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An improved vehicle to the grid method with battery 

longevity management in a microgrid application 

 Qingqing Yang, Jianwei Li, Wanke Cao, Shuangqi Li, Jie Lin, Da Huo and Hongwen He 

Abstract: 

This paper proposed an improved vehicle-to-grid (V2G) scheduling approach for the frequency 

control with the advantage of protecting the batteries hence saving the battery lifetime during grid 

connected service. The proposed methodology is improved in two ways. Firstly, to give a prediction 

of the available electric vehicle (EV) battery capacity in the control time-step for the V2G service, 

a deep learning based prediction is developed. Secondly, this study advances the previous V2G 

method by adding the quantitative analysis of the battery cycle life into the V2G optimization. The 

accurate prediction of the schedulable battery capacity based on the LSTM algorithm is shown very 

effective in the power system frequency control. Also, compared with the previous method that 

without battery lifetime control, the proposed method benefits in the reduction of charge/discharge 

cycles.  
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Nomenclature: 

CTF Cycle-to-failure 

DB Dead-band  

DoD Depth of discharge 

Deep-RNN Deep recurrent neural networks  

EV Electric vehicle 

LSTM Long-short term memory  

PSO Particle swarm optimization 

V2G Vehicle-to-grid 

 

1. Introduction 

The increasingly share of renewable sources integrated to the network, strict set for the reduction of 

greenhouse gas emissions, and the need for providing clean energy, call for a paradigm shift in 

energy systems. The efficient power generations and energy consumptions are playing the key 

factors in this transformation[1-3]. On the one hand, the changes are obvious in the power gird as 

the generations are moving from the large centralized power plants to the distributed renewable 

sources [4, 5]. The transport electrification, on the other hand, is playing a vital role in this 

transformation has been recognized by industry and policy makers [6-8]. The ambitious targets are 

published to promote the transport evolution by many countries[9, 10]. For example, the United 

Kingdom government has announced a ban on the sale of the traditional diesel and petrol cars and 
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vans after 2040 [11]. Inherently, the EVs or more specifically, the power batteries are regarded as 

the intruders for the traditional power grid, and with the large-scale adoption of electric vehicles, 

their uncoordinated charge demands are adding strains on the grid infrastructure [12]. As a result, if 

electric vehicle charging is left uncoordinated, the adoption of electric vehicles is expected to cause 

significant system power fluctuations, which will bring significant challenges on both system 

frequency and voltage stability reported by many researches[13, 14].  

Nevertheless, the EV power batteries is regarded as the “moving energy storage” that offer the 

means to enhance power system flexibility especially for the grid and achieve uninterrupted 

operation by deferring their demand in time and even space and acting as dynamic storage devices. 

Therefore, it comes to the concept of vehicle-to-grid that effectively integrates the aggregated EVs 

into the microgrid as distributed energy resources to act as controllable generations or loads 

achieving the benefit of frequency regulating, voltage control, techno-economic operating, etc.[15-

19]. The increasing penetration of renewable generation, the updated advances in energy storages 

and the substantial uptake of electrification of transport itself, is incessantly imposing unprecedented 

complexity and uncertainty on the V2G scheduling. With the increasing penetration of renewable 

energy resources, the development of high-performance V2G scheduling strategies has attracted 

much attention in global academic and industry communities[23-25]. Electric vehicles could 

provide ancillary services for the grid, but to enable this benefit, a key issue that should be addressed 

first is how to predict the V2G schedulable capacity information to meet different utility demands 

of power dispatch.  

The statistical forecasting is widely used to make the capacity prediction based on historical data 

[26, 27]. Ref [28] interduces a power management method for integrating the EVs to the gird with 

fuzzy logic algorithm achieving an excellent operational resource scheduling. In the V2G scheme, 

the conventional scheduling could hardly address the emerging opportunities regarding to increased 

system information and complexity. The V2G control need to deal with not only the regular charge 

behavior under prediction scheme but the short-term uncertainty as well. Deep learning algorithms 

have been investigated to be used different applications such as fault detection [29, 30], demand 

side forecasting in power systems [31] and traffic prediction in transportation system [32]. The long 

short-term memory neural network is good at mining deep structure features in time-series data[33, 

34], hence used for the battery capacity prediction. 

