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Summary 

The focus of the work in this thesis is concerned with the investigation and development of 

indirect measurement techniques. The methodology adopted is a combination of practical 

experimental, analytical deductive reasoning and simulation studies. This has led to proposals 

for a number of indirect tyre pressure monitoring systems, which are able to detect pressure 

loss under specific circumstances. The outcome overall is a proposal for a new supervisory 

system comprising of a modular framework, allowing various algorithms and techniques to be 

implemented in a complementary manner as they emerge and data sources become available.  

A number of contributions to the field have been made, which to the knowledge of the author, 

provide potential for further algorithm development and are imminently applicable given the 

above. The methods include a tyre pressure diagnosis via a wheel angular velocity comparator, 

the development of a model-based tyre pressure diagnosis via application of an unknown input 

observer and a parameter estimation scheme, a model-based tyre pressure diagnosis approach 

via an enhanced Kalman filter configured to estimate states including the input, a model-based 

tyre pressure diagnosis via cautious least squares, an investigation and critique of the effects of 

the choice of sampling interval on discrete-time models and estimation thereof. It is considered, 

that the extensive literature review provides a valuable historic insight into the tyre fault 

detection problem. 

It is clear, from the development and testing of the algorithms (and also the literature), that no 

single indirect pressure detection method is able to reliably detect changes in all driving 

scenarios which the regulations typically stipulate (depending on jurisdiction). In the absence 

of any information about the road input, the majority of the detection work must be shouldered 

by the wheel angular velocity comparator algorithm. As image recognition and sensor 

technology develops, it becomes possible to make estimates about the road surface and this 

removes some of the uncertainty on the input of the model-based parameter estimation 

approaches. 

Further work is detailed which goes some way towards realising the next steps in a 

development cycle suitable for a vehicle manufacturer to take through to the implementation 

stage. 
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Nomenclature and Terminology 

On examination of the fault detection and condition monitoring literature, it is apparent that 

consensus does not exist on the terminology used by the community of this discipline. In order 

to clarify terms this thesis shall adhere to the terminology descriptions defined by The 

SAFEPROCESS Technical Committee (Simani et al. 2003) with some additional terms for 

automotive specific descriptions and acronyms. The following list, while not exhaustive, 

attempts to define the common terms in the literature and in this thesis. It should be considered 

as a snapshot appropriate at the time of writing, as the list will evolve, as new techniques 

emerge and are classified. 

States and Signals 

Fault 

An unpermitted deviation of at least one characteristic property or parameter of the system 

from the acceptable, usual or standard condition. 

Failure 

A permanent interruption of a system's ability to perform a required function under specified 

operating conditions. 

Malfunction 

An intermittent irregularity in the fulfilment of a system's desired function. 

Error 

A deviation between a measured or computed value of an output variable and its true or 

theoretically correct one. 

Disturbance 

An unknown and uncontrolled input acting on a system. 

Residual 

A fault indicator based on a deviation between measurements and model-equation-based 

computations. 
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Symptom 

A change of an observable quantity from normal behaviour. 

Functions 

Fault detection 

Determination of faults present in a system and the time of detection. 

Fault isolation 

Determination of the kind, location and time of detection of a fault. Follows fault detection. 

Fault identification 

Determination of the size and time-variant behaviour of a fault. Follows fault isolation. 

Fault diagnosis 

Determination of the kind, size, location and time of detection of a fault. Follows fault 

detection. Includes fault detection and identification. 

Monitoring 

A continuous real-time task of determining the conditions of a physical system, by recording 

information, recognising and indicating anomalies in the behaviour. 

Supervision 

Monitoring a physical system and taking appropriate actions to maintain the operation in the 

case of a fault. 

 Models 

Quantitative model 

Use of static and dynamic relations among system variables and parameters in order to describe 

a system's behaviour in quantitative mathematical terms. 

Qualitative model 

Use of static and dynamic relations among system variables in order to describe a system's 

behaviour in qualitative terms such as causalities and IF-THEN rules. 
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Diagnostic model 

A set of static and/or dynamic relations which link specific input variables, the symptoms, to 

specific output variables, the faults. 

Analytical redundancy 

Use of more (not necessarily identical) ways to determine a variable, where one way uses a 

mathematical process model in analytical form. 

System properties 

Reliability 

Ability of a system to perform a required function under stated conditions, within a given scope, 

during a given period of time. 

Safety 

Ability of a system not to cause danger to persons or equipment or the environment. 

Availability 

Probability that a system or equipment will operate satisfactorily and effectively at any point 

of time. 

Time dependency of faults 

Abrupt fault 

Fault modelled as stepwise function. It represents bias in the monitored signal. 

Incipient fault 

Fault modelled by using ramp signals. It represents drift of the monitored signal. 

Intermittent fault 

Combination of impulses with different amplitudes. 
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Fault terminology 

Additive fault 

Influences a variable by an addition of the fault itself. They may represent, e.g., offsets of 

sensors. 

Multiplicative fault 

Are represented by the product of a variable with the fault itself. They can appear as parameter 

changes within a process. 

Automotive terminology 

ABS 

Anti-locking Brake System 

ADAS 

Advanced Driver Assistance Systems, typically image recognition based systems that are 

intended to reduce the workload of the driver or increase safety e.g. collision mitigation braking 

CAFE 

Corporate Average Fuel Economy 

CAN  

Controller Area Network.  

LS-CAN 

Low speed CAN. Fault tolerant implementation for physically large networks and/or 

harsh environments. ISO standard ISO11898-3 

MS-CAN 

Medium Speed CAN is not a recognised specification but generally acknowledged to 

be ~250kbit/s in automotive engineering applications, for the purpose of non-safety 

critical control such as interior lights and functionality 
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HS-CAN 

High Speed CAN (typically 500kbit/s, up to 1Mbit/s). SAE standard J2284-3, ISO 

standard ISO11898-2 

CAN data frame 

A data frame carries data from a transmitter to the receivers. 

Curb weight 

Mass of the vehicle with no occupants or additional load. 

Distributed functionality 

Functions are dependent on multiple controllers. The ABS depends on the wheel speed sensor 

but many other functions may also depend on the same signal, such as odometer and satellite 

navigation. 

DTC 

Diagnostic Trouble Code. SAE standard J2012 defines the trouble codes and their definition 

ESC 

Electronic Stability Control. See ESP 

ESP 

Electronic Stability Program. ESP is a trade mark of Bosch GmbH for a system that utilise the 

ABS system for the purposes of vehicle steering correction in the event of loss of traction, 

typically over-under-steer events. 

GVW 

Gross Vehicle Weight. Maximum permissible vehicle weight. 

OBD/OBD-II 

On-Board Diagnostics. Regulatory mandated standards for a vehicles self-diagnostic and 

reporting functions. Various standards set by SAE and ISO exist that define how OBD is 
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implemented in the vehicle and through the interface (SAE J1962, commonly referred to as the 

‘J1962 connector’) that exists in the drivers footwell. 

OEM 

Original Equipment Manufacturer.  

Safety critical 

Safety critical is a term typically used to refer to a subset of systems on the vehicle whose 

function, if it were to fail, would be deemed an immediate threat to safety e.g. brake system. 

Steering angle 

The angular displacement of the steering wheel broadcast on the CAN as a degree value 

typically in the range 430° to -430° 

TPMS 

Tyre Pressure Monitoring System. A set of sensors placed in the air space of the road wheels 

of a vehicle directly sample the air pressure. Referred to as ‘direct’ in this thesis 

TREAD 

The Transportation Recall Enhancement, Accountability and Documentation (or TREAD) Act 

is a United States federal law. It was drafted in response to fatalities related to Ford Explorers 

fitted with Firestone tyres. 

Miscellaneous terminology and acronyms 

BAE    

British Aerospace Engineering 

CLS    

Cautious Least Squares. The method of constraining the solution space of the estimation of a 

parametric model using least squares. The model and associated covariance matrix is reset to 

its original state (parameters) when a particular threshold has been transgressed. 

  



xxi 

 

CSV 

Comma Separated Values. A non-standardised but widely recognised file format where data 

(numbers and text) is stored in plain-text form with commas or semi-colons used as delimiters. 

This format is favoured for data acquisition due to its compatibility with software tools, such 

as MATLAB. 

CT    

Continuous Time. Transfer function models in the frequency domain are functions of ‘𝑠’ 

DAQ 

Data Acquisition. A device that is designed to acquire and store data in a systematic way for 

future analysis 

DFT    

Discrete Fourier Transform 

DSC    

Digital Signal Controller (CPU) 

DSP    

Digital Signal Processor 

DT    

Discrete Time. Transfer function models in the time domain are functions of ‘𝑧’ 

ECU    

Electronic Control Unit. Embedded automotive control, often deployed in distributed 

functionality systems with a CAN 

EEPROM   

Electrically Erasable Programmable Read Only Memory 
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EMS    

Engine Management System, an ECU in the vehicle HS-CAN 

EN    

Euclidean Norm ‖𝑥‖ ≔ √𝑥1
2 + ⋯+ 𝑥𝑛

2 

ETI    

Elapsed Time Indicator  

FFT (fft)   

Fast Fourier Transform 

FMEA 

Failure Mode and Effects Analysis. A mainly subjective and qualitative analysis of failure 

modes and their effects upon system function. Intended as a measure to improve system 

reliability. 

Freeware 

Software that is usually developed by enthusiasts or a community, typically open source and 

freely available on the internet  

FTA 

Fault Tree Analysis. In the context of automotive engineering the FTA is usually based on the 

DTC list and provides a description of the conditions that cause the DTC to occur. 

GPS 

Global Positioning System. Basis of satellite navigation 

I2C    

MEPHM internal communications protocol 

I/O    

Input/Output 
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IFFT (ifft)   

Inverse Fast Fourier Transform 

LIDAR 

Lidar is sensing technology that determines distance by illuminating the target with a laser and 

measuring the reflected portion of the light. 

MEMS    

Micro Electro-Mechanical System 

MEPHM   

Micro-Electronic Prognostic Health Monitor, product of BAE Systems. A vibration and 

temperature a data logger with CAN interface and FFT capability 

PCB    

Printed Circuit Board 

PSD    

Power Spectral Density 

RLS    

Recursive Least Squares 

RS-232   

Serial Communication Protocol 

SF    

Sampling Frequency 

TF    

Transfer Function 
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UNECE 

The United Nations Economic Commission for Europe (UNECE or ECE) Transport Division 

is the provider of secretariat services to the World Forum for Harmonisation of Vehicle 

Regulations (WP.29). The World Forum has incorporated into its regulatory framework the 

technological innovations of vehicles to make them safer and more environmentally sound.
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Introduction and outline of approach 

1.1. Background and motivation 

It is not clear what singularly motivated the original development of tyre pressure monitoring 

systems (TPMS), but there are practical considerations owing to the effect tyre pressure has on  

 Safety (Smith, T. and Knight 2005, Brewer and Rice, R. S. 1983, Li, L. et al. 2005) 

 Vehicle dynamics, handling and comfort (Pacejka 2006b)  

 Brake effectiveness (Shyrokau and Wang, D. 2013)  

 Rolling resistance and hence, efficiency (Clark and Dodge 1979) 

 Tyre lifespan (Sivinski 2012). 

The technology required to implement a direct TPMS had existed for quite some time by the 

1980s. Whilst the novelty involved in the creation of a direct measurement solution is not 

significant, there are a number of non-trivial engineering challenges to overcome such as  

 Operating a sensor in the harsh environment of a vehicle tyre  

 Managing energy consumption such that the sensor battery life is acceptable  

 Reliably transmitting data to the electronic control unit (ECU) 

 Interpreting the sensor measurement data in the presence of unknown disturbances 

(road shocks and temperature variation) 

 Interpreting the sensor measurement data in the presence of unknown disturbances 

(road shocks and temperature variation) 

 Ensuring long term reliability, particularly of the sensors. 

It is possible that the motivation for the initial systems was a marketing tactic to differentiate 

the brands and products of the original equipment manufacturers (OEM) who had invested in 

the technology. 

TPMS technology was first introduced to the European market as an optional feature for luxury 

passenger vehicles in the 1980s. The first series-production passenger vehicle to adopt a TPMS 

was the Porsche 959 in 1986, featuring a direct measurement system, utilising radio frequency 

(RF) transmitters to get the tyre pressure measurement across the rotating boundary of the 
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wheel and into the data acquisition system that resides in an ECU. The ECU interprets the 

pressure signal, allowing for disturbances such as tyre deflection and thermal effects, and 

transmits the tyre pressure onto the vehicles data bus so that the instrument cluster can display 

the tyre pressure for the convenience of the driver. The Peugeot 607, launched in October 1999, 

was equipped with a TPMS as a standard feature. Following Peugeot-Citroën, Renault 

launched the Laguna II in 2000, which could be argued as the advent of the first mass-produced 

vehicle to be equipped with TPMS as a standard feature. These systems were all based on the 

same principle of operation as the Porsche 959, namely direct TPMS. 

In the United States, a Schrader TPMS was used for the 1997 Corvette developed by General 

Motors. The vehicle also featured a Goodyear run-flat tyre and wheel system. This is a 

conventional RF based TPMS with the capability to detect tyre pressure at any wheel with 

warnings for both high and low pressure. 

At this point in the development of TPMS by various OEM, advancements in the safety aspects 

of vehicles and rising fuel costs led to an increased interest in TPMS as a means of benefitting 

from the points listed in the opening paragraph. Despite the fact that most drivers know that 

having correct pressures is important, different studies have shown that many vehicles still run 

with under-inflated tyres. A study from Sweden (Sturmhoebel 2012), for instance, provides an 

example. The study showed that 20% of the vehicles sampled had tyres that were underinflated 

by 20% or more. The survey results have been mirrored in other countries (Singh et al. 2009). 

TPMS will not prevent every tyre failure and does 

not automatically control the tyre pressures to the 

correct level. However, they can provide early 

warnings if one or more of the tyres loses pressure, 

and also help the driver to maintain the correct tyre 

pressure level in all tyres. The first point may 

appear trivial but in practice many drivers do not 

themselves notice under-inflation. A visual 

inspection is not considered to be a very accurate 

means of estimating tyre pressure except in 

extreme cases of under-inflation, as Figure 1.1 

shows. In addition to this property of the tyre, 

driver assistance technology, such as power 

Figure 1.1 A fully inflated tyre (upper) vs a 

70% inflated tyre (lower) (Marsh, 2004) 

 

This item has been removed due to 3rd 
Party Copyright. The unabridged version of 
the thesis can be viewed in the Lanchester 
Library Coventry University.
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assisted steering and electronic stability programs (ESP), mask the effects of the under-inflated 

tyre(s) through their normal action to maintain vehicle dynamics and handling properties. 

Nowadays, mandates for TPMS legislation are increasing globally (GIA 2013). TPMS offers 

an average of  2% improved fuel economy (Clark and Dodge 1979) and is seen as one of several 

fuel efficiency improvements that European car makers are undertaking to achieve the new 

levels for average fleet CO2 emissions, the Corporate Average Fuel Economy (CAFE) 

legislation (Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium 

and Heavy-Duty Engines and Vehicles 2011). Safety is generally regarded as an important 

benefit of TPMS, but the desire for CO2 reduction has been a stronger influence in the European 

market due to the acceptance of climate change in general. This is reflected in the legislation 

associated with fossil fuel consuming activities, particularly personal vehicles. The situation in 

the USA is different in that the claims of climate change caused by human activity is generally 

viewed with more scepticism amongst the population at large. Considerations for CO2 were 

not a factor in the development of the Transportation Recall Enhancement, Accountability and 

Documentation (TREAD) Act (Transportation Recall Enhancement, Accountability, and 

Documentation (TREAD) Act 2000), which is aimed at improving safety rather than reducing 

CO2. 

Following the lead of US and European TPMS mandates, Asia represents the next large vehicle 

market with incipient TPMS legislation. Japan, Korea, China and India are all currently in the 

process of adopting similar legislation. Korea has already confirmed its intention with 

legislation, two months behind the European timeline for full implementation. Japan, China 

and India are expected to follow, most likely within a year or two of these dates, with 

conservative estimates of Japan in 2017, China in 2018 and India in 2019 (Pucar 2011b). 

After the TREAD Act was passed, many companies responded to the new market opportunity 

by releasing TPMS products that use an obvious means of getting tyre pressure and temperature 

data across a vehicle's rotating wheel-chassis boundary — battery-powered radio transmitter 

wheel modules. 

The introduction of run-flat tyres and emergency spare tyres by several tyre and vehicle 

manufacturers has motivated the need to make at least some basic TPMS mandatory when 

using run flat tyres. With run flat tyres, the driver is more likely not to notice that a tyre is 

running flat (particularly a rear tyre, see Figure 1.1), hence the so-called ‘run flat warning 

systems’ were introduced. These are most often first generation, purely roll-radius based 
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indirect systems (based on measurements from the ABS wheel speed sensor), which ensure 

that run-flat tyres are not used beyond their limitations, usually 80 km/h and 80 km driving 

distance. Research into indirect solutions has also advanced. Indirect systems are able to detect 

under-inflation through combined use of roll radius and spectrum analysis and hence individual 

four-wheel monitoring has become feasible (Pucar 2012). This has allowed vehicles equipped 

with indirect systems to be homologated for the European and US market with respect to ECE-

R 64 (Regulation No. 64 - Rev.1 - Temporary Use Spare Unit, Run Flat Tyres, Run Flat-System 

and Tyre Pressure Monitoring System 2010) and FMVSS 138 (US DoT 2005) regulations. 

 

1.2. Aim and objectives 

The single underlying aim of this research is to solve the problem of assessing tyre pressure 

without the requirement of inserting a sensor in the air space of a vehicle tyre. Aside from the 

obvious imperatives of a thorough literature search and assessment of developments in the 

field, there are several key objectives that have been established in the planning phase that 

represent milestones and aspirational targets for the research. 

1.2.1. Assess the feasibility of tyre pressure estimation 

It is hypothesised that it is possible to detect tyre pressure loss from a drivers’ perspective due 

to the adverse effect low tyre pressure has on vehicle ride and handling. This is most readily 

assessed via analysis of the spectral characteristics of the chassis and/or axle assemblies. Since 

the target test vehicle does not feature air suspension (with suspension displacement sensors) 

or active suspension (with suspension accelerometers), the test will require instrumentation in 

order to capture the appropriate time series data. 

1.2.2. Simulation of suspension & road, estimation of parameters 

Some means of simulating the suspension and tyre pressure changes will vastly accelerate the 

development and assessment of the fault detection processes. This step necessarily involves 

the creation of a computerised model of the suspension and some way to automate the detection 

process, enabling Monte Carlo testing for various scenarios and permutations of vehicle 

properties such as fault-free and faulty, rapid/slow faults, vehicle speed and road conditions. 

These conditions may have an effect on the difficulty of detecting faults. Some means of 

generating realistic road surfaces or use of a pre-recorded measurement is an important aspect 

of the simulation environment. 
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1.2.3. Quarter car model 

Since many of the algorithms rest on a model of the suspension, it is imperative that this area 

is considered carefully. The model (or models) should adequately explain the dynamics of the 

quarter car for the purposes of fault or change detection. The model should allow the necessary 

means of measuring and controlling the states and/or parameters, in order to assess the vehicle 

condition or simulate particular fault conditions.  

1.2.4. Robustness and reliability 

In common with many other model-based fault detection approaches, robustness and reliability 

are key issues. The intent of this thesis is to show how diversification of approach is the key to 

overcoming this obstacle. Model-based techniques should benefit from some a priori 

information such as clues about the vehicle state derived from velocity, gear position, steering 

angle and many other sources. Measurement-based approaches such as ABS wheel angular 

velocity comparison at the data level (numeric angular velocity) and signal level (spectral 

analysis) mitigate for shortcomings due to the nature of the input, which is unknown. 

1.2.5. Unknown road input 

Despite recent advances in camera based vision systems that have some ability to assess the 

road condition, it will be assumed that the diagnostic will act ‘blindly’ i.e. with no special 

information about the road surface, other than that which exists on the data-bus, usually some 

kind of suspension or chassis displacement measurement. 

1.2.6. Regulatory requirements 

Some consideration of the testing requirements for the major vehicle jurisdictions is helpful for 

setting realistic detection thresholds and gauging success. 

1.2.7. Testing and validation 

It is essential that the algorithms are tested on a vehicle in order that the algorithms may be 

properly assessed. Vehicle testing in controlled conditions also generates data which may later 

be used for refinement of models, fault scenarios and the simulation in general. 

1.2.8. System identification of quarter car suspension 

It is possible and highly advantageous to perform a static test of a vehicle suspension. This may 

be achieved on a so-called ‘four-post rig’ – a hydraulically actuated road simulator which 

allows complete control of the ‘road’ surface via automatic control whilst simultaneously 
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offering the possibility of making high resolution time-series measurements of input (‘road’) 

and output displacements (vehicle). A data set generated in this way would present the 

possibility of making a system identification of the suspension system with the afore-

mentioned advantages. 

1.3. Background reading – Firestone and Ford tyre controversy 

The origins of TPMS legislation stems from vehicle accidents in the events surrounding the 

Firestone/Ford affair relating to vehicle products produced throughout the 1990s. As a result a 

milestone event in the evolution of TPMS technology occurred during the autumn of 2000. The 

Clinton administration signed into law the TREAD Act which mandated the fitment of a 

pressure measurement system to all vehicles, the first of such legislation globally. The driver 

for this legislation was the so-called Firestone and Ford tyre controversy (Greenwald 2001, 

Csere 2001, US DoT 2005). 

1.3.1. Initial investigations 

The US National Highway Traffic Safety Administration (NHTSA) initiated an investigation 

of allegations that Ford vehicle products equipped with Firestone tyres were involved in a 

higher than normal incidence of vehicle crashes, many of them fatal. The vehicles effected 

were primarily Ford Explorers, Mercury Mountaineers, and Mazda Navajos. Upon an internal 

enquiry Ford discovered that certain models of Firestone tyres (ATX, ATX II, and Wilderness 

AT) had above average failure rates in the field and there was some traceability leading back 

to those manufactured at Firestone's Decatur, Illinois plant.  

The public advocacy group Public Citizen mounted an investigation and accused Ford and 

Firestone of systematically concealing the problem, before the Transportation Subcommittee 

United States Senate Committee on Appropriations on September 6, 2000, despite serious 

concerns about the safety of these vehicles. Representation from the Centre for Auto Safety 

reported before the Senate Committee on Commerce, Science and Transportation in 

Washington D.C., September 20, 2000 "Emerging Information shows that both Ford and 

Firestone had early knowledge of tread separation in Firestone Tyres fitted to Ford Explorer 

vehicles but at no point informed the NHTSA of their findings" (Corona and Komendanchik 

2008).  
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1.3.2. Analysis of root cause 

During standard critical manoeuvre testing, Ford test and design verification documents 

indicated that concerns were raised by the ride and handling development engineers regarding 

the vehicle stability during the testing phase of the prototypes. Fundamental design changes 

were recommended to mitigate the vehicles propensity to roll over in extreme cornering 

manoeuvres. Likely due to the economic implications, few of these recommendations were 

incorporated into the final design, critical vehicle dynamics attributes such as the suspension 

and track width were not changed.  

In order to mitigate the handling issues Ford reacted by reducing the recommended tyre 

pressure to 26 psi and hence modifying the handling characteristics of the vehicle. The tyres 

were able to support a maximum pressure of 35 psi although the correct inflation pressure 

depends mostly on the vehicle mass and vehicle dynamics which is why it is set by the vehicle 

producer and not the tyre manufacturer. The failures in the field were exclusively attributed to 

the phenomenon of tread separation — the tread portion of the tyre separates from the carcass 

to reveal the supporting structure. If the vehicle is not immediately stopped total tyre failure is 

imminent. The problems are compounded critically at high speed owing to the fact that the 

driver has a substantially reduced time to react before total loss of control occurs due to lack 

of traction and/or blow-out. These crashes often involved vehicle roll over and severe damage 

to the vehicle structure and hence occupants. According to estimates at least 250 deaths and 

greater than 3,000 serious injuries were the result of these catastrophic tyre failures although 

not all of the incidents involved Ford products. Estimates in the range of 120 of the deaths can 

be attributed to the defective Ford vehicles. 

Ford and Firestone have both blamed the other for the failures, which has led to the severing 

of relations between the two companies. Firestone has claimed that they have found no faults 

in design nor manufacture, and that failures have been caused by Ford's recommended tyre 

pressure being too low and the Explorer's design. Ford, meanwhile, point out that Goodyear 

tyres to the same specification have a spotless safety record when installed on the Explorer, 

although an additional liner was included into the Goodyear design after recommendations to 

that effect were made by Ford. Firestone included an additional liner in its product and this was 

then also used to replace tyres on Ford Explorers. It is well accepted within the tyre 

manufacturing industry that use of a ‘belt edge layer’ or as referred above as an additional liner, 

virtually eliminates belt edge separation. As a rubber tyre moves on the road, it generates 
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significant heat. As steel belts heat up, they expand and tend to pull away or separate from 

rubber. The use of nylon belt edges has been in use since radial tyres were first developed in 

the 1970s. Nylon, when heated, actually constricts in size; thus maintaining the belt edge 

integrity. Therefore an economic motivation exists for Firestone to achieve cost savings by 

eliminating this additional layer. 

Some outside observers have speculated about the blame worthiness of both parties; Firestone's 

tyres being prone to tread separation and failure, and the Sport Utility Vehicles (SUV) being 

especially prone to rolling over if a tyre fails at speed compared to other vehicles. A subsequent 

NHTSA investigation of real-world accident data showed that the SUVs in question were no 

more likely to roll over than any other SUV, after a tread separation. 

A product recall was announced, allowing Ford Explorer (popularly dubbed Ford Exploder) 

owners to change the affected tyres for others. Many of the recalled tyres had been 

manufactured during a strike period at Firestone. A large number of lawsuits have been filed 

against both Ford and Firestone, some unsuccessful, some settled out of court, and a few 

successful. Lawyers for the plaintiffs have argued that both Ford and Firestone knew of the 

dangers but did not address the problem, and that specifically Ford knew that the Explorer was 

highly prone to rollovers. To this date Ford denies these allegations. 

A roll over test of a first-generation Explorer was conducted by Car and Driver magazine 

(Csere 2001). The vehicle was fitted with a roll cage and device that could remotely control 

the tyre pressure such that a blow-out condition could be simulated (rapid and total loss of 

pressure). The vehicle was driven through a series of critical manoeuvres (such as heavy 

cornering, slalom type manoeuvres) in order to recreate the condition of roll over. The vehicle 

passed these tests. Since it has been determined that the majority of fatal crashes involving the 

Ford Explorer were due to tread separation and not sudden pressure loss, this result merely 

demonstrates the vehicles stability in the low tyre pressure scenario. How the vehicle reacts to 

a tread separation event is not known due to the difficulty of creating a representative test 

scenario. 

John T. Lampe (Chairman & CEO of Bridgestone/Firestone) announced in a 2001 letter to 

Jacques Nasser (Ford Motor Company Chief Executive) that Bridgestone/Firestone would no 

longer enter into new contracts with Ford Motor Company, effectively ending a 100-year 

supply relationship. 
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1.4. Legislation 

In the United States, the United States Department of Transportation released the statute 

FMVSS No. 138, which requires an installation of a TPMS to all new passenger cars, 

multipurpose passenger vehicles, trucks, and buses that have a gross vehicle weight rating 

(GVWR) of 4,536 kg (10,000 lbs.) or less, except those vehicles with dual wheels on an axle, 

as of 2007. In the European Union, starting November 1, 2012, all new models of passenger 

cars were required to be equipped with a TPMS, with even tighter specifications that were 

defined by the United Nations Economic Commission for Europe (UNECE) Vehicle 

Regulations (Regulation No. 64). From November 1, 2014, all new passenger cars sold in the 

European Union must be equipped with TPMS. On July 13, 2010, the South Korean Ministry 

of Land, Transport and Maritime Affairs announced a pending partial-revision to the Korea 

Motor Vehicle Safety Standards (KMVSS), specifying that "TPMS shall be installed to 

passenger vehicles and vehicles of GVWR 3.5 tons or less, ... [effective] on January 1, 2013 

for new models and on June 30, 2014 for existing models". Japan is expected to adopt European 

Union legislation approximately one year after European Union implementation. Further 

countries to make TPMS mandatory include Russia, Indonesia, the Philippines, Israel, 

Malaysia and Turkey. 

1.4.1. Regulatory requirements 

Since it is not possible to list the regulatory requirements for each individual jurisdiction, this 

section will be an abbreviated description of the requirements for the EU area, although 

requirements for USA vehicles are similar (e.g. deflation threshold being 25% of OEM 

recommended pressure). In order to offer a vehicle equipped with a TPMS in the EU market 

the OEM must satisfy regulation ECE-R 64 (Regulation No. 64 - Rev.1 - Temporary Use Spare 

Unit, Run Flat Tyres, Run Flat-System and Tyre Pressure Monitoring System 2010). Annex 5 

of the regulation is a vehicle test which the regulator uses to assess conformity. There is a 

prescription for the ambient conditions, vehicle weight, and speed and measurement accuracy. 

Two tests are made: puncture and diffusion. A puncture is defined as (normal pressure −20%) 

in one tyre. The diffusion test simulates normal air loss due to micro leakages of the valves, 

wheel-rim contact area and propagation of air through the tyre rubber. Diffusion pressure is 

defined as (normal pressure −20%) in all road wheels. 
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1.4.1.1. Vehicle conditioning 

The test procedure starts with inflation of the tyres to OEM recommended pressure, 𝑃𝑟𝑒𝑐, and 

a ‘soak’ period where the vehicle is conditioned such that external disturbances do not effect 

the measurements and vehicle condition. The vehicle is driven for 20mins and the pressure, 

𝑃𝑤𝑎𝑟𝑚, is recorded. The reason for this soak period is to account for the additional pressure 

generated in the tyre by driving and thereby heating the tyre (typically a 3% increase has been 

recorded during testing). 

1.4.1.2. Puncture test 

The first test is a simulated puncture where one tyre is reduced in pressure by ( 𝑃𝑤𝑎𝑟𝑚 − 20%), 

to obtain 𝑃𝑡𝑒𝑠𝑡. The vehicle is then driven for 10mins or until the dashboard tell-tale lamp 

illuminates. The test is repeated for all tyres. The test is aborted after 10mins. 

1.4.1.3. Diffusion test 

All tyres are reduced in pressure by ( 𝑃𝑤𝑎𝑟𝑚 − 20%), to obtain 𝑃𝑡𝑒𝑠𝑡. The vehicle is driven for 

>20mins and <40 mins and stopped and ignition key removed for >1 min and <3mins. Driving 

resumes for 60mins or until the dashboard tell-tale lamp illuminates. The vehicle and engine is 

stopped and ignition set to ‘run’. The tell-tale lamp must illuminate and remain on. The vehicle 

tyres are then inflated to 𝑃𝑟𝑒𝑐 and the TPMS system is reset (so that the TPMS is calibrated to 

the new tyre pressure). The tell-tale lamp must now be off (driving the vehicle may be 

necessary). 

 

1.5. Benefits of TPMS 

The dynamic properties of a pneumatic tyre are dependent on its inflation pressure. Vehicle 

performance properties such as braking distance and lateral stability require the inflation 

pressures to be maintained as specified by the vehicle manufacturer. Under-inflation is a 

significant factor in thermal and mechanical overload caused by overheating potentially leading 

to sudden destruction of the tyre itself. Additionally, fuel efficiency and tyre wear are severely 

affected by under-inflation. In addition to loss of pressure due to punctures, tyres also lose 

pressure by diffusion. In over the period of a year pressure in a tyre can reduce from between 

20 to 60 kPa (3 to 9 psi), approximately 10% or even more of its initial pressure (Evans et al. 

2009). 
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Fuel usage: For every 10% of under-inflation on each tyre on a vehicle, a 1% reduction in fuel 

economy will occur (Evans et al. 2009). The Department of Transportation of the USA has 

estimated that under inflated tyres waste 7,600,000 m3 of fuel each year. 

Extended tyre life: Under inflated tyres are the significant cause of tyre failure and contribute 

to tyre disintegration, heat build-up, ply separation and sidewall/casing breakdowns (Evans et 

al. 2009). In the case of a coaxially mounted wheel pair, a difference of 0.69 bar causes drag 

in the lower inflated tyre of equivalent energy required to move the vehicle 4 metres per 1.6 

km. Operating a tyre, even briefly, on inadequate pressure breaks down the casing and prevents 

the ability to re-tread. However, not all catastrophic tyre failures are caused by under-inflation. 

Structural damage of the tyre is often accumulated over a long period of time in service by 

trauma such as striking curb stones or potholes which can lead to rapid tyre failures, not 

necessarily immediately after the damage was inflicted. This type of damage cannot be detected 

by any TPMS system. 

Reduced operational downtime and maintenance: Since maintenance of correct pressure 

extends the life of a tyre, costs in this area are reduced due to increased service life of the tyre 

and reduced operational down-time due to maintenance (Singh et al. 2009). 

Improved safety: Under-inflated tyres lead to tread separation and tyre failure, it is estimated 

that this phenomena lead to 192,277 accidents between July 3, 2005 – December 31, 2007 in 

the US alone (US DoT 2008, Choi 2012). Further, tyres properly inflated add greater stability, 

handling and braking efficiencies and provide greater safety for the driver, the vehicle, the 

loads and others on the road. 

Environmental effects: Under-inflated tyres, as estimated by the Department of 

Transportation, release over 26 billion kg of unnecessary carbon-monoxide pollutants into the 

atmosphere each year in the United States alone (TRB 2006). 

The European Union reports that an average under-inflation of 40 kPa produces an increase of 

fuel consumption of 2% and a decrease of tyre life of 25%. The European Union concludes 

that tyre under-inflation today is responsible for over 20 million litres of unnecessarily-burned 

fuel, dumping over 2 million tonnes of CO2 into the atmosphere, and for 200 million tyres 

being prematurely wasted worldwide. 

