
CURVE is the Institutional Repository for Coventry University

Random drift particle swarm
optimization algorithm: convergence
analysis and parameter selection

Sun, J. , Wu, X. , Palade, V. , Fang, W. and Shi, Y.

Author post-print (accepted) deposited in CURVE October 2016

Original citation & hyperlink:
Sun, J. , Wu, X. , Palade, V. , Fang, W. and Shi, Y. (2015) Random drift particle swarm
optimization algorithm: convergence analysis and parameter selection. Machine Learning,
volume 101 (1-3): 345-376

http://dx.doi.org/10.1007/s10994-015-5522-z

DOI 10.1007/s10994-015-5522-z
ISSN 0885-6125
ESSN 1573-0565

Publisher: Springer

The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-
015-5522-z

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

http://curve.coventry.ac.uk/open
http://dx.doi.org/10.1007/s10994-015-5522-z
http://dx.doi.org/10.1007/s10994-015-5522-z
http://dx.doi.org/10.1007/s10994-015-5522-z

Random Drift Particle Swarm Optimization

Algorithm: Convergence Analysis and Parameter

Selection.

Jun Sun

Key Laboratory of Advanced Process Control

for Light Industry (Ministry of Education),

Jiangnan University, No 1800, Lihu Avenue,

Wuxi, Jiangsu 214122

SUNJUN_WX@HOTMAIL.COM

Xiaojun Wu

Key Laboratory of Advanced Process Control

for Light Industry (Ministry of Education),

Jiangnan University, No 1800, Lihu Avenue,

Wuxi, Jiangsu 214122

WU_XIAOJUN@YAHOO.COM.CN

Vasile Palade

Department of Computing, Coventry

University, Priory Street, Coventry, CV1

5FB, United Kingdom

VASILE.PALADE@COVENTRY.AC.UK

Wei Fang

Key Laboratory of Advanced Process Control

for Light Industry (Ministry of Education),

Jiangnan University, No 1800, Lihu Avenue,

Wuxi, Jiangsu 214122

WXFANGWEI@HOTMAIL.COM

Yuhui Shi

Department of Computer Science, University

of Oxford, Parks Road, Oxford, OX1 3QD,

United Kingdom

YUHUI.SHI@XJTLU.EDU.CN

Abstract

The random drift particle swarm optimization (RDPSO) algorithm is a PSO variant inspired by the free

electron model in metal conductors placed in an external electric field. Based on the preliminary work on

our RDPSO algorithm, this paper makes systematical analyses and empirical studies on the algorithm.

Firstly, the motivation of the RDPSO algorithm is presented and the design of the particle’s velocity

equation is described in detail. Secondly, a comprehensive analysis of the algorithm is made, in order to

provide a deep insight into how the RDPSO algorithm works. It involves a theoretical analysis and the

simulation of the stochastic dynamical behavior of a single particle in the RDPSO algorithm. The search

behavior of the algorithm itself is also investigated in detail, by analyzing the interaction between the

particles. Then, some variants of the RDPSO algorithm are proposed by incorporating different random

velocity components with different neighborhood topologies. Finally, empirical studies on the RDPSO

algorithm are performed by using a set of benchmark functions from the CEC2005 benchmark suite. Based

on the theoretical analysis of the particle’s behavior, two methods of controlling the algorithmic parameters

are employed, followed by an experimental analysis on how to select the parameter values, in order to obtain

a good overall performance of the RDPSO algorithm and its proposed variants in real-world applications. A

further performance comparison between the RDPSO algorithms and other variants of PSO is made to prove

the efficiency of the RDPSO algorithms.

1. Introduction

Optimization methods are essential in machine learning and are usually employed to find the model

parameters (Sra et al., 2011; Henning and Kiefel, 2013; Bull, 2011). Among the various optimization

methods available, random search approaches are direct search techniques that incorporate stochastic

strategies into the search processes to enable the algorithms to jump out of local optima with high probability,

and they are widely used in machine learning (Bergstra and Bengio, 2012). Metaheuristic methods are an

important class of random search techniques. They are formally defined as an iterative generation-based

process, which guides the search by using a subordinate heuristic and intelligently combining different

concepts for exploring and exploiting the search space, the most popular methods in this class being the

evolutionary algorithms (EAs) (Fortin et al., 2012; Pelikan, 2012; Fournier and Teytaud, 2011; Lu, et al.,

2011)

Particle swarm optimization (PSO) is a metaheuristic method attributed to be originally developed by

Kennedy and Eberhart (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995). It has been motivated

by bird flocking and fish schooling mechanisms, and the swarm theory in particular. Unlike EAs, PSO has

no evolution operators such as crossover and selection. The PSO algorithm performs an optimization task by

iteratively improving a swarm of candidate solutions with respect to an objective (fitness) function. The

candidate solutions, called particles, move through the problem space according to simple mathematical

formulae describing the particles’ positions and velocities. The movement of each particle is influenced by

its own experiences, and is also guided towards the current best known position.

During the last decade, PSO has gained increasing popularity due to its effectiveness in performing

difficult optimization tasks. The reason why PSO is attractive is that it gets better solutions, in a faster and

cheaper way compared to other methods, whereas has fewer parameters to adjust. It has been successfully

used in many research and application areas (Poli, 2007; 2008; Veeramachaneni et al., 2012). The algorithm

has also been found to be applicable in machine learning problems (Escalante et al., 2009).

To gain insights into how the algorithm works, some researchers have theoretically analyzed the PSO

algorithm. These analyses mainly aimed for the behavior of the individual particle in the PSO algorithm,

which is essential to the understanding of the search mechanism of the algorithm and to the parameter

selection (Kennedy, 1998; Ozcan, and Mohan, 1999; Clerc and Kennedy, 2002; van den Bergh, 2002;

Eberhart and Shi, 1998; Trelea, 2003; Emara, and Fattah, 2004; Gavi and Passino, 2003; Kadirkamanathan,

et al, 2006; Jiang, 2007; Poli, 2009; Bonyadi et al., 2014; Cleghorn and Engelbrecht, 2014). For example,

Kennedy analysed a simplified particle behavior and demonstrated different particle trajectories for a range

of design choices (Kennedy, 1998). Clerc and Kennedy undertook a comprehensive analysis of the particle

trajectory and its stability properties (Clerc and Kennedy, 2002). As for the algorithm itself, Van den Bergh

proved that the canonical PSO is not a global search algorithm, even not a local one (Van den Bergh, 2002;

Van den Bergh and Engelbrecht, 2006; Van den Bergh and Engelbrecht, 2010), by using the convergence

criterion provided by Solis and Wets (Solis and Wets, 1981).

In addition to the analyses mentioned above, there has been a considerable amount of work performed in

improving the original version of the PSO through empirical studies. The original PSO proposed in

(Kennedy and Eberhart, 1995) appeared to have weak local search ability, due to the slow convergence

speed of the particles. It is universally known that the tradeoff between the local search (exploitation) and

the global search (exploration) is vital for the performance of the algorithm. As such, the original PSO needs

to accelerate the convergence speed of the particles in order to achieve a better balance between exploitation

and exploration. The work in this area, first carried out by Shi and Eberhart, involved introducing an inertia

weight into the update equation for velocities, in order to control the explosion in velocity values and

partially help accelerate the convergence of individual particles (Shi and Eberhart, 1998). Clerc proposed

another acceleration method by adding a constriction factor in the velocity update equation, in order to

release the restriction on the particle’s velocity during the convergence history (Clerc, 1999). The

acceleration techniques were shown to work well, and the above two variants of PSO have laid the

foundation for further enhancement of the PSO algorithm.

In general, two types of neighborhood topologies are used when the PSO algorithm is implemented. One

is known as the global best topology or global best model (essentially the star model), which is employed in

the PSO with inertia weight (PSO-In) and the PSO with constriction factor (PSO-Co). In this topology

model, the search of the particles is guided by the global best position as well as their personal best

positions. Although the algorithm with this model is able to efficiently obtain the best approximate solutions

for many problems, some researchers argued that this model may be prone to encounter premature

convergence when solving harder problems. If the global best particle sticks to a local or suboptimal point, it

would mislead the other particles to move towards that point. In other words, other promising search areas

might be missed. This had led to the investigation of other neighborhood topologies known as the local best

(lbest) models, first studied by Eberhart and Kennedy (1995) and subsequently in depth by many other

researchers (Suganthan, 1999; Kennedy, 1999; 2002; Liang and Suganthan, 2005; Mendes, et al., 2004;

Parrott and Li, 2006; Bratton and Kennedy, 2007; Kennedy and Mendes, 2002; van den Bergh and

Engelbrecht, 2004; Lane et al., 2004; Li, 2004). The objective there was to find other possible topologies to

improve the performance of the PSO algorithm. Engelbrecht (2013) carried out a comprehensive and

elaborate empirical comparison of the gbest PSO and lbest PSO algorithms, on a suite of 60 benchmark

boundary constrained optimization problems of varying complexities. The statistics of their experimental

results show that neither of the two types of algorithms can be considered to outperform the other, not even

for specific problem classes in terms of convergence, exploration ability, and solution accuracy.

Another way to possibly improve the PSO algorithm is to directly sample new positions during the

search. Thus, some researchers proposed several probabilistic PSO algorithms, which simulate the particle

trajectories by directly sampling according to a certain probability distribution (Kennedy, 2003; 2004; Sun,

et al., 2012; Krohling, 2004; Secrest and Lamon, 2003; Richer and Blackwell, 2006; Kennedy, 2006). The

Bare Bones PSO (BBPSO) family is a typical class of probabilistic PSO algorithms (Kennedy, 2003). In

BBPSO, each particle does not have a velocity vector, but its new position is sampled “around” a supposedly

good one, according to a certain probability distribution, such as the Gaussian distribution in the original

version (Kennedy, 2003). Several other new BBPSO variants used other distributions which seem to

generate better results (Kennedy, 2004; 2006). Recently, some researchers employed stochastic process

models, such as Markov chains, to analyse the convergence of the Bare Bone PSO (Poli and Langdon, 2007;

Zhang et al., 2014)

This paper is focused on the so-called random drift particle swarm optimization (RDPSO), which is

inspired by the free electron model in metal conductors in an external electric field (Omar, 1993). The basics

of the original concept of the random drift model for PSO were sketched in our previous work (Sun et al.,

2010). In the limited initial version of the algorithm (Sun et al., 2010), the velocity of the particle’s drift

motion is simply expressed by the summation of the cognition part and the social part in the velocity update

equation of the original PSO, which is not consistent with the physical meaning of the random drift model.