To mitigate the battery degradation problem, on the one hand, the new V2G method should 

functionally take the battery degradation into account, and on the other hand, the new V2G scheme 

should provide the evidences with quantitative analysis of the techno-economic advantages to the 

customers to encourage their participation. The trade-off between the V2G service and the battery 

lifetime degradation is very difficult to reach. In addition, the objective function is usually not 

simple linear or quadratic, so the regular convex optimization method is not suitable in this case 

[35]. The introducing of a quantitative index of battery degradation makes it much worse that the 

objective function is non-gradient, which fails the regular gradient descent algorithms [36] and the 

non-gradient optimisation is normally used to solve this kind of problem. Different methods of none-

gradient optimisation can be found with different characteristics in the knowledge field in different 

kind of applications [37-41]. Liu et al provide an good example by developing a multi-objective 

optimization strategy to optimize to maximize the fundamental frequency as well as minimize the 

dynamic displacement simultaneously [42]. The particle swarm optimization (PSO) has been 



investigated to be used in different applications [43, 44]. Huo et al presents an decomposed hybrid 

particle swarm method to achieve the optimal operation of interconnected energy hubs[44]. For the 

multi-objective optimization problem, the study presented by [45] developed a PEV charging 

coordination method based on fuzzy discrete particle swarm optimization, where several 

optimization objectives are combined based on fuzzy logic. However, the previous approaches did 

not consider the battery aging process and the quantitative analysis of the battery aging effect during 

the V2G services. To solve this problem, this study developed an PSO algorithms combined with 

the rain-flow cycle counting to reflect the battery aging process in the V2G scheduling. Comparing 

to the empirical-based or data-driven battery life estimation models, it is easier to quantify the cycles 

in rain-flow counting algorithm-based battery life estimation model [46]. Therefore, the EV battery 

charge/discharge cycle number is used in the proposed PSO algorithm. 

The proposed EV battery available capacity prediction method and V2G battery anti-aging 

scheduling approach is verified to be effective by in the power system frequency regulation service. 

Compared with the previous method that without battery lifetime degradation consideration, the 

proposed method benefits in the reduction in charge/discharge cycles. 

2. System description 

 

Fig. 1 Schematic of the microgrid system with real data source. 

The microgrid system employed in this study is shown in Fig. 1 based on a microgrid data in in 

Belgium. This grid connected microgrid is built as a demonstration project to enable the large 

penetration of the renewable energies as well as to make arbitrage trades by contributing power 

system services. The EV battery anti-aging control is one of the main contributions of the proposed 

V2G method, whereas the battery lifetime performance should be evaluated availably in a long 

duration. Therefore, this study takes advantage of the real case of the microgrid in Belgium and 

builds the long-term V2G simulation model based on the real data in the yearly range. The structure 

of the long-term microgrid operation model is shown in Fig. 1 including renewable power and 

electrical vehicles. The onboard batteries participate the grid service via the gird connection and the 

communication links also exist connecting electric devices in the distributed locations and exchange 

their status information and control references in the long-term simulation [13, 15]. Aiming at the 

yearly range of the simulation, the microgrid and the electric devices are implemented by the 

linearized model and the microgrid is established based on the benchmark scheme [47].  



 

Fig. 2 Architecture of the proposed new V2G scheduling approach for system frequency control. 

The logic diagram of the proposed new V2G method with the LSTM based EV capacity prediction 

and the improved PSO algorithm is shown as Fig. 2. The power system frequency regulation is 

selected as the target service providing by the EVs. As shown in Fig. 2, the microgrid works as both 

the real historical data source and the controlled system. The new V2G management module based 

on the improved PSO algorithm, formulates the V2G charge/discharge schemes for every grid-

connected EV with both the information of grid-connected EVs and the prediction result. The 

optimization objectives are to mitigate power system fluctuation as well as minimize battery 

degradation. The microgrid model together with the novel V2G algorithm are developed in the 

Matlab. 

3. Methodology 

3.1 EV statue prediction 

In the residential area, both the EV charge behavior or timing and the EV battery state at start/end 

points comply with some regular pattern, hence are predictable [48]. This is particularly helpful in 

the proposed new V2G scheduling method, as the demanding power and available discharging 

power of the onboard batteries could be predicted in time series. The deep recurrent neural networks 

(Deep-RNN) which is able to map the input into the corresponding sequential output, and fully 

expose the time-related features of it [49], is developed in this study. It consists of one input layer, 

several hidden layers, and one output layer, all of which are fully connected. Also, the timely update 

of the reference trajectory, here is the EV battery statue, is necessary to main the fast-transient 

response of the system control. Therefore, in order to avoid gradient blurry in long durations as well 

as to timely transfer the “just past” to the future prediction, this paper makes active combination of 

a roiling prediction scheme with LSTM. The LSTM is a specific architecture of Recurrent neural 

networks (RNN), and the parameters of LSTM are updated based on the Eq. 1 below. 