Having established the requirement for TPMS on vehicles worldwide this naturally prompts 

the requirement for research into effective alternative forms of TPMS owing to the high cost 
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and relatively low reliability of direct measurement systems. In this thesis an investigation of 

alternative forms of indirect tyre pressure estimation forms the basis of the research conducted 

1.6. Outline of approach and thesis structure 

The approach is based on theoretical study, simulation and analysis of experimental data and 

critical appraisal of methods/algorithms developed. The thesis structure is as follows: Chapter 

2 provides a critical appraisal of the current literature in the field of TPMS, with particular 

attention to the indirect methods that have been developed. Chapter 3 describes the data 

acquisition process, methods and tools. Chapter 4 describes the theory behind suspension 

models and develops the quarter car model used for this work with preliminary considerations 

highlighting some of the issues of stiff systems. Chapter 5 provides a brief review of model 

parameter estimation in the context of the quarter car model with a comparison of discrete-time 

and continuous-time model parameter estimation as well as details of the development each of 

the proposed tyre pressure change detection methods. Chapter 6 concludes the research and 

suggests opportunities for further work. A list of the references quoted is provided and 

Appendix 2 provides details and specifications of the tools and equipment used for the 

experimentation and data acquisition. 

1.7. Contributions of the Author 

The main outcomes and contributions of this work are considered, by the author, to be (in order 

of significance) as follows: 

1.7.1. Tyre pressure diagnosis via wheel angular velocity comparator 

This piece of work is original in the sense that the method does not appear in the literature. A 

method was independently developed to acquire, interpret and process the Controller Area 

Network (CAN) data such that it is in a useful form for analysis and is effective at detecting 

specific modes of tyre pressure loss – validated on a vehicle. This was achieved with basic 

tools and available open source software/freeware, rather than state of the art data acquisition 

(Data Acquisition) DAQ equipment. 



13 

 

1.7.2. Model-based tyre pressure diagnosis via application of an 

unknown input observer and a parameter estimation scheme 

The continuous-time, model-based tyre pressure change detector is enhanced by the addition 

of an unknown input observer (UIO) that simultaneously reconstructs the road profile input 

and provides a fault diagnostic in the form of a phase portrait.  

1.7.3. Model-based tyre pressure diagnosis via an enhanced filter 

configured to estimate input and suspension state 

In this work a Kalman filter configured for state estimation is enhanced by inclusion of the 

input state in the estimation scheme. The continuous-time, model-based tyre pressure change 

detector is enhanced by the addition of the Kalman state estimate of the road profile and gives 

an estimate of the tyre sidewall height, which is a function of the tyre pressure.  

1.7.4. Model-based tyre pressure diagnosis via cautious least squares 

Cautious least squares (CLS) is used as a fault detector by the addition of a parameter reset 

counter. Analysis of the fault counter provides some insight into the tyre condition. Two 

estimators are trialled and compared, namely recursive least squares (RLS) and a Kalman filter.  

1.7.5. Investigation of the effects of sampling interval on discrete-time 

models and estimation thereof, with the corresponding 

continuous-time model and estimation of parameters 

In the context of tyre pressure monitoring, this piece of work highlights the properties of 

suspension systems and the interaction of two dynamic modes, namely wheel hop frequency 

and that of the vehicle body frequency. The two modes interact with the result being regarded 

as a stiff system. The advantages and limitations of the discrete-time and continuous-time 

approaches provides the reader with a valuable insight. 

 

Note that in the case of 1.7.1 - 1.7.5 the work reported in each case is original in the sense that 

the method does not appear in the literature. Each of the methods is effective at detecting 

specific modes of tyre pressure loss, which are detailed in the description of the method. In 

each case the method has been validated using data acquired from a vehicle in a test facility. 
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Literature survey on tyre pressure monitoring 

The approaches to the solution of the tyre pressure measurement problem can be divided by 

the mode of measuring or detecting the pressure namely – direct or indirect. Directly sampling 

the tyre pressure involves placing a sensor in contact with the air space of the tyre while indirect 

methods typically use vehicle sensor data to infer the condition of the tyre, without actually 

having to measure the pressure.  

Direct measurement solutions are problematic because they usually require a sensor to be 

placed in the tyre air space. This means that the task of supplying the sensor with power is 

curtailed to the use of batteries (VisiTyre 2001), inductive (Hill and Turner 1992) or kinetic 

energy scavenging solutions (Wang, Y. et al. 2012) and it also means that the pressure data 

must be obtained over a wireless link. The mass of the sensor will form an eccentric load on 

the axle and hence some provision to limit the weight of the sensor and counteract the force is 

required (this is usually achieved by the conventional tyre balancing method of applying 

weights opposite to the additional mass). 

Indirect measurement approaches usually attempt to offer the advantage of reduced component 

count in the measurement system by using sensor data that already exists on the vehicle data 

network to perform a diagnosis (Carlson & Gerdes, 2005; Craighead, 1997; Ersanilli & 

Burnham, 2014; Isermann & Wesemeier, 2009; Mayer, 1995; Persson, Gustafsson, & Drevö, 

2002; Ryan & Bevly, 2012; Umeno, Asano, & Iwama, 1994). Some approaches combine many 

sources of data in a manner sometimes referred to as data-fusion (Persson et al. 2001a). This 

reduces the system to an algorithm that resides in one of the ECU on-board the vehicle. 

Typically a model-based approach is employed (Ersanilli et al. 2009b), with data coming from 

sources such as accelerometers, suspension height and wheel speed sensors. 

To the best knowledge of the author at the commencement of this research study, TPMS fitted 

by OEM were exclusively direct measurement systems. The evolving landscape in this regard 

has changed and there is at least one supplier, at the time of writing, of indirect measurement 

systems to a major OEM, Nira Dynamics AB (Pucar 2011a), which complies with the US 

FMVSS 138 (US DoT 2007) and EU ECE-R 64 (Regulation No. 64 - Rev.1 - Temporary Use 

Spare Unit, Run Flat Tyres, Run Flat-System and Tyre Pressure Monitoring System 2010) 
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regulations, albeit with some exceptions for FMVSS 138 regulation (Harris, C. H. 2011). This 

is partly due to the way the US and EU regulations have been worded, making it problematic 

for an indirect solution to be achieved, and partially because of complexity of implementing 

indirect systems that can detect tyre pressure within the allotted time with sufficient accuracy 

without causing false alarms. Figure 2.1 shows various relationships between the main 

approaches to tyre pressure detection. 
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Figure 2.1 The tyre pressure monitoring landscape 
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2.1. Direct measurement 

With reference to Figure 2.1 a number of direct measurement approaches are now described. 

2.1.1. In-tyre TPMS 

Direct pressure measurement approaches, specifically in-tyre measurement, are currently the 

preferred method for the vehicle OEM (GIA 2013). The reasons for this may be that direct 

measurement approaches are considered to be more reliable than an inferred scheme although, 

to the best knowledge of the author, no research exists that demonstrates this is true. Direct 

measurement solutions generally have the advantage of providing an actual measurement of 

the tyre pressure in a given wheel, which is useful information for the driver and may also 

factor into the electronic stability program (ESP) in order to predict the vehicle dynamics. It 

could also be argued that the automotive industry as a whole is generally considered to be 

relatively conservative (in common with many other engineering disciplines, such as rail, 

process and civil, for example), and are reluctant to adopt unproven technology, particularly in 

areas of safety critical systems, such as tyre and braking systems. Due to the inherent dangers 

of automotive transport, OEM are also vulnerable to litigation which compels careful 

consideration of vehicle design in safety critical areas. Another argument for direct TPMS 

could be made on the basis of their perceived superior reliability and hence reduced warranty 

repair costs and associated negative customer sentiment (Federal Motor Vehicle Safety 

Standards; Tire Pressure Monitoring Systems; Controls and Displays 2000). This is due to the 

fact that model-based methods are not well understood or used outside of research institutions 

such as universities and engineers within an OEM may not understand or trust this type of 

technology (Forssel 2009). 

The systems implemented by an OEM generally consist of a remote pressure sensor (in each 

wheel), and a central processing ECU. Depending on the sensor activation method, some 

systems incorporate a low frequency activator (in each wheel arch) per sensor so that the data 

transmissions can be requested by the ECU and the sensor is subsequently allowed to ‘sleep’ 

on a reduced power setting, to preserve battery power. Figure 2.2 illustrates a direct pressure 

measurement system. 

The sensor module must be small in both size and weight to minimise the effect of centrifugal 

forces. The module is designed to operate between −40 °C and 120 °C. For example, a tyre 

pressure sensor manufactured by Hella Inc., shown in Figure 2.3(a), consists of a sensor, 

transmitter, antenna, and control unit as well as a long-life battery to supply energy. This pack 
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has a valve stem, which is inserted from inside the tyre through a hole on the wheel rim as 

shown in Figure 2.3(b). The aluminium cap of the valve stem acts as an antenna, while the 

nickel valve core helps prevent corrosion. Most TPMS sensors feature a pressure transducer 

manufactured with semiconductor technology, which provides low energy consumption. The 

sensor is designed together with an analogue-to-digital converter and non-volatile memory to 

store tyre pressure data. In advanced models, a temperature sensor is also embedded with the 

pressure sensor. To control the functions of the sensor and transmitter, a microcontroller is 

fitted on the sensor module. A software routine is loaded in the flash memory of the 

microcontroller to define its operation. Optimal utilisation of battery energy is crucial since it 

cannot be replaced easily. The radio frequency transmission stage typically expends five times 

more energy than the sensing stage (Freescale 2009, Löhndorf et al. 2007a). Various energy-

management techniques are used to save battery energy. In some models, when the vehicle is 

parked, the sensor transmits the signals once an hour, while other models are equipped with 

angular velocity detectors that shut down the transmission. More sophisticated sensor modules 

contain a low-frequency receiver integrated circuit, which waits in standby mode and wakes 

up the sensor once it detects a trigger from the vehicle’s main processor. This technique is 

called pressure on demand (Atmel 2008). In the sensor module circuit shown in Figure 2.3(a), 

each sensor is coded differently so that the receiver can distinguish between tyres. If one of the 

tyres is replaced or if the tyres are interchanged, the sensor or sensors must be reset (Velupillai 

and Güvenç 2007b) 

Once pressure data is obtained from the sensors it is not simply a matter of outputting the signal 

to an indicator for the driver to observe. The data must be processed to give an accurate 

indication of the pressure; this is because as the vehicle traverses the road, shocks from the 

road surface will deform the tyre causing the pressure to fluctuate. An averaged value is 

calculated from the stream of sampled measurements, which is then transmitted via the vehicle 

network to the instrument panel. It is possible to retro-fit these type of systems (Schrader 2014), 

although the vast majority of systems in use are OEM fitted during series production (GIA 

2013). 
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Figure 2.2 A direct pressure 

measurement system. Sensors 

in each tyre measure pressure 

and report this to an ECU 

which processes the data and 

communicates with the 

instrument panel over the 

vehicle network to inform the 

driver (Velupillai and Güvenç 

2007b) 

 

Figure 2.3 (a) Sensor module 

and (b) when installed on the 

rim, inside the tyre. The valve 

stem acts as an antenna for the 

built-in transmitter (Velupillai 

and Güvenç 2007b) 

 

 

2.1.2. Non-intrusive direct measurement 

A branch of direct measurement techniques that do not rely on battery power is discussed in 

this section. The rationale for the inclusion of this sub-category is that these approaches attempt 

to overcome the same problem of supplying power to a device in the tyre, in the same way that 

indirect measurement approaches do. An extension of this concept is the energy scavenging 

approach, which is essentially identical to the conventional direct TPMS approach, with four 

tyre mounted pressure sensors, but without the requirement for a conventional battery. The 

electrical power is harvested from conversion of the road disturbance input and rotational 

energy of the wheel. 

2.1.2.1. Tyre valve cap system 

The tyre cap system is a low cost after-market solution for vehicles that do not have an OEM 

fitted TPMS. There are two types tyre cap system, a multi coloured indicator type (Figure 2.4) 

and flashing lamp type (Figure 2.5). The multi coloured indicator is encapsulated in the valve 

cap and indicates critical (yellow), low (red) and normal (green) pressure. The flashing lamp 

type activates once a pressure threshold has been transgressed.  

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the 
Lanchester Library Coventry University.

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the 
Lanchester Library Coventry University.
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This type of system is very inexpensive and simple to implement but vulnerable to tampering 

and is not visible to the driver whilst the vehicle is in motion. It is aimed at avoiding the low 

pressure tyre condition rather than warning the driving of an imminent fault whilst on a journey.  

An extension of this type of system, namely FOBO Tire, is under development. A tyre valve 

cap pressure transducer (Figure 2.6) is linked to a microprocessor with a Bluetooth transmitter 

which can be connected to a suitable Bluetooth equipped device, such as a smartphone (Figure 

2.7). 

 

Figure 2.4 Multi-coloured cap  

 

 

Figure 2.5 Flashing cap 

 

 

Figure 2.6 FOBO Bluetooth pressure sensor 
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Figure 2.7 FOBO Smartphone application 

2.1.3. Intrusive direct measurement not requiring an in-wheel 

battery 

This subset of direct measurement approaches remains reliant on a direct sensing element in 

some area of the wheel-tyre assembly with the distinction that the approaches attempt to solve 

the problems of the in-wheel battery requirement (which necessitates tyre removal in order to 

service the component) and ability to retro-fit (in some cases). This is generally achieved by 

some novel application of electromechanical techniques in order to determine tyre pressure 

change via some abstracted property of the wheel-tyre system. 

2.1.3.1. Magnetic displacement system 

The magnetic displacement system is intended as a series production vehicle solution that is 

integrated into the vehicle systems during the design phase of the vehicle, similar to direct 

TPMS. In this system a wheel-mounted mechanism produces a displacement as a function of 

tyre pressure. This displacement is used to vary the separation of a pair of permanent magnets. 

The position of these magnets is sensed from the vehicle chassis by means of a Hall probe 

(Figure 2.8). The Hall probe reading then forms the basis of a pressure indication that can be 

fed back to a data processing ECU and then the instrument panel. This is achieved via the Hall 

effect, whereby a potential difference is set up transverse to a current in the conductor and a 

magnetic field perpendicular to the current. This approach is currently a research project and 

has no practical applications to date. 

The benefit of this system is that it is a direct measurement system and hence potentially more 

accurate (although this has yet to been demonstrated for mass manufacturing) but without the 

requirement for a remote battery operated device and so would not incur a service penalty in 

the event of battery failure. The system could be expensive in terms of components (Figure 
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2.9), depending on the sensor costs, in addition four Hall probes are required and an ECU, 

making it a comparatively expensive solution for mass manufacturing (Hill and Turner 1992). 

 

 

 

 

Figure 2.8 The stationary mounted 

Hall probe of the magnetic 

displacement system (Hill and 

Turner 1992) 

 

 

Figure 2.9 The wheel mounted pressure transducer of the magnetic displacement system 

(Hill and Turner 1992) 

2.1.3.2. Electronic article surveillance techniques 

Electronic article surveillance is intended as a series production vehicle solution that is 

integrated into the vehicle systems during the design phase of the vehicle, similar to direct 

TPMS. This is an alternative direct sensing approach that does not require in-tyre power source. 

In Electronic Article Surveillance (EAS) or ‘Shop Security’ systems a common method for 

detecting the removal of an unauthorised item uses a small passive inductive-capacitance 

resonant circuit, as shown in Figure 2.10, attached to the item with radio frequency transmitting 

and receiving systems located at exits. If the item bearing the LC circuit or ‘tag’ is brought into 

the area between the transmit and receive antennas the presence of the tag will register with the 

receiver and an alarm will sound. 

This method of detection is normally based upon the use of a frequency modulated transmitter 

and antenna able to continuously sweep across a frequency range covering the resonant 

This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be viewed in the 
Lanchester Library Coventry University.

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the Lanchester 
Library Coventry University.
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frequency of the tag. As the system relies upon the response of a highly resonant LC circuit it 

can be made very sensitive to changes in the circuit properties.  

If  a  tag  is located in the area close to the antenna,  as  depicted in Figure 2.10,  the transmit 

burst will energise the tag, which is loosely coupled to the transmit and receive antennas. When 

the frequency of the burst corresponds closely to the natural resonant frequency of the tag, the 

tag will absorb energy from the radio frequency field. 

 

 

Figure 2.10 Structure and Equivalent Circuit of EAS 

Passive LC Tag (Smith, D. 1997) 

 

In order to use this system for tyre monitoring applications two main problems need to be 

addressed. Firstly the resonant frequency of the passive LC circuit must be made to change in 

response to variations in tyre pressure and it must prove possible to detect this change.  This 

can be achieved by varying either the capacitance or inductance of the circuit. Secondly it must 

be possible to design and manufacture the LC circuit in such a manner as to be easily 

incorporated with the tyre or valve. One possible method of achieving both could be to 

incorporate the LC circuit as part of the tyre sidewall structure. If the tyre sidewall changes 

shape due to partial deflation this will cause a change of shape of the wire loop forming the 

circuit inductance. Such a change would give rise to a change of inductance and hence a change 

of resonant frequency (Smith, 1997). The problem with this type of solution is the requirement 

for the sensor to be installed in the tyre itself. This approach has never been shown to be reliable 

in practice and as such no tyres currently exist which incorporate sensors for on-board analysis 

of tyre pressure although research continues in this area (Rodríguez-Madrid et al. 2012, 

Tuononen 2009, Li, L. et al. 2005) 

2.1.3.3. ‘Intelligent tyre’ - passive surface acoustic wave system  

The term ‘intelligent tyre’ describes tyres equipped with sensor systems to monitor thermal and 

mechanical parameters while driving. Information about temperature, tyre pressure and tread 

wear can be obtained and used for control or diagnostic purposes.  

In this system the friction coefficient is measured by evaluating the mechanical strain in the 

tyre surface contacting the road—utilising the deformation of the tread elements (Figure 2.11 

This item has been removed due to 3rd 
Party Copyright. The unabridged 
version of the thesis can be viewed in 
the Lanchester Library Coventry 
University.
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and Figure 2.12). The system employs a monitoring method using passive radio activated 

surface acoustic wave (SAW) sensors. During the road contact, the local stress within the tread 

depends on the tyre pressure, the load and the mechanical parameters of the wheel suspension 

system. Numerous theoretical and experimental investigations have been conducted and 

published on this subject (Pohl et al. 1999, 1997, Dixon et al. 2007, Rodríguez-Madrid et al. 

2012, Zhang, X. and Wang, F. Y. 2009, Li, L. et al. 2005, Matsuzaki and Todoroki 2006). 

 

Figure 2.11 Cross section of a SAW sensor mounted on the inside of a tyre (Pohl et al. 

1999) 

 

 

Figure 2.12 SAW sensor mounted on the inside of a tyre (Pohl et al. 1999) 

 

The main benefit of this system is that while it is a direct measurement scheme, it does not 

require battery power. However, the relationship between tyre flex and pressure is not a linear 

one, especially considering that the exact mass of the vehicle cannot be known to the system 

(passengers and cargo). A significant shortcoming with this type of solution is the requirement 

for the sensor to be installed in the tyre itself. This approach has never been shown to be reliable 

in practice and as such no tyres currently exist which incorporate sensors for on-board analysis 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be viewed in the Lanchester Library Coventry 
University.

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the Lanchester 
Library Coventry University.
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of tyre pressure although research continues in this area, see references relating to article 

surveillance techniques (Smith, 1997). 

Intelligent tyre concepts are in various stages of development by Goodyear Dunlop and 

Continental Automotive. Dunlop has proposed a battery free design embedded in the rubber 

which reports on tyre pressure, temperature and the tyre identification details to onboard 

vehicle systems. It is proposed (Burt 2014) that this information will lead to improvements 

such as reduced stopping distance under ABS operation, enhanced cornering response, 

improved yaw stability and optimised stability control systems. Continental Automotive have 

proposed similar embedded tyre technology (Continental 2015) but there is no evidence that 

either company have succeeded in series production implementation. 

2.1.3.4. Energy harvesting for tyre pressure monitoring systems 

This area of research is not solely devoted to the application of tyre pressure monitoring 

although it is attractive because it addresses one of the major obstacles in the direct sensing 

approach by obviating the requirement for a specialist long life battery installed in the wheel  

(in order to supply the sensing circuit). In the study (Löhndorf et al. 2007), a MEMS based 

electrostatic vibration energy harvester is simulated and shown to deliver 10µW average power 

to supply a TPMS. There are no known applications for this technology amongst the vehicle 

producers at the present time, indicating that this area of research is still in its infancy but is 

considered to be feasible considering the significant energy dissipation in the average vehicle 

wheel, during a drive cycle (Hu et al. 2011, Kubba and Jiang 2014). 
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2.2. Indirect measurement 

With reference to Figure 2.1, a number of developments in indirect measurement are now 

described. 

2.2.1. Wheel rotation observer-based approaches 

This approach could be argued to be the original indirect method that spawned the research 

into indirect and data fusion methods generally. This particular method is still in use in some 

jurisdictions and it is a useful component of any data fusion approach, as will be discussed in 

Section 5.7. 

The premise upon which this method is founded is that the tyre radii are a function of the load 

(vehicle mass) and tyre pressure, with the major contribution attributed to the tyre pressure 

(Pacejka 2006a). These properties have a marked effect on the angular velocity of the wheel. 

Vehicles equipped with an antilock braking system (ABS) automatically provide the angular 

velocity, ω, of each tyre to a central processor. A straightforward algorithm based on 

monitoring of the inflation measure β defined by 

 
𝛽 = |

(𝜔𝐿𝐹 + 𝜔𝑅𝑅) − (𝜔𝑅𝐹 + 𝜔𝐿𝑅)

𝜔𝑎
| (2.1) 

 
     𝜔𝑎 =

𝜔𝐿𝐹 + 𝜔𝑅𝑅 + 𝜔𝑅𝐹 + 𝜔𝐿𝑅

4
        

(2.2) 

is used to predict tyre under inflation, where 𝜔𝐿𝐹, 𝜔𝑅𝐹, 𝜔𝐿𝑅, 𝜔𝑅𝑅  denote left front, right front, 

left rear, and right rear wheel angular velocities, and 𝜔𝑎 is the average angular velocity. The 

tyre inflation measure β is close to zero for normal tyre pressure. Owing to the existing 

availability of the wheel velocities, only software is needed to implement this indirect TPMS 

(Velupillai and Güvenç 2007b). There are significant contributions to research in this area, 

particularly in the early periods, around the time of the Ford-Firestone incidents of 1997 (Mayer 

1994, Beeson and Ishihara 1998, Atherton 1992, Walker, J. C. and Rehal 1993, Nakajima 

1998), see Figure 2.13. 

There are, however, several shortcomings associated with the above type of indirect TPMS. 

The system does not report the actual pressure of each tyre and only operates when the vehicle 

is in motion. The system does not warn when two tyres are equally underinflated on the same 

side or same axle or when all four tyre pressures are equally low (which is the normal mode of 

gradual decline in pressure due to leakage). The finest resolution of the system is typically a 
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pressure drop of more than 25% and systems may generate false alarms when the vehicle is 

driving on a sustained curve or during tyre slip on low friction surfaces such as ice and wet 

leaves. This type of indirect system remains in use but it is confined to jurisdictions other than 

EU and US (and others) due to incompatibility with UNECE (2010); US DoT (2005). 

 

 

Figure 2.13 Wheel angular and vehicle velocities. Tyre pressure changes result in changes 

in wheel angular velocity. Wheel rotational speeds are measured in all vehicles by the 

ABS sensors (Velupillai and Güvenç 2007a) 

 

2.2.2. Tyre pressure estimation via ABS signal processing 

This technique first appeared in the literature in 1994 with a paper by Toyota (Umeno et al. 

1994). It appears that in this period Toyota was conducting research into tyre modelling and 

estimation generally, as papers have been published on estimation of tyre-road friction and 

pressure estimation until 2002 by Umeno (2002). The method relies upon analysis of the ABS 

wheel speed signal at the electrical level, rather than the processed samples that are broadcast 

on the vehicle data bus, as in the wheel rotation observer approaches.  

2.2.3. Tyre pressure monitoring with wavelet-transform 

This technique relies upon analysis of the frequency spectrum of the ABS wheel speed signal 

by directly sampling the signal at the electrical level, rather than conditioned signal that is 

broadcast by the ABS ECU. The approach differs from the observation of absolute differences 

between individual wheel speeds in that, due to the mass-spring-damper properties of the wheel 

system, there is a frequency component of the signal that is dependent on the tyre pressure. The 

property of interest in this work is the eigen frequency which is dependent on the physical 

properties of the system (in this case the tyre), a hypothesis is proposed such that any change 

in the physical constants, such as tyre pressure, mass or damping, will have a measureable 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be viewed in the Lanchester Library Coventry 
University.
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effect on the eigen frequency. Since mass and damping can reasonably be assumed to be 

constant, it is proposed that the frequency shift  is due to tyre spring rate, which is a linear 

function of tyre pressure (Heißing and Ersoy 2011). The novelty of this work is the application 

of wavelet transformations (in the place of examining the frequency spectrum via a Fourier 

transform), in an effort to reduce computational time and builds on the ABS wheel speed 

analysis work of Gustafsson et al. (2001). 

2.2.4. Tyre radii estimation using a marginalized particle filter and 

Bayesian parameter estimation 

This approach utilises individual wheel angular velocity measurements and absolute vehicle 

position from a global positioning system (GPS) to estimate tyre radius. The radii deviation 

from its nominal value is modelled as a Gaussian random variable and included as noise 

components in a simple vehicle motion model. The novelty lies in a Bayesian approach to 

estimate online both state vector and the parameters representing the process noise statistics 

using a marginalised particle filter (Lundquist et al. 2014). This solution, which builds on the 

work of (Gustafsson et al. 2001), is appealing due to the high level of estimation accuracy of 

the tyre radii and hence tyre deflation, tested according to UNECE (2010). An important caveat 

is that this approach relies upon ABS wheel speed data in order to operate which is not simple 

to retrofit. In common with other indirect approaches, this technique does not provide actual 

pressure measurements and only works when the vehicle is in motion, 

2.2.5. Diffusion deflation detection using wheel angular velocity 

signals 

This work attempts to overcome the problem of four tyre deflation (usually associated with 

normal diffusion of the tyres) and tyre deflation of tyres which share an axle, which are the 

limitations that prevent simple wheel angular velocity observer approaches (Nakajima 1998) 

being ratified by the regulators of the major vehicle markets (Regulation No. 64 - Rev.1 - 

Temporary Use Spare Unit, Run Flat Tyres, Run Flat-System and Tyre Pressure Monitoring 

System 2010, US DoT 2005). The premise of this method posits that the radius of a vehicle 

tyre is dependent on the relationship between the load and the tyre pressure (Figure 2.14). The 

researchers have shown that the tyre rolling radius rate of change in the deflated condition (140 

kPa) is smaller than that in the normally inflated condition (200kPa) over a wide range of tyre 

aspect ratio (70% to 50%), as shown in Figure 2.15 and Figure 2.16. 
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Figure 2.14 Load sensitivity of tyre rolling radius (Yanase 2005) 

The author Yanase (2005) claims that due to the load shift which occurs during cornering and 

acceleration/deceleration, detection of 4-tyre diffusion deflation is possible by comparing the 

tyre rolling radius change rate under cornering or acceleration/deceleration between a normally 

inflated tyre and a deflated tyre. Figure 2.15 shows the rolling radius change in the normally 

inflated condition under cornering and Figure 2.16 is of a vehicle with tyres in the 40% deflated 

condition. The slope of the line represents the load sensitivity of the tyre in each condition. The 

data set is continuously processed during the drive cycles and the slope is calculated after each 

sample. When the slope transgresses a threshold it is deemed that the average tyre pressure has 

changed. In this way four tyre diffusion may be detected (Yanase 2005). 

 

Figure 2.15 Angular velocity difference during cornering due to load shift (Normally 

inflated condition) (Yanase 2005) 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the 
Lanchester Library Coventry University.

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be viewed in the Lanchester Library Coventry 
University.
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Figure 2.16 Angular velocity difference during cornering due to load shift (40% deflation 

condition) (Yanase 2005) 

 

This approach is attractive in the sense that is common to most indirect approaches: no 

additional sensors are required (assuming wheel angular velocity is known, i.e. an ABS is 

equipped). However it relies upon the fact that the vehicle is in motion and the vehicle state is 

suitably excited in order to make the analysis. The author does not state whether the level of 

vehicle excitation due to the regulation prescription is sufficient to elicit a diagnosis using this 

approach. There is no evidence that this particular approach has been adopted by vehicle OEM 

which suggests that in practice it is not able to meet (Regulation No. 64 - Rev.1 - Temporary 

Use Spare Unit, Run Flat Tyres, Run Flat-System and Tyre Pressure Monitoring System 2010, 

US DoT 2005). 

2.2.6. Model based detection of tyre deflation by estimation of a 

virtual transfer function 

In this research a method for monitoring the tyre pressures is developed using chassis 

acceleration signals. The authors (Halfmann et al. 1997b) develop the concept of a ‘virtual 

transfer function’ which describes the relationship between the front and rear wheels on a given 

side of the vehicle (bicycle model)  

 
|𝐺(𝑠)| =

|𝑧̈𝐵𝑅(𝑠)|

|𝑧̈𝐵𝐹(𝑠)|
 (2.3) 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be viewed in the Lanchester Library Coventry 
University.
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where 𝑧 is the vertical displacement of the chassis and 𝐵𝐹, 𝐵𝑅 represent the front and rear 

wheels. Analysing the chassis in this way (Figure 2.17) is an attempt to mitigate the effect of 

the unknown input, i.e. the road surface excitation that is present during driving. By classifying 

the frequency spectrum of the virtual transfer function between the body acceleration at the 

front and rear wheel on one side of the vehicle, characteristic features are generated.  

 

Figure 2.17 Comparison between the power spectral density of the left front wheel and 

the left rear wheel at an engine angular velocity of 2000 rpm (Halfmann et al. 1997b) 

 

Figure 2.18 The generated symptom space and the associated classes of tyre pressure 

(RF=right front wheel, RR=right rear wheel) with symptom 𝑺𝟏 on the x-axis and 𝑺𝟐 on 

the y-axis (Halfmann et al. 1997b) 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the Lanchester 
Library Coventry University.

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be viewed in the Lanchester 
Library Coventry University.
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The first symptom is generated by assessing the characteristic frequency response of the tyre 

oscillation in the fault-free condition. There is a relationship between spectral amplitude of the 

virtual transfer function 𝐺(𝑠) and tyre pressure quotient Pfront Prear⁄ . A change in the first 

symptom 𝑆1 can be interpreted physically because its value depends directly on the fault-free 

vertical oscillation of the tyre, which is strongly influenced by tyre pressure. 

Figure 2.18 shows the filtered symptoms of the right-hand-side track, with five classes of tyre 

pressure. The relative location of the first characteristic feature reflects the change in the value 

of the pressure quotient between the rear and the front wheel on the same side: With a 

decreasing pressure quotient value, 𝑆1 tends to decrease in value. A second symptom 𝑆2 which 

cannot be interpreted physically, covers the remainder of the frequency range under 

consideration, to the upper frequency limit of 25 Hz 

To diagnose the tyre pressure, a neuro-fuzzy classification of the characteristics is applied 

which allows the authors the advantages of automatic learning (from the neural network 

component) that is enhanced and constrained by the addition of expert knowledge (from the 

fuzzy logic component) (Halfmann et al. 1997a). 

The advantages of this type of system are that it does not require knowledge of the road input 

to make a diagnosis (which is a significant obstacle for model-based approaches) and does not 

require wheel angular velocity information, unlike many indirect solutions. However, 

accelerometers in all four corners are required and depending on the required accuracy this 

may add significant cost to a vehicle. Accelerometers are increasingly being deployed for the 

purposes of active suspension control and hence this approach may be more suitable in this 

setting. There is no evidence that this particular approach has been adopted by a vehicle OEM. 

This likely due to the limitation that four wheel diffusion cannot be detected using this 

approach, which suggests that it is not able to meet UNECE (2010; US DoT (2005) regulation 

requirements. 

2.2.7. Model-based parameter estimation 

The model-based approach (Ersanilli and Burnham, Keith J. 2012) attempts to model the 

vehicle suspension, typically a quarter car representation and use a signal such as chassis 

acceleration, suspension deflection or axle acceleration with the input from the road to estimate 

the parameters of a transfer function model (Figure 2.19). Since the parameters of the transfer 

function relate back to the physical constants, such as tyre spring, it is possible to make a 
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diagnosis of the condition of the suspension based on the parameter deviations. Figure 2.19 

illustrates the approach whereby a multiple model is used to overcome the non-linearity of the 

damper. 

 

Figure 2.19 A multiple model parameter estimation scheme to alleviate non-linearities in 

the damper  

 

In this type of fault detector, the parameters will be changing in patterns according to what is 

changing in the system. For automatic fault detection, the estimated parameters have to be 

mapped to the different faults, which is a classification task. Neural networks, especially feed 

forward perceptron networks, have proven to be well suited to such tasks. A multilayer 

perceptron network, with two hidden layers and sigmoid functions as activation functions in 

all layers can be used, see Figure 2.20 (Borner , Straky, Weispfenning and Isermann, 2002). 

 

Figure 2.20 Multilayer perceptron network 

 

One of the problems with the parameter estimation approach is that the system would never 

know the input and so this needs to be reconstructed or estimated from what is known about 

the system. The suspension constants and the output are known, using these two it is possible 

to estimate the input. However, this will always be an estimate and this causes problems for 



35 

 

the parameter estimation. In addition to this problem, the non-linear nature of vehicle 

suspension will cause parameter deviations even in the absence of a fault and so this needs to 

be addressed before a correct diagnosis can be made. 

