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Abstract 

For more than a decade there has been growing interest in the use of Coriolis mass flow 

metering applied to two-phase (gas/liquid) and multiphase (oil/water/gas) conditions. It is well-

established that the mass flow and density measurements generated from multiphase flows are 

subject to large errors, and a variety of physical models and correction techniques have been 

proposed to explain and/or to compensate for these errors. One difficulty is the absence of a 

common basis for comparing correction techniques, because different flowtube designs and 

configurations, as well as liquid and gas properties, may result in quite different error curves. 

Furthermore, some researchers with interests in the modelling aspects of the field may not have 

suitable multiphase laboratory facilities to generate their own data sets. This paper offers a small 

data set that may be used by researchers as a benchmark i.e. a common data set for comparing 

correction techniques. The data set was collected at the UK National Flow Laboratory TUV-NEL, 

using air and a viscous oil, and provides experimental points over a wide flow range (8:1 turndown) 

and with Gas Volume Fraction (GVF) values up to 60%. As a first investigation using the 

benchmark data set, we consider how data sparsity (i.e. the flow rate and GVF spacing in the 

experimental grid) affects the accuracy of a correction model. A range of neural network models 

are evaluated, based on different subsets of the benchmark data set. The data set and some 

exemplary code are provided with the paper. Additional data sets are available on a web site 

created to support this initiative. 

Keywords 

Coriolis mass flow metering, two-phase flow, multiphase flow, benchmark data set, neural 

networks, data driven model. 



1. Introduction 

For more than a decade there has been growing interest in the use of Coriolis mass flow 

metering applied to two-phase (gas/liquid) and multiphase (oil/water/gas) conditions [1]. It is well-

established that the mass flow and density measurements generated under multiphase flow 

conditions are subject to large errors. Arising from this general observation are a number of more 

specific research topics. These include: developing more robust signal tracking algorithms to 

operate during two-phase conditions (e.g. [2, 3]), understanding the physical causes of the mass 

flow and density errors (e.g. [4]), and developing methods to correct these errors (e.g. [5], [6]). 

As techniques have improved, the use of Coriolis metering for two-phase and multiphase flows 

has become increasingly ambitious. In most applications, the respective densities of the liquid and 

gas in the mixture are such that the mass flow of the gas is effectively negligible. In early work, 

the intention was therefore simply to correct the mass flow of the liquid component to compensate 

for the errors induced by the presence of the gas [10]. Subsequently, it was noted that the GVF, if 

estimated, could be used to provide a volumetric gas flow measurement, so that with local pressure 

and temperature information, it would be possible to calculate the gas mass flow rate too. Further 

sophistication was introduced with the development of three-phase flow metering [9], where the 

mass flows of oil, water and gas are all calculated, by employing additional instrumentation. 

Coriolis metering has also been extended to wet gas applications (e.g. [30]), where GVF > 95% so 

that the initial premise, that the gas mass flow rate is negligible compared to that of the liquid, no 

longer holds. However, irrespective of the sophistication of the final calculation, a common 

requirement is to provide corrections for the mass flow and density values generated by the 

Coriolis meter when presented with a gas/liquid mixture, and this basic correction problem is the 

focus of the current paper. 

The prior literature (surveyed in [4]) has demonstrated that there are a variety of physical 

causes for the mass flow and density errors, and that these interact in complex ways. In addition, 

the Coriolis flowtube geometry has a strong influence on the errors (as illustrated in [7]). However, 

flowtube geometry varies significantly between meter designs, and creating a universal Coriolis 

meter two-phase error model which accounting for geometric features would appear to be a 

formidable challenge. Two consequences arise from these observations. Firstly, there is no 

immediate prospect of a purely physical model being developed which is capable of providing 

mass flow and density error corrections over a comprehensive range of flowtube designs and 

process conditions. A corollary of this point is that so-called ‘soft’ computing techniques ([5]), 

based primarily on empirical data rather than physical models, are likely to remain the primary 

means of providing Coriolis meter multiphase flow corrections for the foreseeable future. The 



second consequence is that the variety of measurement error behaviours, arising from differences 

in flowtube geometries, fluid properties etc., make direct comparisons between soft computing 

techniques difficult, as the experimental data sets produced by different researchers often have 

limited common features. A further constraint on future development is the fact that some 

researchers with interests in soft computing techniques may not have suitable multiphase 

laboratory facilities to generate their own data sets. 

Accordingly, this paper provides a Coriolis meter two-phase flow data set that may be used 

by other researchers as a benchmark i.e. a common data set for comparing correction techniques. 

The specific data set chosen has a number of useful features: 

 The data set was collected at the UK National Flow Laboratory TUV-NEL, so the 

results include traceable reference measurements. 

 The specific combination of flowtube geometry, flowtube orientation, and choice of 

fluids (an oil with moderately high viscosity, and nitrogen gas) generates repeatable 

mass flow and density errors over a wide range of liquid flow rates and GVFs. The 

flow range covers an 8:1 turndown while GVF values range up to 60%. Note that the 

turndown ratio, i.e. the range of accurate operation for a Coriolis meter working with 

a pure liquid, is typically 100:1 or higher. However, with two-phase flows, non-

repeatability become a significant problem at low flows (caused by the build-up of 

random pockets of gas and/or liquid inside the meter), and so the working range for 

two-phase flow performance may be only 4:1. Hence the 8:1 turndown ratio provided 

here is a relatively wide range for two-phase flow data. 

 The mass flow and density errors are a relatively ‘easy’ data set to model – there are 

no discontinuities or sudden changes of gradient in the data. Implicit in this remark is 

an important reminder that this data set only represents the behavior of the selected 

flowtube, fluids etc. A two-phase flow correction model which delivers good 

performance over this data set will not be generally applicable to other meter designs 

and application conditions. However, it is to be hoped that modelling techniques 

generating effective correction models for this data set may also prove useful when 

applied to other data sets representing other flowtubes and application conditions. 

