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Abstract

The genus Acidihalobacter has three validated species, Acidihalobacter ferrooxydans, Acidihalobacter prosperus and Acidihalo-
bacter aeolinanus, all of which were isolated from Vulcano island, Italy. They are obligately chemolithotrophic, aerobic, aci-
dophilic and halophilic in nature and use either ferrous iron or reduced sulphur as electron donors. Recently, a novel strain 
was isolated from an acidic, saline drain in the Yilgarn region of Western Australia. Strain F5T has an absolute requirement 
for sodium chloride (>5 mM) and is osmophilic, growing in elevated concentrations (>1 M) of magnesium sulphate. A defining 
feature of its physiology is its ability to catalyse the oxidative dissolution of the most abundant copper mineral, chalcopyrite, 
suggesting a potential role in biomining. Originally categorized as a strain of A. prosperus, 16S rRNA gene phylogeny and mul-
tiprotein phylogenies derived from clusters of orthologous proteins (COGS) of ribosomal protein families and universal protein 
families unambiguously demonstrate that strain F5T forms a well- supported separate branch as a sister clade to A. prosperus 
and is clearly distinguishable from A. ferrooxydans DSM 14175T and A. aeolinanus DSM14174T. Results of comparisons between 
strain F5T and the other Acidihalobacter species, using genome- based average nucleotide identity, average amino acid identity, 
correlation indices of tetra- nucleotide signatures (Tetra) and genome- to- genome distance (digital DNA–DNA hybridization), 
support the contention that strain F5T represents a novel species of the genus Acidihalobacter. It is proposed that strain F5T 
should be formally reclassified as Acidihalobacter yilgarnenesis F5T (=DSM 105917T=JCM 32255T).

INTRODUCTION
Bioleaching is a technique where acidophilic micro- organisms 
are used to catalyse the extraction of metals from mineral ores 
through the oxidation of metal sulfides, a technology referred 
to to generically as biomining [1]. As many accessible higher- 
grade metal ore bodies are now depleted, lower- grade ores 
are being increasingly exploited, and bioleaching can have 
both economic and environmental benefits for processing 
these materials [2]. However, biomining has long faced the 

challenge of the negative effect of the presence of salt (sodium 
chloride) in ores and process waters. The ability of bioleaching 
micro- organisms to tolerate salt varies between genus and 
species, but most bioleaching micro- organisms cannot 
tolerate the levels of chloride present in seawater and can be 
inhibited by concentrations as low as 6.6 g l−1 [3–5]. However, 
the presence of salt has been shown to enhance the abiotic 
leaching of the recalcitrant but also most abundant copper- 
containing mineral in the lithosphere, chalcopyrite (CuFeS2). 
Therefore, the use of halophilic micro- organisms that are also 
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capable of tolerating low pH while being able to catalyse the 
oxidative dissolution of chalcopyrite would be of major benefit 
to the biomining industry [4, 5]. Furthermore, as freshwater 
resources become increasingly scarce, the mining industry 
would benefit from using seawater at mining sites to reduce 
the costs associated with desalination plants [2].

Due to the limited environments that are available for the 
discovery of the unique micro- organisms that inhabit low 
pH and highly saline environments and have the ability to 
oxidize metal sulfide minerals, it is important to isolate and 
characterize these prokaryotes [5].

The genus Acidihalobacter represents one such group of 
ferrous iron- and sulfur- oxidizing bacteria that are both 
extremely acidophilic and halotolerant (tolerating up to 
1283 mM NaCl) [6–8]. Three members of the genus Acidi-
halobacter have been isolated from the Vulcano region Italy. 
Acidihalobacter prosperus DSM 5130T (previously ‘Thioba-
cillus prosperus’) was isolated from a geothermally heated 
seafloor at Porto di Levante while the type strains of Acidi-
halobacter aeolinanus (previously ‘Acidihalobacter prosperus 
DSM 14174’) and Acidihalobacter ferrooxydans (previously 
‘Acidihalobacter ferrooxidans DSM 14175’) were isolated from 
a shallow acidic pool by the shore of Baia de Levant [9, 10]. All 
are members of the family Ectothiorhodospiraceae of the class 
Gammaproteobacteria in the genus Acidihalobacter, and each 
has been characterized as the type strain of their respective 
species [11–14].