2.2.8. A study on radial directional natural frequency and damping 

ratio in a vehicle tyre 

An interesting approach is to make an attempt to form a connection between the radial 

directional natural frequency, damping ratio and tyre pressure in various vehicle tyres. The 

radial direction modal parameters of tyres subjected to different levels of inflation pressure 

have been determined by using a frequency response function method. To obtain the theoretical 

natural frequency and mode shape, the plane vibration of a tyre has been modelled as though 

it were that of a circular beam. By using the Tielking method that is based on Hamilton’s 

principle, theoretical results have been determined by considering the angular velocity, 

tangential and radial stiffness, radial directional velocity and tension force which is due to tyre 

inflation pressure. The results show that experimental conditions can be considered as the 

parameters that shift the natural frequency and damping ratio (Kim et al. 2007) 
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2.3. Concluding remarks – Literature survey 

What has been shown here is not an exhaustive list of tyre pressure detection approaches. 

Rather, it is meant to identify the range of approaches that exist without delving into every 

single deviation of each method within a category. There are many patents in the area of tyre 

pressure measurement, particularly the direct approach but most of these techniques are very 

similar and meant as devices to protect intellectual property, not advance the frontiers of 

science and engineering. 

Currently, Nira Dynamics is the only supplier of indirect tyre pressure sensing systems 

deployed in large scale manufacturing of vehicles. The reasons for this are partly due to US 

law but may also indicate a lack of imagination amongst the OEM and component 

manufacturers, since there are more cost effective alternatives. Implementing a model-based 

alternative would require significant investment into the development and testing of an 

algorithm but this cost would be limited to the development rather than multiplied by the 

number of vehicles produced, as a direct sensing approach does, with its additional hardware. 

Direct sensing from the valve cap is not considered to be a robust solution due to the exposed 

nature of the device and the limited functionality. The aftermarket solution offered by FOBO 

challenges the space that conventional TPMS occupies with direct and potentially highly 

accurate real-time measurement that also wirelessly integrates with a smartphone, enhancing 

its popular appeal. However, it remains to be seen if this type of approach is viable in the long-

term. As with all tyre valve cap/stem sensors, they are exposed and vulnerable to thieves.  

Of the indirect approaches, the model based techniques offer the benefits of reduced hardware 

complexity and insightful diagnosis that need not be confined to just tyre fault detection, the 

entire suspension system can be diagnosed by the parameter estimation approach. The 

weakness of these solutions is that it would be difficult to detect small changes in pressure over 

time (natural leakage) as the dynamics of the tyre are heavily filtered through the suspension 

system, which is not an impediment for a direct approach. The most significant challenge for 

the model-based implementations is the unknown road input, particularly in the face of model 

uncertainty. Most of the indirect approaches hinge on how this problem is handled. 

A multifaceted approach is more likely to succeed against the background of unknown input 

and modelling uncertainty. In general the indirect approaches have a limited area of operation, 

that is not effective at detecting tyre pressure change in the range of acceptable operation, as 
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determined by the regulations (Directive 98/69/EC of the European Parliament and of the 

Council 1998, US DoT 2005). As technology develops and proliferates, so do the number of 

automatic controllers and their associated sensors. In modern vehicles properties such as, 

chassis and axle acceleration, wheel angular velocity, steering angle, and virtually every piece 

of sensor data is broadcast on the network to support the distributed functionality (Navet et al. 

2005). This implies the possibility of implementing a hybrid approach utilising a variety of 

indirect techniques without requirement for costly additional sensors and their associated 

warranty and maintenance burden. Reducing piece-cost and warranty claims are particularly 

appealing properties to manufacturers of mass produced products.
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Data acquisition 

3.1. Introduction to experimental work 

Having conducted a review of the literature on TPMS and observed the breadth of TPMS 

approaches, as well as the similarities and common shortfalls of many proposals, this Chapter 

considers the feasibility of some of the more promising approaches. 

As a starting point a number of actual vehicle test scenarios were conducted and an attempt 

made to analyse the data gathered from experimental trials. Some of the questions initially 

posed were as follows 

1. From an analysis of wheel natural frequency from vertical acceleration, when subjected to 

multi-surface tests conducted with different tyre pressures, does the natural frequency shift 

due to load/surface? 

2. From an analysis of chassis natural frequency from turret vertical acceleration, when 

subjected to multi-surface tests conducted with different tyre pressures, does the natural 

frequency shift due to load/surface. 

In total, three sets of tests were conducted on three vehicles, namely a Volvo V40 when driven 

on the public highway, a Jaguar X-Type using the Crest road simulator and a Ford C-Max for 

wheel angular velocity signal message acquisition. The data sheet/specifications of these 

vehicles are given in Appendix 1. Specifications and operating descriptions of the data 

acquisition equipment, i.e. the MEPHM, ELM327 CAN Microprocessor, PCL TG1 tyre 

pressure gauge, USB Instruments DS1M12, ELMConfig, FORScan and Controller Area 

Network (CAN) is given in Appendix 2. 

3.1.1. Spectral analysis of Volvo V40 suspension 

According to Wong (2001) the input excitation to the road wheels of a vehicle is a function of 

vehicle velocity and road surface type. For a given velocity there will be a variable amount of 

displacement of the suspension dependent on the roughness of the road surface being traversed. 

In order to objectively test two different vehicle states the same road and same velocity must 

be used so a series of tests were devised to obtain Power Spectral Density (PSD) responses 
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from different vehicle states with identical roads and speeds. The testing method evolved as 

the results were analysed, with the final test schedule detailed in Table 3.1. 

Some of the tests are circuits that were driven at the same average velocity; the only difference 

between them being the tyre pressure. This is especially true for Motorway Circuit 1 (‘circuit’ 

is used in the sense that the same stretch of road was used for all the tests of that name), the 

conditions allowed a constant velocity and lane to be used. The remaining tests do not have 

identical companions (in terms of the tyre pressure/road/velocity relationship) although they 

were selected so that the same road types and speeds could be compared for different tyre 

pressures. It is useful to keep in mind that the objective of the testing is to find differences in 

the chassis acceleration due to tyre pressure, not differences in chassis acceleration to other 

disturbances such as road type. The drives were time consuming so it was not possible to test 

every scenario and configuration of Fast Fourier Transform (FFT) averaging. 

All the tests were performed on a public road so the urban drives are not identical in duration 

due to traffic conditions. Ideally, no data should be logged when the vehicle is at rest but the 

test set up did not allow this level of integration and it should be considered when viewing the 

results. Logging when stationary will cause the averaging to be offset because samples will be 

recorded when there is no road excitation. The nominal condition for the Volvo tyre pressure 

is 32psi, the other conditions are considered to be faulty. The vehicle was loaded with a single 

occupant, the driver, for all tests. 
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  FFT Averaging Tyre Pressure Velocity 

  
FFT no 

averaging 

FFT 8 
times 

averaging 32 psi 28 psi 20psi 80mph 70mph 40mph 30mph 

Urban circuit 1   • •           • 

Urban circuit 1   •   •         • 

Urban circuit 1   •     •       • 

Motorway circuit 1   • •       •     

Motorway circuit 1   •     •   •     

Rough road circuit 1   • •         • • 

Rough road circuit 1   •   •       • • 

Urban driving 1   •   •       • • 

Urban driving 2   •   •       • • 

Urban driving 3   • •         • • 

Urban driving 4 •   •         • • 

Motorway driving •   •     •       

Motorway driving •     •   •       

Extra-Urban driving   • •         • • 

Table 3.1 Vehicle tyre pressure vs. chassis acceleration testing schedule 

 

3.1.1.1. Micro Electronic Prognostic Health Monitor: Chassis acceleration tests 

The results of the testing work and the software modifications generously carried out by Steve 

Booth of BAE made a case for the use of the Micro-Electronic Prognostic Health Monitor 

(MEPHM) as a tool to test the concept of detecting tyre pressure changes from chassis 

acceleration measurements. The data collected could also be used in the modelling activity to 

compare responses and eventually recreate the road surface. 

 

3.1.1.2. Installation of the Micro Electronic Prognostic Health Monitor 

In order to isolate the MEPHM from vibration that was not associated to chassis displacement 

due to road input, a very rigid piece of chassis had to be located. Some of the most rigid parts 

of the chassis exist around the suspension load bearing portions of the chassis, called turrets. 

The suspension strut is bolted to this part of the chassis and a suitable location for the MEPHM 

was found on the left hand turret (Figure 3.1) in the engine bay (Figure 3.2). 
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Figure 3.1 MEPHM mounted to a Volvo V40 front suspension turret 

 

 

 

Figure 3.2 MEPHM mounted to a Volvo V40 front suspension turret, side view 
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Figure 3.3 Orientation of the MEPHM accelerometer axes with respect to the chassis of 

the Volvo V40 test vehicle 

 

Selection of the front left hand turret means that portion of chassis will be most affected by 

tyre pressure changes of the front left tyre and hence allows a degree of isolation from the other 

tyres than a central location would afford. 

3.1.1.3. Urban road test 

Urban Circuit 1 was the first test. The tyre pressure was checked and observed to be 32psi. The 

route was arbitrarily chosen and the drive lasted approximately 20 minutes, including stops at 

junctions. This equates to 51 sample batches of 1024 which means a total of 52,224 samples 

were processed for the 3 axes. This may appear to be a large number of samples but with the 

FFT averaging set to 8 times the actual amount of time that the Digital Signal Controller (DSC) 

was sampling the chassis acceleration was only 8.67 seconds out of the 20 minutes drive time. 

The second run of the Urban Circuit 1 test was the same route with the front left tyre deflated 

to 20psi. This is over a 30% reduction in tyre pressure but the vehicle did not exhibit any undue 

handling deficiencies for the sedate 30mph drive. The Volvo V40 is equipped with power 

steering so there was no noticeable heaviness in the steering action. The only noticeable 

difference was under heavy cornering, such as a roundabout where a small amount of tyre 

scrubbing could be heard.  



43 

 

 

Figure 3.4 PSD results for 2 drives of Urban Circuit 1 – upper plots 32psi, lower plots 

20psi, X,Y and Z accelerometer axes 

Once the two data sets were acquired they were processed in Excel and a MATLAB script was 

created to analyse the results. The first part of the script takes every measurement and averages 

them for the particular axis and then plots the results for the two drives. The following is the 

calculation for the X axis 

 𝑋𝑖

𝑁
 (3.1) 

where N is the total number of samples in a batch of data and 𝑖 of 𝑋𝑖 denotes the value of the 

PSD in bins 𝑖 …𝑚 

The Y axis represents latitudinal plane (left to right) and the Z axis represents the vertical plane, 

or bounce (Figure 3.3). The upper portion of Figure 3.4 are the normalised X,Y and Z axis 

results for the nominal tyre pressure (32psi) drive and the lower portion is for the LH front tyre 

pressure 20psi. The X axis represents longitudinal plane of the chassis (front to rear of the car), 

The plots are very similar with the majority of the excitation in the Z axis, as expected. There 

is very little activity in the X axis; most of this is probably due to deceleration and acceleration 

of the vehicle. Acceleration in the Y axis is most likely due to the cornering force in the lower 

frequencies and any imbalances in the rotating parts such as the wheels and brake rotors, in the 

higher frequencies the vibration is most likely to be caused by components in the engine bay. 
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The MEPHM could not be mounted perfectly square to horizontal and so there will be a small 

amount of interaction between the axes. 

The second part of the script analyses the differences between the two drives. This was 

achieved by taking the bin-wise squared differences of the two normalised data sets, for each 

axis. The following is the calculation for the X axis 

 
[
𝑋𝑖1

𝑁1
−

𝑋𝑖2

𝑁2
]
2

 (3.2) 

where 𝑋𝑖1 are samples for a given frequency bin for the first drive and 𝑋𝑖2 are the corresponding 

samples for the second drive. 

The results of this calculation are shown in Figure 3.5 

 

Figure 3.5 Squared bin-wise differences of the two normalised PSD results for Urban 

Circuit 1 – 32psi vs. 20psi, X,Y and Z accelerometer axes 

Figure 3.5 makes an argument for the concept of tyre pressure detection from chassis 

acceleration. The squared differencing computation indicates that virtually all the difference 

between the two test drives lies in the Z axis, which is the prime axis to be affected by tyre 

pressure. Common vibration components such as engine vibration and rotating parts that were 

not affected by the tyre pressure change have effectively cancelled each other out in the other 

two axes (X and Y). Thus it is the difference between the two that manifest a faulty condition. 

To put this result into perspective, tyre pressure reduction of 30% is a gross amount and a 
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casual inspection of the vehicle would reveal this fact. A more realistic reduction which would 

not be easily visible or perceptible from the handling dynamics would be a reduction of around 

10% but this figure remains relatively arbitrary quantity whose significance and effect on 

vehicle performance would depend on other factors such as road conditions and added vehicle 

mass.  This type of tyre pressure reduction would impact the fuel economy of the vehicle (TRB 

2006). 

The tyre was inflated to 29psi for the third drive and the same circuit and average velocity was 

observed. 

 

Figure 3.6 Squared bin-wise differences of the two normalised PSD results for Urban 

Circuit 1 – 32psi vs. 29psi, X,Y and Z accelerometer axes 

Figure 3.6 shows a much smaller difference but the difference is still present. The vehicle 

dynamics were perceived to be identical during the drive which is exactly the condition that 

the system is intended to find i.e. a tyre pressure difference that is imperceptible to the user but 

is causing excess wear to the tyre and degraded fuel economy.  

3.1.1.4. Motorway test 1 

The next test was a high speed motorway drive, another typical driving scenario and one which 

poses somewhat of a challenge since there will be far less vertical displacement and much more 

noise, due to the greater angular velocity of the road wheels and higher engine RPM. This test 

was carried out at 20psi and 32psi on a very good road surface. The data represents virtually 

identical routes as it was possible to use the same lane and maintain the same velocity of 70mph 

for the tests. 
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Figure 3.7 shows, as expected, a lot more activity in the higher frequencies. However, the 

degree of difference in the Y axis was not expected. Up to this point it was assumed that all the 

information would be contained in the vertical plane but the squared difference plot of Figure 

3.8 shows that there is very little difference between the tyre pressures in the vertical plane for 

a motorway drive. In actual fact there is less vibration in the Y axis for the tyre that is deflated. 

This result makes a case for a dual axis accelerometer to be employed in a practical system, 

especially considering the challenges a smooth road surface would pose to a detection 

algorithm. 

 

 

Figure 3.7 PSD results for 2 drives of Motorway Circuit 1 – upper plots 32psi, lower plots 

20psi, X,Y and Z accelerometer axes 
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Figure 3.8 Squared bin-wise differences of the two normalised PSD results for Motorway 

Circuit 1 – 32psi vs. 20psi, X,Y and Z accelerometer axes 

 

3.1.1.5. Motorway test 2 

Another motorway test was undertaken and this is the only test to compare two independent 

routes at two different tyre pressures. The FFT averaging was switched off for this test so there 

is much more data but the accuracy may be a little compromised, to ameliorate this effect the 

test was run for a longer period of 40 minutes. This time the MEPHM obtained 128 sample 

batches, corresponding to 131,072 samples.  

For the measurements in the Y axis, the situation is now reversed (compared to the previous 

motorway test), more vibration was recorded for the lower tyre pressure, see Figures 3.8 and 

3.9. This highlights the problems associated with different road surfaces (the velocity was also 

greater, 80mph) even though they are of the same general type. 
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Figure 3.9 PSD results for Motorway individual routes – upper plot 32psi, lower plot 

28psi, Y and Z accelerometer axes 

 

 

Figure 3.10 Squared bin-wise differences of the two normalised PSD results for Motorway 

individual routes – 32psi vs. 28psi, Y and Z accelerometer axes 
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3.1.1.6. Rough road test 

The final test was a rough road circuit for 32 and 28psi tyre pressures. The road surface is a 

mixture of pot holes approximately 10-70mm deep with some cobbled areas. 

As expected, this drive produced the largest acceleration measurements (Figure 3.11 and Figure 

3.12), approximately 3 times greater than any other response. It also produced the largest bin-

wise squared difference of all the plots but this is partially due to the magnitude of the 

normalised responses. The result is the opposite of the first urban circuit test, where the lower 

pressure tyre recorded greater acceleration, which is a more intuitive result since a fully inflated 

tyre has less compliance than an underinflated tyre and hence would deflect the suspension to 

a greater extent when subjected to violent input excitation.  

 

 

 

Figure 3.11 PSD results for rough road – upper plot 32psi, lower plot 28psi, Z 

accelerometer axis, 2.9 to 150Hz 

 



50 

 

 

Figure 3.12 Squared bin-wise differences of the two normalised PSD results for rough 

road – 32psi vs. 28psi, Z accelerometer axis, 2.9 to 30Hz 

 

3.1.1.7. Conclusions – Initial chassis acceleration testing 

Despite every effort taken to eliminate misleading results and set up the experiments that 

isolated the tyre pressure as the only difference between the tests on the same surfaces it was 

not possible to make them perfectly objective. Traffic conditions did not allow a constant 

velocity and the logging device was not integrated with the vehicle velocity to prevent logging 

during periods when the vehicle was not moving. While the same tyre pressure gauge was used 

for all the tests, the experiment would benefit from a more accurate device. 

The problem of measuring acceleration with no a priori knowledge of the road surface is that 

drastic road surface changes from smooth to rough and vice versa could appear to be tyre 

pressure changes to an insufficiently tuned algorithm. While it is technically not possible to 

know the road surface in advance, there are many improvements that could be made to the 

measuring and logging system (modern image recognition technology could alleviate this in 

the near future) (Mercedes-Benz 2013).  

A modern vehicle uses a network to distribute the sensor data amongst the onboard ECUs so it 

is possible for any network connected ECU to be supplied with the vehicle velocity, gear 

position, engine angular velocity, GPS location and many other pieces of data. Armed with this 

information, an algorithm can be encoded with some information about the road surface. For 
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instance, if the vehicle is in top gear and cruising at 70mph, in all likelihood the vehicle is on 

a motorway. The driving style of the driver can be categorised by the throttle pedal position 

and brake fluid pressure. Data may be stored for a GPS position so there is a log of road 

conditions in the past. A fully equipped sensing system with an accelerometer on each corner 

of the vehicle would be able to compare data from tyres on the same side of the car, perturbation 

at the front of the car is likely to affect the rear after a short time delay, if the vibrations begin 

to differ then this is cause to suspect a change is occurring in the suspension. When the vehicle 

stops and doors open and close and the vehicle resumes progress, it indicates that passengers 

or cargo has been loaded/unloaded.  

In summary there is potential to use the existing MEPHM sensor for the purpose of detecting 

tyre pressure changes but it would need to be integrated with the vehicle network in order that 

any proposed fault detection algorithm has access to the vehicle sensor and controller data, 

which has not been possible to date. 

The next Chapter considers the suspension system in isolation and develops fault detection 

strategies which are the bases for model based approaches. 
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3.1.2. Suspension system data gathering using Jaguar X-Type on the 

Crest road simulator 

The objective of this series of tests was to acquire time series data of road position, axle 

position, suspension deflection and chassis position of a car in motion. When this experimented 

was conducted in 2010, acquiring road profile data whilst driving was not a realistic prospect. 

Many alternative methods were considered, such as measuring a road profile with Lidar (light-

radar) sensing technology and driving an instrumented vehicle over a precise course.  

The Crest facility (Figure 3.13), generically referred to as a ‘four poster rig’, is composed of 

four hydraulically actuated posts. The vehicle is driven onto the rig and secured with strapping. 

At this point the vehicle may be equipped with instruments to record the displacements. 

Suspension height sensors were selected for this task (they are usually deployed on air 

suspension vehicles). The input is sampled automatically by the controller at 200Hz. The DAQ 

was set to 500Hz in order that no potentially useful dynamics or effects were missed, although 

from a theoretical point of view no features of great significance exists beyond 20Hz, with 

respect to suspension and tyre dynamics (wheel hope for the X-Type is around 13Hz). 

In some ways, the Crest facility is superior as a testing and data acquisition platform. It allows 

the user almost total control and knowledge of the road surface, combined with the convenience 

of being in a room, with all the associated benefits that brings. The main limitation of this 

equipment, with respect to analysis of the tyre pressure, is that the wheels do not rotate. This 

means a portion of the suspension dynamics is not present, as it would be driving on a normal 

road. Since the objective of the test was analysis of the dynamics in the vertical plane, this 

limitation was not considered to be of great significance. 

For the testing it was decided that a range of road surfaces would be simulated, including urban 

driving, A-road (medium speed), motorway cruising and ‘third world road’ which is used for 

accelerated aging durability tests. In order that the suspension did not approach its extent of 

travel (and become significantly non-linear), the deflection of the input actuation was limited 

to 300mm. This means the average height is 150mm. 
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Figure 3.13 Jaguar X-Type on the Crest road simulator  
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3.1.3. Wheel speed signal and message acquisition of Ford C-Max 

Wheel angular velocity for the candidate vehicle (Ford C-Max) is produced by the ABS/ESP 

ECU in the form of four 15-bit hexadecimal numbers (one for each wheel). These signals are 

contained in a single 8-byte CAN data frame under the CAN identifier (ID) 0x4B0. From 

experimentation it is possible to determine that a 100 offset is applied to the signal, the precise 

reason for this is not known, possibly to assist in the removal of implausible values by the 

receiver nodes in the case of data corruption (values less than 100 would be discarded). 

Alternatively, a 100 offset would allow the ABS to register up to 100𝑘𝑚/ℎ vehicle velocity in 

reverse gear, with values less than 100 interpreted as ‘vehicle moving backwards’. This 

explanation would avoid the requirement for a signed variable, which would be redundant for 

the vast majority of the time during drive cycles. These decisions are made during the 

development of the vehicle distributed functionality control systems and are the result of 

cooperation by the CAN engineers and the individual sub-system engineers, with the goal of 

making the CAN as compact and robust as possible, not clarity and transparency for the 

designers of third party network analysers or applications. 

3.1.3.1. Network analyser considerations 

An obvious choice for research into CAN is the Vector suite of network analysis software and 

hardware. Vector are a dominant constituent of this space and their tools are widely deployed 

in vehicle OEM. They are, however, extremely costly which motivates the consideration of 

other solutions. There has been a substantial increase in the number of software solutions, in 

large part due to the proliferation of low cost CAN data acquisition integrated circuits, such as 

the ELM327. Due to the proprietary nature of a particular CAN implementation, as outlined 

above, these tools are often restricted to a particular vehicle brand or group.  

3.1.3.2. FORScan 

FORScan is a multifunction piece of software designed to assist diagnosis of electrical faults, 

compatible with Ford, Mazda, Lincoln and Mercury. Within this software is a data logging 

facility that allows the user to specify OBD sanctioned parameters and create a time series 

measurement file in CSV format. The creators of the software have avoided the problem of 

unknown message ID, format and location by restricting the available parameters to the OBD 

sub-set. In many cases this results in reduction of the parameter resolution and increased 

sampling interval. These constraints are attributed to the retrieval mechanism (the OBD 
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protocol and ECU diagnostic function/interface) which has low network priority. See the CAN 

section of Appendix 2 for more details. 

While FORScan remains a useful diagnostic tool, it constrains the user to a hundredth of the 

resolution for wheel angular velocity and steering angle measurement. The sampling interval 

via the diagnostic interface (~50𝑚𝑠) is up to three times greater than the signal available on 

the vehicle network. Due to the low priority of diagnostic messages (in the range 0x7xx), they 

are necessarily susceptible to intermittent fulfilment when the data-bus load increases. 

3.1.3.3. ELMConfig 

ELMConfig is alternative piece of software that interfaces with the CAN via the ELM327 

microprocessor. As the name suggests, its main purpose if configuration of the electronically 

controlled systems present on a vehicle. In addition to the configuration functions, a CAN data 

logging function allows the user to capture any or all CAN data frames that are broadcast by 

the vehicle controllers. Due to the baud rate of a high speed CAN and the limited internal 

memory of the ELM327 PIC, it is not possible to log all frames indefinitely, a buffer over-run 

occurs after approximately 2 seconds (in the case of data logging of the Ford C-Max HS-CAN). 

This constraint is mitigated by a filter-mask configuration, whereby only specific sets of 

messages are logged and committed to the log file, the remainder are immediately discarded. 

See Appendix 2 for details on how this is achieved. 

3.1.4. Determining the nature of signals on the CAN 

Conducting targeted experiments whilst logging CAN data reveals the nature of the signal 

when 

 Vehicle is stationary 

 Cruising at constant velocity 

 Manually rotating individual wheels.  

In the case of message 0x4B0 with vehicle stationary, regardless of the engine angular velocity, 

the message contents remain fixed at 

{time stamp} 4B0  27  10  27  10  27  10  27  10 

Following the time-stamp, the first three digits are the CAN identifier (transmitter) and the 

remaining eight fields contain the wheel angular velocity data in hexadecimal format (Table 

3.2). When the vehicle is in motion, the data bytes are updated at ~14𝑚𝑠 intervals.  
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CAN 

identifier Data bytes for CAN data frame 0x4B0 (stationary vehicle) 

Data byte   1 2 3 4 5 6 7 8 

CAN data frame 4B0 27 10 27 10 27 10 27 10 

 

Table 3.2 CAN frame 0x4B0 wheel speed data 

In order to interpret the wheel speed signals some assumptions must be made. The maximum 

velocity of this particular vehicle is ~200𝑘𝑚/ℎ. Assuming that ability to record the velocity 

in reverse up to 100𝑘𝑚/ℎ is required, without implementing a signed variable, it would 

necessitate a velocity range of 300𝑘𝑚/ℎ. In order to achieve a minimum range of 300𝑘𝑚/ℎ, 

a 9-bit binary value is required since 28 = 256 (possible permutations) is not quite enough 

and 29 = 512 allows some margin.  

However, this assumes a 1𝑘𝑚/ℎ resolution, which may not be adequate for optimal 

performance of the ABS-ESP. It is likely (from the testing evidence) that the designers of this 

ABS-ESP system implemented 0.01𝑘𝑚/ℎ resolution.  

With four individual signals at 0.01𝑘𝑚/ℎ resolution, each one would be ~15 bits in length 

which renders 215 = 32768 permutations. This leads to a wheel angular velocity range 

of 327.68𝑘𝑚/ℎ. Considering the offset of 100 (broadcast at 0𝑘𝑚/ℎ actual vehicle velocity) 

this implies a forward velocity range of 0 − 227.68𝑘𝑚/ℎ which is consistent with the vehicle 

properties. 

Assuming that the wheel speed signals are broadcast simultaneously, this implies that they 

occupy approximately 8 bytes per sample, which corresponds to an entire CAN data frame. 

This interpretation (Table 3.3) has been verified by logging data at a particular cruising velocity 

(registered on the vehicle speedometer) and comparing the cruising velocity with the data log. 

It has also been independently verified via the velocity estimation function within a 

smartphone-based satellite navigation application (Nokia E72). 

  Wheel speed signals (CAN frame 0x4B0) 

Data byte 1 2 3 4 5 6 7 8 

Hexadecimal value 27 10 27 10 27 10 27 10 

Decimal value 100 100 100 100 

Wheel position Front Left Front Right Rear Left Rear Right 

Table 3.3 Interpreted values for CAN data frame 0x4B0 (wheel speeds) 
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3.2. Concluding remarks 

This chapter has discussed the data acquisition undertaken for three vehicles which provide the 

data for validation of the tyre pressure detection algorithms, which are developed in Chapter 5 

following a preliminary investigation and modelling a suspension system in Chapter 4. Test 

requirements and subsequent data acquisition is further discussed and clarified in Sections 1.2, 

Conclusions 6.3 and Appendix 2. 
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Modelling the suspension components 

In this chapter a procedure for modelling the car suspension system is described. The 

elementary components of a suspension are introduced in Section 4.1. Some of the methods of 

modelling the suspension are assessed in Section 4.5. 

In common with other model-based fault detection schemes (Isermann and Wesemeier 2009, 

Carlson and Gerdes 2005, Persson et al. 2001a), the general modelling requirements for an 

indirect tyre pressure measurement system are 

 High fidelity. A natural consequence of the model-based approach is the requirement 

for an accurate model in order to estimate the small deviations in physical constants 

that accompany tyre pressure change 

 Ability to tolerate noise and uncertainty. Due to the fact that the road, the primary 

input to the suspension system, is completely unknown the model must have some 

means of acquiring an estimate of the road profile or be modelled in such a way that 

the road profile information is not required 

 Online model. The objective of the algorithm is to detect changes in the suspension 

system and this requirement necessitates an online model which is updated at regular 

intervals via input from the vehicle sensors 

Practical constraints, such as model complexity and computer hardware are not considered, 

although this would be a consideration for any embedded system designer. The model should 

describe the properties of the suspension system and simultaneously be as simple as possible. 

As models become more complex this increases the computational load and problems 

associated with converging to a solution without being constrained to unrealistically small 

sampling intervals. In contrast, a simplistic model will not describe the system in sufficiently 

accurate detail to make a reliable diagnosis of tyre pressure. It is convenient to model physical 

systems in terms of transfer functions, as they relate to physical properties and the parameters 

can be updated online by means of parameters estimation techniques such as least squares 

regression. However, transfer functions can only describe the linear portion of the response. 
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While the linear response usually constitutes the majority, a significant proportion is not linear 

and this will prevent an accurate diagnosis. 

4.1. Vehicle Suspension Overview 

The term suspension describes the arrangement of springs, dampers and linkages that connect 

the road wheels to the chassis (Figure 4.1). A road vehicle does not necessarily have to be 

suspended but suspended vehicles exhibit superior road holding and comfort characteristics. 

The suspension acts in two ways, to isolate the occupants and cargo from an unevenness of the 

surface the vehicle is traversing and to maintain the optimum contact of wheel and road. The 

design and set up of a suspension system is often a trade-off between these two characteristics. 

For example, a racing car has very stiff suspension which is well adapted for taking corners at 

high velocity but it is uncomfortable for long duration drives and uneven surfaces. On the other 

hand, an off-road vehicle may have very soft suspension to isolate the occupants of the vehicle 

from the extreme terrain but such a vehicle may be unstable at high velocity.  

         

Figure 4.1 McPherson strut suspension       Figure 4.2 Quarter car suspension 

4.1.1. Tyre and Wheel 

Although its contribution to many of the fundamental vehicle properties is easily overlooked, 

the tyre is considered a critical component of a vehicle due to the fact that this component must 

transmit the force required to accelerate and change the direction of the vehicle, under a wide 

range of temperatures and road surfaces for many years at a time, with minimal failures. 
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Pneumatic tyres are used to provide a spring effect for most of the un-sprung mass, rubber tyres 

include some damping properties which can be controlled by the compounds used during 

manufacture but the amount of damping that can be included in the tyres is limited by 

considerations of fuel economy, wear and ride performance.  

The tyre spring rate can be assumed to be a linear spring in the vertical direction (Gillespie 

1992) and the tyre stiffness 𝑘𝑡 (Figure 4.2) is dependent on the flexibility of its sidewalls 

(Rajamani 2006) 

Tyre pressure is crucial to the performance of the vehicle; underinflated tyres have higher 

rolling resistance, causing reduced fuel economy and deteriorated handling characteristics. 

Under inflation also makes the tyre more prone to punctures. Over inflation of tyres does not 

pose problems in terms of handling, it can even improve matters on wet surfaces but continued 

use may lead to uneven wear in the central part of the tyre. 

The main failure modes of tyres are punctures and explosive decompression (often referred to 

as ‘blow out’). Continued use of an underinflated tyre can cause heat build-up and destroy the 

internal parts of the tyre causing a catastrophic failure.  

 

4.1.2. Spring 

The principal function of the spring 𝑘𝑠 (Figure 4.2) is to isolate the occupants, cargo and vehicle 

components from shocks induced by the vehicles motion over the road surface. Springs are 

mounted to the chassis and the un-sprung mass in the same way the damper is attached. 

The spring rate defines the handling characteristics to a great extent. Low stiffness results in a 

smooth ride but at the expense of road holding in corners and under heavy braking or 

acceleration. Stiff springs increase the general road holding and cornering velocity that can be 

achieved but reduce the comfort of the ride. Spring stiffness selection is a compromise between 

these characteristics. 

Most modern vehicles are equipped with helical springs which can be viewed as linear over 

their operating range. However, the springs are not anchored directly to the chassis or 

suspension; there is some interface material which introduces a non-linear element to the 

system.   
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The suspension must have some mechanism to prevent the wheel coming into contact with the 

chassis or components of the suspension from ‘clashing’ at the extremes of the suspension 

range. This is achieved with bump and rebound stops. The term ‘bump’ refers to the 

compression of the suspension and ‘rebound’ to the extension of the suspension. Bump and 

rebound stops are made from some elastic material which adds to the spring force at the limits 

of travel causing the suspension to stop its extension or compression in a more controlled 

manner than steel on steel contact. This property introduces a large non-linear effect (which is 

accurately modelled as a bilinear effect, i.e. there is an additive multiplicative effect stemming 

from input and output) into the system but can be assumed to be zero for normal driving 

conditions as a vehicle only hits its bump stops during extreme manoeuvres. 

Assuming no non-linearities discussed above the spring constant is defined  𝑘𝑠 = 𝐹/∆𝑥 where 

F is the force compressing or extending the spring expressed in N/m and 𝑥 is the displacement. 

 

4.1.3 Damper 

The suspension dampers regulate the spring motion to prevent oscillations in the sprung portion 

of the vehicle mass, without these the vehicle would be unstable, especially at high velocity. 

This is because an unregulated spring will rebound after compression, causing wheel hop (the 

wheel losing contact with the road surface). The vehicle would lose traction and skid. The 

damper must be less stiff than would optimally damp the wheel hop. The wheels will oscillate 

after each perturbation from the road surface before coming to rest. They also contribute to the 

drive quality of the vehicle by damping the oscillations of the passenger compartment 

(Gillespie 1992).   

Dampers are mounted to the chassis and the un-sprung mass in the same manner as the spring. 

They feature a piston in a chamber which is filled with a viscous fluid (and may also be gas 

charged) which is forced through an orifice during extension or contraction, this regulates the 

spring action due to the road surface.  