A website has been created to make additional data sets available [31]. At the time of writing, two 

further two-phase data sets are provided, both from experimental work carried out at NEL. One 

contains data for (salty) water and nitrogen on a 12 mm Foxboro flowtube, while the second data 

set for a conventional (i.e. low viscosity) oil and nitrogen using the 50mm Foxboro flowtube 

design. It is planned that further data sets will be made available on the website, including from 



other manufacturers’ flowtubes. The interested reader is referred to the website for additional 

information on current and future data sets, which are not discussed further in this paper. Future 

papers may offer analysis of more challenging benchmark data sets, including data for three-phase 

(oil/water/gas) flow. 

Also in this paper, the potential utility of the data is illustrated by the presentation of a 

modelling investigation which considers the trade-off between data sparsity (i.e. the spacing 

between experimental data points) and the resulting neural net (NN) based model accuracy. In the 

investigation, we consider various subsets of the benchmark data set, fit a range of NN models to 

each subset, and evaluate the resulting model accuracy. The potential application of this study is 

to assist experimental design (whether in the lab or the field) when considering the GVF and mass 

flow steps that should be taken in order to achieve a desired level of accuracy. The study further 

provides quantitate results for various NN model fitting techniques applied to this data set; other 

researchers are invited to apply alternative soft computing techniques to this data set and compare 

the resulting modelling accuracies. 

Section 2 describes the benchmark data set. Section 3 provides an introduction to the 

exploration of data sparsity and model accuracy. Section 4 describes the NN modelling techniques 

employed. Section 5 provides the results obtained. 

2. The Benchmark Data Set 

The benchmark data set is a subset of the data used in [8]; this describes a trial at TUV-NEL 

in which two-phase flow data is collected using nitrogen gas and a synthetic oil over a range of oil 

viscosities, where the viscosity is adjusted by varying the liquid temperature. The Coriolis meter 

used is a 50 mm diameter Foxboro CFS-10 flowtube and CFT-51 transmitter, incorporated into 

the Net Oil and Gas skid arrangement. The skid design is described in [9]. The flowtube 

orientation, skid geometry, and a flow straightener are all arranged to improve the repeatability of 

the skid measurement for two-phase and multiphase flow. 

Reference measurements for the liquid flow rate were traceable with uncertainty of 0.05 % (k 

= 2). A flow control loop adjusted pump speed to maintain the desired liquid flowrate despite 

changes in GVF (and associated variation in back pressure). Reference measurements for the gas 

flow rate were traceable with an uncertainty of 0.5% (k = 2). The second experimental value to be 

controlled is the GVF. Accordingly, temperature and pressure measurements at the flowtube 

entrance were used to calculate the local GVF, and then the gas mass flow rate was adjusted to 

maintain the GVF at the desired level. Allowing for uncertainty in the temperature and pressure 

measurements and hence the local nitrogen gas density, the relative uncertainty in the GVF 



estimate is 1% of reading. Hence, if the estimated GVF is 2% then the true GVF is expected to lie 

within the range 2 (± 0.02) % with 95% confidence, while if the estimated GVF is 50% then the 

GVF is expected to lie within the range 50 (± 0.5) % at the same confidence level. Given the 

magnitude of the raw mass flow and density errors, and indeed the likely range of residual errors 

after correction, the uncertainty in the reference measurements is small and for our own analyses 

has been considered negligible. 

The benchmark data is taken from results collected at 15 ± 1.5 °C, with corresponding oil 

viscosity 450 (± 30) cP, the line pressure 345 (± 5) kPa and the oil density 881 (± 1) kg/m3. While 

these parameters are provided as background information (and further details will be provided by 

the authors upon request) only the oil density value (and its small range over the data set) are of 

direct relevance for the purposes of developing soft computing models. 

In most cases, data is based on average values collected over 120 s, where measurement 

updates were provided at an interval of 1s. In a small number of experiments, 300 s of data was 

collected and averaged. This longer collection period led to no observed change in behavior, and 

so these longer experiments are not identified within the data set. 

Figure 1: Reference mass flow rates and GVF values for benchmark data set 



Figure 1 shows the flow rates and GVF values for the 103 data points in the benchmark set. 

The data set consists of ten flow lines, at approximately 0.4 kg/s, 0.6 kg/s, 0.8 kg/s, 1.0 kg/s, 1.2 

kg/s, 1.6 kg/s, 2.0 kg/s, 2.4 kg/s, 2.8 kg/s, and 3.2 kg/s, covering an 8:1 turndown ratio. Note that 

these flow rates are relatively low for the 50 mm diameter flowtube, which has a nominal 

maximum flow rate of 13 kg/s. This is explained by consideration of pressure drop: the 13 kg/s 

nominal capacity is based on a limit of 100 kPa pressure drop across the flowtube, and assumes 

the liquid has the density and viscosity of water. In these experimental results, liquid viscosity is 

significantly higher, and the introduction of gas volume adds to the already high pressure drops. 

In our multiphase flow work we accept a maximum pressure drop across the flowtube of 150 kPa, 

and this is reflected in the range of flow rate and GVF points in the data set. In particular, at the 

higher flow rates the highest GVF value is limited to avoid exceeding 150 kPa pressure drop across 

the flowtube, and the maximum flowrate is limited to 3.2 kg/s. 

The steps between flow lines are smaller (0.2 kg/s steps) at the low flow rates and larger (0.4 

kg/s steps) at the higher flowrates. From experience, there is usually greater variation in mass flow 

and/or density errors at lower flow rates, and so it is appropriate to collect more experimental data 

in the low flow regions. This greater variation in errors at low flow rates is indeed present in this 

data set, as described below. 

The reference GVF values for each flow line are (approximately) as follows: 0%, 2%, 5%, 

10%, 15%, 20%, … and then in steps of 5% up to a maximum of 60%, or until the pressure drop 

exceeds 150 kPa. Some experimental points are excluded (e.g. at 0.4 kg/s and 30% GVF) where 

the data quality was not considered adequate. 