More recently, a novel bacterial strain, designated as F5T and 
belonging to genus Acidihalobacter, was isolated from an acidic 
saline drain in the Yilgarn region of Western Australia [5]. The 
isolate was initially considered to be a strain of A. prosperus 
due to the high sequence similarity (98.7 %) of its 16S rRNA 
gene to the latter [8]. However, a defining feature of this strain 
that distinguishes it from other strains of Acidihalobater was 
its ability to leach chalcopyrite at 508 mM NaCl. This makes it 
a potentially valuable isolate for the industrial biorecovery of 
copper through saline water bioleaching [8].

The genome of strain F5T is the only available complete 
genome of a halotolerant acidophile to date, as well as the first 
complete genome for a member of the genus Acidihalobacter 
[8]. The completeness of its genome provides an opportunity 
for studies of its metabolic capabilities as well as clarification 
of its taxonomy. Genome- based classification of the other 
members of the genus Acidihalobacter has recently been 
completed and has proven to provide a more robust approach 
for the re- evaluation of taxonomy using bioinformatics- based 
phylogenomic strategies that are more accurate than 16S 
rRNA gene phylogeny and morphology alone [14, 15].

METHODS
Isolation of strain F5T

Strain F5T was isolated from an enrichment culture obtained 
from an acidic saline drain in the Yilgarn region in Western 
Australia (pH 2.1, 463 mM chloride, 25 mM iron (II); 
GPS coordinates −31.070302° S, 117.43901° E) [5, 8]. The 

enrichment culture was inoculated onto overlay plates [16] 
(0.625 % agarose pH 2.5) enriched with (i) FeSO4, (ii) K2S4O6 
or (iii) a mixture of both, containing 214 mM NaCl. Single 
colonies picked from the solid media were resuspended in 
liquid media containing either 50 mM ferrous sulphate or 
5 mM potassium tetrathionate, basal salts (3 mM (NH4)2SO4, 
1.6 mM MgSO4 and 2.9 mM KH2PO4) and trace elements (pH 
1.8) [7]. DNA extraction and 16S rRNA gene sequences were 
obtained through Sanger sequencing as described previously 
[17].

Tolerance to temperature, pH and NaCl
A pure culture of strain F5T was maintained at 30 °C in basal 
salts containing 50 mM ferrous sulphate and 5 mM potas-
sium tetrathionate at pH 2.5 as described above, and DNA 
was extracted from these cultures for genome sequencing as 
described previously [8]. Growth of the isolate was tested at a 
range of temperatures (17–42.5 °C), pH levels (pH 1– 5) and 
sodium chloride concentrations (0–1.71 M; data not shown). 
Bioleaching studies were performed as described elsewhere 
[8].

For the purpose of this study, further growth tests were 
performed on various liquid and solid media, including 
the growth of strain F5T on elemental S, H2 and in K2S4O6- 
free media containing 10 mM Fe(II) and 200 mM MgSO4. 
Aerobic growth was tested at different concentrations of 
MgSO4 (0, 50, 100, 200, 500 and 1000 mM). When the 
cultures failed to grow, 25 mM NaCl was added in the 
medium and incubated further for up to 24 days. Tests for 
optimum concentration of NaCl in cultures containing 
200 mM MgSO4 were then performed using 0, 5, 10, 25 and 
50 mM NaCl.

Electron microscopy
Electron microscopic studies of strain F5T were performed 
using the method described previously for the type strain of 
A. prosperus [18].