Dampers expand at a different rate to the contraction, this is a design feature that allows the 

suspension to extend rapidly when the wheel rolls down a pot hole and resist compression when 

the wheel hits a bump (Gillespie 1992). This behaviour is non-linear which complicates 

attempts to model the damper but for simplicity the damper can be assumed to be linear. 
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Damper force 𝐹𝐷 = 𝐵∆ 𝑥̇ where B=Ns/m is the damper constant and ∆𝑥̇ is the velocity of the 

damper piston (𝐵𝑠 – Figure 4.2).  
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4.2. Sprung and Un-Sprung Mass 

In a vehicle with a suspension, the un-sprung mass is the mass of the suspension (denoted 𝑚𝑢𝑠 

2, wheels and other components directly connected to them, rather than supported by the 

suspension springs. The mass of the body and other components supported by the suspension 

is the sprung mass. Un-sprung mass includes the mass of components such as the brakes, wheel 

axles, wheel bearings, tyres, and a portion of the weight of drive shafts, springs, shock 

absorbers, and suspension links that attach the suspension to the chassis.  

The un-sprung weight of a wheel is part of a compromise between a wheels terrain following 

ability and its vibration isolation. Surface imperfections in the road cause tyre distortion which 

induces a force on the un-sprung weight. The un-sprung weight then reacts to this force causing 

compression of the suspension spring. The degree of suspension deflection is inversely 

proportional to the mass - a lighter wheel has less inertia and will react more rapidly than a 

wheel with greater mass, this allows the lighter wheel to better track the terrain of an imperfect 

road surface. The lighter wheel will therefore transmit less vibration into the cabin. Obviously, 

the weight of a wheel cannot be reduced beyond the point that it is not able to carry the load 

placed upon it without destruction occurring. There is a relationship between the mass of the 

wheel and the mass of the vehicle, if the mass of the wheels becomes too great a proportion of 

the total vehicle, deterioration in ride quality will result (Gillespie 1992). Large un-sprung mass 

degrades wheel control under hard acceleration or braking. Large forces exerted on the 

suspension combined with large un-sprung mass can lead to wheel hop, reducing traction and 

steering control (Gillespie 1992). 

 

4.3. Suspension Fundamental Frequencies 

At the most basic level, all road vehicles share the same ‘ride isolation’ properties common to 

a sprung mass supported by primary suspension systems at each wheel. The dynamic behaviour 

of this system is the first level of isolation from the roughness of the road. The essential 

dynamics can be represented by a quarter car model, as shown in Figure 4.2 (Gillespie 1992).  

The effective stiffness of the suspension and the springs in series is called the ‘ride rate’ 

determined as follows 

𝑅𝑅 =
𝐾𝑠𝐾𝑡

𝐾𝑠 + 𝐾𝑡
                                (4.1) 
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where 

𝑅𝑅 = Ride rate 

𝐾𝑠 = suspension stiffness 

𝐾𝑡 = Tyre stiffness 

In the absence of damping, the bounce natural frequency at each corner of the vehicle can be 

determined from 

𝜔𝑛 = √
𝑅𝑅

𝑚𝑠
       (𝑟𝑎𝑑𝑠/𝑠𝑒𝑐)                                      (4.2) 

When damping is present, as it is in suspension, the resonance occurs at the damped natural 

frequency 

𝜔𝑑 = 𝜔𝑛√1 − 𝜁𝑠
2        (𝑟𝑎𝑑𝑠/𝑠𝑒𝑐)                         (4.3) 

where 𝜁𝑠 is the damping ratio 

𝜁𝑠 =
Bs

√4Ks𝑚s

                                                                  (4.4) 

where Bsis the suspension damping coefficient 

For good ride the suspension damping ratio on modern passenger cars usually lies between 0.2 

and 0.4. Owing to the way damping influences the damped frequency in (4.3) i.e. under the 

square root, it is usually quite close to the natural frequency. 

Taking the parameters of the Volvo V40 

𝑅𝑅 = 13953 

𝜔𝑛 = 6.31 rads/sec 

𝜁𝑠 = 0.24 

𝜔𝑑 = 6.02 rads/sec 

6.02 rads/sec is approximately equal to 0.96 Hz, the chassis natural frequency 
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Consequently, the modes of the system are represented by frequencies of 10Hz and 1Hz which 

has ramifications for the model and estimator which will be described in section 5.2.3. 

4.4. Modelling the Suspension 

The so-called quarter car suspension model will be used for the fault detection simulation 

(Figure 4.2). This is a basic model of one corner of the vehicle with parameters detailed in 

Table 4.1 

Parameter Value/Unit Description 

𝑚𝑠 350 kg Sprung mass 

𝑘𝑠 15,000 N/m Suspension spring 

𝐵𝑠 1100 Ns/m Damper 

𝑚𝑢𝑠 45 kg Un-sprung mass 

𝑘𝑡 200,000 N/m Tyre 

𝑥𝑠 m Displacement of the chassis 

𝑥𝑢𝑠 m Displacement of the un-sprung mass 

𝑥𝑟 m Road input displacement 

Table 4.1 Quarter car suspension typical parameter values 

 

The model assumes two degrees of freedom; in reality a suspension system would have many 

more degrees of freedom as all the components have some form of elasticity and will deform 

in use. However, the model utilised is sufficiently detailed to demonstrate a fault detection 

scheme. The damper, suspension spring and tyre spring are assumed to be linear over their 

operating ranges. No account is taken of any compliance in the mountings of the components. 

There is no maximum travel of the suspension as the bump and rebound stops have not been 

modelled. The model of the tyre assumes no damping characteristic. 

Many of these simplifications and assumptions will limit the analysis hereafter. However, a 

more detailed modelling approach has been identified as an area of future work. 

Newton’s second law states: the force on an object is proportional to the time rate of change of 

its linear momentum 

𝐹 =
𝑑(𝑚𝑣)

𝑑𝑡
                               (4.5) 
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Momentum 𝑚𝑣 is the product of mass and velocity. Force and momentum are vector quantities 

and the resultant force is found from all the forces present by vector addition.  

Using this property, the suspension system of Figure 4.2 can be expressed as 

                               𝑚𝑠𝑥̈𝑠 + 𝐵𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) + 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0                               (4.6𝑎) 

𝑚𝑢𝑠𝑥̈𝑢𝑠 + 𝑘𝑡(𝑥𝑢𝑠 − 𝑥𝑟) − 𝐵𝑢𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) − 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0                               (4.6𝑏) 

where 𝑥𝑟 , 𝑥𝑢𝑠 and 𝑥𝑠 are the road input displacement, the unsprung mass displacement and the 

body displacement, respectively. 

4.4.1. State Space Implementation 

State space representation is a convenient way of modelling systems, especially since they can 

be expressed in vector matrix form and transferred into MATLAB directly. MATLAB 

functions can then be used to calculate transfer functions in discrete or continuous time. 

Utilising state space representations also simplifies the calculation of multi input, multi output 

systems so that refinements to include disturbances to the model can be included, for example. 

The general form of a state space representation is 

𝒙̇ = 𝑨𝒙(𝑡) + 𝑩𝑢(𝑡)    and    𝒚 = 𝒄𝒙(𝑡)                                           (4.7) 

For the system of Eqn 4.7, the states are set as the position and rate of change of position of the 

sprung mass, 𝑥s ; and the un-sprung mass, 𝑥us ; and the input to the system is 𝑥r 

 

𝑥1 = 𝑥𝑠       𝑥2 = 𝑥̇𝑠      𝑥3 = 𝑥𝑢𝑠       𝑥4 = 𝑥̇𝑢𝑠                                   (4.8) 

where 

𝑥̇1 = 𝑥2                                                                                                   (4.9𝑎) 

𝑥̇2 = −
1

𝑚𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3)]                                       (4.9𝑏) 

𝑥̇3 = 𝑥4                                                                                                   (4.9𝑐) 

𝑥̇4 =
1

𝑚𝑢𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3) − 𝑘𝑡(𝑥3 − 𝑢)]                               (4.9𝑑) 
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State Space vector matrix form 

[

𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

]  =  

[
 
 
 
0        1        0         0

−𝑘𝑠
𝑚𝑠

     −𝑘𝑠
𝑚𝑠

      𝑘𝑠
𝑚𝑠

      𝑘𝑠
𝑚𝑠

0        0         0         1
𝑘𝑠

𝑚𝑢𝑠
    

𝐵𝑠
𝑚𝑢𝑠

   
−𝑘𝑡−𝑘𝑠

𝑚𝑢𝑠
    

−𝐵𝑠
𝑚𝑢𝑠]

 
 
 

  [

𝑥1

𝑥2
𝑥3

𝑥4

] + [

0
0
0
𝑘𝑡

𝑚𝑢𝑠

] 𝑢                                            (4.10)  

[

𝑦1

𝑦2

𝑦3

𝑦4

]  =  [

1        0    − 1        0
−𝑘𝑠
𝑚𝑠

     
−𝐵𝑠
𝑚𝑠

      
𝑘𝑠
𝑚𝑠

      
𝐵𝑠
𝑚𝑠

0        0        0        0
0        0        0        0

]  [

𝑥1

𝑥2
𝑥3

𝑥4

]                                                              (4.11)  

𝐶 is the output matrix; the first row represents the suspension deflection which is the difference 

between 𝑥s and 𝑥us ; the second row represents chassis acceleration 𝑥̈𝑠 ; the third and fourth 

rows are not populated but other outputs of the system can be included, such as tyre force, 

chassis displacement relative to the road and the un-sprung mass displacement relative to the 

road. Vertical acceleration is the output of interest for this system as it is the measured variable 

on the vehicle 

𝑥̈𝑠 = −
1

𝑚𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3)]                                                       (4.12) 

The other outputs will not be considered with the exception of suspension deflection as this has 

an impact on the sampling frequency used in discrete models and to a lesser extent in 

continuous models. 

The outputs of the system can be expressed in terms of their transfer functions by applying 

𝐺(𝑠) = 𝑐𝑇(𝑠𝐼 − 𝐴)𝐵                                                             (4.13) 

where cT is a particular row of the output matrix 𝐶 

For suspension deflection this leads to 

−2222𝑠2

𝑠4 + 27.59𝑠3 + 2598.4𝑠2 + 6984𝑠 + 95238
 .               (4.14)  

 

For chassis acceleration this leads to 

6984𝑠3 + 95238𝑠2

𝑠4 + 27.59𝑠3 + 2598.4𝑠2 + 6984𝑠 + 95238
 .               (4.15) 
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4.4.2. Discrete and Continuous Models 

Two different approaches will be applied to the task of modelling the system, namely discrete 

and continuous time models.  

When obtaining a discrete time transfer function from the frequency domain model (4.15), a 

conversion takes place. The continuous-time (CT) transfer function is converted with a 

sampling interval factored into the resulting expression and the result is a transfer function with 

at least one additional zero. The coefficients of the transfer function no longer bear any 

resemblance to the continuous transfer function. Local changes to a particular parameter that 

occur in the continuous case may be distributed amongst the parameters of the discrete transfer 

function. This leads to a level of abstraction that is not beneficial for the purposes of fault 

detection and isolation. For instance, ideally, a change in tyre pressure affects a certain 

parameter or set of parameters in the continuous model. If this change is then spread across all 

the parameters, it may become problematic to differentiate tyre stiffness changes from main 

suspension stiffness changes. 

Modelling in continuous time requires no conversion of the transfer function, the parameters 

are estimated directly and in the event of a vehicle fault, the link to the change in the actual 

vehicle parameters is more direct. For most physical systems it is easier to construct models 

with physical insight in continuous time than in discrete time, simply because most laws of 

physics (Newton’s law of motion, relationships in electrical circuits, for example) are 

expressed in continuous time. Another benefit of estimating a continuous time model is that 

the estimation is less dependent on the sampling interval. The sampling interval is set to capture 

the fastest mode in the system or whatever the sampling ECU is capable of obtaining. 

 

4.4.3. Sampling Interval 

The sampling interval for the models is an important consideration. The procedure of sampling 

the data that are produced by the system is inherent in computer based data acquisition systems. 

It is unavoidable that sampling as such leads to information losses, and it is important to select 

the sampling instances so that these losses are insignificant. Suppose a signal 𝑠(𝑡) is sampled 

with sampling interval 𝑇: 

𝑠𝑘 = 𝑠(𝑘𝑇), 𝑘 = 1,2, … 
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If 𝜔𝑠 =
2𝜋

𝑇
 is the sampling frequency, then 𝜔𝑁 = 𝜔𝑠/2 is the Nyquist frequency which is the 

minimum frequency a sinusoid can be sampled to be distinguishable from a sinusoid of lower 

frequency (Ljung 2006). 

In practice, the sampling interval should be at least one tenth of the time constant of the fastest 

mode of the system (Franklin et al. 1997) to capture the dynamics of the system in sufficient 

detail.  To determine the sampling interval of the suspension system it is assumed that the 

suspension deflection which is associated with the tyre displacement will be the fastest mode. 

The roots of 4.15 are calculated to be.  

𝑝1,2 = −12.588  ±   48.386i        𝑝2,3 = −1.2052 ±   6.0538i   

The time constant associated with the fastest mode is thus calculated to be 1/12.588 = 0.0794s, 

and an ideal sampling frequency of 126Hz. However this sampling interval is far too short for 

the low frequency mode. Indeed herein lies the problem since a lower frequency will be too 

slow for the fast mode. This is issue is considered in more detail in Section 5.3, where a 

comparison is made between discrete time and continuous time models. 

These are theoretical limits, and meant as a guide only. As it is a simple matter to change the 

sampling frequency in a simulation, some experimentation is required to find the optimum 

value. 

From the testing with the MEPHM it is clear that the majority of the response from the chassis 

at low speeds exists in the 3 – 32Hz region, centred on the 14.6Hz bin (see Figure 3.5). This is 

the characteristic frequency of the wheel hop, usually in the region of ~10Hz for good ride and 

handling. Insufficient resolution of the frequency binning prevents a more accurate 

measurement. 

The frequency of the un-sprung mass is greater than that of the sprung mass (usually around 

1Hz), there will be some trade off when attempting to capture the dynamics of both 

components. A sampling frequency that is fast enough to capture the dynamics of the un-sprung 

mass may be too fast for the sprung mass to give enough difference between the samples. A 

sampling frequency that is slow enough for the sprung mass frequency may not capture enough 

information on the un-sprung mass frequency. If they were much further apart the slower 

response could be ignored; if they were closer together, a common sampling interval could be 

satisfactory for both modes. This property of the suspension will have a negative effect on any 
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attempt to estimate the parameters of a model using discrete methods, especially when 

implemented to realise model based fault detection. The effect of sampling in the estimation of 

discrete-time and continuous-time models is explored in greater detail in Section 5.3. 
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4.5. Spectral analysis of vehicle suspension 

The main appeal of spectral approaches for the purpose of tyre pressure analysis is that exact 

knowledge of the input is not required. Instead the input becomes the vibration that is measured 

(usually by accelerometers) at the unsprung mass (axle, rotor, wheel assembly) and the sprung 

mass (chassis). Another advantage is that precise knowledge of the vehicle model is not 

required. A model of the suspension is built from data obtained during drive cycles under the 

normal and faulty conditions. A very large data set can be built over the life of the vehicle, 

which motivates the usage of machine learning approaches (Halfmann et al. 1997a). The 

following examples of suspension spectral analysis are used to determine the properties of the 

candidate test vehicles but were not used directly in any of the fault detection methods. 

Consider a vehicle model with seven degrees of freedom (Figure 4.3). The tyres are modelled 

as spring elements, as are the suspension pieces between the axles and the body. The front and 

rear axles are included as rigid bars, and the body mass is supported by the suspension springs. 

Since the model has seven degrees of freedom, it also has seven eigenvalues that can be 

associated with specific types of response. For instance, the lowest natural frequency mode is 

associated with ‘heave’ or the chassis natural frequency, it corresponds to purely up-and-down 

motions of the body. Although the physical mode (heave) does not purely correspond to vertical 

up-and-down motions (there is some contribution to pitch and roll), the approximation found 

by neglecting everything but the vertical motions is satisfactory. The roll mode corresponds to 

rotations about the longitudinal axis of the car. Pitching refers to rotations about a lateral axis 

through the car perpendicular to the normal forward motion. These low frequency modes are 

rigid body modes because they reflect motions of the chassis itself, oscillating on its 

suspension. The remaining modes are higher frequency modes that involve motions of smaller 

subsystems within the vehicle, primarily associated with the unsprung mass.  

Owing to the fact that the unsprung masses are decoupled from the chassis, they experience 

their own, higher frequency modes. One of these is called wheel hop, which occurs when the 

front or back wheels oscillate in unison. If a set of wheels is moving in an antisymmetric way 

(one up and the other down), the mode is called tramp. Phenomena such as tramp and roll 

dynamics motivate the use of the quarter car model, in order to reduce the modes and hence 

complexity in the system. 
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front rear

 

Figure 4.3 Simplified vehicle model 

 

Parameters Values 

Tyre stiffness 184 kN/m 

Front suspension stiffness 18.7 kN/m 

Rear suspension stiffness 26.1 kN/m 

Vehicle mass 1065 kg 

Total unsprung mass 175 kg 

Front unsprung mass 73 kg 

Rear unsprung mass 102 kg 

Rear axle 52 kg 

Body roll inertia 190 kg 𝑚2 

Body pitch inertia 1080 kg 

Rear axle rotational inertia 8 kg 𝑚2 

Wheelbase 2.42 m 

Front wheels to CG 0.46m 

Front track 1.38 m 

Rear track 1.35 m 

Table 4.2 Parameters for compact vehicle 

 

The various physical parameters of the vehicle model are given in Table 4.2. In order to analyse 

the system and determine the modal frequencies and their distributions, a white box model 

from the equations of motion would be a valid approach. However a similar result can be 

achieved with a simpler approach allowing rapid assessment of various vehicle types.  
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Consider the heave mode in the ideal case of purely vertical oscillation. Disregarding the 

unsprung mass, they may approximated by two springs in series. Thus the equivalent spring at 

each front corner of the car is equal to  

𝑘𝑓
′ =

𝑘𝑓𝑡𝑘𝑓𝑠

𝑘𝑓𝑡 + 𝑘𝑓𝑠
= 16,975 𝑁/𝑚                                                    (4.14) 

and 

𝑘𝑟
′ =

𝑘𝑟𝑡𝑘𝑟𝑠

𝑘𝑟𝑡 + 𝑘𝑟𝑠
= 22,858 𝑁/𝑚                                                     (4.15) 

where subscripts 𝑓 and 𝑟 refer to front and rear springs, respectively, and subscripts 𝑡 and 𝑠 

refer to the tyre and suspension springs, respectively. Defining 𝜔 as the bounce mode, it 

follows that 

1065𝑥̈𝑢𝑠 + 2(16,975 + 22,858)𝑥𝑢𝑠 = 0                                   (4.16) 

where 𝑥𝑢𝑠 denotes the displacement of the unsprung mass, leading to 

𝜔𝑛 = √
79,666

1065
= 8.65 𝑟𝑎𝑑/𝑠 = 1.38 𝐻𝑧                                  (4.17) 

The moment of inertia for the sprung mass about the longitudinal axis is 190 𝑘𝑔 𝑚2. In order 

to estimate the roll mode an estimate of angular stiffness is made. When the chassis rolls, the 

springs on one side are extended and the opposite springs are compressed. The equivalent 

torsional spring for each spring is equal to 𝑘𝑒𝑞𝑙
2, where 𝑙 is the distance from the roll centre to 

the spring and 𝑘𝑒𝑞 corresponds to the 𝑘𝑓
′  and 𝑘𝑟

′  defined. Note that the distances from the roll 

centre to the equivalent spring is given by the front and rear track data in Table 4.2. The 

equation of motion for the roll mode is therefore given by  

190𝑥̈𝑟 + 2(16,975 (
1.38

2
)
2

+ 22,858 (
1.35

2
)
2

) 𝑥𝑟 = 0          (4.18) 

The natural frequency is 

𝜔𝑛 = √
39,598

190
= 14.0 𝑟𝑎𝑑/𝑠 = 2.22 𝐻𝑧                                    (4.19) 
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The remaining mode of significance to the vehicle dynamics is front-wheel hop. This can be 

approximated by inspection of the physical constants, a relatively large sprung mass of 890 𝑘𝑔 

is coupled to a relatively small unsprung mass, 73 𝑘𝑔 by the suspension springs, each with 

stiffness equal to 18,700 𝑁/𝑚. The unsprung mass is coupled to the road via the tyre springs, 

each having stiffness equal to 184,000 𝑁/𝑚. Disregarding the sprung mass and suspension 

springs, consider the unsprung mass supported by the tyre springs 

73𝑥̈ℎ + 2(184,000)𝑥ℎ = 0                                                      (4.20) 

This simplified model leads to a natural frequency estimate of 11.3 Hz. Note the difference 

between the heave frequency of the chassis and the wheel hop. The distance between these 

major modes in the suspension is maintained by automotive designers in order to preserve the 

ride and handling of the vehicle. Consider the sprung mass of the chassis, that is attached to 

the suspension springs, the natural frequency of this sub system approximates to 

𝜔𝑛 = √
37,400

890
= 6.48 𝑟𝑎𝑑/𝑠 = 1.03 𝐻𝑧                             (4.21) 

The approximation may be improved by constraining the position of the sprung mass and 

including both sets of springs, associated with the sprung and unsprung masses: 

73𝑥̈ℎ + 2(184,000 + 18,700)𝑥ℎ = 0                                     (4.22) 

which leads to a natural frequency  

𝜔𝑛 = √
405,400

73
= 74.5 𝑟𝑎𝑑/𝑠 = 11.86 𝐻𝑧                         (4.23) 

This simplified analysis depends upon the existence of distinct and identifiable modes of 

vibration in the system (Tongue 2002). This is invariably the case for any modern passenger 

vehicle, due to ride and handling considerations. A vehicle design that does not obey this 

principle would be unmarketable. However, the analysis relies upon idealised conditions and 

constraints, such as the pure heave mode, which will be unlikely to occur in real data sets, taken 

from candidate vehicles. The particular road surface may induce fractions of the various modes 

simultaneously, making identification problematic, particularly in the case of series production 

vehicles where sensors may be sparse and of relatively low quality. 
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4.6. Concluding remarks 

This Chapter has considered the problems associated with modelling a vehicle suspension 

system for the purpose (in Chapter 5) of developing algorithms for detecting tyre pressure 

changes via model-based indirect approaches. The outcome is a base model which is 

considered to be sufficient for detecting pressure changes in tyres.  
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Condition monitoring and fault detection methods 

5.1. Outline of the chapter 

Section 5.2 of this chapter provides a description of a recursive least squares (RLS) parameter 

estimation scheme in discrete-time. Section 5.2.2 shows the corresponding scheme in 

continuous-time. Section 5.3 compares the two approaches and there is a discussion about the 

relative merits of the two approaches. Section 5.4 incorporates the concept of cautious least 

squares (CLS) into the RLS and Kalman estimators. Section 5.5 details an alternative approach 

to the unknown input problem by the application of an enhanced filter (EKF) which estimates 

states, including the input, of the vehicle-road system. Section 5.6 develops the continuous-

time approach to include an unknown input observer (UIO), which attempts to solve the 

problem of the unknown road surface input and includes some change detection methods. 

Section 5.7 introduces a wheel angular velocity observer method from the first principles of 

CAN data acquisition and interpretation to key indicators of change detection in the variables. 

5.1.1. Introduction 

In this chapter the methods for detecting tyre pressure change are presented. The concept of 

inference based schemes is demonstrated to warrant further investigation by the results of 

chassis acceleration testing during driving, described in Chapter 0. The first step for 

development of an inference-based tyre pressure detection method could be to obtain a model 

of sufficient fidelity in order to describe the dynamics of the suspension and hence enable 

detection of changes that are occurring in the suspension components by comparison of the 

model states, parameter variations and other indicators, such as a phase portrait. Transfer 

function models of the suspension have been created for the purpose of change detection and 

this research has been presented in Chapter 0. In order that changes in the suspension may be 

detected it is necessary to obtain an estimate of the transfer function parameters and internal 

states, depending on the particular approach. 

Sections 5.2-5.6 are concerned with parameter estimation schemes configured to detect 

changes in tyre stiffness. These approaches assume that the road profile is a known quantity 

(to varying degrees), which is technically possible (Rankin et al. 2009; Ray 2008; Manduchi et 

al. 2005) although not currently a realistic proposition for mass produced vehicles. However, 
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this is beginning to change, with the development of laser terrain estimation systems and stereo 

camera techniques, see (Oniga & Nedevschi 2010) for methods using stereo cameras and image 

processing techniques and (Yuan et al. 2008), utilising laser based implementations, commonly 

referred to as light detection and ranging (LIDAR) or laser detection and ranging (LADAR). 

Mercedes-Benz has deployed terrain estimation using stereo cameras and image recognition 

for an active suspension system (known as Magic Body Control) of the 2013 Mercedes-Benz 

S-Class (code name W222). In a promotional press release the road profile generation is 

described by (Daimler 2013): “The ‘eyes’ for the ROAD SURFACE SCAN function are 

provided by a stereo camera fitted behind the windscreen, which scans the road up to 15 m 

ahead of the vehicle and delivers a precise image of the road contours. Based on the camera 

pictures and driving status information, the control unit constantly calculates the best control 

strategy for overcoming unevenness such as prolonged bumps.” 

Anecdotal reports of the suspension performance suggest that the system is only effective in a 

limited set of driving scenarios, primarily low speed navigation of ‘road hump’ traffic calming 

features, and that the system has diminishing effectiveness in low-light conditions and on other 

types of road irregularities, such as pot holes or features that do not readily resolve into high 

contrast images. The evidence currently available suggests that terrain estimation, in the sense 

of practical automotive application, is in its infancy stage of development but remains an 

enticing possibility for model-based control and diagnostics. 
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5.1.2. Definitions and approaches to condition monitoring and fault 

detection  

Condition monitoring has been defined as "a continuous real-time task of determining the 

conditions of a physical system by recording information, recognising and indicating anomalies 

in the behaviour” (Simani et al. 2003). A monitoring system, configured to detect faults and 

diagnose their nature, is called a fault diagnosis system. Its operation can be divided into three 

areas.  

1. Detect that a fault has occurred (fault detection) 

2. Locate the fault in the system (fault isolation) 

3. Characterise the fault (fault identification) - estimation of the magnitude, type or nature 

of the fault  

Correct and timely detection are indispensable properties. The location of the fault may also be 

an essential property, depending on the physical size and access to the system in question. It is 

common practice amongst maintenance technicians, in the pursuit of the location of a fault, to 

test areas of the system that are easily accessible first in order to glean some information. This 

approach is generally motivated by the time-consuming nature of diagnosing a complex and 

often physically inaccessible system. Depending on the nature of the system, the requirement 

for characterisation may or may not be necessary. Electrical faults commonly feature a binary 

magnitude i.e. they are either present or not (and may be intermittent). Mechanical faults are 

more likely to change in magnitude, as tolerance builds in coupled mechanisms, such a system 

deteriorates in a gradual way. Fault diagnosis is generally considered to be Fault Detection and 

Isolation (FDI). FDI approaches can be grouped in two sub-divisions: measurement-based and 

model-based. 

5.1.3. Measurement-based approach 

Conventional measurement-based (analytical or model-free) approaches to fault detection are 

abundant in practical applications. There are many examples of model-free diagnostics and the 

methods are well developed and robust. The main drawback of this class of fault detection 

approaches is the additional cost of additional hardware and the associated maintenance and 

space requirements (Isermann & Ballé, 1997; Isermann, 1997). 

In the analytical redundancy scheme of Figure 5.1 Illustrates the concepts of hardware and 

analytical redundancy (Simani 2003), the resulting difference generated from the comparison 
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of different variables is called a residual or symptom signal. The residual should be zero when 

the system is in normal operation and non-zero when a fault has occurred. This property of the 

residual is used to determine whether or not faults have occurred (Chen & Patton, 1999) 

 

Figure 5.1 Illustrates the concepts of hardware and analytical redundancy (Simani 2003) 

Threshold detection 

A normal range of operation is defined either by the designer or via empirical testing and 

measurement. Measurements made during system operation can be compared against the 

normal range and an alarm or mitigation strategy is triggered. A major problem with this 

method is that in the presence of noise, disturbances or input variation, false alarms may be 

triggered (Chen & Patton, 1999). 

Redundant sensors 

Commonly used in the aviation industry, equipping aircraft with redundant sensors is an 

effective means of improving safety. This approach is particularly effective if the sensing 

techniques are divergent, such that effects due to prevailing conditions or common faults (due 

to mass production) are minimised. The avionics of most commercial aircraft now feature 

multi-redundant self-monitoring systems with segregation and purposeful dissimilarities 

between related / redundant software and hardware; these systems require complex redundancy 

negotiation and consensus voting strategies to operate (Eubank et al. 2010).  

Spectral analysis 

Analysis of the frequency spectrum is a widely used technique, with notable examples in the 

field of rotating machinery and bearings (Chen, Jinglong et al. 2012). Frequency domain 

methods are typically applied when the effects of faults as well as disturbances have frequency 

characteristics which differ from each other and thus the frequency spectra serve as criterion 

to distinguish the faults (Simani et al. 2003). 

This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be viewed in the 
Lanchester Library Coventry University.
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5.1.4. Model-based approach 

In a model-based FDI scheme, some model of the system is used as a mechanism to compare 

the state of the system in question with a predicted state(s), derived from the model and the 

measured state(s). The difference between the measured and estimated state is defined the 

‘residual’. The appeal of this class of fault detection methods is the ability to predict failure 

before the event rather than merely reacting to a threshold transgression swiftly followed by a 

total failure. The model may also allow the monitoring of internal states that are impossible to 

actually measure. Another advantage of the model-based approach is that no additional 

hardware components are required in order to realise a FDI algorithm. A model-based FDI 

algorithm can be implemented via software on a process control computer. In many cases, the 

measurements necessary to control the process are also sufficient for the FDI algorithm so that 

no additional sensors have to be installed (Basseville & Nikiforov, 1993; Chen & Patton, 1999; 

Simani et al., 2003).  

The system in Figure 5.2 is composed of actuators, plant and sensors. The alarm is triggered 

when a disparity is detected between the output state, 𝑦(𝑡), and the estimated output state 

(𝑦̂(𝑡)). 

 

Figure 5.2 Fault Detection and Identification Methods based on Analytical Redundancy 

(Simani 2003)  

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis can 
be viewed in the Lanchester Library Coventry 
University.
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Model-based FDI methods can be categorised in three top level groups: 

 Output observers  

o State estimation 

o Filtering 

 Parity equations 

 Identification and parameter estimation 

These types of approach have been extensively covered in the literature (Basseville & 

Nikiforov, 1993; Chen & Patton, 1999; Gertler & Singer, 1990; Simani et al., 2003). 

Output observers generate residuals from time-invariant parametric models. Parity equations 

may employ time-invariant parametric or non-parametric models. Parameter estimation 

techniques generate the residual via adaptive non-parametric or parametric models.  

An important consideration that should guide the selection of a particular approach is the likely 

type of fault that is to be diagnosed. Each method has a ‘zone of operation’ such that it is more 

or less suitable to a particular application. Consider the case where only the output, 𝑦(𝑡), of a 

system can be measured, this constrains the choice of fault detection scheme to frequency 

domain methods. This is typically seen in situations where an input is not necessarily under 

control of the system, as in the previous example by (Chen, Jinglong et al. 2012). Typical signal 

model-based methods of fault detection are: 

 Band-pass filters 

 Spectral analysis  

 Maximum entropy spectral estimation 

Faults are characterised by their distributions and analysis of the ‘tails’ or outliers, which 

usually also involves distinguishing normal faulty behaviour from noise. Analysis of the 

number of standard deviations from the mean and variance is commonly used (Hodge and 

Austin 2004). Deviation from normal behaviour must then be identified and classified. 
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5.1.5. Modelling issues in fault detection and isolation: uncertainty, 

disturbances and non-linearity 

Since the premise of model-based FDI is the model itself, it is often incorrectly assumed that 

adequate knowledge of its properties exists, in order to proceed with the design of such a 

system. However, this is rarely the case. Fundamentally a mathematical model is a notional 

entity and there will likely always be some uncertainty in the model. This has been shown to 

be the case through the history of science. As an example of this, the theory upon which many 

models rely, is classical mechanics. Newton’s theories stood from 1685 until the time of 

Einstein, when the theory was revised to include the phenomena of relativity. The eminent 

statistician, George Box, wrote "essentially, all models are wrong, but some are useful" (Box 

and Draper 1987).  

The parameters of a model may vary as a function of time (time-varying model) or some other 

variable (state-dependent model) if these dependencies are not observable or are unpredictable 

(stochastic) there will be some disparity between the model states and the measured states of 

the system. Other sources of errors include additive disturbances to the system and noise, which 

may only be classified in terms of their probability. These uncertainties must be considered and 

accounted for ahead of any consideration for the faults themselves. Model-mismatches 

commonly manifest in the form of false positives if the decision threshold is close to the normal 

operational modes or the failure to detect a fault if the threshold is distant from the operational 

region (Chen & Patton, 1999). Sensitivity is a key area in FDI and it has been overcome by 

various techniques, including:  

 Modelling and parameter estimation techniques that account and/or estimate noise, 

such as those devised by Box and Jenkins (Box et al. 2008)  

 Simultaneous application of multiple FDI techniques to the same system, see 

(Isermann, 2006), amongst many others 

 Unknown Input Observer (UIO) 

 Parity relation 

 Increasing the insensitivity to modelling uncertainty and the sensitivity to faults 

The last point is often challenging to achieve in practice. Increasing fault sensitivity often leads 

to increased occurrence of false positives. It may be mitigated by careful examination of the 

fault definition and selecting the appropriate fault detection technique for the particular 

application (Gertler 1998). 
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5.2. Recursive least squares parameter estimation 

In this section a method is developed for the estimation of the parameters of a discrete-time 

transfer function model of a quarter car suspension, introduced in Chapter 4. An objective for 

this work is an analysis of estimation under fault condition with respect to the sampling 

frequency. For this reason the majority of the estimation trials test the estimators ability to 

detect varying parameters rather than the fault-free condition. The discrete-time model has been 

selected primarily since observed data are always collected by sampling. This makes relating 

the observed data to the discrete-time models more straightforward. This is not such a 

significant concern in a simulation study as it is when the observed data is actually some real 

measurement taken during an experiment. 

