 

in-depth understanding of how the RDPSO works by making comprehensive theoretical analyses of the 

behavior of the individual particle in the RDPSO and the search behavior of the algorithm, and to propose 

four new variants of the RDPSO based on different random velocities and neighborhood topologies, which 

makes the current work very different from our previous work on the algorithm. Comprehensive empirical 

studies on the RDPSO algorithm and performance comparison with other PSO variants by using fourteen 

benchmark functions from the CEC2005 benchmark suite are also performed to verify the effectiveness of 

the proposed algorithms. 

The remainder of the paper is organized as follows. Section 2 describes the motivation and principle of 

the RDPSO algorithm. Section 3 presents the analyses of the RDPSO algorithm, and section 4 gives the four 

proposed RDPSO variants. Empirical studies on the parameter selection for the RDPSO algorithm and the 

performance comparison are provided in Section 5. Finally, the paper is concluded in Section 6. 



 

2. Random Drift Particle Swarm Optimization (RDPSO) 

2.1 Basic Definitions and Terminology for PSO 

In a PSO with M individuals, each individual is treated as a volume-less particle in the N-dimensional space, 

with the current position vector and the velocity vector of particle i ( Mi 1 ) at the nth iteration 

represented as ),,,( ,
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(pbest) position vector ),,,( ,
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nininini PPPP   at the nth iteration, which records the position giving the best 

fitness value (i.e. the objective function value) of the particle from the initialization to the current iteration. 

Besides, there is a vector ),,,( 21 N

nnnn GGGG  , known as the global best (gbest) position, recording the 

position with the best fitness value found by the whole particle swarm so far. Without loss of generality, we 

consider the following minimization problem: 
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In the basic PSO algorithm, the particle updates its velocity and position at the (n+1)th iteration according to 

the following equations:  
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for NjMi ,2,1;,2,1   , where 1c  and 2c  are known as the acceleration coefficients, and the parameters 

j

nir ,  and j

niR ,  are sequences of two different random numbers distributed uniformly on (0, 1), which is 



denoted by )1,0(~, ,, URr j

ni

j

ni . Generally, the value of j

niV ,  is restricted within the interval ],[ maxmax VV .  

 

2.2 The Motivation of the RDPSO Algorithm 

It has been  demonstrated that the convergence of the whole particle swarm may be achieved if each 

particle converges to its local focus, ),,( ,
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nininini pppp  , defined by the following coordinates (Clerc and 

Kennedy, 2002): 
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where )( ,2,1,1,
j
ni

j
ni

j
ni

j
ni Rcrcrc  , with regard to the random numbers 

j
nir ,  and 

j
niR ,  defined in equations 

(4), (6). The acceleration coefficients 1c  and 2c  in the original PSO are generally set to be equal, namely, 

21 cc  , and thus, 
j
ni,  is a sequence of random numbers uniformly distributed on (0,1). As a result, 

equation (7) can be restated as 

j
n

j
ni

j
ni

j
ni

j
ni GPp )1( ,,,,   , )1,0(~, Uj

ni .                          (8) 

In fact, as the particles are converging to their own local attractors, their current positions, pbest positions, 

local focuses and the gbest position are all converging to one point. Since nip ,  is a random point uniformly 

distributed within the hyper-rectangle with niP ,  and nG  being the two ends of its diagonal, the particle’s 

directional movement towards nip ,  makes the particle search around this hyper-rectangle and improves its 

fitness value locally. Hence, this directional movement essentially reflects the local search of the particle.  

 The motivation of the proposed RDPSO algorithm comes from the above trajectory analysis of the PSO 

and the free electron model in metal conductors placed in an external electric field (Omar, 1993). According 

to this model, the movement of an electron is the superimposition of the thermal motion, which appears to 

be a random movement, and the drift motion (i.e., the directional motion) caused by the electric field. That is, 

the velocity of the electron can be expressed by VDVRV  , where VR  and VD  are called the random 

velocity and the drift velocity, respectively. The random motion (i.e., the thermal motion) exists even in the 

absence of the external electric field, while the drift motion is a directional movement in the opposite 

direction of the external electric field. The overall physical effect of the electron’s movement is that the 



electron careens towards the location of the minimum potential energy. In a non-convex-shaped metal 

conductor in an external electric field, there may be many locations of local minimum potential energies, 

which the drift motion generated by the electric force may drive the electron to. If the electron only had the 

drift motion, it might stick into a point of local minimum potential energy, just as a local optimization 

method converges to a local minimum of an optimization problem. The thermal motion can make the 

electron more volatile and, consequently, helps the electron to escape the trap of local minimum potential 

energy, just as a certain random search strategy is introduced into the local search technique to lead the 

algorithm to search globally. Therefore, the movement of the electron is a process of minimizing its potential 

energy. The goal of this process is essentially to find out the minimum solution of the minimization problem, 

with the position of the electron represented as a candidate solution and the potential energy function as the 

objective function of the problem.  

 

2.3 Description of the RDPSO Algorithm 

Inspired by the above facts, we assume that the particle in the RDPSO behaves like an electron moving 

in a metal conductor in an external electric field. The movement of the particle is thus the superposition of 

the thermal and the drift motions. The thermal motion implements the global search of the particle, while the 

drift motion mainly implements the local search. The trajectory analysis, as described in the first paragraph 

of this subsection, indicates that, in the canonical PSO, the particle’s directional movement toward its local 

attractor nip ,  reflects the local search of the particle. In the proposed RDPSO, the drift motion of the 

particle is also defined as the directional movement towards nip , . It represents  the combination of the 

cognition part and the social part of the canonical PSO and, thus, is the main inheritance of the RDPSO 

algorithm from the canonical PSO algorithm. In the RDPSO algorithm, the ‘inertia part’ in the velocity 

equation of the canonical PSO is replaced by the random velocity component, which is the main difference 

between the RDPSO algorithm and the canonical PSO algorithm. Therefore, the velocity of the particle in 

the RDPSO algorithm has two components, i.e., the thermal or random component, and the drift component. 

Mathematically, the velocity of particle i in the jth dimension can be expressed by j
ni

j
ni

j
ni VDVRV 1,1,1,    

( Mi 1 , Nj 1 ), where j
niVR 1,   and j

niVD 1,   are the random velocity component and the drift 

velocity component, respectively.  