𝑎1
𝑡 = 𝑏𝑖𝑛 + 𝑊1

𝑠𝑐ℎ1
𝑡−1 + 𝑊𝑖𝑛

𝑖𝑐𝑥𝑡 

ℎ𝑖
𝑡 = 𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑎𝑖

𝑡) 

𝑎𝑖
𝑡 = 𝑏𝑖 + 𝑊𝑖

𝑠𝑐ℎ𝑖
𝑡−1 + 𝑊𝑖−1,𝑖

𝑖𝑐 ℎ𝑖−1
𝑡  

𝑜𝑖
𝑡 = 𝑏𝑜𝑢𝑡 + 𝑊𝑛

𝑠𝑐ℎ𝑛
𝑡−1 + 𝑊𝑜𝑢𝑡

𝑖𝑐 ℎ𝑛
𝑡  

(1) 

Where 
tx  is the system data input, to  is the prediction output, t

ih  is the state of ith network 

layer, activationf  is the activation function, ib  is the bias. sc
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t

ih 
 at time t from (i-1)th layer, 

2) bias ib , and 3) sharing states 1t

ih   at current network layer from last time step t-1.  

 

Combining the roiling time scale together with the LSTM algorithm could predict as well as update the 

EV status dynamically in the V2G services. This comprehensive method is shown in Fig. 3.  



 

Fig. 3 The principle of the V2G schedulable capacity prediction method using the Deep-LSTM 

As it is shown in Fig. 3, the data of all V2G participants in the MG is obtained and stored in a database. 

The V2G schedulable charging and discharging power based on the V2G service is used to train the 

prediction model. The LSTM algorithm then is used to obtain the V2G schedulable capacity. Also, within 

the LSTM cell for the EV status prediction, the rolling prediction process is performed repeatedly based 

on both the updated historical data and the real-time EV status. The accurate EV status or onboard battery 

status prediction is the critical reference for the EV batteries using in power system frequency control. 

History data of the EV in this study is mainly used to predict the available capacity of the battery for the 

grid service. The proposed method will be implemented easier at the aggregator, since the computational 

ability of the single charging pile is limited to achieve the prediction. Privacy protocol may be needed 

between the aggregator and the participant. 

 

3.2 Power requirement prediction 

 

Fig. 4 Power requirement for the V2G service 

The complexity of microgrid power forecasting lies in a). the significant volatility and uncertainty; and 

b), the uncertainty existing in both sides of the renewable generation and power consumption (load 

demand)[47]. In the proposed microgrid system, the EVs are expected to fulfill main two functions 

as shown in Fig. 5. First, the EV battery should enable the high penetration of the renewable power 

as much as possible by mitigating the power fluctuations inside the microgrid. Second, the onboard 

batteries could also provide frequency response for the main gird by power exchange. For the former 

function, the net power ΔP see Eq. 2 is the charge/discharge reference for the battery. Therefore, the 

single parameter ΔP could be set as the forecast target rather than the three predictive variable that 

wind power 𝑃𝑤𝑖𝑛𝑑, solar power 𝑃𝑠𝑜𝑙𝑎𝑟  and load demand 𝑃𝑙𝑜𝑎𝑑 . The power prediction methods 

have already been studied by many works, so this study does not introduce the prediction method 

in detail[50, 51]. The pooling-based neural network which could address the over-fitting issue, is 

used in this study to make the prediction based on the historical data of the net power.  



𝛥𝑃 = 𝑃𝑤𝑖𝑛𝑑 + 𝑃𝑠𝑜𝑙𝑎𝑟 − 𝑃𝑙𝑜𝑎𝑑 (2) 

𝑃𝑟𝑒𝑞 = ΔP + 𝛥𝑃𝑓 (3) 

For the frequency support services, the procurement is normally agreed in advance. For example, 

there are currently two trials under way in the UK a). reduce the procurement advance period from 

1 month to 1 week; b). same day procurement in 4 hourly blocks. Therefore, the power requirement 

for the frequency control 𝛥𝑃𝑓 is preset and available as an input for the EV battery. As shown in 

Eq. 3, the ΔP together with the 𝛥𝑃𝑓  are the power reequipment 𝑃𝑟𝑒𝑞 for the following models.  