Selection of members for phylogenetic assignment
Members for inclusion in the study were identified from 
the 30 closest phylogenetic neighbours as given by ab initio 
comparisons of glimmer3 gene candidates with a set of 
universal proteins and up to 200 unduplicated proteins in 
the seed and Rapid Annotation of Microbial genomes using 
Subsystems Technology (rast) [19, 20]. These were veri-
fied by comparison to the sequences previously used for the 
reclassification of the type strain of A. prosperus [15], as well 
as by comparison with nucleotide databases after running a 
blastn- based script using an E- value threshold of 1e-5 and 
the databases greengenes, RDP and silva [21–23].

A total of 15 genomes, including the four members of the 
genus Acidihalobacter, were selected for inclusion into the 
following phylogenetic tree reconstructions. Halothiobacillus 
neapolitanus ATCC 23641 was used as an outgroup (Table S1, 
available in the online version of this article).
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Closest phylogenetic neighbours of the genus Acidihalobacter 
were selected based on ab initio comparisons of glimmer3 
and rast [19, 20]. A total of 14 organisms of the order Chro-
matiales, including the three validated members of the genus 
Acidihalobacter together with strain F5T, were selected for 
inclusion in phylogenetic tree reconstructions.

PHYLOGENETIC TREE RECONSTRUCTION
16S rRNA gene phylogeny
16S rRNA genes of Acidihalobacter species were identified by 
comparison of genomic sequences against 16S rRNA data-
bases greengenes [21], RDP [22] and silva [23] by blastn 
[24] using an E- value threshold of 1e-5. Sequences of the 
taxonomically related genomes from the order Chromatiales 
were selected from NCBI databases to be included in the 16S 
rRNA gene phylogenetic tree. All 16S rRNA gene sequences 
were aligned in mafft version 7 with the L- INS- i iterative 
refinement [25, 26]. The phylogenetic tree was reconstructed 
with iqtree, using 1000 replications as bootstrap support 
[27, 28] with best model fit by iqtree (TN+F+I+G according 
to the Bayesian information criterion) [29].

Multi-locus sequence analysis (MLSA)
A set of 30 ribosomal proteins associated with COG markers 
(Table S2) were obtained from the DOE Joint Genome 
Institute – Integrated Microbial Genomes and Microbiome 
Samples website (https:// img. jgi. doe. gov/ cgi- bin/ m/ main. cgi) 
for each micro- organism in the study [30, 31]. A multi- locus 
phylogenomic tree was reconstructed by aligning a concat-
enated set of the 30 COGs sequences with L- INS- i iterative 
refinement in mafft version 7 and removal of unreliable 
regions with gblocks [32, 33]. A maximum- likelihood tree 
with 1000 replicates was reconstructed with best- fit model 
LG+F+I+G according to the Bayesian information criterion 
using iqtree [27, 28].

Nine conserved housekeeping genes (argS, dnaQ, dnaN, era, 
gltA, gyrB, ppnK, rpoB and rpoD [34–36]) were used to build 
a multi- gene species tree using a concatenated alignment 
from members of the order Chromatiales as described previ-
ously [14]. The contatenated alignment was reconstructed 
using the L- INS- i iterative refinement in mafft version 7 
[25, 26], which were masked to remove unreliable regions 
with gblocks [32, 33]. The maximum- likelihood tree was 
reconstructed with iqtree using the bootstrap method with 
1000 replicates [37] and the best- suited substitution model 
GTR+F+I+G selected by iqtree .

Sequence-based methods for species 
circumscription
Calculation of average nucleotide identity was based on 
blast (ANIb) [24, 38, 39] and the correlation indexes of 
tetra- nucleotide signatures (Tetra) were conducted using 
Jspecies [39] and JspeciesWS (http:// jspecies. ribohost. com/ 
jspeciesws/# Analyse) [40]. The Genome- to- Genome Distance 
Calculator (GGDC) web tool (http:// ggdc. dsmz. de/ distcalc2. 
php) was used to calculate the digital DNA–DNA hybridization 

(dDDH) values [41, 42]. Average amino acid identity (AAI) 
[43] values were calculated with the CompareM tool (https:// 
github. com/ dparks1134/ CompareM).

