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Impact of Vehicle Headlights Radiation Pattern on Dynamic 
Vehicular VLC Channel 

F. M. Alsalami, N. Aigoro, A. A. Mahmoud, Z. Ahmad, P. A. Haigh, O. C. L. Haas, 
and S. Rajbhandari * 

Abstract 

This paper develops a statistical large-scale fading (path loss) model of a dynamic vehicular visible 
light communication (VVLC) system. The proposed model combines the impact of inter-vehicle spacing 
and the radiation intensity distribution as a function of the irradiance angle which changes with the traffic 
conditions. Three models (Lambertian, Gaussian and empirical) are utilized to examine the impact of 
vehicles headlights radiation pattern on the statistical path loss of VVLC system. The analytical model 
of channel path loss is validated by Monte Carlo simulation with the headlight model simulated with 
a raytracing software. The path loss values of the Gaussian model differ by 2 dB compared to the 
Lambertian model, irrespective of the traffic conditions while it differs by 24.6 dB during late night and 
8.15 dB during rush hours compared to the empirical model of a Toyota Altis headlight. This variation 
shows that the radiation intensity distribution should be modelled for each vehicle’s headlights from 
each manufacturer to ensure accurate VVLC channel model. The proposed Gaussian model provides a 
close approximation to describe such radiation pattern and can easily be adapted to model for different 
manufacturers’ headlights. 

Vehicle to vehicle (V2V) communication, visible light communication (VLC), outdoor channel model, 
Statistical communication channel model. 

Introduction 

Intelligent transport systems (ITS) provide solutions to many transportation challenges by the availability of 
vehicular communication [1]. Vehicular visible light communication (VVLC) offers a complementary solution 
by exploiting the license-free visible spectrum and hence reducing co-band interference and free the radio 
frequency (RF)-spectrum for other applications [1, 2]. 

VVLC maintains connectivity using vehicles’ headlight and taillight [2]. These optical devices are direc-
tional with an asymmetrical radiation pattern [3–7]. Although the directional nature of optical devices limits 
the interference among other light sources even in the presence of a high density of vehicles [2], it makes 
the VVLC link geo-spatial dependent. In addition, the dynamic nature of the traffic changes the geometry 
of the VVLC link. Therefore, modelling VVLC channel should consider both the radiation pattern of the 
vehicles’ headlights and the dynamic nature of the traffic conditions. 

The Lambertian model has been commonly used to describe the symmetrical radiation pattern of light-
emitting diode (LED) based sources for indoor environments [8, 9]. In VVLC systems, the Lambertian model 
has been used to study VVLC channel [1, 2]. However, the ECE R112 regulations, enforce asymmetric 
radiation pattern designs for low-beam lamps, which are used when vehicles are within a safe stopping 
distance to reduce the intensity of light directed towards drivers on the opposite lanes [10]. The work 
reported in [11] considered the radiation patterns of tungsten-halogen lamps to study the VVLC channel 
model. However, LED lamps are better suited for VVLC as they can support high-speed communication. 
A comparison between the path loss obtained by the Lambertian model and a simulated model of the 
asymmetric radiation pattern was provided in [5]. The study simulated the radiation pattern of low-beam 
headlights (Philips Luxeon Rebel white LED) using a non-sequential raytracing software tool. This study 
shows that the Lambertian model underestimates the path loss values. The gap between the path loss values 
of the Lambertian model and the simulated model was justified by the underestimation of reflection from 
the road surface. However, this is not an issue for VVLC, because the reflection from the road surface has 
minimal effect due to the low reflectivity values of asphalt (less than 0.3 in its best-case scenario [12, 13]). 

The experimental work in [14] provided measurements of VVLC channel path loss using a 2017 Ford 
Mondeo multibeam headlight. However, the maximum transmission range was limited to 25 m as the 
experiment was done in a parking garage which does not mirror the realistic scenario involving dynamic 
traffic. The study in [15] used raytracing method to simulate an Audi R8 headlamp to study the channel 
impulse response (CIR) of VVLC for different streets scenarios. However, the study did not provide an 
analytical CIR model which can be used to design a robust communication link. In addition, the study did 
not consider variable traffic conditions. 