We now introduce the density and mass flow error data for the benchmark set. Since the 

earliest investigations into two-phase flow Coriolis metering (e.g. [10]), density drop (dd) – as 

defined below - has been used as a parameter for characterizing the meter response. However, its 

use implies knowledge of the true (gas free) liquid density. In practice, for simple ‘two-phase’ 

applications involving a single liquid and a gas, this is usually available, and can be provided by 

the user as a configuration parameter (possibly including a temperature coefficient). Constraining 

the true liquid density to a known value is required in order to be able to interpret the observed 

density as a function of the gas content: if both the liquid density and GVF are unknown, then 

there are many possible combinations of these two variables that could generate a given density 

value from the flow meter. 

The density drop dd is given by the percentage difference between the liquid-only mixture 

density and the observed density : 

(1) 



Note that the density drop calculation is arranged so that its value is always zero or positive, 

even though the observed density drops in value as dd increases. As shown below, this convention 

is convenient when plotting data where dd is used as the x-axis variable. 

With gas present in the liquid, a density drop is (almost) always observed, and this drop in 

value can be broadly partitioned into two components: the ‘true’ density drop attributable to the 

true densities of the gas and liquid, together with their relative volumetric proportions present in 

the flowtube; and the density drop ‘error’ arising from the two-phase flow errors introduced into 

the density measurement. If it is assumed that the gas density is negligible, that there is no slip (i.e. 

the gas and liquid move at the same velocity), and that the true gas/liquid mixture density is known, 

then the GVF is approximately equal to the ‘true’ density drop: 

(2) 

where is the true density of the liquid/gas mixture. 

Accordingly, while outside the laboratory the true GVF is unknown and to be estimated via 

modelling, the density drop is always available via the observed density measurement. It therefore 

serves as a useful dimensionless parameter for characterizing two-phase flow, and is widely used 

in Coriolis meter correction models. 

The mass flow error and the density error are calculated as follows: 

(3) 

(4) 

where and are the observed mass flow and density measurements from the Coriolis 

meter, and is the true (reference) mass flow rate of the gas/liquid mixture. Figures 2 and 3 

show the and against (observed) dd for the ten flow lines in the benchmark data set. 



Figure 2: Mass flow error against density drop 

Figure 3: Density error against density drop 

Both the mass flow and the density errors are a function of the density drop as well as the true 

mass flow rate. At low flow rates, both the mass flow and density errors have both higher 



magnitude and higher rates of change. This is commonly observed with Coriolis meter two-phase 

data, and hence the practice of using smaller steps between flow lines points at lower flowrates. 

The mass flow errors are also fairly typical of a ‘bent’ flowtube design, reaching approximately 

-60% for low flowrate and high GVF. 

The density errors presented here are less typical: these are positive, whereas more often for a 

flowtube of this type they would be negative ([7], [9]). The positive density errors in this case are 

attributable to two factors. Firstly, the high viscosity of the oil reduces the magnitude of the 

negative errors due to the ‘bubble effect’ [4]. Secondly, slip occurs between the liquid and gas 

phases occur, with the gas travelling at a faster velocity through the flowtube than the liquid, so 

that the effective gas volume fraction is lower than the nominal value assuming no slip. For clarity, 

in all cases with gas present the reported density is lower than that of the pure oil, but is higher 

than the reference mixture density for the given proportions of oil and nitrogen, assuming no slip 

between the phases. For low flow and high GVF, these errors reach approximately +60%. Note 

also the interaction between the density errors and the scaling of the density drop. While the true 

GVF (Figure 1) reaches 60%, the observed density drop (Figures 2 & 3) only reaches 40%, due to 

the positive density errors (Figure 3). 

A useful change of variables that assists the numerical properties of a density correction 

algorithm is to calculate the ‘density drop error’. As stated above, if it is assumed that the gas 

density is negligible and there is no slip, then the true density drop (ddtrue in equation (2)) is equal 

to the GVF. Accordingly, we may define the density drop error dde = dd - ddtrue as being the 

difference between the true and observed density drops. Figure 4 shows the density drop error 

against density drop for the benchmark data set. Note here that the density drop error is the absolute 

error (in percent) and not a relative error scaled by the true density drop – the latter calculation 

would be subject to high levels of noise where the true density drop is small. 



Figure 4: Density drop error against density drop 

The density drop error has lower magnitude than the density error, typically resulting in lower 

residual errors after modelling. It is straightforward to calculate a corrected density drop, and hence 

GVF and true mixture density, if the density drop error is modelled in this way. 

The full data set (see Appendix 1) is available in spreadsheet form, consisting of the following 

columns of data: nominal mass flow rate; reference mass flow rate, mixture density and GVF; 

Coriolis meter measurements for mass flow rate and density, and the corresponding density drop; 

and finally the Coriolis meter errors for mass flow, density, and density drop. 

A typical two-phase flow correction scheme would entail developing models of the mass flow 

error and of the density error (or equivalently the density drop error), based on the Coriolis meter 

mass flow measurement and density drop. This is the basis for the modelling investigation 

described in the remainder of the paper, which considers the trade-off between data sparsity and 

the resulting neural net (NN) based model accuracy. 

3. Benchmark investigation 

Artificial neural networks have been successfully applied to provide corrected mass flow and 

density measurements in Coriolis flowmeters for two-phase or multiphase flow applications [7, 9, 



10]. Support Vector Machine (SVM) and genetic programming [6], as well as hybrid models [5], 

have also been applied. For any of these machine learning methods, a data set is required; for a 

given flowtube design, fluid properties etc there will be a corresponding operating range over 

which the data set is to be collected. As a general principle, reduced spacing between data points 

should yield a better model. However, collecting modelling data is expensive: multiphase 

calibration facilities charge high daily rates, while obtaining reference measurements of the true 

liquid and gas flowrates in the field (for example by using a portable well test system) is likely to 

be slow and costly. A number of question naturally arise: what is the tradeoff between data sparsity 

and model accuracy? Do certain modelling techniques perform advantageously with lower data 

densities than others, resulting in good solutions at lower cost? The benchmark data set has been 

used to perform a simple investigation of these questions. A variety of neural net modelling 

approaches has been applied to subsets of the benchmark data and the resulting modelling accuracy 

compared. 