Gene prediction
Genes potentially encoding terminal oxidases and those 
involved in ferrous iron and reduced sulphur oxidation were 
predicted using a bidirectional blastp of the NR databases as 
described previously [14] and were visualized using Artemis 
[44].

RESULTS AND DISCUSSION
The genomes of the different Acidihalobacter isolates included 
in this study were previously obtained from pure cultures 
grown in acidified basal salts/trace elements medium supple-
mented with soluble iron and sulphur sources, and sodium 
chloride [8, 11–13]. However, key differences can be seen 
in the pH, temperature and optimum NaCl concentrations 
required for growth on soluble iron and sulphur sources as 
well as on the mineral sulfide ore pyrite (Table  1). While 
the type strain of A. prosperus has been shown to grow on 
sphalerite, chalcopyrite, arsenopyrite and galena as well as 
on H2S, no leaching data is available for growth on these 
substrates [9]. Meanwhile, the type strains of A. aeolianus 
and A. ferrooxydans have previously been shown to oxidize 
chalcopyrite when in mixed culture; however, growth of pure 
isolates has not been tested [45, 46]. Furthermore, growth of 
the type strains of A. aeolianus and A. ferrooxydans is yet to 
be tested on other mineral ores. Strain F5T is the only isolate 
that has been shown to successfully leach the mineral ore 
pentlandite (at up to 1283 mM NaCl at pH 2.5 [8]). More 
importantly, it the only known isolate to leach the recalcitrant 
mineral chalcopyrite at up to 513 mM NaCl (pH 2.5), thereby 
suggesting its suitability to leach base metals from different 
sulfide ores at chloride ion concentrations of sea water or 
above (564 mM NaCl [6]).

Growth characteristics of strain F5T

The growth tests on strain F5T performed in this study showed 
that it can grow on both elemental sulphur and the reduced 
sulphur oxy- anion, tetrathionate. Growth was also observed 
when Fe(II) was provided as the sole electron donor and 
200 mM MgSO4 as the osmolyte, though no growth was seen 
when hydrogen was provided as the sole electron donor. 
Furthermore, the results of the tests using 0, 50, 100, 200, 
500 and 1000 mM MgSO4 as the osmotic stressor showed that 
no growth in the absence of salt. The addition of 25 mM NaCl 
resulted in good oxidation for cultures containing 50 and 
500 mM but not 0 or 1 M MgSO4. This shows that strain F5T 
has an absolute requirement for NaCl, as has previously been 
shown for the other members of the genus Acidihalobacter. 
When NaCl was added in increments (0, 5, 10, 25 and 50 mM) 
to cultures containing 200 mM MgSO4 iron oxidation was 
evident in the cultures containing 10 and 25 mM NaCl within 
3 days. After 4 days, some oxidation was seen in the 5 mM 
NaCl containing cultures, while after 12 days the 50 mM NaCl 
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cultures were well oxidized. The salt- free cultures showed very 
little oxidation even after 12 days. While MgSO4 can meet its 
requirement for a relatively high external osmotic potential, 
a minimum of 5 mM NaCl is required for iron oxidation, 
with 10–25 mM being the optimum NaCl requirement in the 
presence of 200 mM MgSO4. This NaCl requirement is lower 
than has been previously shown for the type strains of the 
three validated Acidihalobacter species (≥60 mM), although 
these values were determined with NaCl acting as the only 
significant osmolyte. In total, the results of the growth studies 
and absolute requirement of strain F5T for NaCl, confirms its 
obligately osmophilic nature.

Microscopy
Electron microscopic studies revealed that cells of strain F5T 
were 1–2 µm long straight rods (Fig. 1). Endopsores were not 
detected.