This paper is to use a more concise form for the drift velocity, which is more in line with the physical

meaning of the model, as well as a novel strategy for determining the random velocity, and thus it presents a

new and different version of the RDPSO algorithm. In (Sun et al., 2014a), an RDPSO version with double

exponential distribution was validated by testing the algorithm on biochemical system identification

problems, while in this paper, a Gaussian distribution is employed to sample the particles’ random velocities

in the RDPSO algorithm. In (Sun et al., 2014b), this version of RDPSO, along with two improved variants,

were applied for training Hidden Markov Models for biological multiple sequence alignment, which is an

important machine learning problem in bioinformatics.

This paper presents the extension of our work on the RDPSO algorithm. Its purpose is to gain an

in-depth understanding of how the RDPSO works by making comprehensive theoretical analyses of the

behavior of the individual particle in the RDPSO and the search behavior of the algorithm, and to propose

four new variants of the RDPSO based on different random velocities and neighborhood topologies, which

makes the current work very different from our previous work on the algorithm. Comprehensive empirical

studies on the RDPSO algorithm and performance comparison with other PSO variants by using fourteen

benchmark functions from the CEC2005 benchmark suite are also performed to verify the effectiveness of

the proposed algorithms.

The remainder of the paper is organized as follows. Section 2 describes the motivation and principle of

the RDPSO algorithm. Section 3 presents the analyses of the RDPSO algorithm, and section 4 gives the four

proposed RDPSO variants. Empirical studies on the parameter selection for the RDPSO algorithm and the

performance comparison are provided in Section 5. Finally, the paper is concluded in Section 6.

2. Random Drift Particle Swarm Optimization (RDPSO)

2.1 Basic Definitions and Terminology for PSO

In a PSO with M individuals, each individual is treated as a volume-less particle in the N-dimensional space,

with the current position vector and the velocity vector of particle i (Mi 1) at the nth iteration

represented as),,,(,

2

,

1

,,

N

nininini XXXX  and),,,(,

2

,

1

,,

N

nininini VVVV  . Each particle i also has the personal best

(pbest) position vector),,,(,

2

,

1

,,

N

nininini PPPP  at the nth iteration, which records the position giving the best

fitness value (i.e. the objective function value) of the particle from the initialization to the current iteration.

Besides, there is a vector),,,(21 N

nnnn GGGG  , known as the global best (gbest) position, recording the

position with the best fitness value found by the whole particle swarm so far. Without loss of generality, we

consider the following minimization problem:

)(Minimize Xf , s.t. NRSX  , (1)

where)(Xf is an objective function and S is the feasible space. Accordingly, niP , can be found by














)()(if

)()(if

1,,1,

1,,,

,

ninini

ninini

ni
PfXfP

PfXfX
P , (2)

and
nG updated by

ngn PG , , where)]([minarg ,
1

ni
Mi

Pfg


 . (3)

In the basic PSO algorithm, the particle updates its velocity and position at the (n+1)th iteration according to

the following equations:

)()(,,2,,,1,1,

j

ni

j

n

j

ni

j

ni

j

ni

j

ni

j

ni

j

ni XGRcXPrcVV  , (4)

 j

ni

j

ni

j

ni VXX 1,,1,   , (5)

for NjMi ,2,1;,2,1   , where 1c and 2c are known as the acceleration coefficients, and the parameters

j

nir , and j

niR , are sequences of two different random numbers distributed uniformly on (0, 1), which is

denoted by)1,0(~, ,, URr j

ni

j

ni . Generally, the value of j

niV , is restricted within the interval],[maxmax VV .

2.2 The Motivation of the RDPSO Algorithm

It has been demonstrated that the convergence of the whole particle swarm may be achieved if each

particle converges to its local focus,),,(,

2

,

1

,,

N

nininini pppp  , defined by the following coordinates (Clerc and

Kennedy, 2002):

Nj
Rcrc

GRcPrc
p

j

ni

j

ni

j

n

j

ni

j

ni

j

nij

ni 



 1,

,2,1

,2,,1

, , (6)

or
j

n
j
ni

j
ni

j
ni

j
ni GPp)1(,,,,   , (7)

where)(,2,1,1,
j
ni

j
ni

j
ni

j
ni Rcrcrc  , with regard to the random numbers

j
nir , and

j
niR , defined in equations

(4), (6). The acceleration coefficients 1c and 2c in the original PSO are generally set to be equal, namely,

21 cc  , and thus,
j
ni, is a sequence of random numbers uniformly distributed on (0,1). As a result,

equation (7) can be restated as

j
n

j
ni

j
ni

j
ni

j
ni GPp)1(,,,,   ,)1,0(~, Uj

ni . (8)

In fact, as the particles are converging to their own local attractors, their current positions, pbest positions,

local focuses and the gbest position are all converging to one point. Since nip , is a random point uniformly

distributed within the hyper-rectangle with niP , and nG being the two ends of its diagonal, the particle’s

directional movement towards nip , makes the particle search around this hyper-rectangle and improves its

fitness value locally. Hence, this directional movement essentially reflects the local search of the particle.

 The motivation of the proposed RDPSO algorithm comes from the above trajectory analysis of the PSO

and the free electron model in metal conductors placed in an external electric field (Omar, 1993). According

to this model, the movement of an electron is the superimposition of the thermal motion, which appears to

be a random movement, and the drift motion (i.e., the directional motion) caused by the electric field. That is,

the velocity of the electron can be expressed by VDVRV  , where VR and VD are called the random

velocity and the drift velocity, respectively. The random motion (i.e., the thermal motion) exists even in the

absence of the external electric field, while the drift motion is a directional movement in the opposite

direction of the external electric field. The overall physical effect of the electron’s movement is that the

electron careens towards the location of the minimum potential energy. In a non-convex-shaped metal

conductor in an external electric field, there may be many locations of local minimum potential energies,

which the drift motion generated by the electric force may drive the electron to. If the electron only had the

drift motion, it might stick into a point of local minimum potential energy, just as a local optimization

method converges to a local minimum of an optimization problem. The thermal motion can make the

electron more volatile and, consequently, helps the electron to escape the trap of local minimum potential

energy, just as a certain random search strategy is introduced into the local search technique to lead the

algorithm to search globally. Therefore, the movement of the electron is a process of minimizing its potential

energy. The goal of this process is essentially to find out the minimum solution of the minimization problem,

with the position of the electron represented as a candidate solution and the potential energy function as the

objective function of the problem.

2.3 Description of the RDPSO Algorithm

Inspired by the above facts, we assume that the particle in the RDPSO behaves like an electron moving

in a metal conductor in an external electric field. The movement of the particle is thus the superposition of

the thermal and the drift motions. The thermal motion implements the global search of the particle, while the

drift motion mainly implements the local search. The trajectory analysis, as described in the first paragraph

of this subsection, indicates that, in the canonical PSO, the particle’s directional movement toward its local

attractor nip , reflects the local search of the particle. In the proposed RDPSO, the drift motion of the

particle is also defined as the directional movement towards nip , . It represents the combination of the

cognition part and the social part of the canonical PSO and, thus, is the main inheritance of the RDPSO

algorithm from the canonical PSO algorithm. In the RDPSO algorithm, the ‘inertia part’ in the velocity

equation of the canonical PSO is replaced by the random velocity component, which is the main difference

between the RDPSO algorithm and the canonical PSO algorithm. Therefore, the velocity of the particle in

the RDPSO algorithm has two components, i.e., the thermal or random component, and the drift component.

Mathematically, the velocity of particle i in the jth dimension can be expressed by j
ni

j
ni

j
ni VDVRV 1,1,1,  

(Mi 1 , Nj 1), where j
niVR 1,  and j

niVD 1,  are the random velocity component and the drift

velocity component, respectively.

A further assumption is that the value of the random velocity component j
niVR 1,  follows the Maxwell

velocity distribution law (Kittel and Kroemer, 1980). Consequently, j

ni
VR

1, 
 essentially follows a normal

distribution (i.e., Gaussian distribution) whose probability density function is given by

2
1,

2

1,

)(2

1,2

1
)(

j
ni

j
ni

v

j
ni

VR
evf 











, (9)

where
j

ni 1, 
 is the standard deviation of the distribution. Using stochastic simulation, we can express

j

ni
VR

1, 
 as

j

ni

j

ni

j

ni
VR

1,1,1, 
  , (10)

where j

ni 1, 
 is a random number with a standard normal distribution, i.e.,)1,0(~

1,
Nj

ni 
 . j

ni 1, 
 must be

determined in order to calculate j

niVR 1,  . An adaptive strategy is adopted for j

ni 1, 
 :

|| ,1,
j
ni

j
n

j
ni XC   , (11)

where),,,(21 N

nnnn CCCC  is known as the mean best (mbest) position defined by the mean of the pbest

positions of all the particles, namely,

)1(,)/1(
1 , NjPMC

M

i

j
ni

j
n   

. (12)

Thus, equation (10) can be restated as

j
ni

j
ni

j
n

j
ni XCVR 1,,1, ||    , (13)

where 0 is an algorithmic parameter called the thermal coefficient. In the next section, where the

search behavior of individual particles and the whole swarm is analyzed, we will find that this random

velocity component drives the particle away from the global best position, so it indeed reflects the global

search of the particle.

The role of the drift velocity component, j

niVD 1,  , is to implement the local search of the particle, which

can be achieved by the directional movement toward ni
p

, , as has been mentioned above. In this paper we

use the following simple linear expression for j

ni
VD

1, 
:

)(,,1,
j
ni

j
ni

j
ni XpVD   , (14)

where 0β is a deterministic constant and is another algorithmic parameter called the drift coefficient.