It is important to emphasize once again that any conclusions drawn are at least in part 

dependent upon the mathematical properties of the benchmark error curves, which in turn depend 

upon the choice of flowtube, fluids etc. Nevertheless, the benchmark provides a common data set 

for exploring the impact of data sparsity upon model accuracy, and we invite other researchers to 

report on alternative modelling approaches applied to the same benchmark dataset, including 

consideration of different data subsets. 

Four data sets have been modelled, as follows: 

1. The full benchmark data set, with 103 data points (Figure 1) 

2. All flow lines but excluding every other GVF point, yielding 53 data points (Figure 5) 

3. Excluding every other flow line, yielding 51 data points (Figure 6) 

4. Excluding every other flow line and every other GVF point for the remaining flow lines, 

yielding 27 points (Figure 7). 

A range of different neural network design techniques has been applied to each of these data sets 

and the resulting models having been tested against the full data set to evaluate model performance. 

It is to be expected that modelling results will be poorer with smaller data sets; of interest is 

quantification of the reduction in model accuracy, the relative impact of reductions in flow lines 

vs GVF points, and the relative performance of different neural net techniques over the various 

data sets. 



Figure 5: Data set 2, excluding every other GVF point. 



Figure 6: Data set 3, excluding every other flow line. 

Figure 7: Data set 4, excluding every flow line and every other GVF point. 

4. Neural networks modelling techniques 

For our experimental analysis we used an open source Python library Keras [11] (with 

TensorFlow backend) which supports the construction of various neural network structures in a 

straightforward manner. Keras implements a number of activation functions, and the most popular 

optimizers, thus making it easy to experiment with a range of options without requiring a high 

degree of coding effort. 

4.1 The loss function and the metric 

During model optimization, the loss (cost, error) function is used to quantify the desirability 

of the current model so that the weights can be updated to improve the loss function on the next 

step. Whenever a machine learning model is trained, the goal is to find a solution that minimizes 

the loss function. For a regression problem, the most commonly used loss function is the mean 

squared error (MSE) which is the mean sum of squared distances between the target variables 

and their predicted values : 



                     

              

(5) 

One possible drawback of using an MSE loss function is that a single, very poor prediction 

may have a disproportionate influence due to the square weighting. 

The Mean Absolute Error (MAE) is another loss function often used for regression models. 

MAE is the mean sum of absolute differences between target and predicted values : 

(6) 

This metric does not weigh large errors as heavily as MSE, and is less sensitive to outliers than 

MSE. On the other hand MAE, unlike MSE, is not differentiable. In the modelling examples 

described here, MSE was used as the loss function to be minimized during network training, while 

MAE was used as the metric to evaluate final network performance on the full benchmark data 

set. 

4.2 Optimizers – SGD and Adam 

During the training process, the parameters (weights) of our model are adjusted to minimize 

the loss function. Gradient descent is the most widely used technique to update neural network 

weightings, but every state-of-the-art Deep Learning library includes a number of different 

algorithms to optimize gradient descent. 

Stochastic Gradient Descent (SGD) is one such variant whereby, instead of performing 

computations on the whole dataset, which is redundant and inefficient, SGD operates over a small 

subset of the data. This delivers the same performance as regular gradient descent when the 

learning rate is low. 

Recently, new optimizers have been proposed to tackle complex training scenarios where 

conventional gradient descent methods behave poorly. One of the most widely used and practical 

of these optimizers is Adam [12]. It combines the advantages of two SGD extensions – Root Mean 

Square Propagation (RMSProp) and Adaptive Gradient Algorithm (AdaGrad) – and computes 

individual adaptive learning rates for different parameters. 

Despite the widespread popularity of Adam [13, 14], recent research papers have noted that it 

can fail to converge to an optimal solution under specific circumstances. References [15] and [16] 

demonstrate that adaptive optimization techniques such as Adam generalize poorly compared to 

SGD. 



In this analysis both SGD and Adam are applied in order to determine which optimizer is best 

suited to the benchmark data set. Other adaptive learning-rate based optimizers (RMSprop, 

AdaDelta, etc.) are not considered here because they are similar to Adam. 

4.3. Activation functions 

The main purpose of the neural net activation function is to introduce non-linearity into the 

network so that it is capable of reproducing complex behaviours. The activation and loss functions 

are often selected together. For example, the softmax activation function and the cross-entropy 

loss function have been found to work well together in a multi-dimensional classification problem 

[17]. 

It is widely recognized that a linear activation function is most effective for the output neuron 

layer in a regression problem [18]. There remains the choice of activation function for the hidden 

layer. 

Sigmoid, one of the classic activation functions that dominated neural network practice for 

several decades, was eventually judged to be unsuited to learning tasks because of its small 

derivative, which may result in problems with vanishing gradients. The hyperbolic tangent 

function (tanh), defined as: 

(7) 

gives better training performance than sigmoid [19, 20], but the tanh function cannot avoid the 

vanishing gradient issue either. 

From this perspective, the ReLU [21] function has proven to be more effective. ReLU is 

defined as 

(8) 

where is the input to the neuron. Its derivative is unity in the positive region. Currently, ReLU 

is the most widely used activation function, and its effectiveness has been verified in numerous 

works, e.g. see [22]. Its success has led to various extensions proposed, one of which is SELU. 

The Scaled Exponential Linear Unit (or SELU) was recently introduced in [23] for the 

development of so-called self-normalizing neural networks. Here a normalization factor  is 

included in the neuron's activation via the SELU function, which is defined as: 

(9) 



Some researchers report performance improvement for SELU over ReLU as the activation 

function [24, 25], but currently it is not as widely applied [26]. 