A further assumption is that the value of the random velocity component j
niVR 1,   follows the Maxwell 

velocity distribution law (Kittel and Kroemer, 1980). Consequently, j
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distribution (i.e., Gaussian distribution) whose probability density function is given by 
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where 
j

ni 1, 
  is the standard deviation of the distribution. Using stochastic simulation, we can express 
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where j

ni 1, 
  is a random number with a standard normal distribution, i.e., )1,0(~
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Nj
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niVR 1,  . An adaptive strategy is adopted for j
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j
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where ),,,( 21 N

nnnn CCCC   is known as the mean best (mbest) position defined by the mean of the pbest 

positions of all the particles, namely, 
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Thus, equation (10) can be restated as 

j
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j
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where 0  is an algorithmic parameter called the thermal coefficient. In the next section, where the 

search behavior of individual particles and the whole swarm is analyzed, we will find that this random 

velocity component drives the particle away from the global best position, so it indeed reflects the global 

search of the particle.  

The role of the drift velocity component, j

niVD 1,  , is to implement the local search of the particle, which 

can be achieved by the directional movement toward ni
p

, , as has been mentioned above. In this paper we 

use the following simple linear expression for j

ni
VD

1, 
: 

)( ,,1,
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j
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j
ni XpVD   ,                                   (14) 

where 0β  is a deterministic constant and is another algorithmic parameter called the drift coefficient. 



This form of j

niVD 1,  in equation (14) is more concise than the one in (Sun et al., 2010) and it has a clear 

physical meaning that it reflects the particle’s directional movement towards nip , . In Theorem A1 in the 

Appendix, it is proven that, if there is only drift motion and, i.e., j

ni

j

ni VDV 1,1,   , j

ni

j

ni pX ,,   as n when 

20   , meaning that the expression of j

niVD 1,   in equation (14) can indeed guarantee the particle’s 

directional movement toward nip ,  as an overall result. More specifically, if 10   , j

niX ,  asymptotically 

converges to j

nip , , which means that the sampling space of 
1, ni

X  does not cover the hyper-rectangle with 

niP ,  and nG  being the two ends of its diagonal. If 1 , j

niX 1,   is identical to j

nip ,  so that the sampling 

space of 1, niX  is exactly the hyper-rectangle. If 21   , j

niX ,  converges to j

nip ,  in oscillation and thus 

the sampling space of 1, niX  covers the hyper-rectangle and even other neighborhoods of nG , where points 

with better fitness values may exist. As such, when we select the value of   for real application of the 

RDPSO algorithm, it may be desirable to set 21   for good local search ability of the particles.  

With the above specification, a novel set of update equations can be obtained for the particle of the 

RDPSO algorithm:  
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The procedure of the algorithm is outlined below in Algorithm 1. Like in the canonical PSO, the value of 

j

niV ,  in the RDPSO is also restricted within the interval ],[ maxmax VV  at each iteration. 

 



 

 

3. Analysis of the RDPSO Algorithm 

3.1. Dynamical Behaviour of the RDPSO Particle 

   An analysis of the behavior of an individual particle in the RDPSO is very essential to understanding 

how the RDPSO algorithm works and how to select the algorithmic parameters. Since the particle’s velocity 

is the superimposition of the thermal velocity and the drift velocity, the conditions for the particle’s position 

to converge or to be bounded are far more complex than those given in subsection 3.1 when only the drift 

motion exists. In this subsection, we undertake theoretical and empirical studies on the stochastic dynamical 

behavior of the particle in the RDPSO. Since each dimension of the particle’s position is updated 

independently, we only need to consider a single particle in the one-dimensional space without loss of 

generality. As such, equations (15) and (16) can be simplified as 

)(|| 11 nnnn XpXCV    ,                               (17) 



111   nnn VXX ,                                     (18) 

where nX  and nV  denote the current position and the velocity of the particle, respectively, and the local 

focus of the particle and the mean best position are denoted by p  and C , which are treated as 

probabilistically bounded random variables, i.e., 1}||{sup pP  and 1}||{sup CP . In equation (17), 

}{ n  is a sequence of independent identically distributed random variables with )1,0(~ Nn . 

Since the distribution of n  is symmetrical with respect to the ordinate, equation (17) has the 

following equivalence: 

)()( 11 pXCXV nnnn    ,                              (19) 

that is, the probability distributions of 1nV  in equations (17) and (19) are the same. Based on equations (19) 

and (18), several theorems on the dynamical behavior of a single particle in RDPSO are proved in the 

Appendix. As shown by Theorem A2, the particle’s behavior is related to the convergence of  
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n  is probabilistically bounded and, thus, the position of the particle is probabilistically bounded too. In 

inequality (20), the value of   is an improper integral which is undefined at 0x . By a Dirichlet test, the 

improper integral in equation (20) is convergent if both  and  are two finite numbers (Courant, 1989). 

Inequality (20) does not provide any explicit constraint relation between   and   due to the 

difficulty in calculating the improper integral in the inequality. A sufficient condition for 0  (i.e. 

0limlim
1

  

n

i
i

n
n

n
 ) is derived in Theorems A4. It says that if the values of   and   are subject to 

the constraint:  



10  , 20   ,                                    (21) 

0  and  


n

i
in

1
  converges to zero, which consequently ensures the probabilistic boundedness of 

the particle’s position as shown. Figure 1 visualizes some simulation results on the stochastic behaviour of 

the particle by using different values of   and  , with C fixed at 001.0X , p fixed at the origin and the 

initial position of the particle set as 10000 X . Figures 1 (a) to (c) show the results with   and   

satisfying constraint (21). It can be observed that the particle’s position oscillated around p and C, implying 

that the position is probabilistically bounded in these cases. Figures 1 (d) to (i) show that the particle’s 

position is probabilistically bounded in some cases when   and   do not satisfy constraint (21). This 

verifies that constraint (21) is a sufficient condition for 0  or 0lim 


n
n

 . At other values of   and   

not satisfying (21), the value of ||ln pX n   reached 700 and stopped changing after a certain number of 

iterations, as shown in Figures 1 (j) to (o). In such cases, the value of || pX n   reaches the maximum 

positive value that the computer can identify, so that it can be considered to have diverged to infinity. 

Constraint (21) is of practical significance to the application of the RDPSO algorithm, although it does 

not give the necessary condition for 0 . In practice, the values of   and   can generally be selected 

within the intervals given by (21), for a satisfactory algorithmic performance when the algorithm is applied 

to real-world problems. In Section 4, a detailed investigation into how to select these algorithmic parameters 

is undertaken by using a set of benchmark functions from the CEC2005 benchmark suite.  
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Figure 1 The figure visualizes the simulation results for the behavior of the particle at different values of   and  . 