This form of j

niVD 1,  in equation (14) is more concise than the one in (Sun et al., 2010) and it has a clear

physical meaning that it reflects the particle’s directional movement towards nip , . In Theorem A1 in the

Appendix, it is proven that, if there is only drift motion and, i.e., j

ni

j

ni VDV 1,1,   , j

ni

j

ni pX ,,  as n when

20   , meaning that the expression of j

niVD 1,  in equation (14) can indeed guarantee the particle’s

directional movement toward nip , as an overall result. More specifically, if 10   , j

niX , asymptotically

converges to j

nip , , which means that the sampling space of
1, ni

X does not cover the hyper-rectangle with

niP , and nG being the two ends of its diagonal. If 1 , j

niX 1,  is identical to j

nip , so that the sampling

space of 1, niX is exactly the hyper-rectangle. If 21   , j

niX , converges to j

nip , in oscillation and thus

the sampling space of 1, niX covers the hyper-rectangle and even other neighborhoods of nG , where points

with better fitness values may exist. As such, when we select the value of  for real application of the

RDPSO algorithm, it may be desirable to set 21   for good local search ability of the particles.

With the above specification, a novel set of update equations can be obtained for the particle of the

RDPSO algorithm:

)(|| ,,1,,1,

j

ni

j

ni

j

ni

j

ni

j

n

j

ni XpXCV    , (15)

j

ni

j

ni

j

ni VXX 1,,1,   . (16)

The procedure of the algorithm is outlined below in Algorithm 1. Like in the canonical PSO, the value of

j

niV , in the RDPSO is also restricted within the interval],[maxmax VV at each iteration.

3. Analysis of the RDPSO Algorithm

3.1. Dynamical Behaviour of the RDPSO Particle

 An analysis of the behavior of an individual particle in the RDPSO is very essential to understanding

how the RDPSO algorithm works and how to select the algorithmic parameters. Since the particle’s velocity

is the superimposition of the thermal velocity and the drift velocity, the conditions for the particle’s position

to converge or to be bounded are far more complex than those given in subsection 3.1 when only the drift

motion exists. In this subsection, we undertake theoretical and empirical studies on the stochastic dynamical

behavior of the particle in the RDPSO. Since each dimension of the particle’s position is updated

independently, we only need to consider a single particle in the one-dimensional space without loss of

generality. As such, equations (15) and (16) can be simplified as

)(|| 11 nnnn XpXCV    , (17)

111   nnn VXX , (18)

where nX and nV denote the current position and the velocity of the particle, respectively, and the local

focus of the particle and the mean best position are denoted by p and C , which are treated as

probabilistically bounded random variables, i.e., 1}||{sup pP and 1}||{sup CP . In equation (17),

}{ n is a sequence of independent identically distributed random variables with)1,0(~ Nn .

Since the distribution of n is symmetrical with respect to the ordinate, equation (17) has the

following equivalence:

)()(11 pXCXV nnnn    , (19)

that is, the probability distributions of 1nV in equations (17) and (19) are the same. Based on equations (19)

and (18), several theorems on the dynamical behavior of a single particle in RDPSO are proved in the

Appendix. As shown by Theorem A2, the particle’s behavior is related to the convergence of  


n

i
in

1
 ,

where)1(  nn subject to a normal distribution, namely,),1(~ 2 Nn . It is concluded by

Theorem A3 that if and only if 0|)|(ln  nE  , namely, the values of  and  satisfy the following

relationship:

0||ln
2

1 2

2

2

)]1([

 







dxex

x






, (20)

n is probabilistically bounded and, thus, the position of the particle is probabilistically bounded too. In

inequality (20), the value of  is an improper integral which is undefined at 0x . By a Dirichlet test, the

improper integral in equation (20) is convergent if both  and  are two finite numbers (Courant, 1989).

Inequality (20) does not provide any explicit constraint relation between  and  due to the

difficulty in calculating the improper integral in the inequality. A sufficient condition for 0 (i.e.

0limlim
1

  

n

i
i

n
n

n
) is derived in Theorems A4. It says that if the values of  and  are subject to

the constraint:

10  , 20   , (21)

0 and  


n

i
in

1
 converges to zero, which consequently ensures the probabilistic boundedness of

the particle’s position as shown. Figure 1 visualizes some simulation results on the stochastic behaviour of

the particle by using different values of  and  , with C fixed at 001.0X , p fixed at the origin and the

initial position of the particle set as 10000 X . Figures 1 (a) to (c) show the results with  and 

satisfying constraint (21). It can be observed that the particle’s position oscillated around p and C, implying

that the position is probabilistically bounded in these cases. Figures 1 (d) to (i) show that the particle’s

position is probabilistically bounded in some cases when  and  do not satisfy constraint (21). This

verifies that constraint (21) is a sufficient condition for 0 or 0lim 


n
n

 . At other values of  and 

not satisfying (21), the value of ||ln pX n  reached 700 and stopped changing after a certain number of

iterations, as shown in Figures 1 (j) to (o). In such cases, the value of || pX n  reaches the maximum

positive value that the computer can identify, so that it can be considered to have diverged to infinity.

Constraint (21) is of practical significance to the application of the RDPSO algorithm, although it does

not give the necessary condition for 0 . In practice, the values of  and  can generally be selected

within the intervals given by (21), for a satisfactory algorithmic performance when the algorithm is applied

to real-world problems. In Section 4, a detailed investigation into how to select these algorithmic parameters

is undertaken by using a set of benchmark functions from the CEC2005 benchmark suite.

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

10

n

ln
|X

n
-p

|



(a)

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

10

n

ln
|X

n-
p|



(b)

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

n

ln
|X

n
-p

|



(c)

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

10

n

ln
|X

n
-p

|



(d)

0 2000 4000 6000 8000 10000
-20

-10

0

10

20

30

40

50

n

ln
|X

n
-p

|



(e)

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

10

15

20

25

n

ln
|X

n
-p

|



(f)

0 2 4 6 8 10

x 10
4

-20

0

20

40

60

80

100

n

ln
|X

n-
p|



(g)

0 2 4 6 8 10

x 10
4

-20

0

20

40

60

80

100

n

ln
|X

n-
p|



(h)

0 2 4 6 8 10

x 10
5

-100

0

100

200

300

400

500

600

n

ln
|X

n
-p

|



(i)

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

n

ln
|X

n-
p|



(j)

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

n

ln
|X

n
-p

|



(k)

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

n

ln
|X

n-
p|



(l)

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

n

ln
|X

n
-p

|



(m)

0 2 4 6 8 10

x 10
5

-200

0

200

400

600

800

n

ln
|X

n
-p

|



(n)

0 2 4 6 8 10

x 10
4

-200

0

200

400

600

800

n

ln
|X

n
-p

|



(o)

Figure 1 The figure visualizes the simulation results for the behavior of the particle at different values of  and  .

Figures (a) to (c) show that when the values of  and  are selected within the intervals)1,0(and)2,0(, the

particle’s position is probabilistically bounded. Figures (d) to (i) show that the particle’s position may be also

probabilitcally bounded at some values of  and  not satisfying constraint (21). Figures (j) to (o) show some

cases that when  and  do not satisfy constraint (21),  ||ln pX n
 (i.e.  || pX n

) as n increases.

3.2 The RDPSO’s Search Behavior

In the above analysis, it is assumed that each particle in the RDPSO updates its velocity and position

independently, with the mean best position C and the local focus p being treated as independent

probabilistically bounded random variables, and thus it is revealed that the behavior of the particle is related

to the convergence or the boundedness of n . However, the actual situation is more complex when the

RDPSO algorithm is running in a real-world landscape. During the search process of the RDPSO algorithm,

each particle is influenced not only by n but also by the points nC and nip , , which can not be treated as

independent random variables anymore, but are relevant to the other particles. As for nC , it is the mean of the

pbest positions of all the particles, moving with each pbest position varying in the course of search. The

local focus nip , , is a random point associated with the pbest position of particle i (niP ,) and the gbest position

nG that rotates among the pbest positions of the member particles according to their fitness values. In

contrast to nC , nip , , as well as niP , and nG , varies more dramatically, since nC averages the changes of

all the pbest positions.

(a)

(b)

Figure 2 The figure shows that the mbest position j

nC pulls or pushes the particle away from j

nG . The direction of the

particle’s movement is determined by the sign of j

ni 1, 

Generally, the pbest positions of all the particles converge to a single point when the RDPSO algorithm

is performing an optimization task, which implies that 1}0||lim{ , 


nin
n

pCP as mentioned in the proof of

Theorem A1. Referring to equations (A7) to (A10), we can infer that if and only if 0 , 0||lim , 


nni
n

CX

or 0||lim ,, 


nini
n

pX . That means the current positions and the pbest positions of all the particles converge

to a single point when 0 . It can also be found from Theorems A2 and A3 that, when 0 , the particle’s

01, 

j

ni

j

nCj

niX ,

j

nG
01, 

j

ni

01, 

j

nij

nC j

niX ,
j

nG

01, 

j

ni

position is probabilistically bounded and oscillates around but does not converge to nC or nip , , even

though 1}0||lim{ , 


nin
n

pCP . When 0 , it is shown by Theorems A2 and A3 that the particle’s current

position diverges and the explosion of the whole particle swarm happens.

In practical applications, it is always expected that the particle swarm in the RDPSO algorithm can

converge to a single point, like that in the canonical PSO. Essentially, there are two movement trends, i.e. the

random motion and the drift motion, for each particle in the RDPSO, as has been described in the motivation

of the algorithm. These two motions reflect the global search and the local search, respectively. The drift

motion, represented by the j

niVD 1,  in the velocity update equation (15), draws the particle towards the local

focus and makes the particle search in the vicinity of the gbest position and its pbest position so that the

particle’s current and pbest positions can constantly come close to the gbest position. On the other hand, the

random component j

niVR 1,  results in a random motion, leading the particle to be so volatile that its current

position may reach a point far from the gbest position and its pbest position. This component can certainly

provide the particle a global search ability, which, in the canonical PSO algorithm, is given by the velocity at

the last iteration, i.e. j

niV 1,  . Nevertheless, an important characteristic distinguishing the RDPSO from other

randomized PSO methods is that the random component of the particle’s velocity uses an adaptive standard

deviation for its distribution, i.e. || ,

j

n

j

ni CX  . Such a random component makes the random motion of the

particle have a certain orientation. The effect of j

niVR 1,  is to pull or push the particle away from the gbest

position by j

nC as shown by Figure 2, not only to displace the particle randomly as the mutation operation

does in some variants of PSO and evolutionary algorithms. Figure 2(a) shows that, when j

nC is at the left

side of j

niX , and j

nG , j

n

j

ni

j

n

j

ni CXCX  ,, || . The drift component)(,,

j

ni

j

ni Xp  draws the particle right

towards j

nG . If 01, 

j

ni , 0)(|| 1,,1,,  

j

ni

j

n

j

ni

j

ni

j

n

j

ni CXCX  , which makes the particle move to the

right further and, thus, pushes j

niX , away from j

nG . If 01, 

j

ni , 0)(1,,  

j

ni

j

n

j

ni CX  , whose effect is

that the particle’s position is pulled away from j

nG . Figure 2(b) illustrates the case when j

nC is at the right

side of j

niX , and j

nG . Only the effect of the sign of j

ni 1,  on the direction of the particle’s motion is

opposite to that in Figure 2(a). Generally speaking, the longer the distance || ,

j

n

j

ni CX  , the farther the

particle’s position at next iteration j

niX 1,  will be away from the gbest position. If the particle’s position is

close to the gbest position, the random component can help the particle escape the gbest position easily,

when the gbest position is stuck into a local optimal solution. As far as the whole particle swarm is

concerned, the overall effect is that the RDPSO has a better balance between the global search and the local

search, as illustrated below.