The estimation scheme for this task is recursive least squares (RLS) which is the online 

implementation of least squares.  It is also possible to process the data en bloc by implementing 

a simpler least squares algorithm but since an attempt is being made to detect changes in the 

tyre as they happen, i.e. during the course of a drive cycle, RLS is more suitable. The estimate 

is continuously updated and can be filtered via a forgetting factor, which progressively 

diminishes the significance of older estimates and smooths the values, such that estimates that 

are corrupted by noise are not given undue significance.  

RLS and least squares estimates in general are optimal in the sense that in a linear model where 

the errors have a mean of zero, are uncorrelated, and have equal variances, the best linear 

unbiased estimators of the coefficients is the least-squares estimators (Markov estimate). 

Despite the fact that real systems are rarely completely linear and measurement noise is rarely 

white, the least squares approach is a good starting point when estimating because it is a well 

understood method, extensively covered in the literature and a standard procedure for the 

analysis of data from the beginning of the 1800s (Golub and Van Loan 1996). 

The discrete-time model is obtained from the continuous-time white box model derived in 

Chapter 4, via a Tustin transformation. The Tustin transformation is selected in order to 

preserve the dynamics at the frequencies of interest (~1Hz for chassis resonance and ~12Hz 

for wheel ‘hop’). Herein lies a fundamental constraint of the discrete-time approach – the 

system features two modes which are approximately ten times distant. Selecting a sampling 

interval for the transformation that is optimal for the chassis dynamics, it is sub-optimal for the 

wheel hop dynamics (sampling too slow). The situation is also problematic in reverse, Selecting 

the wheel hop frequency as the dynamics of interest. The phenomena reverses when selecting 
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a sampling interval for the estimation scheme (sampling too fast). This type of system is 

commonly referred to as ‘stiff’ in the literature (Young & Garnier, 2006) and is usually dealt 

with by compromising the dynamic description of both modes by selection of a sampling 

interval that occupies the middle ground between the two frequencies of interest. 

The nominal suspension parameters are used to generate a transfer function in continuous-time 

from the model and this model is converted to its discrete-time equivalent via the Tustin 

transformation. This process is repeated for the suspension in its faulty state i.e. low tyre 

pressure 

Faulty parameters are loaded and MATLAB computes two discrete transfer functions for the 

nominal and faulty states. The RLS algorithm is applied to the Box-Jenkins transfer function 

model 

 
𝑦(𝑡𝑘) =

𝐵(𝑧−1)

𝐴(𝑧−1)
𝑢(𝑡𝑘−1) +

𝐷(𝑧−1)

𝐶(𝑧−1)
𝑒(𝑡𝑘)        𝑒(𝑡𝑘) = 𝑁(0, 𝜎2) (5.1) 

where the white noise input 𝑒(𝑡𝑘) is independent and identically distributed with zero mean 

and value and variance 𝜎2. In this model, it is assumed that the data are sampled uniformly in 

time, at sampling interval of ∆t units; 𝑦(𝑡𝑘) and 𝑢(𝑡𝑘) represent the sampled values of the 

output and input, respectively, at the time 𝑡𝑘 = 𝑘∆𝑡; 𝛿 is the number of sampling intervals in a 

pure time delay of 𝛿∆t time units affecting the input to the model; and 𝑧−1 is the backward 

shift operator, i.e. 𝑧−𝑟𝑦(𝑡𝑘) = 𝑦(𝑡𝑘−𝑟). This model can also be represented in the following 

decomposed form 

𝑦(𝑡𝑘) = 𝑥(𝑡𝑘) + (𝑡𝑘)                                                                                                              (5.2) 

Here, the deterministic, noise-free output of the system, 𝑥(𝑡𝑘), is generated by the equation 

𝑥(𝑡𝑘) =
𝐵(𝑧−1)

𝐴(𝑧−1)
𝑢(𝑡𝑘−𝛿)                                                                                                         (5.3) 

which is the transfer function part of the model, and the coloured noise (𝑡𝑘), is generated by 

the equation 

(𝑡𝑘) =
𝐷(𝑧−1)

𝐶(𝑧−1)
𝑒(𝑡𝑘)                                                                                                             (5.4) 
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which is the associated Auto Regressive Moving Average (ARMA) noise part of the model. In 

the equations (5.1) to (5.4), the polynomials are defined as  

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 + ⋯+ 𝑎𝑛𝑧−𝑛 (5.5a) 

  
𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧

−1 + ⋯+ 𝑏𝑚𝑧−𝑚 (5.5b) 

  
𝐶(𝑧−1) = 1 + 𝑐1𝑧

−1 + ⋯+ 𝑐𝑝𝑧−𝑝 (5.5c) 

  
𝐷(𝑧−1) = 1 + 𝑑1𝑧

−1 + ⋯+ 𝑑𝑞𝑧
−𝑞 (5.5d) 

(Young, P. C. 2004). 

 The system estimation equation is formulated as 

 𝑦(𝑡𝑘) = 𝜙𝑇(𝑡𝑘)𝜃 + 𝑒(𝑡𝑘) (5.6a) 

where 

 𝜙𝑇(𝑡𝑘) = [−𝑦(𝑡𝑘−1)…− 𝑦(𝑡𝑘−𝑛)  𝑢(𝑡𝑘−𝛿)…𝑢(𝑡𝑘−𝛿−𝑚)] (5.6b) 

 𝜃 = [𝑎1 …𝑎𝑛 𝑏0 …𝑏𝑚]𝑇 (5.6c) 

The noise polynomial used is 

 1 + 0.5𝑧−1

1 − 1.4𝑧−1 + 0.7𝑧−2
 (5.7) 

The simulations are run for 60,000 samples. At the theoretically ideal sampling rate of 126Hz 

this equates to a simulation run time of 8 minutes. As time progresses to sample 20,000 

(approximately a quarter of the total time), 𝜃 starts to change from its nominal value to the 

system with a tyre fault. The change continues for 20,000 samples at which point the parameter 

vector 𝜃 settles to its new values and stays there for the remainder of the simulation. This 

behaviour is analogous to a vehicle with a slow puncture. The estimator and model feature a 

forgetting factor, denoted λ, and gain control over the additive noise, ξ, on 𝑦(𝑡k). The forgetting 

factor allows the estimator to disregard past samples and is useful for a system that is changing, 

to prevent bias in the estimates of 𝜃. The three variables are adjusted to obtain the most accurate 

estimates of 𝜃. The memory length, denoted 𝑀, is approximated by 

𝑀 =
1

1 − λ
                                                                                                                              (5.8) 
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For a forgetting factor of λ = 0.99 the estimator makes use of approximately the last 100 

samples. 

The performance of the estimator is measured by taking the average of the 𝜃 estimates for the 

constant parameter regions i.e. before the fault begins and after it has finished and calculating 

the Euclidean norm (𝐸𝑁) between 𝜃 and its estimate, 𝜃. Only the 𝐸𝑁 for the post fault is shown 

in Table 5.1 as this is the area of most interest. 

The difference between the Euclidean norms of 𝜃 and 𝜃 is given by 

‖𝐸𝑁‖ = √θ 1
2 + ⋯+ θ n2 − √θ̂1

2 + ⋯+ θ̂n
2               (5.9) 

5.2.1. Estimation trials 

Refer to Table 5.1 for the details of the simulation configurations. The initial trials tested the 

system without faults at the theoretically ideal sampling rate of 126Hz. The estimator makes 

very accurate predictions of 𝜃 as shown in Figure5.3 and the system is stable. A property of 

estimators generally is that a little noise is beneficial, especially in cases where there is low 

activity on the input(s). The configuration of the estimator that is depicted in Figure 5.5 

produced an 𝐸𝑁 of 1.6117 and if the ARMA noise is added, the 𝐸𝑁 is reduced to 0.7552 (see 

Table 5.1 for details). 

 

Figure 5.3 Upper plot, simulation configuration 2, parameter estimates for the 

nominal system (no faults) due to white noise input, SF=126Hz, λ=1, 𝜉=0, x 

axis samples 1 – 60,000 (8 minutes). Lower plot, actual 𝜽 values 
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The remainder of the tests were conducted with the gradual tyre deflation fault (reduction in 

the parameter 𝑘𝑡 from 200,000 to 100,000) occurring in the system for various controlled 

sampling frequencies (SF), additive noise levels ξ, and forgetting factors λ. The fault should be 

identifiable as the estimator tracks the new values of 𝜃. The true value of θ can be seen in the 

lower portion of all the plots for comparison. 

Figures 5.4 and 5.5 demonstrate the effect of the forgetting factor. The estimates converge at a 

much faster rate (resulting in a smaller 𝐸𝑁) with a forgetting of 0.99 than they do with no 

forgetting but the variance in the estimates is more pronounced for smaller values of λ. The 

system can operate at very low sampling frequencies; estimates were obtained for a rate of 5Hz 

but only with zero additive noise. Additive noise at extremely low sampling frequencies 

generally caused instability in the system and no estimates could sensibly be made. It was 

possible to sample at high frequencies, the highest of 450Hz resulting in a stable system. The 

ultimate limit of estimation stability depended on the forgetting factor and the noise level; if 

the noise was removed the system became unstable beyond 400Hz. The noise level also had a 

positive effect on the rate of convergence at the very high frequencies. A small amount of noise 

generally proved to be beneficial for the estimates in most cases. Removal of the forgetting 

factor causes degradation in the estimates, although it is impossible to test the asymptotic case, 

it is unlikely 𝜃 would converge to θ. 

 

Figure 5.4 Upper plot, simulation configuration 3, parameter estimates for the 

faulty system with SF=126, λ=1, 𝜉=0.0025, Lower plot, actual 𝜽 values 
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Figure 5.5 Upper plot, simulation configuration 12, parameter estimates for the 

faulty system with SF=126, λ=0.99, 𝜉=0.0025, Lower plot, actual 𝜽 values 

 

 

Figure 5.6 Upper plot, simulation configuration 6, parameter estimates for the 

faulty system with SF=20, λ=0.99, 𝜉=0.0025, Lower plot, actual 𝜽 values 
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Figure 5.7 Upper plot, simulation configuration 16, parameter estimates for the 

faulty system with SF=450, λ=0.99, 𝜉=0.0025, Lower plot, actual 𝜽 values 

 

Simulation 
property 

Simulation configuration number 

1 2 3 4 5 6 7 8 

Sampling 
Frequency SF (Hz) 

126 126 126 5 10 20 50 60 

Noise gain ξ 0.0025 0 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

Forgetting λ 1 1 1 0.99 0.99 0.99 0.99 0.99 

Simulation time 
(seconds) 

476.191 476.191 476.191 12000 6000 3000 1200 1000 

Euclidean norm 
EN (θ) 

0.7552 1.6117 16.5919 9.4895 7.9388 1.7536 6.0749 11.9733 

Fault type No fault No fault 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 

 

Simulation 
property 

Simulation configuration number 

9 10 11 12 13 14 15 16 

Sampling 
Frequency SF (Hz) 

70 80 110 126 140 190 350 450 

Noise gain 𝛏 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

Forgetting 𝛌 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Simulation time 
(seconds) 

857.14 750 545.455 476.191 428.571 315.79 171.429 133.333 

Euclidean norm 
EN (θ) 

8.843 6.7706 9.0938 5.0005 4.1611 12.4373 3.5149 92.235 

Fault type 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 
Tyre 

deflated 

 

Table 5.1 Estimation results for the discrete time system 
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Table 5.1 shows the effect of sampling interval and reinforces the notion put forward in Section 

4.4.3 that sampling interval for discrete time estimation of vehicle suspension is a compromise 

between the wheel hop frequency and chassis frequency (see Section 4.5) of ~12Hz and ~1Hz, 

respectively. 450Hz sampling frequency produces particularly poor estimates, (sampling too 

fast for either mode) while 350Hz and 140Hz are substantially more accurate. This can be 

attributed to good estimates of the wheel hop. At the other end of the spectrum, a sampling 

frequency of 20Hz is likely capturing the dynamics of the chassis. This may not be the case for 

every type of input signal i.e. road surface. In the case of high excitation (e.g. rough roads), 

there may be too great a difference between the samples and degradation in the estimates may 

occur at low sampling frequencies. The variance in the estimates, which manifest as spikes in 

Figure 5.7, for example, can be attributed to the additive ARMA noise. This type of variance 

in the estimate becomes more pronounced as the noise amplitude increases and the forgetting 

factor decreases.  

5.2.2. Estimating the continuous-time transfer function 

In many ways, estimating a continuous model is a more direct approach to the problem of fault 

detection. The parameters of the transfer function are estimated directly and there is no 

conversion process, with no additional parameters to estimate as in the discrete method i.e. 

numerator terms. The sampling interval is no longer an issue; the system can be sampled as 

fast as the user desires i.e. fast enough to capture all the modes of the system; with no problems 

of instability or sensitivity. This part of the work differs from the discrete time model in that 

the continuous time model was built in Simulink although the estimation algorithm was 

executed in MATLAB script language. 

This continuous time estimation scheme is based on the work of Young (1981). Although 

Young used instrumental variable techniques his method is equally applicable with RLS. 

The RLS algorithm estimates a continuous time differential equation model based on discrete 

time sampled data measurements of the input and output variables 

𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
+ 𝛼1

𝑑𝑛−1𝑥(𝑡)

𝑑𝑡𝑛−1
+ ⋯+ 𝛼𝑛𝑥(𝑡) = 𝛽0

𝑑𝑚𝑢(𝑡 − 𝜏)

𝑑𝑡𝑚
+ ⋯+ 𝛽𝑚𝑢(𝑡 − 𝜏)             (5.10) 

Here the pure time delay 𝜏 is assumed to be an integer number related to the sampling interval 

as in the discrete time case: i.e. 𝜏=𝛿∆t but this is not essential; in this continuous time 
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environment, fractional time delays can be introduced if required (Young & Garnier, 2006). In 

transfer function terms, the above differential equation takes the form 

𝑥(𝑡) =
𝐵(𝑠)

𝐴(𝑠)
𝑢(𝑡 − 𝜏)                                                                                                   (5.11) 

with 

𝐵(𝑠) = 𝛽0𝑠
𝑚 + 𝛽1𝑠

𝑚−1 + ⋯+ 𝛽𝑚                                                                           (5.12) 

𝐴(𝑠) = 𝑠𝑛 + 𝛼1𝑠
𝑛−1 + ⋯+ 𝛼𝑛                                                                                  (5.13) 

where s is the differential operator. It is assumed that the input signal {𝑢(𝑡), 𝑡1 < 𝑡 < 𝑡𝑁} is 

applied to the system and that this input and the output 𝑥(𝑡) are sampled at discrete times 

𝑡1, … , 𝑡𝑁, not necessarily uniformly spaced. 

In the case of uniformly sampled data (as in the vehicle suspension simulation) at a sampling 

interval ∆t, the measured output 𝑦(𝑡𝑘), where 𝑡𝑘 = 𝑘∆𝑡, it is assumed to be corrupted by an 

additive measurement noise 𝜉(𝑡𝑘) (see Figure 5.1)   

𝑦(𝑡𝑘) = 𝑥(𝑡𝑘) + (𝑡𝑘)                                                                                                  (5.14)  

where 𝑥(𝑡𝑘) is the deterministic, noise free output of the system and, as in the discrete time 

case, (𝑡𝑘) is modelled as a discrete time ARMA process 

(𝑡𝑘) =
𝐷(𝑧−1)

𝐶(𝑧−1)
𝑒(𝑡𝑘)        𝑒(𝑡𝑘) = 𝑁(0, 𝜎2)                                                            (5.15) 

The estimation problem is to estimate the parameters of the continuous time transfer function 

model (5.11) from N sampled measurements of the input and output 𝑍N = {𝑢(𝑡𝑘); 𝑦(𝑡𝑘)}𝑘−1
𝑁 . 

The transfer function system estimation model at the 𝑘𝑡ℎ sampling instant is written in the 

following pseudo linear regression form 

     𝑦𝑓
(𝑛)

(𝑡𝑘) = 𝜙𝑓
𝑇(𝑡𝑘)𝜃𝑐 + 𝑒(𝑡𝑘)                                                                                 (5.16) 

        𝜙𝑓
𝑇(𝑡𝑘) = [−𝑦𝑓

(𝑛−1)(𝑡𝑘)…− 𝑦𝑓
(0)(𝑡𝑘)  𝑢𝑓

(𝑚)(𝑡𝑘 − 𝜏)…𝑢𝑓
(0)(𝑡𝑘 − 𝜏)]         (5.17) 

                   𝜃𝑐 = [𝛼1 …𝛼𝑛 𝛽0 …𝛽𝑚]𝑇                                                                              (5.18)   
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where now the subscript 𝑓 denotes hybrid filtering which involves a combination of continuous 

and discrete time filters. First the pre-filtered derivatives are obtained as the inputs to the 

integrators in the continuous time implementation of the initial pre-filter 1 𝐴⁄ (𝑠), as shown in 

Figure 5.8. These pre-filtered derivatives are then sampled at the sampling interval 𝛥t . The 

pre-filters are loaded with the coefficients of the model polynomial (5.15). In the case of a 

practical implementation these parameters would be iteratively updated with the estimates of 

the model polynomial, 𝜃𝑐 (Young & Garnier, 2006) 

 

5.2.3. Estimation trials 

Refer to Table 5.2 for the details of the simulation configurations. 

The initial trials of the continuous time estimator were conducted using a simple transfer 

function block representing the suspension system (Figure 5.8) with no method of inducing 

faults and no additive noise so that potential causes of problems could be isolated during 

development of the scheme. 

 

Figure 5.8 CT transfer function model and pre-filters 
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The input (road surface) to the system comes from a workspace vector populated with zero 

mean unity variance random numbers, on the left hand side of Figure 5.8. The input derivatives, 

𝑢𝑓𝑐, are filtered, sampled and stored as a matrix in the workspace. The suspension acts as a 

filter, attenuating the input (as would happen in a real vehicle suspension) and the output of the 

transfer function is chassis acceleration. This acceleration is filtered for the derivatives, 𝑦𝑓𝑐, 

which are sampled and stored as a matrix in the workspace. The input and output measurements 

are computed by the RLS algorithm and an estimate of 𝜃𝑐  can be made. 

 

Figure 5.9 Estimates of 𝜃 for the noise free case 

Once the process was demonstrated to be working and repeatable, the results of this exercise 

can be seen in Figure 5.9, the state space second companion form transfer function was 

introduced with the ARMA additive noise blocks. 

In the same way as the discrete time case, the estimator and model feature sampling frequency 

control, a forgetting factor λ, and gain control over the additive noise on 𝑦(𝑡k). The forgetting 

factor allows the estimator to disregard past samples and is useful for a system that is changing, 

to prevent bias in the estimates of 𝜃. The three variables are adjusted to obtain the most accurate 

estimates of 𝜃. 

A noticeable difference between discrete time (DT) estimation and continuous time (CT) 

estimation is their noise tolerance. The CT estimator is more sensitive to noise, at a sampling 

rate of 30Hz with a high level of noise i.e. gain factor of unity, the EN for the two estimators 

was found to be: 



94 

 

CT estimator Euclidean norm   7268.3 

DT estimator Euclidean norm   1.2 

However, at more realistic levels of noise the estimators are very similar in their performance. 

5.2.4. Introducing faults into the model 

Introducing the tyre pressure fault cannot be done in exactly the same way as the DT model 

because of the block diagram form of the CT model. The transfer functions are calculated for 

both vehicle states i.e. nominal and half tyre stiffness. Half tyre stiffness is an arbitrary quantity 

selected for the sake of convenience. The relationship between tyre stiffness and inflation 

pressure is variable depending on the particular tyre and conditions. However, the majority of 

authors in the field (Taylor et al. 2000, Schmeitz et al. 2005, Pillai 2006, Parczewski 2013, 

Smith, N. D. 2004) state that there is usually an approximately linear proportional relationship 

between these variables. The coefficients of the two polynomials are loaded into a MATLAB 

script which gives the 𝜃 values of the model for the simulation to start and end the fault at. The 

task of creating a fault insertion scheme is executed with the use of ramp and saturation blocks 

to gradually move the parameters from the nominal condition to the faulty one and then hold 

them at the faulty level. Details of this are shown in Figure 5.10. Note that the value for α1 

does not change for the faulty condition of deflated tyre. 

As time progresses to a predetermined sample (approximately a quarter of the way in), 𝜃 starts 

to change from its nominal value to the system with a tyre fault. The change continues for two 

thirds of the simulation time at which point the parameter vector 𝜃 settles to its new value and 

remains constant for the remainder of the simulation. This behaviour is analogous to a vehicle 

with a slow puncture. In the same way as the discrete-time case, the performance of the 

estimator is measured by taking the average of the 𝜃 estimates for the stable regions i.e. before 

the fault (or after the initial estimates are made, in the fault free case) begins and after it has 

finished, then calculating the Euclidean norm between 𝜃 and its estimate 𝜃 for the two periods, 

pre and post fault. Only the EN for the last part of the simulation is shown in Table 5.2. 

The results of simulation configuration 9 are shown in Figure 5.11. The estimator accurately 

tracks the change in 𝜃 and converges to the true value as the fault stabilises, with a final EN 

value of the averaged 𝜃 of 12.94. Contrast this with the estimates of the discrete system of 

Figure 5.4, the DT estimates have much more variance, although the EN value is smaller for 

the DT system. 
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An interesting property of the CT estimator is that it performs better with very low λ, 10 

samples were enough for the estimator to make a good estimate, except at very low SF, as can 

be seen in Table 5.2, simulations 5 & 6. The extremely low SF causes very large differences 

between the samples and degradation of the estimates, a situation that is improved by increasing 

λ. In contrast, the DT estimator is more accurate with λ =0.99 for all SF.             

 

Figure 5.10 Truncated simulation showing suspension model in second companion form 

with blocks for fault insertion (filters are omitted). Note a variable exists for each 

parameter of the TF. 

 

Figure 5.11 Estimates of the suspension system with a gradual decline in tyre stiffness 

(slow puncture)  
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Simulation 
property 

Simulation Configuration Number 

1 2 3 4 5 6 7 8 

SF (Hz) 100 126 126 126 2 2 10 20 

Noise ξ 0.0025 0 0 0.0025 0.0025 0.0025 0.0025 0.0025 

FF λ 0.99 1 0.99 0.9 0.99 0.9 0.9 0.9 

Time (s) 600 476 476 476 30000 30000 6000 3000 

EN (θ) 54.033 20478 26.668 23.69 15.319 27.167 13.436 13.627 

Fault type No fault No fault No fault No fault 
Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

         

Simulation 
property 

Simulation Configuration Number 

9 10 11 12 13 14 15 16 

SF (Hz) 30 30 30 70 126 126 100 200 

Noise ξ 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

FF λ 0.9 0.95 0.99 0.9 0.99 0.9 0.9 0.99 

Time (s) 2000 2000 2000 857 476 476 600 300 

EN (θ) 12.94 13.3 16.62 13.949 15.623 22.517 14.659 21.914 

Fault type 
Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

         

Simulation 
property 

Simulation Configuration Number   

17 18 19 20 21 22   

SF (Hz) 200 400 1000 3000 4500 6000   

Noise ξ 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025   

FF λ 0.9 0.99 0.99 0.99 0.99 0.99   

Time (s) 300 150 60 20 13 10   

EN (θ) 25.223 37.591 172.08 213.13 615.87 1060.7   

Fault type 
Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated 

Tyre 
deflated   

Table 5.2 Estimation results for the CT system 

 

Table 5.2 shows that the CT model is significantly less sensitive to the choice of sampling 

interval compared with the DT model. Satisfactory estimation can be achieved with sampling 

rate ranging from 10Hz to 400Hz, beyond which the estimates begin to degrade due to 

insufficient difference between successive samples. The tracking abilities of the estimators 

have demonstrated their appropriateness as fault detection mechanisms with the simple quarter 

car suspension model.   
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5.3. Comparison of continuous-time and discrete-time vehicle 

models as candidates for suspension system fault detection  

This section explores the potential advantages and limitations offered by discrete-time and 

continuous-time model-based fault detection schemes for vehicle suspension systems (Ersanilli 

et al. 2008). The same suspension model of a quarter car is used from Section 5.2 to obtain 

transfer function models. The coefficients of the transfer function are estimated in discrete-

time and continuous-time using a standard recursive least squares scheme, which provides the 

basis of the fault detection mechanism. The results of simulation studies indicate that 

continuous-time model based estimation offers benefits over discrete-time methods for fault 

detection in vehicle suspension systems. 

5.3.1. Introduction 

Model-based fault detection schemes in discrete-time (DT) and continuous-time (CT) in the 

context of the vehicle suspension are investigated. The choice of sampling interval is crucial 

when estimating DT vehicle suspension models due to the proximity of the fastest and slowest 

dynamic modes in the system, i.e. wheel hop and chassis displacement, respectively. When 

estimating DT models, a compromised sampling interval is chosen, which results from an 

attempt to capture both dynamic modes. Such a compromise does not arise when estimating 

CT models.  

Fault detection in suspension systems via DT methods has been investigated by Walker (1991). 

It was reported that under certain conditions it was not always possible to isolate particular 

faults. In an attempt to increase the sensitivity whilst reducing the number of false alarms a 

combination of recursive least squares (RLS) and cautious least squares (CLS) was proposed 

(Burnham, Keith. J. 1991). Studies by Friedrich (2006) have shown that it is theoretically 

possible to isolate faults using CT model approaches with a state variable filter and RLS for 

parameter estimation. 

5.3.2. Vehicle suspension model 

Recall from Chapter 0, Figure 4.2 represents the quarter car vehicle suspension model. This 

section refers back to Figure 4.2 but for clarity and ease of reading the equations are repeated 

here. The vehicle data is also the same as for Chapter 0. Recall that the quarter car consists of 

the chassis (sprung mass, 𝑚s), wheel assembly (un-sprung mass, 𝑚us), suspension spring 𝑘s, 

suspension damper 𝐵s and tyre spring 𝑘t is being considered, the latter replicating the effects 
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of tyre pressure. The input stimulus to the system is essentially a displacement, denoted 𝑥r, 

from the road surface. Using Newton’s law of motion the system may be expressed as 

 𝑚𝑠𝑥̈𝑠 + 𝐵𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) + 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0 (5.19) 

   

 𝑚𝑢𝑠𝑥̈𝑢𝑠 + 𝑘𝑡(𝑥𝑢𝑠 − 𝑥𝑟) − 𝐵𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) − 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0 (5.20) 

where 𝑥𝑠and 𝑥𝑢𝑠 denote the displacement of sprung and un-sprung mass, respectively (𝑥̇ and 𝑥̈ 

denote the velocity and acceleration in both cases). A convenient state space representation 

given by 

𝐱̇ = 𝐀𝐱 + 𝐛𝑢    and    𝑦 = 𝐂𝐱                               (5.21) 

with state vector 

 𝑥 = [𝑥𝑠  𝑥̇𝑠  𝑥𝑢𝑠  𝑥̇𝑢𝑠] (5.22) 

leads to   

 𝑥̇1 = 𝑥2 (5.23a) 

 
𝑥̇2 = −

1

𝑚𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3)] 

(5.23b) 

 𝑥̇3 = 𝑥4 (5.23c) 

 𝑥̇4 =
1

𝑚𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3) − 𝑘𝑡(𝑥3 − 𝑢)].    (5.23d) 

Having defined the state vector, the representation takes the following state space vector-matrix 

form    

 

𝒙̇  =  

[
 
 
 
0        1        0         0

−𝑘𝑠
𝑚𝑠

     −𝑘𝑠
𝑚𝑠

      𝑘𝑠
𝑚𝑠

      𝑘𝑠
𝑚𝑠

0        0         0         1
𝑘𝑠

𝑚𝑢𝑠
    

𝐵𝑠
𝑚𝑢𝑠

   
−𝑘𝑡−𝑘𝑠

𝑚𝑢𝑠
    

−𝐵𝑠
𝑚𝑢𝑠]

 
 
 

 𝒙 + [

0
0
0
𝑘𝑡

𝑚𝑢𝑠

] 𝑢(t) 

 

(5.24a) 

     
𝒚  =  [

1        0    − 1        0
−𝑘𝑠
𝑚𝑠

     
−𝐵𝑠
𝑚𝑠

      
𝑘𝑠
𝑚𝑠

      
𝐵𝑠
𝑚𝑠

]  𝒙           ; 𝑢 = 𝑥r             (5.24b) 
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The output corresponding to the first row represents the suspension deflection, which is the 

difference between 𝑥s and 𝑥us and the output corresponding to the second row represents 

chassis acceleration 𝑥̈𝑠. Values of the vehicle suspension components were given earlier in 

Table 4.1. 

The vertical acceleration 𝑥̈𝑠 of the chassis is the main output of interest for this system. This is 

the variable measured on the vehicle. In terms of the model this quantity is given by (5.23b). 

The secondary output of interest corresponding to the fast mode is that of the un-sprung mass, 

comprising the wheel, tyre, brake and axle assembly, given by (5.23d). Other measured outputs 

will not be considered here with the exception of suspension deflection as this has an impact 

on the sampling frequency used in the DT models and, to a lesser extent, in CT models. The 

outputs of the system can be expressed in terms of their transfer functions by applying 

 𝐺(𝑠) = 𝑐𝑇(𝑠𝐼 − 𝐴)𝐵 (5.25) 

where 𝑐T is a particular row of the output matrix 𝐶. 

For the un-sprung mass this leads to an acceleration transfer function given by 

 −2222𝑠2

𝑠4 + 27.59𝑠3 + 2598.4𝑠2 + 6984𝑠 + 95238
 . (5.26) 

Similarly, for the chassis this leads to an acceleration transfer function given by 

 6984𝑠3 + 95238𝑠2

𝑠4 + 27.59𝑠3 + 2598.4𝑠2 + 6984𝑠 + 95238
 . (5.27) 

The poles of these transfer functions are identical and are given by two pairs of complex poles, 

namely 

 𝑝1,2 = −12.59 ±  48.39𝑖         𝑝2,3 = −1.21 ±  6.05𝑖. (5.28) 

Taking the reciprocal of the real part indicates that the time constant of the fastest mode 

(associated with the wheel dynamics) is 80.5 ms and the slowest (associated with the chassis) 

is 0.725 s. These represent typical results for a vehicle suspension configuration, such as Figure 

4.2. The ratio of the two dynamic modes is typically of the order 10:1 for the un-sprung and 

sprung mass respectively (see, for example Gillespie 1992). 
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5.3.2.1. Sampling interval 

Measurements of the chassis acceleration are sampled at an interval 𝑇s. This interval must be 

selected carefully to capture the dynamics of the dominant modes in the system. Ideally the 

sampling interval should be one tenth of the time constant of the fastest mode of the system 

(Franklin et al. 1997) to capture the dynamics of the system. This leads to a sampling interval 

𝑇s of 8.05 ms and a theoretically ideal sampling frequency of 124 Hz. However, this sampling 

interval is far too short for the low frequency mode (in a DT system). Indeed, herein lies the 

problem since a lower frequency will be too slow for the fast mode. 

5.3.2.2. Modelling approaches and issues 

When obtaining a DT transfer function from a frequency domain model, a conversion takes 

place. The transfer function is converted with a sampling interval factored into the resulting 

expression and usually results in a transfer function with one additional zero. The coefficients 

of the DT transfer function are not only dependent on the sampling interval but are usually 

functions of more than one CT model coefficient. Consequently, the individual DT coefficients 

no longer relate to meaningful individual physical quantities of the dynamic system. Local 

changes to a particular parameter that occur in the CT case may be distributed amongst the 

parameters of the DT model. This leads to a level of abstraction that is not beneficial for the 

purposes of fault detection and isolation. For instance, ideally, a change in tyre pressure affects 

a certain parameter or set of parameters in the CT model. If this change is then spread across 

all the parameters of a DT model, it may become problematic to differentiate tyre stiffness 

changes from other changes in the suspension system. Modelling in CT requires no conversion 

of the transfer function, the parameters are estimated directly and in the event of a vehicle fault, 

the link to the change in the actual vehicle sub-systems via physical laws is more direct. For 

most physical systems it is easier to construct models with physical insight in CT than in DT, 

simply because most laws of physics (Newton’s law of motion, relationships in electrical 

circuits, etc.) are expressed in CT. Furthermore, estimating a CT model is less dependent on 

the sampling interval. The sampling interval is simply selected to capture the fastest mode of 

interest in the system, or whatever the data acquisition hardware is capable of obtaining. 

5.3.3. Parameter estimation  

RLS is the method used here to estimate the coefficients of the transfer functions of both DT 

and CT suspension models. RLS is a straightforward online estimation algorithm, yet it is 

optimal in the mean square error (MSE) sense when the assumptions on linearity of the model 
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and Gaussian properties of the measurement noise hold. ARMA additive noise has been 

adopted for the noise models. 

5.3.3.1. The discrete-time system model 

The RLS algorithm is applied to the Box-Jenkins transfer function model (5.1) with ARMA 

noise model (5.7) of Section 5.2 (Young, P. C. 2004). 

5.3.3.2. Replicating faults in the DT system model 

There are many ways in which a suspension may degrade but only tyre faults are considered 

here. In particular, a slow deflation which results in a gradual reduction in tyre stiffness of 

some 50% is considered. This fault scenario is replicated by creating a matrix of theoretical 

values of DT model parameters starting at sample 𝑆1 with the nominal (no fault) values for the 

parameters, denoted 𝜃𝑛𝑓.The parameters are linearly, incrementally changed from the sample 

where the fault starts, denoted 𝑆𝑓𝑠 up to the sample when the fault ends, denoted 𝑆𝑓𝑒 with the 

faulty values of the faulty parameter vector, denoted 𝜃𝑓. From the sample 𝑆𝑓𝑒 to the end of the 

simulation, 𝑆𝑒, the values remain fixed at 𝜃𝑓. 