The softplus function (Smooth ReLU) was proposed by Dugas et al. [27] and is defined as: 

. (10) 

It can be considered as a smooth version of ReLU. The smoothness property makes the softplus 

function potentially more stable than ReLU, which has a discontinuous gradient at zero. Also, 

while ReLU has no gradient in the negative region, the softplus function provides output 

discrimination across all real inputs. The softplus function performed favourably against the ReLU 

and Sigmoid functions in a study [28], showing better model fitting while requiring fewer epochs 

to convergence during training. 

In summary, given the diversity of experiences reported in the literature, here we apply a 

variety of hidden layer activation functions: tanh, ReLU, SELU and softplus. 

4.4. Neural Net Structure 

A final design decision concerns the structure of the neural nets. Note that in each case there 

are two network inputs (the observed density drop and the observed mass flow rate) with a single 

output (either the mass flow error, or the density drop error). This suggests a basic neural network 

structure of 2-N-1, where N, the number of neurons in the hidden layer, is to be determined. The 

tradeoff here is well-understood: a lower number of neurons may lead to a sub-optimal fit, while 

too many neurons may lead to over-fitting. In the study undertaken, values of 

were used. 

5. Experimental results 

As described in the previous section, model building experiments have been carried out across a 

number of parameters, as follows: 

 Data sets 1 – 4 

 Hidden layer width 6, 10, 14, 18 neurons 

 Activation functions: softplus, ReLU, SELU, or tanh 

 Optimizers: Adam or SGD. 

All datasets and program code, along with one of the resulting architectures, are available on the 

website [31]. For each combination of parameters, two separate networks were generated, 

predicting the mass flow error and the density drop error respectively. As the weights and biases 



are initialized randomly, a different network is obtained for each training, resulting in different 

performance. In order to minimize the effect of random initialization, the average MAE (equation 

(6)) across the full benchmark dataset over 20 networks with the same structure was calculated. 

When training networks, we used Keras callbacks EarlyStopping and ModelCheckpoint [29], 

preserving the best model and forcibly stopping training if for 500 epochs there was no 

improvement in the current model. The results are presented in Tables 1 and 2. 

Table 1. Mass flow error model performance (best result for each data set highlighted in 
bold) 

Activation function-Optimizer 2-6-1 2-10-1 

Data set 1 2 3 4 1 2 3 4 

softplus – Adam 1.31 4.40 3.42 5.48 0.94 1.17 1.01 5.61 
relu – Adam 2.60 3.62 4.56 5.70 1.19 3.73 3.54 5.30 
selu – Adam 2.84 3.34 3.06 5.36 1.19 1.88 1.40 4.71 
tanh – Adam 2.67 2.62 1.80 2.06 1.07 1.58 1.47 1.89 
softplus – SGD 1.72 3.38 2.49 4.61 1.61 2.38 1.41 4.01 
relu – SGD 2.27 4.14 3.23 3.98 2.12 3.15 2.56 4.18 
selu – SGD 2.41 3.89 2.67 4.35 1.60 2.63 1.67 1.86 
tanh – SGD 2.29 2.50 2.38 2.70 2.25 2.60 2.46 2.43 

2-14-1 2-18-1 

Data set 1 2 3 4 1 2 3 4 

softplus – Adam 0.97 1.22 0.98 5.32 0.98 0.91 0.97 5.27 
relu – Adam 0.90 1.57 1.58 4.50 0.87 0.95 1.85 5.01 
selu – Adam 0.93 1.56 1.32 3.94 0.93 1.05 1.07 1.74 
tanh – Adam 1.74 1.62 1.33 1.72 1.11 1.01 0.90 1.92 
softplus – SGD 1.73 3.63 2.20 5.32 1.18 1.63 1.10 2.06 
relu - SGD 1.71 4.09 1.83 5.23 1.34 2.64 1.69 3.25 
selu - SGD 1.72 1.64 2.19 3.73 1.28 2.81 2.44 4.35 
tanh - SGD 1.56 2.32 2.00 2.46 1.81 2.81 2.64 2.29 

Tables 3 and 4 show, for each model size, the technique which generates the lowest error, 

while Table 5 and 6 show the smallest modelling MAE achieved in each case. A number of 

observations can be drawn from these results, as discussed below. 

5.1. Using a variety of activation functions and optimizers delivers better models 

One clear observation from the data in tables 1 and 2 is the wider range of results obtained for 

the same data set and NN architecture, when using different optimizers and activation functions. 

For example, in Table 2, for data set 1 and the smallest architecture 2-6-1, the best result is an 

MAE of 0.46%, while the worst result is 1.86%, around 4 times larger. Over all the examples, the 

ratio between the best and worst MAE is typically between 1.5 times and 4 times. Given also that, 



as discussed below, there is no overall best combination of activation function and optimizer that 

consistently delivers the best modelling results, we conclude the following: Assuming that the cost 

of obtaining the experimental data is significantly higher than that of carrying out NN modelling, 

it is worthwhile exploring a range of activation functions and optimizers in order to find a best 

solution for a particular dataset. This could result in an MAE reduction by a factor of two or more 

compared with a strategy of only using a single activation and optimizer. 

Table 2. Density drop error model performance (best result for each data set highlighted in 
bold) 

Activation function-Optimizer 2-6-1 2-10-1 

Data set 1 2 3 4 1 2 3 4 

softplus - Adam 0.69 0.69 3.13 3.29 0.40 0.51 1.28 2.56 
relu - Adam 1.00 2.24 3.27 3.38 0.85 1.07 2.50 3.20 
selu - Adam 0.97 1.35 3.13 3.55 0.54 0.90 1.46 2.67 
tanh - Adam 0.46 0.77 2.79 4.17 0.45 0.98 1.25 3.33 
softplus - SGD 1.86 2.28 1.59 2.92 2.18 2.40 2.22 2.86 
relu - SGD 1.42 1.84 1.69 2.76 1.17 2.38 2.04 3.07 
selu - SGD 1.57 1.94 2.20 3.02 1.77 2.17 2.45 3.17 
tanh - SGD 1.34 2.60 1.26 2.15 1.44 2.75 1.81 3.20 

