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Abstract 

3D transesophageal echocardiography (TEE) is one of the most significant advances in cardiac 

imaging. Although TEE provides real-time three-dimensional (3D) visualization of heart 

tissues and blood vessels and has no ionizing radiation, X-ray fluoroscopy still dominates in 

guidance of cardiac interventions due to TEE having a limited field of view and poor 

visualization of surgical instruments. Therefore, fusing 3D echo with live X-ray images can 

provide a better guidance solution. This paper proposes a novel framework for image fusion by 

detecting the pose of the TEE probe in X-ray images in real-time. The framework does not 

require any manual initialization. Instead it uses a cascade classifier to compute the position 

and in-plane rotation angle of the TEE probe. The remaining degrees of freedom (DOFs) are 

determined by fast marching against a template library. The proposed framework is validated 

on phantoms and patient data. The target registration error (TRE) for the phantom was 2.1 mm. 

In addition, 10 patient datasets, seven of which were acquired from cardiac electrophysiology 

procedures and three from trans-catheter aortic valve implantation procedures, were used to 

test the clinical feasibility as well as accuracy. A mean registration error of 2.6 mm was 

achieved, which is well within typical clinical requirements. 

Keywords: Cardiac interventional guidance, X-ray fluoroscopy, 3D ultrasound, image fusion. 

 

1. Introduction 

Minimally-invasive cardiac interventional procedures such 

as the treatment of structural heart disease and cardiac 

electrophysiology (EP) procedures are generally guided under 

2D X-ray fluoroscopy. Interventional devices are designed to 

be radiopaque so they are highly visible in X-ray images. 

However, as the soft tissues of the heart have little contrast 

under X-ray, contrast agents are routinely injected to visualize 

the anatomical structures of target areas during the key stages 

of procedures. The use of contrast agents is limited due to 

toxicity and alternative imaging methods such as 

echocardiography [1][2], magnetic resonance (MR) [3] and 

computed tomography (CT) [4], are often employed to support 

the image guidance of the procedure. With recent advance of 

transesophageal echocardiography (TEE), TEE can provide 

3D and real-time visualization of heart tissues and blood 

vessels. Unlike X-ray fluoroscopy, TEE does not use ionizing 

radiation and it is easily accessible in the cardiac intervention 
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suite. Therefore, TEE has become a popular choice for 

interventional imaging, particularly for the treatment of 

structural heart disease. However, TEE cannot be used as the 

solo image guidance tool as it has a limited field of view and 

poor visualization of surgical tools and interventional devices. 

In current clinical practice, X-ray images are displayed in one 

monitor with a 3D TEE image volume in a separated monitor. 

Image fusion between X-ray fluoroscopy and TEE has been 

proposed and clinically implemented (EchoNavigator, Philips 

Healthcare) [5]. EchoNavigator is an excellent tool to allow 

merged display of echocardiographic and fluoroscopic images 

in real-time and allow the interventionalist to interact with 

both imaging modalities simultaneously. However, in the 

presence of large cardiac or respiratory motions, registration 

between X-ray images and 3D TEE image volumes might not 

be accurate. The errors might be caused by the delayed image 

registration.  

Image fusion between X-ray fluoroscopy and TEE could be 

also solved by other 2D/3D registration methods [6][7] or 

magnetic tracking sensors [8][9]. Sensor-based solutions may 

become inaccurate when the electromagnetic field is distorted 

by large metal objects inside the cardiac catheter laboratory. 

Furthermore, additional sensors need to be attached to the TEE 

probe, which make the solution less clinically translatable. On 

the other hand, 2D/3D registration methods will estimate the 

location and pose of the TEE probe in the X-ray image by 

registering a 3D model of the TEE probe to the live X-ray 

images. Therefore, 2D/3D registration methods do not require 

additional hardware (sensors). Most of the existing methods 

cannot achieve real-time performance. A maximum of only 

0.5 frames per second (FPS) were achieved in [10] and 2 FPS 

were achieved in [7]. Although 20 FPS was achieved in [11] 

for TEE probe localization, this method cannot be directly 

used in our application as it does not calculate out-of-plane 

rotational parameters. The method in [6] was implemented in 

MATLAB; therefore, it cannot perform in real-time. Finally, 

20 FPS were achieved in [12] but only with manual 

initialization and GPU implementation. In recent years, 

several solutions were developed for real-time device 

detection in X-ray fluoroscopic images.  In [13] [14], real-time 

catheter and guidewire detection methods were developed. 

Detection methods based on machine learning algorithms 

have demonstrated a great potential to solve the 2D/3D 

registration problem for image fusion between X-ray 

fluoroscopy and TEE in real-time [7][11]. Additionally, Hatt 

et al. [15] developed a Hough forest based detection 

framework to localize the TEE probe in real-time (17 FPS). 

The solution is GPU-based implementation and can not 

calculate out-of-plane rotational parameters. Miao et al. [16] 

presented a CNN regression approach to perform real-time (10 

FPS) 2D/3D registration. Although this method is able to 

compute all in-plane and out-of-plane parameters for 2D/3D 

registration, it has limited capture range (3.3 mm for the TEE 

probe) and requires a large memory footprint (2.39 GB).  