Genome and gene information
Members of the family Ectothiorhodospiraceae are known to 
have a DNA G+C content within the range 50.5–69.7 mol% 
[47]. The bioinformatically inferred G+C content for the 
genome of strain F5T was previously found to be 59.9 mol%, 
which is lower than that of the other members in the genus, but 

is still within the range of the family Ectothiorhodospiraceae. 
The genome of strain F5T is 3.57 Mbp and is predicted to 
have 3233 coding sequences with 47 tRNA genes [8]. Bioin-
formatically predicted terminal oxidases from the genomes 

Fig. 1. Electron microscopy image of strain F5T grown in the presence 
of 214 mM NaCl. The scale bar is 200 nm.

Table 1. Comparison of genomic and phenotypic features of the four members of the genus Acidihalobacter

Feature Genome

Acidihalobacter 
strain F5T

Acidihalobacter prosperus 
DSM5130T

Acidihalobacter aeolianus 
DSM 14174T

Acidihalobacter 
ferrooxydans DSM 14175T

Genome size
(Mbp)

3.57 3.36 3.36 3.45

G+C content (mol%) 59.9 64.5 62.2 61.6

Predicted coding DNA sequence (CDS) 3233 3088 3194 3089

Plasmid – – 162 484 bp
(pABPV6)

–

tRNA genes 47 48 46 45

Sulphur oxygenase reductase (EC 
1.13.11.55)

– + – +

Temperature range for growth (°C) 24–33 20–45 [9] 26–42 [60] 26–43 [60]

Optimum temperature for growth (°C) 30 33 [9] 36 [60] 36 [60]

pH range for growth 2.0–4.0 1.0–4.5 [9] 1.5–3.0 [14] 1.0–3.0 [14]

Optimum pH for growth 2.5 2.0 [9] 1.8 [14] 1.8 [14]

NaCl range for growth (mM) 5–1283 70–1030 [18] 60–1283 [7] 60–856 [7]

Optimum NaCl (mM) for growth on 
FeSO4 and K2S4O6

428 340 [9] 428 [7, 45, 60] 428 [7, 60]

Optimum NaCl (mM) for growth on 
pyrite

513 n/a 256 [7] 856 [7]

Optimum NaCl (mM) for growth on 
chalcopyrite

254 na na na

+, Present; −, absent; na, not available.
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of F5T were as for DSM14174T and DSM14175T and included 
aa3 (EC 1.9.3.1), bo3 (EC 1.10.3.10), bd- I (EC 1.10.3.14) and 
fumarate reductase (quinol, EC 1.3.5.1–1.3.5.4). Respiratory 
quinones predicted from the genomes include ubiquinone 
ubiABDEGIHJX (EC 1.14.13.-, 1.14.12.240, 2.1.1.222, 2.1.1.64, 
2.1.1.163, 2.1.1.201, 2.5.1.39, 2.5.1.129, 4.1.1.98). Phenotypic 
and genomic features of the four species of the genus Acidi-
halobacter are compared in Table 1. The genome is predicted 
to encode a rusticyanin gene cluster thought to be involved 
in Fe2+ oxidation [8]. The accession number of the genome 
sequence of strain F5T is CP017415.1.

Phylogeny based on 16S rRNA gene sequence 
analysis
A 16S rRNA gene phylogenetic tree of strain F5T and three 
validated members of the genus Acidihalobacter was recon-
structed using ten validated species belonging to the family 
Ectothiorhodospiraceae of the order Chromatiales of the class 
Gammaproteobacteria using Halothiobacillus neapolitanus 
ATCC 23641 as an outgroup (Fig. 2). The tree agrees with 

a previously published 16S rRNA gene phylogenetic tree in 
the placement of strain F5T within the genus Acidihalobacter 
and confirms its taxonomic position within the family Ecto-
thiorhodospiraceae [8]. Strain F5T forms a separate branch as a 
sister clade to A. prosperus DSM 5130T that is well- supported 
(95 % bootstrap support) and is clearly distinguishable from 
A. ferrooxydans DSM 14175T and A. aeolinanus DSM 14174T.