2-14-1 2-18-1 

Data set 1 2 3 4 1 2 3 4 

softplus - Adam 0.40 0.52 1.31 2.57 0.47 0.53 1.11 1.80 
relu - Adam 0.44 0.51 1.63 2.77 0.35 0.66 1.26 2.62 
selu - Adam 0.46 0.52 1.15 1.81 0.42 0.51 1.26 1.85 
tanh - Adam 0.54 0.72 0.74 2.33 0.50 0.65 0.71 2.77 
softplus - SGD 1.29 2.87 2.62 2.85 1.00 1.07 1.18 1.23 
relu - SGD 1.19 3.07 2.61 2.85 1.09 1.36 1.36 2.28 
selu - SGD 0.82 2.96 2.77 3.03 0.87 2.24 1.94 2.88 
tanh - SGD 3.29 3.81 3.35 4.00 1.78 4.43 3.96 2.53 

Table 3. Best (smallest error) models 2-N-1 for MFR error correction 

N Data_set 1 Data_set 2 Data_set 3 Data_set 4 

6 softplus – Adam tanh – SGD tanh – Adam tanh – Adam 

10 softplus – Adam softplus – Adam softplus – Adam tanh – Adam 

14 relu – Adam softplus – Adam softplus – Adam tanh – Adam 

18 relu – Adam softplus – Adam tanh – Adam selu – Adam 



Table 4. Best (smallest error) models 2-N-1 for density drop error correction 

N Data_set 1 Data_set 2 Data_set 3 Data_set 4 

6 tanh - Adam softplus - Adam tanh - SGD tanh - SGD 

10 softplus - Adam softplus - Adam tanh - Adam softplus - Adam 

14 softplus - Adam relu - Adam tanh - Adam selu - Adam 

18 relu - Adam selu - Adam tanh - Adam softplus - SGD 

Table 5. Error values for best models 2-N-1 for MFR error correction 

N Data_set 1 Data_set 2 Data_set 3 Data_set 4 

6 1.31 2.50 1.80 2.06 

10 0.94 1.17 1.01 1.89 

14 0.90 1.22 0.98 1.72 

18 0.87 0.91 0.90 1.74 

Table 6. Error values for best models 2-N-1 for density drop error correction 

N Data_set 1 Data_set 2 Data_set 3 Data_set 4 

6 0.46 0.69 1.26 2.15 

10 0.40 0.51 1.25 2.56 

14 0.40 0.51 0.74 1.81 

18 0.35 0.51 0.71 1.23 

5.2. Evaluation of optimizers and evaluation functions 

There is significant diversity observed in the results achieved using different evaluation functions. 

Softplus and tanh, particularly in combination with Adam, most frequently deliver the best model. 

Tanh seems to be more appropriate for the smaller amount of data. 

Adam usually delivered the best model compared with SGD: it was best in 15 out of the 16 

results in Table 3 and 13 out of 16 results in Table 4. Nevertheless, as stated above, where 

computational resources allow building additional models, SGD techniques will occasionally 



deliver a better results, especially for a small amount of data and/or for a small number N. Two 

combinations, relu+SCD, selu+SGD, failed in this analysis to deliver any best models. 

5.3. Impact of hidden layer size 

This issue is most clearly illuminated through the ‘best’ results shown in Tables 5 and 6. For data 

set 1, where the model is fitted to the complete data set which is also used for the MAE evaluation, 

little model improvement is observed beyond . In the case of data set 4, adding hidden 

units consistently improves the model, but the errors remain twice as large as for data set 1 with 

mass flow, and over three times larger for density. As discussed below, data sets 2 and 3 have 

complimentary behavior for mass flow and density models. For mass flow, data set 3 is 

consistently better than data set 2, and, as with data set 1, there is limited improvement beyond 

. For density, data set 2 is consistently better than data set 3, and there is no improvement 

beyond . For mass flow and , both data sets 2 and 3 approach the low errors 

obtained with data set 1. With data set 4, little mass flow model improvement is observed for 

. 

In reality, having obtained expensive experimental data, it will of course be sensible to use all the 

data in the subsequent models. The results for data set 1 however illustrate the notion of an optimal 

hidden layer size – here observed at around for both mass flow and density models – 

where increasing the number of units further does not lead to significant model improvement. The 

can even be observed in data set 4 for mass flow. 

5.4. Impact of data sparsity on model performance 

Recalling the structures of the four data sets: data set 1 is complete, data set 2 has a reduced 

number of GVF points, data set 3 has a reduced number of flow points, and data set 4 has 

reductions in both, with approximately one quarter of the points of data set 1. 

From Tables 5 and 6, the four-fold increase in data points between data set 4 and data set 1 

leads to a reduction in mass flow error of a factor of 2 (from 1.74% down to 0.87%), and a 

reduction in density error by a factor of 3 (from 1.23% down to 0.35%). 

As discussed above in section 5.3, data sets 2 and 3 have different behavior for mass flow and 

density: data set 2 outperforms data set 3 for density and vice-versa for mass flow. These results 

may reflect the relative sensitivities of the errors to changes in true mass flow rate and GVF. As 

shown in Figure 2, the mass flow error is relatively insensitive to true mass flow rate, particularly 

for the upper half of the flow range – hence the wider spacing of flow lines at high flow in the 

original experimental design. In Figure 4, the variations in density drop error with density drop 



(and hence GVF) are reasonably linear, so that a reduced number of data points along the density 

drop axis has limited impact. 

In practice, both mass flow and density models are required, and there appears from this data 

set no clear benefit in providing say more GVF points than flow points in an experimental design. 

Accordingly, it is recommended to provide approximately equal number of flow lines and GVF 

points in an experimental programme, but with the flow line distribution weighted towards low 

flow. 

6. Conclusions 

This paper has presented a benchmark data set of two-phase (oil/nitrogen) mass flow and density 

errors obtained from a 50 mm Coriolis mass flow meter. The data set has a large turndown ratio 

(8:1), GVF values up to 60%, and has positive density errors arising from high oil viscosity and 

gas/liquid slip. 