The study in [4] considered a small-scale VVLC channel fading using realistic headlight radiation pattern 
for the Toyota Altis headlamp. This study provided measurements of the time variation characteristics of 
the channel, but it did not provide a reliable path loss channel model expression that can be used to design 
a VVLC link. The study also did not consider traffic flow and vehicles density. Similarly, the work in [6] 
characterized the radiation pattern of the 2015 Toyota Corolla Altis headlight and taillight to study the 
difference between the received power over the incoming and outgoing links. The measurement campaign 
was conducted in a large open space at night to minimize the ambient noise from other light sources. The 

* FMA, NA, AAM, ZA, OCLH: Coventry University, CV1 5FB, UK, (E-mails: (alsallaf, aigoron, mah-
mou14)@uni.coventry.ac.uk, and (ab7175, o.haas)@coventry.ac.uk) PAH: Newcastle University, NE1 7RU, UK, (E-mails: 
Paul.Haigh@newcastle.ac.uk) SR: SmartLiFi, UK. (E-mail: sujan@ieee.org). 
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work in [7] used the radiation pattern measurements reported in [6] to derive a path loss formula which 
comprises two parts: a) propagation path loss due to distance and b) geometrical path loss due to angle 
deviation. Likewise, the work in [16] used path loss formula in [7] as a benchmark to compare a proposed 
VVLC channel model with a simulation channel model. The simulated model used the radiation pattern of 
the low beam headlight (Philips Luxeon Rebel white LED) using the non-sequential raytracing software tool 
that was used in [5]. However, the path loss values obtained for the same headlight at the same distances 
differ e.g. the path loss values are -58 dB and -46 dB for simulated model in [5] and measurements in [16], 
respectively. 

A piecewise Lambertian analytical channel model was proposed and validated based on measurements 
from a Yamaha Cygnus-X scooter taillight [3]. However, the piecewise Lambertian model is not valid for 
other types of low-beam and high-beam headlamps [17]. The work in [17] concluded that finding a universal 
path loss model that can describe the radiation pattern of different designs of vehicles headlights and taillights 
is difficult and complex. However, the study emphasized the importance of finding such a model to analyse 
the link budget and predict the performance of the VVLC link. 

The studies in [18, 19] modeled the radiation intensity distribution of asymmetrical radiation patterns of 
different LEDs using a linear combination of Gaussian functions for the indoor environment. The proposed 
model was found to accurately describe the radiation intensity distribution of asymmetrical radiation patterns 
LEDs from different manufacturers. 

The impact of weather conditions and attenuation due to the scattering effect in the air was modeled 
and studied in [20, 21]. For example, additional attenuation of 0.7 dB/km, 7.77 dB/km, 10.5 dB/km, 15.96 
dB/km and 34.69 dB/km are induced due to clear, haze, thin fog, light fog, and dense fog, respectively [20, 
21]. In our previous work [21], we studied the additional attenuation that different weather conditions add to 
the path loss of VVLC channel. In addition, we studied the impact of reflection from vehicles and other road 
materials. The results showed that, among the considered surfaces, reflection from vehicles has a significant 
effect on the path loss because the reflectivity values of other surfaces are comparatively low. Furthermore, 
the results showed that the path loss values of reflection component are very large compared to the path loss 
values of the LOS component when a single reflector is considered and decreases significantly in multiple 
reflections scenario. 

1.1 Motivation and Original Contribution 

As described in section I, there is a lack of coherent VVLC channel model for a dynamic VVLC system which 
takes into account the radiation pattern of vehicles’ headlights under realistic traffic conditions. This study 
considers the large-scale fading because it dominates VVLC performance. This is due to the modest effect 
of small-scale fading presented by the time stationary property and dispersion parameters of the VVLC 
channel [4, 22]. The experimental measurements in [4] and our previous theoretical study in [22], which 
considered the dynamic nature of traffic conditions during different time of the day, showed that a VVLC 
channel has flat and slow fading characteristics at different traffic conditions. Therefore, in this study, we 
focus on the large-scale fading (path loss) model which has particular importance in accurately estimating 
the link budget, the outage probability and capacity of the VVLC channel [23, 24]. We address the lack 
of VVLC channel model considering various radiation patterns and dynamic traffic conditions. The main 
contributions of this work are as follows: 

• Propose an analytical model that can describe the statistical path loss of the VVLC channel. To 
the authors’ knowledge, this is the first model that considers the impact of the asymmetric radiation 
pattern of the vehicles’ headlights combined with the effect of dynamic variation of vehicles movement 
pattern due to varying traffic conditions. The model relies on traffic measurements collected from the 
M42 and M6 highways in the UK. 