In this paper, we propose a fully automatic 2D-3D 

registration framework-based probe pose estimation which is 

capable of registering 3D live TEE image volumes with live 

X-ray images in real-time. The novel framework is based on 

automatically detecting the location and pose of the TEE 

probe in live X-ray images. It does not require any manual 

initialization and does not have limited capture range. The 

estimation of 2D location and in-plane rotation of the probe is 

provided by a cascade image classifier. The remaining degrees 

of freedom (DOFs) of the TEE probe are solved by image 

matching between an image from a template library with 

binary masks and the subimage detected from the cascade 

classifier. The template library is constructed from 3D scans 

using conventional or cone beam CT (CBCT) of the TEE 

probe. The cascade classifier not only detects the TEE probe 

in real-time even without a GPU implementation, but also it 

can generate good initial pose estimates which could 

dramatically reduce the overall computational load following 

initialization. Therefore, the proposed framework could 

achieve real-time performance even without GPU 

implementation. Instead, multi-threaded implementation 

should be sufficient. Furthermore, the proposed framework 

does not require a high-resolution 3D model (used in [10]) 

which is normally created using a specialized scanner such as 

a nano-CT scanner. In our proposed framework, the 3D model 

is created using CBCT and the generated images have similar 

resolution as the X-ray fluoroscopic images used during the 

procedures because they are acquired on the same hardware. 

Therefore, our solution does not require specialized 

equipment or sensors and the light-weight algorithms reduce 

computational loads on the GPU and leave valuable GPU 

computing power for other tasks such as real-time 

visualization of 3D TEE image volumes. 
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Figure 1: The full workflow of the proposed computation 

framework. Only the clinical workflow is computed in real-

time.  

2. Method 

The proposed computational framework is divided into 

four steps: A) Model training for the cascade classifier. B) 

Creating a template library from CBCT. C) Probe detection. 

D) Probe 2D-3D registration. (A) and (B) are offline and they 

only need to be done once for each type of TEE probe. (C) and 

(D) are computed in real-time. The full workflow is illustrated 

in figure 1. 

2.1 Model training for the cascade classifier 

A cascade classifier is a particular case of ensemble 

learning based on the concatenation of several classifiers, 

using all information collected from the output from a given 

classifier as additional information for the next classifier in the 

cascade. The cascade object classifier provides high 

classification accuracy and real-time performance [17]. 

Therefore, it has been widely used in real-time computer 

vision applications such as face detection [18], vehicle 

detection [19], pedestrian detection [20] and football detection 

in robotic soccer competitions [21]. The cascade classifier was 

also used in breast cancer detection in mammograms [22].  

To create the model, the cascade classifier has to be trained 

with a relatively large number of sample views of a target 

object and arbitrary negative images which do not contain any 

part of the target object. In our case, 400 positive images were 

created using in-house software. The software allows a user to 

interactively select a fixed-size region of interest which is 

centred at the middle of the TEE probe head (figure 2(a) gives 

an example). Then the software down-samples the region 

image to the resolution 32x32. The reason for this small 

resolution is because high-resolution positive images require 

much longer training time. In our experience, if 400 64x64 

positive images are used for training, it will take more than 3 

weeks to train the classifier using a standard desktop 

computer. Even with the support of multi-threading or GPU, 

the training time can only be reduced to a few days. The reason 

for very long training time is that the cascade training 

algorithm searches three kinds of features: a two-rectangle 

feature, a three-rectangle feature and a four-rectangle feature. 

According to [23], there will be 45,396 sets of rectangle 

features for the image with a resolution of 24x24. 

Furthermore, there are normally 10 to 20 stages of training 

and, in each stage, the training algorithm will go through all 

rectangle features again. Also, training might take several tries 

to find the optimal parameters. Therefore, low-resolution 

training images were used. Out of a total of 400 positive 

images, 200 images were from X-ray images acquired during 

two clinical cases. The other 200 images were acquired during 

the phantom test experiment. There are different orientations 

of TEE probe in the positive images (see figure 2(b)) so that 

the classifier can detect the target from any angle.  

 
(a) Creating a positive training image 

 

 
(b) Positive images 

 
(c) negative images 

Figure 2. Examples of training images 

 

The number of negative training images should be twice the 

number of positive images [21] to achieve optimal results. 

Therefore, 800 negative images were generated from the same 

source images as positive images used. Instead of cropping the 

TEE probe from the source image, negative images are sub-

images which do not show any part of TEE probe head. These 

are background images which could contain ECG wires, 

interventional devices such as catheters, bone shadows and 

angiographic contrast agent.  

To train the cascade classifier, training tools provided by 

OpenCV were used. The version of OpenCV is 3.4 and the 

training routines in our framework are 

opencv_createsamplesd : Creating OpenCV vector datafile for 

positive and negative data. 

opencv_traincascade : Using the vector datafiles created by 

the previous routine to train the cascade classifier. 

The details of training instruction can be found in [23]. The 

type of boosted classifier is Gentle AdaBoost. The minimal 

desired hit rate is set to 0.999 and the maximal desired false 

alarm rate is set to 0.5. 

 The process of training the cascade classifier is to create a 

collection of stages, where each stage is an ensemble of weak 

learners. The weak learners are simple classifiers called 

decision stumps which are machine learning models 

consisting of a one-level decision tree. Each stage is trained 

using a technique called boosting. Boosting provides the 

ability to train a highly accurate classifier by taking a weighted 

average of the decisions made by the weak learners. 