An investigation has explored the influence of hidden layer width, activation function, optimizer, 

and data sparsity on neural net model accuracy. Assuming that the cost of data collection is 

significantly higher than that of analysis and modelling, it is recommended that a range of 

activation functions and optimizers are applied to find a best solution for a particular dataset. In 

the example presented here, this led to reduction in modelling error by a factor of two or more 

compared with using any single activation and optimizer function. No consistent benefit was 

observed in having more flow points than GVF points (or vice versa) in a two-phase data set. It is 

recommended to have approximately equal numbers of each, while having shorter flow line 

spacing at lower flow rates. 

We welcome further analysis and modelling based on this data set, and we hope to be able to 

provide larger data sets, including three-phase (oil/water/gas) data, in the future. 
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Appendix 1: Two-phase flow data set 

Nominal Reference Measurements Coriolis Meter Measurements Coriolis Meter Errors 

Mass Flow Mass Density GVF Mass Density Density Mass Density Density 

Flow Flow Drop Flow Drop 

[kg/s] [kg/s] [kg/m3] [%] [kg/s] [kg/m3] [%] [%] [%] [%] 

0.40 0.388 881.99 0.00 0.382 882.35 -0.04 -1.51 0.04 0.04 

0.40 0.395 864.93 1.94 0.373 870.72 1.27 -5.57 0.67 0.66 

0.40 0.396 839.05 4.88 0.374 853.64 3.20 -5.43 1.74 1.66 

0.40 0.384 793.84 10.02 0.349 826.06 6.32 -9.11 4.06 3.67 

0.40 0.380 750.51 14.96 0.333 801.33 9.12 -12.56 6.77 5.78 

0.40 0.398 713.28 19.19 0.343 779.53 11.59 -13.86 9.29 7.54 

0.40 0.392 669.94 24.13 0.323 756.40 14.20 -17.64 12.91 9.84 

0.40 0.387 537.32 39.22 0.262 692.25 21.46 -32.26 28.83 17.61 

0.40 0.405 451.57 48.99 0.259 636.16 27.82 -36.00 40.88 20.98 

0.40 0.402 363.27 59.05 0.202 578.18 34.39 -49.89 59.16 24.42 

0.60 0.597 880.69 0.00 0.594 881.11 -0.05 -0.49 0.05 0.19 

0.60 0.602 864.00 1.90 0.587 868.56 1.37 -2.61 0.53 0.67 

0.60 0.620 839.83 4.65 0.609 850.42 3.42 -1.71 1.26 1.36 

0.60 0.606 797.65 9.45 0.588 823.57 6.47 -2.97 3.25 3.10 

0.60 0.595 752.13 14.64 0.549 796.28 9.56 -7.62 5.87 5.16 

0.60 0.577 708.05 19.67 0.514 770.35 12.50 -10.87 8.80 7.22 

0.60 0.585 619.42 29.77 0.477 718.84 18.34 -18.59 16.05 11.43 

0.60 0.585 575.30 34.79 0.433 690.70 21.53 -25.90 20.06 13.24 

0.60 0.626 545.74 38.16 0.449 670.73 23.79 -28.38 22.90 14.33 
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0.60 0.603 451.99 48.86 0.358 602.77 31.50 -40.61 33.36 17.25 