Figures (a) to (c) show that when the values of   and   are selected within the intervals )1,0(  and )2,0( , the 

particle’s position is probabilistically bounded. Figures (d) to (i) show that the particle’s position may be also 

probabilitcally bounded at some values of   and   not satisfying constraint (21). Figures (j) to (o) show some 

cases that when   and   do not satisfy constraint (21),   ||ln pX n
 (i.e.  || pX n

) as n increases. 

 

3.2 The RDPSO’s Search Behavior 

In the above analysis, it is assumed that each particle in the RDPSO updates its velocity and position 

independently, with the mean best position C and the local focus p being treated as independent 



probabilistically bounded random variables, and thus it is revealed that the behavior of the particle is related 

to the convergence or the boundedness of n . However, the actual situation is more complex when the 

RDPSO algorithm is running in a real-world landscape. During the search process of the RDPSO algorithm, 

each particle is influenced not only by n  but also by the points nC  and nip , , which can not be treated as 

independent random variables anymore, but are relevant to the other particles. As for nC , it is the mean of the 

pbest positions of all the particles, moving with each pbest position varying in the course of search. The 

local focus nip , , is a random point associated with the pbest position of particle i ( niP , ) and the gbest position 

nG  that rotates among the pbest positions of the member particles according to their fitness values. In 

contrast to nC , nip , , as well as niP ,  and nG , varies more dramatically, since nC  averages the changes of 

all the pbest positions. 

 

(a) 

 

(b) 

Figure 2 The figure shows that the mbest position j

nC  pulls or pushes the particle away from j

nG . The direction of the 

particle’s movement is determined by the sign of j

ni 1,   

 

Generally, the pbest positions of all the particles converge to a single point when the RDPSO algorithm 

is performing an optimization task, which implies that 1}0||lim{ , 


nin
n

pCP  as mentioned in the proof of 

Theorem A1. Referring to equations (A7) to (A10), we can infer that if and only if 0 , 0||lim , 


nni
n

CX  

or 0||lim ,, 


nini
n

pX . That means the current positions and the pbest positions of all the particles converge 

to a single point when 0 . It can also be found from Theorems A2 and A3 that, when 0 , the particle’s 
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position is probabilistically bounded and oscillates around but does not converge to nC  or nip , , even 

though 1}0||lim{ , 


nin
n

pCP . When 0 , it is shown by Theorems A2 and A3 that the particle’s current 

position diverges and the explosion of the whole particle swarm happens. 

In practical applications, it is always expected that the particle swarm in the RDPSO algorithm can 

converge to a single point, like that in the canonical PSO. Essentially, there are two movement trends, i.e. the 

random motion and the drift motion, for each particle in the RDPSO, as has been described in the motivation 

of the algorithm. These two motions reflect the global search and the local search, respectively. The drift 

motion, represented by the j

niVD 1,   in the velocity update equation (15), draws the particle towards the local 

focus and makes the particle search in the vicinity of the gbest position and its pbest position so that the 

particle’s current and pbest positions can constantly come close to the gbest position. On the other hand, the 

random component j

niVR 1,   results in a random motion, leading the particle to be so volatile that its current 

position may reach a point far from the gbest position and its pbest position. This component can certainly 

provide the particle a global search ability, which, in the canonical PSO algorithm, is given by the velocity at 

the last iteration, i.e. j

niV 1,  . Nevertheless, an important characteristic distinguishing the RDPSO from other 

randomized PSO methods is that the random component of the particle’s velocity uses an adaptive standard 

deviation for its distribution, i.e. || ,

j

n

j

ni CX  . Such a random component makes the random motion of the 

particle have a certain orientation. The effect of j

niVR 1,   is to pull or push the particle away from the gbest 

position by j

nC  as shown by Figure 2, not only to displace the particle randomly as the mutation operation 

does in some variants of PSO and evolutionary algorithms. Figure 2(a) shows that, when j

nC  is at the left 

side of j

niX ,  and j

nG , j

n

j

ni

j

n

j

ni CXCX  ,, || . The drift component )( ,,

j

ni

j

ni Xp   draws the particle right 

towards j

nG . If 01, 

j

ni , 0)(|| 1,,1,,  

j

ni

j

n

j

ni

j

ni

j

n

j

ni CXCX  , which makes the particle move to the 

right further and, thus, pushes j

niX ,  away from j

nG .  If 01, 

j

ni , 0)( 1,,  

j

ni

j

n

j

ni CX  , whose effect is 

that the particle’s position is pulled away from j

nG . Figure 2(b) illustrates the case when j

nC  is at the right 



side of j

niX ,  and j

nG . Only the effect of the sign of j

ni 1,   on the direction of the particle’s motion is 

opposite to that in Figure 2(a). Generally speaking, the longer the distance || ,

j

n

j

ni CX  , the farther the 

particle’s position at next iteration j

niX 1,   will be away from the gbest position. If the particle’s position is 

close to the gbest position, the random component can help the particle escape the gbest position easily, 

when the gbest position is stuck into a local optimal solution. As far as the whole particle swarm is 

concerned, the overall effect is that the RDPSO has a better balance between the global search and the local 

search, as illustrated below. 

 

 

Figure3. The figure shows that nC  is shifted toward the lagged particles and thus far from the particles clustering 

around nG . The particles are pulled or pushed away from the neighbourhood of nG  and would search the landscape 

globally.   

 

In the RDPSO method, the swarm could not gather around the gbest position without waiting for the 

lagged particles. Figure 3 depicts the concept where the pbest positions of several particles, known as the 

lagged particles, are located far away from the rest of the particles and the gbest position nG , while the rest 

of the particles are nearer to the global best position, with their pbest positions located within a 

neighbourhood of the gbest position. The mbest position nC  would be shifted towards the lagged particles 

and be located outside the neighbourhood. When the lagged particles are chasing after their colleagues, that 

is, converging to nG , nC  is approaching nG  slowly. The current positions of the particles within the 

nG

nC

Lagged Particles



neighbourhood would be pulled or pushed outside the neighbourhood by nC , and the particles would 

explore the landscape globally around nG  so that the current nG  could skip out onto a better solution. As 

nC  is careening toward the neighbourhood, the exploration scope of the particle is becoming narrower. 

After the lagged particles move into the neighbourhood of the gbest position, 
n

C  also enter the 

neighbourhood and the particles would perform the same search process based on a smaller neighbourhood 

of the gbest position. In the canonical PSO, each particle converges to the gbest position independently and 

has less opportunity to escape from the neighbourhood of the gbest position. When the speed of the particle 

is small, it is impossible for the particles within the neighbourhood to jump out of the neighbourhood. As a 

result, these particles would perform local search around the gbest position and only the lagged particles 

could search globally. Evident from the above analysis, the RDPSO algorithm generally has a better balance 

between exploration and exploitation than the canonical PSO. 