 

5.3.3.3. Converting the CT transfer function to DT 

The CT transfer function corresponding to chassis acceleration is converted to its DT 

counterpart using the matched pole-zero method (Franklin 1990) as an alternative approach to 

the Tustin transformation of Chapter 4. The transformation renders a transfer function for the 

fault free system 

103.9𝑧3 − 300.9𝑧2 + 290𝑧 − 93.08

𝑧4 − 3.523𝑧3 + 4.584𝑧2 − 3.131𝑧 + 0.801
               (5.37) 

for a sampling interval 𝑇s of 8.05 ms. With the tyre spring rate set to half of the nominal value, 

use of the matched pole-zero procedure leads to the DT transfer function 

52.58𝑧3 − 152.3𝑧2 + 146.8𝑧 − 47.1

𝑧4 − 3.649𝑧3 + 5.103𝑧2 − 3.254𝑧 + 0.801
               (5.38) 

from which it is clear that all the model parameters change with the exception of α1. Note that 

whilst a range of different sampling frequencies have been considered in this work, only the 

transfer functions for the theoretical ideal sampling frequency of 124 Hz (corresponding to 𝑇s 

of 8.05 ms) are presented here.  
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5.3.3.4. The continuous-time system model 

The RLS algorithm is used to estimate the coefficients of a CT differential equation model 

based on sampled data measurements of the input and output variables obtained in DT. 

Consider the linear differential equation representation 

𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
+ 𝛼1

𝑑𝑛−1𝑥(𝑡)

𝑑𝑡𝑛−1
+ ⋯+ 𝛼𝑛𝑥(𝑡)                                          

                                      = 𝛽0

𝑑𝑚𝑢(𝑡)

𝑑𝑡𝑚
+ ⋯+ 𝛽𝑚𝑢(𝑡).          (5.39) 

Taking Laplace transforms, and assuming zero initial conditions, the transfer function 

corresponding to the above differential equation takes the form 

𝑋(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
𝑈(𝑠)                                                                 (5.40) 

where 𝑋(𝑠) and 𝑈(𝑠) denote the Laplace transforms of the noise free system output 𝑥(𝑡) and 

the available noise free input 𝑢(𝑡), respectively. The transfer function numerator and 

denominator polynomials are given by 

𝐵(𝑠) = 𝛽0𝑠
𝑚 + 𝛽1𝑠

𝑚−1 + ⋯+ 𝛽𝑚                                 (5.41𝑎) 

𝐴(𝑠) = 𝑠𝑛 + 𝛼1𝑠
𝑛−1 + ⋯+ 𝛼𝑛                                        (5.41𝑏) 

where s is the Laplace operator. The CT system model input and noise free output 𝑢(𝑡) and 

𝑥(𝑡), respectively, are sampled at discrete intervals 𝑡1, … , 𝑡𝑁. 

In the case of uniformly sampled data (as in the vehicle suspension simulation) at each 

sampling interval ∆t, where 𝑡𝑘 = 𝑘∆𝑡, the measured output is assumed to be corrupted by an 

additive measurement noise 𝜉(𝑡𝑘), i.e.  

𝑦(𝑡𝑘) = 𝑥(𝑡𝑘) + 𝜉(𝑡𝑘)                                                       (5.42) 

where 𝑥(𝑡𝑘) is the sampled CT deterministic, noise free output of the CT system and, as in the 

DT case, (𝑡𝑘) is modelled as a DT ARMA process 

(𝑡𝑘) =
𝐷(𝑧−1)

𝐶(𝑧−1)
𝑒(𝑡𝑘)        𝑒(𝑡𝑘) = 𝑁(0, 𝜎2)                                    (5.43) 
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The problem is to estimate the parameters of the CT differential equation (or transfer function) 

model from N sampled data pairs comprising the available noise free input and noise corrupted 

output, denoted 𝑍𝑁 = {𝑢(𝑡𝑘); 𝑦(𝑡𝑘)}𝑘−1
𝑁 . The system estimation equation at the 𝑘𝑡ℎ sampling 

instant is expressed in the following pseudo linear regression form 

 

𝑦𝑓
(𝑛)(𝑡𝑘) = 𝜙𝑓

𝑇(𝑡𝑘)𝜃𝑐 + 𝜉(𝑡𝑘)                                                           (5.44) 

   𝜙𝑓
𝑇(𝑡𝑘) = [−𝑦𝑓

(𝑛−1)(𝑡𝑘)…− 𝑦𝑓
(0)(𝑡𝑘)  𝑢𝑓

(𝑚)(𝑡𝑘)…𝑢𝑓
(0)(𝑡𝑘)]   (5.45) 

            𝜃𝑐 = [𝛼1 …𝛼𝑛 𝛽0 …𝛽𝑚]𝑇                                                        (5.46) 

 

where the subscript f denotes hybrid filtering which involves a CT filter. First the pre-filtered 

derivatives which are sampled at instant ∆𝑡 are obtained as the inputs to the integrators in the 

CT implementation of the state variable pre-filter 1 𝐴⁄ (𝑠), as shown in Figure 5.12. Ideally the 

coefficients of the pre-filter match those of the unknown system (Young 2006). In practice 

these would be initialised with approximate values and iteratively updated with the new 

estimates as they become available. In this work, however, rounded values close to those of the 

coefficients corresponding to the nominal CT suspension system are used. Further 

consideration would need to be given as to updating the coefficients in an application such as 

fault detection. 
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- - - -

 

Figure 5.12 A state variable filter used to obtain derivatives of 𝒚(𝒕𝒌) 

 

5.3.3.5. Replicating faults in the CT system model 

Similar to the DT case an equivalent fault scenario is introduced into the simulated CT system 

with the exception that because the model is estimated in CT the sample times  𝑆1, 𝑆𝑓𝑠,  𝑆𝑓𝑒, and 

𝑆𝑒 correspond as closely as possible to those of the DT case. 

5.3.4. Simulation studies 

This section describes the simulation studies to compare the effectiveness of DT and CT 

models for their use in fault detection. As briefly introduced in Section 5.3.1, a series of trials 

to assess the robustness of the two approaches over a range of different sampling frequencies 

are carried out. As a basis for comparison the true parameters corresponding to the faulty 

condition are obtained theoretically and used as a benchmark to assess the accuracy of the 

estimation for both DT and CT over the chosen range of sampling frequencies. The 

performance measure in all cases is a normalised percentage Euclidean norm, denoted 𝐸𝑁, 

between the true parameter vector and the mean of the estimates of the final portion of the 

simulation, when the fault has stabilised. This measure is expressed as 

𝐸𝑁 =
𝐸𝑁𝐴 − 𝐸𝑁𝐸

𝐸𝑁𝐴
. 100                                                         (5.47) 

where 𝐸𝑁𝐴 is the Euclidean norm of the actual parameter vector and 𝐸𝑁𝐸  is the Euclidean norm 

of the estimated parameter vector. This relative percentage metric is adopted to overcome the 

problem of large CT parameters versus small DT parameters biasing the performance measure. 

Note that in all simulations reported here, the 𝐸𝑁 is calculated for the estimates of the final 

3000 samples of the simulation, after the fault has been stabilised. 
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Attention is initially given to the DT case. To quickly gain an insight a sampling frequency of 

13 Hz was chosen (approximately one-tenth of the chassis frequency) and run over N=10,000 

samples. The trial was repeated initially three times with different noise seeds being used. In 

each case the variance 𝜎2 is taken to be 2.5.10−3. The results are given in Table 5.4. It is 

immediately clear that the estimated parameters vary from their true values by different 

amounts, as is evident from the Euclidean norm metric given in Table 5.5. This inconsistency 

is then investigated across a range of sampling frequencies of 10 Hz to 200 Hz. A Monte Carlo 

simulation is used to assess the inconsistencies, with 500 runs taking place and, once the 

outliers have been removed, the mean values are calculated. An outlier is defined here as a 

parameter set which contains one or more parameters which exceed ±10 times a given nominal 

value. The results are given in Table 5.6. 

The consistency of the estimates in the CT case is verified by the use of a Monte Carlo 

simulation with simulation runs of 1, 10, 50 and 500 and the mean values of EN calculated. 

The resulting EN metric indicates a high degree of consistency between each simulation run, 

see Table 5.7. For this reason, Monte Carlo simulation for the CT models was deemed 

unnecessary, hence the results will feature as a single simulation run for the range of 𝑓𝑠 between 

10-200 Hz. These simulation results are given in Table 5.8.  

5.3.5. Estimation results 

5.3.5.1. Discussion of DT estimation results 

Estimation results for sampling frequencies (𝑓𝑠) in the range 10 to 200Hz are given in Table 

5.4-5.5 and Figure 5.13. For each sampling frequency the true parameters and their estimates 

are shown with the corresponding EN and outlier count. The most accurate estimations 

consistently occur around 15Hz which corresponds to the ideal sampling frequency for the un-

sprung mass. It is observed that for other frequencies the value of the EN metric varies. 

5.3.5.2. Discussion of CT estimation results 

Estimation results for sampling frequencies (𝑓𝑠) in the range 10 to 200Hz are given in Table 

5.7 and plotted in Figure 5.13. Since no conversion of the TF is required, there is only one set 

of true parameters shown on the left hand side. As in the DT case, these values represent the 

parameters for the final part of the simulation, after the fault has been stabilised. The mean and 

variance of the overall results for the DT and CT, corresponding to Tables 5.3-5.6 and 5.7, 
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respectively, are given in Table 5.9. This confirms that there is considerably less variability in 

the CT estimation performance. 

Simulation  run 1 2 3 

𝑓𝑠 13 13 13 

𝛉 𝛉̂ 
-0.9937 -0.993 -0.982 -0.980 

-0.0595 -0.052 -0.079 -0.047 

0.2928 0.298 0.287 0.284 

0.1198 0.104 0.122 0.108 

93.47 95.56 93.63 94.20 

-219.7 -224.8 -218.0 -217.8 

159.0 159.1 155.3 158.5 

-32.74 -25.79 -30.25 -34.18 

EN 3.04 1.67 0.86 

Table 5.3 Single pass estimations of DT model 

 

𝑓𝑠 10 15 30 

  𝛉 𝛉̂ 𝛉 𝛉̂ 𝛉 𝛉̂ 
  -1.529 -1.483 -0.836 -0.833 -1.827 -1.811 

  0.971 0.901 -0.423 -0.421 1.251 1.244 

  -0.174 -0.137 0.416 0.418 -0.762 -0.755 

  0.063 0.061 0.159 0.159 0.399 0.396 

  44.47 44.91 119.01 118.4 148.6 136.8 

  -100.3 -97.88 -286.0 -285.1 -391.4 -380.9 

  67.21 62.67 214.9 214.6 337.1 341.0 

  -11.37 -8.82 -47.95 -47.53 -94.29 -93.62 

EN   4.62   0.31   3.03 

Outliers 12   2   4 

Table 5.4 Single pass estimations of DT model 

 

𝑓𝑠 110 130 200 

 𝛉 𝛉̂ 𝛉 𝛉̂ 𝛉 𝛉̂ 
 -3.589 -3.538 -3.671 -3.622 -3.810 -3.745 

 4.962 4.825 5.153 5.023 5.493 5.311 

 -3.150 -3.020 -3.291 -3.170 -3.554 -3.384 

 0.778 0.735 0.809 0.770 0.871 0.818 

 58.65 58.25 50.34 49.90 33.56 33.86 

 -169.1 -166.8 -146.0 -142.8 -98.47 -94.62 

 162.3 157.6 141.0 136.2 96.26 90.95 

 -51.81 -48.33 -45.33 -42.97 -31.35 -29.38 

EN   2.61   3.01   4.94 

Outliers 5   6   3 

Table 5.5 Estimation results for the DT model 
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Monte Carlo runs 1 10 50 500 

𝑓𝑠 13 13 13 13 

𝛉 𝛉̂ 
27.59 27.60 27.60 27.60 27.60 

2598.4 2600 2600 2600 2600 

6984.1 6988 6988 6988 6988 

95238 95286 95286 95286 95286 

6984.1 6988 6988 6988 6988 

95238 95286 95286 95286 95286 

EN 0.0506 0.0501 0.0500 0.0500 

Table 5.6 Monte Carlo comparison for the CT model 

 

𝑓𝑠 10 15 30 110 130 200 

𝛉 𝛉̂ 
27.59 27.60 27.60 27.60 27.60 27.60 27.60 

2598.4 2600 2600 2600 2600 2600 2600 

6984.1 6988 6988 6988 6988 6988 6988 

95238 95285 95286 95286 95285 95288 95288 

6984.1 6988 6988 6988 6988 6988 6988 

95238 95286 95286 95286 95286 95286 95286 

EN 0.0500 0.0505 0.0504 0.0499 0.0513 0.0511 

Table 5.7 Estimation results for the CT model 

 

 

Figure 5.13 Estimation results EN comparison DT vs. CT 

 

 Continuous-time Discrete-time 

Mean EN 0.0504 2.487 

Variance EN 0.4. 10−6 2.007 

Table 5.8 Mean and variance of the EN metric for estimates over a 10-200 Hz sampling 

frequency range 
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5.3.6. Conclusions 

The results of extensive simulation trials of a suspension system over a range of conditions 

which could realistically be experienced on a road vehicle clearly indicate the superiority of 

CT models over DT models for online parameter estimation. The evidence suggests that the 

CT approach provides consistent estimates and is robust in regard to the choice of sampling 

frequency. It is also considered to be sufficiently accurate in order to be taken further as an 

approach for fault detection. The DT model on the other hand is dismissed as being inaccurate 

in terms of estimation consistency and unreliable in terms of robustness.  
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5.4. Comparison of continuous-time vehicle model estimators as 

candidates for suspension system fault detection 

 

5.4.1. Introduction 

Section 5.4.2, reiterates the vehicle suspension model detailed in 4.4.1, for convenience. 

Section 5.4.3 details the CT model and its estimation schemes. Section 5.4.4 outlines the 

simulation method. Section 5.4.5 gives detailed results and analyses of preliminary simulation 

studies. The conclusions and immediate further on-going work are presented in Section 5.4.6. 

 

5.4.2. Vehicle suspension model 

As in Chapter 4, Figure 4.2 represents the vehicle suspension model for this method. The 

equation for the model used are as before in Section 5.3. 

 

5.4.3. Parameter estimation  

RLS and Kalman Filter (KF) are the methods used here to estimate the coefficients of the 

transfer functions of the suspension model. RLS is a straightforward online estimation 

algorithm, yet it is optimal in the mean square error (MSE) sense when the assumptions on 

linearity of the model and Gaussian properties of the measurement noise hold. Although 

ARMA additive noise has been adopted for the noise models, the estimator is found to perform 

adequately, as will be demonstrated in the results presented in Section 5.4.5.  

The KF estimator allows the user to leverage some a priori knowledge of the measurement 

noise and model parameter changes to give superior estimates. This makes the KF a natural 

choice for this type of application, where the transfer function coefficients are known to be 

changing in faulty conditions such as tyre deflation. 

 

5.4.3.1. The continuous-time system model 

The CT system model (5.10) is as used before in Section 5.2.2, using the state variable filter as 

illustrated in Figure 5.12 
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5.4.3.2. Cautious least squares 

Cautious least squares (CLS), which is an extension of RLS, is selected as the candidate method 

of quantifying faults. CLS is useful in the capacity of quantifying faults because it detects, 

records and corrects deviations of 𝜃 from normality. It has the additional benefit of improving 

the estimates of systems which temporarily experience low input excitation.  

A problem associated with RLS estimators is that they need sufficient differences in 

measurements over time or the covariance matrix, P, experiences a condition known as ‘blow 

up’ which causes the estimates to degrade (Milek 1995). If the vehicle is traversing a motorway 

or a smooth road, there may be very little suspension deflection and hence low measurement 

activity. If the estimates deviate from the model, this could be detected as a suspension failure 

when in fact it is a failure of the detection system. CLS counteracts this problem by resetting 

the deviated parameter vector 𝜃 generated by RLS to some pre-specified ‘safe set’ of 

parameters, denoted 𝜃𝑠 and the co-variance matrix is reset. This action also has the effect of 

artificially exciting the system, which improves the estimates in cases of low input excitation. 

A similar effect can be achieved with the application of a forgetting factor. 

The algorithm can also log every θ estimate that departs from safe set 𝜃𝑠 (or stays within a pre-

specified ‘safe operating region’, defined by the user). The rationale underlying the resets is 

primarily as a fault detection mechanism. When a parameter exceeds a threshold the co-

variance matrix is reset and it implies something is changing in the plant e.g. a fault is 

occurring. Parameter drift can also be attributed other effects that are not related to faults such 

as model inaccuracy but it is proposed that a fault will manifest more prominently in the 

parameters than other effects that cause the estimates to change. The covariance matrix is set 

at a value of 100k in all cells. This is an arbitrary figure but in general larger numbers improve 

convergence time of the estimates. The parameter reset counts are intended as a guide to the 

type of fault that is present in the system. If a variable representing a physical property, such 

as spring stiffness is changed, this is reflected in a subset of the parameter values of the transfer 

function model that is being estimated. Table 5.9 shows the parameter values for faulty and 

fault-free states. The actual number of fault counts which constitutes a fault would have to be 

generated from practical tests on a vehicle, with the results of a particular modelling exercise 

representing a potential starting point. 
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CLS attempts to minimise the modified cost function 

   
 𝐽𝑐(𝜃) = (𝑦 − 𝑋𝜃)𝑇𝛬(𝑦 − 𝑋𝜃) + (𝜃 − 𝜃𝑠)

𝑇𝛹(𝜃 − 𝜃𝑠) (5.48) 

   

 i.e.            𝐽c(𝜃) = 𝐽1 + 𝐽2 (5.49) 

The first term of which corresponds to the normal RLS cost function (and equally a KF cost 

function) in which 𝑦 − 𝑥T𝜃 is the prediction error. 

The sequential operation of the CLS algorithm involves, at each time step, a further p iterations 

to minimise the cautious component 𝐽2 of the cost function (5.49). For clarity, it is convenient 

to assume that whilst time is ‘frozen’ between successive iterations of RLS the discrete time 

index t is replaced by the index j, where j=1,2,…p. The sequential CLS algorithm then takes 

the form 

   
 𝜃j = 𝜃j−1 + 𝜙j[𝑒j

T(𝜃s − 𝜃j−1)] (5.50) 

   

 𝜙j = 𝛷j−1𝑒j[1 + 𝑒j
T𝛷j−1𝑒j]

−1 (5.51) 

   

 𝛷j = [I − 𝜙j𝑒j
T]𝛷j−1 (5.52) 

   

where the 𝑒j are the orthogonal unit vectors defined as 

 𝑒j
T = [𝛿1𝑗𝛿2𝑗𝛿3𝑗 …𝛿𝑝𝑗] (5.53) 

in which 𝛿ij is the Kronecker delta function 

 
𝛿ij = {

1     

0    

i = j

i ≠ j
 

 

(5.54) 

If a correction to a parameter in 𝜃 is required a fault counter increments for that particular 

coefficient. The type of fault occurring in the system may be diagnosed by the pattern of 

corrections to the parameters. This includes changes in the vehicle sprung mass, which does 

not constitute a fault although it is something that arises in normal usage of a vehicle as 

passengers alight. In these cases, the fault detection would need to draw on other information 

available on the vehicle sensor data network, such as vehicle velocity, transmission status and 
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passenger occupancy detection (a system to detect passengers and invoke seat belt warnings if 

necessary).  

5.4.3.3. Replicating faults in the simulation system model 

Faults in the suspension system are all modelled by a gradual change from the nominal value 

to 50% of nominal, where the value is maintained for the remainder of the simulation. 

5.4.4. Simulation studies 

This section describes the simulation studies to compare the effectiveness of RLS, KF and CLS 

estimators for their use in fault detection. A series of trials to assess the robustness of the 

approaches is carried out. A comparison of RLS and KF is initially carried out and then these 

algorithms are enhanced by the inclusion of CLS and a second set of results is presented. 

The simulations are run over N=10,000 samples and the additive noise variance 𝜎2 is taken to 

be 2.5.10−3. 

The performance measure in all cases is a normalised percentage Euclidean norm, denoted EN, 

between the true parameter vector and the mean of the estimates of the final portion of the 

simulation, when the fault has stabilised. This measure is expressed 

 
𝐸𝑁 =

𝐸𝑁𝐴 − 𝐸𝑁𝐸

𝐸𝑁𝐴
. 100 (5.55) 

where 𝐸𝑁𝐴 is the Euclidean norm of the actual parameter vector and 𝐸𝑁𝐸  is the Euclidean norm 

of the estimated parameter vector. This relative percentage metric is adopted so that different 

sized parameter sets can be compared. Note that in all simulations reported here, the EN is 

calculated for the estimates of the final 6000 samples of the simulation, directly after the fault 

has been stabilised. 

It should be noted that it is assumed that the vehicle being modelled here is not subject to loads 

beyond that of two occupants and that only single faults will be considered, multiple 

simultaneous faults are not considered here. 

The parameters the four different conditions are shown in Table 5.9, the lower part of the table 

is the rounded ratio of a faulty value to nominal, which indicates the relative magnitude of 

change occurring in the individual parameter due to the fault. 
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 Nominal Tyre fault Spring fault Damper fault 

a1 27.6 27.6 27.6 13.8 

a2 4821 2598 4633 4821 

a3 13968 6984 13968 6984 

a4 190476 95238 95238 190476 

b1 13968 6984 13968 6984 

b2 190476 95238 95238 190476 

Ratio 

a1 1 1 1 2 

a2 1 1.9 1 1 

a3 1 2 1 2 

a4 1 2 2 1 

b1 1 2 1 2 

b2 1 2 2 1 

Table 5.9 Parameter sets for the faulty conditions  

 

5.4.5. Estimation results 

Initial trials were carried out using RLS and KF. The RLS converges to the parameters as the 

fault stabilises with a forgetting factor of 0.99 but convergence is much faster using a KF which 

is tuned for the expected parameter set for a tyre fault. The result of this testing is shown in 

Table 5.10. 

Figures 5.14 to 5.22 show the results for the same algorithms that have been enhanced by the 

addition of CLS. Clearly, the estimators are able to detect faults. However, when comparing 

the parameter values from Table 5.9 it becomes evident that the parameter resets of the CLS 

algorithm do not follow the actual parameter changes in the model, particularly in the case of 

a detuned KF. This makes it difficult for a specific fault to be identified according to the 

parameter changes that are occurring in the system model. Although the KF approach appears 

to be particularly inaccurate in terms of fault diagnosis, due to the reset count being dominated 

by the counts for the α1 parameter, it is possible to tune the response using the KF correction 

matrix 𝑅w and obtain reset count profiles that are characteristic of the fault that is occurring. 

The KF is a much more versatile approach in this respect. The tuned responses are shown in 

Figures 5.20 to 5.22. The fault diagnosis mechanism could be a bank of KF, each tuned for a 

specific fault, if the reset counts are occurring exclusively in the 𝛼3 and 𝛽1 parameters, this 

points to a change in the damper value. 
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  RLS Untuned KF Tuned KF 

𝛉 𝜽̂ 

27.6 27.6 27.6 27.2 

2598 2657 2645 2634 

6984 7241 7206 6638 

95238 98571 98944 98452 

6984 7211 7162 7157 

95238 98624 98660 95232 

EN 3.41 3.61 2.36 

Table 5.10 Comparison of RLS and KF for tyre fault  

 

 

 

Figure 5.14 Parameter reset counts for tyre fault and RLS CLS  

 

 

 

Figure 5.15 Parameter reset counts for tyre fault and detuned KF CLS 
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Figure 5.16 Parameter reset counts for spring fault and RLS CLS 

 

 

Figure 5.17 Parameter reset counts for spring fault and detuned KF CLS 

 

 

 

Figure 5.18 Parameter reset counts for damper fault and RLS CLS 
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Figure 5.19 Parameter reset counts for damper fault and detuned KF CLS 

 

 

Figure 5.20 Parameter reset counts for tyre fault and tuned KF CLS 

 

 

Figure 5.21 Parameter reset counts for spring fault and tuned KF CLS 
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Figure 5.22 Parameter reset counts for damper fault and tuned KF CLS 

5.4.6. Conclusions 

It is clear that the tuned KF with CLS offers the greatest potential. While it could be argued 

that a similar result could be achieved by defining a safe set of parameters, estimating with a 

KF and monitoring-re-setting parameters, CLS is unique in its operation due to the action of 

the algorithm, described by Eqn 5.48-5.54. 

Further work will examine the use of a bank of Kalman filters, each being tuned to detect a 

specific fault condition. The distribution of the reset counts for a specific type of fault is 

repeatable and may be developed into a positive diagnosis, possibly with the application of a 

fuzzy logic interpretation of the reset count, based on empirical data from testing of known 

faulty conditions.  
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5.5. A continuous-time model-based tyre fault detection algorithm 

utilising a Kalman state estimator approach 

5.5.1. Introduction 

A problem with the application of a model-based parameter estimation scheme to the 

suspension system, for the purpose of fault detection, is that the input to the system is unknown 

i.e. the road surface is not known to the algorithm in advance. The solution to this problem 

within this work is the utilisation of an enhanced filter which estimates the road surface input 

from the chassis acceleration measurement, based on knowledge of the suspension system. The 

relative position of the wheel to the road is also estimated and it is with these two estimates 

that a decision can be made about the condition of the tyre i.e. the sidewall height of the tyre 

changes hence implying that the pressure in the tyre changes. A more general application of 

this state estimation technique would be for fault detection in systems where the primary input 

is unknown or none of the input signals and disturbances are known at all.  

The effect of tyre radius changes due to pressure is not considered in this work in order to avoid 

adding too much complexity to the model and obfuscating the source of tyre radius changes. 

The intent is the development of a tyre height estimator, not a sophisticated model of the 

suspension and tyre assembly. Obviously, any further work, especially involving vehicle 

validation, would necessitate the inclusion of this effect in the model. 

This Section is organised as follows. Section 5.5.2 defines the vehicle suspension and road 

model and issues surrounding the selection of sampling interval. Section 5.5.3 shows how the 

Kalman state estimator has been implemented. Section 5.5.4 outlines the simulation studies 

carried out. Section 5.5.5 presents detailed results and an analysis of the simulation studies. 

The conclusions are presented in Section 5.5.6. 

5.5.2. Vehicle suspension and road model 

As in Chapter 4, Figure 4.2 represents the vehicle suspension model for this method. The input 

stimulus to the system is essentially a displacement, denoted 𝑥r, from the road surface. The 

high frequency component of the road surface is modelled by a first order transfer function that 

is driven by band-limited white noise. The low frequency component of the road surface, 

denoted 𝑤𝑑, which represents the undulating nature of the road is generated using the method 

developed by Wong (2001). Using Newton’s law of motion the system may be expressed as 
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                                                𝑚𝑠𝑥̈𝑠 + 𝐵𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) + 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0      (5.56) 
 
𝑚𝑢𝑠𝑥̈𝑢𝑠 + 𝑘𝑡(𝑥𝑢𝑠 − (𝑥𝑟 + 𝑤𝑑)) − 𝐵𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) − 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0     (5.57) 
 
                                                                                    𝑘(𝑤𝑛 − 𝑥𝑟) − 𝑥̇𝑟 = 0     (5.58) 
 

where 𝑥𝑠and 𝑥𝑢𝑠 denote the displacement of sprung and un-sprung mass from the points of 

equilibrium, respectively (𝑥̇ and 𝑥̈ denote the velocity and acceleration in both cases). 

A convenient state space representation is given by 

𝒙̇ = 𝑨𝒙 + 𝒃𝑤𝒅 + 𝚪𝑤𝑛    and     𝒚 = 𝑪𝒙 + 𝑣                                        (5.59) 

where 𝑤𝑑 is the low frequency road input disturbance, Γ is the input vector for the high 

frequency disturbance and 𝑤n is the high frequency road process noise (that drives the dynamic 

models of interest within the system) and v is the additive noise that is corrupts the chassis 

acceleration measurement.  

The state vector is defined 

 𝑥 = [𝑥𝑠  𝑥̇𝑠  𝑥𝑢𝑠  𝑥̇𝑢𝑠  𝑥𝑟]
𝑇  ≜ [𝑥1  𝑥2  𝑥3   𝑥4  𝑥5]

𝑇 

 

leading to   

 

𝑥̇1 = 𝑥2               (5.60a) 

 

𝑥̇2 = −
1

𝑚𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3)]           (5.60b) 

 
𝑥̇3 = 𝑥4               (5.60c) 

 

𝑥̇4 =
1

𝑚𝑢𝑠
[𝐵𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3) − 𝑘𝑡(𝑥3 − (𝑥5 + 𝑤𝑑))]           (5.60d) 

 
𝑥̇5 = 𝑘(𝑤𝑛 − 𝑥5)              (5.60e) 
 

where k defines the position of the pole in the simplified road model transfer function. Having 

defined the state vector, the representation takes the following state space vector-matrix form 
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𝒙̇  =

[
 
 
 
 
 

0 1 0 0 0
−𝑘𝑠

𝑚𝑠

−𝐵𝑠

𝑚𝑠

𝑘𝑠

𝑚𝑠

𝐵𝑠

𝑚𝑠
0

0 0 0 1 0
𝑘𝑠

𝑚𝑢𝑠

𝐵𝑠

𝑚𝑢𝑠

−𝑘𝑡−𝑘𝑠

𝑚𝑢𝑠

−𝐵𝑠

𝑚𝑢𝑠

𝑘𝑡

𝑚𝑢𝑠

0 0 0 0 −𝑘]
 
 
 
 
 

 𝒙 + 

[
 
 
 
 

0
0
0
𝑘𝑡

𝑚𝑢𝑠

0 ]
 
 
 
 

𝑤𝑑 +

[
 
 
 
0
0
0
0
𝑘]
 
 
 
𝑤𝑛            (5.61a) 

𝒚  =  [
−𝑘𝑠

𝑚𝑠

−𝐵𝑠

𝑚𝑠

𝑘𝑠

𝑚𝑠

𝐵𝑠

𝑚𝑠
0]  𝒙                        (5.61b) 

 

 

Figure 5.23 Schematic of the estimation setup 

 

5.5.3. Kalman filter approach 

A continuous-time Kalman filter provides the approach used here to estimate all of the states 

in the model. The standard filter has been extended to estimate the road input, denoted 𝑥5, in 

(5.60d, 5.60e).  

Figure 5.23 shows the schematic of the estimation setup in block diagram form. The input to 

the suspension system is unknown i.e. the road disturbance, denoted w. It is assumed that there 

is an underlying high frequency process noise, denoted 𝑤𝑛,  contained within the road input 

and that there are additional large scale low frequency disturbances, denoted 𝑤𝑑, that combined 

with the road process noise cause the excitation of the suspension. It is assumed that 𝑤𝑑 does 

not affect the tyre height (𝑥𝑢𝑠 − 𝑥𝑟), it affects all of the states (𝑥𝑢𝑠,  𝑥𝑢𝑠, 𝑥𝑟) equally (vehicle 

climbing a hill) or it affects the suspension by deflecting the main spring (𝑥𝑠 − 𝑥𝑢𝑠) 

The output of the suspension system is the acceleration measurement of the sprung mass, 

denoted y. The Kalman filter inputs are the noisy acceleration measurement, y and the user 

defined tuning quantities 𝑅𝑤 and 𝑅𝑣 for the process and output noise, respectively. The output 

of the Kalman filter is the estimation of the state vector, 𝑥, which includes high frequency road 

input, denoted  𝑥5 (which is the extended portion of the state vector), the estimation of the states 
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of the suspension, denoted 𝑥̂, includes the relative displacement of the wheel with respect to 

the road input and this is the variable of interest for the purposes of fault detection. 

The continuous-time Kalman filter is formulated on the following basis 

𝒙̇ = 𝑨𝒙 + 𝒃𝑤𝒅 + 𝚪𝑤𝑛    and     𝒚 = 𝑪𝒙 + 𝑣                                                        (5.62)    

where 𝑤𝑛 and 𝑣 are independent zero mean Gaussian noise sources with covariance’s 𝑟𝑤 and 

𝑟v, respectively. Γ is the process noise influence vector. The noise 𝑤𝑛 effects the input directly 

where as 𝑣 adds directly onto the output y. The state equation is usually accompanied by an 

assumption that the system state x is not directly available. In this case an optimal (in a 

quadratic sense) estimate of the state, 𝑥̂, is given by a continuous time steady state filter 

𝑥̇̂ = 𝐴𝑥̂ + 𝐾𝑓(𝑦 − 𝑦̂)           𝑦̂ = 𝐶𝑥̂ 

 

                                                                          = (𝐴 − 𝐾𝑓𝐶)𝑥̂ + 𝐾𝑓𝑦                       (5.63) 

 

where the Kalman filter gain vector 𝐾𝑓 is given by 

 

𝐾𝑓 = 𝑃𝑓𝐶
𝑇𝑅𝑣

−1                                                                 (5.64) 

 

where 𝑃𝑓 is the positive definite solution of the algebraic Riccati equation 

 

𝐴𝑃𝑓 + 𝑃𝑓𝐴
T − 𝑃𝑓𝐶

𝑇𝑅𝑣
−1𝐶𝑃𝑓 + 𝛤𝑅𝑤𝛤𝑇 = 0                                        (5.65) 

 

5.5.3.1. Replicating faults in the system model 

The fault conditions are the same as in Section 5.3.3. 

5.5.4. Simulation studies 

The algorithm generates estimates of the road position and the wheel position using the Kalman 

filter applied to the augmented model of the suspension system and road. The estimates are 

subtracted from each other to produce a relative displacement vector which represent the tyre 

sidewall height. This vector of estimates is then filtered through a transfer function 

1

10s + 1
                                                                                                           (5.66) 
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whose dynamic arbitrarily chosen to be much slower than that of the system in order to smooth 

the estimates into a form that is easier to observe changes occurring in the average height of 

the tyre. The poles of this transfer function may be moved to increase or reduce the response 

rate of the change detection. Increasing the rate of response would seem to have advantages 

over a sluggish response, in that small changes in tyre wall height would be rapidly converged 

on and hence will alert the motorist in good time. However, too fast a response will cause false 

alarms which are highly undesirable. Making the filter slower also offers benefits; the false 

alarm rate should be lower and it is easy to detect faults because the tyre wall height 

measurement is very steadily changing. However, the response may be so slow as to be of no 

use – the tyre is flat before the diagnostic warns the user. For the purposes of fault detection a 

robust diagnosis with no false alarms of faults is required. 