Therefore, the final product of training is a strong classifier 

which is a linear combination of weighted weak classifiers. 
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There are several important parameters for the training tools. 

They are the number of stages, the false positive rate and the 

feature type. The number of stages and the false positive rate 

are set depending on the size of the training data. As 400 

positive images and 800 negative images (our dataset) are in 

the small dataset range, the number of stages is set to a lower 

number such as 10 and the false positive rate is also set to a 

lower value such as 0.5. There are two types of features: Haar 

and Local Binary Patterns (LBP). LBP have many advantages 

over Haar such as short training time, robustness to local 

illumination change and robustness to occlusion. Therefore, a 

cascade training tool using LBP with 10 stages was used. The 

time required to complete training was 2 hours 36 minutes 

using OpenCV 3.4 with multi-thread support. This was done 

in an Intel Core i7 2.9 GHz laptop. 

2.2 Creating a template library from CBCT 

The cascade classifier is able to detect the location as well 

as in-plane rotation (figure 3(a)) and scale of the TEE probe. 

These four parameters are called in-plane parameters as they 

are in the plane of the X-ray image. There are two additional 

rotations: roll and pitch, which are out-of-plane. Roll and pitch 

angles could not be detected by the cascade classifier; they 

have to be found in a different way. Therefore a template 

library with binary masks is used to detect both out-of-plane 

rotation angles.  

 

        
(a) In-plane rotation         (b) Roll and pitch (out-of-plane) 

Figure 3. Three rotations of the TEE probe 

 

The template library is a comprehensive collection of 

images of the TEE probe in different roll and pitch rotation 

angles. It is created using CBCT, which acquires a series of 

X-ray images using a rotating C-arm. From CBCT, a digitally 

reconstructed radiography (DRR) model of the TEE probe can 

be constructed. The DDR model is a series of stacked 2D 

images, which represents the 3D model of the TEE probe. 

From the DDR model, simulated X-ray images can be created 

in any angle of roll and pitch rotation. However, searching a 

large template library is computationally expensive. As the 

TEE probe is sitting inside the oesophagus during the 

procedure, the probe is not free to move in all directions. Our 

template library covers the pitch angle from −48° to 48° and 

the roll angle from −90° to 90°. The angle interval is 2°. As 

X-rays can penetrate through the TEE probe, it makes objects 

appear the same under symmetrical poses. Therefore, 

producing template images of roll angle from −90° to 90° is 

sufficient to cover the full range of roll rotation (360°). Two 

sets of image masks are created. One is generated by 

binarizing images inside the template library. The other one is 

created from detected probe images, which are extracted by 

the cascade classifier. Those image masks are used to further 

reduce the computational cost of registering between a 

detected probe image and a template image. The image mask 

applied in the detect probe image can reduce influence from 

neighbourhood objects (wires or catheters) during the 

registration process. An example of the detect probe image 

and its image mask are illustrated in figure 4b. The 

binarization of template images was done automatically by an 

adaptive binarization method: Otsu’s method [24]. Otsu’ 

method is a non-parametrized and adaptive algorithm as it 

automatically determines the thresholding level based on 

minimizing the intra-class variance. The resulting binary 

images were verified by an imaging scientist to ensure that 

important features of the TEE probe are visible in the binary 

image. A contour-finding algorithm [25] computes all 

possible contours inside the binary image. The longest contour 

is selected and enlarged to create an image mask (figure 4a). 

The image mask for the detected probe image is also created 

from the enlarged contour of TEE probe and the method of 

computing the contour can be found in section 2.3.  

                

 

 

 

 

 

 

 

 

(a) Image masks           (b) Registration using masks 

Figure 4. Examples of image masks and their usage in the 

image registration. The green areas are image masks.  

2.3 Probe detection 

After training the cascade classifier, it can be used to detect 

the TEE probe in live X-ray fluoroscopic images. The initial 

estimated scale is input into the classifier so that it is not 

necessary to search the X-ray image over a large range of 

search window sizes. This can substantially reduce the 

computational cost. To calculate the size of the search 

window, the size of the TEE probe in the template library is 

used. However, live X-ray images are often acquired under 

different X-ray system settings compared with settings used 

for image acquisition for the template library. Therefore, the 

size of the TEE probe measured in image pixels needs to be 

converted into a physical size in mm first. To convert into 

physical space (mm), the pixel to mm ratio (𝑅𝑑𝑖𝑐𝑜𝑚) is 

Roll 

Pitch 

Detected 

probe image 
Template 

image 
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obtained from the X-ray Dicom image header. The 

magnification factor M of the X-ray system is also estimated, 

which is based on 𝐷𝑑𝑒𝑡 𝐷𝑝𝑎𝑡⁄  (𝐷𝑑𝑒𝑡 is the distance from the X-

ray source to the detector, and 𝐷𝑝𝑎𝑡 is the distance from the X-

ray source to the patient). 𝐷𝑝𝑎𝑡 is estimated by using the 

distance between the X-ray source to the X-ray table surface 

which is provided by the real-time data streaming from the X-

ray system. The real pixel to mm ratio is defined as: 𝑅𝑟𝑒𝑎𝑙 =

 𝑅𝑑𝑖𝑐𝑜𝑚/𝑀. Therefore, the estimated size of search window 

(𝑆𝑤) for the cascade classifier is computed as: 

  𝑆𝑤 = 𝑆𝑡 ∗ 𝑅𝑟𝑒𝑎𝑙/𝑅𝑟𝑒𝑎𝑙_𝑙𝑖𝑣𝑒                                  (1) 

Where 𝑆𝑡 is the size of TEE probe in the template library 

which is measured in image pixels. 𝑅𝑟𝑒𝑎𝑙_𝑙𝑖𝑣𝑒 is the real pixel 

to mm ratio for live X-ray images and 𝑅𝑟𝑒𝑎𝑙 is the real pixel to 

mm ratio for images in the template library. 