    Moreover, different from mutation operations that play minor roles in some variants of PSO and 

evolutionary algorithms, the random motion has an equally important role as the drift motion in the RDPSO. 

Owing to the random motion oriented by nC , the RDPSO achieves a good balance between the local and 

global searches during the search process. By the influences of both nC  and their local focuses, the 

particles in the RDPSO have two movement trends, convergence and divergence, but the overall effect is 

their convergence to a common point of all the particles if 0 . The convergence rate of the algorithm 

depends on the values of   and  , which can be tuned to balance the local and global search, when the 

algorithm is used for a practical problem. 

 

4. The Proposed Variants of RDPSO 

In order to investigate the RDPSO in depth, some variants of the algorithm are proposed in this paper. 

Two methods are used for determining the random component of the velocity. One employs equation (13) 



for this component and the other replaces the mbest position in (13) by the pbest position of a randomly 

selected particle in the population at each iteration. For convenience, we denote the randomly selected pbest 

position by nC . For each particle, the probability for its pbest position to be selected as nC  is 1/M. 

Consequently, the expected value of nC  equals to nC , that is,  

nni

M

i

n CP
M

CE  


,

1

1
)( .                                  (22) 

However, since the nC  appears to be more changeful than nC , the current position of each particle at each 

iteration shows to be more volatile than that of the particle with equation (13), which diversifies the particle 

swarm and in turn enhances the global search ability of the algorithm.  

     In addition to the global best model, the local best model is also examined for RDPSO, in order to 

make a comprehensive empirical analysis of the RDPSO algorithm in different neighborhood topologies. 

The ring topology is a widely used neighborhood topology for the local best model (Li, 2010; Engelbrecht, 

2013), in which each particle connects exactly to two neighbors. The standard PSO (SPSO) in (Bratton and 

Kennedy, 2007) is defined by the integration of the PSO-Co with the ring topology. Although there are 

various neighborhood topologies, we chose the ring topology for the RDPSO with the local best model. 

Thus, the combination of the two topologies with the two strategies for the random velocity component 

produces the four resulting RDPSO variations: 

RDPSO-Gbest: The RDPSO algorithm with the global best model and the random velocity 

component described by equation (13). 

RDPSO-Gbest-RP: The RDPSO algorithm using the global best model and employing a randomly 

selected pbest position to determine the random velocity component. 

RDPSO-Lbest: The RDPSO algorithm with the ring neighborhood topology and the random velocity 

component in (13), where, however, the mbest position is the mean of the pbest positions of the neighbors of 



each particle and the particle itself, instead of the mean of the pbest positions of all the particles in the 

population. 

RDPSO-Lbest-RP: The RDPSO algorithm using the ring neighborhood topology and employing the 

pbest position of a particle randomly selected from the neighbors of each particle and the particle itself. 

 

5. Experimental Results and Discussion 

5.1. Benchmark Problems 

The previous analysis of the RDPSO provides us with a deep insight into the mechanism of the 

algorithm. However, it is not sufficient to evaluate the effectiveness of the algorithm without comparing it 

with other methods on a set of benchmark problems. To evaluate the RDPSO in an empirical manner, the 

first fourteen functions from the CEC2005 benchmark suite (Suganthan, 2005) were employed for this 

purpose. Functions F1 to F5 are unimodal, functions F6 to F12 are multi-modal, and F13 and F14  are two 

expanded functions. The mathematical expressions and properties of the functions are described in detail in 

(Suganthan, 2005). The codes in Matlab, C and Java for the functions can be found at 

http://www.ntu.edu.sg/home/EPNSugan/. The dimension of each tested benchmark function in our 

experiments is  30.  

 

5.2. Empirical Studies on the Parameter Selection of the RDPSO Variants 

Parameter selection is the major concern when a stochastic optimization algorithm is being employed to 

solve a given problem. For the RDPSO, the algorithmic parameters include the population size, the 

maximum number of iterations, the thermal coefficient   and the drift coefficient  . Like in the canonical 

PSO, the population size in the RDPSO is recommended to be set from 20 to 100. The selection of the 

maximum number of iterations depends on the problem to be solved. In the canonical PSO, the acceleration 

http://www.ntu.edu.sg/home/EPNSugan/


coefficients and the inertia weight (or the constriction factor) have been studied extensively and in depth 

since these parameters are very important for the convergence of the algorithm. For the RDPSO algorithm, 

  and   play the same roles as the inertia weight and the acceleration coefficients for the canonical PSO. 

In Section 3, it was shown that it is sufficient to set   and   according to (21), such that 0 , to 

prevent the individual particle from divergence and guarantee the convergence of the particle swarm. 

However, this does not mean that such values of   and   can lead to a satisfactory performance of the 

RDPSO algorithm in practical applications. This section intends to find out, through empirical studies, 

suitable settings of   and   so that the RDPSO may yield good performance in general.  

There are various control methods for the parameters   and   when the RDPSO is applied to 

practical problems. A simple approach is to set them as fixed values when the algorithm is executed. Another 

method is to decrease the value of the parameter linearly during the course of the search process. In this 

work, we fixed the value of   in all the experiments and employed the two control methods for  , 

respectively.  

To specify the value of   and   for real applications of the RDPSO, we tested the RDPSO-Gbest, 

RDPSO-Gbest-RP, RDPSO-Lbest, and RDPSO-Lbest-RP with different parameter settings on three 

frequently used functions from the CEC2005 benchmark suite: Shifted Rosenbrock Function (F6), Shifted 

Rotated Griewank’s Function (F7), and Shifted Rastrigin’s Function (F9), using the two methods for 

controlling   with   fixed at 1.5 or 1.45. The initial position of each particle was determined randomly 

within the initialization range. One reason why only three functions were used for parameter selection is that 

we want to show that the RDPSO algorithm is not very sensitive to the parameter values, and that the 

parameter values found by optimizing these three functions  can lead to good performance when optimizing 

other functions in general. Another reason is that these three functions are widely used in the existing 

literature and that the optimal parameter values for each function are very different, that is, the optimal 



parameter values for a function may have a poor performance when used for another function. 