With further testing work the value of the estimated tyre wall height could be linked directly 

to pressure in the tyre rather than merely an inference of some change in the tyre. 

 

5.5.5. Estimation results 

Figure 5.24 shows the difference between the road and the wheel during a drive cycle over a 

simulated road surface (Wong 2001) at 80km/h in the normal, no fault condition. The high 

density of oscillations is caused by the wheel being repeatedly displaced by the uneven road 

surface and oscillating in the two degrees of freedom that the suspension allows. Bounded 

oscillations are observed about a mean of zero, which is more readily shown by a histogram of 

the time series data, Figure 5.27, which exhibits normal distribution. Figure 5.30 shows the 

filtered (9) difference between the road and the wheel. Figures 5.26, 5.28 and 5.30 are three 

visualisations of the vehicle traversing a simulated road in the nominal (no fault) condition. 

Their counterparts, Figures 5.27, 5.29 and 5.31 show the faulty condition which starts at time 

reference 100s and stabilises at 150s till the end of the simulation. 
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Figure 5.24 Time series difference between road and wheel position data of the vehicle on 

a simulated road in the nominal condition 

 

 

 

 

Figure 5.25 Time series difference between road and wheel position data of the vehicle on 

a simulated road in the faulty condition 
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Figure 5.26 Histogram of the drive cycle time series data for the vehicle in nominal 

condition 

 

 

 

 

Figure 5.27 Histogram of the drive cycle time series tyre height data for the vehicle during 

a fault 
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Figure 5.28 Filtered result of the drive cycle time series data for the vehicle in nominal 

condition 

 

 

 

Figure 5.29 Filtered result of the drive cycle time series data for the vehicle in faulty 

condition 

 

 

5.5.6. Conclusions 

A Kalman filter was enhanced in the sense that the input was declared as a state and it was 

estimated along with the other states in the system. This allowed the comparison of wheel 

position and road position to be analysed and the analysis clearly highlights the change 
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happening in the system. The diagnosis cannot be considered a measurement of the tyre height 

(and hence tyre pressure) but it should be viewed as a method to detect change in the system. 

The road model is an important aspect of the fault diagnosis scheme. Contained within it is the 

tuning factor k that allows the user to adjust the model for different road surfaces and vehicle 

velocity. There is also the possibility to increase the order of the system from first order so that 

additional dynamics can be described.  
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5.6. A continuous-time model-based tyre fault detection algorithm 

utilising an unknown input observer  

5.6.1. Introduction 

As stated in Section 5.4, a problem with the model-based parameter estimation approach is that 

the input to the system is unknown i.e. the road surface is not known to the algorithm in 

advance. The solution to this problem within this work is the inclusion of an unknown input 

observer which estimates the road surface input from the chassis acceleration, based on 

knowledge of the suspension system (Ersanilli et al. 2009a). The design of the observer is based 

on the work of Sfaihi & Boubaker (2004) who developed the idea from a reduced order 

observer perspective.  

This Section is organised as follows. Section 5.6.2 describes the vehicle suspension model. 

Section 5.6.3 shows how the unknown input observer is designed. Section 5.6.4 details the CT 

model and the estimation scheme. Section 5.6.5 outlines the simulation method. Section 5.6.6 

gives detailed results and an analysis of the simulation studies. The conclusions are presented 

in Section 5.6.7. 

5.6.2. Vehicle suspension model 

As in Chapter 4, Figure 4.2 represents the vehicle suspension model for this method. The 

equation for the model used are as before in Section 5.3. 

5.6.3. Unknown input observer 

This approach to observer design divides the state vector in two parts, one part not depending 

on unknown inputs and the second part depending on the unknown input. The system is 

equivalent to 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐷𝑣                                                          (5.67a) 

𝑦 = 𝐶𝑥             (5.67b) 

𝑇 = [𝑁 𝐷]                        (5.67c) 

where 𝑇 is a non singular matrix and 𝑁 ∈ ℜ𝑛 x (𝑛−𝑚) and 𝑥 ∈ ℜ𝑛 ,   𝑢 ∈ ℜ𝑛 ,   𝑣 ∈ ℜ𝑛 ,   𝑦 ∈

ℜ𝑛 , are the state, known input, unknown input and output vector, respectively. Since p≥m, 

rank(D)=m, rank(C)=p and the pair (C, A) are observable, one can proceed.    
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Suppose 

𝑥 = 𝑇𝑥 = 𝑇 [
𝑥1

𝑥2
]                                                                                                (5.68) 

with 𝑥1 ∈ ℜ𝑛−𝑚, 𝑥2 ∈ ℜ𝑚and 

𝐴 = 𝑇−1𝐴𝑇 = [
𝐴11 𝐴12

𝐴21 𝐴22
]                                                                                (5.69) 

𝐵 = 𝑇−1𝐵 = [
𝐵1

𝐵2
]                                                                                              (5.70) 

𝐷 = 𝑇−1𝐷 = [
0
𝐼𝑚

]                                                         (5.71) 

𝐶 = 𝐶𝑇 = [𝐶𝑁  𝐶𝐷]                                                       (5.72) 

the relation (5.69) can be written 

𝑥̇1 = 𝐴11𝑥1 + 𝐴12𝑥2 + 𝐵1𝑢                                                       (5.73a)  

𝑥̇2 = 𝐴21𝑥1 + 𝐴22𝑥2 + 𝐵2𝑢 + 𝐼𝑚𝑣                                                    (5.73b) 

𝑦 = 𝐶1𝑥1 + 𝐶2𝑥2.                                               (5.73c) 

The state 𝑥2 is dependent on the unknown input v whereas 𝑥1 is not, which makes 𝑥1 a superior 

candidate for estimation. The input-free system becomes 

𝑥̇1 = 𝐴11𝑥1 + 𝐴12𝑥2 + 𝐵1𝑢         (5.74a) 

𝑦 = 𝐶1𝑥1 + 𝐶2𝑥2.         (5.74b) 

Suppose a non-singular matrix is created 

𝑈 = [𝐶𝐷  𝑄]           (5.75) 

with 𝑄 ∈ ℜ𝑝 x (𝑝−𝑚) 

and denoting 

𝑈−1 = [
𝑈1

𝑈2
]           (5.76) 

with 𝑈1 ∈ ℜ𝑚 x 𝑝, 𝑈2 ∈ ℜ(𝑝−𝑚) x 𝑝, verifying  
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𝑈−1𝑈 = [
𝑈1𝐶𝐷 𝑈1𝑄
𝑈2𝐶𝐷 𝑈2𝑄

] = [
𝐼𝑚 0
0 𝐼𝑝−𝑚

]       (5.90) 

pre-multiplying both sides of measurement equation (5.75) by 𝑈−1 leads to 

𝑈1𝑦 = 𝑈1𝐶𝑁𝑥1 + 𝑈1𝐶𝐷𝑥2                                                                   (5.91a) 

                   𝑈2𝑦 = 𝑈2𝐶𝑁𝑥1 + 𝑈2𝐶𝐷𝑥2                                                                  (5.91b) 

Combining (5.91a) and (5.91b) gives: 

𝑈1𝑦 = 𝑈1𝐶𝑁𝑥1 + 𝑥2          (5.92) 

𝑈2𝑦 = 𝑈2𝐶𝑁𝑥1.          (5.93) 

The state 𝑥2 is then deduced from (5.92) such that 

𝑥2 = 𝑈1𝑦 − 𝑈1𝐶𝑁𝑥1           (5.94) 

hence substituting (5.94) into (5.67a) gives 

𝑥̇1 = 𝐴̃1𝑥1 + 𝐵1𝑢 + 𝐸1𝑦 

                                                         𝑦̅ = 𝐶̃1𝑥       (5.95) 

where 

𝐴̃1 = 𝐴11 − 𝐴12𝑈1𝐶𝑁,   𝐸1 = 𝐴12𝑈1,    𝐶1 = 𝑈2𝐶𝑁 

and  𝑦̅ = 𝑈2𝑦. 

If the pair (𝐴̃1, 𝐶̃1) is observable or detectable, following the conventional Luenberger observer 

design procedure (Franklin et al. 1997), it is possible to design a reduced order observer for the 

unknown input free system (25) 

𝑥̇̂1 = (𝐴̃1 − 𝐿𝐶̃1)𝑥̂1 + 𝐵1𝑢 + 𝐿𝑦                     (5.96) 

where 𝐿 ∈ ℜ(𝑛−𝑚)x(𝑝−𝑚)  𝐿 = 𝐿𝑈2 + 𝐸1. 

Then 

𝑥̂ = 𝑇𝑥̂ = 𝑇 [
𝜔

𝑈1𝑦 − 𝑈1𝐶𝑁𝜔]                      (5.97) 



130 

 

and 𝑥̂ → 𝑥  as  𝑡 → ∞. Based on the reduced order observer described by (5.96) and (5.97), an 

estimation of unknown inputs can be obtained 

𝑣 = 𝑈1𝑦̇ + 𝐺3𝜔 + 𝐺4𝑦 + 𝐺5𝑢         (5.98) 

where 

𝐺3 = 𝑈1𝐶𝑁𝐿𝑈2𝐶𝑁 + 𝑈1𝐶𝑁𝐴12𝑈1𝐶𝑁𝑁 − 𝑈1𝐶𝑁𝐴11 − 𝐴21 + 𝐴22𝑈1𝐶  (5.99) 

𝐺4 = −𝑈1𝐶𝑁𝐿𝑈2 − 𝑈1𝐶𝑁𝐴12𝑈1 − 𝐴22𝑈1        (5.100) 

𝐺5 = −𝑈1𝐶𝑁𝐵1 − 𝐵2           (5.101) 

 

5.6.4. Parameter estimation  

RLS is the method used here to estimate the coefficients of the transfer functions of the 

suspension model. RLS is a straightforward online estimation algorithm, yet it is optimal in the 

mean square error (MSE) sense when the assumptions on linearity of the model and Gaussian 

properties of the measurement noise hold. Although ARMA additive noise has been adopted 

for the noise models, the estimator is found to perform adequately, as will be demonstrated in 

the results presented in Section 5.5.6. 

 

5.6.4.1. The continuous-time system model 

As in Chapter 4, Figure 4.2 represents the vehicle suspension model for this method. The 

equation for the model used are as before in Section 5.3. 

 

5.6.4.2. Replicating faults in the system model 

The fault conditions are the same as in Section 5.3.3. 
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5.6.5. Simulation studies 

For the purposes of fault detection a robust diagnosis with no false alarms of faults is required. 

To achieve this goal a matrix of tests is implemented and a majority voting system is proposed, 

similar to the type that is used in aircraft diagnostics (Yan et al. 2006). The fault decision 

algorithm is presented with the result of three tests and a majority verdict decides the diagnosis 

and hence alerts the driver of a problem with tyre pressure. 

The tests are detecting changes in the system in three distinct ways. The primary approach is 

parameter estimation and is carried forward from the work of Ersanilli et al. (2008). This 

technique is augmented by analysis of the input estimation: variance and the phase portrait.  

The simulation studies show that the estimated parameters no longer converge to the true model 

parameters. The cause of this is most likely to be the estimation of the input, which is only an 

approximation of the road surface. This behaviour is not particularly problematic as the 

estimations tend to settle to a steady value when the system is in steady state and during a fault 

are changing in sympathy with the actual model parameters. A persistent change in the 

parameters can then be deemed to be a fault. For practical applications, bounds and conditions 

should be placed on the variation of the estimated parameters for a diagnosis to take place. 

With further testing work the value of the estimated parameters could be linked directly to 

pressure in the tyre. 

 

5.6.6. Estimation results 

Figure 5.30 shows estimation of parameter 𝑎1 in a typical test run with no fault. Contrast this 

result with Figure 5.31 which shows the fault occurring at 6 minutes and stabilising at 12 

minutes. Figure 5.32 shows the mean variance of the input estimation as it evolves over time, 

starting with the fault free condition, with the fault being introduced at the 40% of the total test 

time and stabilising at around 70%. Figure 5.33 compares the phase portrait of the input 

estimation before and after the fault has occurred and stabilised. 
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Figure 5.30 Parameter estimations of 𝒂𝟏 in the fault free condition 

 

 

 

 

 

Figure 5.31 Parameter estimations of 𝒂𝟏 as a fault occurs at 6 minutes and stabilises at 

12 minutes 
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Figure 5.32 Mean input estimation variance as a fault occurs at 40% and stabilises 70% 

 

 

 

 

 

Figure 5.33 Phase portrait of the input estimation before and during a fault 
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5.6.7. Conclusions 

A quarter car suspension model and unknown input observer was developed. The parameters 

of the transfer function model were estimated with no access to the real (road) input. 

Diagnostics were developed to identify changes in the system relating to tyre pressure decrease 

and a majority voting system was proposed. 

The diagnostic tests show that it is possible to distinguish between the system in a nominal 

state and the faulty condition, by the use of three different tests. During the course of the 

simulation studies it became clear that tuning the observer made a significant difference to the 

ability of the diagnostic algorithms to track changes in the system. The observer design is 

dependent on the system matrix A and so computing the observer with modified values of tyre 

spring, 𝑘t, moved the poles of the observer.   

This behaviour highlights a property of the fault detector: during a fault, the configuration of 

the observer is no longer theoretically optimum. The solution to this problem was to start with 

an observer that is optimally configured for the faulty condition, which happens to work 

adequately for the fault free condition and is an improvement over the observer which is 

configured for the fault free case. Further work will include an investigation of the possibility 

of a multiple model approach with models for a variety of different system states. 

With further testing work the value of the estimated parameters could be linked to pressure in 

the tyre to give an estimation of the real pressure rather than merely indicated a change in the 

pressure. 

Majority voting is the proposed method of defining a fault and this could be further developed 

into a pattern matching algorithm that can match test outcomes with vehicle states i.e. change 

in mass, road surface, vehicle velocity to improve the accuracy over a range of driving 

scenarios. 
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5.7. Wheel angular velocity comparator  

While the wheel rotation observer approach is based on the ABS wheel speed signals (decimal 

km/h) it is abstracted from the signal in the sense that the signal retrieved from the vehicle data 

bus (hexadecimal km/h) is conditioned and formatted from the raw data (voltage). Information 

about these signals is not in the public domain and hence must be interpreted and deduced 

through systematic experimentation and observation. Developing a robust and reliable ABS is 

not a trivial task and it took many decades to perfect for series production vehicles (Mercedes-

Benz 1978; Bosch 1978). Due to this reason Vehicle OEM generally avoid development of 

their own ABS, and commission a system supplier for this task. The vehicle OEM specify their 

requirements and the supplier develops a system that will integrate with the vehicle data bus 

(commonly a CAN). Due to patent restrictions, each systems supplier OEM (e.g. Bosch, 

Continental-Teves, Denso) has its own method of acquiring and processing the data but 

typically this will be broadcast on the vehicle data bus in the form of a km/h value for each 

wheel that is updated at 10𝑚𝑠 intervals. The update time is not guaranteed (due to the nature 

of the CAN) but testing has shown the interval does not typically exceed 30ms and mean 

interval to be ~14ms with standard deviation of ~5ms. 

5.7.1. A simple wheel angular velocity comparator 

Detection of changes in tyre pressure from the ABS wheel speed value rests on the premise 

that wheel radius is a function tyre pressure. As the pressure reduces, the radius of the wheel 

reduces in value and the wheel angular velocity must be greater for a given vehicle velocity. 

Herein lies the main constraint of this type of approach, in that such a system cannot detect 

four simultaneous changes in tyre pressure, as is commonly the case due to normal diffusion 

losses that occur in pneumatic tyres. It is primarily due to this reason that wheel rotation 

observer approaches have never been approved by the regulators in European (Regulation No. 

64 - Rev.1 - Temporary Use Spare Unit, Run Flat Tyres, Run Flat-System and Tyre Pressure 

Monitoring System 2010) and North American (US DoT 2005) jurisdictions. In addition to this 

shortcoming, the algorithm represented by Eqn 5.102 cannot detect simultaneous and equal 

deflation on tyres sharing an axle or on one particular side of the vehicle. Table 5.11 shows the 

possible detection combinations. Nonetheless, the wheel rotation observer will be shown to be 

an effective technique for detecting the majority of puncture-related pressure loss, as this 

typically occurs in a single tyre. A simple algorithm based on monitoring of the inflation 

measure, denoted β, is defined by 
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       𝛽 = |
(𝜔𝐿𝐹 + 𝜔𝑅𝑅) − (𝜔𝑅𝐹 + 𝜔𝐿𝑅)

𝜔𝑎
|                                   (5.102𝑎) 

     𝜔𝑎 =
𝜔𝐿𝐹 + 𝜔𝑅𝑅 + 𝜔𝑅𝐹 + 𝜔𝐿𝑅

4
,                                            (5.102𝑏) 

where 𝜔𝐿𝐹, 𝜔𝑅𝐹, 𝜔𝐿𝑅, 𝜔𝑅𝑅 denote left front, right front, left rear, and right rear wheel angular 

velocities respectively, and 𝜔𝑎is the average angular velocity. In the ideal case, for identical 

wheel speeds, the tyre inflation measure is  

𝜔𝐿𝐹 = 𝜔𝑅𝐹 = 𝜔𝐿𝑅 = 𝜔𝑅𝑅 , 𝛽 = 0 

The effectiveness of this algorithm is reduced due to the fact that changes in the pressure of a 

single tyre are diluted when the vehicle is not driven in a straight line (steering angle ≠ 0). In 

this context disturbances include normal driving activity such as steering and braking. For 

nominal tyre condition, 𝑃𝑟𝑒𝑐 , driving in a straight line and normalising the pressure values, the 

value of the average wheel angular velocity 𝜔𝑎 = 1 and fault indicator 𝛽 = 0. These values 

represent ideal conditions and in practice this value of 𝛽 is only maintained during steady state 

cornering and straight line driving. During commencement and cessation of the manoeuvre 

there will be some discrepancy due to the nature of a conventional four wheel-front steering 

vehicle arrangement, which is dependent on the wheelbase dimension. Vehicle tests indicate 

that the effects described above manifests in the calculation of 𝛽 as deviations from a mean 

somewhat akin to noise, as illustrated in Figure 5.34. On closer examination of the wheel speed 

signals, there exists a small amount of variance in the values that cannot be explained by the 

vehicle dynamics (Figure 5.34c). This may be partially attributed to the rim-tyre dynamic 

relationship which is exploited by (Persson et al. 2002, Umeno 2002) and it is also likely that 

some measurement error exists due to the nature of the Hall effect ABS wheel speed sensor 

that is used on this vehicle. This variance is amplified by the multiplicative nature of the 

calculation to arrive at a value for 𝛽 . Whatever the source of this uncertainty, the value of 𝛽 is 

close enough to a zero mean value to confirm the fault free condition, particularly in 

comparison to the faulty condition (Figure 5.35) 

Now, suppose the tyre pressures are nominal except the left-front wheel (pertaining to the 

wheel angular velocity 𝜔𝐿𝐹), which is some value significantly lower than nominal e.g. a 

puncture (𝑃𝑟𝑒𝑐 − 20%). For convenience, assuming that a reduction in pressure of 20% is equal 

to an increase in angular velocity of 20%. In this case, ideal values provide 𝜔𝑎 = 1.05 and 𝛽 =
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0.19, in theory a fault is correctly indicated. The vehicle tests confirm this result, albeit with a 

substantially smaller mean value for 𝛽, as can be seen in Figure 5.35 

 

Tyre pressure 

state 

Left-

front 

Right-

front 

Left-

rear 

Right-

rear 

Fault 

present? 
Detect 

condition? 
𝜷 Pattern 

All tyres 

pressure nominal 
100 100 100 100 No Yes 0 

⊚⊚ 
⊚⊚ 

Single deflation -20 100 100 100 Yes Yes 0.19 
⊗⊚ 
⊚⊚ 

Opposite 

diagonal pair 

deflated 

-20 100 100 -20 Yes Yes 0.36 
⊗⊚ 
⊚⊗ 

Same axle pair 

deflated 
-20 -20 100 100 Yes No 0 

⊗⊗ 
⊚⊚ 

Same side pair 

deflated 
-20 100 -20 100 Yes No 0 

⊗⊚ 
⊗⊚ 

Table 5.111 Percentage tyre pressure combinations and subsequent detection for basic 

wheel angular velocity comparator (Eqn 5.102) 

 

 

 

Figure 5.34a Values for 𝜷 during the course of a drive cycle in the fault-free condition 

(nominal tyre pressure) mean value of -1.1776e-05 with standard deviation of 0.0113 
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Figure 5.34b Values for 𝜷 during the course of a drive cycle in the fault-free condition 

(nominal tyre pressure) mean value of -1.1776e-05 with standard deviation of 0.0113 

 

 

Figure 5.34c Front left wheel speed sensor noise 
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Figure 5.355a Values for 𝜷 during the course of a drive cycle with a fault present on the 

front-left tyre (-20% pressure) mean value of 0.0056 with standard deviation of 0.0055 

 

 

Figure 5.35b Values for 𝜷 during the course of a drive cycle with a fault present on the 

left-front tyre (-20% pressure) mean value of 0.0056 with standard deviation of 0.0055 
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Figure 5.366a Values for 𝜷 during the course of a drive cycle with a fault present on both 

rear tyres (-45% pressure) mean value of 3.9182e-04 with standard deviation of 0.0061 

 

 

Figure 5.376b Values for 𝜷 during the course of a drive cycle with a fault present on both 

rear tyres (-45% pressure) mean value of 3.9182e-04 with standard deviation of 0.0061 
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5.7.2. Improvements to the change detection method 

As can be seen from Table 5.11 the basic wheel angular velocity observer has significant 

limitations, in terms of detecting patterns of faults, notably an inability to detect simultaneous 

four wheel diffusion. The problem of detecting four wheel diffusion is solved by the addition 

of a redundant velocity sensor and a reset mechanism. The reset mechanism may take the form 

of a simple switch or, with the advent of smart tyres, automatically via an embedded sensor. 

The premise for the reset function is that the user can know, to some degree of accuracy, what 

the condition of the tyres are at any given time. The likeliest opportunity to measure the air 

pressure presents itself at roadside vehicle services, usually attached to a fuel vending 

forecourt. To establish the nominal set of wheel angular velocities, the user sets the vehicle tyre 

air pressure in accordance with OEM recommendations and resets the tyre pressure monitoring 

system. Measurement error in the forecourt pressure gauge is not critical, but it must not be 

sporadically offset between measurement-inflation of the individual tyres. Now, with the 

benefit of a redundant measure of vehicle velocity from a GPS sensor, it is possible to build a 

relationship between the differences in vehicle velocity (a signal conditioned and reported by 

the ABS from individual wheel angular velocity measurements), and the vehicle velocity value 

generated by the GPS sensor. Since these differences are small and easily consumed by noise, 

the information provided by the user via the reset switch adds some additional robustness to 

the system. It is understood that pneumatic tyres inflated with air lose pressure at a rate typically 

of 1-2% per month (L. Evans et al. 2009) depending on usage, and this range of values may 

form the baseline for any algorithm-model that attempts to predict pressure decline in service. 

The situation regarding the remaining sources of misdetection – deflations on a shared axle and 

deflation on the same side of the vehicle – may be improved by utilising other information 

about the vehicle state that exists on the data bus. It is possible to create a detection algorithm 

and compensation filter to remove samples that occur during cornering but a simpler approach 

utilises the steering wheel angle signal. The steering angle (also broadcast on the CAN) is used 

by the ABS-ESP system to calculate brake force required to stabilise the vehicle in the event 

of over/under-steer. The vehicle geometry is known and hence with the addition of the steering 

angle, the calculation to determine the wheel speed may be performed at any time the vehicle 

is in motion. Figure 5.36 demonstrates the misdetection for the twin deflation on shared axle 

fault condition. The value of 𝛽 is clearly zero mean with very little variance despite -45% 

pressure from nominal on both rear tyres, with front tyre pressure set to nominal for the test. 
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With respect to Eqn 5.102 this is a satisfactory result, however, the algorithm requires further 

development as a fault detector. 
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5.8. Conclusions - condition monitoring and fault detection 

methods 

It is clear from the techniques that have been developed here that no single approach is the 

solution to the problem of indirectly detecting changes in tyre pressure according to the rules 

set out by the regulators of the major vehicle markets (Directive 98/69/EC of the European 

Parliament and of the Council 1998, US DoT 2005).  

While it is possible to give an estimate of the pressure, the accuracy of a direct sensing 

technique is not likely to be possible, even with perfect knowledge of the input. This constraint 

can, in large part, be attributed to the isolation properties of a vehicle suspension system. The 

ratio of 10:1 sprung mass to unsprung, which imparts the isolation properties, is a particularly 

effective filter of information (vibration) that would ordinarily be transmitted into the chassis. 

This contributes significantly to the difficulty of online estimation of parametric models. It is 

possible there may be a suspension system where accurate parameter estimation over a wide 

range of operation is possible, however, it would be an exceptional case. The suspension in 

racing cars are known to transmit a larger portion of the road shocks into the chassis because 

they are optimised for superior traction, at the expense of comfort. Regardless of the particular 

vehicle application, a large unsprung mass (relative to the sprung mass) is not a desirable 

property as this would impair the ground tracking ability of the tyre and hence is fundamentally 

at odds with the objectives of suspension. 

A secondary obstacle to successful identification and online estimation of suspension 

parameters is non-linearity in the response. This is primarily attributed to the damper, whose 

characteristics is often asymmetric in nature, in the sense that the damping value in 

compression is different to that of extension. In addition to this property, some dampers feature 

variation of damping over the entire compression and/or extension stroke. The damping values 

will also change over the life of the vehicle, as the damper function deteriorates due to normal 

wear in the internal mechanisms. This slow, time-varying, property of the suspension will move 

the system response further away from any static model and associated fault detection 

thresholds. Other contributions to the non-linearity include the ‘bump stops’, which are devices 

intended to prevent suspension component clashes at the extremes of suspension travel. As the 

unsprung mass comes into contact with the bump stop the force required to move the unsprung 

mass increases rapidly as the rubber in the bump stop compresses and hardens. 
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Despite the above challenges, the methods which are proposed in this Chapter, form a suite of 

algorithms which provide the basis for a supervisory system whereby the outputs from the 

algorithms may be combined in a ‘data fusion’ manner. Indeed as the number of on-board 

control systems and communicating sensors over networks increases, the enabling technology 

to realise the implementation of proposed indirect approaches will have evolved to form the 

next development cycle. 
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Discussion: conclusion and further work 

When this research started, it was based on the premise that if a passenger can sense the change 

in tyre pressure through the ride and handling characteristics of a particular vehicle, then it 

should be possible to devise some systematic method of determining what the character of this 

sensation is numerically. Initial studies showed some promise and the research proceeded to 

the validation stage. Tests were commissioned that have been described in Chapter 3. 

An aspect of the vibration isolation properties of the suspension became obvious when testing 

the algorithms with data acquired from the Jaguar X-Type. It is a significant challenge to detect 

subtle changes in tyre pressure, purely from chassis acceleration or displacement measurement. 

The system is weakly identifiable due to the relatively small unsprung mass which does not 

cause serious perturbation of the chassis until large scale disturbances are applied to the road 

wheels. 

6.1. Discussion: Modular approach with supervisory 

diagnostic 

In the field of automotive engineering, the concept of a supervisory control has emerged in 

recent years with the advent of hybrid powertrain technology. Combining multiple sources of 

torque and energy storage devices to work in concert is a non-trivial task. An inevitable result 

of this work has been the development of an overarching controller that allows the various 

components to pass energy between themselves, for dissipation as drive torque in the case of 

motor-generators or flywheels and energy storage, in the case of batteries and flywheel. Since 

many of these components are costly and easily damaged (Lu et al. 2013), the supervisory 

control must also be a prognostic ‘health’ monitor that determines how much energy can flow 

through the components before damage occurs. When damage occurs the supervisory control 

usually attempts to limit the amount of damage (via a ‘limp-home’ reduced functionality mode) 

and assist in the maintenance actions in the service bay (Pisu and Rizzoni 2007). 

It is envisaged that the methods outlined in this thesis could be deployed in a similar fashion, 

with an overarching supervisory diagnostic routine that decides upon the condition of the tyre 

based on data produced by the individual sub-systems. This approach is typically called ‘data 
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fusion’ in the literature. Each diagnostic has its own ‘character’, that is to say, zone of operation 

and sensitivity to certain driving conditions such as smooth roads, which provide little 

information for model-based and spectral analysis methods. The vehicle may also change quite 

radically in terms of its physical parameters, such as added mass which may account for as 

much as 50% of the curb weight. Since it is not generally possible to have an exact measure of 

the additional mass, the supervisory diagnostic must take this into consideration in order to 

avoid false positives. This situation could be mitigated using a similar approach to the tyre 

pressure diagnostic using network-derived variables such as engine load, throttle position, 

vehicle position (GPS) and inertial sensors to determine vehicle mass (McIntyre et al. 2009, 

Winstead and Kolmanovsky 2005, Li, L. and Wang, F.-Y. 2007, Leung 2010). For the model-

based and spectral approaches, the supervisory diagnostic should also consider vehicle aging 

properties, with respect to the gradual shift in parameters that accompanies worn and degraded 

components. The diagnostic system robustness is a function of careful implementation and 

testing of all conceivable scenarios and this includes every failure mode of the suspension 

system and sub-systems that the tyre diagnostic relies upon (control systems whose sensors 

supply data). This type of analysis is usually conducted with the support of a failure modes and 

effects analysis (FMEA) and a fault tree analysis. The sub-system designers play a significant 

part in this process, for it is they that know the system in detail. If the tyre pressure diagnostic 

designer is situated within a vehicle OEM, it is unlikely that any system supplier will fully 

disclose all aspects of their sub-system design, as this is their intellectual property. This leaves 

the designer with some uncertainty which will inevitably permeate the model. Since tyre 

pressure and general condition are regarded as safety critical and with increasing scrutiny from 

legislators (Directive 98/69/EC of the European Parliament and of the Council 1998, US DoT 

2005, Regulation No. 64 - Rev.1 - Temporary Use Spare Unit, Run Flat Tyres, Run Flat-System 

and Tyre Pressure Monitoring System 2010) the burden for a robust solution intensifies. 

A multiple method approach is also appealing for its flexibility. For instance, a high 

specification luxury vehicle may have upwards of 80 individual electronic controllers 

(Mercedes-Benz 2013) connected together on an array of high bandwidth data buses. This type 

of vehicle platform generates vast data sets from the sensors and control sub-systems. Powerful, 

high throughput (Muramatsu et al. 2002) and/or highly parallelised (Asano, S. et al. 2009) 

processors are required for image recognition driver assistance systems. CPU are rarely 100% 

utilised 100% of the time, when the image processing ECU is not fully utilised, the tyre pressure 

algorithm can be executed piecemeal.  
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In the case of a small inexpensive vehicle, the diagnostic would be scaled back appropriately 

for the sensor data that is available. As technology advances, so governmental regulation of 

vehicle systems inevitably increases. Since 2011 it has been mandatory for all new vehicles to 

be equipped with ESC, which includes ABS functionality (FMVSS 126 2011). ABS has been 

an EU mandated system since 2007. This situation creates a rich environment for the 

deployment of model-based diagnostic routines. 

It is envisaged that the diagnostic would be modular for the purposes of re-use and deployed 

irrespective of the particular vehicle platform, configured for the particular application. 

6.2. Conclusions on findings of tyre pressure monitoring 

systems 

Following on from the literature review of existing and emerging techniques for tyre pressure 

monitoring, it has become apparent that, prompted largely by impending legislation, numerous 

ideas have been put forward. The majority of these involve direct measurement which have 

their immediate drawbacks and potential under certain circumstances. The work detailed in this 

thesis has focused on indirect measurement, this being prompted by the availability and 

abundance of data, as outlined in Section 6.1. The specific outcomes of this work, in order of 

significance, as perceived by the author, are as follows: 

The most significant piece of work is considered to be that of the tyre pressure diagnosis via a 

wheel angular velocity comparator. Whilst earlier patents may be found (Walker, J. C. and 

Rehal 1993) no detailed description of the method exists in the literature. Rather this piece of 

work, which involved practical, experimental and deductive analysis, is original in that it makes 

use of an independently developed approach which acquires and interprets CAN data directly 

from a vehicle. The method also provides a platform from which other algorithms based on 

vehicle data may be created. This was achieved with basic tools and available open source 

software/freeware, rather than state of the art data acquisition DAQ equipment. 

A further significant contribution which is considered to be marginally of a more secondary 

nature is the development of model-based tyre pressure diagnosis via application of an 

unknown input observer and a parameter estimation scheme. Research into systems described 

as being stiff, whereby the dynamic modes are significantly distant, yet interact with each other, 

has shown that continuous-time estimation methods are superior over their discrete-time 

counterparts. Specifically, a continuous-time, model-based tyre pressure change detector is 
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enhanced by the addition of an unknown input observer that simultaneously reconstructs the 

road profile input and provides a fault diagnostic in the form of a phase portrait. 

The next contribution, in order of significance is that of model-based tyre pressure diagnosis 

via an enhanced filter configured to estimate states, including the input. In this work the term 

‘enhanced Kalman filter’ has been assigned due to the inclusion of the input among the states 

that are estimated. The continuous-time, model-based tyre pressure change detector is 

enhanced by the addition of the Kalman state estimate of the road profile and gives an estimate 

of the tyre sidewall height, which is a function of the tyre pressure.   

A further contribution is that of model-based tyre pressure diagnosis via cautious least squares 

(CLS). Essentially CLS is used as a fault detector by the addition of a parameter reset counter. 