Figure3. The figure shows that nC is shifted toward the lagged particles and thus far from the particles clustering

around nG . The particles are pulled or pushed away from the neighbourhood of nG and would search the landscape

globally.

In the RDPSO method, the swarm could not gather around the gbest position without waiting for the

lagged particles. Figure 3 depicts the concept where the pbest positions of several particles, known as the

lagged particles, are located far away from the rest of the particles and the gbest position nG , while the rest

of the particles are nearer to the global best position, with their pbest positions located within a

neighbourhood of the gbest position. The mbest position nC would be shifted towards the lagged particles

and be located outside the neighbourhood. When the lagged particles are chasing after their colleagues, that

is, converging to nG , nC is approaching nG slowly. The current positions of the particles within the

nG

nC

Lagged Particles

neighbourhood would be pulled or pushed outside the neighbourhood by nC , and the particles would

explore the landscape globally around nG so that the current nG could skip out onto a better solution. As

nC is careening toward the neighbourhood, the exploration scope of the particle is becoming narrower.

After the lagged particles move into the neighbourhood of the gbest position,
n

C also enter the

neighbourhood and the particles would perform the same search process based on a smaller neighbourhood

of the gbest position. In the canonical PSO, each particle converges to the gbest position independently and

has less opportunity to escape from the neighbourhood of the gbest position. When the speed of the particle

is small, it is impossible for the particles within the neighbourhood to jump out of the neighbourhood. As a

result, these particles would perform local search around the gbest position and only the lagged particles

could search globally. Evident from the above analysis, the RDPSO algorithm generally has a better balance

between exploration and exploitation than the canonical PSO.

 Moreover, different from mutation operations that play minor roles in some variants of PSO and

evolutionary algorithms, the random motion has an equally important role as the drift motion in the RDPSO.

Owing to the random motion oriented by nC , the RDPSO achieves a good balance between the local and

global searches during the search process. By the influences of both nC and their local focuses, the

particles in the RDPSO have two movement trends, convergence and divergence, but the overall effect is

their convergence to a common point of all the particles if 0 . The convergence rate of the algorithm

depends on the values of  and  , which can be tuned to balance the local and global search, when the

algorithm is used for a practical problem.

4. The Proposed Variants of RDPSO

In order to investigate the RDPSO in depth, some variants of the algorithm are proposed in this paper.

Two methods are used for determining the random component of the velocity. One employs equation (13)

for this component and the other replaces the mbest position in (13) by the pbest position of a randomly

selected particle in the population at each iteration. For convenience, we denote the randomly selected pbest

position by nC . For each particle, the probability for its pbest position to be selected as nC is 1/M.

Consequently, the expected value of nC equals to nC , that is,

nni

M

i

n CP
M

CE  


,

1

1
)(. (22)

However, since the nC appears to be more changeful than nC , the current position of each particle at each

iteration shows to be more volatile than that of the particle with equation (13), which diversifies the particle

swarm and in turn enhances the global search ability of the algorithm.

 In addition to the global best model, the local best model is also examined for RDPSO, in order to

make a comprehensive empirical analysis of the RDPSO algorithm in different neighborhood topologies.

The ring topology is a widely used neighborhood topology for the local best model (Li, 2010; Engelbrecht,

2013), in which each particle connects exactly to two neighbors. The standard PSO (SPSO) in (Bratton and

Kennedy, 2007) is defined by the integration of the PSO-Co with the ring topology. Although there are

various neighborhood topologies, we chose the ring topology for the RDPSO with the local best model.

Thus, the combination of the two topologies with the two strategies for the random velocity component

produces the four resulting RDPSO variations:

RDPSO-Gbest: The RDPSO algorithm with the global best model and the random velocity

component described by equation (13).

RDPSO-Gbest-RP: The RDPSO algorithm using the global best model and employing a randomly

selected pbest position to determine the random velocity component.

RDPSO-Lbest: The RDPSO algorithm with the ring neighborhood topology and the random velocity

component in (13), where, however, the mbest position is the mean of the pbest positions of the neighbors of

each particle and the particle itself, instead of the mean of the pbest positions of all the particles in the

population.

RDPSO-Lbest-RP: The RDPSO algorithm using the ring neighborhood topology and employing the

pbest position of a particle randomly selected from the neighbors of each particle and the particle itself.

5. Experimental Results and Discussion

5.1. Benchmark Problems

The previous analysis of the RDPSO provides us with a deep insight into the mechanism of the

algorithm. However, it is not sufficient to evaluate the effectiveness of the algorithm without comparing it

with other methods on a set of benchmark problems. To evaluate the RDPSO in an empirical manner, the

first fourteen functions from the CEC2005 benchmark suite (Suganthan, 2005) were employed for this

purpose. Functions F1 to F5 are unimodal, functions F6 to F12 are multi-modal, and F13 and F14 are two

expanded functions. The mathematical expressions and properties of the functions are described in detail in

(Suganthan, 2005). The codes in Matlab, C and Java for the functions can be found at

http://www.ntu.edu.sg/home/EPNSugan/. The dimension of each tested benchmark function in our

experiments is 30.

5.2. Empirical Studies on the Parameter Selection of the RDPSO Variants

Parameter selection is the major concern when a stochastic optimization algorithm is being employed to

solve a given problem. For the RDPSO, the algorithmic parameters include the population size, the

maximum number of iterations, the thermal coefficient  and the drift coefficient  . Like in the canonical

PSO, the population size in the RDPSO is recommended to be set from 20 to 100. The selection of the

maximum number of iterations depends on the problem to be solved. In the canonical PSO, the acceleration

http://www.ntu.edu.sg/home/EPNSugan/

coefficients and the inertia weight (or the constriction factor) have been studied extensively and in depth

since these parameters are very important for the convergence of the algorithm. For the RDPSO algorithm,

 and  play the same roles as the inertia weight and the acceleration coefficients for the canonical PSO.

In Section 3, it was shown that it is sufficient to set  and  according to (21), such that 0 , to

prevent the individual particle from divergence and guarantee the convergence of the particle swarm.

However, this does not mean that such values of  and  can lead to a satisfactory performance of the

RDPSO algorithm in practical applications. This section intends to find out, through empirical studies,

suitable settings of  and  so that the RDPSO may yield good performance in general.

There are various control methods for the parameters  and  when the RDPSO is applied to

practical problems. A simple approach is to set them as fixed values when the algorithm is executed. Another

method is to decrease the value of the parameter linearly during the course of the search process. In this

work, we fixed the value of  in all the experiments and employed the two control methods for  ,

respectively.

To specify the value of  and  for real applications of the RDPSO, we tested the RDPSO-Gbest,

RDPSO-Gbest-RP, RDPSO-Lbest, and RDPSO-Lbest-RP with different parameter settings on three

frequently used functions from the CEC2005 benchmark suite: Shifted Rosenbrock Function (F6), Shifted

Rotated Griewank’s Function (F7), and Shifted Rastrigin’s Function (F9), using the two methods for

controlling  with  fixed at 1.5 or 1.45. The initial position of each particle was determined randomly

within the initialization range. One reason why only three functions were used for parameter selection is that

we want to show that the RDPSO algorithm is not very sensitive to the parameter values, and that the

parameter values found by optimizing these three functions can lead to good performance when optimizing

other functions in general. Another reason is that these three functions are widely used in the existing

literature and that the optimal parameter values for each function are very different, that is, the optimal

parameter values for a function may have a poor performance when used for another function.

 For each parameter configuration, each algorithm, using 40 particles, was tested for 100 runs on every

benchmark function. To determine the effectiveness of each algorithm for the  setting under a control

method with a fixed value of  on each problem, the best objective function value (i.e., the best fitness

value) found after 5000 iterations was averaged over 100 runs of tests for that parameter setting and the

same benchmark function. The results (i.e., the mean best fitness values) obtained by the parameter settings

with the same control method for  were compared across the three benchmarks. The best parameter

setting with each control method for  was selected by ranking the averaged best objective function values

for each problem, summing the ranks, and taking the value that had the lowest summed (or average) rank,

provided that the performance is acceptable (in the top half of the rankings) in all the tests for a particular

parameter configuration.

The rankings of the results for the RDPSO-Gbest are plotted in Figure 4. When the fixed value method

was used for  , it was set to a range of values subject to constraint (21), with  fixed at 1.5 or 1.45 in

each case. Results obtained for other parameter settings were very poor and are not considered for ranking.

The best average rank among all the tested parameter configurations occurs when 7.0 and 5.1 .

When linearly varying  was used, its initial value
1

 and final value
2

 (
21

 ) were selected from

a series of different values subject to constraint (21), with  set at 1.5 or 1.45. Only acceptable results are

ranked and plotted in Figure 4. It was found that with 45.1 , decreasing  linearly from 0.9 to 0.3

leads to the best performance among all the tested parameter settings.

0.78 0.75 0.73 0.70 0.68 0.65 0.63 0.60 0.78 0.75 0.73 0.70 0.68 0.65 0.63 0.60
0

5

10

15

R
a
n
k

Fixed for the RDPSO-Gbest

Rank for Rosenbrock
Rank for Ristrigin
Rank for Griewank
Average Rank



 



1.0→0.4 1.0→0.3 1.0→0.2 0.9→0.4 0.9→0.3 0.9→0.2 0.8→0.4 0.8→0.3 0.8→0.2 1.0→0.4 1.0→0.3 1.0→0.2 0.9→0.4 0.9→0.3 0.9→0.2 0.8→0.4 0.8→0.3 0.8→0.2
0

5

10

15

20

R
an

k

Linearly Decreasing for the RDPSO-Gbest

Rank for Rosenbrock
Rank for Rastrigin
Rank for Griewank
Average Rank


 



Figure 4. The rankings of the mean best fitness values for each of the three benchmarks and the average rank for the

RDPSO-Gbest.