Phylogeny based on multiple locus sequence 
analyses (MLSA)
Additional approaches were used to evaluate the phylog-
enomic position of strain F5T. Phylogenomic trees were 
reconstructed based on the sequences of 30 concatenated 
conserved ribosomal proteins [30, 31] (Fig.  3a) and nine 
concatenated housekeeping genes (Fig. 3b). These multi- locus 
sequence alignments were sufficiently long to allow mapping 
of their phylogenetic relationships [30, 34, 35]. Both trees 
consistently place strain F5T as a sister clade to A. prosperus 
DSM 5130T with 100 % bootstrap support and clearly show 
that strain F5T forms a distinct branch from A. ferrooxydans 

0.03

Thioalkalivibrio denitrificans DSM 13742T

Acidihalobacter ferrooxydans DSM 14175T

Acidihalobacter aeolianus DSM 14174T

Ectothiorhodospira magna DSM 22250T

Halorhodospira halochloris DSM 1059T

Acidihalobacter prosperus DSM 5130T

Ectothiorhodospira haloalkaliphila ATCC 51935T

Ectothiorhodospira marina DSM 241T

Thiorhodospira sibirica ATCC 700588T

Thioalkalivibrio nitratireducens DSM 14787T

Halothiobacillus neapolitanus ATCC 23641
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Halorhodospira halophila DSM 244T
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Fig. 2. Maximum- likelihood phylogenetic tree of 16S rRNA gene sequences of strain F5T (in red) and other phylogenetic relatives as 
described in the text. Bootstrap percentages (1000 replicates) are labelled at the nodes. Scale bar represents 0.03 nucleotide substitution 
per site. The genetic distance of Halothiobacillus neapolitanus ATCC 23641 is not to scale as indicated by the break lines //. The full list of 
NCBI accession numbers is given in Table S1.
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Fig. 3. Phylogenomic trees of 14 members of the order Chromatiales and Halothiobacillus neapolitanus ATCC 23641 as outgroup, 
including strain F5T (in red), based on (a) 30 concatenated conserved proteins from proposed 34 ribosomal proteins [30, 31] and (b) nine 
concatenated housekeeping genes. Statistically supported bootstrap values as percentages of 1000 replicates are labelled at the nodes. 
Scale bar represents 0.07 amino acid and 0.2 nucleotide changes per site, respectively. The full list of COG families is given in Table S2.
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DSM 14175T and A. aeolianus DSM 14174T agreeing with the 
16S rRNA gene phylogenetic tree.

MLSA is a powerful tool for determining phylogenetic rela-
tionships but it is not widely used to discriminate species 
and subspecies because it is difficult to decide the depth of 
clustering that should be used as a threshold for differentia-
tion [48].

Phylogenetic distance based on percentage 
similarity of 16S rRNA gene sequences
16S rRNA gene sequence similarity analysis is frequently 
used to infer phylogenetic distance and is used in microbial 
classification and species identification [49]. The similarity 
of the 16S rRNA gene sequence of strain F5T to the three 
validated Acidihalobacter species is reported as a heat map 
comparison (Fig. 4).

Strain F5T is located in a sister clade to A. prosperus DSM 
5130T but can be distinguished from it at a cutoff of 98.7 % 
sequence similarity (Fig. 4). A cutoff of 97 % 16S rRNA gene 
sequence similarity has been used to identify a new species 
[50]. However, in many instances this was not sufficient for 

species discrimination and a cutoff of 98.5 % similarity has 
become the new ‘gold- standard’ [51, 52].