3.3 Battery lifetime model 

In the proposed V2G control, the battery lifetime prediction should meet two key requirements. First, 

the prediction should be fast enough. Second, the battery lifetime model should be able to quantify the 

battery lifetime reduction and renew the battery lifetime status to the EV consumer at the end time of 

daily V2G service. To satisfy the first scenario, the rain-flow cycle-counting algorithm which use less 

computing resources but been proved to accurate, is introduced in this study. The rain-flow cycle-

counting algorithm has been widely used for analyzing the fatigue data and was investigated for battery 

cycling quantification by many published works[52-55]. With the reference of the cycles to failure 

chart the rain-flow cycle-counting could also make prediction of battery remaining lifetime. However, 

the previous rain-flow cycle-counting based approaches could not meet the second criteria that it could 

only calculate the degradation of the battery at charging pint neglecting the aging effect of the onboard 

battery in the driving mode. Consequently, prediction of the battery lifetime cannot be correct. To 

solve this problem, we introduced a Mile-to-Age function by which the battery aging effect during the 

driving mode is calculated based on the increased mileage [56]. 

The battery “cycle-to-failure” (CTF) curve (describing Battery cycles to failure vs. depth of 

discharge) is defined as number of cycles in function of depth of discharge (DoD) before the end of 

lifetime. In the rain-flow cycle counting algorithm, the “cycle-to-failure” curve works as an 

important reference to return the quantitative factor of battery degradation of each cycle. The Ref 

[57] presents an the “cycle-to-failure” curve/characteristic for the battery for an electric vehicle is 

used in this study to describe the “battery cycles to failure vs. depth of discharge”.  

For example, a typical “cycle-to-failure” curve is shown in Fig. 5 and at the depth of discharge 80%, 

the battery has 2500 cycles. Therefore, a very straightforward estimation can be made that if the 

battery undergoes one cycle with DoD of 50%, the battery lifetime degraded by 0.04% 

(1/2500=0.0004). 

 
Fig.5  A typical cycle-to-failure curve [58]  



The battery lifetime model in V2G service is shown as Algorithm 1.  

Algorithm 1: Battery lifetime model in V2MG service 

Input: Battery SOC trajectory in V2G scheduling and mileage increase 
Output: Number or cycles at corresponding DODs 
1:  Clone SOC data into A matrix and B matrix, and record the length of the SOC 
data with m 
2: Part one: Reconstruct SOC data 
3:    for i ← 2 to m-1 do 
4:      if (A (i-1) - A (i)) * (A (i) - A (i+1)) > 0 then 
5:        Eliminate A (i), and store the reconstructed data in the B matrix 
6:      end if 
7:    end for 
8: Part two: Definition the function of judging full cycle and convert the mileage 
increase to the equivalent full cycle. 
9:    re ← fun (B) 
10:   Initialize the value of re (re ← 0), and record the length of the B data with 
n 
11:   Find the full cycle with four-point counting 
12:     for j ← 1 to n-4 do 
13:       s1 ← | B (j+1) – B (j+2) | 
14:       s2 ← | B (j+3) – B (j) | 
15:       if s1 <= s2 do 
16:         Assign 1 to re, and end the current cycle 
17:       else 
18:         Assign 0 to re, and start the next round 
19:       end if 
20:     end for and sum(re) +cycle(mi) 
21:   return 
22: Part three: Find the amplitude and value of each full cycle and calculate the 
degradation factor using the cycle-failure-curve.   
23:   Store amplitude, value and number of cycles in the F matrix, J matrix and 
X matrix. 
24:   while fun (B)==1 or fun(B)==0 do 
25:     if fun (B) ==1 do 
26:       for j ← 1 to n-4 do 
27:         s1 ← | B (j+1) – B (j+2) | 
28:         s2 ← | B (j+3) – B (j) | 
29:         e3 ← (B (j+2) + B (j+1)) / 2 
30:         if s1 < s2 then 
31:   Store S1 and e3 in the F matrix and the J matrix, respectively. Delete point 

B(j+1) data, and recalculate the length of the B data, and end the current 
cycle 

32:         else then 
33:           Start the next round 
34:         end if 
35:       end for 
36:     elseif fun (B) == 0 
37:       End the current cycle 
38:     end if 
39:   Start the next round 
40:   end while 

3.4 Frequency control 

In the frequency control, the EV charger must respond to deviations in nominal frequency (50 Hz) 

by decreasing or increasing their power output. It should be figured out that in the proposed 

microgrid, the frequency control function is the defined as frequency service offered by the total 

microgrid to the main grid rather than the batteries to the microgrid itself. Therefore, the 𝛥𝑃𝑓 

offered by the EV batteries is not required to mitigate all the frequency fluctuations whereas the 

frequency fluctuation is the reference signal for the charge and discharge commends for the onboard 

batteries. This means both the actions and depth of the actions have the free ranges for the 

optimization.  