The position of the probe is detected as the centre of the 

search window and the scale is computed by using Eq. (1). For 

detection of in-plane rotation angle, the cascade classifier has 

relatively low accuracy. To improve the detection accuracy, 

additional steps were added after applying the cascade 

classifier. First, the detected probe image was cropped from 

the live X-ray image. Then, the cropped image was down-

sampled to 20% of the original image size. A multiscale vessel 

enhancement filter [26] was applied to the down-sampled 

image. It is used to enhance the visibility of wire-like 

structures in the X-ray images, which is based on the idea of 

approximating wire-like objects, such as tubular or cylindrical 

structures (the TEE probe head is similar to a tubular structure 

in the down-sampled image). Image down-sampling is not 

only to reduce the computation load but also to reduce or 

remove the vessel enhancement effect on wires, catheters or 

other small surgical instruments. The multiscale parameter of 

the vessel enhancement filter was set to the estimated size of 

the diameter of the TEE probe head so that only the TEE probe 

is enhanced after applying the filter. The enhanced image is 

binarized using Otsu’s method [24]. Finally, a contour-finding 

algorithm [25] computes all possible contours inside the 

binary image. The longest contour is selected and principle 

component analysis (PCA) is applied to the contour to 

compute the orientation vector of the TEE probe as the first 

eigenvector. The workflow is presented in figure 5. 

         

 

 

 

 

 

 

 

 

Figure 5. The workflow of computing the orientation vector. 

In the final picture, the circle indicates the scale of the TEE 

probe and the white line indicates the orientation vector.  

2.4 Probe 2D-3D registration 

The final step of pose estimation is to compute the out-of-

plane parameters: the roll and pitch rotations. Our template 

library has a total of 4320 images. The number of images is 

calculated as following: 

4320 =  
180

2
×

96

2
                                    (2) 

Where 180° is the range of roll angle and 96° is the range of 

pitch angle. 2° is the angle interval. For multi-threaded 

implementation, 32 threads were used in a PC with an AMD 

Ryzen 9 3.5 GHz CPU (16 cores, support 32 processing 

threads). Therefore, each thread only computes a maximum of 

135 image similarity measurements. The normalized cross 

correlation is used to compute the similarity between the 

detected probe image and an image from the template library. 

The normalized cross correlation can be computed by using 

Fast Fourier Transform (FFT) and can reduce the 

computational cost by up to 95% [27]. Therefore, a real-time 

performance could be achieved by using just multi-threaded 

implementation.  

For initial probe pose detection, the full template library 

(1,080 images) is searched. As the TEE probe is sitting inside 

the oesophagus during the procedure, clinicians must move 

and adjust angles slowly to avoid damaging the oesophagus. 

Therefore, after obtaining the initial pose, the search range of 

roll and pitch rotations is halved so that only half the template 

images will be searched. An improved performance will then 

be achieved for probe pose tracking.  

2.5 TEE image volume registration 

The 3D TEE image volume can be visualized in the 2D X-

ray fluoroscopic image by aligning the TEE and X-ray system 

coordinate systems. The transformation matrix, 𝑇𝑇𝐸𝐸_𝑡𝑜_𝑋𝑟𝑎𝑦, 

which transforms from 3D TEE image space to 2D X-ray 

image space consists of a rigid body transformation matrix 

𝑇𝑟𝑖𝑔𝑖𝑑 and a projection matrix 𝑇𝑝𝑟𝑜𝑗. 

𝑇𝑇𝐸𝐸_𝑡𝑜_𝑋𝑟𝑎𝑦 = 𝑇𝑝𝑟𝑜𝑗𝑇𝑟𝑖𝑔𝑖𝑑                          (3) 

The projection matrix transforms from 3D X-ray C-arm space 

to 2D X-ray image space. This can be calculated by using the 

intrinsic parameters of the X-ray system [28]. 𝑇𝑟𝑖𝑔𝑖𝑑 can be 

decomposed into two matrices. 

𝑇𝑟𝑖𝑔𝑖𝑑 = 𝑇𝑚𝑜𝑑𝑒𝑙_𝑡𝑜_𝐶−𝑎𝑟𝑚𝑇𝑇𝐸𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙       (4) 

Where 𝑇𝑚𝑜𝑑𝑒𝑙_𝑡𝑜_𝐶−𝑎𝑟𝑚 transforms from 3D TEE model space 

(Model was acquired by CBCT) to 3D X-ray C-arm space. 

This matrix is generated by the probe detection algorithm and 

probe image registration method that positions the 3D TEE 

model in C-arm space. 𝑇𝑇𝐸𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙 relates the position of the 

Downsampling Vessel filter Binarize 

PCA 
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3D TEE images to the position of the 3D TEE model.  This is 

the TEE probe calibration matrix and is calculated pre-

procedurally using a specifically designed calibration 

phantom. 