Other phylogenomic approaches for species 
discrimination (dDDH, ANI, AAI and Tetra)
Today, phylogenomic approaches such as dDDH, ANI 
(average nucleotide identity), AAI and Tetra (Tetra Nucleo-
tide Signature Correlation Index) are frequently used for 
microbial classification and often provide better criteria for 
species discrimination than 16S rRNA gene sequence simi-
larity [53]. The currently accepted cutoff values for delimiting 
species boundaries are about 70 % for dDDH [41, 42], 95 % for 
ANI [38, 54–56], 95–96 % for AAI [57, 58] and 0.989 for Tetra 
[39, 59]. Using these approaches, we report the values for the 
comparisons between the three validated species of Acidih-
alobacter and strain F5T (Fig. 5). These values support the 
previously published species designations for A. ferroxydans 
DSM 14175T, A. aeolianus DSM 14174T and A. prosperus DSM 
5130T [14]. The values for the comparison of strain F5T with  
A. prosperus DSM 5130T are as follows (Fig.  5): 22.1 % 
(dDDH); 79.21 % (ANI); 83.93 % (AAI); and 0.92 (Tetra). 
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Fig. 4. Heat maps of the percent difference of 16S rRNA gene sequences between the three validated Acidihalobacter species and strain 
F5T. The results are displayed as a cladogram based on the 16S rRNA gene phylogenetic tree shown in Fig. 2, using 97, 98.7 and 98.73 % 
16S rRNA gene sequence similarity cutoff values (left to right, respectively).
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Fig. 5. Heat maps indicating the genetic relatedness between the three validated Acidihalobacter species and strain F5T displayed as a 
cladogram using different non- sequence- based methods. (a) dDDH, digital DNA–DNA hybridization, (b) ANI, average nucleotide identity, 
(c) AAI, average amino acid identity and (d) Tetra, nucleotide signature correlation index. The cutoffs for each of the four methods 
represent the values accepted as defining different species.
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These results are all well below the accepted cutoff values 
for species delineation, indicating that strain F5T should 
be considered as representing a new species of the genus 
Acidihalobacter.

DESCRIPTION OF ACIDIHALOBACTER 
YILGARNENSIS SP. NOV.
Acidihalobacter yilgarnensis ( yil. garn. en′sis . N.L. masc. adj. 
yilgarnensis, referring to its isolation from the Yilgarn region, 
Western Australia).

Cells are Gram- stain- negative, motile, straight rods (1–2 µm 
long). Extremely acidophilic, optimum pH for growth is pH 
2.5 with a range of pH 2.0–4.0. Halotolerant, can grow at up 
to 1283 mM NaCl with optimal growth at 428 mM NaCl. 
Mesophilic, optimal growth occurs at 30 °C, and capable 
of growth between 24 and 33 °C. Chemolithoautotrophic 
and aerobic. Able to utilize ferrous iron, elemental sulphur 
and tetrathionate as electron donors. It is able to leach 
base metals from the sulfide mineral pyrite (FeS2) at up to 
846 mM NaCl, pentlandite (Fe,Ni)9S8) at 1283 mM NaCl and 
chalcopyrite at 508 mM NaCl. Predicted terminal oxidases 
from the genome include aa3 (EC 1.9.3.1), bo3 (EC 1.10.3.10), 
bd- I (EC 1.10.3.14) and fumarate reductase (quinol, EC 
1.3.5.1–1.3.5.4). Predicted respiratory quinones from the 
genome include ubiquinone (EC 1.14.13.-, 2.1.1.64, 2.1.1.63, 
2.1.1.201, 2.1.1.222, 2.5.1.39, 2.5.1.129, 4.1.1.98). The genome 
contains a full compliment of sox genes distributed in two 
clusters (soxXYZ and soxXA) and separated soxA and soxB. 
It also includes a gene cluster for the predicted biosynthesis 
of the osmoprotectant ectoine. The G+C content of the DNA 
is 59.9 mol%. The genome contains one copy of both the 16S 
and 23S rRNA genes and contains 3233 coding sequences and 
47 tRNA genes. The whole- genome sequence of 3 566 941 bp 
is available (GenBank accession no. CP017415.1).

The type strain is F5T (=DSM 105917T=JCM 32255T), isolated 
from an acidic saline drain in the Yilgarn region, Western 
Australia.
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