 

Fig. 6. (a). frequency data; (b) power profile 

The real time frequency data is published by the National Grid and used for the case study in this 

paper. The frequency is converted to the power based on the document published by the National 

Grid and this document covers the testing requirements for pre-qualification assessment and 

reproving of the frequency services [59]. Fig. 6 shows an example of converting the real-time 

frequency to the power demand. 

 

3.5 Battery active anti-aging control. 

The essence of V2G scheduling is a decision-making issue, a fast and effective decision algorithm 

is indispensable for scheduling the charging and discharging behavior of the EVs. On the basis of 

the rolling time domain prediction-decision principle a multi-objective optimization for the V2G 

service is developed based on the particle swarm optimization algorithm. The highlight of this 

section is intelligent V2G scheme with the battery active anti-aging control and the POS works as a 

tool in this highlight so the POS algorithm will not be introduced in detail. The optimization variable 

in V2G scheduling is the charge/discharge power of every grid-connected EV. The particle 

dimension is ( 1) ( )u wn T T   , where n  is the total number of EVs already in the grid, wT  and uT  

are the number of decision points in the future and past control step respectively. Given
,i jP  

represents the charge/discharge power of iEV  in time slot j. The pending scheduling sequence is 

obtained by the iteration process. The objective function is a multinomial hybrid function 𝑂𝐵𝐽𝑝(see 

Eq. 3) that describes the onboard batteries need to contribute to the gird services  

𝑂𝐵𝐽𝑝 = min {
1

𝑢 + 𝑣
∑ [𝜆𝑃𝑟𝑒𝑞(𝑡) + ∑ 𝑃𝐼

𝑛

𝑖=1

(𝑡) + 𝜆𝑃𝑝(𝑡) − 𝜆𝑃̄𝐴]

2𝑢+𝑤

𝑡=1

} (4) 

Where 𝑢 is the V2G behavior in past intervals that are unmodifiable but have an influence on the 

system, 𝑣  is the schedulable V2G behaviors in future intervals. 𝑃𝑟𝑒𝑞(𝑡) is the system power 

requirement at the interval t, 𝑃̄𝐴  is the average power requirement. ∑ 𝑃𝐼
𝑛
𝑖=1 (𝑡)  is the power 

exchange of grid-connected EVs, 𝑃𝑝(𝑡)is the scheduled charge/discharge power of EVs that will 

soon access the grid, which reflects the utilization degree of future V2G schedulable capacity. Since 

not all the EV customers want to take active part in the grid services, so the participation willingness 

factor 𝜆 is introduced ranging from 0 to 1 with the 0.1 interval into the objective function. If 𝜆 is 

zero that means the EV users do not want to the provide gird service and the onboard battery will 

only be charged during the connected period. The object function will return to a constant power 

requirement. If 𝜆 is one, the EV owners will give 100% access to the control their batteries in the 



gird services. Therefore, the EV users have the freedom in action in the proposed optimization. 

𝑂𝐵𝐽𝑏𝑎𝑡 = min {∑ 𝑁𝑖
𝑐𝑦𝑐𝑙𝑒

𝑛

𝑖=1

} (5) 

The 𝑂𝐵𝐽𝑏𝑎𝑡 function (see Eq. 5) is developed to minimize battery degradation in V2G, the cycle 

time is considered in objective function in our work. 𝑁𝑖
𝑐𝑦𝑐𝑙𝑒

is the charge/discharge cycles of iEV  

based on the proposed approach in Section 3.3. It also should be figured out that, the two objective 

functions are tested as equal factors in this study. Another level of optimisation could also be 

designed to achieve a more accurate uniformization of the objectives, but is not considered in this 

study. The constrains are shown as below in Eq. 6: 

 

(6) 

a. the travel demand of V2G participants should always be satisfied, charging should be completed 

before departure. 

b. DoD and charge/discharge rate are restricted see the Section 3.3 for detail. 

c. The power requirement inside the microgrid should be met in real-time whereas freedom is 

given in the frequency control for the main grid in the opination. 

d. DPt 

sum and CPt 

sum are the predicted maximum schedulable discharging power and charging power 

boundaries respectively and 𝑃𝑝(𝑡) should be set in the range. 

e. Numerical constraints 

It should be noted that the total cycle number is indeed an objective variable of the present 

optimization algorithm (𝑂𝐵𝐽𝑏𝑎𝑡 = min{∑ 𝑁𝑖
𝑐𝑦𝑐𝑙𝑒𝑛

𝑖=1 }), of which (𝑁𝑖) the calculation presented in 

Section 3.3 allows it to be given as integer. The cycle number works as the objective parameter 

rather than the design variable. 