• Model the radiation intensity of vehicles headlights with a series of Gaussian functions. The Philips 
LUXEON® Rebel which is commonly utilised for automotive applications [25] is used as an example 
of a practical vehicle’s headlight. 

• The proposed model is validated by Monte Carlo simulation where the light transmission is computed 
using a non-sequential ray-tracing software. 

• Compared the statistical path loss distributions for three different radiation pattern models and quan-
tified the results demonstrating the effect of the radiation pattern. 

The rest of the paper is organized as follows: the CIR is presented in section II. The dynamic traffic conditions 
are analyzed in section III. The headlight radiation pattern models are described in section IV. The numerical 
results are discussed in section V and conclusions are presented in section VI. 

Channel impulse response 

The radiation pattern of the vehicle’s headlight has rotationally asymmetrical angular distribution [17]. 
The radiation intensity distribution depends on the manufacturer design parameters such as the number 
of LEDs, alignments of the LEDs, existence/absence of optics and reflection shields [17]. Therefore, if the 
three-dimensional radiation intensity distribution of an asymmetrical radiation pattern is I(φ, Φ) then the 
radiation irradiance distribution at distance D, also called illuminance (W/m2), is given by [11, 18, 26]: 

I(φ, Φ) cos (ψ)
E(φ, Φ, ψ) = (1)

D2 

2 

2 



Table 1: Log-normal distribution parameters that describe the inter-vehicle spacing during rush hours and 
late night hours. 

Time Mean (m) µs σs µd σd 

0:00-3:00 48.72 3.88 0.09 3.90 0.08 
12:00-15:00 12.37 2.51 0.12 2.59 0.11 

where φ is the irradiance azimuth (horizontal) angle, Φ is the elevation (vertical) angle, ψ is the incident 
angle at the receiver and D is the inter-vehicle spacing. 

If the receiver uses a photodiode (PD) with an active aperture area of Ar, an optical filter with a gain of 
Ts(ψ) and a concentrator with a gain of g(ψ), then the CIR is given by [17]: � �I(φ, Φ) D 

h(t) = ArTs(ψ)g(ψ) cos (ψ)δ t − (2)
D2 c 

where t represents the propagation time, c is the speed of light, D/c is the propagation delay of the signal. 
Assuming that the optical filter and the concentrator have unit gain, the alignment between vehicles 

heading is maintained, i.e. φ = ψ, then the DC gain of the channel H(0) is given by: 

ArI(φ, Φ)
H(0) = cos (φ) (3)

D2 

The empirical study in [4] considered the impact of the vertical movement of vehicles, due to road surface 
irregularities, on the path loss and received power variation. The study showed that vertical movements 
cause a rapid increase (< 5 dB) in the received power which last for less than 0.5 s. Therefore, without loss 
of generality, it is assumed that the PD is aligned with the light source for most of the time. Hence, the 
elevation angle Φ can be considered as a constant and radiation intensity distribution can be reduced to I(φ). 

The path loss (channel gain in decibels (dB)), therefore, is given by: 

PL = 10 log(Ar) + 10 log(I(φ) cos (φ)) − 20 log(D) (4) 

The PL depends on the geometrical dimensions of the communication link D and φ which changes due 
to the dynamic nature of traffic conditions. In the next section, we study the geometrical changes in the 
communication link due to traffic. 

3 Dynamic traffic conditions 

Due to the dynamic nature of traffic conditions, the path loss PL at any time instance is random because the 
geometrical dimensions of the communication link D and φ are changing. Hence, the path loss PL depends 
on the road traffic conditions, traffic flow (veh/h), vehicles density (veh/m) and vehicle speed (m/h) [27]. 
The inter-vehicle spacing D distribution varies with the traffic flow, which also varies with time [28]. 

We use data collected using a combination of multiple-loop sensors; 318 and 154 bridge-mounted sensors 
on the M42 and M6 motorways in the UK, respectively. The data was collected from the M42 and M6 on the 
days (21, 24 and 28) of November 2017 and (6, 7 and 8) of December 2017, respectively. From these data, 
we extract the traffic flow variation and inter-vehicle spacing D variation over each 24 hour period [29]. 