 For each parameter configuration, each algorithm, using 40 particles, was tested for 100 runs on every 

benchmark function. To determine the effectiveness of each algorithm for the   setting under a control 

method with a fixed value of   on each problem, the best objective function value (i.e., the best fitness 

value) found after 5000 iterations was averaged over 100 runs of tests for that parameter setting and the 

same benchmark function. The results (i.e., the mean best fitness values) obtained by the parameter settings 

with the same control method for   were compared across the three benchmarks. The best parameter 

setting with each control method for   was selected by ranking the averaged best objective function values 

for each problem, summing the ranks, and taking the value that had the lowest summed (or average) rank, 

provided that the performance is acceptable (in the top half of the rankings) in all the tests for a particular 

parameter configuration. 

The rankings of the results for the RDPSO-Gbest are plotted in Figure 4. When the fixed value method 

was used for  , it was set to a range of values subject to constraint (21), with   fixed at 1.5 or 1.45 in 

each case. Results obtained for other parameter settings were very poor and are not considered for ranking. 

The best average rank among all the tested parameter configurations occurs when 7.0  and 5.1 . 

When linearly varying   was used, its initial value 
1

  and final value 
2

  (
21

  ) were selected from 

a series of different values subject to constraint (21), with   set at 1.5 or 1.45. Only acceptable results are 

ranked and plotted in Figure 4. It was found that with 45.1 , decreasing   linearly from 0.9 to 0.3 

leads to the best performance among all the tested parameter settings. 
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Figure 4. The rankings of the mean best fitness values for each of the three benchmarks and the average rank for the 

RDPSO-Gbest. 

 

The rankings of the results for the RDPSO-Gbest-RP are visualized in Figure 5. It is clear from these 

results that the value of  , whether it used the fixed value or time-varying method, should be set relatively 

small, so that the algorithm is comparable in performance with the RDPSO-Gbest, when   was given. 

Results obtained with   outside the range [0.38, 0.58] were of poor quality and were not used for ranking. 

As shown in Figure 5, when the fixed value method for   was used, the best average ranks among all 

tested parameter settings were obtained by setting 5.0  and 45.1 . On the other hand, the algorithm 

exhibited the average best performance when 45.1  and   was decreasing linearly from 0.6 to 0.2, for 

the method of linearly varying  . 
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Figure 5. The rankings of the mean best fitness values for each of the three benchmarks and the average rank for the 

RDPSO-Gbest-RP. 

 

Figure 6 shows the rankings of the results for the RDPSO-Lbest. For the fixed   method, the results of 

the algorithm obtained with   outside the range [0.6, 0.78] did not participate in ranking because of their 



poor qualities. The best average ranking among all the tested parameter configurations in this case occur 

when 7.0  and 5.1 . For the linearly varying   method, it was identified that decreasing   

linearly from 0.9 to 0.3 with 45.1  could yield the average best quality results among all the tested 

parameter configurations. 

Figure 7 plots the rankings of the results for the RDPSO-Lbest-RP. For fixed  , the best average 

ranking among all the tested parameter settings could be obtained when 7.0  and 45.1 . For 

time-varying , the algorithm obtained the average best performance among all the tested parameter 

configurations when   was decreasing linearly from 0.9 to 0.3 with 45.1 . 
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Figure 6. The rankings of the mean best fitness values for each of the three Benchmarks and the average rank for the 

RDPSO-Lbest. 
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Figure 7. The rankings of the mean best fitness values for each of the three Benchmarks and the average rank for the 

RDPSO-Lbest-RP. 

 



5.3. Performance Comparisons among the RDPSO Variants and Other PSO Variants 

To explore the generalizability of the parameter selection methods for   used for the RDPSO in the 

last subsection, and to the determine whether RDPSO can be as effective as other variants of PSO, a further 

performance comparison using the first fourteen benchmark functions of the CEC2005 benchmark suite was 

made among the RDPSO algorithms (i.e., the RDPSO-Gbest, RDPSO-Gbest-RP, RDPSO-Lbest and 

RDPSO-Lbest-RP) and other PSO variants, including the PSO with inertia weight (PSO-In) (Shi and 

Eberhart, 1998a; 1998b; 1999), the PSO with constriction factor (PSO-Co) (Clerc and Kennedy, 2002; Clerc 

1999), the PSO-In with local best model (PSO-In-Lbest) (Liang et al., 2006), the standard PSO (SPSO) (i.e. 

PSO-Co-Lbest) (Bratton and Kennedy, 2007), the Gaussian bare bones PSO (GBBPSO) (Kennedy, 2003; 

2004), the comprehensive learning PSO (CLPSO) (Liang et al., 2006), the dynamic multiple swarm PSO 

(DMS-PSO) (Liang and Suganthan, 2005), and the fully-informed particle swarm (FIPS) (Mendes, 2004). 

Each algorithm was run 100 times for each benchmark function, using 40 particles to search the global 

optimal fitness value. At each run, the particles in the algorithms started in new and randomly-generated 

positions, which are uniformly distributed within the search bounds. Each run of every algorithm lasted for 

5000 iterations, and the best fitness value (objective function value) for each run was recorded.  

 

Table 1. Mean and Standard Deviation of the Best Fitness Values after 100 runs of Each Algorithm for F1 to F7 

Algorithms F1 F2 F3 F4 F5 F6 F7 

PSO-In 3.9971e-028 

(5.6544e-028) 

263.2219 

(608.4657) 

3.4324e+007 

(3.0220e+007) 

2.7829e+003 

(2.0996e+003) 

4.3961e+003 

(1.5331e+003) 

143.7144 

(336.9297) 

0.3285 

(1.1587) 

PSO-Co 6.7053e-029 

(1.0671e-028) 
0.0100 

(0.0939) 

1.3659e+007 

(1.3662e+007) 

842.4768 

(1.5264e+003) 

6.2857e+003 

1.9629e+003 

57.5740 

(84.2278) 

0.0283 

(0.0184) 

PSO-In-Lbest 2.7049e-013 

(5.1148e-013) 

865.7861 

(368.9980) 

2.5658e+007 

(1.0089e+007) 

8.7648e+003 

(1.8468e+003) 

8.0095e+003 

(1.0568e+003) 

57.5362 

(74.5821) 

0.1830 

(0.1093) 

SPSO  

(PSO-Co-Lbest) 

4.2657e-036 

(2.3958e-036) 

0.8615 

(0.7092) 

3.3604e+006 

(1.5549e+006) 

6.3348e+003 

(2.3147e+003) 

5.2549e+003 

(1.1583e+003) 

47.3744 

(79.8406) 

0.0108 

(0.0078) 

GBBPSO 7.0941e-027 

(1.9421e-026) 