0.80 0.793 881.90 0.00 0.786 882.26 -0.04 -0.91 0.04 0.05 

0.80 0.797 864.65 1.96 0.779 868.54 1.51 -2.34 0.45 0.46 

0.80 0.810 839.35 4.83 0.795 849.98 3.60 -1.82 1.27 1.23 

0.80 0.799 795.69 9.79 0.777 819.66 7.03 -2.73 3.01 2.75 

0.80 0.797 751.82 14.78 0.748 790.32 10.35 -6.13 5.12 4.41 

0.80 0.820 712.36 19.27 0.747 763.67 13.36 -8.94 7.20 5.87 

0.80 0.822 669.57 24.14 0.715 738.45 16.21 -12.95 10.29 7.87 

0.80 0.798 622.25 29.52 0.665 709.69 19.47 -16.58 14.05 9.98 

0.80 0.786 573.00 35.13 0.603 677.80 23.08 -23.23 18.29 11.95 

0.80 0.807 534.67 39.49 0.567 650.49 26.17 -29.74 21.66 13.21 

0.80 0.795 444.58 49.76 0.455 589.61 33.07 -42.71 32.62 16.52 

0.80 0.777 350.49 60.48 0.343 528.44 40.01 -55.91 50.77 20.25 

1.00 1.007 882.02 0.00 0.999 882.47 -0.05 -0.74 0.05 0.05 

1.00 0.995 864.64 1.98 0.982 867.32 1.66 -1.31 0.31 0.30 

1.00 1.010 838.76 4.92 0.982 848.04 3.85 -2.69 1.11 1.05 

1.00 1.010 795.57 9.84 0.979 817.02 7.36 -3.07 2.70 2.44 

1.00 1.008 751.63 14.84 0.953 786.72 10.80 -5.47 4.67 3.98 

1.00 0.999 706.94 19.93 0.919 757.48 14.11 -8.06 7.15 5.74 

1.00 0.999 663.28 24.90 0.871 728.24 17.42 -12.83 9.79 7.37 

1.00 1.004 620.86 29.73 0.855 701.82 20.42 -14.77 13.04 9.19 

1.00 1.009 578.74 34.53 0.810 673.59 23.62 -19.75 16.39 10.76 

1.00 1.003 532.47 39.79 0.769 643.31 27.05 -23.32 20.82 12.58 

1.00 0.967 435.66 50.82 0.647 580.63 34.16 -33.05 33.28 16.45 

1.00 1.022 360.70 59.36 0.613 525.97 40.36 -40.07 45.82 18.75 

1.20 1.203 881.99 0.00 1.198 882.47 -0.05 -0.43 0.05 0.05 

1.20 1.201 864.28 2.02 1.189 865.41 1.88 -0.99 0.13 0.13 

1.20 1.195 837.97 5.01 1.173 845.77 4.11 -1.84 0.93 0.88 

1.20 1.202 794.53 9.96 1.158 813.65 7.75 -3.66 2.41 2.17 

1.20 1.200 749.72 15.06 1.136 782.14 11.32 -5.29 4.32 3.67 

1.20 1.193 705.04 20.15 1.098 751.13 14.84 -7.97 6.54 5.23 

1.20 1.189 660.22 25.25 1.060 723.07 18.02 -10.86 9.52 7.13 

1.20 1.183 615.19 30.38 1.027 692.50 21.49 -13.18 12.57 8.76 

1.20 1.223 576.44 34.79 1.032 665.90 24.50 -15.64 15.52 10.14 

1.20 1.212 531.04 39.96 0.969 635.92 27.90 -20.01 19.75 11.89 

1.20 1.216 440.92 50.22 0.907 576.59 34.62 -25.38 30.77 15.38 

1.60 1.598 881.99 0.00 1.596 882.38 -0.04 -0.13 0.04 0.04 

1.60 1.595 864.32 2.01 1.578 862.52 2.20 -1.02 -0.21 -0.20 

1.60 1.593 838.01 5.01 1.556 840.78 4.67 -2.33 0.33 0.32 

1.60 1.598 794.29 9.98 1.538 807.89 8.40 -3.77 1.71 1.54 

1.60 1.601 750.28 15.00 1.524 776.19 11.99 -4.83 3.45 2.94 



1.60 1.606 706.82 19.94 1.518 746.88 15.32 -5.45 5.67 4.55 

1.60 1.616 663.61 24.86 1.509 715.72 18.85 -6.64 7.85 5.91 

1.60 1.597 617.04 30.16 1.470 682.74 22.59 -7.93 10.65 7.45 

1.60 1.608 573.48 35.12 1.439 652.08 26.06 -10.48 13.71 8.92 

1.60 1.622 530.72 39.99 1.415 621.17 29.57 -12.78 17.04 10.26 

1.60 1.593 435.57 50.82 1.254 550.48 37.58 -21.28 26.38 13.03 

2.00 2.002 881.87 0.00 2.001 882.24 -0.04 -0.05 0.04 0.05 

2.00 2.000 864.93 1.93 1.982 862.01 2.25 -0.87 -0.34 -0.32 

2.00 2.000 839.48 4.83 1.961 838.11 4.96 -1.95 -0.16 -0.15 

2.00 1.999 796.85 9.69 1.945 804.38 8.79 -2.69 0.94 0.86 

2.00 2.007 753.55 14.62 1.935 772.11 12.45 -3.57 2.46 2.11 

2.00 2.007 708.33 19.65 1.924 734.36 16.61 -4.12 3.67 3.08 

2.00 1.997 666.24 24.56 1.888 706.56 19.88 -5.44 6.05 4.58 

2.00 2.004 624.79 29.15 1.891 671.01 23.78 -5.65 7.40 5.38 

2.00 2.004 579.17 34.47 1.853 641.25 27.29 -7.56 10.72 7.05 

2.40 2.408 881.63 0.00 2.405 881.98 -0.04 -0.15 0.04 0.08 

2.40 2.401 864.19 1.99 2.367 859.92 2.46 -1.41 -0.49 -0.44 

2.40 2.400 837.99 4.97 2.328 833.42 5.47 -3.01 -0.55 -0.48 

2.40 2.412 794.85 9.88 2.344 797.21 9.58 -2.82 0.30 0.30 

2.40 2.407 750.48 14.94 2.334 761.48 13.63 -3.04 1.47 1.28 

2.40 2.406 706.38 19.96 2.312 726.07 17.65 -3.91 2.79 2.26 

2.40 2.405 661.06 25.12 2.288 690.46 21.69 -4.89 4.45 3.36 

2.40 2.405 616.46 30.20 2.250 654.95 25.71 -6.47 6.25 4.39 

2.40 2.412 572.11 35.25 2.226 620.92 29.57 -7.70 8.53 5.56 

2.40 2.417 526.67 40.42 2.172 584.65 33.69 -10.12 11.01 6.60 

2.80 2.808 881.26 0.00 2.808 881.31 -0.01 -0.01 0.01 0.09 

2.80 2.803 863.35 2.04 2.756 857.80 2.67 -1.70 -0.64 -0.55 

2.80 2.802 836.41 5.12 2.721 829.16 5.92 -2.89 -0.87 -0.75 

2.80 2.801 791.33 10.26 2.720 788.89 10.49 -2.89 -0.31 -0.21 

2.80 2.794 745.37 15.49 2.699 749.80 14.93 -3.40 0.59 0.56 

2.80 2.802 700.20 20.64 2.690 711.86 19.24 -4.02 1.66 1.37 

2.80 2.806 654.01 25.91 2.671 672.43 23.72 -4.80 2.82 2.13 

2.80 2.802 606.13 31.36 2.668 633.98 28.08 -4.77 4.60 3.20 

2.80 2.803 559.41 36.68 2.588 592.81 32.75 -7.67 5.97 3.82 

2.80 2.809 516.85 41.53 2.548 556.54 36.87 -9.28 7.68 4.53 

3.20 3.208 881.14 0.00 3.210 881.31 -0.02 0.04 0.02 0.12 

3.20 3.199 862.53 2.12 3.143 855.80 2.88 -1.76 -0.78 -0.67 

3.20 3.193 834.26 5.34 3.117 824.70 6.41 -2.37 -1.15 -1.00 

3.20 3.199 787.08 10.72 3.134 780.67 11.41 -2.03 -0.81 -0.65 

3.20 3.203 741.86 15.87 3.115 740.10 16.01 -2.75 -0.24 -0.12 

3.20 3.207 697.25 20.95 3.105 700.88 20.46 -3.18 0.52 0.48 



3.20 3.210 655.64 25.70 3.052 664.83 24.56 -4.93 1.40 1.11 

3.20 3.207 614.09 30.43 3.055 629.31 28.58 -4.74 2.48 1.79 
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