The average traffic flow variation and inter-vehicle spacing variation during the day are illustrated in 
Fig. 1(a). The figures show that the traffic flow exceeds 1000 veh/h from 6:00 to 19:00. Accordingly, D 
has the lowest values during this period. Therefore, we use a sample time window between 12:00 and 15:00 
to study the rush hours traffic scenario when the traffic flow exceeds 1000 veh/h. On the other hand, the 
figures show that the traffic flow is below 500 veh/h at 23:00-7:00. Hence, D has the largest values during 
this period of the day. Therefore, we use a sample time window between 0:00 and 3:00 to study the late 
hours traffic scenario when the traffic flow is below 500 veh/h. 

Random variation of the inter-vehicle spacing is described using different distributions such as exponential, 
normal and log-normal [28, 30]. From the traffic measurements, the cumulative density functions (CDF) of 
inter-vehicle spacing during the rush hours 12:00-15:00 and late-night hours 0:00-3:00 in Fig. 1(b) show that 
a log-normal distribution with parameters µs and σs gives a good fit to the inter-vehicle spacing D: 

1 1 � (ln (d) − µs)
2 � 

PD(d) = √ exp − (5)
σs 2π d 2σs 

2 

The values of parameters µs and σs at different period of the day are given in Table 1. The log-normal 
distribution is a realistic scenario which accounts for the spacing between two consecutive vehicles and the 
speed limits of the road. The random distribution that describes the path loss PL in (4) combines the effect 
of the variation of D and the inter-vehicular angle deviation φ which depends on the angular distribution of 
the radiation pattern of the light source. 

In the following section, we study the impact of vehicles headlight radiation pattern model on the statis-
tical distribution of VVLC path loss. 

4 Headlight radiation pattern models 

In this work, we use three different models to examine the impact of the luminous intensity distribution 
and effects of the asymmetrical pattern on the statistical distribution of vehicular channel path loss. These 
models include a) the Lambertian model which is conventionally used to describe the symmetrical angular 
distribution of the radiation intensity patterns, b) a series of Gaussian functions to describe the asymmetrical 
angular distribution of the radiation intensity patterns and c) the empirical path loss model described in [7] 
for the asymmetric radiation intensity pattern of a 2015 Toyota Altis low-beam headlamp. 
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Figure 1: a) Traffic flow variation and inter-vehicle spacing variation during the day; b) CDF of inter-vehicle 
spacing during the rush and late-night hours 

4.1 The Lambertian angular distribution model 

The Lambertian radiation model is conventionally used to describe the symmetrical angular distribution 
of the radiation intensity pattern of a LED light source. The radiation intensity distribution I(φ) of a 
Lambertian source is given by: 

(m + 1) 
I(φ) = cos m (φ) (6)

2π 
−0.6931where m = is the Lambertian order and Ψ1/2 is the half-power angle of the radiation. For a ln (cos (Ψ1/2)) 

Lambertian source, the path loss in (4) can be simplified to: 

PL = 10 log(Ar(m + 1)) − 10 log(2π) − 20 log D + 10(m + 1) log cos(φ) (7) 

Considering the log-normal distribution of D in (5), the terms 10 log(Ar(m + 1)) − 10 log(2π) − 20 log D 
have normal distribution [31] with standard deviation σm = 20σs/ ln (10) and mean µm = 10 log(Ar(m + 
1)/2π) − 20(µs/ ln(10)). 

The azimuth angle φ depends on the variation of the lateral offset between following vehicles. Finding 
a realistic statistical distribution, that describes the distribution of the lateral offset between vehicles and 
hence the azimuth angle, depends on many variables including traffic volume, types and width of vehicles, 
lane width, vehicles speed and maneuvering [20, 32]. Experimental works obtained different distributions 
to describe the random distribution of the lateral offset between vehicles in reference to a specific variable 
[32–34]. To average out the aforementioned variable and account the effect of the radiation pattern exclusively 
as a function of φ, the angle is assumed to be uniformly distributed φ ∼ U(0, φo) [20]. The cosine distribution 
is given by [31]: 

1 
fZφ (zφ) = q cos (φo) < zφ < 1 (8) 

φo 1 − z2 
φ 

Now, applying the principles of random variable transformation, the term 10(m + 1) log cos(φ) in (7) can 
be expressed as: 

1 
fY (y) = √ 0 < y < 10(m + 1) log cos(φo) (9)

−2y/g − 1gφo e

where g = 10(m + 1) log e. 
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Figure 2: a) The numerical evaluation of the Gaussian radiation pattern model PDF term when φo = 60◦; b) 
Normalised single LED and headlight Gaussian intensity; c) horizontal/vertical headlight radiation patterns. 