The rankings of the results for the RDPSO-Gbest-RP are visualized in Figure 5. It is clear from these

results that the value of  , whether it used the fixed value or time-varying method, should be set relatively

small, so that the algorithm is comparable in performance with the RDPSO-Gbest, when  was given.

Results obtained with  outside the range [0.38, 0.58] were of poor quality and were not used for ranking.

As shown in Figure 5, when the fixed value method for  was used, the best average ranks among all

tested parameter settings were obtained by setting 5.0 and 45.1 . On the other hand, the algorithm

exhibited the average best performance when 45.1 and  was decreasing linearly from 0.6 to 0.2, for

the method of linearly varying  .

0.58 0.55 0.53 0.50 0.48 0.45 0.43 0.40 0.38 0.58 0.55 0.53 0.50 0.48 0.45 0.43 0.40 0.38
0

5

10

15

20

R
a
n
k

Fixed for the RDPSO-Gbest-RP

Rank for Rosenbrock
Rank for Rastrigin
Rank for Griewank
Average Rank



 



0.7→0.3 0.7→0.2 0.7→0.1 0.6→0.3 0.6→0.2 0.6→0.1 0.6→0.3 0.6→0.2 0.6→0.1 0.7→0.3 0.7→0.2 0.7→0.1 0.6→0.3 0.6→0.2 0.6→0.1 0.5→0.3 0.5→0.3 0.5→0.3
0

5

10

15

20

R
a
n
k

Linearly Decreasing for the RDPSO-Gbest-RP

Rank for Rosenbrock
Rank for Rastrigin
Rank for Griewank
Average Rank



 



Figure 5. The rankings of the mean best fitness values for each of the three benchmarks and the average rank for the

RDPSO-Gbest-RP.

Figure 6 shows the rankings of the results for the RDPSO-Lbest. For the fixed  method, the results of

the algorithm obtained with  outside the range [0.6, 0.78] did not participate in ranking because of their

poor qualities. The best average ranking among all the tested parameter configurations in this case occur

when 7.0 and 5.1 . For the linearly varying  method, it was identified that decreasing 

linearly from 0.9 to 0.3 with 45.1 could yield the average best quality results among all the tested

parameter configurations.

Figure 7 plots the rankings of the results for the RDPSO-Lbest-RP. For fixed  , the best average

ranking among all the tested parameter settings could be obtained when 7.0 and 45.1 . For

time-varying , the algorithm obtained the average best performance among all the tested parameter

configurations when  was decreasing linearly from 0.9 to 0.3 with 45.1 .

0.78 0.75 0.73 0.70 0.68 0.65 0.63 0.60 0.78 0.75 0.73 0.70 0.68 0.65 0.63 0.60
0

5

10

15

20

R
a
n
k

Fixed for the RDPSO-Lbest

Rank for Rosenbrock
Rank for Rastrigin
Rank for Griewank
Average Rank



 



1.0→0.4 1.0→0.3 1.0→0.20.9→0.4 0.9→0.3 0.9→0.20.8→0.4 0.8→0.3 0.8→0.21.0→0.4 1.0→0.3 1.0→0.20.9→0.4 0.9→0.3 0.9→0.2 0.8→0.4 0.8→0.3 0.8→0.2
0

5

10

15

20

R
a
n
k

Linearly Decreasing for the RDPSO-Lbest

Rank for Rosenbrock

Rank for Rastrigin

Rank for Griewank

Average Rank



 



Figure 6. The rankings of the mean best fitness values for each of the three Benchmarks and the average rank for the

RDPSO-Lbest.

0.78 0.75 0.73 0.70 0.68 0.65 0.63 0.60 0.78 0.75 0.73 0.70 0.68 0.65 0.63 0.60
0

5

10

15

20
Fixed for the RDPSO-Lbest-RP

R
a
n
k

Rank for Rosenbrock
Rank for Rastrigin
Rank for Griewank
Average Rank



 



1.0→0.4 1.0→0.3 1.0→0.2 0.9→0.4 0.9→0.3 0.9→0.2 0.8→0.4 0.8→0.3 0.8→0.2 1.0→0.4 1.0→0.3 1.0→0.2 0.9→0.4 0.9→0.3 0.9→0.3 0.8→0.4 0.8→0.3 0.8→0.2
0

5

10

15

20
Linearly Decreasing for the RDPSO-Lbest-RP

R
a
n
k



 



Figure 7. The rankings of the mean best fitness values for each of the three Benchmarks and the average rank for the

RDPSO-Lbest-RP.

5.3. Performance Comparisons among the RDPSO Variants and Other PSO Variants

To explore the generalizability of the parameter selection methods for  used for the RDPSO in the

last subsection, and to the determine whether RDPSO can be as effective as other variants of PSO, a further

performance comparison using the first fourteen benchmark functions of the CEC2005 benchmark suite was

made among the RDPSO algorithms (i.e., the RDPSO-Gbest, RDPSO-Gbest-RP, RDPSO-Lbest and

RDPSO-Lbest-RP) and other PSO variants, including the PSO with inertia weight (PSO-In) (Shi and

Eberhart, 1998a; 1998b; 1999), the PSO with constriction factor (PSO-Co) (Clerc and Kennedy, 2002; Clerc

1999), the PSO-In with local best model (PSO-In-Lbest) (Liang et al., 2006), the standard PSO (SPSO) (i.e.

PSO-Co-Lbest) (Bratton and Kennedy, 2007), the Gaussian bare bones PSO (GBBPSO) (Kennedy, 2003;

2004), the comprehensive learning PSO (CLPSO) (Liang et al., 2006), the dynamic multiple swarm PSO

(DMS-PSO) (Liang and Suganthan, 2005), and the fully-informed particle swarm (FIPS) (Mendes, 2004).

Each algorithm was run 100 times for each benchmark function, using 40 particles to search the global

optimal fitness value. At each run, the particles in the algorithms started in new and randomly-generated

positions, which are uniformly distributed within the search bounds. Each run of every algorithm lasted for

5000 iterations, and the best fitness value (objective function value) for each run was recorded.

Table 1. Mean and Standard Deviation of the Best Fitness Values after 100 runs of Each Algorithm for F1 to F7

Algorithms F1 F2 F3 F4 F5 F6 F7

PSO-In 3.9971e-028

(5.6544e-028)

263.2219

(608.4657)

3.4324e+007

(3.0220e+007)

2.7829e+003

(2.0996e+003)

4.3961e+003

(1.5331e+003)

143.7144

(336.9297)

0.3285

(1.1587)

PSO-Co 6.7053e-029

(1.0671e-028)
0.0100

(0.0939)

1.3659e+007

(1.3662e+007)

842.4768

(1.5264e+003)

6.2857e+003

1.9629e+003

57.5740

(84.2278)

0.0283

(0.0184)

PSO-In-Lbest 2.7049e-013

(5.1148e-013)

865.7861

(368.9980)

2.5658e+007

(1.0089e+007)

8.7648e+003

(1.8468e+003)

8.0095e+003

(1.0568e+003)

57.5362

(74.5821)

0.1830

(0.1093)

SPSO

(PSO-Co-Lbest)

4.2657e-036

(2.3958e-036)

0.8615

(0.7092)

3.3604e+006

(1.5549e+006)

6.3348e+003

(2.3147e+003)

5.2549e+003

(1.1583e+003)

47.3744

(79.8406)

0.0108

(0.0078)

GBBPSO 7.0941e-027

(1.9421e-026)

0.0110

(0.0174)

4.9003e+006

(2.6581e+006)

1.0432e+003

1.0819e+003

8.0391e+003

(2.8824e+003)

109.8415

(330.4848)

0.0179

(0.0170)

FIPS 1.2395e-036

(8.4958e-037)

0.1390

(0.0682)

6.9970e+006

(2.4490e+006)

4.5429e+003

(1.4685e+003)

3.3929e+003

(599.5893)

109.1170

(179.8489)

0.0147

(0.0101)

DMS-PSO 8.8399e-016

(2.1311e-015)

141.1109

(70.6632)

5.6008e+006

(2.9187e+006)

976.6745

(391.0695)

2.4263e+003

(498.7101)

211.0941

(314.9179)

0.0283

(0.0226)

CLPSO 5.2323e-017

(2.9219e-017)

1.2661e+003

(297.3666)

3.3326e+007

(8.8808e+006)

7.6045e+003

(1.7722e+003)

4.0357e+003

(489.0741)

74.2914

(31.5737)

1.0054

(0.0663)

RDPSO-Gbest

2.2871e-027

(4.3476e-028)

0.0805

(0.1341)

4.7079e+006

(3.1653e+006)

411.2758

(574.1945)

2.6293e+003

(808.8539)

60.9164

(78.5198)

0.0175

(0.0140)

RDPSO-Gbest-RP

8.1256e-037

(1.4983e-037)

0.1131

(1.0156)
2.5203e+006

(1.6334e+006)

217.8821

(269.0046)

2.2241e+003

(865.3596)

34.9274

(39.0403)

0.0130

(0.0123)

RDPSO-Lbest 3.9443e-031
(9.5470e-031)

2.4034
(1.7191)

4.9772e+006
(1.9029e+006)

1.6199e+003
(883.4518)

2.7654e+003
(638.3375)

19.5009

(16.7704)
0.0092

(0.0050)

RDPSO-Lbest-RP 5.2461e-037

(7.3587e-038)

9.3880

(6.7340)

4.8092e+006

(1.7477e+006)

3.4502e+003

(1.3764e+003)

3.9088e+003

(888.7718)

24.0065

(24.4861)

0.0093

(0.0061)

Table 2. Mean and Standard Deviation of the Best Fitness Values after 100 runs of Each Algorithm for F8 to F14

Algorithms F8 F9 F10 F11 F12 F13 F14

PSO-In 21.1149
(0.0650)

28.1848
(11.4742)

214.2491
(84.8990)