2.6 TEE probe calibration 

𝑇𝑇𝐸𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙 is determined using a probe calibration 

procedure. The calibration phantom consists of a 9-L water 

tank and two thin metal wires. Nine metal landmarks which 

are visible in both X-ray and ultrasound were placed on the 

wires. The TEE probe was rigidly fixed beneath the wires 

during data acquisition. X-ray images were acquired from left 

anterior oblique (LAO) 45°, right anterior oblique (RAO) 45° 

and posterior-anterior (PA) projections using a Philips Allura 

Xper FD10 C-arm X-ray system, which has an internal 

mechanism to track the C-arm position in real-time. 

Simultaneously an echo volume was acquired in full volume 

mode, giving the maximal volume coverage possible with the 

TEE probe. The automatic 2D-3D registration method based 

on probe detection and probe image registration was then 

utilized to align the 3D TEE model with the X-ray images 

acquired from PA and LAO views. The third X-ray image, 

which was acquired from RAO 45° was used to confirm the 

accuracy of the TEE probe localization.  

The 3D positions of the nine landmarks 𝑃𝑝ℎ𝑎𝑛𝐸𝑐ℎ𝑜 were 

identified manually from the TEE image data. The landmarks 

were also clearly visible in the X-ray images. By manually 

defining the 2D position of the landmarks in the PA and LAO 

45° X-ray images, their 3D positions in C-arm space 

𝑃𝑝ℎ𝑎𝑛𝐶−𝑎𝑟𝑚 could be reconstructed using back-projection 

[24]. The calibration procedure was repeated for three 

different probe positions. A classic hill-climbing optimization 

algorithm was employed to find 𝑇𝑇𝐸𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙 by minimizing 

the Euclidean distance error 𝜀 given by 

𝜀 = ‖𝑇𝑇𝐸𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙𝑃𝑝ℎ𝑎𝑛𝐸𝑐ℎ𝑜 − 𝑇𝑚𝑜𝑑𝑒𝑙_𝑡𝑜_𝐶−𝑎𝑟𝑚
−1 𝑃𝑝ℎ𝑎𝑛𝐶−𝑎𝑟𝑚‖  

(5) 

In order to validate the accuracy of the calibration, a further 

2 TEE volumes were acquired of the calibration phantom 

along with X-ray images in the PA and LAO 45° views.  

3. Experiments 

The proposed real-time framework was validated on 

phantoms and clinical datasets which were acquired during 

cardiac interventional procedures.  

3.1 Imaging equipment and data acquisition 

For all clinical cases and phantom studies, we used an iE33 

3D real-time echo system with an X7-2t 3D TEE probe 

(Philips Healthcare, Andover, Boston, USA) for TEE 

acquisition. All clinical data collections have been approved 

by the Local Research Ethics Committee. 

We evaluated the accuracy of our method using a realistic 

heart phantom (Ultrasound Heart Phantom, Computerized 

Imaging Reference Systems, Inc., Virginia, USA). The 

phantom has completely anthropomorphic external and 

internal anatomy including left/right ventricles, left/right atria 

and the valves. For TEE acquisition, the TEE probe was 

placed on the acoustic surface of the heart phantom. Six TEE 

volumes were acquired to cover different sections of the 

phantom by varying the TEE probe position. For X-ray image 

acquisition, we used a Philips Allura Xper FD10 C-arm X-ray 

system, the same X-ray system used for the TEE probe 

calibration. 

We collected data from 7 cardiac electrophysiological (EP) 

procedures. All patients had left atrial flutter and were under 

general anesthesia (GA) during the procedures. For five 

patients, TEE and X-ray data were acquired after two deca-

polar catheters were inserted into the right atrium (RA), one 

forming a loop along the endocardial surface of the RA and 

the other inserted into the coronary sinus (CS). Both catheters 

were visible in the TEE volume. For two patients, a trans-

septal puncture was performed to gain access to the left atrium 

(LA). TEE volumes were acquired after a lasso catheter and 

an ablation catheter were inserted into the LA. The movement 

of the C-arm was limited by other equipment such as the 

anaesthesia system and the ultrasound scanner. X-ray images 

covering 4-5 cardiac cycles were acquired from PA and either 

RAO 30° or LAO 30° projections.  

TEE and X-ray data were also collected from 3 trans-

catheter aortic valve implant (TAVI) procedures. All 

procedures were performed in a GE catheter laboratory 

equipped with a GE Innova 2100IQ C-arm Xray system. 

Similar to the Philips Allura Xper FD10, this GE X-ray system 

can precisely track its C-arm position automatically. The 

replacement valves were either delivered using the trans-

femoral approach or trans-apical approach. X-ray images and 

TEE volumes were acquired in the same way as the data 

acquisition in the EP procedures after the replacement valve 

reached the deployment site. 

A total of 6,492 images (52 image sequences) were 

acquired in 10 clinical cases and phantom studies. The frame 

size of each sequence is 512×512 which is the native 

resolution of the clinical images, with pixel sizes between 

0.342 mm and 0.433 mm. Among the 6,492 images, 5,520 

images were acquired during clinical cases in St. Thomas 

hospital, London, UK and the remaining images were acquired 

during phantom studies. 400 of the images (200 from phantom 

studies and 200 from clinical cases) were used as training data 

for the cascade classifier. The remaining 6,092 images were 

used as testing images for the evaluation of the proposed 

detection framework. 