0.0110 

(0.0174) 

4.9003e+006 

(2.6581e+006) 

1.0432e+003 

1.0819e+003 

8.0391e+003 

(2.8824e+003) 

109.8415 

(330.4848) 

0.0179 

(0.0170) 

FIPS 1.2395e-036 

(8.4958e-037) 

0.1390 

(0.0682) 

6.9970e+006 

(2.4490e+006) 

4.5429e+003 

(1.4685e+003) 

3.3929e+003 

(599.5893) 

109.1170 

(179.8489) 

0.0147 

(0.0101) 

DMS-PSO 8.8399e-016 

(2.1311e-015) 

141.1109 

(70.6632) 

5.6008e+006 

(2.9187e+006) 

976.6745 

(391.0695) 

2.4263e+003 

(498.7101) 

211.0941 

(314.9179) 

0.0283 

(0.0226) 

CLPSO 5.2323e-017 

(2.9219e-017) 

1.2661e+003 

(297.3666) 

3.3326e+007 

(8.8808e+006) 

7.6045e+003 

(1.7722e+003) 

4.0357e+003 

(489.0741) 

74.2914 

(31.5737) 

1.0054 

(0.0663) 

RDPSO-Gbest 

 

2.2871e-027 

(4.3476e-028) 

0.0805 

(0.1341) 

4.7079e+006 

(3.1653e+006) 

411.2758 

(574.1945) 

2.6293e+003 

(808.8539) 

60.9164 

(78.5198) 

0.0175 

(0.0140) 

RDPSO-Gbest-RP 

 

8.1256e-037 

(1.4983e-037) 

0.1131 

(1.0156) 
2.5203e+006 

(1.6334e+006) 

217.8821 

(269.0046) 

2.2241e+003 

(865.3596) 

34.9274 

(39.0403) 

0.0130 

(0.0123) 

RDPSO-Lbest 3.9443e-031 
(9.5470e-031) 

2.4034 
(1.7191) 

4.9772e+006 
(1.9029e+006) 

1.6199e+003 
(883.4518) 

2.7654e+003 
(638.3375) 

19.5009 

(16.7704) 
0.0092 

(0.0050) 



RDPSO-Lbest-RP 5.2461e-037 

(7.3587e-038) 

9.3880 

(6.7340) 

4.8092e+006 

(1.7477e+006) 

3.4502e+003 

(1.3764e+003) 

3.9088e+003 

(888.7718) 

24.0065 

(24.4861) 

0.0093 

(0.0061) 

 

Table 2. Mean and Standard Deviation of the Best Fitness Values after 100 runs of Each Algorithm for F8 to F14  

Algorithms F8 F9 F10 F11 F12 F13 F14 

PSO-In 21.1149 
(0.0650) 

28.1848 
(11.4742) 

214.2491 
(84.8990) 

38.6029 
(7.9234) 

3.0743e+004 
(2.9043e+004) 

5.2896 
(5.5476) 

13.8002 
(0.3444) 

PSO-Co 21.1271 

(0.0557) 

71.0598 

(22.0534) 

123.1232 

(51.0717) 

26.6597 

(5.1673) 

1.0415e+004 

(1.3897e+004) 

4.4108 

(1.2793) 

12.7952 

(0.4972) 

PSO-In-Lbest 20.9274 
(0.0518) 

39.0149 
(8.0007) 

149.9040 
(39.4806) 

29.4701 
(2.2549) 

1.6420e+004 
(8.2755e+003) 

5.1283 
(1.3492) 

13.0249 
(0.2546) 

SPSO  

(PSO-Co-Lbest) 
20.9092 

(0.0592) 

65.1992 

(13.3166) 

90.4544 

(18.4968) 

29.1374 

(2.1661) 

4.5191e+003 

(3.3662e+003) 

4.1371 

（0.8434） 

12.6110 

（0.2924） 

GBBPSO 20.9631 

(0.0481) 

60.3143 

(15.3916) 

127.2546 

(48.5001) 

28.2383 

(3.4455) 

1.7318e+004 

(6.4095e+004) 

4.9260 

(1.3859) 

13.5393 

(0.5470) 

FIPS 20.9638 

(0.0476) 

47.9595 

(9.9315) 

170.4301 

(19.0757) 

32.6119 

(2.5941) 

3.1169e+004 

(1.5581e+004) 

8.4372  

(1.3535) 

12.7804  

(0.2627) 

DMS-PSO 20.9569 

(0.0522) 

29.5427 

(7.4630) 

77.6689 

(11.9670) 

23.8535 

(2.1849) 

7.4986e+003 

(6.2259e+003) 

5.1709 

(1.7631) 

12.6673 

(0.3139) 

CLPSO 20.9613 

(0.0499) 
7.3197e-006 

(1.2443e-005) 

118.2419 

(14.6277) 

23.8084 

(2.1761) 

3.4442e+004 

(7.6392e+003) 

3.8576 

(0.3906) 

13.1524 

(0.1691) 

RDPSO-Gbest 20.9558 

(0.0641) 

22.7650 

(5.7728) 

78.6024 

(38.9282) 

21.6689 

(7.6173) 

6.0361e+003 

(5.1260e+003) 

3.6656 

(1.6923) 

12.4291 

(0.4285) 

RDPSO-Gbest-RP 20.9602 
(0.0569) 

31.9085 
(8.7969) 

82.5152 
(47.7362) 

20.0701 

(6.9879) 
2.8227e+003 

(3.3963e+003) 

4.1837 
(2.9678) 

12.5091 
(0.4033) 

RDPSO-Lbest 20.9540 

(0.0508) 

27.8237 

(6.0386) 
49.8606 

(12.9486) 

22.1984 

(3.0396) 

4.0616e+003 

(2.8103e+003) 

3.5717 

(1.1045) 

12.4730 

(0.2576) 

RDPSO-Lbest-RP 
 

20.9613 
(0.0543) 

36.4589 
(7.9391) 

51.4390 
(7.9391) 

23.0731 
(1.8929) 

3.7315e+003 
(1.9675e+003) 

3.3328 

(0.7410) 
12.3497 

(0.7410) 

 

Table 3. Ranking by Algorithms and Problems Obtained from “Stepdown” Multiple Comparisons 