38.6029
(7.9234)

3.0743e+004
(2.9043e+004)

5.2896
(5.5476)

13.8002
(0.3444)

PSO-Co 21.1271

(0.0557)

71.0598

(22.0534)

123.1232

(51.0717)

26.6597

(5.1673)

1.0415e+004

(1.3897e+004)

4.4108

(1.2793)

12.7952

(0.4972)

PSO-In-Lbest 20.9274
(0.0518)

39.0149
(8.0007)

149.9040
(39.4806)

29.4701
(2.2549)

1.6420e+004
(8.2755e+003)

5.1283
(1.3492)

13.0249
(0.2546)

SPSO

(PSO-Co-Lbest)
20.9092

(0.0592)

65.1992

(13.3166)

90.4544

(18.4968)

29.1374

(2.1661)

4.5191e+003

(3.3662e+003)

4.1371

（0.8434）

12.6110

（0.2924）

GBBPSO 20.9631

(0.0481)

60.3143

(15.3916)

127.2546

(48.5001)

28.2383

(3.4455)

1.7318e+004

(6.4095e+004)

4.9260

(1.3859)

13.5393

(0.5470)

FIPS 20.9638

(0.0476)

47.9595

(9.9315)

170.4301

(19.0757)

32.6119

(2.5941)

3.1169e+004

(1.5581e+004)

8.4372

(1.3535)

12.7804

(0.2627)

DMS-PSO 20.9569

(0.0522)

29.5427

(7.4630)

77.6689

(11.9670)

23.8535

(2.1849)

7.4986e+003

(6.2259e+003)

5.1709

(1.7631)

12.6673

(0.3139)

CLPSO 20.9613

(0.0499)
7.3197e-006

(1.2443e-005)

118.2419

(14.6277)

23.8084

(2.1761)

3.4442e+004

(7.6392e+003)

3.8576

(0.3906)

13.1524

(0.1691)

RDPSO-Gbest 20.9558

(0.0641)

22.7650

(5.7728)

78.6024

(38.9282)

21.6689

(7.6173)

6.0361e+003

(5.1260e+003)

3.6656

(1.6923)

12.4291

(0.4285)

RDPSO-Gbest-RP 20.9602
(0.0569)

31.9085
(8.7969)

82.5152
(47.7362)

20.0701

(6.9879)
2.8227e+003

(3.3963e+003)

4.1837
(2.9678)

12.5091
(0.4033)

RDPSO-Lbest 20.9540

(0.0508)

27.8237

(6.0386)
49.8606

(12.9486)

22.1984

(3.0396)

4.0616e+003

(2.8103e+003)

3.5717

(1.1045)

12.4730

(0.2576)

RDPSO-Lbest-RP

20.9613
(0.0543)

36.4589
(7.9391)

51.4390
(7.9391)

23.0731
(1.8929)

3.7315e+003
(1.9675e+003)

3.3328

(0.7410)
12.3497

(0.7410)

Table 3. Ranking by Algorithms and Problems Obtained from “Stepdown” Multiple Comparisons

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F1

3

F14 Ave.Rank Final

rank

PSO-In 7 =9 =11 7 8 =9 11 15 =3 12 12 =10 =8 12 9.57 12

PSO-Co 6 =1 9 5 10 7 =8 15 12 =7 7 7 =5 =7 7.57 9

PSO-In-Lbest 12 11 10 12 =11 =3 10 =1 =7 10 10 =8 =8 9 8.71 11

SPSO 4 6 2 10 9 =3 =1 =1 =10 =3 =8 4 =5 =5 5.07 5

GBBPSO 9 =1 =3 =3 =11 =9 =4 =3 =10 =7 =8 =8 =8 11 6.79 7

FIPS 3 =3 8 9 5 =9 =4 =3 9 11 11 =10 12 =7 7.43 8

DMS-PSO 11 =9 =3 =3 =1 12 =8 =3 =3 =3 =4 =5 =8 =5 5.57 6

CLPSO 10 12 =11 11 =6 =8 12 =3 1 =7 =4 =10 4 10 7.79 10

RDPSO-Gbest 8 =3 =3 2 =1 =3 =4 =3 2 =3 =1 =5 =1 =1 2.86 3

RDPSO-Gbest-RP 2 =3 1 1 =1 =3 =4 =3 6 =3 =1 =1 =5 =1 2.50 1

RDPSO-Lbest 5 7 =3 6 4 =1 =1 =3 =3 =1 =1 =1 =1 =1 2.71 2

RDPSO-Lbest-RP 1 8 =3 8 =6 =1 =1 =3 =7 =1 =4 =1 =1 =1 3.29 4

For the four RDPSO variants, it was shown in the last subsection that the linearly decreasing  with

fixed  was stable in the search performance, although fixing both  and  had better results in some

cases. Thus, in this group of experiments for performance comparison, the linearly decreasing  with fixed

 was used for the RDPSO variants, and the parameters for each case were set as those indentified and

recommended by the previous experiments on the three benchmark functions. These parameter

configurations were selected from the experiments on the three functions, so they are far from optimal. The

parameter configurations for other PSO variants were the same as those recommended by the existing

publications. For the PSO-In, the inertia weight linearly decreased from 0.9 to 0.4 in the course of the run

and we fixed the acceleration coefficients (c1 and c2) at 2.0, as in the empirical study performed by Shi and

Eberhart (1999). For the PSO-Co, the constriction factor was set to be 7298.0 , and the acceleration

coefficients c1=c2=2.05, as recommended by Clerc and Kennedy (2002). Eberhart and Shi also used these

values of the parameters when comparing the performance of the PSO-Co with that of the PSO-In (Eberhart

and Shi, 2000). For the SPSO, the ring topology was used and other parameters were set as those in the

PSO-Co (Bratton and Kennedy, 2007). Parameter configurations for the GBBPSO, FIPS, DMS-PSO and

CLPSO were the same as those in (Kennedy, 2003; Mendes et al., 2004; Liang and Suganthan, 2005; Liang

et al., 2006), respectively. The justification for using the recommended parameter settings for these PSO

variants is that in their related papers, the parameter configurations for these algorithms were tested on

different benchmark functions, including those three functions used in our experiments for the RDPSO.

Theperformance of these parameter settings were satisfactory and, thus, were recommended by the authors.

Tables 1 and 2 record the mean and the standard deviation of the best fitness values out of 100 runs of

each algorithm on each benchmark function. To investigate whether the differences in the mean best fitness

values among the algorithms were significant, a statistical multiple comparison procedure was implemented

to determine the algorithmic performance ranking for each problem in a statistical manner. The procedure

employed in this work is known as the “stepdown” procedure (Day and Quinn, 1989). The algorithms that

were not statistically different to each other were given the same rank; those that were not statistically

different to more than one other groups of algorithms were ranked with the best-performing of these groups.

For each algorithm, the resulting rank for each problem and the average rank across all the tested fourteen

benchmark problems are shown in Table 3.

For the Shifted Sphere Function (F1), the RDPSO-Lbest-RP generated better results than the other

methods. The results for the Shifted Schwefel’s Problem 1.2 (F2) show that the PSO-Co and the GBBPSO

performed better than the others, but the performance of the CLPSO seems to be inferior to those of other

competitors due to its slow convergence speed. For the Shifted Rotated High Conditioned Elliptic Function

(F3), the RDPSO-Gbest-RP outperformed the other methods in a statistical significance manner. The SPSO

was the second best performing method for this function. The RDPSO-Gbest-RP showed to be the winner

among all the tested algorithms for the Shifted Schwefel’s Problem 1.2 with Noise in Fitness (F4), and the

RDPSO-Gbest was the second best performing for this problem. F5 is the Schwefel’s Problem 2.6 with

Global Optimum on the Bounds. For this benchmark, the RDPSO-Gbest-RP occupied the first place from

the perspective of the statistical test. For benchmark F6, the Shifted Rosenbrock Function, both the RDPSOs

with the ring topology outperformed the other algorithms. The results for the Shifted Rotated Griewank’s

Function without Bounds (F7) suggest that both the RDPSOs with local best model and the SPSO were able

to find the solution to the function with better quality compared to the other methods. Benchmark F8 is the

Shifted Rotated Ackley’s Function with Global Optimum on the Bounds. The SPSO and the PSO-In-Lbest

yielded better results for this problem than the others. The Shifted Rastrigin’s Function (F9) is a separable

function, which the CLPSO algorithm was good at solving and obtained remarkably better results for. It can

also be observed that the RPDOS-Gbest yielded a better result than the remainders. F10 is the Shifted

Rotated Rastrigrin’s Function, which appears to be a more difficult problem than F9. For this benchmark,

both the RDPSO-Lbest and RDPSO-Lbest-RP outperformed the other competitors in a statistically

significant manner. The best result for the Shifted Rotated Weierstrass Function (F11) was obtained by the

RDPSO-Gbest-RP. The RDPSO-Gbest yielded the second best result which shows no statistical significance

with that of the RDPSO-Gbest-RP. When searching the optima of Schewefel’s Problem 2.13 (F12), the

RDPSO-Gbest-RP was found to rank first in algorithmic performance from a statistical point of view.

F13 is the Shifted Expand Griewank’s plus Rosenbrock’s Function, for which the RDPSO-Lbest-RP,

RDPSO-Lbest, and RDPSO-Gbest yielded better results than their competitors. There are no statistically

significant differences in algorithmic performance between the three RDPSO variants. For the Shifted

Rotated Expanded Scaffer’s F6 Function (F14), all the RDPSO variants showed better performance than the

others in a statistically significant manner.

The average ranks listed in Table 3 reveal that the RDPSO-Gbest-RP had the best overall performance

for the fourteen benchmark functions among all the tested algorithms. Across the whole suite of benchmark

functions, it had fairly stable performance with the worst rank being 6 for F9. The second best-performing

was the RPDSO-Lbest. For seven of the benchmark functions, the algorithm had the first performance ranks.