Analysis of the fault counter provides some insight into the tyre condition. Two estimators are 

trialled and compared, namely recursive least squares and a Kalman filter. 

A minor interesting contribution is the investigation and critique of the effects of the choice of 

sampling interval on discrete-time models and estimation thereof, with the corresponding 

continuous-time model and estimation of parameters. This underpins the work described above 

in model-based tyre pressure diagnosis via an enhanced filter. 

In summary, the culmination of the work as outlined above provides the potential and basis for 

a new generation of indirect tyre pressure monitoring systems which could be migrated across 

the vehicle fleet. The indirect method offered by the proposed multi-modal supervisory 

framework is less expensive and more reliable and satisfies legislative requirements. 

6.3. Conclusions of the aim and objectives 

This section of the conclusions specifically addresses the overall research aim and the various 

objectives stated in Section 1.2, in order to discuss the outcomes. 

Assess the feasibility of tyre pressure estimation – initial feasibility testing was achieved with 

the aid of the MEPHM (Chapter 3.1.1). The sensor module was assessed for suitability 

(bandwidth and sensitivity) and calibrated using a linear actuator driven by a sine function. The 

vehicle test results suggested that it was indeed possible to quantify the effect of tyre pressure 

on the ride which indicated potential for a spectral solution to the pressure estimation problem. 

While these tests were not exhaustive or carried out under strictly controlled conditions, it 
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warranted further investigation and the commitment of resources for the work of simulating 

the suspension. 

Simulation of suspension, estimation and road – this work was realised in The Mathworks 

packages, MATLAB and Simulink. Due to the proliferation of the motor vehicle generally and 

the accompanying development of computerised design and analysis techniques, a large body 

of literature exists on the properties of conventional passive suspension systems with respect 

to modelling techniques. This situation obviated the requirement to develop a completely 

unique set of models for the purpose of fault detection. As a result the task was reduced to the 

selection and implementation of the appropriate models for the particular algorithms, in order 

to integrate the model into the overall scheme of the parameter or state estimator. In the initial 

phase of development, simple discrete-time transfer function and state space models were 

implemented in MATLAB which provided the I/O data streams for the RLS estimator. A white 

noise signal was utilised as a road input and this was enhanced with the inclusion of a quasi-

random road generator. As a result of the vehicle road simulator test at the CREST facility, a 

drive cycle signal was obtained and used for the remainder of the research. This data set was 

obtained by Jaguar Land Rover engineers for the purpose of noise-vibration-harshness testing 

from acceleration measurements of a road-going vehicle abstracted to a vertical displacement 

value used to drive a set of hydraulic rams. The data represents a selection of real-world roads 

which improved the realism of the quarter-car simulation, particularly with respect to 

sensitivity testing for specific road types. For the CT model-based estimation algorithms, a 

state variable filter was implemented in Simulink which provided the value of the differentials 

that formed the observation vector for the RLS-based algorithms. The CT model is favoured 

over the DT counterpart due to the problems associated with estimating stiff systems. A non-

linear damper with backlash was implemented in the later stages, however, this was considered 

an unnecessary complication for the purpose of fault detection development. 

Quarter car model – Following extensive analysis of simulation and vehicle testing it is clear 

that the majority of the dynamics can be explained by a linear quarter car model. This is due to 

a number of factors. While it is true that a major contribution to non-linearity in the suspension 

is due to the damper’s typically (in the majority of passenger vehicles) bilinear character, much 

of this behaviour is found at the fringe of the suspension travel and can be discounted for the 

majority of a typical drive cycle. It is also true that whilst measuring some state in one corner 

of a vehicle suspension, the effects of the road input propagate through the chassis from the 

other corners and effect the measurement. However, in practice this contribution is not 
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significant enough to cause false detection of faults, due to the overwhelming contribution to 

the signal power generated by the particular quarter suspension in question. This tends to be 

more so at the front of a typical vehicle because the front suspensions do not share an axle and 

many do not at the rear. Other minor contributions to the non-linearity result from the action 

of the bump stops, which can be disregarded for the same reasons as the damping component, 

effects such as stiction are minimal due to the large forces generated and backlash is not present 

in any significant proportion for a properly functioning vehicle. These facts pave the way for 

the use of transfer function models of the suspension, with all the analytical benefits this 

confers.  

In practice, many different models were developed when the need arose, such as testing the 

sensitivity of individual parameters in a parameter estimation scheme. In order to achieve this 

in simulation, a second companion transfer function model was developed in Simulink, which 

allows control of individual parameter values. The same control can be achieved in the case of 

the suspension states using a phase variable model, as in the case of the enhanced Kalman filter 

of Section 5.5. Simulink was the preferred platform for these types of models, due to the 

complexity of implementation in a scripting language such as MATLAB.  

Constraining the complexity of the models usually has the additional beneficial effect of 

reducing the volume of potential sources of errors in the encoding, implementation and 

calculation. The enhanced Kalman state estimator and phase variable model of Section 5.5 was 

the only algorithm to be effected by any significant computational problems, which were 

identified as being dependent on sensitivity to physical parameter values. The tyre damping 

value in particular prevented the MATLAB simulation algorithms from converging to a 

solution, despite solver selection and attempts to reduce the integration step size. During 

simulations, the tyre damping value was generally set at a small value, in keeping with the 

physical properties and its effects are considered to be insignificant in this application. 

However, the tyre dynamics with respect to pressure are an obvious target for further research, 

particularly with respect to the dynamical rotational relationship between wheel rim and tyre. 

This relationship is most readily explored via the ABS wheel speed signal (not to be confused 

with the wheel speed value, published on the CAN by the ABS sub-system). 

Robustness and reliability – is a key area of study for any safety critical system. Since any 

algorithm will inevitably be implemented on a microprocessor, it is likely never to be deemed 

completely robust, even if the algorithm itself can theoretically be shown to be bug-free. Due 
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to the harsh environment that the system exists in (vehicle) and uncertainty in the 

measurements and disturbances (unknown road input, signal interference, vehicle degradation 

and modification) the challenge is to detect change in pressure in accordance with the particular 

regulatory thresholds without generating any false positives, over the life of the vehicle. 

Confidence in the reliability of the system is dependent on the thoroughness of the testing 

regime, which must include all conceivable and likely vehicle states and conditions, such as 

tyre wear or user changes the tyres, sensor and suspension hardware degradation, faults in a 

network node and extreme driving scenarios. It is considered that the modular approach 

detailed in this thesis is a mitigation for many of these sources of error because the system does 

not rely on a sole sensor or feedback mechanism for its operation. 

Unknown road input – is the single greatest challenge for any model-based pressure change 

detection algorithm. As any road user can attest, the road surface can change dramatically in 

character and elevation over a very short period of time. This poses a problem for an algorithm 

that is not party to this input-disturbance and yet has a dramatic effect on any attempt to 

numerically determine the state of the vehicle. The situation the vehicle user finds himself in 

is only marginally improved. For example, there is a certain amount of trust and confidence 

that is required to drive a vehicle along a dark motorway at 70mph. The mitigation for this 

deficit in knowledge is in a modular approach that gathers all available sources of information 

in order to arrive at a consensus. Advances in vision systems that provide an assessment of the 

road surface elevation present the possibility of improving the confidence in the estimation 

significantly, although complete knowledge of the road is not likely to be achievable. It is the 

opinion of the author that it is unlikely there can be any reliable indirect tyre pressure change 

estimation without the inclusion of ABS wheel speed sensors. These sensors, crude as they are, 

form the backbone of the mitigation for unknown road disturbance and provide a more direct 

source of information that improves convergence time to change detection, unlike spectral or 

parameter estimation techniques which must gather many samples before arriving at a 

diagnosis of average behaviour. 

Regulatory requirements – should form a useful benchmark for the algorithm developer, 

although only regulations for US and EU markets have been considered in this thesis. In general 

the regulations for automatic tyre pressure monitoring are concerned with two factors: 

punctures and diffusion. The definition of a puncture is not absolute but is typically interpreted 

as a ‘rapid reduction of pressure’, with a total rapid deflation or ‘blow-out’ at the extreme end 

of this spectrum. Very little research exists in the prediction of tyre blow-out failure and there 
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is no technology that is presently able to detect an incipient blow-out event and as such this is 

not considered in the EU or US regulations. Diffusion is interpreted as the natural loss in air 

pressure that a pneumatic tyre system undergoes during its service life. There is no definition 

of what constitutes normal diffusion pressure loss however, it is estimated that a typical 

passenger vehicle loses 0.068bar per week (Gent and Walter 2006) 

For the EU market the regulation requires that the vehicle be conditioned prior to tyre pressure 

detection testing such that the ambient effects on the test result are minimised, with the main 

contribution being tyre temperature. The vehicle is subjected to a prescribed drive cycle such 

that the vehicle velocity is maintained for a specific duration and situations that would lead to 

disturbances such as wheel slip are avoided.  A log is kept for the tyre pressure at the start of 

the test and is manipulated during the test in order to simulate the two failure modes, puncture 

and diffusion. The detection mechanism is given a time limit after the manual reduction of tyre 

pressure during the drive cycle in which it must flag a pressure drop by means of a dashboard 

indicator. There is no requirement for the actual pressure to be indicated, although many direct 

TPMS possess this feature, merely that the system detects a pressure drop of 20% of the 

nominal tyre pressure for the particular load state of the vehicle (the OEM tyre pressure 

specification typically states two conditions – single occupant and fully loaded). The pressure 

threshold is identical for both puncture and diffusion tests as this has been deemed to be a 

critical threshold for safety and rolling resistance considerations by the regulatory committee. 

There is a time limit of 10mins for detection of punctures and 2 hours for diffusion, although 

the regulation does not prescribe an upper limit. 

Testing and validation – was described in Chapter 3 and comprises of three sets of tests using 

three candidate vehicles. The aim of the testing was twofold:  

 validation of the various approaches that were developed in simulation  

 analysis that would lead to improvements in the modelling of the suspension 

system, be it parametric or spectral.  

Spectral feasibility testing 

In this test a Volvo V40 was used. The tests (described in Section 3.1.1) were an attempt to 

analyse the effect of tyre pressure on the spectral properties of the chassis such that a numerical 

measure could be achieved for the driver experience when driving with one or more tyres 

underinflated. Subjectively, the vehicle dynamics subtly change as diffusion progresses and it 

may be extremely difficult for the driver to detect any change initially, particularly when these 
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changes are considered against a backdrop of a multitude of other disturbances such as road 

surface and friction coefficient, tyre temperature and wear and added vehicle mass. To further 

complicate matters, this subjective difference in ride and handling is a function of the particular 

drive cycle. For instance, changes will be significantly more difficult to detect if there are 

minimal cornering forces, as would be the case during motorway driving where curves in the 

road generally do not exceed a radius of 1km (Highways Agency 2008) and hence lateral 

dynamics will not be manifest. Similarly, shifts in the wheel hop frequency that accompanying 

tyre pressure change are likely to be completely undetectable for the majority of drivers, 

particularly during the initial phase of diffusion. Indeed, the shift is relatively difficult to 

measure as it is confined to a spectrum of approximately 5Hz (Craighead 1997), depending on 

the characteristics of the particular tyre, and may only be reliably detected after a substantial 

number of samples have been collected.  

It was noted that during the testing, no significant changes in the vehicle dynamics were 

manifest. Due to safety considerations on the public highway, hard cornering was avoided, 

which diminish the lateral dynamic properties from the experience, as can be seen from the y-

axis measurements in Section 3.1.1. As an initial estimate, it was satisfactorily clear that 

enough of a numeric change was present in the x-axis in order to proceed with the research and 

invest time developing sophisticated detection algorithms and commission further testing to 

validate the hypotheses. 

CREST road simulator testing 

In this test a Jaguar X-Type was used. The testing (described in Section 3.1.2) was arranged 

such that as many of the disturbances that could be practically avoided were eliminated from 

the measurements. Principle amongst these disturbances was the unknown road input itself, 

which was mitigated by use of the CREST road simulator at Land Rover, Gaydon. The CREST 

facility was configured such that only one wheel of the vehicle received the road input, in order 

to reduce the effect of road excitation from the other wheels. 

The main aim of the test was to create a data set that could be used to access the efficacy of a 

given fault detection approach. A series of five tests were executed at tyre pressure levels of 

100% of nominal down to 0%. During the course of the ten minute drive cycle, the road 

displacement was logged at 200Hz and the chassis displacement was logged at 500Hz. An 

attempt was made to log data using the same DAQ hardware but it was not physically possible 

to achieve this with the equipment that was available. The log of the road input was obtained 
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from the hydraulic drive controller which poses the additional problem of synchronicity of the 

measurements. This situation was mitigated by inserting a period of dwell time at the start of 

each test where the road elevation was maintained at 0mm. This dwell time is clear from the 

measurement log and with some experimentation it is possible to synchronise the measurement 

start points in the data, which is obviously of crucial importance for any system identification 

or fault detection algorithms. The remaining discussion on this research is continued in the 

final section, System identification of quarter car suspension. 

ABS wheel speed testing 

Due to the fact that ABS wheel angular velocity comparators were the original indirect tyre 

pressure change detection method and much research already exists in this area, this method 

was originally not targeted during this research. However, as work progressed on the other 

indirect methods, described in Chapter 5, it became obvious that the unknown road input is a 

significant problem and a method to mitigate for this unknown disturbance is necessary to 

improve the diagnosis to an acceptable level.  

Industrial standard CAN dataloggers such as Vector CANalyzer are prohibitively expensive, 

yet the CAN standard itself is in the public domain and the diagnostic interface (by which the 

data bus is accessed) is an international standard. These facts led to the development of low 

cost CAN hardware and software tools in recent years that have now proliferated via the 

internet. This situation has provided a platform for independently created diagnostic solutions, 

in the vein of the approach presented in Section 5.7. The research for this approach consisted 

of two phases 

 Identify and acquire wheel angular velocity, steering angle and brake pedal signals 

 Condition the signals and develop wheel angular velocity comparator 

The task of identifying the signals is onerous. The output of almost every sensor on the vehicle 

is broadcast on the data bus which results in approximately 20-30 individual CAN messages, 

each containing up to 32 individual signals. All of the signals are encoded in hexadecimal, with 

variable length, sign and resolution, preventing a casual inspection from determining signals 

of interest. To compound this situation, none of this information is in the public domain which 

results in a painstaking search comprised of targeted experiments in the vehicle and importation 

of the data log into MATLAB for analysis. Some educated guesswork is required in the initial 

stages (detailed in Section 3.1.4) but once the signals of interest have been identified, a series 

of tests are carried out under controlled conditions (tyre pressure and temperature, road type) 
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in order to obtain signals that represent the vehicle in various driving scenarios with various 

tyre pressure values. In the final analysis, the wheel angular velocity comparator is considered 

to be a vital component of any indirect tyre pressure estimation scheme, due to its resilience to 

the unknown input disturbance of the road profile and rapid convergence to diagnosis that 

hinders the analysis by model based approaches. 

The results from the test road simulator test only partially met the aim of providing a quarter 

car model, for reasons that are not completely apparent, but it is likely there are some significant 

measurement errors in the data. When using the data to identify a model for the quarter car, 

there are large variances in the RLS parameter estimate and covariance blow-up phenomenon 

is a problem. In an attempt to identify the source of this problem, the drive cycle is split into 

its component parts and estimated separately. The result of this exercise revealed that highly 

energetic portions of the drive cycle, such as ‘third world road’, produced inferior estimates, 

when compared to ‘motorway cruising’. This result is counter intuitive because estimation 

schemes with substantial ‘information’ generally have an advantage over those with a lower 

level of input excitation. In this case, the problem is considered a question of identifiability, 

due to the filtration effect of the suspension. Consider a typical wheel hop frequency of 

approximately 13Hz, which represents the resonance of the quarter car suspension system, the 

overall bandwidth is confined to approximately 40Hz. Any inputs that lie outside this frequency 

window are attenuated to a level that is not conducive to system identification. Anecdotally, as 

a witness to the testing, it was obvious that a large portion of the input was simply missing 

from the output, due to the effect of the damper and suspension in general. A mitigation for 

this effect is achieved through filtering of the signals, selecting a time constant that matches 

that of the suspension, thereby removing the high frequency portion of the input signal before 

estimation of the parameters. This approach yielded a linear model that achieved ~85% fit in 

terms of 𝑅𝑇
2. The model fit is improved marginally by constraining the estimation to the linear 

portion of the damper response. It is considered that the remaining ~10% can be attributed to 

measurement error and non-linear effects that are described in Chapters 4 and 5. 
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6.4. Further work 

6.4.1. Sensitivity analysis 

Although the algorithms have been tested for their sensitivity to faults and various inputs and 

parameter variations, this has been done singularly for the obvious reason that testing multiple 

algorithms at the same time would make judging their individual effects significantly 

problematic, perhaps even impossible. An area of work that warrants further study is fault 

detection sensitivity and range of operation. It is envisaged that this could be achieved with a 

vehicle test where as many of the parameters and variables of interest can be controlled or at 

least observed. The Crest facility detailed in Section 1.3, or a ‘rolling road’ would be likely 

candidates for the study of spectral properties and model-based parameter estimation schemes. 

In addition there should be a variety of normal road-going drive cycles, urban, A-road and 

motorway driving in order to cover the full range of driving scenarios. The threshold 

requirements are well understood and laid out in Chapter 1.3. A property of the vehicle that has 

not been studied in this thesis, is the thermal properties of the tyre. It has been noted during the 

course of a ~30min drive cycle that the tyres become warm to the touch, despite an ambient 

temperature of ~5°C. The tyre pressure was noted before and after the drive cycle and found to 

be 0.14bar (2psi) greater after the test. It is considered likely that the heating phenomena will 

cause the parameters of a transfer function model to change, which could be a source of false 

positives. The sensitivity analysis should address all of these points in order to guarantee the 

robustness of the fault detection scheme. 

6.3.2. Application to blow-out prediction 

A criticism of indirect approaches to tyre pressure monitoring is the uncertainty in the estimate 

and the algorithms ability to detect rapid pressure loss. However, continuous sampling and 

reporting of tyre pressure is not required (Regulation No. 64 - Rev.1 - Temporary Use Spare 

Unit, Run Flat Tyres, Run Flat-System and Tyre Pressure Monitoring System 2010), or 

particularly useful, as typical puncture dynamics are not significantly developing at the 

millisecond-second level, unless there is a catastrophic failure. In such a case no TPMS will 

detect this condition (Patwardhan et al. 1997) in a manner that the driver can make any timely 

or meaningful use of the information. It is debatable whether an absolute measure of tyre 

pressure is actually required or useful in the majority of small passenger vehicles. Many vehicle 

users are not aware of their tyre pressure and not curious to discover it (Singh et al. 2009) until 

there is a manifest problem indicated by visual inspection or degraded vehicle ride and 
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handling. For these reasons a simple threshold warning should be sufficient for the majority of 

users. The most effective way to manage tyre failure is to maintain the inflation pressure (Singh 

et al. 2009), a situation which is improved with automatic periodic oversight of the tyre 

pressure.  

A possible extension of the work presented in this thesis is vibration analysis, particularly at 

the unsprung mass, since this is a common precursor to catastrophic failure (Modarres et al. 

1999), the parametric and spectral models have potential as detection mechanisms for vibration 

modes associated with tyre condition. This area is considered, by the author, as being worthy 

of further investigation. 

A method that merits further attention is the analysis of the tyre-rim dynamics. The relationship 

between the road surface, the tyre and the wheel rim can be modelled as a mass-spring-damper. 

It is known that the tyre stiffness has a significant effect on the distribution of the frequency 

spectrum at the axle (Umeno et al. 2002, Persson et al. 2001b) as the wheel rim angular 

displacement is fractionally out of phase with the tyre tread. This property is due to flexion of 

the tyre carcass, the extent of which is likely a function of the tyre sidewall height, and general 

construction of the tyre. If a transfer function model of sufficient fidelity can be calculated, the 

tools of system identification and spectral analysis can be applied to the problem. 

6.3.3. Practical implementation 

Following the experimental procedure in this work, as detailed in Appendix 2, the next phase 

of the development towards realising a supervisory diagnostic framework for tyre pressure 

monitoring, using the methods proposed in Chapter 5 and summarised in Section 6.2, it is 

envisaged that a vehicle manufacturer/systems supplier could readily take the work forward. 

As stated in Section 6.2, the culmination of the work presented in this thesis would see a new 

generation of tyre pressure monitoring systems which could be practically implemented by an 

OEM and rolled out across the vehicle fleet.  
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Appendix 1 

Test vehicle specifications 

1996 Volvo V40 (1995 model year) 

 

 

2008 Ford C-Max (2003 model year) 

  

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be viewed 
in the Lanchester Library Coventry University.

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis 
can be viewed in the Lanchester Library Coventry 
University.
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2008 Ford C-Max (2003 model year) 

Table A1.2 Ford C-Max specification 

 

2008 Jaguar X-Type (2008 model year) 

Table A1.3 Jaguar X-Type specification 

  

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
viewed in the Lanchester Library Coventry University.

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be viewed 
in the Lanchester Library Coventry University.
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Appendix 2 

Data acquisition equipment 

The following sections provide details of the equipment used for carrying out the experimental 

work 

ELM327 CAN Microprocessor 

The ELM327 is a PIC-based (Microchip 2009, PIC18F2480 programmable microcontroller by 

Microchip Technology) CAN interpreter and serial interface able to communicate using the 

RS232 serial protocol, see Figure 0.1. Contemporary PC technology usually omits a RS232 

serial port in favour of USB, this means implementations of the ELM327 usually feature a 

serial to USB bridge (Prolific 2012). This facilitates integration with PC-based software tools 

such as FORScan and ELMConfig, amongst many others.  

 

 

Figure A2.1 ELM327 CAN interpreter 

 

AT commands 

The ELM327 is controlled using the Hayes command set via the RS232 serial interface. The 

CAN message filter-mask are set using ‘AT CF hhh’ (set the CAN ID filter to hex address hhh) 

and ‘AT CM hhh’ (set the CAN ID mask to hex address hhh). This procedure is shown in the 

Table A2.1 
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Signal CAN Bit   

  ID 1 2 3 4 5 6 7 8 9 10 11   

Steer angle 080 0 0 0 1 0 0 0 0 0 0 0   

Wheel speeds 4B0 1 0 0 1 0 1 1 0 0 0 0   

  1 1 0 1 0 1 1 0 0 0 0 0x6B0 Filter 

  0 0 1 0 1 0 0 1 1 1 1 0x14F Mask 

Table A2.1 Configuring the filter-mask of the ELM327 for steering angle and wheel speed 

signals 

 

PCL TG1 tyre pressure gauge  

The TPG1 is a pocket tyre pressure gauge with an angled head 

designed to fit onto the tyre valve at 90 degrees. It incorporates a self-

adjusting friction device which enables the pressure to be read when 

the tyre pressure gauge is removed from the tyre valve, and a positive 

sealing washer to ensure measurement reliability.  

 

Part No. Description Head Type Calibration Resolution 

TPG1H01 Pocket Gauge

  

Angled  6-50 lbf/in² & 0.5-3.4 bar 1lb & 0.1bar units 

Table A2.2 Tyre pressure gauge specification 

 

USB Instruments DS1M12 

The DS1M12 is a portable, rugged oscilloscope-data logging tool for on-

site data acquisition and diagnostics. The DS1M12 connects to a host PC 

via USB and the acquired signals are then processed and displayed by 

Microsoft Windows compatible software, supplied with the device. The 

device combines the functions of oscilloscope, data logger, spectrum 

analyser and frequency meter. The oscilloscope and spectrum analyser functions allow the user 

to quickly identify the signal of interest and select an appropriate sampling interval for the data 

logging application. 

This item has been 
removed due to 3rd 
Party Copyright. The 
unabridged version of 
the thesis can be viewed 
in the Lanchester 
Library Coventry 
University.

This item has been 
removed due to 3rd 
Party Copyright. The 
unabridged version 
of the thesis can be 
viewed in the 
Lanchester Library 
Coventry University.
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The DS1M12 has two independent input channels with capability to simultaneously acquire 

signals on both channels with 12-bit resolution. With the specification 20𝑉 input range this 

implies a voltage resolution of  
20

212 = 4.9𝑚𝑉, confirmed by testing. The unit is capable of 

sample rates up to a theoretical 1𝑀𝑆/𝑠 (million samples per second) and in practice the device 

is able to capture signal dynamics at 100𝑘𝐻𝑧. 

The signals are acquired and the data are stored in a variety of formats with a time stamp per 

sample, optimised either for compactness (binary format) or compatibility (CSV format) with 

processing and analysis software such as MATLAB and Excel. 

 

Micro-Electronic Prognostic Health Monitor (MEPHM) 

As stated in Chapter 3, the MEPHM module is a device produced by BAE Systems. It is 

designed to monitor environmental and electronic data from a host system. This data can then 

be processed, analysed and either stored within the module’s non-volatile EEPROM, or 

accessed/transmitted via one or more of the interfaces shown in Figure A2.2. The architecture, 

illustrated in Figure A2.2, comprises the DSC Core, containing the system RAM, Timers, 

Interrupt Controller, Program Store, Non-Volatile EEPROM Memory, Temperature Sensor 

and the Vibration Sensor together with associated signal conditioning hardware.  

 

Figure A2.2 MEPHM architecture and I/O 
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Vibration is measured using a 3-axis MEMS accelerometer, to a maximum of +/-10g. The low-

pass filter provides a roll-off of 40dB per decade to reduce aliasing, with a knee-point at 

1000Hz. The time series accelerometer data is converted into spectral data via a FFT and output 

in 8 byte messages on the CAN bus. It can also be acquired via the RS232 serial interface. 

Since the data acquisition laptop PC was equipped with Vector CANalyzer, this was the most 

convenient way to acquire and store the data as compact log files for later analysis. The 

Controller Area Network (CAN) bus interface provides connectivity for using the MEPHM in 

an automotive environment at the ‘high speed’ 500kbit data rate that is common to most vehicle 

powertrain distributed control systems. In this application the data was captured by a Vector 

CANalyzer, installed in a laptop PC.  

  



174 

 

Data acquisition-processing software 

FORScan 

FORScan is Windows compatible software for diagnostics and data logging of CAN based 

vehicle control systems. Compatibility is limited to Ford, Mazda, Lincoln and Mercury vehicle 

brands. Within this software is a data logging facility that allows the user to specify OBD 

(Directive 98/69/EC of the European Parliament and of the Council 1998) sanctioned 

parameters and create a time series measurement file in CSV format. The creators of the 

software have avoided the problem of unknown message ID, format and location by restricting 

the available parameters to the OBD sub-set. In many cases this results in reduction of the 

parameter resolution and increased sampling interval. These constraints are attributed to the 

retrieval mechanism (the OBD protocol and ECU diagnostic function/interface) which has low 

network priority. See the CAN section for more details. 

 

Figure 0.1 The data logging interface of FORScan 

The contents of a typical ‘connection log’ are shown below. Note the presence of Diagnostic 

Trouble Codes (DTC) for ABS and EPS. DTC are designed as an indicator of degraded 

vehicle/control function and as an aid for fault diagnosis. 

(OK) [12:36:07.183] Connection to adapter is established on COM5 

(OK) [12:36:07.183] Adapter:  ELM327 v1.5 

(OK) [12:36:07.396] Connection to vehicle is established 

(OK) [12:36:11.590] Vehicle: Ford Focus C-MAX DURATEC-HE / I4 2.0L 

2008.25 MY, VIN: WF0*********31973 

(OK) [12:36:12.563] Found module:  TCM - Transmission Control Module 
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(OK) [12:36:13.869] Found module:  PCM - Powertrain Control Module 

(OK) [12:36:14.110] Found module:  OBDII - On Board Diagnostic II 

(OK) [12:36:15.615] Found module:  ABS - Anti-Lock Brake / Traction 

Control Module 

(WARN) [12:36:15.747] DTCs in ABS: C1165-E0 

(OK) [12:36:16.480] Found module:  EPS - Electronic-Controlled Power 

Steering 

(WARN) [12:36:16.554] DTCs in EPS: U1900-20 

(OK) [12:36:17.361] Found module:  IC - Instrument Cluster 

 

ELMConfig 

ELMconfig is Windows compatible software for configuration, diagnostics and data logging 

of CAN based vehicle control systems. As the name suggests, its main purpose if configuration 

of the electronically controlled systems present on a vehicle. In addition to the configuration 

functions, a CAN data logging function allows the user to capture any or all CAN data frames 

that are broadcast by the vehicle controllers. Due to the baud rate of a high speed CAN and the 

limited internal memory of the ELM327 PIC, it is not possible to log all frames indefinitely, a 

buffer over-run occurs after approximately 2 seconds (in the case of data logging of the Ford 

C-Max HS-CAN). This constraint is mitigated by a filter-mask configuration, whereby only 

specific sets of messages are logged and committed to the log file, the remainder are 

immediately discarded. 

 

 

 

 

 

 

 

 

 

Figure 0.2 ELMConfig in data acquisition mode 

with filter-mask set to obtain   
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A snippet of a typical vehicle data log from the CAN bus is shown below 

Version: ELMConfig 0.2.15 

Adapter: ELM327 

Driver: VCP 

Baudrate: 500000 

Connection: Scan 

 

14:20:28.201 220 02 0D 00 00 00 00 11 19  

14:20:28.201 200 27 33 27 EA 27 EA 80 18  

14:20:28.201 430 5B 4C  

14:20:28.201 080 13 8A 75 30 01 32 E9  

14:20:28.217 090 97 02 D7 08 C7 D3 07 D0  

14:20:28.217 4B0 27 10 27 10 27 10 27 10  

14:20:28.217 220 02 0D 00 00 00 00 11 19  

14:20:28.217 200 27 33 27 EA 27 EA 80 18 

 

In this example, the so-called ‘high speed’ bus of a 2008 Ford C-Max is sampled. The network 

is given the name ‘high speed’ or HS-CAN simply to differentiate it from the other CAN 

present on this particular vehicle, a reduced baud (256kbit) ‘medium speed’ or MS-CAN 

network. HS-CAN connects engine management, transmission, ABS, electronic-controlled 

power steering, instrument cluster and facilitates the distributed functionality of the vehicle 

control. The data log starts with a header describing the software version number, interface 

hardware type, software driver type, vehicle network baud rate (bits/s) and the ELMconfig 

mode of operation. ELMConfig may be configured to timestamp each message it detects on 

the network but the time is not associated with the vehicle controllers, each of which is keeping 

an internal clock, not visible on the network. The Timestamp relates to the internal clock of the 

host PC. 

The major obstacle to overcome by logging raw data is, unlike the OBD parameters, there is 

no definition for the data. Targeted experimentation is required to interpret the data into a 

meaningful signal. 
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Controller Area Network 

 

The Controller Area Network (CAN) is a serial communications protocol which facilitates 

distributed real-time control with a very high level of resilience to data corruption and 

degradation of the physical layer (electrical faults). Its domain of application ranges from high 

speed networks to low cost multiplex wiring. In automotive electronics, engine control units, 

sensors, anti-skid-systems, for example, are connected using CAN with bitrates up to 1 Mbit/s 

(Bosch 1991). A typical data frame is shown in Figure X.X, these frames are the primary source 

of information on the data bus. 

Arbitration (handling transmitter conflicts) 

Whenever the bus is free, any unit may start to transmit a message. If 2 or more units start 

transmitting messages at the same time, the bus access conflict is resolved by bitwise arbitration 

using the identifier (ID). The mechanism of arbitration guarantees that neither information nor 

time is lost. If a data frame and a remote frame with the same identifier are initiated at the same 

time, the data frame prevails over the remote frame. During arbitration every transmitter 

compares the level of the bit transmitted with the level that is monitored on the bus. If these 

levels are equal the unit may continue to send. When a ’recessive’ level is sent and a ’dominant’ 

level is monitored (see Bus Values), the unit has lost arbitration and must withdraw without 

sending one more bit (Bosch 1991). 

Consider an 11-bit ID CAN network, with two nodes with IDs of 15 (binary representation, 

00000001111) and 16 (binary representation, 00000010000). If these two nodes transmit at the 

same time, each will first transmit the start bit then transmit the first six zeros of their ID with 

no arbitration decision being made. In the following example of an 11-bit (CAN 1.2) ID 

network, with constituent nodes 15 (0x00F) and 16 (0x010), both are attempting to transmit at 

the same time. This situation will continue until node sixteen transmits a ‘1’ in bit position four 

and node fifteen a ‘0’. It is in this way identifiers with a smaller value are given priority 

(typically safety and mission critical systems such as ABS and powertrain). This must also be 

balanced with periodicity of the messages. If a message is important but does not occur very 

often, this is usually assigned a low ID value. If the message is important and occurs very 

frequently, it may be assigned a middle range value in order to avoid monopoly of the data bus 

(it will lose in arbitration). 
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Start 

Bit 

ID Bits The Rest of the 

Frame 10 9 8 7 6 5 4 3 2 1 0 

Node 15 0 0 0 0 0 0 0 0 1 1 1 1  

Node 16 0 0 0 0 0 0 0 1 Stopped Transmitting 

CAN 

Data 
0 0 0 0 0 0 0 0 1 1 1 1  

 

Table 0.1 Arbitration between two CAN nodes 

Overload 

Overload of the CAN bus can occur if there are too many ECU attempting to transmit this is 

signalled by the transmission of an overload frame. It is primarily for this reason that diagnostic 

messages are confined to the 0x7xx range. 

Diagnostic interface 

A diagnostic interface is not specified in the CAN standard, despite the dependence of modern 

diagnostics on CAN. The standard method for interrogation of vehicle control systems, in order 

to obtain DTC and other parameters is via the diagnostic interface, commonly referred to as 

the ‘J1962 connector’ that exists in the drivers footwell. In most vehicles, there will be an 

access point to other non-OBD networks, present in the J1962 connector. 

A typical vehicle ECU parameter specification can be seen in (Deutz 2014) which lists the 

available signals and their composition and location 

 

Table 0.2 CAN data frame composition (Bosch 1991) 
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