 

4. Result and discussion 

The base load data used in this paper is the measured real data of load demand from the microgrid with 

57 households with 27 EV owners with one-year data including vehicle type, return home time, departure 

time, travel distance, etc... The most active time 16:00-24:00 and 00:00-08:00. Assuming the distribution 

of the participation factor 𝜆 obeys normal distribution. In the uncommitted charging scenario, it is 

assumed that EV owners would immediately charge their vehicles after arriving home with rated power 

until the batteries were fully charged. 

Based on the proposed deep learning approach in Section 3 and the real EV battery data, we made the 

prediction of the available capacity for the V2G service. Fig. 7 gives the examples of the two customers 



with two different sizes of electric vehicles in four and half-hours’ prediction. It is obvious that the 

predictions of the available capacities of the two electric vehicles could track the real EV battery data.  

 

Fig. 7. Predictions of the available capacities of the two electric vehicles 

A comparation is also made based on the simulation in 37 days of the battery data during the 

connection period 16:00 to 08:00 the second day. The results show that the battery undergoes deeper 

discharge (15% in average) with regular V2G management than that of the new method. Also, the 

proposed V2G scheduling method considering battery active anti-aging is able to reduce the 

amounts of full cycles, hence significantly mitigate battery degradation. 

Fig. 8 shows the results of the power contribution of the EV batteries in the frequency control. As it 

illustrated in the Fig. 8, the EV batteries are controlled to charge and discharge power with respect 

to deviations in the grid frequency and the ramp-rate limits. The ramp-rate limit is made based on 

the system requirement based on the method described in [60]. The dead-band (DB) in the frequency 

code is set as ±0.015 Hz around the system frequency 50 Hz. The EV batteries do not need to 

response to the frequency control, which provide the opportunity within power limits to optimize 

battery status. For example, as show in the Area A' (see Fig. 8. b), the EV will maintain as charging 

in the DB, even though there are some points at which the system frequency is less than 50 Hz (see 

Area A in Fig. 8.a). Also, in the Area B around 19:00, the largest frequency droop can be observed, 

and correspondingly, the EV batteries provide the maximal power in the Area B'.   

 

Fig. 8 (a). Main grid frequency fluctuations (b). Power contributions of the connected electric vehicles  



 

Fig. 9. The comparison of battery cycling performance in the uncommitted V2G scenario (a), (c) 

and battery cycling performance with the proposed new V2G method (b) and (d). 

To avoid rapid battery degradation during participating in V2G, this study proposed the new V2G 

scheduling method considering battery active anti-aging in section 3. The comparison of battery 

cycling performance in the uncommitted V2G scenario that with the new V2G method is shown in 

Fig. 9. The figure is made based on a customer electric vehicle data in a random date. It is apparent 

that under the control of V2G management method proposed in this paper, the amounts of 

charge/discharge cycles are effectively restricted.  

 

5. Conclusion  

This paper proposed a new V2G scheduling method with the advantage of protecting the onboard 

battery from overused hence improved the battery lifetime during the V2G service. The 

methodology is improved in two ways. Firstly, to give an accurate prediction of the available EV 

battery capacity in the control time-step for the V2G service, the long short-term memory neural 

network is developed for the V2G scheduling. Secondly, this study advances the V2G scheduling 

by adding the battery lifetime model in the optimisation. The simulation results highlight that the 

proposed capacity prediction method could simulate the V2G behavior of aggregate EVs accurately. 

It is the fact that the EV need to absorb power/energy from the grid. While, EV batteries are also 

regarded as the “moving energy storage” that offer the means to enhance power system flexibility 

especially for the grid and achieve uninterrupted operation. This study mainly focuses on the 

technical part of the V2G scheduling achieving an optimisation that to some extent, satisfies the 

power requirement from the batteries at the same time to minimize the battery lifetime degradation 

(to minimize the cycle number). It should be highlighted that the economic analysis is also very 

important in the knowledge filed of the V2G with regarding to, for example, the charging costs, 

revenues, emissions, etc., which may be the potential topics in the future research about the V2G.     
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