Hence, the statistical distribution of path loss in (7) is found by the convolution of the distribution of 
the inter-vehicle spacing and the log-cosine distribution in (9) which is given by: � � 

− (x−y−µmZ 0 exp )2 

1 σ2 

PL(x; µm, σm) = √ √ m dy (10)
−2y/g − 1gφoσm 2π αm e

where αm = 10(m + 1) log(cos (φo)). 
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4.2 The Gaussian angular distribution model 

It was reported in [18, 19] that the asymmetrical luminous intensity distribution can be described by a series 
of Gaussian functions as: � � �2� ��X cos2 Φ sin2 Φ 

I(φ, Φ) = g1i exp − ln(2) |φ| − g2i + (11)
(g3i)2 (g4i)2 

i 

where (g1i, g2i, g3i, and g4i) are coefficient identified by linear regression. 
According to [18], two to three terms of Gaussian functions can describe the radiation distribution with 

sufficient accuracy. Therefore, the horizontal distribution can be re-written as: � �2� � �2�� |φ| − g21 
� |φ| + g22

I(φ) = g11 exp − ln(2) + g12 exp − ln(2) (12) 
g31 g32 

The intensity distribution I(φ) is given by a combination of two shifted Gaussian functions, which can 
approximate a sinusoidal function [35]. Using numerical evaluation, it can be shown that the term I(φ) cos(φ) 
in (4) can closely fit c1 cos (c2φ) + c3, where the coefficients (c1,c2 and c3) are identified numerically. Hence, 
the distribution of the term 10 log(I(φ) cos(φ)) in (4) can be approximately given by: 

y/a e
fY (y) = p 0 < y < c4 (13)

2 − (ey/a − c3)2a c2 φo c1 

where a = 10/ ln (10) and c4 is a boundary constant, which is identified numerically. 
Fig. 2(a) shows a numerical evaluation of the radiation pattern term when φo = 60◦ . In this case, the 

numerical values of coefficients c1 = 0.48, c2 = 1/3, c3 = 0.534 and c4 = 11.9 provide an approximate fit 
with a mean squared error of 0.25. The combination of other terms 10 log(Ar) − 20 log D of (4) has a normal 
distribution with a standard deviation of σn = 20σs/ ln (10) and mean of µn = 10 log(Ar) − 20 µs . Theln(10) 
distribution of path loss is given by the convolution between the normal distribution of the inter-vehicle 
spacing and the distribution given in (13). This convolution gives the following distribution: � � Z 0 exp − (x−y−µn)

2 

− y 
1 σ2 a 

PL(x; µn, σn) = √ p n dy (14) 
a c2 φoσn 2π c4 c2 − (ey/a − c3)2 

1 

4.3 Empirical asymmetric radiation pattern of Toyota Altis Headlight 

The empirical study in [7] considered the asymmetric radiation intensity pattern of the low-beam headlamp 
to provide a path loss formula, which is given by: � � � �2π(θ + 90) 

PL[dB] = α + δ − 10β log D + 1 + � cos (15)
ω 

where θ the incident angle, α = 695.3, δ = −717.3 (accounts for dBm to dB conversion), β = 4.949, � = 63.13 
and ω = 173. Considering that the inter-vehicle spacing has a log-normal distribution with a mean value � � 
>> 1, then the term 10β log D + 1 follows a normal distribution which is approximately expressed as [31]: 

1 � (x − µd))2 � 
PL(x; µd, σd) = √ exp − (16)

2σ2σd 2π d 

where both the standard deviation σd and the mean µd are affected by the constant shift of D + 1, which 
µs +σ2 

are given by µd + σ2/2 = ln (1 + e /2). The numerical values of σd and µd are given in Table 1. d
s � � 

2π(θ+90)Similar to (8), when θ ∼ U(0, θo), the term � cos is given by a linear transformation of the co-ω 

sine distribution: 
ω 

fZθ (zθ) = p αcmin < zθ < αcmax (17)
22πθo �2 − zθ 

where αcmin = � cos (2π(θo)/ω) and αcmax = � cos (2π(θo + 90)/ω). 
Therefore, the distribution of the path loss given in (15) follows a convolution between the normal 

distribution of the inter-vehicle spacing in (16) and a cosine distribution in (17). This convolution gives the 
following distribution [31]: � � 

− (x−y−µcZ αcmax exp )2 

ω σ2 

PL(x; µc, σc) = p c dy (18)
(2π)(3/2)θoσc αcmin �2 − y2 

where the standard deviation σc = 10βσd/ ln (10) and the mean µc = α − 10βµd/ln (10). 