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F1

3 

F14 Ave.Rank Final 

rank 

PSO-In 7 =9 =11 7 8 =9 11 15 =3 12 12 =10 =8 12 9.57 12 

PSO-Co 6 =1 9 5 10 7 =8 15 12 =7 7 7 =5 =7 7.57 9 

PSO-In-Lbest 12 11 10 12 =11 =3 10 =1 =7 10 10 =8 =8 9 8.71 11 

SPSO 4 6 2 10 9 =3 =1 =1 =10 =3 =8 4 =5 =5 5.07 5 

GBBPSO 9 =1 =3 =3 =11 =9 =4 =3 =10 =7 =8 =8 =8 11 6.79 7 

FIPS 3 =3 8 9 5 =9 =4 =3 9 11 11 =10 12 =7 7.43 8 

DMS-PSO 11 =9 =3 =3 =1 12 =8 =3 =3 =3 =4 =5 =8 =5 5.57 6 

CLPSO 10 12 =11 11 =6 =8 12 =3 1 =7 =4 =10 4 10 7.79 10 

RDPSO-Gbest 8 =3 =3 2 =1 =3 =4 =3 2 =3 =1 =5 =1 =1 2.86 3 

RDPSO-Gbest-RP 2 =3 1 1 =1 =3 =4 =3 6 =3 =1 =1 =5 =1 2.50 1 

RDPSO-Lbest 5 7 =3 6 4 =1 =1 =3 =3 =1 =1 =1 =1 =1 2.71 2 

RDPSO-Lbest-RP 1 8 =3 8 =6 =1 =1 =3 =7 =1 =4 =1 =1 =1 3.29 4 

 

For the four RDPSO variants, it was shown in the last subsection that the linearly decreasing   with 

fixed   was stable in the search performance, although fixing both   and   had better results in some 

cases. Thus, in this group of experiments for performance comparison, the linearly decreasing   with fixed 

  was used for the RDPSO variants, and the parameters for each case were set as those indentified and 

recommended by the previous experiments on the three benchmark functions. These parameter 

configurations were selected from the experiments on the three functions, so they are far from optimal. The 

parameter configurations for other PSO variants were the same as those recommended by the existing 



publications. For the PSO-In, the inertia weight linearly decreased from 0.9 to 0.4 in the course of the run 

and we fixed the acceleration coefficients (c1 and c2) at 2.0, as in the empirical study performed by Shi and 

Eberhart (1999). For the PSO-Co, the constriction factor was set to be 7298.0 , and the acceleration 

coefficients c1=c2=2.05, as recommended by Clerc and Kennedy (2002). Eberhart and Shi also used these 

values of the parameters when comparing the performance of the PSO-Co with that of the PSO-In (Eberhart 

and Shi, 2000). For the SPSO, the ring topology was used and other parameters were set as those in the 

PSO-Co (Bratton and Kennedy, 2007). Parameter configurations for the GBBPSO, FIPS, DMS-PSO and 

CLPSO were the same as those in (Kennedy, 2003; Mendes et al., 2004; Liang and Suganthan, 2005; Liang 

et al., 2006), respectively. The justification for using the recommended parameter settings for these PSO 

variants is that in their related papers, the parameter configurations for these algorithms were tested on 

different benchmark functions, including those three functions used in our experiments for the RDPSO. 

Theperformance of these parameter settings were satisfactory and, thus, were recommended by the authors.  

Tables 1 and 2 record the mean and the standard deviation of the best fitness values out of 100 runs of 

each algorithm on each benchmark function. To investigate whether the differences in the mean best fitness 

values among the algorithms were significant, a statistical multiple comparison procedure was implemented 

to determine the algorithmic performance ranking for each problem in a statistical manner. The procedure 

employed in this work is known as the “stepdown” procedure (Day and Quinn, 1989). The algorithms that 

were not statistically different to each other were given the same rank; those that were not statistically 

different to more than one other groups of algorithms were ranked with the best-performing of these groups. 

For each algorithm, the resulting rank for each problem and the average rank across all the tested fourteen 

benchmark problems are shown in Table 3. 

For the Shifted Sphere Function (F1), the RDPSO-Lbest-RP generated better results than the other 

methods. The results for the Shifted Schwefel’s Problem 1.2 (F2) show that the PSO-Co and the GBBPSO 



performed better than the others, but the performance of the CLPSO seems to be inferior to those of other 

competitors due to its slow convergence speed. For the Shifted Rotated High Conditioned Elliptic Function 

(F3), the RDPSO-Gbest-RP outperformed the other methods in a statistical significance manner. The SPSO 

was the second best performing method for this function. The RDPSO-Gbest-RP showed to be the winner 

among all the tested algorithms for the Shifted Schwefel’s Problem 1.2 with Noise in Fitness (F4), and the 

RDPSO-Gbest was the second best performing for this problem. F5 is the Schwefel’s Problem 2.6 with 

Global Optimum on the Bounds. For this benchmark, the RDPSO-Gbest-RP occupied the first place from 

the perspective of the statistical test. For benchmark F6, the Shifted Rosenbrock Function, both the RDPSOs 

with the ring topology outperformed the other algorithms. The results for the Shifted Rotated Griewank’s 

Function without Bounds (F7) suggest that both the RDPSOs with local best model and the SPSO were able 

to find the solution to the function with better quality compared to the other methods. Benchmark F8 is the 

Shifted Rotated Ackley’s Function with Global Optimum on the Bounds. The SPSO and the PSO-In-Lbest 

yielded better results for this problem than the others. The Shifted Rastrigin’s Function (F9) is a separable 

function, which the CLPSO algorithm was good at solving and obtained remarkably better results for. It can 

also be observed that the RPDOS-Gbest yielded a better result than the remainders. F10 is the Shifted 

Rotated Rastrigrin’s Function, which appears to be a more difficult problem than F9. For this benchmark, 

both the RDPSO-Lbest and RDPSO-Lbest-RP outperformed the other competitors in a statistically 

significant manner. The best result for the Shifted Rotated Weierstrass Function (F11) was obtained by the 

RDPSO-Gbest-RP. The RDPSO-Gbest yielded the second best result which shows no statistical significance 

with that of the RDPSO-Gbest-RP. When searching the optima of Schewefel’s Problem 2.13 (F12), the 

RDPSO-Gbest-RP was found to rank first in algorithmic performance from a statistical point of view. 

F13 is the Shifted Expand Griewank’s plus Rosenbrock’s Function, for which the RDPSO-Lbest-RP, 

RDPSO-Lbest, and RDPSO-Gbest yielded better results than their competitors. There are no statistically 



significant differences in algorithmic performance between the three RDPSO variants. For the Shifted 

Rotated Expanded Scaffer’s F6 Function (F14), all the RDPSO variants showed better performance than the 

others in a statistically significant manner. 