3.2 Evaluation for probe detection  
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The quantitative performance evaluation of the in-plane 

parameters (translation 𝑇𝑥 , 𝑇𝑦 and rotation 𝜗) detection was 

performed on all test images (6,092 images). The results of 

accuracy evaluation are summarized in Table 1. 

For the clinical data the average in-plane position (𝑇𝑥, 𝑇𝑦) 

error was 1.7 and 2.1 mm and the in-plane orientation error 

was 2.9°. Position errors were measured as the nearest 

distances from the contour of detected TEE probe head to the 

contour drawn by one clinical expert (gold standard data). The 

gold standard data were manually defined using a Catmull-

Rom spline curve. Figure 6(a) gives an example. The 

orientation error was calculated as the angle difference 

between the detected orientation line and the line drawn by the 

clinical expert. The clinical expert was instructed to draw the 

line along the transducer array. Figure 6(b) gives an example. 

Errors in the position estimation are mainly caused by false 

detections along the shaft of the probe. Other causes of errors 

are caused by proximity to dense tissue. The true positive rate 

is 0.94 and the false positive rate is 0.08. The true positive rate 

is defined as 𝑇𝑃/𝑃, which TP is the number of objects 

correctly labelled by the cascade classifier as the TEE probe 

and P is total number of objects labelled as the TEE probe. 

The false positive rate is defined as 𝐹𝑃/𝑁, which FP is the 

number of objects incorrectly labelled as the TEE probe and 

N is total number of objects labelled as the background. 

Detection in low dose images has lower accuracy compared 

with normal dose images. Low dose screening images are of 

low quality and are generally acquired to aid navigation. For 

higher quality, high dose cine images can be acquired, which 

are well contrasted and less noisy than low dose screening 

images. Those images are classified as normal dose X-ray 

images in this paper. 

Figure 6 illustrates detection examples and the nature of 

clinical images with cluttered background and low textured 

probe. 

 

Table 1. Accuracy evaluation of the in-plane position (𝑇𝑥 , 𝑇𝑦) 

and orientation (𝜗) 

 Average Error 

Test Data 𝑇𝑥(mm) 𝑇𝑦(mm) 𝜃 

Calibration phantom 1.1±0.57 1.3±0.68 2.1°±1.3 

Heart phantom 1.3±0.71 1.6±0.82 2.5°±1.6 

Clinical Data 1.7±0.93 2.1±1.11 2.9°±1.9 

Normal dose 1.5±0.77 1.9±0.93 2.6°±1.6 

Low dose 2.0±1.15 2.3±1.28 3.2°±2.2 

 

  
(a)                                                 (b) 

  
(c)                                       (d) 

  
                   (e)                                             (f)  

 

  
                      (g)                                          (h) 

Figure 6. Examples of probe detection and estimation of in-

plane parameters. The white circle indicates the size of TEE 

probe and the white line indicates the direction. The start point 

of the white line is the centre of TEE probe. (a) Manual 

annotation of the contour of TEE probe. (b) Manual annotation 
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of the orientation vector of TEE probe. The red line is the 

orientation vector. (c)(d) Low dose images in TAVI cases. 

(e)(g) Normal dose images in EP cases. (f) A normal dose 

image in the phantom calibration study. (h) A normal dose 

image in the heart phantom study. 

3.3 Evaluation for probe 2D-3D registration 

Overall accuracy of probe 2D-3D registration including 

accuracy evaluation of out-of-plane parameters was carried 

out by using target registration error (TRE). For the calibration 

phantom study which is described in section 2.6, TRE is 

defined as error between corresponding points on the X-ray 

and echo projection images of the crossed wires. These error 

measurement points were defined by manually fitting straight-

line models to the projected images of the crossed wires in the 

two imaging modalities. The crossing points were then 

detected automatically from these fitted lines and 

corresponding measurement points were automatically 

defined in fixed steps along the lines from the crossing point. 

This provided 10 to 13 measurements per overlay view. Figure 

7(a)-(c) shows an example of this. 2D projection errors were 

calculated between corresponding points and averaged to give 

an overall alignment error (e) for the overlay view as follows 

𝑒 =
1

𝑁
∑ |𝑃𝑖,𝑥𝑟𝑎𝑦 − 𝑃𝑖,𝑒𝑐ℎ𝑜|𝑅𝑑𝑖𝑐𝑜𝑚

𝐷𝑝𝑎𝑡

𝐷𝑑𝑒𝑡

𝑁
𝑖=1             (6) 

Where N is the number of measurements and 𝑃𝑖,𝑥𝑟𝑎𝑦 and 

𝑃𝑖,𝑒𝑐ℎ𝑜 are the locations of corresponding points i in the 

overlay view. 𝑅𝑑𝑖𝑐𝑜𝑚 is pixel to mm ratio from X-ray Dicom 

image header. 𝐷𝑑𝑒𝑡 is the distance from the X-ray source to 

the detector, and 𝐷𝑝𝑎𝑡 is the distance from the X-ray source to 

the patient. 𝐷𝑑𝑒𝑡 𝐷⁄
𝑝𝑎𝑡

 is the magnification factor of the X-ray 

system. The TRE is 2.08 ± 0.61 mm and maximum error is 

2.6 mm with the magnification factor ranging from 1.26 to 

1.51. 