However, its result for F2 is unsatisfactory due to its slow convergence speed. The RDPSO-Gbest had the

third best overall performance. Compared to the RDPSO-Gbest-RP, the RDPSO-Gbest performed somewhat

unstable, with the resulting ranks for F1 being only 8. The fourth best performing was the RDPSO-Lbest-RP,

which did not show satisfactory performance on F2 and F4. Nevertheless, it had a significant advantage over

the SPSO, the next best performing one. Between random velocity components determined by the mbest

position and the random selected pbest position, the two versions of the RDPSO with the mbest position

obtained the total average rank of 2.79, while the two with the randomly selected pbest position had the total

average rank of 2.90. This means that there is no remarkable performance difference for the tested functions

between the two different methods for determining random velocity components. What can be found from

the total average ranks is that the RDPSO algorithms were able to perform better by using the global best

model (with the total average rank of 2.53) than the local best model (with the total average ranks of 3.00)

for the first fourteen CEC2005 benchmark functions. In addition, the total average rank over all the versions

of the RDPSO is 2.84, which implies that the RDPSOs with the linearly varying  and fixed  had a

satisfactory overall performance. Therefore, it is recommended that the linearly varying  method with

fixed  should be employed when the RDPSO is used for real applications with the values of the

parameters tuned finely around the values used in the experiments in this work. More specifically, for the

RDPSO-Gbest, RDPSO-Lbest and RDPSO-Lbest-RP, the initial and final values of  can be selected from

the intervals [0.8, 1.0] and [0.2, 0.4], respectively, depending on the problem to be solved. For the

RDPSO-Gbest-RP, the initial and final values of  can be selected from the intervals [0.5, 0.7] and [0.1,

0.3], respectively. The drift coefficient  can be valued on the interval [1.45, 1.5] for all he RDPSO

variants.

Except the RDPSO algorithms, the best-performing algorithm was the SPSO, i.e. the PSO-Co-Lbdest,

which yielded the best results for F7 and F8. The next best algorithm was DMS-PSO, obtaining the first

performance rank for F3 and the worst rank for F6. The GBBPSO was the next best-performing method. This

is an important probabilistic PSO variant and had good performance for unimodal functions. The FIPS,

which also employs the ring topology, ranked the first when optimizing F2. From the total average ranks in

Table 3, it is conclusive that incorporating the ring topology into the PSO-In and the PSO-Co could enhance

the overall performance of the two PSO variants on the tested benchmark functions. What should be noticed

is that the CLPSO is very effective in solving separable functions such as F9, but not in the rotated functions

and unimodal ones due to its slower convergence speed, as has been indicated in the related publication

(Liang et al., 2006).

5. Conclusion

In this paper, based on our preliminary previous work, we made a comprehensive study on the RDPSO

algorithm, by analyzing the particle behavior and the search mechanism of the algorithm and empirically

investigating the four newly proposed variants of the RDPSO algorithm.

A comprehensive analysis of the RDPSO algorithm and its variants was made in order to have a better

understanding of the mechanism behind the algorithm. Firstly, the stochastic dynamical behavior of a single

particle in the RDPSO was analyzed theoretically. We derived the sufficient and necessary condition as well

as a sufficient condition for the particle’s current position to be probabilistically bounded. Secondly, the

search behavior of the RDPSO algorithm itself was investigated by analyzing the interaction between the

particles, and it was found that the RDPSO may have a good balance between the global and the local search,

due to the designed random component of the particle’s velocity. In addition, four variants of the RDPSO

algorithm were proposed by combining different random velocity components with different neighborhood

topologies.

Empirical studies on the RDPSO algorithm were carried out on the first fourteen benchmark functions

of the well-known CEC2005 benchmark suite. Two methods of controlling the algorithmic parameters were

employed, and each RDPSO variant, with each control method, was first tested on three of the benchmark

functions in order to identify the parameter values that can generate satisfactory algorithmic performance.

Then, the RDPSO variants with linearly decreasing thermal coefficients and fixed drift coefficients, which

were identified to have stable algorithmic performance, were further compared with other forms of PSO on

the fourteen functions. The experimental results show that the RDPSO algorithm is comparable with, or

even better, than the other compared PSO variants in finding the optimal solutions of the tested benchmark

functions.

Appendix

Theorem A1: If there is only drift motion for the particle, i.e. j

ni

j

ni VDV 1,1,   a sufficient condition for

j

niX 1,  to converge to j

nip , is 20   .

 Proof: From equation (14) and (16), we can find that

j

ni

j

ni

j

ni

j

ni

j

ni

j

ni pppXpX 1,,,,1,1,))(1(   , (A1)

When the RDPSO algorithm is running, the personal best positions of all the particles converge to the

same point. Consequently, }{ ,

j

nip is a convergent Cauchy sequence such that 0||lim 1,,  


j

ni

j

ni
n

pp . Since

20   , 0|1|1   . Thus, it holds that

0|)]1|1/(|[|lim 1,,  


j

ni

j

ni
n

pp ,

which means that for any 0 , there exists an integer 0K such that whenever Kn  ,

|)1|1(|| 1,,   

j

ni

j

ni pp . (A2)

Therefore, from inequality (A2), we have

)|(||1||| ,,1,1,   

j

ni

j

ni

j

ni

j

ni pXpX . (A3)

This implies that for any Kn  ,

|||1||| ,,

1

,,

j

Ki

j

Ki

n

Kk

j

ni

j

ni pXpX 













 





 . (A4)

Since 1|1|0   , 0|1|lim|1|lim

1

 






 

Kn

n

n

Kk
n

 . Hence

 


||suplim ,,

j

ni

j

ni
n

pX . (A5)

As  is arbitrary and 0|| ,,  j

ni

j

ni pX , therefore

0||lim ,, 


j

ni

j

ni
n

pX . (A6)

This completes the proof of the theorem. ■

Theorem A2: The necessary and sufficient condition for the position sequence of the particle }{ nX to

be probabilistically bounded is that  


n

i
in

1
 does not diverge, namely, n is probabilistic bounded

(i.e. 1sup
1













n
n

P ).

Proof: From equation (17) and (18), the update equation of the particle’s position is given by

nnnnn XpXCXX  )()(11  , (A7)

from which we immediately have

)()()())](1([

)()(

11

11

CpCXCpCX

CXpXCXCX

nnnn

nnnnn












. (A8)

Since 1n is a continuous random variable, 0}1{ 1 nP  . Considering that)(Cp is

probabilistically bounded, we have that
11

)(






n

Cp
r




 is also a probabilistic bounded random variable. From

(A8), we can obtain

)(11 rCXrCX nnn    , (A9)

From which we can recursively derive the following formula

rCrCXX

n

i

in  
1

0)( . (A10)

Since rCX 0 is probabilistically bounded, nX is probabilistic bounded if and only if  


n

i
in

1
 is

probabilistically bounded. This completes the proof of the theorem. ■

Theorem A3: Let dxexE

x

n 








2

2

2

)]1([

||ln
2

1
)(




 , where ||ln nn   and),1(~ 2 Nn . (1)

The necessary and sufficient condition for  


n

i
in

1
 to converge to zero with probability 1 is 0 . (2)

The necessary and sufficient condition for n to be probabilistically bounded, i.e. 1}{sup nP  , is

0 .

Proof: By Kolmogorov’s strong law of large numbers (Shiryayev, 1984), it holds that

1)(
1

lim 1

1


















 E

n
P

n

i

i
n

, (A11)

which is equivalent to the proposition that   ZKZm 1, such that whenever 1Kk  ,

mkm

k

i
i

1
||ln

11

1
  

 . (A12)

(1) Proof of the necessity. If 1}0lim{ 


n
n

P  , we have that 1}||lnlim||lnlim{
1

  

n

i
i

n
n

n
P  , that

is,   ZKZm 2, , such that whenever 2Kk  m
k

i
i  1
||ln  and thus

k

m

k

k

i

i 
1

||ln
1

 . (A13)

Therefore,  Zm , there exists),max(21 KKK  such that whenever Kk  , both inequalities (A12) and

(A13) holds, from which we have, kmm //1  , namely, kmm //1  . Let k , and considering

the artibrariness of m/1 , we obtain 0 .

Proof of the sufficiency. If 0 , from (A11) we have 1}0)/1(lim{
1

 

n

i
i

n
nP  , which implies that

 ZK,0 , such that whenever Kk  ,   

k

i
ik

1
||ln)/1(, that is

 k

k

i

i 
1

||ln . (A14)

Due to the arbitrariness of  , we find that  

k

i
i

n
||lnlim  , which means that

1}0limlim{
1

  

n

i
i

n
n

n
P  . This completes the proof of the sufficiency.

(2) From (A11), we have the following equivalent propositions:

 0 10
1

lim
1










 

n

i
i

n n
P 

 0 ,  ZK , such that whenever Kk  , 1
1

1










 


k

i
i

k
P

 0 ,  ZK , such that whenever Kk  , 1}{
1

  
 kkP

k

i
i

 }lnlim{ 


n
n

P   }lim0{ 


n
n

P  . (A15)

Thus, considering the case for 0 in (1) and the case for 0 , we find that the first proposition in (1)

holds.

Similarly,

0  10
1

lim
1



















n

i

i
n n

P 

  0 ,  ZK , such that whenever Kk  , 1
1

1


















k

i

i
k

P , i.e. 1
1

















 kP

k

i

i

 1lim
1



















k

i

i
n

P   1}lnlim{ 


n
n

P  (A16)

Thus the second proposition in (2) holds.

This completes the proof of the second part of the theorem. ■

Theorem A4: A sufficient condition for  


n

i
in

1
 to be probabilistically bounded is that 10 

and 20   .

Proof: Since }{ n is a sequence of independent identically distributed (i.i.d.) random variables with

each n subject to the same normal distribution, i.e.,),1(~ 2 Nn , the expectation and the variance of

 


n

i
in

1
 can be given by

nn

n

n

i

in EEE)1(]][[][][
1

  


, (A17)

and

nn

n

n

n

i

innn EEEEVar 2222

1

222)1(])1([][][][])[(][  


. (A18)

A sufficient condition for n to converge is 0][nE  and 0][nVar  (i.e., mean square convergence

of n), which implies that 20   and 10  . This completes the proof of the theorem.

References

van den Bergh, F. (2002). An analysis of particle swarm optimizers. Ph.D. dissertation, University of Pretoria,

Pretoria, South Africa.

van den Bergh, F., Engelbrecht, A. P. (2004). A cooperative approach to particle swarm optimization. IEEE

Transactions on Evolutionary Computation, 8(3): 225-239.

Van den Bergh, F., Engelbrecht, A.P. (2006). A Study of Particle Swarm Optimization Particle Trajectories.

Information Sciences, 176(8):937-971, 2006.