The average ranks listed in Table 3 reveal that the RDPSO-Gbest-RP had the best overall performance 

for the fourteen benchmark functions among all the tested algorithms. Across the whole suite of benchmark 

functions, it had fairly stable performance with the worst rank being 6 for F9. The second best-performing 

was the RPDSO-Lbest. For seven of the benchmark functions, the algorithm had the first performance ranks. 

However, its result for F2 is unsatisfactory due to its slow convergence speed. The RDPSO-Gbest had the 

third best overall performance. Compared to the RDPSO-Gbest-RP, the RDPSO-Gbest performed somewhat 

unstable, with the resulting ranks for F1 being only 8. The fourth best performing was the RDPSO-Lbest-RP, 

which did not show satisfactory performance on F2 and F4. Nevertheless, it had a significant advantage over 

the SPSO, the next best performing one. Between random velocity components determined by the mbest 

position and the random selected pbest position, the two versions of the RDPSO with the mbest position 

obtained the total average rank of 2.79, while the two with the randomly selected pbest position had the total 

average rank of 2.90. This means that there is no remarkable performance difference for the tested functions 

between the two different methods for determining random velocity components. What can be found from 

the total average ranks is that the RDPSO algorithms were able to perform better by using the global best 

model (with the total average rank of 2.53) than the local best model (with the total average ranks of 3.00) 

for the first fourteen CEC2005 benchmark functions. In addition, the total average rank over all the versions 

of the RDPSO is 2.84, which implies that the RDPSOs with the linearly varying   and fixed   had a 

satisfactory overall performance. Therefore, it is recommended that the linearly varying   method with 

fixed   should be employed when the RDPSO is used for real applications with the values of the 

parameters tuned finely around the values used in the experiments in this work. More specifically, for the 



RDPSO-Gbest, RDPSO-Lbest and RDPSO-Lbest-RP, the initial and final values of   can be selected from 

the intervals [0.8, 1.0] and [0.2, 0.4], respectively, depending on the problem to be solved. For the 

RDPSO-Gbest-RP, the initial and final values of   can be selected from the intervals [0.5, 0.7] and [0.1, 

0.3], respectively. The drift coefficient   can be valued on the interval [1.45, 1.5] for all he RDPSO 

variants. 

Except the RDPSO algorithms, the best-performing algorithm was the SPSO, i.e. the PSO-Co-Lbdest, 

which yielded the best results for F7 and F8. The next best algorithm was DMS-PSO, obtaining the first 

performance rank for F3 and the worst rank for F6. The GBBPSO was the next best-performing method. This 

is an important probabilistic PSO variant and had good performance for unimodal functions. The FIPS, 

which also employs the ring topology, ranked the first when optimizing F2. From the total average ranks in 

Table 3, it is conclusive that incorporating the ring topology into the PSO-In and the PSO-Co could enhance 

the overall performance of the two PSO variants on the tested benchmark functions. What should be noticed 

is that the CLPSO is very effective in solving separable functions such as F9, but not in the rotated functions 

and unimodal ones due to its slower convergence speed, as has been indicated in the related publication 

(Liang et al., 2006).  

 

5. Conclusion 

In this paper, based on our preliminary previous work, we made a comprehensive study on the RDPSO 

algorithm, by analyzing the particle behavior and the search mechanism of the algorithm and empirically 

investigating the four newly proposed variants of the RDPSO algorithm.  

A comprehensive analysis of the RDPSO algorithm and its variants was made in order to have a better 

understanding of the mechanism behind the algorithm. Firstly, the stochastic dynamical behavior of a single 

particle in the RDPSO was analyzed theoretically. We derived the sufficient and necessary condition as well 



as a sufficient condition for the particle’s current position to be probabilistically bounded. Secondly, the 

search behavior of the RDPSO algorithm itself was investigated by analyzing the interaction between the 

particles, and it was found that the RDPSO may have a good balance between the global and the local search, 

due to the designed random component of the particle’s velocity. In addition, four variants of the RDPSO 

algorithm were proposed by combining different random velocity components with different neighborhood 

topologies. 

Empirical studies on the RDPSO algorithm were carried out on the first fourteen benchmark functions 

of the well-known CEC2005 benchmark suite. Two methods of controlling the algorithmic parameters were 

employed, and each RDPSO variant, with each control method, was first tested on three of the benchmark 

functions in order to identify the parameter values that can generate satisfactory algorithmic performance. 

Then, the RDPSO variants with linearly decreasing thermal coefficients and fixed drift coefficients, which 

were identified to have stable algorithmic performance, were further compared with other forms of PSO on 

the fourteen functions. The experimental results show that the RDPSO algorithm is comparable with, or 

even better, than the other compared PSO variants in finding the optimal solutions of the tested benchmark 

functions. 
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Theorem A1: If there is only drift motion for the particle, i.e. j
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     Proof: From equation (14) and (16), we can find that 
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When the RDPSO algorithm is running, the personal best positions of all the particles converge to the 

same point. Consequently, }{ ,
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Therefore, from inequality (A2), we have 

 )|(||1||| ,,1,1,   

j

ni

j

ni

j

ni

j

ni pXpX .                          (A3) 

This implies that for any Kn  , 
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As   is arbitrary and 0|| ,,  j
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This completes the proof of the theorem.                                                     ■ 

Theorem A2: The necessary and sufficient condition for the position sequence of the particle }{ nX  to 

be probabilistically bounded is that  
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Proof: From equation (17) and (18), the update equation of the particle’s position is given by 

nnnnn XpXCXX   )()( 11  ,                            (A7) 
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Since 1n  is a continuous random variable, 0}1{ 1 nP  . Considering that )( Cp is 
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From which we can recursively derive the following formula 
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Since rCX 0  is probabilistically bounded, nX  is probabilistic bounded if and only if  
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probabilistically bounded. This completes the proof of the theorem.                                ■ 
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Therefore,  Zm , there exists ),max( 21 KKK   such that whenever Kk  , both inequalities (A12) and 
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Due to the arbitrariness of  , we find that  
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(2) From (A11), we have the following equivalent propositions: 
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Thus, considering the case for 0  in (1) and the case for 0 , we find that the first proposition in (1) 

holds. 
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Thus the second proposition in (2) holds.  

This completes the proof of the second part of the theorem.                                      ■ 

Theorem A4: A sufficient condition for  
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A sufficient condition for n  to converge is 0][ nE   and 0][ nVar   (i.e., mean square convergence 

of n ), which implies that 20    and 10  . This completes the proof of the theorem. 
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