 

  
(a)                                       (b) 

 
(c) 

Figure 7. Phantom model experimental overlay of 

fluoroscopic and echocardiographic images. Errors were 

measured between automatically defined points on straight 

line models of the crossed wires. (a) Original image. (b) Echo 

overlay. (c) Error measurements. Blue lines are centerlines of 

crossed wires in both X-ray and echo images. Red lines are 

error distances. 

 

Similar to the error measurement in the phantom study, the 

TRE for clinical studies is defined as error distances between 

corresponding points in both X-ray and echo images. 

Although real-time synchronised visualisation of the live data 

stream was possible during the clinical procedures, the post-

procedure analysis for this paper required that the recorded X-

ray and echo data were synchronised manually, resulting in 

only approximately synchronised sequences. The manual 

synchronization was done through visual matching using 

landmarks such as catheters or artificial valves. Automatic 

registrations using our framework were performed at two 

separate frames in each X-ray sequence (22 overlay views 

generated). Corresponding catheters were manually defined in 

the echo and X-ray views using spline curves. Equally spaced 

points along the echo curve were automatically defined as 

measurement points. The corresponding X-ray point was 

defined as the closest point on the X-ray curve. The alignment 

error for each overlay view was again taken as the average of 

the 2D errors between corresponding points. An example of 

these error measurements is given in figure 8(b). Average 

errors were measured using between 4 and 6 point pairs per 

overlay view, depending on the length of catheter visible in 

the echo image. In all cases, catheters were used for the 

measurements, because they were the most consistently 

visible objects in the echo images. Figure 9 gives some 

examples of echo X-ray overlay views during the EP cases. 
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(a) 

 
(b) 

Figure 8. An example of error measurement. Errors are 

measured as the shortest distance from automatically defined 

points on the echo catheter image to a spline model of the X-

ray catheter. (a) Echo X-ray overlay. (b) Error measurement. 

Red lines are the shortest distances. 

 

  
(a)                                         (b) 

  
                   (c)                                            (d) 

Figure 9. Example of echo X-ray overlay in atrial fibrillation 

ablation cases. Real-time overlay views were generated during 

the trans-septal puncture. SVC: superior vena cava. LA: left 

atrium. RA: right atrium. 

 

For TAVI cases, the procedure was performed under 

general anesthesia in a GE catheterisation laboratory. The 

TEE probe was positioned to view the left ventricular outflow 

tract and ascending aorta, aortic valve and left ventricle. After 

applying our probe 2D-3D registration method, TEE image 

volume can clearly visualize the native aortic valve as well as 

ascending aorta and register the TEE image with live X-ray 

fluoroscopic images. For error measurement, the guide wire 

was used (see figure 10 (c)). The alignment errors for both EP 

and TAVI cases are presented in figure 11. From a total of 120 

alignment error measurements made, a median error of 2.6 

mm was achieved.  

  
(a)                                      (b) 

 
(c) 

Figure 10. Example of echo X-ray overlay in TAVI cases. 

Real-time overlay views were generated during the 
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deployment of the artificial valve within the native aortic 

valve. (a) Visualization for the native aortic valve. (b) 

Visualization for ascending aorta. (c) Error measurements. 

 

  
Figure 11. The box plots for TRE errors in clinical cases. The 

first 7 box plots were obtained from EP cases and remaining 

three were from TAVI cases. 

3.4 Performance evaluation  

The proposed real-time probe 2D-3D registration 

framework enables detection at 9 fps for the TEE probe in live 

X-ray images using only multi-threaded implementation (32 

threads). Furthermore, our framework can achieve 20 fps for 

tracking TEE probe by reducing the search range by half. The 

frame rate was evaluated in a PC with an AMD Ryzen 9 3.5 

GHz CPU (16 cores, support 32 processing threads). The 

tracking frame-rate is considered as real-time for cardiac 

interventional procedures as frame rates over 15 fps are rarely 

employed. In the low dose X-ray image setting, the frame rate 

for X-ray systems will drop to an average of 7.5 fps to reduce 

X-ray radiation doses. 

The cascade classifier is very efficient in our framework. It 

achieved average 182 fps on all image sequences with the 

native resolution (512x512) and achieved average 98 fps on 

images with the scale-up resolution (1024x1024). However, in 

order to achieve 9 fps detection speed and 20 fps tracking 

speed for any image sequence with the resolution of 

1024x1024, the image sequence needs to be down-sampled to 

512x512.  

4. Discussion 

The main aim of the study was to develop an automatic and 

real-time TEE probe localization framework and evaluate it in 

the application for overlaying TEE image volumes on live X-

ray fluoroscopic images, which could be used during cardiac 

interventional procedures. This framework does not involve 

the use of any additional tracking devices and therefore can be 

easily integrated into the current workflow of the catheter 

laboratory. The fundamental advantage of combining 3D echo 

and X-ray images is the ability to better appreciate soft tissue 

anatomy in relation to the catheter or guidewire during 

navigation and device deployment. 

For example, in the EP cases, a 3D echo volume on its own 

can be difficult to interpret because of its limited field-of-view 

and lack of context for the echo coordinate system relative to 

the patient. In addition, catheters tend to produce artefacts in 

the ultrasound data reducing the clarity of the images. 