RESULTS and DISCUSSION 

To validate the mathematical analysis of the Gaussian model of a LED Philips LUXEON® Rebel presented 
in section III.B, a raytracing software OpticStudio® is utilized with the luminous intensity profile obtained 
from manufacturer datasheet to obtain the statistical path loss distribution of the VVLC channel. The 
received power is obtained at distances ranging from 1 m to 100 m (to reflect inter-vehicular distance of 
rush hour and late night hour) with lateral distance from 0 m to 1 m from both sides of the source. Further 
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Figure 3: Path loss PDFs for a) Lambertian and b) Gaussian and c) empirical radiation models at 0:00-03:00 
(late hours) and 12:00-15:00 (rush hours). 

analysis (e.g. path loss and CDF of path loss) is carried out in MATLAB using the data obtained from the 
raytracing. 

First, we use the normalized intensity to find the numerical values of the coefficients g11, g12, g21, g22, 
g31 and g32 for the headlight pattern as shown in Fig. 2(b). The figure shows that the normalized intensity 
of the headlight pattern matches the normalized intensity of a single Philips LUXEON® Rebel. This is 
expected because the receiver is aligned to the horizontal plane 0◦ . Fig. 2(c) shows that in this plane the 
intensity has the same pattern for a single LED. Therefore, the numerical coefficients g11=0.76, g12=0.11, 
g21=0, g22=45◦ , g31=29◦ and g32=21◦ [18, 19] closely fit the normalized intensity of the headlight pattern 
with a root-mean-square-error (RMSE) value 0.02, verifying that the Gaussian angular distribution model 
can closely match the radiation pattern of the LED. 

Based on these radiation patterns, we studied the dynamic path loss distributions. We assume that 
the channel gain at any time instant is random and depends on inter-vehicle spacing as well as irradiance 
azimuth angle. Monte Carlo (MC) simulation of 106 iterations is used to study the dynamic behaviors of the 
system under study based on the statistical model described in Section IV. In the simulation, concentrator 
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Table 2: Summary of mean and variance values of the statistical path loss distributions. 

Time Model mean value (dB) variance 
0:00-3:00 Lambertian -79.6 3.7 

Empirical -102.8 3.2 
Gaussian -77.7 13.1 

12:00-15:00 Lambertian -68.6 4.7 
Empirical -74.7 5.4 
Gaussian -65.8 14.2 

gain of 1 and FOV of 80◦ . The inter-vehicle distance D has a log-normal distribution with µs and σs given in 
Table 1. The angles φ and θ are assumed to be uniformly distributed φ ∼ U(0, 60◦). The simulation assumed 
clear weather conditions with negligible additional attenuation. Similarly to the empirical model in [7], the 
non-line-of-sight (NLOS) reflection from vehicles and road surfaces is not considered and a receiver with an 

2active area of 1 cm is mounted at the same headlights’ horizontal plane (i.e. receiver height at 55 cm) [6, 
7]. 

The probability density functions (PDFs) of channel path loss obtained by a) Lambertian b) Gaussian 
and c) empirical radiation in [7] models at 0:00-03:00 (late hours) and 12:00-15:00 (rush hours) are shown 
in Fig. 3. The figures demonstrate that the path loss distribution obtained using MC simulation matches 
with the theoretical analysis given by (10), (14) and (18) for the Lambertian, the Gaussian and empirical 
radiation models, respectively. The figure shows that the path loss distribution is affected by the variation 
of inter-vehicle spacing and the radiation pattern distribution. All models show that the path loss values at 
late hours are higher than values at rush hours. This is expected, as the mean values of the inter-vehicle 
spacing µs and µd have larger values at late hours compared to the rush hours as illustrated in Table 1. 

It is difficult to evaluate the system performance using the PDFs of the path loss expressed in the in-
tegration form in (10), (14) and (18). However, these integration formulas cannot be further simplified or 
expressed in terms of a finite combination of elementary functions [36, P. 229]. Therefore, Fig. 3 suggests 
conventional statistical distributions that can fit the obtained path loss distributions. A normal distribution 
has provided a close approximation to the empirical model path loss because changes in the inter-vehicular 
distances, described by normal distributions, have a dominant effect. An extreme value distribution has pro-
vided a close approximation to the path loss distribution when the Lambertian model is used, particularly at 
rush hours. This is because, in the Lambertian model, changes in the inter-vehicular distance has a relatively 
larger effect than changes in the angles φ which has cosine distributions. The path loss distribution, when 
the Gaussian model is used, cannot be described by a conventional distribution because it is affected equally 
by the changes in the inter-vehicular spacing and the angles φ. Hence, this study found that the convolution 
between a normal distribution and log-cosine distribution in (14) best describes the path loss distribution. 