Van den Bergh, F., Engelbrecht, A.P. (2010). A Convergence Proof for the Particle Swarm Optimizer",

Fundamenta Informaticae, 105(4):341-374.

Bergstra, J., Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning

Research, 12: 281-305.

Bonyadi, M.R., Michalewicz, Z., Li, X. (2014). An analysis of the velocity updating rule of the particle swarm

optimization algorithm. Journal of Heuristics, 20(4): 417-452.

Bratton, D., Kennedy, J. (2007). Defining a standard for particle swarm optimization. In Proceedings of IEEE

Swarm Intelligence Symposium, pages 120-127. IEEE Press.

Bull, A. (2011). Convergence rates of efficient global optimization algorithms. Journal of Machine Learning

Research, 12: 2879-2904.

Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In

Proceedings of Congress on Evolutionary Computation. Pages 1951-1957. IEEE Press.

Clerc, M., Kennedy, J. (2002) The particle swarm-explosion, stability and convergence in a multidimensional

complex space. IEEE Transactions on Evolutionary Computation, 6(2): 58–73.

Cleghorn, W.C., Engelbrecht, A.P. (2014). Particle swarm convergence: standardized analysis and topological

influence. Lecture Notes in Computer Science, 8867: 134-145.

Courant, R. (1989). Introduction to calculus and analysis. Springer-Verlag.

Day, R. W., Quinn, G. P. (1989). Comparisons of treatments after an analysis of variance in ecology. Ecological

Monographs, 59: 433-463.

Eberhart, R. C., Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, pages 39-43. IEEE Press.

Eberhart, R. C., Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization.

In Proceedings of the 2000 Congress on Evolutionary Computation (CEC '00). Vol. 1. pages 84-88. IEEE Press.

Emara, H. M., Fattah, H. A. A. (2004). Continuous swarm optimization technique with stability analysis. In

Proceedings of American Control Conference, pages 2811–2817. IEEE Press.

Engelbrecht, A.P. (2013). Particle Swarm Optimization: Global Best or Local Best? In Proceedings of the 11th

Brazilian Congress on Computational Intelligence, pages 124-135. IEEE Press.

Escalante, H. J., Montes, M., Sucar, L. E. (2009). Particle swarm model selection. Journal of Machine Learning

Research, 10: 405-440.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagne, C. (2012). DEAP: Evolutionary

algorithms made easy. Journal of Machine Learning Research, 13: 2171-2175.

Fournier, H., Teytaud, O. (2011). Lower bounds for comparison based evolution strategies using VC-dimension

and sign patterns. Algorithmica, 59(3): 387-408.

Gavi, V., Passino, K. M. (2003). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man

and Cybernetics, 34(1): 539–557.

Henning, P., Keifel, M. (2013). Quasi-Newton methods: A new direction. Journal of Machine Learning Research,

14: 843-865.

Jiang, M., Luo, Y.P., Yang, S.Y. (2007). Stochastic convergence analysis and parameter selection of the standard

particle swarm optimization algorithm. Information Processing Letters, 102: 8-16.

Kadirkamanathan, V., Selvarajah, K., Fleming, P. J. (2006). Stability analysis of the particle dynamics in particle

swarm optimizer. IEEE Transactions on Evolutionary Computation, 10(3): 245-255.

Kennedy, J., Eberhart, R. C. (1995). Particle Swarm Optimization. In Proceedings of IEEE International

Conference on Neural Networks, pages 1942-1948. IEEE Press.

Kennedy, J. (1998). The behavior of particle. In Proceedings of 7th Annual Conference on Evolutionary

Programming, pages 581–589. Springer-Verlag.

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on particle swarm

performance. In Proceedings of Congress on Evolutionary Computation, pages 1931-1938. IEEE Press.

Kennedy, J. (2002). Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of

Congress on Computational Intelligence, pages 1671-1676. IEEE Press.

Kennedy, J., Mendes, R. (2002). Population structure and particle swarm performance. In Proceedings of 2002

Congress on Evolutionary Computation, pages 1671-1676. IEEE Press.

Kennedy, J. (2003). Bare bones particle swarms. In Proceedings of IEEE Swarm Intelligence Symposium, pages

80-87. IEEE Press.

Kennedy, J. (2004). Probability and dynamics in the particle swarm. In Proceedings of Congress on Evolutionary

Computation, pages 340-347. IEEE Press.

Kennedy, J. (2006). In search of the essential particle swarm. In Proceedings of IEEE World Congress on

Computational Intelligence, pages 1694-1701. IEEE Press.

Kittel, C., Kroemer, H. (1980). Thermal Physics (2nd Editioin). W.H. Freeman.

Krohling, R. A. (2004). Gaussian swarm: a novel particle swarm optimization algorithm. In Proceedings of IEEE

Conference on Cybernetics and Intelligent Systems, pages 372-376. IEEE Press.

Lane, J., Engelbrecht, A., Gain, J. (2008). Particle swarm optimization with spatially meaningful neighbours. In

Proceedings of 2008 IEEE Swarm Intelligence Symposium, pages 1-8. IEEE Press.

Li. X. (2004). Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for

multimodal function optimization. In Proceedings of 2004 Genetic and Evolutionary Computation Conference, pages

105-116.

Li, X. (2010). Niching without niching parameters: particle swarm optimization using a ring topology. IEEE

Transactions on Evolutionary Computation, 14(1): 150-169.

Liang, J.J., Suganthan, P.N. (2005). Dynamic multiswarm particle swarm optimizer (DMS-PSO). In Proceedings of

IEEE Swarm Intelligence Symposium, pages 124-129. IEEE Press.

Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S. (2006). Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10 (3): 281-295.

Lu, Y., Wang, S., Li, S., Zhou, C. (2011). Particle swarm optimizer for variable weighting in clustering

high-dimensional data. Machine Learning January, 82(1): 43-70.

Mendes, R., Kennedy J., Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE

Transactions on Evolutionary Computation, 8(3): 204-210.

Omar, M.A. (1993). Elementary solid state physics: principles and applications. Addison-Wesley.

Ozcan, E., Mohan, C. K. (1999). Particle swam optimization: Surfing the waves. In Proceedings of 1999 IEEE

Congress on Evolutionary Computation, pages 1939–1944. IEEE Press.

Parrott, D., Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using

speciation. IEEE Transactions on Evolutionary Computation, 10(4): 440-458.

Pelikan, M. (2012). Probabilistic model-building genetic algorithms. In Proceedings of Genetic and Evolutionary

Computation Conference, pages 777-804.

Poli, R. (2007). An analysis of publications on particle swarm optimisation applications. Technical Report

CSM-469, Department of Computer Science, University of Essex, UK.

Poli, R., Langdon, W.B. (2007). Markov chain models of bare-bones particle swarm optimizers. In Proceedings of

Annual Genetic and Evolutionary Computation Conference, pages 142-149.

Poli, R. (2008a). Analysis of the publications on the applications of particle swarm optimisation. Journal of

Artificial Evolution and Applications, 2008: 1–10.

Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation.

IEEE Transactions on Evolutionary Computation, 13(4):712–721.

Richer, T. J., Blackwell, T. M. (2006). The Levy particle swarm. In Proceedings of Congress on Evolutionary

Computation, pages 808-815. IEEE Press.

Secrest, B., Lamont, G. (2003). Visualizing particle swarm optimization-gaussian particle swarm optimization. In

Proceedings of IEEE Swarm Intelligence Symposium, pages 198–204. IEEE Press.

Shi, Y., Eberhart, R. C. (1998a). A modified particle swarm optimizer. In Proceedings of IEEE International

Conference on Evolutionary Computation, pages 69-73. IEEE Press.

Shi, Y., Eberhart, R. C. (1998b). Parameter selection in particle swarm optimization. In Proceedings of 7th

Conference on Evolutionary Programming VII (EP '98), pages 591–600. Springer-Verlag.

Shi, Y., Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Proceedings of the 1999

Congress on Evolutionary Computation (CEC '99), volume 3, pages 1945-1950. IEEE Press.

Shiryayev, A.N. (1984). Probability. Springer-Verlag, New York Inc..

Solis, F. J., Wets, R. J-B. (1981). Minimization by random search techniques. Mathematics of Operations

Research, 6(1): 19-30.

Sra, S., Nowozin, S., Wright, S. J. (2011). Optimization for machine learning. MIT Press.

Suganthan, P.N. (1999). Particle warm optimizer with neighborhood operator. In Proceedings of Congress on

Evolutionary Computation, pages 1958-1962. IEEE Press.

Suganthan, P.N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S. (2005). Problem definitions

and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report, Nanyang

Technological University, Singapore, May 2005 AND KanGAL Report #2005005, IIT Kanpur, India.

Sun, J., Zhao, J., Wu, X., Cai, Y., Xu, W. (2010). Parameter Estimation for Chaotic Systems with a Drift Particle

Swarm Optimization Method. Physics Letters A, 374(28): 2816-2822.

Sun, J., Fang, W., Wu, X., Palade, V., Xu, W. (2012b). Quantum-Behaved Particle Swarm Optimization: Analysis

of the Individual Particle Behavior and Parameter Selection. Evolutionary Computation, 20 (3), 349–393.

Sun, J., Palade, V., Cai, Y., Fang, W., Wu, X. (2014a). Biochemical systems identification by a random drift

particle swarm optimization approach. BMC Bioinformatics, 15(Suppl 6): S1.

Sun, J., Palade, V., Wu, X., Fang, W. (2014b). Multiple sequence alignment with hidden Markov models learned

by random drift particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics,

11(1): 243-257.

Sun, Q., Pfahringer, B., Mayo, M. (2013). Towards a Framework for Designing Full Model Selection and

Optimization Systems. In Proceedings of the 11th International Workshop on Multiple Classifier Systems (MCS'13),

pages 259-270, Springer.

 Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection.

Information Processing Letters, 85(6): 317–325.

Veeramachaneni, K., Wagner, M., O'Reilly, U.-M., (2012). Frank Neumann: Optimizing energy output and layout

costs for large wind farms using particle swarm optimization. In Proceedings of IEEE Congress on Evolutionary

Computation, pages 1-7. IEEE Press.

Zhang, Y., Gong, D., Sun, X., Geng, N. (2014). Adaptive bare-bones particle swarm optimization algorithm and its

convergence analysis. Soft Computing, 18(7): 1337-1352.