However, in the overlay view, the echo volume is displayed in 

a coordinate system that can be more easily related to the 

patient. Also, the highly visible catheters in the X-ray image 

help with identifying the catheters in the echo and so can be 

related to the cardiac anatomy via the echo image. The precise 

location of the catheter tip and electrodes on the lasso catheter 

in relation to atrial tissue permits better targeted ablation 

delivery than just visualising the catheter as a whole on 

fluoroscopy. Similarly during a TAVI procedure, being able 

to visualise both the native valve and the artificial valve on a 

single image will facilitate delivery and deployment of the 

artificial valve. 

One of the accuracy requirements for a clinically useful 

image guidance system is 5 mm. The choice of 5 mm is 

motivated by the size of the smallest target structures 

(pulmonary veins, approximately 5 mm in radius) for cardiac 

interventional procedures. Based on the results reported in 

section 3.3, the system is sufficiently accurate to guide 

procedures in real-time. Our framework can achieve an 

accuracy of 2.4±1.1 mm for EP cases and 2.9±1.2 mm for 

TAVI cases. The other accuracy requirement is 3.2mm, which 

is the diameter of the sheath for a larger guiding catheter (8Fr) 

used in cardiac intervention. The majority of registration 

errors (83.3%) are below 3.2mm. Compared to our previous 

framework, the errors caused by patients’ respiratory and 

cardiac motions are largely reduced. The majority of the probe 

motions caused by both respiratory and cardiac motions is 

translational. As the pose of TEE probe is continuously 

tracked throughout the whole image sequence, both 

translation and rotation movements are captured by our 

framework so that lower errors can be achieved. Figure 12 

presents the comparison of translation (position) errors with in 

our old method [10].  
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(b) Comparison (frame by frame)  

Figure 12 Comparison of translation (position) errors. The 

black dot lines are translation errors in our old method [10]. 

The solid lines are translation errors generated by proposed 

new real-time framework. As our old method is not able to 

track the probe in real-time, the translate errors are mainly 

caused by cardiac motions. In the other hand, the current 

method is capable to remove those large errors by apply the 

real-time tracking method. (a) Real-time comparison. (b) 

Comparison after removing tracking delay (results are 

calculated frame by frame). 

 

 
(a) Detecting a different TEE probe in an X-ray image. 

The white circle indicates the size of the TEE probe 

and the white line indicates the direction. 

 

 
(b) In an extreme roll angle, the main feature of the TEE 

probe head has become a thick line. 

Figure 13. The potential and drawback of our method. 

 

The proposed framework is not limited to certain types of 

TEE probe. If the training data is available (even a relatively 

small dataset such as 200 images), the cascade image classifier 

could be trained to detect and localize the target TEE probe in 

X-ray images. Figure 13(a) gives an example of detecting a 

Philips S7-2T TEE probe (a 2D probe with axial rotation).  

In this study, we have demonstrated real-time TEE probe 

detection and tracking and that it facilitates hybrid X-ray 

fluoroscopy and 3D echo visualisation. We anticipate that by 

gaining familiarity and confidence within this hybrid viewing 

system, there will be a lesser need for repeated X-ray 

fluoroscopy use to establish catheter position. With increased 

usage over time, we predict a greater reliance on echo views 

to assist catheter or guidewire navigation. In the long run, this 

will reduce overall fluoroscopy time and patient exposure to 

ionising radiation. 

4.1 Limitations and further works  

The position errors are higher when the TEE probe has 

extreme roll angles ((out-plane rotation) such as  −90° and 

90°. As the TEE probe in extreme angles has less distinguish 

features for the cascade classifier to localize the position along 

the shaft of the probe, higher position errors were generated 

by false detections along the shaft of the probe. As shown in 

figure 13(b), the main features of the probe head such as the 

ultrasound transducer array has become a thick line instead of 

a rectangular object. Therefore, the position of detection could 

slip along the shaft of the probe. If there is a failure of 

detection by the cascade classifier, manual initialization 

should be used to correct the position of the TEE probe and 

out-of-plane parameters still can be calculated automatically. 

The reason for less accurate localization by the cascade 

classifier is that the classifier is the sum of several weak 

classifiers and the transducer array is the dominate feature. 

Therefore, the weak classifier for detecting transducer array 

carries a higher weight than other weak classifiers. When the 

transducer array becomes a thick line instead of a rectangular 

object, the cascade classifier will become less accurate and 

generate false detection along the shaft of the probe. The 

potential solution for improving accuracy in the extreme angle 

is to train a second cascade classifier dedicated to the extreme 

angles. 

5. Conclusion 

This paper presents a novel and real-time TEE probe 

detection and tracking framework, which is based on a cascade 

image classifier and a 2D-3D image registration method. The 

proposed framework works robustly in both normal dose and 

low dose X-ray fluoroscopic images and it can be applied to 

overlay real-time TEE image volumes with live X-ray 

fluoroscopic images. The proposed framework does not 

require any user interaction and the TEE probe could be 

continuously tracked throughout the whole image sequence in 

real-time. As the proposed framework requires a relatively 
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small number of images for training the cascade classifier, it 

could potentially be applied to all types of TEE probes used in 

cardiac interventional procedures. This could enable wider 

usage of real-time TEE echo in cardiac interventional 

procedures and combine the strength of both echo and X-ray 

image modalities.  
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