Fig. 4(a) illustrates the CDF of the path loss obtained by raytracing approach and MC simulation using 
the Gaussian model at 0:00-03:00 and 12:00-15:00. The received power values are used to find the path loss 
according to the mean and standard deviation of distance distributions in Table 1 and Fig. 1(b). The figure 
shows that the Gaussian model closely matches the path loss obtained by raytracing and predicts the mean 
values of the path loss at both periods. 

Fig. 4(b) shows the CDFs for path loss of the Lambertian, empirical and Gaussian models. The mean 
and standard deviation values of the path loss are summarized in Table 2. The figure and table clearly show 
that mean and standard deviation values of path loss depend on the radiation pattern. The mean path loss 
is the lowest for the Gaussian model followed by Lambertian and Empirical models. The difference in the 
path loss is 2 dB between the Gaussian and Lambertian radiation pattern and > 8 dB between Gaussian 
and Empirical radiation pattern. This difference in the path loss values does not mean that some models 
are more accurate than others. This difference in path loss values only indicates that path loss is dependent 
on the radiation pattern. Since different manufactures use different technology and optical systems which 
significantly affect the radiation pattern, the path loss for VVLC system also varies for different headlamps. 
In conclusion, the path loss of the empirical model is only applicable for the Toyota Altis low-beam lamp, 
because it does not accurately describe the path loss of other light sources of a different design and function. 
The Lambertian model is impractical to describe the asymmetrical radiation pattern of vehicles’ sources. 
The proposed Gaussian model can be adopted to describe the radiation pattern of different vehicles’ sources 
for different manufacturers by adjusting the values of the coefficients g11, g12, g21, g22, g31 and g32. 

To study the impact of the radiation pattern on the communication link performance, we examine the 
bit-error-rate (BER) performance for on-off keying (OOK) modulation scheme. The BER estimate of the 
system and simulation parameters are given by [11]. Assuming a pseudo-random sequence of 106 bits and a 
transmission rate of 50 Mbps, the estimated BER performances from the comparative statistical analysis for 
the three path loss models is illustrated in Fig. 4(c). The simulation parameters are given in [11]. The figure 
shows that to achieve BER=10−5 the difference in the required SNR values for Gaussian and Lambertian 
models is 2 dB at the rush and late hours. The difference in the required SNR for the Lambertian and 
Empirical models is 18 dB at rush hours and increases to 51 dB at late hours. This is expected because the 
path loss values for the Gaussian and Lambertian models are close while the path loss values of the Empirical 
model are significantly higher than the Gaussian and Lambertian models as illustrated in Table 2. 

Conclusion 

In this paper, we developed a statistical path loss model of a dynamic VVLC channel using Lambertian, 
Gaussian and asymmetrical radiation patterns that model headlamps from different manufacturers. The 
study shows that the path loss depends on radiation patterns as well as the traffic conditions including 
traffic flow and inter-vehicular spacing which are dynamically varying. The theoretical analysis confirms 
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Figure 4: Path loss CDFs at 0:00-03:00 and 12:00-15:00 for (a) Gaussian MC model; (b) Lambertian, 
Gaussian angular distribution and empirical models; and (c) estimated BER performance of OOK modulation 
scheme for each of the models at different traffic conditions. 
that statistical distribution of the path loss is a convolution of the radiation intensity distribution and the 
inter-vehicle spacing distribution. The statistical path loss varies significantly depending upon the radiation 
pattern with a difference of > 8 dB. The Gaussian radiation pattern shows the least path loss followed 
by Lambertian and asymmetrical pattern. Developing a universal model to describe the radiation pattern 
for different headlights of different designs and manufacturers is not feasible because radiation patterns 
from different manufacturers have different features and characteristics. However, finding the radiation 
intensity distribution of vehicles headlights for each manufacturer is important to model the VVLC channel. 
The Gaussian model provides a close approximation to describe the radiation pattern which can easily be 
adopted for different manufacturers. 
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